Science.gov

Sample records for application au formaldehyde

  1. Formaldehyde

    NASA Astrophysics Data System (ADS)

    Kowatsch, Stefan

    Formaldehyde, as an aqueous solution ranging from 37 to 50 wt%, continues to be the preferred aldehyde for reaction with phenol for the preparation of phenolic resins. Over 30 million metric tons of formaldehyde represent the global worldwide consumption of formaldehyde for an array of products, besides phenolic resins. These include urea formaldehyde resins, melamine formaldehyde resins, polyacetal resins, methylenebis (4-phenyl isocyanate), butanediol, pentaerythritol, and others.

  2. Formaldehyde

    Integrated Risk Information System (IRIS)

    Formaldehyde ; CASRN 50 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives.

    PubMed

    Duan, Hongyun; Qiu, Teng; Guo, Longhai; Ye, Jun; Li, Xiaoyu

    2015-08-15

    The limitation and regulation of formaldehyde emissions (FE) now shows great importance in wood-based materials such as plywood and particle board manufactured for building and furnishing materials. The widely used formaldehyde-based adhesives are one of the main sources of FE from the wood products. In this work, a new kind of long-term effective formaldehyde scavenger in the microcapsule form was prepared by using an intra-liquid desiccation method. The characterizations of the capsule (UC) were performed including the morphologies, the yields, the loading efficiency as well as its sustained-release of urea in aqueous conditions. The prepared UC could be integrated in urea-formaldehyde resins by simply physical blending, and the mixtures were available to be applied as the adhesives for the manufacture of plywood. The bonding strength (BS) and the FE of the bonded plywood in both short (3h) and long (12 week) period were evaluated in detail. It was found that the FE profile of the plywood behaved following a duple exponential law within 12 week. The addition of UC in the adhesive can effectively depress the FE of the plywood not only in a short period after preparation but also in a long-term period during its practical application. The slow released urea would continuously suppress the emission of toxic formaldehyde in a sustained manner without obviously deteriorating on the BS of the adhesives.

  4. Threshold for occluded formaldehyde patch test in formaldehyde-sensitive patients. Relationship to repeated open application test with a product containing formaldehyde releaser.

    PubMed

    Flyvholm, M A; Hall, B M; Agner, T; Tiedemann, E; Greenhill, P; Vanderveken, W; Freeberg, F E; Menné, T

    1997-01-01

    Our purpose was to investigate the eliciting threshold concentration of formaldehyde in formaldehyde-sensitive individuals in the occluded and non-occluded patch test, and to evaluate the relationship to repeated open application test (ROAT) with a product containing a formaldehyde releaser. 20 formaldehyde-sensitive patients and a control group of 20 healthy volunteers were included in the study. Occluded and non-occluded patch tests with formaldehyde solutions from 25 to 10,000 ppm, and ROAT for 1 week with a leave-on cosmetic product containing on average 300 ppm formaldehyde, were carried out simultaneously on each subject. In the occluded patch test, 1/2 of the 20 patients only reacted to 10,000 ppm formaldehyde, 9 reacted to 5,000 ppm, 3 reacted to 1,000 ppm, 2 reacted to 500 ppm and 1 reacted to 250 ppm. No definite positive reactions were observed in the non-occluded patch test or in the ROAT. No positive reactions were observed in the control group to any of the test procedures. We concluded that the threshold concentration for occluded patch test to formaldehyde in formaldehyde-sensitive patients was 250 ppm. The threshold in occluded patch test corresponded to the degree of sensitivity. Definite positive reactions in the ROAT were not seen, either indicating that they are unlikely to happen with the type of product used or that the exposure time was too short.

  5. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  6. A ratiometric fluorescent formaldehyde probe for bioimaging applications.

    PubMed

    He, Longwei; Yang, Xueling; Liu, Yong; Kong, Xiuqi; Lin, Weiying

    2016-03-14

    We have described a ratiometric fluorescent formaldehyde probe (RFFP) based on the 6-hydroxy naphthalene chromophore for the first time. The probe is suitable for ratiometric detection of formaldehyde both in the solution and living biological samples with two distinct emission bands.

  7. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems. PMID:21171657

  8. Thermodynamics of the formaldehyde-water and formaldehyde-ice systems for atmospheric applications.

    PubMed

    Barret, Manuel; Houdier, Stephan; Domine, Florent

    2011-01-27

    Formaldehyde (HCHO) is a species involved in numerous key atmospheric chemistry processes that can significantly impact the oxidative capacity of the atmosphere. Since gaseous HCHO is soluble in water, the water droplets of clouds and the ice crystals of snow exchange HCHO with the gas phase and the partitioning of HCHO between the air, water, and ice phases must be known to understand its chemistry. This study proposes thermodynamic formulations for the partitioning of HCHO between the gas phase and the ice and liquid water phases. A reanalysis of existing data on the vapor-liquid equilibrium has shown the inadequacy of the Henry's law formulation, and we instead propose the following equation to predict the mole fraction of HCHO in liquid water at equilibrium, X(HCHO,liq), as a function of the partial pressure P(HCHO) (Pa) and temperature T (K): X(HCHO,liq) = 1.700 × 10(-15) e((8014/T))(P(HCHO))(1.105). Given the paucity of data on the gas-ice equilibrium, the solubility of HCHO and the diffusion coefficient (D(HCHO)) in ice were measured by exposing large single ice crystals to low P(HCHO). Our recommended value for D(HCHO) over the temperature range 243-266 K is D(HCHO) = 6 × 10(-12) cm(2) s(-1). The solubility of HCHO in ice follows the relationship X(HCHO,ice) = 9.898 × 10(-13) e((4072/T))(P(HCHO))(0.803). Extrapolation of these data yields the P(HCHO) versus 1/T phase diagram for the H(2)O-HCHO system. The comparison of our results to existing data on the partitioning of HCHO between the snow and the atmosphere in the high arctic highlights the interplay between thermodynamic equilibrium and kinetics processes in natural systems.

  9. Biomolecule-based formaldehyde resin microspheres loaded with Au nanoparticles: a novel immunoassay for detection of tumor markers in human serum.

    PubMed

    Lu, Wenbo; Qian, Chen; Bi, Liyan; Tao, Lin; Ge, Juan; Dong, Jian; Qian, Weiping

    2014-03-15

    A surfactant-free and template-free method for the high-yield synthesis of biomolecule (serotonin)-based formaldehyde resin (BFR) microspheres is proposed for the first time. The colloidal microspheres loaded with Au nanoparticles (AuNPs) prepared by a convenient in-situ synthesis of AuNPs on BFR (AuNPs/BFR) microsphere surface show good stability. AuNPs/BFR microspheres not only favor the immobilization of antibody but also facilitate the electron transfer. It is found that the resultant AuNPs/BFR microspheres can be designed to act as a sensitive label-free electrochemical immunosensor for carcinoembryonic antigen (CEA) determination. The immunosensor is prepared by immobilizing capture anti-CEA on AuNPs/BFR microspheres assembled on thionine (TH) modified glassy carbon electrode (GCE). TH acts as the redox probe. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 25 pg/mL to 2000 pg/mL (R=0.998) and the detection limit is estimated to be 3.5 pg/mL at a signal-to-noise ratio of 3. The prepared immunosensor for detection of CEA shows high sensitivity, reproducibility and stability. Our study demonstrates that the immunosensor can be used for the CEA detection in humans serum. PMID:24176971

  10. Biomolecule-based formaldehyde resin microspheres loaded with Au nanoparticles: a novel immunoassay for detection of tumor markers in human serum.

    PubMed

    Lu, Wenbo; Qian, Chen; Bi, Liyan; Tao, Lin; Ge, Juan; Dong, Jian; Qian, Weiping

    2014-03-15

    A surfactant-free and template-free method for the high-yield synthesis of biomolecule (serotonin)-based formaldehyde resin (BFR) microspheres is proposed for the first time. The colloidal microspheres loaded with Au nanoparticles (AuNPs) prepared by a convenient in-situ synthesis of AuNPs on BFR (AuNPs/BFR) microsphere surface show good stability. AuNPs/BFR microspheres not only favor the immobilization of antibody but also facilitate the electron transfer. It is found that the resultant AuNPs/BFR microspheres can be designed to act as a sensitive label-free electrochemical immunosensor for carcinoembryonic antigen (CEA) determination. The immunosensor is prepared by immobilizing capture anti-CEA on AuNPs/BFR microspheres assembled on thionine (TH) modified glassy carbon electrode (GCE). TH acts as the redox probe. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 25 pg/mL to 2000 pg/mL (R=0.998) and the detection limit is estimated to be 3.5 pg/mL at a signal-to-noise ratio of 3. The prepared immunosensor for detection of CEA shows high sensitivity, reproducibility and stability. Our study demonstrates that the immunosensor can be used for the CEA detection in humans serum.

  11. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human.

    PubMed

    McHale, Cliona M; Smith, Martyn T; Zhang, Luoping

    2014-03-01

    Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene-environment (GxE) associations, genome-wide association studies and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, our published work has applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line. Through comparative genomic and computational analyses of the resulting data, human genes and pathways that may modulate susceptibility to benzene and formaldehyde were identified, and the roles of several genes in mammalian cell models were validated. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies in lymphocytes. In this review, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers.

  12. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human

    PubMed Central

    McHale, Cliona M.; Smith, Martyn T.; Zhang, Luoping

    2014-01-01

    Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene–environment (GxE) associations, genome-wide association studies (GWAS) and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, we applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line (KBM7). Through comparative genomic and computational analyses of the resulting data, we have identified human genes and pathways that may modulate susceptibility to benzene and formaldehyde. We have validated the roles of several genes in mammalian cell models. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies (CWAS) in lymphocytes. In this review of the literature, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers. PMID:24571325

  13. [Formaldehyde in hair shampoos].

    PubMed

    Bork, K; Heise, D; Rosinus, A

    1979-01-01

    In most hair shampoos commercially available in Western Germany formaldehyde or formaldehyde liberating substances serve as efficient preservatives especially in shampoos of the lower price group. Besides, PHB-ester, mercury containing substances and since recently brome compounds are used for this purpose. We observed a 15 year old patient who developed an allergic contact dermatitis from formaldehyde in a hair shampoo. However, compared to the widespread opportunities of exposure allergic contact dermatitis caused by hair shampoos is not very frequent. For this rarity of formaldehyde dermatitis caused by shampoos the short period of application and the low concentration because of the high dilution and perhaps the low contact dermatitis reactivity of the scalp are responsible. After all only two out of thirtyone thoroughly questioned patients, who had acquired a professional formaldehyde sensitivity elsewhere, reported a contact dermatitis caused by shampoos, which by the way appeared in the orbital region as typical. Probably allergic contact dermatitis from formaldehyde in shampoos will be expected in patients with a formaldehyde sensitivity acquired formerly elsewhere, especially professionally. To those patients formaldehyde free hair shampoos should be recommended. The declaration of formaledehyde in cosmetics, which will be legally obligatory in Germany in 1979, will be valuable for finding out the alternate products free of formaldehyde.

  14. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    NASA Astrophysics Data System (ADS)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  15. 75 FR 37792 - Formaldehyde Gas; Receipt of Application for Emergency Exemption, Solicitation of Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... exemption request from EPA's, Office of Emergency Management, Office of Solid Waste and Emergency Response (OSWER) to use formaldehyde gas (CAS No. 82115-62-6) to decontaminate non-food contact surfaces to... Me? You may be potentially affected by this action if you are an agricultural producer,...

  16. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  17. Melamine-formaldehyde aerogels

    SciTech Connect

    Alviso, C.T.; Pekala, R.W.

    1991-04-01

    The ability to tailor the structure and properties of aerogels at the nanometer scale opens up exciting possibilities for these unique, low density materials. Traditional inorganic aerogels have been formed from the hydrolysis and condensation of metal alkoxides (e.g. tetramethoxy silane). Previously, we reported the synthesis of organic aerogels based upon the aqueous, polycondensation of resorcinol with formaldehyde. Although these aerogels exhibit minimal light scattering, their dark red color limits their use in certain optical applications. In this paper, we discuss the synthesis and characterization of melamine-formaldehyde aerogels -- a new type of organic aerogel that is both colorless and transparent. 16 refs., 3 figs., 1 tab.

  18. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication. PMID:26647786

  19. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  20. Application of a variable pressure infrared spectrometer for formaldehyde measurements in indoor and outdoor environments

    NASA Astrophysics Data System (ADS)

    Hanoune, B.; Lemoine, B.

    2006-10-01

    Pollutants detection by tunable diode laser spectroscopy is conventionally achieved by scanning the emission frequency of the laser around an isolated absorption line of the species under investigation. Absolute quantification relies on the comparison of the measured absorption signal with the absorption signal of a calibrated sample at the same pressure, or with a calculated line profile when the spectroscopic parameters are available and accurate. We developed an alternative procedure : with the laser emission frequency actively stabilized on top of the absorption line, both the pressure inside the cell and the absorption signal are measured while the cell is progressively filled with the sample up to about 12 Torr. The slope at origin of the signal vs. pressure curve is proportional to the concentration in the sample and absolute concentration is obtained with a calibrated mixture injected into the cell at regular intervals. This procedure, which proves as efficient as the conventional one, has been applied together with a mobile spectrometer to the quantification of formaldehyde in outdoor and indoor (buildings and cars) environments.

  1. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  2. [Formaldehyde in the environment and its effect on health].

    PubMed

    Kalinić, N

    1995-06-01

    The presence of formaldehyde in the environment is due to natural processes and to man-made sources. It is produced in large quantities and has varied applications. One of the most common uses is in urea-formaldehyde and melamine-formaldehyde resins. There are several indoor environmental sources that can result in human exposure including furniture containing formaldehyde-based resins, building materials, paints, disinfectants, carpets etc. Emphasis is placed on indoor formaldehyde levels and on the ways of their reduction or elimination.

  3. Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.

    PubMed

    Majhi, Sanjit Manohar; Rai, Prabhakar; Raj, Sudarsan; Chon, Bum-Soo; Park, Kyung-Kuen; Yu, Yeon-Tae

    2014-05-28

    In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs.

  4. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.

    PubMed

    Zhang, Hongfang; Liu, Ruixiao; Sheng, Qinglin; Zheng, Jianbin

    2011-02-01

    This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose. PMID:21115279

  5. Virus-templated Au and Au/Pt Core/shell Nanowires and Their Electrocatalytic Activitives for Fuel Cell Applications

    PubMed Central

    LEE, YOUJIN; KIM, JUNHYUNG; YUN, DONG SOO; NAM, YOON SUNG; SHAO-HORN, YANG; BELCHER, ANGELA M.

    2014-01-01

    A facile synthetic route was developed to make Au nanowires (NWs) from surfactant-mediated bio-mineralization of a genetically engineered M13 phage with specific Au binding peptides. From the selective interaction between Au binding M13 phage and Au ions in aqueous solution, Au NWs with uniform diameter were synthesized at room temperature with yields greater than 98 % without the need for size selection. The diameters of Au NWs were controlled from 10 nm to 50 nm. The Au NWs were found to be active for electrocatalytic oxidation of CO molecules for all sizes, where the activity was highly dependent on the surface facets of Au NWs. This low-temperature high yield method of preparing Au NWs was further extended to the synthesis of Au/Pt core/shell NWs with controlled coverage of Pt shell layers. Electro-catalytic studies of ethanol oxidation with different Pt loading showed enhanced activity relative to a commercial supported Pt catalyst, indicative of the dual functionality of Pt for the ethanol oxidation and Au for the anti-poisoning component of Pt. These new one-dimensional noble metal NWs with controlled compositions could facilitate the design of new alloy materials with tunable properties. PMID:24910712

  6. Optical detection of formaldehyde

    NASA Astrophysics Data System (ADS)

    Patty, Kira D.; Gregory, Don A.

    2008-04-01

    The potential for buildup of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate above these limits. New sensor technologies are needed to enable real time, in situ detection in a compact and reusable form factor. Addressing this need, research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To incorporate the dye in an optical sensor device requires a means of containing and manipulating the dye. Multiple form factors using two dissimilar substrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a fieldable sensor were presented. This research provides a necessary first step toward the development of a compact, reusable, real time optical formaldehyde sensor suitable for use in the U.S. space program.

  7. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  8. Melamine-formaldehyde aerogels

    SciTech Connect

    Pekala, R.W.

    1992-01-14

    Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

  9. Formaldehyde in Our Environment.

    ERIC Educational Resources Information Center

    Ojanlatva, Ansa; Weeks, Charlie A.

    During the energy crisis of the early 1970s, there was a drive to conserve energy in every segment of society. Citizens were encouraged to insulate their homes and tighten them up to avoid loss of energy. One of the products to emerge from this crisis was urea formaldehyde foam insulation. (Urea formaldehyde is a well-known agent for preserving…

  10. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  11. The formaldehyde dilemma.

    PubMed

    Salthammer, Tunga

    2015-06-01

    The IARC's 2004 classification of formaldehyde as a human carcinogen has led to intensive discussion on scientific and regulatory levels. In June 2014, the European Union followed and classified formaldehyde as a cause of cancer. This automatically triggers consequences in terms of emission minimization and the health-related assessment of building and consumer products. On the other hand, authorities are demanding and authorizing technologies and products which can release significant quantities of formaldehyde into the atmosphere. In the outdoor environment, this particularly applies to combusting fuels. The formation of formaldehyde through photochemical smog has also been a recognized problem for years. Indoors there are various processes which can contribute to increased formaldehyde concentrations. Overall, legislation faces a dilemma: primary sources are often over-regulated while a lack of consideration of secondary sources negates the regulations' effects.

  12. Microbial Formaldehyde Oxidation

    SciTech Connect

    Timothy J. Donohue

    2004-12-09

    This project analyzed how cells sense and generate energy from formaldehyde oxidation. Formaldehyde is a toxin that is produced naturally, chemically or by metabolism of a wide variety of methyl-containing compounds. Our goals are to identify how cells sense the presence of this toxic compound and determine how they generate energy and nutrients from the oxidation of formaldehyde. This research capitalizes on the role of the Rhodobacter sphaeroides glutathione dependent formaldehyde dehydrogenase (GSH FDH) in a formaldehyde oxidation pathway that is apparently found in a wide variety of microbes, plants and animals. Thus, our findings illustrate what is required for a large variety of cells to metabolize this toxic compound. A second major focus of our research is to determine how cells sense the presence of this toxic compound and control the expression of gene products required for its detoxification.

  13. The formaldehyde dilemma.

    PubMed

    Salthammer, Tunga

    2015-06-01

    The IARC's 2004 classification of formaldehyde as a human carcinogen has led to intensive discussion on scientific and regulatory levels. In June 2014, the European Union followed and classified formaldehyde as a cause of cancer. This automatically triggers consequences in terms of emission minimization and the health-related assessment of building and consumer products. On the other hand, authorities are demanding and authorizing technologies and products which can release significant quantities of formaldehyde into the atmosphere. In the outdoor environment, this particularly applies to combusting fuels. The formation of formaldehyde through photochemical smog has also been a recognized problem for years. Indoors there are various processes which can contribute to increased formaldehyde concentrations. Overall, legislation faces a dilemma: primary sources are often over-regulated while a lack of consideration of secondary sources negates the regulations' effects. PMID:25772784

  14. Facile synthesis of fluorescent Au@SiO2 nanocomposites for application in cellular imaging.

    PubMed

    Zhang, Zhengyong; Zhang, Peng; Guo, Kai; Liang, Guohai; Chen, Hui; Liu, Baohong; Kong, Jilie

    2011-10-15

    A novel fluorescent Au@SiO(2) nanocomposite, with average size of ca. 30 nm in the diameter, was prepared via a simple microemulsion method. Additionally, transmission electron microscopy (TEM), UV-Vis absorption spectra, Fourier transform infrared (FT-IR) spectra and fluorescence spectra were used to characterize this nanocomposite. This newly synthesized, silica-wrapped, gold nanocluster has the following advantages: good water solubility, exceptional biocompatibility, favorable surface properties and excellent fluorescence properties. Because of these advantages, a Au@SiO(2) nanocomposite is exceptionally suitable for biological applications. In this study, cellular imaging, as a form of biological application, has been fully investigated, and it was discovered, after covalent conjugation of folic acid (FA), that the nanocomposite effectively recognized over expressed folic acid receptors (FARs) on the HeLa cell's surface. Therefore, this fluorescent Au@SiO(2) nanocomposite could be used as a new fluorescent probe for selective biological imaging.

  15. Formaldehyde and skin tumorigenesis in Sencar mice

    SciTech Connect

    Iversen, O.H.

    1988-01-01

    Previous experiments involving topical applications of formaldehyde on hairless mouse skin were repeated with SENCAR mice, which are bred for maximum sensitivity to chemical tumorigenesis. Most experimental groups consisted of 32 mice. Topical skin applications of either 100 ..mu..l acetone of about 200 ..mu..l 4% formaldehyde in water twice weekly, resulted in two tumor-bearing animals, each with one small, benign papilloma. A group of 96 mice, treated once with 51.2 ..mu..g DMBA in acetone, developed a total of 107 tumors in 40 tumor-bearing animals. Thus, DMBA is a strong, complete tumorigen also in SENCAR mice. Animals given 51.2 ..mu..g DMBA first and then treated twice weekly with 1% formaldehyde developed a total of 30 tumors in 8 tumor-bearing animals, whereas mice given 51.2 ..mu..g DMBA first, followed by twice weekly treatment with 4% formaldehyde, developed 51 tumors in 15 animals. When two widely accepted, statistical methods were used, there was no significant difference between the groups treated once with DMBA alone and that treated once with DMBA followed by 4% formaldehyde. The results in SENCAR mice confirm that formaldehyde has no skin tumorigenic or carcinogenic potency of its own. It seems doubtful whether it may act as a very weak enhancer of DMBA-induced tumorigenesis, but it has no significant influence on DMBA-induced carcinogenesis.

  16. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m‑3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  17. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  18. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.

    PubMed

    Baraka, Ahmad; Hall, P J; Heslop, M J

    2007-02-01

    A new chelating resin was synthesised by anchoring nitrilotriacetic acid (NTA) to melamine during the melamine-formaldehyde gelling reaction in the presence of water, using acetone and guaiacol as a porogen mixture. This technique gives a porous chelating gel resin capable of removing heavy metals from wastewater. FT-IR, XRD, elemental analysis, surface area and water regain measurements were conducted for characterization of the new chelating gel resin. A comprehensive adsorption study (kinetics isotherm, and thermodynamics) of Cu(II) removal from synthetic acidic aqueous solutions by adsorption on this resin was conducted regarding the effects of time, temperature, initial pH and copper(II) initial concentration.

  19. Urea/phenol/melamine formaldehyde polymeric resins. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning characteristics, safe use regulations and standards, and applications of formaldehyde polymeric resins. Modelling, test procedures, and test results for identifying the hazards of formaldehyde resin system emissions are presented. Methods of preparation and modification of formaldehyde foams for use in the building industry are included. Corrosion of formaldehyde polymeric foam thermal insulation, crosslinking and catalysis of phenol-formaldehyde polymer concrete, and disposal of urea-formaldehyde waste are considered. (Contains a minimum of 103 citations and includes a subject term index and title list.)

  20. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  1. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    PubMed

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications.

  2. Au-In-based Hermetic Sealing for MEMS Packaging for Down-Hole Application

    NASA Astrophysics Data System (ADS)

    Chidambaram, Vivek; Bangtao, Chen; Lip, Gan Chee; Rhee Min Woo, Daniel

    2014-07-01

    Hermetic sealing of micro-electro mechanical systems (MEMS) sensors for down-hole application requires high-quality void-free bonds, with metallic hermetic sealing being widely used for this purpose. As most of the MEMS sensors cannot withstand high temperatures, transient liquid phase (TLP) bonding is promising for metallic sealing applications, since the re-melting temperature of the bond is much higher than the bonding temperature. In this paper, major issues involving TLP bonding, including non-uniform diffusion kinetics across the interface and the formation of intermetallic compounds prior to bonding for fast reactive metallic systems like Au-In, have been addressed by using diffusion barriers. The performance of various diffusion barriers that include Ti, Ni, and Pt has been evaluated. Ni has been determined to be a prospective candidate, since it averts diffusion to a certain extent prior to TLP bonding. The mechanical strength and hermeticity of the Au-In joints have also been characterized after aging at 300 °C up to 500 h. No major changes in the thermo-mechanical properties of the AuIn and AuIn2 phases were observed and, hence, these phases are concluded to be thermally stable at this temperature regime. Improvements in hermeticity were confirmed when subjected to high-temperature thermal aging.

  3. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  4. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolapplication. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. PMID:25218228

  5. Immobilization of Prussian Blue nanoparticles onto thiol SAM modified Au electrodes for electroanalytical or biosensor applications.

    PubMed

    Miao, Yuqing; Chen, Jianrong; Wu, Xiaohua; Fang, Keming; Jia, Aiping; Liu, Jiwei

    2007-08-01

    Poly(vinylpyrrolidone) (PVP)-protected Prussian Blue (PB) nanoparticles were prepared by simply mixing FeCI3 and K4Fe(CN)6 with absence or presence of HCI or/and KCI in water solution. The obtained PB nanoparticles were immobilized onto thiol self-assembled monolayer (SAM) modified Au electrodes. L-cysteine (Cys) and 1,8-octanedithiol (ODT) were compared as a bridge between the gold surface and the PB nanoparticles. The results show that PB prepared from the initial solution with KCI gives preferred electrochemical response and that Cys/Au shows improved immobilization effect of PB than ODT/Au. The obtained PB/Cys/Au electrodes exhibit electrocatalytic activity toward H2O2 reduction and DL-homocysteine (HCys) oxidation. Glucose oxidase (GOX) was immobilized onto PB modified electrode to explore the potentials for the design of oxidase-based biosensors. It is possible to anchor PB nanoparticles and develop their application on electroanalysis and biosensing.

  6. Direct electrochemistry of laccase immobilized on au nanoparticles encapsulated-dendrimer bonded conducting polymer: application for a catechin sensor.

    PubMed

    Rahman, Md Aminur; Noh, Hui-Bog; Shim, Yoon-Bo

    2008-11-01

    The direct electrochemistry of laccase was promoted by Au nanoparticle (AuNP)-encapsulated dendrimers (Den), which was applied for the detection of catechin. To increase the electrical properties, AuNPs were captured in the interiors of the dendrimer (Den-AuNPs) as opposed to attachment at the periphery of dendrimer. To prepare Den-AuNPs, the Au(III) ions were first coordinated in the interior of dendrimer with nitrogen ligands and then reduced to form AuNPs. The size of AuNPs encapsulated within the interior of the dendrimer was determined to be 1.7 +/- 0.4 nm. AuNPs-encapsulated dendrimers were then used to covalently immobilize laccase (PDATT/ Den(AuNPs)/laccase) through the formation of amide bonds between carboxylic acid groups of the dendrimer and the amine groups of laccase. Each layer of the PDATT/Den(AuNPs)/laccase probe was characterized using CV, EIS, QCM, XPS, SEM, and TEM. The PDATT/Den(AuNPs)/laccase probe displayed a well-defined direct electron-transfer (DET) process of laccase. The quasi-reversible redox peak of the Cu redox center of the laccase molecule was observed at -0.03/+0.13 V vs Ag/AgCl, and the electron-transfer rate constant was determined to be 1.28 s (-1). A catechin biosensor based on the electrocatalytic process by direct electrochemistry of laccase was developed. The linear range and the detection limit in the catechin analysis were determined to be 0.1-10 and 0.05 +/- 0.003 microM, respectively. Interference effects from various phenolic and polyphenolic compounds were also studied, and the general applicability of the biosensor was evaluated by selective analysis of real samples of catechin.

  7. Development of melamine-formaldehyde resin microcapsules with low formaldehyde emission suited for seed treatment.

    PubMed

    Yuan, Huizhu; Li, Guangxing; Yang, Lijuan; Yan, Xiaojing; Yang, Daibin

    2015-04-01

    To reduce the application frequency and improve the efficacy of insecticides, melamine-formaldehyde (MF) resin microcapsules suited for seed treatment containing a mixture of fipronil and chlorpyrifos were prepared by in situ polymerization. A formaldehyde/melamine molar ratio of 4:1 yielded microcapsules with the smallest size and the most narrow size distribution. The level of unreacted formaldehyde in the microcapsule suspension increased proportionally with the F/M molar ratio. When the MF resin microcapsule suspension was used as a seed treatment to coat peanut seeds, the unreacted formaldehyde did not significantly inhibit the seedling emergence, but the ongoing release of formaldehyde generated from the degradation of MF resins played an important role in inhibiting emergence. Melamine was shown to be an effective formaldehyde scavenger that mitigated this inhibition when it was incorporated within the microcapsule wall. Field experiments showed that MF-resin-encapsulated mixtures of fipronil and chlorpyrifos have much greater efficacies against white grubs than the conventional formulation.

  8. Spray deposited ZnO: Au thin films for solar cell application

    NASA Astrophysics Data System (ADS)

    Tarwal, N. L.; Harale, N. S.; Jadhav, P. R.; Patil, P. S.

    2012-06-01

    In the present investigation, the ZnO-Au thin films are deposited in-situ with the simple and cost-effective spray pyrolysis technique. The preparative parameters were fine-tuned to yield better quality samples. A surface Plasmon resonance (SPR) induced absorption bands in the visible region have been observed for both the samples deposited at 450°C. The structural evolution of Au-ZnO thin films with doping concentrations are reflected in the XRD patterns. The surface morphological study of the synthesized thin films was carried out using FESEM micrographs. The evolution of the SPR absorption with concentration of the Gold incorporation is discussed. The optical studies were carried out by using UV-Vis Spectrophotometer and spectrofluorometer (JASCO FP-750) at room temperature. These thin films were used for photoelectrochemical (PEC) application. Encouraging results are obtained.

  9. Application of ToF-SIMS to the study of surfactant removal from AuNbMCM-41 and AuMCM-41 materials

    NASA Astrophysics Data System (ADS)

    Grams, Jacek; Sobczak, Izabela

    2010-01-01

    This work is focused on the application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) in investigation of the surfactant removal process from AuNbMCM-41 and AuMCM-41 catalysts (MCM-41 "Mobil Composition of Matter", ordered mesoporous materials discovered by Mobil R&D Corporation). The samples investigated were prepared by co-precipitation in the presence of a cationic surfactant (cetyltrimethylammonium chloride--CH3(CH2)15N(Cl)(CH3)3) and the incipient wetness impregnation methods. The results obtained showed that the time-of-flight secondary ion mass spectrometry appears to be a very useful tool for the investigation of the residual organic template on the surface of ordered mesoporous materials of MCM-41 type. It was demonstrated that the calcination of AuNbMCM-41 and AuMCM-41 catalysts at 550 °C caused a complete removal of the surfactant from the surface of the material investigated. Moreover, it was shown that the use of bismuth liquid metal ion gun in ToF-SIMS experiments permitted obtaining higher emission intensity (more than one order of magnitude when compared to the Ga+ primary ion source) of secondary ions originating from the surfactant molecules and may facilitate an interpretation of the results obtained.

  10. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  11. Formaldehyde from GOME-2

    NASA Astrophysics Data System (ADS)

    Comyn-Platt, Edward; Hewson, Will; Bösch, Hartmut; Barkley, Mike

    2014-05-01

    Isoprene is the most abundant non-methane biogenic volatile organic compound (BVOC) emitted into the atmosphere with emissions roughly equal to global methane emissions from all sources. Isoprene strongly influences the oxidation capacity in the troposphere hence influences levels of methane and tropospheric ozone, and is also a precursor to secondary organic aerosol. Isoprene, therefore, plays a significant role in radiative forcing and determining Earth's climate trends. However, the exact mechanisms of isoprene emission from vegetation are poorly understood and current land-surface models often use different parameterisation and meteorological fields to drive such schemes. Furthermore, isoprene emissions measurements are rare and are difficult to extrapolate to regional and continental scales thus resulting in large uncertainties in the total global emissions. Formaldehyde (HCHO) is formed as an intermediate product during the isoprene oxidation process and can be used as a proxy for isoprene emission. Global satellite observations of formaldehyde are now available from a number of satellite sensors which offer a unique ability to study isoprene emissions over large regions. Here, we use formaldehyde observations from the Global Ozone Monitoring Experiment 2 (GOME-2) instrument retrieved with the University of Leicester retrieval (Hewson et al. 2013) to: 1) test state-of-the-art model calculations using the GEOS-CHEM global transport model; 2) investigate the key drivers for regional year-to-year anomalies in formaldehyde (or isoprene) emissions and 3) assess the ability of current land surface models (MEGAN, JULES) to reproduce the observed anomalies and their dependence on climate variations.

  12. Ellagic Acid Directed Growth of Au-Pt Bimetallic Nanoparticles and Their Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Barnaby, Stacey N.; Sarker, Nazmul H.; Banerjee, Ipsita A.

    2013-02-01

    In this work, we report the facile formation of bimetallic nanoparticles of Au-Pt in the presence of the plant polyphenol ellagic acid (EA). It was found that EA formed micro-fibrillar assemblies, which aggregated into micro-bundles under aqueous conditions. Those micro-bundles acted as templates for the growth of Au nanoparticles, as well as bimetallic Au-Pt nanoparticles biomimetically. At higher concentrations of EA, it was observed that in addition to forming fibrous micro-bundles, columnar assemblies of EA were formed in the presence of the metal nanoparticles. The formation of the assemblies was found to be concentration dependent. It appears that upon binding to metal ions and subsequent formation of the nanoparticles, morphological changes occur in the case of EA assemblies. The morphological changes observed were probed by electron microscopy. Further, the ability of the materials to degrade the toxic aromatic nitro compound 2-methoxy-4-nitroaniline was explored, where 50% degradation was observed within 15 min, indicating that such hybrid materials may have potential applications in environmental remediation.

  13. Melamine and melamine-formaldehyde polymers as ligands for palladium and application to Suzuki-Miyaura cross-coupling reactions in sustainable solvents.

    PubMed

    Edwards, Grant A; Trafford, Mitchell A; Hamilton, Alaina E; Buxton, Audrey M; Bardeaux, Matthew C; Chalker, Justin M

    2014-03-01

    The Suzuki-Miyaura cross-coupling reaction is a foundation stone of modern organic synthesis, as evidenced by its widespread use in the preparation of pharmaceuticals, agrochemicals, polymers, and other functional materials. With the prevalence of this venerable reaction in industrial synthesis, it is prudent to ensure its application adheres to the tenets of green chemistry. The introduction of cross-coupling catalysts that are active in sustainable solvents is therefore an important endeavor. In this report, a melamine-palladium complex is introduced as a versatile catalyst for the Suzuki-Miyaura cross-coupling reaction. This catalyst is soluble and active in both water and the renewable organic solvent ethyl lactate. The melamine-palladium catalyst can also be cross-linked by reaction with formaldehyde to generate an insoluble polymeric catalyst that can be recovered after the cross-coupling. The melamine-palladium system is inexpensive, easy to handle, bench-stable, and effective in catalysis in the presence of a variety of impurities (high cross-coupling yields were obtained in reactions run in unfiltered river water to illustrate this final point). Additionally, investigations reported herein revealed an intriguing relationship between catalytic efficiency and the base employed in the cross-coupling reaction. Implications for the mechanism of transmetalation in aqueous Suzuki-Miyaura cross-coupling reaction are discussed.

  14. Occupational asthma due to formaldehyde.

    PubMed Central

    Burge, P S; Harries, M G; Lam, W K; O'Brien, I M; Patchett, P A

    1985-01-01

    Bronchial provocation studies on 15 workers occupationally exposed to formaldehyde are described. The results show that formaldehyde exposure can cause asthmatic reactions, and suggest that these are sometimes due to hypersensitivity and sometimes to a direct irritant effect. Three workers had classical occupational asthma caused by formaldehyde fumes, which was likely to be due to hypersensitivity, with late asthmatic reactions following formaldehyde exposure. Six workers developed immediate asthmatic reactions, which were likely to be due to a direct irritant effect as the reactions were shorter in duration than those seen after soluble allergen exposure and were closely related to histamine reactivity. The breathing zone concentrations of formaldehyde required to elicit these irritant reactions (mean 4.8 mg/m3) were higher than those encountered in buildings recently insulated with urea formaldehyde foam, but within levels sometimes found in industry. Images PMID:4023975

  15. Formaldehyde exposure in nonoccupational environments

    SciTech Connect

    Dally, K.A.; Hanahan, L.P.; Woodbury, M.A.; Kanarek, M.S.

    1981-01-01

    Free formaldehyde may be released from wood products and foam insulation where urea-formaldehyde resins have been used. From January, 1978 to November, 1979, 100 structures were investigated by the Wisconsin Division of Health after receiving complaints of health problems from occupants. Air samples were collected in midget impingers and analyzed for formaldehyde content by the chromotropic acid procedure. Health information was obtained from the occupants via questionnaires. Mean formaldehyde concentrations observed ranged from below the limit of detection to 3.68 ppm. Eye irritation, burning eyes, runny nose, dry or sore throat, headache, and cough were the primary symptoms which were reported by the occupants. Statistically significant associations were seen between formaldehyde levels and age of home/building materials. Observations presented suggest nonoccupational, indoor environmental exposure to formaldehyde is significant and may reach levels which exceed occupational exposure standards.

  16. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  17. Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2012-09-15

    It was firstly described, that a TiO(2) film modified titanium foil electrode (Ti/TiO(2)) shows an efficient photoelectrocatalytic activity towards formaldehyde oxidation in a phosphate buffer solution. Ti/TiO(2) foil electrode was prepared by anodizing Ti foil in aqueous solution. Also, this electrode was applied for the hydrodynamic photoamperometry measurement of formaldehyde in the optimum conditions (pH 7.0 as biological pH and bias potential 0.8 V vs. reference electrode). The photoelectrocatalytic oxidation photocurrent of the photoelectrode determined by photoamperometry method was linearly dependent on the formaldehyde concentration and the linearity range obtained was 6.70×10(-4)-1.48×10(-2) mol L(-1). Detection limit was found to be 3.09×10(-4) mol L(-1) (2σ).

  18. Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Guan, Weihua; Long, Shibing; Liu, Ming; Zhang, Sen; Wang, Qin; Chen, Junning

    2008-12-01

    The resistive switching characteristics and switching mechanisms of the Au-implanted-ZrO2 film are extensively investigated for nonvolatile memory applications. Reversible resistance-switching behavior from a high resistance to low resistance state can be traced by dc voltage and pulse voltage. After more than 200 dc switching cycles, the resistance ratio between the high and low resistance states is more than 180 times under 0.7 V readout bias. In the voltage pulse test, the "write" and "erase" speeds can be as fast as 50 and 100 ns, respectively. No data loss is observed for more than 106 s. The formation and rupture of conducting filamentary paths related to the implanted Au ions are suggested to be responsible for the resistive switching phenomenon. The dependence of resistance on temperature indicates that the variable-range hopping conduction mechanism is dominated in the low-resistance state, while the current characteristics are governed by the trap-controlled space limited conduction mechanism in the high-resistance state.

  19. Residual formaldehyde after low-temperature steam and formaldehyde sterilization

    PubMed Central

    Gibson, G. L.; Johnston, H. P.; Turkington, V. E.

    1968-01-01

    The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551

  20. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF.

  1. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application

    NASA Astrophysics Data System (ADS)

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-01

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S(&z.dbd;O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent

  2. Pd-on-Au Supra-nanostructures Decorated Graphene Oxide: An Advanced Electrocatalyst for Fuel Cell Application.

    PubMed

    Tao, Yingzhou; Dandapat, Anirban; Chen, Liming; Huang, Youju; Sasson, Yoel; Lin, Zhenyu; Zhang, Jiawei; Guo, Longhua; Chen, Tao

    2016-08-30

    We report a very easy and effective approach for synthesizing unique palladium-on-gold supra-nanostructure (Au@Pd-SprNS)-decorated graphene oxide (GO) nanosheets. The SprNSs comprising Au nanorods as core and a unique close-packed assembly of tiny anisotropic Pd nanoparticles (NPs) as shell were homogeneously distributed on the GO surface via electrostatic self-assembly. Compared with the traditional one-pot method for synthesis of metal NPs on GO sheets, the size and shape of core-shell Au@Pd SprNSs can be finely controlled and uniformly distributed on the GO carrier. Interestingly, this Au@Pd-SprNSs/GO nanocomposite displayed high electrocatalytic activities toward the oxidation of methanol, ethanol, and formic acid, which can be attributed to the abundance of intrinsic active sites including high density of atomic steps, ledges and kinks, Au-Pd heterojunctions and cooperative action of the two metals of the SprNSs. Additionally, uniform dispersion of the SprNSs over the GO nanosheets prevent agglomeration between the SprNSs, which is of great significance to enhance the long-term stability of catalyst. This work will introduce a highly efficient Pd-based nanoelectrocatalyst to be used in fuel cell application. PMID:27482606

  3. Formaldehyde impairs transepithelial sodium transport

    PubMed Central

    Cui, Yong; Li, Huiming; Wu, Sihui; Zhao, Runzhen; Du, Deyi; Ding, Yan; Nie, Hongguang; Ji, Hong-Long

    2016-01-01

    Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure. PMID:27762337

  4. Formaldehyde resins in building materials. December 1973-October 1989 (Citations from the Rubber and Plastics Research Association data base). Report for December 1973-October 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning regulations, standards, safety, and applications of formaldehyde-resin compositions in the building industry. Urea formaldehyde is emphasized; however, phenol formaldehyde and melamine formaldehyde are also considered for such applications as thermal insulation, bonding agents, and composite construction materials. Ramifications of state and federal legislation, substitute materials, and toxicology studies are included. (This updated bibliography contains 376 citations, 46 of which are new entries to the previous edition.)

  5. Urea formaldehyde in building materials. January 1973-February 1988 (Citations from the Rubber and Plastics Research Association data base). Report for January 1973-February 1988

    SciTech Connect

    Not Available

    1988-03-01

    This bibliography contains citations concerning regulations, standards, safety, and applications of formaldehyde resin compositions in the building industry. Urea formaldehyde is emphasized; however, phenol formaldehyde and melamine formaldehyde are also considered for such applications as thermal insulation, bonding agents, and composite construction materials. Ramifications of state and federal legislation, substitute materials, and toxicology studies are included. (This updated bibliography contains 330 citations, 10 of which are new entries to the previous edition.)

  6. Urea/phenol/melamine formaldehyde polymeric resins. January 1970-February 1990 (A Bibliography from the NTIS data base). Report for January 1970-February 1990

    SciTech Connect

    Not Available

    1990-02-01

    This bibliography contains citations concerning characteristics, safe use regulations and standards, and applications of formaldehyde polymeric resins. Modelling, test procedures, and test results for identifying the hazards of formaldehyde resin system emissions are presented. Methods of preparation and modification of formaldehyde foams for use in the building industry are included. Corrosion of formaldehyde polymeric foam thermal insulation, crosslinking and catalysis of phenol-formaldehyde polymer concrete, and urea-formaldehyde waste disposal are considered. (This updated bibliography contains 238 citations, 17 of which are new entries to the previous edition.)

  7. Catalytic process for formaldehyde oxidation

    NASA Technical Reports Server (NTRS)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  8. Sporostatic and Sporocidal Properties of Aqueous Formaldehyde

    PubMed Central

    Trujillo, Ralph; David, Thomas J.

    1972-01-01

    Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde. PMID:4623282

  9. Kinetically controlled synthesis of Au102(SPh)44 nanoclusters and catalytic application.

    PubMed

    Chen, Yongdong; Wang, Jin; Liu, Chao; Li, Zhimin; Li, Gao

    2016-05-21

    We here explore a kinetically controlled synthetic protocol for preparing solvent-solvable Au102(SPh)44 nanoclusters which are isolated from polydispersed gold nanoclusters by solvent extraction and size exclusion chromatography (SEC). The as-obtained Au102(SPh)44 nanoclusters are determined by matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry, in conjunction with UV-vis spectroscopy and thermogravimetric analysis (TGA). However, Au99(SPh)42, instead of Au102(SPh)44, is yielded when the polydispersed gold nanoclusters are etched in the presence of excess thiophenol under thermal conditions (e.g., 80 °C). Interestingly, the Au102(SPh)44 nanoclusters also can convert to Au99(SPh)42 with equivalent thiophenol ligands, evidenced by the analyses of UV-vis and MALDI mass spectrometry. Finally, the TiO2-supported Au102(SPh)44 nanocluster catalyst is investigated in the selective oxidation of sulfides into sulfoxides by the PhIO oxidant and gives rise to high catalytic activity (e.g., 80-99% conversion of R-S-R' sulfides with 96-99% selectivity for R-S([double bond, length as m-dash]O)-R' sulfoxides). The Au102(SPh)44/TiO2 catalyst also shows excellent recyclability in the sulfoxidation process.

  10. Electrical performance of Ti-ZnO-Au thin film composite structure for device application

    NASA Astrophysics Data System (ADS)

    Joshi, Priyanka; Singh, Jitendra; Das, Surajit; Desai, J. V.; Akhtar, Jamil

    2016-04-01

    Thin film layers of Au/Ti approximately 2200 Å thick and ZnO approximately 2.24 µm thick were sputtered sequentially onto silicon dioxide coated <100> Si-wafer. Conventional wisdom confirms the adhesion of gold over zinc oxide (ZnO) by an intermediate layer of titanium for better adhesion. But, in Au/Ti/ZnO/Au/Ti structure, it was observed that with the passing of time the gold diffused into ZnO thin film at room temperature, making a very low resistance between the two gold layers eventually making a conductive path in ZnO. Therefore, electrical connectivity was found between the metal layers. A detailed experimental analysis has been carried out in support of the observed Au diffusion. In the present work, reliability of Ti/Au metallisation and anomalous electrical behavior due to gold diffusion has been studied.

  11. Genotoxic effects in occupational exposure to formaldehyde: A study in anatomy and pathology laboratories and formaldehyde-resins production

    PubMed Central

    2010-01-01

    Background According to the Report on Carcinogens, formaldehyde ranks 25th in the overall U.S. chemical production, with more than 5 million tons produced each year. Given its economic importance and widespread use, many people are exposed to formaldehyde environmentally and/or occupationally. Presently, the International Agency for Research on Cancer classifies formaldehyde as carcinogenic to humans (Group 1), based on sufficient evidence in humans and in experimental animals. Manyfold in vitro studies clearly indicated that formaldehyde can induce genotoxic effects in proliferating cultured mammalian cells. Furthermore, some in vivo studies have found changes in epithelial cells and in peripheral blood lymphocytes related to formaldehyde exposure. Methods A study was carried out in Portugal, using 80 workers occupationally exposed to formaldehyde vapours: 30 workers from formaldehyde and formaldehyde-based resins production factory and 50 from 10 pathology and anatomy laboratories. A control group of 85 non-exposed subjects was considered. Exposure assessment was performed by applying simultaneously two techniques of air monitoring: NIOSH Method 2541 and Photo Ionization Detection equipment with simultaneously video recording. Evaluation of genotoxic effects was performed by application of micronucleus test in exfoliated epithelial cells from buccal mucosa and peripheral blood lymphocytes. Results Time-weighted average concentrations not exceeded the reference value (0.75 ppm) in the two occupational settings studied. Ceiling concentrations, on the other hand, were higher than reference value (0.3 ppm) in both. The frequency of micronucleus in peripheral blood lymphocytes and in epithelial cells was significantly higher in both exposed groups than in the control group (p < 0.001). Moreover, the frequency of micronucleus in peripheral blood lymphocytes was significantly higher in the laboratories group than in the factory workers (p < 0.05). A moderate positive

  12. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash.

    PubMed

    Liu, She-Jiang; Guo, Yu-Peng; Yang, Hong-Yang; Wang, Shen; Ding, Hui; Qi, Yun

    2016-11-01

    Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment.

  13. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash.

    PubMed

    Liu, She-Jiang; Guo, Yu-Peng; Yang, Hong-Yang; Wang, Shen; Ding, Hui; Qi, Yun

    2016-11-01

    Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment. PMID:27497309

  14. Crystallographic investigation of Au nanoparticles embedded in a SrTiO3 thin film for plasmonics applications by means of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-01

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO3 matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [ 110 ] SrTiO3 ∥ [ 110 ] Au and [ 100 ] SrTiO3 ∥ [ 110 ] Au . Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [ 100 ] SrTiO3 ∥ [ 100 ] Au and [ 100 ] SrTiO3 ∥ [ 110 ] Au . The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  15. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  16. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications.

    PubMed

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-02-06

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future.

  17. Does formaldehyde induce aneuploidy?

    PubMed

    Speit, Günter; Kühner, Stefanie; Linsenmeyer, Regina; Schütz, Petra

    2011-11-01

    Formaldehyde (FA) was tested for a potential aneugenic activity in mammalian cells. We employed tests to discriminate between aneugenic and clastogenic effects in accordance with international guidelines for genotoxicity testing. The cytokinesis-block micronucleus test (CBMNT) in combination with fluorescence in situ hybridisation (FISH) with a pan-centromeric probe was performed with cultured human lymphocytes and the human A549 lung cell line. FA induced micronuclei (MN) in binuclear cells of both cell types under standard in vitro test conditions following the OECD guideline 487. FISH analysis revealed that the vast majority of induced MN were centromere negative, thus indicating a clastogenic effect. A similar result was obtained for MN induced by γ-irradiation, whereas the typical aneugens colcemid (COL) and vincristine (VCR) predominantly induced centromere-positive MN. Furthermore, COL and VCR clearly enhanced the MN frequency in mononuclear lymphocytes in the CBMNT, whereas such an effect was not observed for γ-irradiation and FA. In experiments with the Chinese hamster V79 cell line, the aneugens COL and VCR clearly increased the frequency of tetraploid second division metaphases, whereas FA did not cause such an effect. Altogether, our results confirm the clastogenicity of FA in cultured mammalian cells but exclude a significant aneugenic activity. PMID:21804075

  18. TEM characterization of Au-based alloys to join YSZ to steel for SOFC applications

    SciTech Connect

    Lin, Kun-Lin; Singh, Mrityunjay; Asthana, Rajiv

    2012-01-15

    The microstructures of two gold-based alloys with compositions (in wt.%) of 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V following oxidation at 850 Degree-Sign C for 200 min were characterized by analytical transmission electron microscopy with energy dispersive spectroscopy and by scanning electron microscopy. In the oxidized 96.4Au-3Ni-0.6Ti interlayer, a dense scale composed of nickel oxide (NiO) and nickel titanate (NiTiO{sub 3}) formed at the alloy surface. No evidence of titanium oxide was found because there was not enough Ti present to form titanium oxide. In the oxidized 97.5Au-0.75Ni-1.75V interlayer, loose vanadium oxide (V{sub 2}O{sub 5}) and nickel vanadate (Ni{sub 2}V{sub 2}O{sub 7}) formed and were distributed within the oxidized 97.5Au-0.75Ni-1.75V interlayer. Similarly, because of the low Ni content in the alloys, no NiO formed. The oxide products in the 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V interlayers after oxidation are consistent with the Pilling-Bedworth (PB) ratio considerations. - Highlights: Black-Right-Pointing-Pointer Two commercial Au-based reactive metallic interlayers were oxidized at 850 Degree-Sign C for 200 min. Black-Right-Pointing-Pointer The oxidized products at the surface were characterized by TEM/EDS and SEM. Black-Right-Pointing-Pointer NiO and NiTiO{sub 3} formed at the oxidized 96.4Au-3Ni-0.6Ti interlayer. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} and Ni{sub 2}V{sub 2}O{sub 7} were found in the oxidized 97.5Au-0.75Ni-1.75V interlayer. Black-Right-Pointing-Pointer These oxide products are consistent with the Pilling-Bedworth (PB) ratio considerations.

  19. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-01

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time.

  20. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-01

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time. PMID:25363304

  1. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  2. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  3. Formaldehyde Stress Responses in Bacterial Pathogens

    PubMed Central

    Chen, Nathan H.; Djoko, Karrera Y.; Veyrier, Frédéric J.; McEwan, Alastair G.

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  4. Formaldehyde exposures from tobacco smoke: a review.

    PubMed Central

    Godish, T

    1989-01-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532

  5. Formaldehyde exposures from tobacco smoke: A review

    SciTech Connect

    Godish, T.

    1989-08-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. 18 references.

  6. Production of radio-gold 199Au for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-01-01

    Production cross-sections of the natPt(d,x)199Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data. Theoretical data extracted from the TENDL-2013 library shows large discrepancy with the measured ones. Physical thick target yield for the 199Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 199Au in no carrier added form.

  7. Cyclotron produced 198gAu, a potential radionuclide for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-02-01

    Production cross-sections of the natPt(d,x)198Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data and the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the 198Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 198Au in no carrier added form.

  8. Nonlinear stability of solar type III radio bursts. II - Application to observations near 1 AU

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, R. A.; Papadopoulos, K.

    1979-01-01

    A set of rate equations including strong turbulence effects and anomalous resistivity are solved using parameters which model several solar type III bursts. Analysis of these bursts has led to quantitative comparisons between several of the observed phenomena and the theory. Through use of an analytic model for the time evolution of the energetic electron exciter, it is found that the exciter distributions observed at 1 AU are unstable to the excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two-stream instability (OTSI). The OTSI and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. In addition, the various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Finally, reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU.

  9. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  10. Studies on adsorption of formaldehyde in zirconium phosphate-glyphosates

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejuan; Yi, Jianjun; Xu, Qinghong

    2011-01-01

    In our previous work [22], a kind of layered compound of zirconium phosphate-glyphosate (ZrGP) was synthesized. Its large surface area (445 m 2/g) indicates this compound has possible application in adsorptions. In this paper, adsorption to formaldehyde in ZrGP and mechanisms of the adsorption were studied carefully. Balance time of adsorption (about 6 h) and largest adsorbed amount (7.8%) were found when adsorption temperature was at 40 °C and pH value of adsorption environment was about 3.0. H-bonds were found existing between molecules of formaldehyde and ZrGP, and formaldehyde molecules could exist in ZrGP stably.

  11. Au-coated ZnO nanostructures for surface enhanced Raman spectroscopy applications

    SciTech Connect

    Dikovska, A O; Nedyalkov, N N; Imamova, S E; Atanasova, G B; Atanasov, P A

    2012-03-31

    Thin ZnO nanostructured films were produced by pulsed laser deposition (PLD) for surface enhanced Raman spectroscopy (SERS) studies. The experimental conditions used for preparation of the samples were chosen to obtain different types of ZnO nanostructures. The Raman spectra of rhodamine 6G (R6G) were measured at an excitation wavelength of 785 nm after coating the ZnO nanostructures with a thin Au layer. The influence of the surface morphology on the Raman signal obtained from the samples was investigated. High SERS signal enhancement was observed from all Au-coated ZnO nanostructures.

  12. Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications.

    PubMed

    Zhang, Yufan; Bo, Xiangjie; Nsabimana, Anaclet; Munyentwali, Alexis; Han, Ce; Li, Mian; Guo, Liping

    2015-04-15

    The one-pot synthesis of a well-defined Au nanoparticles@polyoxometalates/ordered mesoporous carbon (Au@POMs/OMC) tri-component nanocomposite is reported, which is facile, green and rapid. The polyoxometalates were used as both reductant and bridging molecules. The formation of these composite materials was verified by a comprehensive characterization using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectra, scanning electron microscopy, and transmission electron microscopy. The novel nanohybrids of Au@POMs/OMC can provide new features of electrocatalytic activities, because of the synergetic effects of Au nanoparticles and OMC materials. Most importantly, the amperometric measurements show that the Au@POMs/OMC nanohybrids have a high catalytic activity with a good sensitivity, long-term stability, wide linear range, low detection limit, and fast response towards acetaminophenol, H2O2, and NADH detection for application as an enzyme-free biosensor. PMID:25460901

  13. Woodstoves, formaldehyde, and respiratory disease

    SciTech Connect

    Tuthill, R.W.

    1984-12-01

    Telephone interviews were completed in Western Massachusetts in April 1983 for 399 households (91.5 percent) in a random sample of households with elementary school children. Woodstoves were used in 64.7 percent of the homes, but such use was not associated with acute respiratory illness. However, formaldehyde exposure was significantly related, with a risk ratio of 2.4 (95 percent confidence interval 1.7-3.4). New construction/remodeling and new upholstered furniture had additive effects. Neither woodstove use nor formaldehyde exposure were significantly associated with asthma, chronic bronchitis, or allergies.

  14. Woodstoves, formaldehyde, and respiratory disease.

    PubMed

    Tuthill, R W

    1984-12-01

    Telephone interviews were completed in Western Massachusetts in April 1983 for 399 households (91.5 per cent) in a random sample of households with elementary school children. Woodstoves were used in 64.7 per cent of the homes, but such use was not associated with acute respiratory illness. However, formaldehyde exposure was significantly related, with a risk ratio of 2.4 (95 per cent confidence interval 1.7-3.4). New construction/remodeling and new upholstered furniture had additive effects. Neither woodstove use nor formaldehyde exposure were significantly associated with asthma, chronic bronchitis, or allergies.

  15. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices.

    PubMed

    Vallejos, Stella; Stoycheva, Toni; Umek, Polona; Navio, Cristina; Snyders, Rony; Bittencourt, Carla; Llobet, Eduard; Blackman, Christopher; Moniz, Savio; Correig, Xavier

    2011-01-01

    A new method of synthesising nanoparticle-functionalised nanostructured materials via Aerosol Assisted Chemical Vapour Deposition (AACVD) has been developed. Co-deposition of Au nanoparticles with WO(3) nanoneedles has been used to deposit a sensing layer directly onto gas sensor substrates providing devices with a six-fold increase in response to low concentrations of a test analyte (ethanol). PMID:21103469

  16. Formaldehyde in Insulation: Villain or Innocent Bystander?

    PubMed Central

    Lees, R. E. M.

    1983-01-01

    When urea formaldehyde foam insulation (UFFI) deteriorates, it produces an off-gas mixture whose major constituent is formaldehyde. Most investigative studies of UFFI have concentrated on formaldehyde. Health concerns fall into three groups: irritant characteristics, allergenic capabilities and potential carcinogenicity. Except for the first of these, formaldehyde's hazard potential is not clear. The extent to which formaldehyde may be responsible for UFFI's evil reputation is explored in this paper but the degree to which either substance is a real threat to health still appears to open to debate. PMID:21283296

  17. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  18. Reducing indoor air formaldehyde concentrations

    SciTech Connect

    Meyer, B.; Hermanns, K.

    1985-08-01

    Urea-formaldehyde resin bonded particle board, medium density fiberboard and plywood paneling are used as flooring, wall paneling, for cabinet work and in furniture, and are present in almost every office, home and public building. If large quantities of these products are used in poorly ventilated spaces, high manufacturing quality control is necessary to avoid problems of latent formaldehyde release. Indoor air formaldehyde concentrations depend on the nature of the product, the product surface to air volume (loading) factor, temperature, humidity, age and product emission rates. Standard test methods are now available for measuring product emission rates that make it possible to predict the performance of UF-bonded pressed wood materials if use conditions and environmental parameters are known. Recent modifications in adhesive and board manufacturing parameters have made it possible to reduce formaldehyde emission significantly, and UF-bonded wood products are now capable of meeting indoor air quality standard levels of 0.1 ppm under almost all customary loading conditions.

  19. Formaldehyde monitor for automobile exhausts

    NASA Technical Reports Server (NTRS)

    Easley, W. C.

    1973-01-01

    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  20. Report of the Federal Panel on Formaldehyde.

    PubMed Central

    1982-01-01

    The Federal Panel on Formaldehyde concluded that definitive experiments exist which demonstrate the mutagenicity and carcinogenicity of formaldehyde under laboratory conditions. Formaldehyde induces both gene mutations and chromosomal aberrations in a variety of test systems. Inhalation of formaldehyde causes cancer of the nose in rats. The concentrations of formaldehyde in inhaled air that caused nasal cancer in Fisher 344 rats are within the same order of magnitude as those to which humans may be exposed. The data presently available do not permit a direct assessment of the carcinogenicity of formaldehyde to man. Epidemiologic studies on exposed human populations are in progress and may further clarify the situation. Other experimental and human studies on toxic effects such as teratogenicity and reproductive disorders are as yet inadequate for a health risk assessment. The CIIT 24 month study on animal carcinogenicity has not yet been completely evaluated. Additional data are expected on the effects of prolonged exposure to lower doses of formaldehyde and on the possible carcinogenicity of formaldehyde in the mouse. The panel recommends that, for a comprehensive health risk assessment, further experiments be conducted on the effects of other modes of exposure (ingestion and skin penetration), the effects in humans, and on the pharmacokinetics of formaldehyde in man and animals and the possible role for formaldehyde in reproductive and chronic respiratory disorders. It is the conclusion of the panel that formaldehyde should be presumed to pose a carcinogenic risk to humans. PMID:6977445

  1. Direct Cross-Linking of Au/Ag Alloy Nanoparticles into Monolithic Aerogels for Application in Surface-Enhanced Raman Scattering.

    PubMed

    Gao, Xiaonan; Esteves, Richard J Alan; Nahar, Lamia; Nowaczyk, Jordan; Arachchige, Indika U

    2016-05-25

    The direct cross-linking of Au/Ag alloy nanoparticles (NPs) into high surface area, mesoporous Au/Ag aerogels via chemical oxidation of the surface ligands is reported. The precursor alloy NPs with composition-tunable morphologies were produced by galvanic replacement of the preformed Ag hollow NPs. The effect of Au:Ag molar ratio on the NP morphology and surface plasmon resonance has been thoroughly investigated and resulted in smaller Au/Ag alloy NPs (4-8 nm), larger Au/Ag alloy hollow NPs (40-45 nm), and Au/Ag alloy hollow particles decorated with smaller Au NPs (2-5 nm). The oxidative removal of surfactant ligands, followed by supercritical drying, is utilized to construct large (centimeter to millimeter) self-supported Au/Ag alloy aerogels. The resultant assemblies exhibit high surface areas (67-73 m(2)/g), extremely low densities (0.051-0.055 g/cm(3)), and interconnected mesoporous (2-50 nm) networks, making them of great interest for a number of new technologies. The influence of mesoporous gel morphology on surface-enhanced Raman scattering (SERS) has been studied using Rhodamine 101 (Rd 101) as the probe molecule. The alloy aerogels exhibit SERS signal intensities that are 10-42 times higher than those achieved from the precursor Au/Ag alloy NPs. The Au/Ag alloy aerogel III exhibits SERS sensing capability down to 1 nM level. The increased signal intensities attained for alloy aerogels are attributed to highly porous gel morphology and enhanced surface roughness that can potentially generate a large number of plasmonic hot spots, creating efficient SERS substrates for future applications. PMID:27142886

  2. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate)

    PubMed Central

    Chuang, Wen-Yu; Yang, Sung-Yuan; Wu, Wen-Jong; Lin, Chih-Ting

    2015-01-01

    This work demonstrates a printable blending material, i.e., reduced graphene oxide (RGO) mixed with poly(methyl methacrylate) (PMMA), for formaldehyde sensing. Based on experimental results, 2% RGO/10% PMMA is an optimal ratio for formaldehyde detection, which produced a 30.5% resistance variation in response to 1000 ppm formaldehyde and high selectivity compared to different volatile organic compounds (VOCs), humidity, CO, and NO. The demonstrated detection limit is 100 ppm with 1.51% resistance variation. Characterization of the developed formaldehyde sensing material was performed by Fourier-transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), and Raman spectroscopy. Based on Raman spectroscopy, the basic sensing mechanism is the band distortion of RGO due to blending with PMMA and the adsorption of formaldehyde. This work establishes insights into the formaldehyde sensing mechanism and explores a potential printable sensing material for diverse applications. PMID:26580624

  3. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate).

    PubMed

    Chuang, Wen-Yu; Yang, Sung-Yuan; Wu, Wen-Jong; Lin, Chih-Ting

    2015-01-01

    This work demonstrates a printable blending material, i.e., reduced graphene oxide (RGO) mixed with poly(methyl methacrylate) (PMMA), for formaldehyde sensing. Based on experimental results, 2% RGO/10% PMMA is an optimal ratio for formaldehyde detection, which produced a 30.5% resistance variation in response to 1000 ppm formaldehyde and high selectivity compared to different volatile organic compounds (VOCs), humidity, CO, and NO. The demonstrated detection limit is 100 ppm with 1.51% resistance variation. Characterization of the developed formaldehyde sensing material was performed by Fourier-transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), and Raman spectroscopy. Based on Raman spectroscopy, the basic sensing mechanism is the band distortion of RGO due to blending with PMMA and the adsorption of formaldehyde. This work establishes insights into the formaldehyde sensing mechanism and explores a potential printable sensing material for diverse applications. PMID:26580624

  4. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging.

    PubMed

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-28

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (∼15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (∼1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (∼76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection. PMID:26701141

  5. Synthesis of Photoswitchable Magnetic Au-Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications.

    PubMed

    Wang, Min; Jeon, Seaho; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Chiang, Long Y

    2015-01-01

    We designed and synthesized several nanomaterials 3 of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9) 1 or 2]n nanoparticles (NPs). These NPs having e(-)-polarizable fullerosome structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Fullerosomic polarization of 3 was found to be capable of causing a large amplification of material permittivity that is also associated with the photoswitching effect in the frequency range of 0.5-4.0 GHz. Multilayered synthetic construction allows Förster resonance energy transfer (FRET) of photoinduced accumulative surface plasmon resonance (SPR) energy in the gold layer to the partially bilayered C60(>DPAF-C9) 1 or 2-derived fullerosome membrane shell layer in a near-field of direct contact without producing radiation heat, which is commonly associated with SPR. PMID:26287136

  6. Approximate treatment of semicore states in GW calculations with application to Au clusters

    SciTech Connect

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.

  7. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium

    PubMed Central

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-01-01

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O82− system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01–100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore. PMID:26902375

  8. A new airborne formaldehyde instrument: Compact Formaldehyde Fluorescence Experiment (COFFEE)

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Bailey, S. A.; Swanson, A. K.; Wolfe, G. M., Jr.

    2014-12-01

    We present the operating principles of a new instrument designed for operation on small aircraft. The instrument uses a new non-resonant fluorescence technique to take advantage of compact industrial lasers to make a small, robust package that can measure formaldehyde at sensitivities better than 100 ppt in 1 second integration. The instrument is designed to fly on the Alphajet at NASA Ames but can be modified to fly on other small aircraft.

  9. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  10. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on

  11. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid.

    PubMed

    Filella, Iolanda; Peñuelas, Josep; Llusià, Joan

    2006-01-01

    Jasmonic acid (JA) is a signalling compound with a key role in both stress and development in plants, and is reported to elicit the emission of volatile organic compounds (VOCs). Here we studied the dynamics of such emissions and the linkage with photosynthetic rates and stomatal conductance. We sprayed JA on leaves of the Mediterranean tree species Quercus ilex and measured the photosynthetic rates, stomatal conductances, and emissions and uptake of VOCs using proton transfer reaction mass spectrometry and gas chromatography after a dark-light transition. Jasmonic acid treatment delayed the induction of photosynthesis and stomatal conductance by approx. 20 min, and decreased them 24 h after spraying. Indications were found of both stomatal and nonstomatal limitations of photosynthesis. Monoterpene emissions were enhanced (20-30%) after JA spraying. Jasmonic acid also increased methyl salicylate (MeSa) emissions (more than twofold) 1 h after treatment, although after 24 h this effect had disappeared. Formaldehyde foliar uptake decreased significantly 24 h after JA treatment. Both biotic and abiotic stresses can thus affect plant VOC emissions through their strong impact on JA levels. Jasmonic acid-mediated increases in monoterpene and MeSa emissions might have a protective role when confronting biotic and abiotic stresses. PMID:16390425

  12. Optical properties of random alloys: application to CuAu and NiPt

    NASA Astrophysics Data System (ADS)

    Krishna Saha, Kamal; Mookerjee, Abhijit

    2005-07-01

    In an earlier paper we presented a formulation for the calculation of the configuration-averaged optical conductivity in random alloys. Our formulation is based on the augmented-space theorem introduced by one of us (Mookerjee 1973 J. Phys. C: Solid State Phys. 6 1340). In this communication we shall combine the augmented space methodology with the tight-binding linear muffin-tin orbital technique (TB-LMTO) to study the optical conductivities of two alloys, CuAu and NiPt.

  13. Collisional excitation of interstellar formaldehyde

    NASA Technical Reports Server (NTRS)

    Green, S.; Garrison, B. J.; Lester, W. A., Jr.; Miller, W. H.

    1978-01-01

    Previous calculations for rates of excitation of ortho-H2CO by collisions with He have been extended to higher rotational levels and kinetic temperatures to 80 K. Rates for para-H2CO have also been computed. Pressure-broadening widths for several spectral lines have been obtained from these calculations and are found to agree with recent data within the experimental uncertainty of 10%. Excitation of formaldehyde by collisions with H2 molecules is also discussed.

  14. Microencapsulated fragrances in melamine formaldehyde resins.

    PubMed

    Bône, Stéphane; Vautrin, Claire; Barbesant, Virginie; Truchon, Stéphane; Harrison, Ian; Geffroy, Cédric

    2011-01-01

    The process for making melamine formaldehyde microcapsules containing fragrant oil is well-known. Recently, this technology has been used to enhance the olfactory performance on fabrics. However keeping the fragrance in the capsule during storage, improving the olfactory benefit and releasing a low amount of formaldehyde is highly challenging. To answer these challenges, Givaudan has developed its own melamine formaldehyde microcapsule, called Mechacaps, which is described in this article.

  15. Gaseous reference standards of formaldehyde from trioxane.

    PubMed

    Brewer, Paul J; di Meane, Elena Amico; Vargha, Gergely M; Brown, Richard J C; Milton, Martin J T

    2013-04-15

    We have developed a dynamic reference standard of gaseous formaldehyde based on diffusion of the sublimate of trioxane and thermal conversion to formaldehyde in the gas phase. We have also produced a gravimetric standard for formaldehyde in a nitrogen matrix, also by thermal conversion of the sublimate of trioxane. Analysis of the gravimetric standard with respect to the dynamic standard has confirmed the comparability of the static and dynamic gravimetric values.

  16. Ethanol as an alternative to formaldehyde for the enhancement of manganese(IV) chemiluminescence detection.

    PubMed

    Smith, Zoe M; Terry, Jessica M; Barnett, Neil W; Francis, Paul S

    2014-12-01

    Previous applications of manganese(IV) as a chemiluminescence reagent have required the use of formaldehyde to enhance the emission intensity to analytically useful levels. However, this known human carcinogen (by inhalation) is not ideal for routine application. A wide range of alternative enhancers have been examined but to date none have been found to provide the dramatic increase in chemiluminescence intensities obtained using formaldehyde. Herein, we demonstrate that ethanol offers a simple, safe and inexpensive alternative to the use of formaldehyde for manganese(IV) chemiluminescence detection, without compromising signal intensity or sensitivity. For example, chemiluminescence signals for opiate alkaloids using 50-100% ethanol were 0.8-1.6-fold those using 2M formaldehyde. This innocuous alternative enhancer is shown to be a particularly effective for the direct detection of thiols and disulfides by manganese(IV) chemiluminescence, which we have applied to a simple HPLC procedure to determine a series of biomarkers of oxidative stress.

  17. Hybridized doxorubicin-Au nanospheres exhibit enhanced near-infrared surface plasmon absorption for photothermal therapy applications.

    PubMed

    Zhou, Jialin; Wang, Zuhua; Li, Qingpo; Liu, Fei; Du, Yongzhong; Yuan, Hong; Hu, Fuqiang; Wei, Yinghui; You, Jian

    2015-03-19

    Photothermal therapy (PTT) employs photosensitizing agents, which are taken up by cells and generate heat when irradiated with near-infrared (NIR) light, to enable the photoablation of cancer cells. High absorption in the NIR region is crucial for a photosensitizing agent to achieve efficient PTT. Different combinations between gold nanoparticles and fluorescent agents always influence their spectrum properties. Herein, we fabricated a novel combination of a fluorescent agent (doxorubicin, DOX, also a popular chemotherapeutic agent) with gold nanospheres by synthesizing hybridized DOX-Au nanospheres (DAuNS), where a part of the DOX molecules and Au co-formed a hybridized matrix as the shell and the remaining DOX molecules precipitated as the core. The unique structure of DAuNS induced interesting changes in the characteristics including spectrum properties, morphology, drug loading and antitumor activity. We observed that DAuNS exhibited a significantly enhanced surface plasmon absorption in the NIR region, inducing a more efficient photothermal conversion and stronger tumor-cell killing ability under NIR laser irradiation. In addition, our study presents a new and simple platform to load a drug into nanoparticles. DAuNS could be a promising nanoparticle with the "two punch" efficacy of PTT and chemotherapy and could be used in clinical applications due to its controllable synthesis, small size, and narrow size distribution.

  18. Cu2O and Au/Cu2O Particles: Surface Properties and Applications in Glucose Sensing

    PubMed Central

    Won, Yu-Ho; Stanciu, Lia A.

    2012-01-01

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu2O) and Au/Cu2O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu2O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu2O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu2O particles were also tested with similar results in terms of the effect of surface orientation. PMID:23201983

  19. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    PubMed Central

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-01-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at −0.65 V, −0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes. PMID:26577799

  20. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay.

    PubMed

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-18

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3',5,5'-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  1. Crystallographic investigation of Au nanoparticles embedded in a SrTiO{sub 3} thin film for plasmonics applications by means of synchrotron radiation

    SciTech Connect

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-14

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO{sub 3} matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [110]{sub SrTiO{sub 3}}∥[110]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [100]{sub SrTiO{sub 3}}∥[100]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  2. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  3. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.

    PubMed

    Zhu, Wei; Xiao, Shuning; Zhang, Dieqing; Liu, Peijue; Zhou, Hongjun; Dai, Wenrui; Liu, Fanfan; Li, Hexing

    2015-10-01

    In the present work, highly efficient and stable Au/CeO2-TiO2 photocatalysts were prepared by a microwave-assisted solution approach. The Au/CeO2-TiO2 composites with optimal molar ratio of Au/Ce/Ti of 0.004:0.1:1 delivered a remarkably high and stable NO conversion rate of 85% in a continuous flow reactor system under simulated solar light irradiation, which far exceeded the rate of 48% over pure TiO2. The tiny Au nanocrystals (∼1.1 nm) were well stabilized by CeO2 via strong metal-support bonding even it was subjected to calcinations at 550 °C for 6 h. These Au nanocrystals served as the very active sites for activating the molecule of nitric oxide and reducing the transmission time of the photogenerated electrons to accelerate O2 transforming to reactive oxygen species. Moreover, the Au-Ce(3+) interface formed and served as an anchoring site of O2 molecule. Then more adsorbed oxygen could react with photogenerated electrons on TiO2 surfaces to produce more superoxide radicals for NO oxidation, resulting in the improved efficiency. Meanwhile, O2 was also captured at the Au/TiO2 perimeter site and the NO molecules on TiO2 sites were initially delivered to the active perimeter site via diffusion on the TiO2 surface, where they assisted O-O bond dissociation and reacted with oxygen at these perimeter sites. Therefore, these finite Au nanocrystals can consecutively expose active sites for oxidizing NO. These synergistic effects created an efficient and stable system for breaking down NO pollutants. Furthermore, the excellent antisintering property of the catalyst will allow them for the potential application in photocatalytic treatment of high-temperature flue gas from power plant.

  4. Formaldehyde-releasers in cosmetics: relationship to formaldehyde contact allergy. Part 2. Patch test relationship to formaldehyde contact allergy, experimental provocation tests, amount of formaldehyde released, and assessment of risk to consumers allergic to formaldehyde.

    PubMed

    de Groot, Anton; White, Ian R; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan

    2010-01-01

    This is the second part of an article on formaldehyde-releasers in cosmetics. The patch test relationship between the releasers in cosmetics to formaldehyde contact allergy is reviewed and it is assessed whether products preserved with formaldehyde-releasers may contain enough free formaldehyde to pose a threat to individuals with contact allergy to formaldehyde. There is a clear relationship between positive patch test reactions to formaldehyde-releasers and formaldehyde contact allergy: 15% of all reactions to 2-bromo-2-nitropropane-1,3-diol and 40-60% of the reactions to the other releasers are caused by a reaction to the formaldehyde in the test material. There is only fragmented data on the amount of free formaldehyde in cosmetics preserved with formaldehyde donors. However, all releasers (with the exception of 2-bromo-2-nitropropane-1,3-diol, for which adequate data are lacking) can, in the right circumstances of concentration and product composition, release >200 p.p.m. formaldehyde, which may result in allergic contact dermatitis. Whether this is actually the case in any particular product cannot be determined from the ingredient labelling. Therefore, we recommend advising patients allergic to formaldehyde to avoid leave-on cosmetics preserved with quaternium-15, diazolidinyl urea, DMDM hydantoin, or imidazolidinyl urea, acknowledging that many would tolerate some products. PMID:20136876

  5. In vitro model for decontamination of human skin: formaldehyde.

    PubMed

    Zhai, H; Barbadillo, S; Hui, X; Maibach, H I

    2007-04-01

    Decontamination of a chemical from skin is often an emergency measure. This study utilized an in vitro model to compare the decontamination capacity of three model decontaminant solutions (tap water, isotonic saline, and hypertonic saline). Human cadaver skin was dosed (approximately 0.25 microg on 3 cm(2) per skin) with radio-labeled [(14)C]-formaldehyde. After a defined exposure time (1, 3, and 30 min post-dosing, respectively), the surface skin was washed three times (4ml per time) with each solution. After washing, the skin was stripped with tape discs twice. Lastly, the wash solutions, strippings, receptor fluid, and remainder of skin were liquid scintillation analyzer counted to determine the amounts of formaldehyde. Additionally, an evaporation test at different exposure times (1min, 3min, 15min, 30min, and 60min, respectively) was conducted to monitor formaldehyde % evaporation. There were no statistical differences among these groups except isotonic saline, at 3min post-exposure (in wash solutions), showed a significantly difference (p<0.05) when compared to tap water. Formaldehyde % evaporation increased linearly with extending application times, and were 7.7%, 13.6%, 19.7%, 24.4%, and 35.9% (1min, 3min, 15min, 30min, and 60min, respectively). This data suggests that isotonic saline may be effective in removing formaldehyde from skin. However, results from this model need validation in vivo. The model may provide a facile and robust method of accelerating knowledge of decontamination mechanism and lead to enhanced efficacy. PMID:17123683

  6. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Part 2. Formaldehyde-releasers in clothes: durable press chemical finishes.

    PubMed

    de Groot, Anton C; Le Coz, Christophe J; Lensen, Gerda J; Flyvholm, Mari-Ann; Maibach, Howard I; Coenraads, Pieter-Jan

    2010-07-01

    This is the second part of a review article on formaldehyde-releasers used as durable press chemical finishes (DPCF) in textiles. The early finishes contained large amounts of free formaldehyde, which led to many cases of allergic contact dermatitis to clothes in the 1950s and 1960s. Currently, most finishes are based on modified dimethylol dihydroxyethyleneurea, which releases less formaldehyde. Nevertheless, recent studies in the United States and Israel have identified patients reacting to DPCF, considered to have allergic contact reactions to clothes, either from formaldehyde released by the DPCF therein or from the DPCF per se (in patients negative to formaldehyde). However, all studies had some weaknesses in design or interpretation and in not a single case has the clinical relevance been proven. The amount of free formaldehyde in most garments will likely be below the threshold for the elicitation of dermatitis for all but the most sensitive patients. The amount of free cyclized urea DPCF in clothes is unlikely to be high enough to cause sensitization. Patch test reactions to formaldehyde-releasing DPCF will in most cases represent a reaction to formaldehyde released from the test material.

  7. Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.

    PubMed Central

    Marcos, D; Wiseman, D

    1979-01-01

    A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833

  8. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications.

    PubMed

    Rai, Prabhakar; Yoon, Ji-Wook; Jeong, Hyun-Mook; Hwang, Su-Jin; Kwak, Chang-Hoon; Lee, Jong-Heun

    2014-07-21

    Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H₂S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH₃, CO and H₂). The maximum response was 108.92 for 5 ppm of H₂S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H₂S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H₂S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response.

  9. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method.

    PubMed

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Rong, Zhen; Ding, Hongmei; Li, Hui; Li, Shaohua; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2016-08-10

    This study proposes a facile method for synthesis of Au-coated magnetic nanoparticles (AuMNPs) core/shell nanocomposites with nanoscale rough surfaces. MnFe2O4 nanoparticles (NPs) were first modified with a uniform polyethylenimine layer (2 nm) through self-assembly under sonication. The negatively charged Au seeds were then adsorbed on the surface of the MnFe2O4 NPs through electrostatic interaction for Au shell formation. Our newly developed sonochemically assisted hydroxylamine seeding growth method was used to grow the adsorbed gold seeds into large Au nanoparticles (AuNPs) to form a nanoscale rough Au shell. Au-coated magnetic nanoparticles (AuMNPs) were obtained from the intermediate product (Au seeds decorated magnetic core) under sonication within 5 min. The AuMNPs were highly uniform in size and shape and exhibited satisfactory surface-enhanced Raman scattering (SERS) activity and strong magnetic responsivity. PATP was used as a probe molecule to evaluate the SERS performance of the synthesized AuMNPs with a detection limit of 10(-9) M. The synthesized AuMNPs were conjugated with Staphylococcus aureus (S. aureus) antibody for bacteria capture and separation. The synthesized plasmonic AuNR-DTNB NPs, whose LSPR wavelength was adjusted to the given laser excitation wavelength (785 nm), were conjugated with S. aureus antibody to form a SERS tag for specific recognition and report of the target bacteria. S. aureus was indirectly detected through SERS based on sandwich-structured immunoassay, with a detection limit of 10 cells/mL. Moreover, the SERS intensity at Raman peak of 1331 cm(-1) exhibited a linear relationship to the logarithm of bacteria concentrations ranging from 10(1) cells/mL to 10(5) cells/mL. PMID:27420923

  10. Isolation and characterization of formaldehyde-degrading fungi and its formaldehyde metabolism.

    PubMed

    Yu, Diansi; Song, Lili; Wang, Wei; Guo, Changhong

    2014-05-01

    Formaldehyde is classified as a human carcinogen that may cause nasopharyngeal cancer and probably leukemia. The effects of environmental and nutritional factors on fungal growth and the biodegradation of formaldehyde were investigated. Fungal strains SGFA1 and SGFA3 isolated from untreated sewage sediment samples collected from heavily formaldehyde-contaminated areas were identified using morphological characteristics and molecular techniques and named as Aspergillus nomius SGFA1 and Penicillium chrysogenum SGFA3. Results indicate that SGFA1 and SGFA3 completely consumed 3,000 and 900 mg l(-1) of formaldehyde, respectively, within 7 days under optimized conditions. Quantitative real-time PCR analyses and enzyme activity analyses demonstrated that glutathione-dependent formaldehyde dehydrogenase (GDFADH) and formate dehydrogenase (FDH) pathway may play a functional role in enhancing formaldehyde-degrading capability in SGFA1. Both fungi have potential use for remediation of formaldehyde pollution.

  11. Formaldehyde, aspartame, and migraines: a possible connection.

    PubMed

    Jacob, Sharon E; Stechschulte, Sarah

    2008-01-01

    Aspartame is a widely used artificial sweetener that has been linked to pediatric and adolescent migraines. Upon ingestion, aspartame is broken, converted, and oxidized into formaldehyde in various tissues. We present the first case series of aspartame-associated migraines related to clinically relevant positive reactions to formaldehyde on patch testing.

  12. Formaldehyde concentrations in biology department teaching facilities

    SciTech Connect

    Korky, J.K.; Schwarz, S.R.; Lustigman, B.K.

    1987-05-01

    As students and faculty in the biological sciences can attest, low grade exposure to formaldehyde by skin contact and inhalation during dissection is quite irritating. Health effects noted upon exposure to formaldehyde at concentrations of 0.1 to 5 ppm are burning of the eyes, lacrimation, and general irritation to the upper respiratory passages. Symptoms reported for higher exposures, 10 to 20 ppm, include coughing, tightening of the chest, headache and palpitation of the heart. Long exposures at 50 to 100 ppm or more might result in pulmonary edema, pneumonitis, and even death. There is also concern with regard to potential long term detrimental effects. Formaldehyde has been cited as a possible carcinogen in animals. It is a known mutagen in laboratory experimental systems involving Drosophilia, grasshoppers, flowering plants, fungi and bacteria. Animal testing has led investigators to postulate that the primary damage resulting from formaldehyde exposure may involve DNA synthesis and ribosomal RNA transcription. The National Institute of Occupational Safety and Health Administration (NIOSH) investigators have been studying occupational exposure to formaldehyde for over a decade in a variety of industries. This study was undertaken to assess formaldehyde concentrations in biology department dissecting facilities in the 1982-1983 academic year in order if routine dissection produces levels of formaldehyde which were unsafe according to NIOSH and OSHA standards. Chronic formaldehyde exposure is cause for greater concern than incidental exposure.

  13. Effect of an ozone-generating air-purifying device on reducing concentrations of formaldehyde in air

    SciTech Connect

    Esswein, E.J.; Boeniger, M.F.

    1994-02-01

    Formaldehyde, an air contaminant found in many indoor air investigations, poses distinct occupational exposure hazards in certain job categories (e.g., mortuary science) but is also of concern when found or suspected in office buildings and homes. A variety of air-purifying devices (APDs) are currently available or marketed for application to reduce or remove concentrations of a variety of indoor air pollutants through the use of ozone as a chemical oxidant. An investigation was conducted to determine if concentrations of formaldehyde similar to those found in industrial hygiene evaluations of funeral homes could be reduced with the use of an ozone-generating APD. An ozone-generating APD was placed in an exposure chamber and formaldehyde-containing embalming solution was allowed to evaporate naturally, creating peak and mean chamber concentrations of 2.5 and 1.3 ppm, respectively. Continuous-reading instruments were used to sample for formaldehyde and ozone. Active sampling methods were also used to sample simultaneously for formaldehyde and a possible reactant product, formic acid. Triplicate measurements were made in each of three evaluations: formaldehyde alone, ozone alone, and formaldehyde and ozone combined. Concentrations of formaldehyde were virtually identical with and without 0.5 ppm ozone. No reduction in formaldehyde concentration was found during a 90-minute evaluation using ozone at this concentration with peak and average concentrations of approximately 2.5 and 1.3 ppm formaldehyde, respectively. The results of this investigation suggest that the use of ozone is ineffective in reducing concentrations of formaldehyde. Because ozone has demonstrated health hazards, and is a regulated air contaminant in both the occupational and ambient environment, the use of ozone as an air purification agent in indoor air does not seem warranted. 25 refs., 5 figs., 4 tabs.

  14. Applications de la tranformee en ondelettes au traitement de l'information optique

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain

    La these presente l'apport d'un outil mathematique recemment decouvert, la transformee en ondelettes, au traitement de l'information optique. Les ondelettes continues sont d'abords introduites et leur realisation optique est presentee. Ensuite, une ondelette repondant aux equations de Maxwell est developpee. Cette derniere permet de tisser des liens entre la transformee en ondelettes et le principe de Huygens utilise pour etudier la diffraction scalaire. La possibilite d'utiliser cette ondelette pour generer des faisceaux non diffractants est egalement discutee. Dans un deuxieme temps, les ondelettes discretes sont utilisees dans le but d'extraire des informations pertinentes dans une banque d'images infrarouges. Ces images representent les vues de vehicules prises a tous les cinq degres. La transformee en ondelettes genere une analyse multiresolution permettant d'extraire des contours moins bruites. Cette information est alors traitee par de nouveaux algorithmes de reconnaissance de forme dans un espace qui caracterise de facon invariante les objets 3-D.

  15. [Formaldehyde sediment in incubators following disinfection].

    PubMed

    Wartner, R; Kegel, M; Meyer, H D; Schlüter, G; Wegner, J; Werner, E

    1983-12-01

    Measurements in incubators revealed the presence of formaldehyde concentrations involving a health risk for premature and normal newborns kept and cared for in incubators. Prior to measurements, the incubators had been disinfected by means of formaldehyde vapours in an "Aseptor" disinfecting cabinet (Drägerwerk AG, Lübeck) and then ventilated in strict adherence to operating instructions. The elevated formaldehyde concentrations found had been due to residues of paraformaldehyde and urotropin on the surfaces of the disinfected apparatus, liberating formaldehyde by hydrolysis depending on temperature and relative humidity. There should be a basic reconsideration of the present practice of incubator disinfection. From experiments with activated-carbon filters in incubators it would seem that there is a chance of reducing such formaldehyde concentrations.

  16. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy.

    PubMed

    Zhang, Zhuomin; Zhao, Cheng; Ma, Yunjian; Li, Gongke

    2014-07-21

    Toxic formaldehyde is sometimes used illegally as a food preservative, however, on-site rapid analysis of trace formaldehyde in aquatic products remains a challenge. In this work, a simple on-site rapid quantification method for trace volatile formaldehyde in aquatic products was developed by a derivative reaction-based surface enhanced Raman spectroscopy (SERS) technique coupled with a homemade portable purge-sampling device. Trace formaldehyde separated from complicated aquatic matrices via a purge-sampling procedure was reacted with a derivative reagent to produce a Raman-active analyte for consequent SERS analysis. Au/SiO2 nanoparticles (NPs) were employed as the enhancement substrate to achieve significant enhancement of Raman signal intensity. Conditions of derivative reaction and SERS detection were optimized in detail, and the selectivity of this analytical method was also evaluated based on related analogs. Under optimal conditions, an extremely low detection limit of 0.17 μg L(-1) was achieved. Trace volatile formaldehyde can be found in fresh squid and shrimp samples without obvious matrix interference, and this was quantified to be 0.13-0.21 mg kg(-1) using the described method. The recoveries of spiked aquatic product samples were found to be 70.0-89.1% with RSDs of 2.3-7.2% (n = 3). The results suggest that the proposed method is reliable and suitable for on-site rapid analysis of trace formaldehyde in aquatic products.

  17. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines. PMID:27566354

  18. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.

    PubMed

    Gorbunova, M V; Apyari, V V; Dmitrienko, S G; Garshev, A V

    2016-09-14

    Gold nanorods (AuNRs) stabilized by cetyltrimethylammonium bromide (CTAB) were synthesized and an interaction of catecholamines (CAs) with silver ions in the presence of the obtained AuNRs was studied. The reaction results into formation of core-shell Au@Ag nanorods (Au@AgNRs) and leads to a hypsochromic shift of the long-wave surface plasmon resonance (SPR) band in the absorption spectrum of AuNRs. The influence of a CA structure, excess of CTAB, interaction time, pH, concentration of AuNRs, silver ions and CAs on this interaction was studied. Based on correlation of the NRs spectral characteristics with the concentration of CAs, a method for spectrophotometric determination of dobutamine, epinephrine, norepinephrine and dopamine with detection limits 27, 18, 16 and 13 μg L(-1), respectively, has been developed. The method can be applied to the analysis of medicines.

  19. Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Pullithadathil, Biji; Prasad, Arun K.; Dhara, Sandip; Ashok, Anuradha; Mohamed, Kamruddin; Tyagi, Ashok Kumar; Raj, Baldev

    2015-11-01

    A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO2 sensors (300 °C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable.

  20. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  1. Fabrication of crystal α-Si₃N₄/Si-SiOx core-shell/Au-SiOx peapod-like axial double heterostructures for optoelectronic applications.

    PubMed

    Nie, Tianxiao; Chen, Zhi-Gang; Wu, Yueqin; Guo, Yanan; Zhang, Jiuzhan; Fan, Yongliang; Yang, Xinju; Jiang, Zuimin; Zou, Jin

    2012-08-01

    Novel crystal α-Si(3)N(4)/Si-SiO(x) core-shell/Au-SiO(x) peapod-like axial double heterostructural nanowires were obtained by directly annealing a Au covered SiO(2) thin film on a Si substrate. Our extensive electron microscopic investigation revealed that the α-Si(3)N(4) sections with a mathematical left angle bracket 101 mathematical right angle bracket growth direction were grown first, followed by growth of the Si-SiO(x) core-shell sections and finally growth of the Au-SiO(x) peapod-like sections. Through a series of systematically comparative experiments, a temperature-dependent multi-step vapor-liquid-solid growth mechanism is proposed. Room temperature photoluminescence measurement of individual nanowires reveals two emission peaks (410 and 515 nm), indicating their potential applications in light sources, laser or light emitting display devices.

  2. Capture of formaldehyde by adsorption on nanoporous materials.

    PubMed

    Bellat, Jean-Pierre; Bezverkhyy, Igor; Weber, Guy; Royer, Sébastien; Averlant, Remy; Giraudon, Jean-Marc; Lamonier, Jean-François

    2015-12-30

    The aim of this work is to assess the capability of a series of nanoporous materials to capture gaseous formaldehyde by adsorption in order to develop air treatment process and gas detection in workspaces or housings. Adsorption-desorption isotherms have been accurately measured at room temperature by TGA under very low pressure (p<2 hPa) on various adsorbents, such as zeolites, mesoporous silica (SBA15), activated carbon (AC NORIT RB3) and metal organic framework (MOF, Ga-MIL-53), exhibiting a wide range of pore sizes and surface properties. Results reveal that the NaX, NaY and CuX faujasite (FAU) zeolites are materials which show strong adsorption capacity and high affinity toward formaldehyde. In addition, these materials can be completely regenerated by heating at 200°C under vacuum. These cationic zeolites are therefore promising candidates as adsorbents for the design of air depollution process or gas sensing applications.

  3. Service life of respirator cartridges for formaldehyde

    SciTech Connect

    Nelson, G.O.; Carlson, G.J.; Johnson, J.S.

    1981-11-20

    To date there is no NIOSH-approved air-purifying respirator which will effectively remove formaldehyde gas. Because of formaldehyde's high vapor pressure, service life values calculated using the adsorption isotherm and Wheeler equations indicate that organic vapor cartridges containing activated carbon will last less than 10 minutes at concentrations greater than 10 ppM. Studies were initiated to identify a suitable sorbent for this potentially dangerous material. The project involves the following steps: develop a method for producing relatively high concentrations (20 ppM) of a formaldehyde test mixture; verify this test concentration using the NIOSH-approved chromotropic acid wet chemical technique; and survey a wide variety of sorbents, both plain and impregnated, in hopes of identifying a suitable air-purifying cartridge for formaldehyde. A dynamic formaldehyde generation system was fabricated in which formaldehyde was produced by continuously injecting formalin using a syringe pump. The concentration was monitored using an infrared analyzer and checked using the chromotropic acid technique. Twenty-five cartridges were tested for service life at concentrations of formaldehyde gas from 7.1 to 14.8 ppM. Acid gas cartridges and those containing Pittsburgh FCA or ASC showed superior service life.

  4. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  5. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  6. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements.

    PubMed

    Burkert, A; Müller, D; Rieger, S; Schmidl, G; Triebel, W; Paa, W

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (41 (4) absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure. PMID:26724008

  7. [Research on detecting trace formaldehyde gas by the multi-wavelengths characteristics method].

    PubMed

    Li, Yang-jun; Wang, Gao

    2011-12-01

    In order to overcome the slow speed of detecting trace formaldehyde in the sample gas, material consumption by chemical reaction, and the limitations of the sampling area in the detection of trace formaldehyde, a multi-wavelength characteristics method for getting the exact concentration of formaldehyde quickly was designed. According to the spectrum characteristics of formaldehyde and the main interfering gases the system chose multiple wavelengths with the minimum degree of coherence (the number of characteristic wavelengths were selected to be 3, 4 and 5), in conjunction with the corresponding groups of narrow-band filters. With the infrared light of the light source through the chamber windows and narrow-band filters, the infrared light was collected by the PCI-2TE-13 infrared detectors, and the concentration of formaldehyde in the sample gas was calculated by the characteristics spectrum absorption algorithm. In the experiments, the system analyzed and calculated the concentration of formaldehyde in four gas samples collected in the newly renovated house, building materials market, supermarkets and outdoor parks. Experimental results of the system and test results of ARCSpectro-AMIR infrared spectrometer were compared, the results show that test data above 10 mg x m(-3) were close to true value by the multi-wavelengths characteristics method, and the average error is less than 5%. So the system meets the requirements of practical applications, and it has the advantages of real-time detection, not poisoning so on.

  8. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Rai, Prabhakar; Yoon, Ji-Wook; Jeong, Hyun-Mook; Hwang, Su-Jin; Kwak, Chang-Hoon; Lee, Jong-Heun

    2014-06-01

    Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H2S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH3, CO and H2). The maximum response was 108.92 for 5 ppm of H2S gas at 300 °C, which was approximately 19 times higher than that for the interfering gases. The response of Au@NiO yolk-shell NPs to H2S was approximately 4 times higher than that of bare NiO hollow nanospheres. Improved performance of Au@NiO yolk-shell NPs was attributed to hollow spaces that allowed the accessibility of Au NPs to gas molecules. It was suggested that adsorption of H2S on Au NPs resulted in the formation of sulfide layer, which possibly lowered its work function, and therefore tuned the electron transfer from Au to NiO rather NiO to Au, which leaded to increase in resistance and therefore response.Au@NiO yolk-shell nanoparticles (NPs) were synthesized by simple solution route and applied for efficient gas sensor towards H2S gas. Carbon encapsulated Au (Au@C core-shell) NPs were synthesized by glucose-assisted hydrothermal method, whereas Au@NiO yolk-shell NPs were synthesized by precipitation method using Au@C core-shell NPs as a template. Sub-micrometer Au@NiO yolk-shell NPs were formed having 50-70 nm Au NPs at the periphery of NiO shell (10-20 nm), which was composed of 6-12 nm primary NiO particles. Au@NiO yolk-shell NPs showed higher response for H2S compared to other interfering gases (ethanol, p-xylene, NH3, CO and H2). The maximum response was 108.92 for 5 ppm

  9. Synthesis and characterization of Cu2O/Au and its application in catalytic reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Guo, X. H.; Ma, J. Q.; Ge, H. G.

    2015-08-01

    Monodispersed Cu2O spherical colloids with diameter of about 300 nm were prepared by a facile additive-assisted complex-precursor solution method. Core-shell structure Cu2O/Au composites, constructed by spherical Cu2O core and Au nanoparticles shell, were obtained via galvanic replacement method. The morphology, microstructure and optical properties of the Cu2O/Au composites were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectra and ultraviolet-visible absorption. The results showed that Au NPs with an average size of 12 nm were uniformly distributed on the surface of the Cu2O spheres with size about 300 nm. Cu2O/Au composites exhibit high catalytic activity toward 4-NP reduction at room temperature.

  10. Formaldehyde-induced shrinkage of rat thymocytes.

    PubMed

    Nakao, Hiromi; Umebayashi, Chisato; Nakata, Mami; Nishizaki, Yasutaka; Noda, Katuhiko; Okano, Yoshiro; Oyama, Yasuo

    2003-01-01

    To test the possibility that micromolar formaldehyde, a metabolite of methanol derived from aspartame, exerts cytotoxicity, its effect on rat thymocytes was examined under the in vitro condition using a flow cytometer. Incubation of thymocytes with formaldehyde at 100 micro M or more for 24 h significantly increased the populations of shrunken cells and cells with hypodiploid DNA. The peak blood concentration of methanol in human subjects administered abuse doses of aspartame has been reported to exceed 2 mg/dL (625 micro M). It would increase the population of thymocytes undergoing apoptosis if formaldehyde at 100 micro M or more appears in the blood after administration of aspartame.

  11. Urea formaldehyde foam: a dangerous insulation

    SciTech Connect

    Keough, C.

    1980-12-01

    Insulating a home with urea formaldehyde foam can lead to severe health problems due to poisoning from formaldehyde gas. Respiratory problems, allergies, memory loss, and mental problems can result from exposure to foam insulation fumes. Research is now under way at the Chemical Industry Inst., Univ. of Washington, and other institutions to learn more about the health effects of formaldehyde foam and to develop possible remedies to these problems. Several states are either banning or controlling the use of this type of home insulation.

  12. Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

    PubMed Central

    Kashanian, Soheila

    2015-01-01

    Summary The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core–shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its well-known derivatives, N-trimethylchitosan (TMC), were applied to construct three-layer nanocomposites in an Au/polymer/Fe3O4 system. It was demonstrated that replacement of chitosan with TMC reasonably improved the properties of the final nanocomposites including their size, magnetic behavior and thermal stability. Moreover, the results of the MTT assay showed no significant cytotoxicity effect when the Au/TMC/Fe3O4 nanocomposites were applied in vitro. These TMC-containing magnetic nanoparticles are well-coated by Au nanoparticles and have good biocompatibility and can thus play the role of a platform or a label in various fields of application, especially the biomedical sciences and biosensors. PMID:26425418

  13. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng

    2013-07-01

    This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic

  14. Selective and mild hydrogen production using water and formaldehyde.

    PubMed

    Heim, Leo E; Schlörer, Nils E; Choi, Jong-Hoo; Prechtl, Martin H G

    2014-04-08

    With the increased efforts in finding new energy storage systems for mobile and stationary applications, an intensively studied fuel molecule is dihydrogen owing to its energy content, and the possibility to store it in the form of hydridic and protic hydrogen, for example, in liquid organic hydrogen carriers. Here we show that water in the presence of paraformaldehyde or formaldehyde is suitable for molecular hydrogen storage, as these molecules form stable methanediol, which can be easily and selectively dehydrogenated forming hydrogen and carbon dioxide. In this system, both molecules are hydrogen sources, yielding a theoretical weight efficiency of 8.4% assuming one equivalent of water and one equivalent of formaldehyde. Thus it is potentially higher than formic acid (4.4 wt%), as even when technical aqueous formaldehyde (37 wt%) is used, the diluted methanediol solution has an efficiency of 5.0 wt%. The hydrogen can be efficiently generated in the presence of air using a ruthenium catalyst at low temperature.

  15. A brief review of control measures for indoor formaldehyde

    SciTech Connect

    Matthews, T.G.

    1988-01-01

    Indoor environments contain a variety of consumer and construction products that emit formaldehyde (CH/sub 2/O) vapor. The strongest CH/sub 2/O emitters are typically particleboard underlayment and industrial particleboard, hardwood plywood paneling, urea-formaldehyde foam insulation, and medium density fiberboard, all of which contain urea-formaldehyde (UF) resins. The contribution of individual products to indoor CH/sub 2/O levels depends on several parameters, including the quantity and age of the product, building ventilation rate, presence of permeation barriers, temperature (T), relative humidity (RH), and CH/sub 2/O vapor concentration resulting from all of the CH/sub 2/O emitters (1,3-8). Combustion sources (e.g., kerosene heaters, gas stoves and cigarettes), carpet and carpet padding, resilient flooring (e.g., linoleum), gypsum board, non-apparel and apparel textiles, ceiling tiles, fibrous glass insulation and softwood plywood subflooring are generally weak emitters that do not contribute significantly to steady-state, indoor CH/sub 2/O levels. Control measures exist to reduce CH/sub 2/O emissions from consumer and construction products during their manufacturer and in post-installation applications. This note summarized the effectiveness of the following subset of post-installation control measures: product aging, installations of permeation barriers (i.e., flooring) and increased building ventilation. 14 refs.

  16. Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    NASA Astrophysics Data System (ADS)

    Davenport, J. J.; Hodgkinson, J.; Saffell, J. R.; Tatam, R. P.

    2014-05-01

    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 AU.

  17. Formaldehyde in the Far Outer Galaxy

    NASA Astrophysics Data System (ADS)

    Lugo, S. K.; Magnani, L.; Brand, J.; Wouterloot, J. G. A.

    2006-06-01

    We present results from an initial survey of the 212-111 transition of formaldehyde (H2CO) in the Far Outer Galaxy (galactocentric distances, Rg > 16 kpc). Formaldehyde is a key prebiotic molecule; determining the outermost extent of its distribution can be used to set a limit to the Galaxy's "Habitable Zone", the region where conditions for the formation of life are most favorable. We surveyed 67 clouds in the outer Galaxy ranging 12 - 23 kpc in distance from the Galactic Center. Formaldehyde emission at 140.8 GHz was detected from 44 of 67 lines of sight, including 7 clouds at Rg > 20 kpc. Formaldehyde is readily detectable even in the Far Outer Galaxy beyond the edge of the stellar disk. The widespread distribution of H2CO in the Far Outer Galaxy is a positive first step in determining how favorable are conditions in this large region towards the formation of life.

  18. Low-Temperature Synthesis of Tunable Mesoporous Crystalline Transition Metal Oxides and Applications as Au Catalyst Supports

    SciTech Connect

    Wang, Donghai; Ma, Zhen; Dai, Sheng; Liu, Jun; Nie, Zimin; Engelhard, Mark H.; Huo, Qisheng; Wang, Chong M.; Kou, Rong

    2008-09-04

    Mesoporous transition metal oxides are of great potential as catalyst supports, shape-selective catalysts, photocatalysts, and sensor materials. Previously stable crystalline mesoporous oxides were mostly obtained by thermally induced crystallization or by segregating the nanocrystals with an amorphous phase. Here we report a novel direct approach to crystalline mesoporous frameworks via the spontaneous growth and assembly of transition metal oxide nanocrystals (i.e., rutile TiO2, fluorite CeO2, cassiterite SnO2, and anatase SnxTi1-xO2) by oxidative hydrolysis and condensation in the presence of anionic surfactants. The influences of synthesis time, surfactants with different chain lengths, concentrations of the oxidant (i.e., hydrogen peroxide), and synthesis temperatures on the composition and morphologies of the resulting materials were investigated by X-ray diffraction (XRD), N2-sorption, transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). A mechanism for the templated synthesis of crystalline mesoporous metal oxides was tentatively proposed. To demonstrate the catalytic applications of these materials, gold nanoparticles were loaded on mesoporous rutile TiO2 and fluorite CeO2 supports, and their catalytic performance in CO oxidation and water-gas shift was surveyed. Au nanoparticles supported on the mesoporous crystalline metal oxides exhibit higher reactivity and excellent on-stream stability towards CO oxidation and water-gas shift reaction compared with commercial TiO2 and CeO2.

  19. Contribution of formaldehyde to respiratory cancer.

    PubMed Central

    Nelson, N; Levine, R J; Albert, R E; Blair, A E; Griesemer, R A; Landrigan, P J; Stayner, L T; Swenberg, J A

    1986-01-01

    This article reviews the available data on the carcinogenicity of formaldehyde from experimental and epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14 ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit mucociliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde, but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocarcinogen; and the importance of glutathione as a host defense at low exposure. PMID:3830109

  20. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  1. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  2. Report on the Consensus Workshop on Formaldehyde.

    PubMed Central

    1984-01-01

    The Consensus Workshop on Formaldehyde consisted of bringing together scientists from academia, government, industry and public interest groups to address some important toxicological questions concerning the health effects of formaldehyde. The participants in the workshop, the Executive Panel which coordinated the meeting, and the questions posed, all were chosen through a broadly based nomination process in order to achieve as comprehensive a consensus as possible. The subcommittees considered the toxicological problems associated with formaldehyde in the areas of exposure, epidemiology, carcinogenicity/histology/genotoxicity, immunology/sensitization/irritation, structure activity/biochemistry/metabolism, reproduction/teratology, behavior/neurotoxicity/psychology and risk estimation. Some questions considered included the possible human carcinogenicity of formaldehyde, as well as other human health effects, and the interpretation of pathology induced by formaldehyde. These reports, plus introductory material on the procedures used in setting up the Consensus Workshop are presented here. Additionally, there is included a listing of the data base that was made available to the panel chairmen prior to the meeting and was readily accessible to the participants during their deliberations in the meeting. This data base, since it was computerized, was also capable of being searched for important terms. These materials were supplemented by information brought by the panelists. The workshop has defined the consensus concerning a number of major points in formaldehyde toxicology and has identified a number of major deficits in understanding which are important guides to future research. PMID:6525992

  3. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  4. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    NASA Astrophysics Data System (ADS)

    Leng, Jing; Wang, Wen-Min; Lu, Li-Min; Bai, Ling; Qiu, Xin-Lan

    2014-02-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors.

  5. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V.; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A.; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G.; Grimaldi, Maria G.; Privitera, Vittorio

    2014-09-01

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (~8 nm mean diameter) with a thin layer of TiO2 (~4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  6. Photoinduced ultrafast charge separation in colloidal 2-dimensional CdSe/CdS-Au hybrid nanoplatelets and corresponding application in photocatalysis.

    PubMed

    Chauhan, Himani; Kumar, Yogesh; Dana, Jayanta; Satpati, Biswarup; Ghosh, Hirendra N; Deka, Sasanka

    2016-08-25

    Multicomponent hybrid nanocrystals (HNC) consisting of a semiconductor and metallic domains are an important class of nanostructured materials demonstrating useful applications and interesting basic knowledge. In this scenario, Au nanoparticle (NP) islands of ∼2 nm have been grown on unique two dimensional (2D) CdSe/CdS core@shell hexagonal nanoheteroplatelets of 20 nm diameter to form unprecedented 2D CdSe/CdS-Au HNCs and detailed optical characterization has been carried out to determine the dimensionality based electron transfer dynamics on the ultrafast scale. Steady state optical absorption studies show that upon growing Au NPs onto the 2D nanoplates, a new band appears in the red region of the spectra (500-800 nm), which suggests a strong interaction between the exciton of the core-shell and the plasmon of the metal NPs. Fluorescence studies showed the quenching of emission of the semiconductor domains upon the growth of the metallic domains. Detailed optical and TRPL studies suggested efficient charge transfer from the 2D CdSe/CdS to the Au domains, irrespective of excitation wavelength. Femtosecond transient absorption studies suggest that the electron transfer from the 2D hybrid nanocrystals to the metal domain is on an ultrafast time scale (∼800 fs). No evidence is observed for charge transfer from the 2 nm Au domains to the semiconductor seeds. The broad absorption in the visible region of the hybrid nanocrystals and the ultrafast charge transfer facilitates very efficient photo-catalytic reactions under direct sun light, as a case study. PMID:27533050

  7. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  8. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.

    PubMed

    Yang, Peipei; Xu, Yong; Chen, Lei; Wang, Xuchun; Zhang, Qiao

    2015-10-27

    We demonstrate that noble metal @ RF core-shell nanostructures can be obtained through a facile one-pot synthesis approach in the absence of any additional surfactants. Monodisperse metal@RF core-shell nanostructures can be produced within 1 h on a large scale. Both the core size and shell thickness can be readily tuned by altering the reaction parameters. Systematic studies reveal that resorcinol could have several functions: it could act as a reactant to form RF resin, and it also could passivate the surface of metallic nanoparticles to prevent them from aggregating. Additionally, for the first time, our results suggest that resorcinol may act as a reducing agent that can reduce metal salts to form metal nanoparticles. The core-shell nanoparticles can be carbonized into M@carbon nanostructures, which have shown great performance in the catalytic hydrogenation of chlorobenzene. This work not only will help to achieve the controllable synthesis of noble metal@RF resin and M@carbon core-shell nanostructures but also will promote research into other RF-based nanostructures and their catalytic applications.

  9. Toxicity and biodegradation of formaldehyde in anaerobic methanogenic culture.

    PubMed

    Qu, M; Bhattacharya, S K

    1997-09-01

    Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration < or =30 mg/L) followed Monod model with a rate constant, k, of 0.35-0.46 d(-1). At higher initial concentrations (> or =60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S(0)/X(0), was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S(0)/X(0) < or = 0.1, formaldehyde was completely degraded with initial concentration of up to 95 mg/L; when S(0)/X(0) > or = 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.

  10. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  11. Formaldehyde exposure and health status in households.

    PubMed Central

    Broder, I; Corey, P; Brasher, P; Lipa, M; Cole, P

    1991-01-01

    This report describes a case study concerned with acute and subacute health effects of formaldehyde in the indoor air, which is based on a large group of control houses and houses retroinsulated 4 to 5 years earlier with urea formaldehyde foam insulation (UFFI). Both groups underwent an environmental and health assessment on two occasions separated by an interval of 12 months, during which about one-half of the UFFI group performed remedial work on their houses. The results show that in the first survey of the study population, before remedial work, there was a moderate excess of many adverse health status indicators among the UFFI subset relative to the controls. This was associated with the presence of direct exposure-response relationships between formaldehyde levels in the UFFI houses and the prevalence of a number of symptoms. No comparable relationships were seen among the controls. At the second survey, performed following the removal of the UFFI, there was an appreciable reduction in the excess of most adverse health status indicators among the UFFI subjects. This improvement in health status among the UFFI removal subset was not associated with any significant diminution of formaldehyde exposures, although the previously observed exposure-response relationships had vanished. These observations imply that the findings obtained in the preremedial stage of the study cannot be explained by formaldehyde exposure alone. PMID:1821362

  12. Facile fabrication of truncated octahedral Au nanoparticles and its application for ultrasensitive surface enhanced Raman scattering immunosensing.

    PubMed

    Li, Yanxiao; Ma, Zhanfang

    2013-07-12

    Monodispersed truncated octahedral (TOH) Au nanoparticles (NPs) with an average edge-length of about 16 nm were synthesized using poly(diallyldimethylammonium chloride) (PDDA) both as a stabilizing and reducing agent via a one-step reaction. Remarkably, no seeds, surfactants or additional reductant were used in this reaction. In addition, the PDDA molecules on the surface of the TOH AuNPs make them convenient for use in layer-by-layer assembly by electrostatic interactions. Importantly, the TOH AuNPs show a significant surface enhanced Raman scattering (SERS) activity, and can be directly used for building SERS-active substrates and tags. Based on these promising properties, an ultrasensitive SERS-based immunosensing platform was developed. Using human immunoglobulin (h-IgG) as a model target analyte, a detection limit of 36.56 fg ml(-1) was reached.

  13. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  14. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives.

    PubMed

    Ke, Y J; Qin, X D; Zhang, Y C; Li, H; Li, R; Yuan, J L; Yang, X; Ding, S M

    2014-08-01

    HeLa cells were exposed to formaldehyde and its metabolic derivatives, methanol, formic acid, and acetaldehyde, to investigate that the toxicity of formaldehyde is not caused by the chemical group. After 1 h of treatment with formaldehyde, mitochondrial assays showed that low concentrations (e.g. 10 μmol/L) of formaldehyde promoted growth of the HeLa cells, while higher concentrations (e.g. ≥62.5 μmol/L) inhibited cell growth; while all four chemicals at a concentration of 125 μmol/L affected cell growth, formaldehyde affected the largest. Reactive oxygen species concentration increased with the concentration of the exposure chemical. The endogenous formaldehyde content increased the most in the formaldehyde group, but in other three groups, it did not increase as the exposure concentration increased. Expression of dehydrogenase (formaldehyde dehydrogenase (FDH)) in the formaldehyde (10.40) and methanol (10.60) groups increased significantly compared with the control (1), while it was similar to the control in formic acid (0.90) and acetaldehyde (1.10) groups. Our results suggest that formaldehyde could affect cell activity and even enter cells. Exposure to formaldehyde changes the endogenous formaldehyde concentration in cells within 24 h, and this induces expression of FDH for formaldehyde degradation to maintain the formaldehyde balance. The toxicity of formaldehyde is not caused by the carbon atoms in the aldehyde, hydroxyl, or carboxyl groups. Formaldehyde is hypothesized to be an important signaling molecule in the regulation of cell growth and maintenance of the endogenous formaldehyde level. PMID:24220877

  15. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives.

    PubMed

    Ke, Y J; Qin, X D; Zhang, Y C; Li, H; Li, R; Yuan, J L; Yang, X; Ding, S M

    2014-08-01

    HeLa cells were exposed to formaldehyde and its metabolic derivatives, methanol, formic acid, and acetaldehyde, to investigate that the toxicity of formaldehyde is not caused by the chemical group. After 1 h of treatment with formaldehyde, mitochondrial assays showed that low concentrations (e.g. 10 μmol/L) of formaldehyde promoted growth of the HeLa cells, while higher concentrations (e.g. ≥62.5 μmol/L) inhibited cell growth; while all four chemicals at a concentration of 125 μmol/L affected cell growth, formaldehyde affected the largest. Reactive oxygen species concentration increased with the concentration of the exposure chemical. The endogenous formaldehyde content increased the most in the formaldehyde group, but in other three groups, it did not increase as the exposure concentration increased. Expression of dehydrogenase (formaldehyde dehydrogenase (FDH)) in the formaldehyde (10.40) and methanol (10.60) groups increased significantly compared with the control (1), while it was similar to the control in formic acid (0.90) and acetaldehyde (1.10) groups. Our results suggest that formaldehyde could affect cell activity and even enter cells. Exposure to formaldehyde changes the endogenous formaldehyde concentration in cells within 24 h, and this induces expression of FDH for formaldehyde degradation to maintain the formaldehyde balance. The toxicity of formaldehyde is not caused by the carbon atoms in the aldehyde, hydroxyl, or carboxyl groups. Formaldehyde is hypothesized to be an important signaling molecule in the regulation of cell growth and maintenance of the endogenous formaldehyde level.

  16. Evaluation of possible health risk associated with occupational exposure to formaldehyde

    NASA Astrophysics Data System (ADS)

    Vargova, Maria; Janota, Stanislav; Karelova, Jarmila; Barancokova, Maria; Sulcova, Margita

    1993-03-01

    Widespread us of formaldehyde in a variety of applications is known to result in appreciable exposure of workers and large segments of the general population. Because of possible genotoxic and immunotoxic effects, we investigated the health condition of people occupationally exposed to formaldehyde in a plant in which woodsplinter materials are manufactured. The concentration of formaldehyde in the workplace was greater than the average and peak concentrations of formaldehyde in Czechoslovakia (0.5 mg/m3 and 1 mg/m3 respectively). Selected parameters of genotoxicity (cytogenetic analysis, nucleolus test) and immunotoxocity (serum immunoglobulin G, A, M; complement C3, C4; alpha-1-anti-trypsine, alpha-2 macroglobulin, ceruloplasmin, transferrin, prealbumin, orosomucoid levels) were determined. The results of the evaluation of mitotic indices and the blastogen transformation point to an effect of the exposure to formaldehyde on r-RNA synthesis inhibition and lymphocyte maturation decrease. The frequency of aberrant cells in the peripheral blood lymphocytes was increased in both, exposed and control group and was above 1.2 - 2% of aberrant cells observed in the normal population in Czechoslovakia. There was no significant differences in the values of natural immunity and specific humoral immunity. Significant differences were observed in the values of mitogen-induced proliferation of lymphocytes between the exposed and the matching and background control groups. These changes are considered to be sensitive indicators of the potential effects on the integrity of a more important immunologic function.

  17. Formaldehyde content of atmospheric aerosol.

    PubMed

    Toda, Kei; Yunoki, Satoru; Yanaga, Akira; Takeuchi, Masaki; Ohira, Shin-Ichi; Dasgupta, Purnendu K

    2014-06-17

    Formaldehyde (HCHO) is a highly soluble polar molecule with a large sticking coefficient and thus likely exists in both gaseous and particulate forms. Few studies, however, address particulate HCHO (HCHO(p)). Some report that HCHO(p) concentrations (obtained only with long duration sampling) are very low. The lack of data partly reflects the difficulty of specifically measuring HCHO(p). Long duration filter sampling may not produce meaningful results for a variety of reasons. In this work, gaseous HCHO (HCHO(g)) and (HCHO(p)) were, respectively, collected with a parallel plate wet denuder (PPWD) followed by a mist chamber/hydrophilic filter particle collector (PC). The PPWD quantitatively removed HCHO(g) and the PC then collected the transmitted aerosol. The collected HCHO from either device was alternately analyzed by Hantzsch reaction-based continuous flow fluorometry. Each gas and particle phase measurement took 5 min each, with a 10 min cycle. The limits of detection were 0.048 and 0.0033 μg m(-3), respectively, for HCHO(g) and HCHO(p). The instrument was deployed in three separate campaigns in a forest station in western Japan in March, May, and July of 2013. Based on 1296 data pairs, HCHO(p), was on the average, 5% of the total HCHO. Strong diurnal patterns were observed, with the HCHO(p) fraction peaking in the morning. The relative humidity dependence of the partition strongly suggests that it is driven by the liquid water content of the aerosol phase. However, HCHO(p) was 100× greater than that expected from Henry's law. We propose that the low water activity in the highly saline droplets lead to HCHO oligomerization.

  18. Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction.

    PubMed

    Sumiga, Boštjan; Knez, Emil; Vrtačnik, Margareta; Ferk-Savec, Vesna; Starešinič, Marica; Boh, Bojana

    2011-03-01

    Paraffinic phase change materials (PCM) were microencapsulated by in situ polymerization of melamine-formaldehyde prepolymers. Partly methylated trimethylolmelamine was used as an aminoaldehyde prepolymer for the microcapsule wall, a styrene-maleic acid anhydride copolymer as an emulsifier and modifying agent, and ammonia as a scavenger for reducing residual formaldehyde. For the determination of residual formaldehyde in a ppm concentration range, EDANA and malachite green analytical methods were studied, and the EDANA 210.1-99 was applied for the determination of residual formaldehyde in 25 samples of microcapsules, produced in a 200-L reactor. A linear correlation was observed between the added ammonia scavenger concentration and the reduction of residual formaldehyde concentration. Compared with 0.45% (4500 ppm) formaldehyde in a non-treated microcapsule suspension, with ammonia scavenger concentrations 0.80, 0.90 and 1.35%, the concentration of residual formaldehyde dropped to 0.27, 0.20 and 0.09% (i.e. 2700, 2000 and 900 ppm), respectively. Morphological characterisation of microcapsules by SEM and microcapsule wall permeability measurements by gravimetry / mass loss at an elevated temperature (135 °C) suggested that ammonia positively contributed to the wall elasticity / durability, while microcapsules with no ammonia scavenger added tended to have more brittle walls, and were more prone to cracking.

  19. Exposure to formaldehyde: effects of pulmonary function

    SciTech Connect

    Alexandersson, R.; Kolmodin-Hedman, B.; Hedenstierna, G.

    1982-09-01

    Forty-seven subjects exposed to formaldehyde (mean air concentration 0.45 mg/m/sup 3/) and 20 unexposed subjects, all of whom were employed at a carpentry shop, were studied with regard to symptoms and pulmonary function. Symptoms involving eyes and throat as well as chest oppression were significantly more common in the exposed subjects than in the unexposed controls. Spirometry and single breath nitrogen washout were normal Monday morning before exposure to formaldehyde. A reduction in forced expiratory volume in 1 sec by an average of 0.2 L (P = .002), percent forced expiratory volume by 2% (P = .04), maximum midexpiratory flow by 0.3 L/sec (P = .04) and an increase in closing volume in percentage of vital capacity by 3.4% (P = .002) were seen after a day of work and exposure to formaldehyde, suggesting bronchoconstriction. Smokers and nonsmokers displayed similar changes in spirometry and nitrogen washout.

  20. Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic.

    PubMed

    van der Waals, Dominic; Heim, Leo E; Vallazza, Simona; Gedig, Christian; Deska, Jan; Prechtl, Martin H G

    2016-08-01

    The catalytic networks of methylotrophic organisms, featuring redox enzymes for the activation of one-carbon moieties, can serve as great inspiration in the development of novel homogeneously catalyzed pathways for the interconversion of C1 molecules at ambient conditions. An imidazolium-tagged arene-ruthenium complex was identified as an effective functional mimic of the bacterial formaldehyde dismutase, which provides a new and highly selective route for the conversion of formaldehyde to methanol in absence of any external reducing agents. Moreover, secondary amines are reductively methylated by the organometallic dismutase mimic in a redox self-sufficient manner with formaldehyde acting both as carbon source and reducing agent.

  1. 24 CFR 3280.309 - Health Notice on formaldehyde emissions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Health Notice on formaldehyde... Construction Requirements § 3280.309 Health Notice on formaldehyde emissions. (a) Each manufactured home shall have a Health Notice on formaldehyde emissions prominently displayed in a temporary manner in...

  2. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  3. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  4. Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic.

    PubMed

    Wang, Demeng; Zhao, Yuewu; Jin, Huile; Zhuang, Jinxia; Zhang, Weiming; Wang, Shun; Wang, Jichang

    2013-06-26

    Novel Au-decorated Te hybrids with a tripod-shaped planar microstructure were prepared through a two-step hydrothermal process: the synthesis of Te single crystals and the subsequent self-sacrificial reaction of Te template with HAuCl4. Based on the influences of reaction temperature and solvent compositions on the as-obtained microstructures, a plausible mechanism was proposed to account for the formation of the tripod-shaped Te and Au/Te crystals. The as-prepared Au/Te hybrids have the sensitivity of 6.35 μA/ppb in the electrochemical detection of As(III), which represents the highest sensitivity reported in literature. The Au/Te sensor also has a low detection limit of 0.0026 ppb and could work in complex mixtures containing As(III), Cu(II) and other heavy metal ions, exhibiting excellent selectivity on As(III) and Cu(II) ions. The enhanced electrocatalytic property may be attributed to the synergetic interactions between the noble metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  5. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-01

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  6. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  7. Silver nanopartical over AuFON substrate for enhanced raman readout and their application in pesticide monitoring.

    PubMed

    Guo, Kun; Xiao, Rui; Zhang, Xiaoye; Wang, Chaoguang; Liu, Qiqi; Rong, Zhen; Ye, Lin; Chen, Suhong

    2015-01-01

    Surface-enhanced Raman detection of thiram is demonstrated by using Ag-nanoparticles (Ag NPs) on Au film over nanosphere (AuFON) substrate as the hybrid substrate. The SERS signal of the Ag NPs attached to solid supports is studied. The close coupling together of thousands of Ag NPs on AuFON leads to the generation of hot spots for SERS. The Ag NPs on AuFON can be applied to detect rhodamine-6G (R6G) with the detection limitation of 10-11 M and the pesticide thiram in acetone with a detection limit of as low as 0.24 ppm, which is much lower than the maximal residue limit (MRL) of 7 ppm in fruit prescribed by the U.S. Environmental Protection Agency (EPA). The hybrid substrates are shown to be highly sensitive for the detection of thriam, which produce highly enhanced Raman signals with good uniformity and reproducibility due to having plenty of hot spots on its surface. PMID:25859785

  8. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  9. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen

    PubMed Central

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-01-01

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL–20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers. PMID:26868035

  10. Preparation of Au-polydopamine functionalized carbon encapsulated Fe₃O₄ magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen.

    PubMed

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-02-12

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL-20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.

  11. MMENT>Computational study of complete methanol dehydrogenation on Au(100) and Au(310) surfaces: Dominant role of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Shah, S. H.

    2014-02-01

    Methanol dehydrogenation to CO and H2 has been systematically investigated on Au(100) and Au(310) surfaces using density functional theory (DFT). All possible intermediates involved are calculated. Methanol and formaldehyde being saturated molecules adsorb weakly on both the surfaces. The thermochemistry and kinetics of the decomposition via sequential hydrogen abstraction are both found to be highly unfavorable for these species. Nevertheless, atomic oxygen pre-covered surfaces substantially enhance CH3OH and CH2O (resulting in CH2O2 complex formation) interaction with Au and offer weak activation barrier for methanol disintegration into CH3O and H. On the other hand, methoxy, formyl, and atomic hydrogen are predicted to make strong chemical bonds with the clean Au surfaces. The abstraction of hydrogen from the methoxy intermediate on bare gold surfaces is practical, while formyl splits instantaneously during optimization. A feasible mechanism on oxygen pre-covered surfaces for complete methanol dehydrogenation has been presented.

  12. Formaldehyde as hypothetical primer of biohomochirality

    SciTech Connect

    Goldanskii, V.I.

    1996-07-01

    One of the most intriguing and crucial problems of the prebiotic evolution and the origin of life is the explanation of the origin of biohomochirality. A scheme of conversions originated by formaldehyde (FA) as hypothetical primer of biohomochirality is proposed. The merit of FA as executor of this function is based -inter alia - on the distinguished role of FA as one of the earliest and simplest molecules in both warm, terrestrial and cold, extraterrestrial scenarios of the origin of life. The confirmation of the role of FA as primer of biohomochirality would support the option of an RNA world as an alternative to the protein world. The suggested hypothesis puts forward for the first time a concrete sequence of chemical reactions which can lead to biohomochirality. The spontaneous breaking of the mirror symmetry is secured by the application of the well-known Frank scheme (combination of autocatalysis and {open_quote}{open_quote}annihilation{close_quote}{close_quote} of L and D enantiomers) to the series of interactions of FA {open_quote}{open_quote}trimers{close_quote}{close_quote} (i.e. C{sub 3}H{sub 6}O{sub 3} compounds) of (aaa), (apa) and (app) types, where the monomeric groups (a) means {open_quote}{open_quote}achirons{close_quote}{close_quote} (a=CH{sub n}, n{ge}2 and C=M, M=C,O) and (p) mean {open_quote}{open_quote}prochirons{close_quote}{close_quote} (p=HC{asterisk}OM, M=H,C). {copyright} {ital 1996 American Institute of Physics.}

  13. [Attempt to reduce the formaldehyde concentration by blowing cooled fresh air down in to the breathing zone of medical students from an admission port on the ceiling during gross anatomy class].

    PubMed

    Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi

    2008-09-01

    Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.

  14. Layered sphere-shaped TiO₂ capped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation.

    PubMed

    Ma, Chunyan; Pang, Guanglong; He, Guangzhi; Li, Yang; He, Chi; Hao, Zhengping

    2016-01-01

    We describe here a one-step method for the synthesis of Au/TiO2 nanosphere materials, which were formed by layered deposition of multiple anatase TiO2 nanosheets. The Au nanoparticles were stabilized by structural defects in each TiO2 nanosheet, including crystal steps and edges, thereby fixing the Au-TiO2 perimeter interface. Reactant transfer occurred along the gaps between these TiO2 nanosheet layers and in contact with catalytically active sites at the Au-TiO2 interface. The doped Au induced the formation of oxygen vacancies in the Au-TiO2 interface. Such vacancies are essential for generating active oxygen species (*O(-)) on the TiO2 surface and Ti(3+) ions in bulk TiO2. These ions can then form Ti(3+)-O(-)-Ti(4+) species, which are known to enhance the catalytic activity of formaldehyde (HCHO) oxidation. These studies on structural and oxygen vacancy defects in Au/TiO2 samples provide a theoretical foundation for the catalytic mechanism of HCHO oxidation on oxide-supported Au materials.

  15. Unusual formaldehyde-induced hypersensitivity in two schoolgirls

    SciTech Connect

    Gammage, R.B. ); Hanna, W.T.; Painter, P.B. )

    1990-01-01

    Two schoolgirls developed a syndrome resembling Henoch-Schonlein purpura while attending a recently opened school insulated with urea-formaldehyde foam (UFFI). Skin rashes and swellings were accompanied by bizarre, blue-green discoloration of the skin. Subsequent investigations by county, state and federal authorities, and low measured concentrations of formaldehyde, prompted initial conclusions that in-school formaldehyde exposures were not responsible for the girls' problems. Subsequent controlled exposures to UFFI and formaldehyde while in hospital elicited the whole cascade of symptoms. The chronology of the onset and amplification of systems make it probable that the formaldehyde exposures precipitating the girls' hypersensitivity, occurred in the school. 3 refs.

  16. Optoelectrical Cooling of Formaldehyde to Sub-Millikelvin Temperatures

    NASA Astrophysics Data System (ADS)

    Zeppenfeld, Martin

    2016-05-01

    Due to their strong long-range dipole-dipole interactions and large number of internal states, polar molecules cooled to ultracold temperatures enable fascinating applications ranging from ultracold chemistry to investigation of dipolar quantum gases. However, realizing a simple and general technique to cool molecules to ultracold temperatures, akin to laser cooling of atoms, has been a formidable challenge. We present results for opto-electrical Sisyphus cooling applied to formaldehyde (H2 CO). In this generally applicable cooling scheme, molecules repeatedly move up and down electric field gradients of a trapping potential in different rotational states to efficiently extract kinetic energy. A total of about 300,000 molecules are thereby cooled by a factor of 1000 to 400uK, resulting in a record-large ensemble of ultracold molecules. In addition to cooling of the motional degrees of freedom, optical pumping via a vibrational transition allows us to control the internal rotational state. We thereby achieve a purity of over 80% of formaldehyde molecules in a single rotational M-sublevel. Our experiment provides an excellent starting point for precision spectroscopy and investigation of ultracold collisions.

  17. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Toxic and Hazardous Substances §...

  18. Formaldehyde and hydroperoxides at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Heikes, Brian G.

    1992-11-01

    Measurements of formaldehyde, hydrogen peroxide, and a measure of organic hydroperoxides are presented. Modifications are described for the dual-enzyme H2O2 technique. These modifications facilitate the quantification of soluble ROOH and H2O2, the analysis of O3-H2O2 artifact, and catalase H2O2 residual.

  19. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  20. Edible carbohydrates from formaldehyde in a spacecraft

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1975-01-01

    The autocatalytic nature of the base catalyzed condensation of formaldehyde to formose sugars is eliminated by using as a cocatalyst, an aldose, or ketose having an alpha-hydrogen. This is more strongly complexed by base than is formaldehyde and the cocatalyst and sugar products accumulate as catalyst complexes instead of formaldehyde. Because of the presence of alpha-hydrogen atoms in cocatalysts and formose sugars, their removal by cross Cannizzaro reaction of complexed sugars does not occur, so the formose reaction behaves autocatalytically due to this accumulation. It is believed that a given catalytic formose complex is not a discrete complexed sugar, but rather, a scrambled dynamic mixture of sugars having weakened structures. The sugar complexes derive from a common salt-like formaldehyde complex, which, because of the absence of alpha-hydrogen, has a greater tendency to undergo Cannizzaro reaction, rather than formose condensation. Because of this, the Cannizzaro reaction can proceed without measurable formose condensation. The reverse is not possible.

  1. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  2. 29 CFR 1910.1048 - Formaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MSDSs if these items may constitute a health hazard within the meaning of 29 CFR 1910.1200(d) under... result in new or additional exposure to formaldehyde. (iii) If the employer receives reports of signs or... conditions. (4) Termination of monitoring. The employer may discontinue periodic monitoring for employees...

  3. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  4. A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Di; Hu, Huicheng; Chen, Lei; Xu, Yong; Qu, Lili; Yang, Peipei; Zhang, Qiao

    2016-06-01

    In this paper, we present a simple method to synthesize eccentric Au@SiO2 Janus nanoparticles. By simply tuning the concentration of poly(vinyl pyrrolidone) (PVP), the surface of gold nanoparticle can be partially or fully wrapped with the amphiphilic ligand. As a result, Janus nanoparticle or concentric core-shell nanostructures can be obtained, respectively. A systematic study has been carried out to confirm the function of PVP molecules. The as-prepared Janus nanoparticle can act as a catalyst to catalyze the reduction of 4-nitrophenol, while the core-shell nanostructure is not active due to the coverage of dense silica shell. This work provides a robust and scalable method to produce Au@SiO2 Janus nanoparticles.

  5. Toxic effects of formaldehyde on the urinary system.

    PubMed

    İnci, Mehmet; Zararsız, İsmail; Davarcı, Mürsel; Görür, Sadık

    2013-03-01

    Formaldehyde is a chemical substance with a pungent odor that is highly soluble in water and occurs naturally in organisms. Formaldehyde, when taken into organisms, is metabolized into formic acid in the liver and erythrocytes and is then excreted, either with the urine and feces or via the respiratory system. Form-aldehyde is widely used in the industrial and medical fields, and employees in these sectors are frequently exposed to it. Anatomists and medical students are affected by formaldehyde gas during dissection lessons. Because full protection from formaldehyde is impossible for employees in industrial plants using this chemical and for workers in laboratory conditions, several measures can be implemented to prevent and/or reduce the toxic effects of formaldehyde. In this review, we aimed to identify the toxic effects of formaldehyde on the urinary system.

  6. Toxic effects of formaldehyde on the urinary system

    PubMed Central

    İnci, Mehmet; Zararsız, İsmail; Davarcı, Mürsel; Görür, Sadık

    2013-01-01

    Formaldehyde is a chemical substance with a pungent odor that is highly soluble in water and occurs naturally in organisms. Formaldehyde, when taken into organisms, is metabolized into formic acid in the liver and erythrocytes and is then excreted, either with the urine and feces or via the respiratory system. Form-aldehyde is widely used in the industrial and medical fields, and employees in these sectors are frequently exposed to it. Anatomists and medical students are affected by formaldehyde gas during dissection lessons. Because full protection from formaldehyde is impossible for employees in industrial plants using this chemical and for workers in laboratory conditions, several measures can be implemented to prevent and/or reduce the toxic effects of formaldehyde. In this review, we aimed to identify the toxic effects of formaldehyde on the urinary system. PMID:26328078

  7. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.

    PubMed

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm(-1) and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect.

  8. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current–voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung’s method and Norde’s technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I–V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor. PMID:26799703

  9. Electronic Characterization of Au/DNA/ITO Metal-Semiconductor-Metal Diode and Its Application as a Radiation Sensor.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2016-01-01

    Deoxyribonucleic acid or DNA molecules expressed as double-stranded (DSS) negatively charged polymer plays a significant role in electronic states of metal/silicon semiconductor structures. Electrical parameters of an Au/DNA/ITO device prepared using self-assembly method was studied by using current-voltage (I-V) characteristic measurements under alpha bombardment at room temperature. The results were analyzed using conventional thermionic emission model, Cheung and Cheung's method and Norde's technique to estimate the barrier height, ideality factor, series resistance and Richardson constant of the Au/DNA/ITO structure. Besides demonstrating a strongly rectifying (diode) characteristic, it was also observed that orderly fluctuations occur in various electrical parameters of the Schottky structure. Increasing alpha radiation effectively influences the series resistance, while the barrier height, ideality factor and interface state density parameters respond linearly. Barrier height determined from I-V measurements were calculated at 0.7284 eV for non-radiated, increasing to about 0.7883 eV in 0.036 Gy showing an increase for all doses. We also demonstrate the hypersensitivity phenomena effect by studying the relationship between the series resistance for the three methods, the ideality factor and low-dose radiation. Based on the results, sensitive alpha particle detectors can be realized using Au/DNA/ITO Schottky junction sensor.

  10. High-Temperature Stable Au-Sn and Cu-Sn Interconnects for 3D Stacked Applications

    NASA Astrophysics Data System (ADS)

    Hoivik, Nils; Liu, He; Wang, Kaiying; Salomonsen, Guttorm; Aasmundtveit, Knut

    The desire to directly integrate MEMS with ASICs in a 3D stack is the main motivation behind the development of a bonding technology suitable for both interconnects and seal rings. SLID (Solid-Liquid Inter-Diffusion) bonding processes based upon Au-Sn and Cu-Sn (high melting point metal/low melting point metal) are therefore investigated. SLID bonding allows for repeated high temperature processing cycles as in the case for chip stacking, or for interconnections and seal rings bonded at different process steps. This work describes results obtained for fluxless bonding of SLID Au-Sn and Cu-Sn interconnects and seal rings, where a thin layer of intermetallic compound (IMC) on the Cu or Sn surface protects the metal surfaces from oxidizing at elevated temperatures. To evaluate the bond strength, test dies bonded at various temperatures were subjected to SEM/EDX bond line analysis, and shear testing at both room and elevated temperatures. Au-Sn samples bonded at 280°C re-melt at elevated temperatures; whereas samples bonded at 350°C remain intact past the initial bonding temperature. For the Cu-Sn samples, the measured shear strength is comparable to conventionally bonded interconnects. In order to remain within the uniformity requirements for SLID bonding, the pattern density of electroplated interconnects and seal rings require an optimized layout which can be calculated based upon the effective area.

  11. (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood.

    PubMed

    Chen, Tzu-Heng; Tseng, Wei-Lung

    2012-06-25

    This paper presents a one-pot approach for preparing highly fluorescent Au(8) clusters by reacting the Au(3+) precursor solution with lysozyme type VI (Lys VI) at pH 3. The fluorescence band of (Lys VI)-stabilized Au(8) clusters is centered at 455 nm on the excitation at 380 nm. Blue-emitting Au(8) clusters have a high quantum yield (∼56%), two fluorescence lifetimes, and a rare amount of Au(+) on the surface of the Au core. When the pH of a solution of Au(8) clusters increases suddenly to 12, the Au(8) clusters gradually convert to Au(25) clusters over time. This conversion is also observed in the case of (Lys VI)-directed synthesis of Au(25) clusters at pH 12. The pH-induced conversion of Au(8) to Au(25) clusters suggests that the size of (Lys VI)-stabilized gold nanoclusters (AuNCs) relies on the secondary structure of Lys VI, which is susceptible to pH change. Based on these results and previous literature, this paper proposes the possible mechanism for growing (Lys VI)-stabilized Au(8) and Au(25) clusters. Additionally, (Lys VI)-stabilized Au(8) clusters could sense glutathione (GSH) through GSH-induced core-etching of Au(8) clusters; the limit of detection at a signal-to-noise ratio of 3 for GSH is determined to be 20 nm. Except for cysteine, the selectivity of (Lys VI)-stabilized Au(8) clusters for GSH over amino acids is remarkably high. The practicality of using Au(8) clusters to determine the concentration of GSH in a single drop of blood is also validated.

  12. Formaldehyde assay by capacitance versus voltage and impedance measurements using bi-layer bio-recognition membrane.

    PubMed

    Ben Ali, M; Korpan, Y; Gonchar, M; El'skaya, A; Maaref, M A; Jaffrezic-Renault, N; Martelet, C

    2006-12-15

    A novel formaldehyde sensitive biosensor based on bacterial formaldehyde dehydrogenase (FDH) as a bio-recognition element has been developed. The bio-recognition membrane had bi-layer architecture and consisted of FDH, cross-linked with albumin, and of the cofactor NAD at a high concentration level (first layer). The second layer was a negatively charged Nafion membrane, which prevented a leakage of negatively charged NAD molecules from the bio-membrane. As transducers, gold electrodes SiO(2)/Si/SiO(2)/Ti/Au and electrolyte-insulator-semiconductor Si/SiO(2) (EIS) structures have been used. Changes in capacitance and impedance properties of the bio-recognition membrane have been used for monitoring formaldehyde concentration in a bulk solution. It has been shown that formaldehyde can be detected within a concentration range from 1 microM to 20mM depending on the type of transduction used, with a detection limit of 1 and 100 microM for gold-based and EIS-based transducers, respectively. PMID:16516460

  13. Quantitative Measurement of Integrated Band Intensities of Isoprene and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sams, Robert L.

    2013-06-01

    The OH-initiated oxidation of isoprene, which is one of the primary volatile organic compounds produced by vegetation, is a major source of atmospheric formaldehyde and other oxygenated organics. Both molecules are also known products of biomass burning. Absorption coefficients and integrated band intensities for isoprene and formaldehyde are reported in the 600 - 6500 cm^{-1} region. The pressure broadened (1 atmosphere N_2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm^{-1} resolution, using a Bruker 66V FTIR. Composite spectra are composed of a minimum of seven pressures at each temperature for both molecules. These data are part of the PNNL Spectral Database, which contains quantitative spectra of over 600 molecules. These quantitative spectra facilitate atmospheric monitoring for both remote and in situ sensing and such applications will be discussed. Timothy J. Johnson, Luisa T. M. Profeta, Robert L. Sams, David W. T. Griffith, Robert L. Yokelson Vibrational Spectroscopy {53}(1);97-102 (2010).

  14. Ayty: a New Line-List for Hot Formaldehyde

    NASA Astrophysics Data System (ADS)

    Al-Refaie, Ahmed Faris; Yurchenko, Sergei N.; Tennyson, Jonathan; Yachmenev, Andrey

    2015-06-01

    The ExoMol [1] project aims at providing spectroscopic data for key molecules that can be used to characterize the atmospheres of exoplanets and cool stars. Formaldehyde (H2CO) is of growing importance in studying and modelling terrestrial atmospheric chemistry and dynamics. It also has relevance in astrophysical phenomena that include interstellar medium abundance, proto-planetary and cometary ice chemistry and masers from extra-galactic sources. However there gaps in currently available absolute intensities and a lack of higher rotational excitations that makes it unfeasible to accurately model high temperature systems such as hot Jupiters. Here we present AYTY [2], a new line list for formaldehyde applicable to temperatures up to 1500 K. AYTY contains almost 10 million states reaching rotational excitations up to J=70 and over 10 billion transitions at up to 10 000 cm-1. The line list was computed using the variational ro-vibrational solver TROVE with a refined ab-initio potential energy surface and dipole moment surface. J.~Tennyson and S.~N. Yurchenko MNRAS, 425:21--33, 2012. A.~F. Al-Refaie, S.~N. Yurchenko, A.~Yachmenev, and J.~Tennyson MNRAS, 2015.

  15. Formation of Formaldehyde and Glyoxal From The Toluene + Oh Reaction

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Wirtz, K.; Platt, U.

    Aromatic hydrocarbons are emitted into the urban atmosphere mostly as part of au- tomobile exhaust. Toluene thereby is the single most abundant aromatic compound emitted into the atmosphere. Despite the importance of aromatic hydrocarbon oxi- dation for the formation of photooxidants from urban plumes the oxidation mech- anism of aromatic hydrocarbons is far from being understood.Considerable progress has been made in recent years concerning our understanding of the ring-retaining path- ways, while major uncertainties remain to be linked with the operative ring-cleavage mechanisms. The representation of the aromatic oxidation in presently used chemical transport models (CTM) is estimated a major uncertainty for these models. This work presents data on formaldehyde (HCHO) and glyoxal, which are two impor- tant ring-cleavage products from the the toluene + OH reaction. While glyoxal was observed to form as a high yield primary product (Volkamer et al., JPC A, 2001, 105, 7865-7874) the formation of HCHO is observed delayed, i.e. as a secondary prod- uct. The temporal behaviour of glyoxal and HCHO concentrations allowed to con- clude that short lived stable intermediate compounds must form upon ring-cleavage of toluene. With an approximate lifetime of the order of ten minutes, these highly reac- tive intermediate compounds are likely to be a significant radical source. Atmospheric implications of the results are adressed.

  16. Effectiveness of various methods of formaldehyde neutralization using monoethanolamine.

    PubMed

    Coskey, Andrew; Gest, Thomas R

    2015-05-01

    Formaldehyde is the most commonly used fixative chemical for the preservation of human cadavers used for educational purposes in the United States. Formaldehyde is also a known carcinogenic agent whose exposure level is regulated by guidelines of the Occupational Safety and Health Administration. Various methods for formaldehyde neutralization exist, yet many donations programs do not take any steps to neutralize the formaldehyde in embalmed donor bodies. The effectiveness of monoethanolamine (MEA) in neutralizing formaldehyde is well documented when used as a final injection during embalming. The purpose of this study is to report the effectiveness of several post-embalming techniques of formaldehyde neutralization. Twenty-four donor bodies were assigned to four experimental groups of six. For the three experimental groups, the techniques tested involve delivery of a 20:1 dilution of deionized water:MEA via recannulization and gravity flow infusion, compartment injection, and alternate wetting solution containing four percent MEA. Our results indicated that spray bottle delivery was not effective in neutralization of formaldehyde compared to the control group, but that formaldehyde levels decreased when recannulization or compartment injection were used. The most effective method of formaldehyde neutralization was compartment injection of MEA solution (P < 0.01). The results of this study indicate that, in situations where MEA is not used as a final infusion during embalming, compartment injection of MEA solution is an effective method of formaldehyde neutralization.

  17. Pt@AuNPs integrated quantitative capillary-based biosensors for point-of-care testing application.

    PubMed

    Wu, Ze; Fu, Qiangqiang; Yu, Shiting; Sheng, Liangrong; Xu, Meng; Yao, Cuize; Xiao, Wei; Li, Xiuqing; Tang, Yong

    2016-11-15

    Current diagnostic technologies primarily rely on bulky and costly analytical instruments. Therefore, cost-effective and portable diagnosis tools that can be used for point-of-care tests (POCT) are highly desirable. In this study, we report a cost-effective, portable capillary-based biosensor for quantitative detection of biomarkers by the naked eye. This capillary-based biosensor was tested by measuring the distance of blue ink movement, which was directly correlated with the oxygen (O2) produced by efficient core-shell Pt@Au nanoparticles (Pt@AuNPs) catalysts decomposed hydrogen peroxide (H2O2). By linking the Pt@AuNPs with antibodies, capillary-based biosensor sandwich immunoassays were constructed. The concentrations of the target proteins were positively correlated with the distances of ink movement. To demonstrate their performance, the biosensors were used to detect the cancer biomarker sprostate-specific antigen (PSA) and carcinoembryonic antigen (CEA). The linear detection range (LDR) of the capillary-based biosensor for detecting PSA was from 0.02 to 2.5ng/mL, and the limit of detection (LOD) was 0.017ng/mL. LDR of the biosensor for detecting CEA was from 0.063 to 16ng/mL, and the LOD was 0.044ng/mL. For detection of PSA and CEA in clinical serum samples, the detection results of the capillary-based biosensor were well correlate with the results from of chemiluminescence immunoassays (CLIAs). Thus, the capillary-based biosensor may potentially be a useful strategy for point-of-care testing, in addition to being portable and cost effective. PMID:27240013

  18. The synthesis and application of Au/Fe3O4 nanoparticles as catalysts in PEM fuel cell

    NASA Astrophysics Data System (ADS)

    Yuan, Muzhaozi

    As an alternative energy source, PEM fuel cell has low operating temperatures, low carbon dioxide emission and high power densities. However the high price of platinum electrodes restrains it from being widely used in industry. The sintering of platinum nanoparticles is another serious problem which acts as a barrier of PEM fuel cell popularization. Current research regarding PEM fuel cell is mainly focused on the design of catalyst used to improve the power output while reduce the cost. Our research brings out a new strategy to design a new type of catalyst of this kind by introducing the metal oxide into the gold nanostructure. In this thesis, the gold nanoparticles, Fe 3O4 nanoparticles as well as the nanoparticles (Au/ Fe 3O4) with Fe3O4 as core and gold as shell were synthesized at first. Then Langmuir-Blodgett (LB) trough technique was used to coat different nanoparticles onto the Nafion membranes. Membranes with coating and without coating were tested in PEM fuel cell device. The voltage and current were recorded to calculate the power output enhanced by each type of corresponding nanoparticles. It is shown in the test that the Au/ Fe3O4 catalyst boosted the performance of PEM fuel cell by increasing the power output to 117% of the control sample. The costs to the same level of power output when using different nanoparticles were analyzed and compared as well. The results show the Au/ Fe3O 4 nanoparticles have the best performance-cost ratio compared with pure gold nanoparticles and Fe3O4 nanoparticles.

  19. Determination of formaldehyde levels in 100 furniture workshops in Ankara.

    PubMed

    Vaizoğlu, Songül Acar; Aycan, Sefer; Akin, Levent; Koçdor, Pelin; Pamukçu, Gül; Muhsinoğlu, Orkun; Ozer, Feyza; Evci, E Didem; Güler, Cağatay

    2005-10-01

    One of the airborne pollutants in wood products industry is formaldehyde, which may pose some health effects. Therefore this study is conducted to determine formaldehyde levels in 100 furniture-manufacturing workshops in Ankara and also to determine the symptoms, which may be related with formaldehyde exposure among the workers. Indoor formaldehyde levels ranged from 0.02 ppm to 2.22 ppm with a mean of 0.6 +/- 0.3 ppm. Outdoor formaldehyde levels also ranged from 0.0 ppm to 0.08 ppm with a mean of 0.03 +/- 0.03 ppm. Formaldehyde levels were higher in workplaces located at basement than in workplaces located at or above ground level (p < 0.01). An association was found between indoor formaldehyde levels and the types of fuel used (p < 0.05). The levels were higher in workplaces where only sawdust was used for heating, than in workplaces where wood, coal, and sawdust are used (p = 0.02). An association was found between runny nose and indoor formaldehyde levels (p = 0.03). Formaldehyde levels were lower in workplaces where employees had no symptoms than in those where employees had 4 or more symptoms (p = 0.02). Of 229 employees 57 subjects (24.9%) work under the formaldehyde levels of 0.75 ppm and above. Thus, approximately one fourth of the employees in workplaces are working in environments with formaldehyde levels exceeding those permitted by Occupational Safety and Health Administration (OSHA). The employees working in small-scale furniture workshops are at risk of formaldehyde exposure. Measures, such as improved ventilation, have to be taken in these workplaces, in order to decrease the formaldehyde levels.

  20. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells

    NASA Astrophysics Data System (ADS)

    Li, Ying-Ying; Liu, Xiao-Li; Yang, Da-Jie; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-01

    We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.

  1. Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Choa, Sung-Hoon; Kim, Woonbae; Hwang, Junsik; Ham, Sukjin; Moon, Changyoul

    2006-03-01

    Development of packaging is one of the critical issues toward realizing commercialization of radio-frequency-microelectromechanical system (RF-MEMS) devices. The RF-MEMS package should be designed to have small size, hermetic protection, good RF performance, and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low-temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at temperatures below 300°C is used. Au-Sn multilayer metallization with a square loop of 70 µm in width is performed. The electrical feed-through is achieved by the vertical through-hole via filling with electroplated Cu. The size of the MEMS package is 1 mm × 1 mm × 700 µm. The shear strength and hermeticity of the package satisfies the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  2. Development and Evaluation of Direct Deposition of Au/Pd(P) Bilayers over Cu Pads in Soldering Applications

    NASA Astrophysics Data System (ADS)

    Ho, C. E.; Kuo, T. T.; Gierlotka, W.; Ma, F. M.

    2012-12-01

    The thermal reliability of Sn-3Ag-0.5Cu/Au/Pd(P)/Cu solder joints was evaluated in this study. After reflow and subsequent solid-state aging (180°C), the reaction product species at the interface included Cu6Sn5 [or (Cu,Pd)6Sn5] and Cu3Sn, and their growth was strongly dependent on the Pd(P) thickness, δ Pd(P). As δ Pd(P) increased, the growth of Cu6Sn5 was significantly enhanced, while that of Cu3Sn was suppressed. Computer coupling of phase diagrams and thermochemistry (CALPHAD) analysis showed that minor incorporation of Pd (~2 at.%) into the Cu6Sn5 phase decreased the Gibbs free energy of Cu6Sn5 from -7339 J/mol to -9191 J/mol. This effect might enhance Sn diffusion in Cu6Sn5 but diminish Cu diffusion in Cu3Sn, thereby facilitating the growth of Cu6Sn5 but retarding that of Cu3Sn. High-speed ball shear (HSBS) test results showed that the mechanical properties of the solder joints were slightly enhanced by an increase in δ Pd(P). These findings suggest that direct deposition of Au/Pd(P) bilayers over the Cu pads can effectively modify the mechanical reliability of solder joints.

  3. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  4. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  5. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part II. The effects of temperature and humidity on free formaldehyde, extractable formaldehyde, formaldehyde emission, and physical characteristics of the foam

    SciTech Connect

    Schutte, W.C.; Cole, R.S.; Frank, C.W.; Long, K.R.

    1981-02-01

    Results of testing with two products of urea-formaldehyde based foams are described. Results of three products have previously been reported. Methods for detection and quantitative determination of formaldehyde, design of the experimental chambers, and the procedures are described. Samples of Product D were monitored for about 29 days and samples of Product E were monitored for 60 days in chambers and results are tabulated for formaldehyde emission. Additional tests performed on the two products are: extractable formaldehyde (high and low temperature conditions); free formaldehyde (high and low temperature conditions); comparison of free formaldehyde concentration; density (high and low temperature conditions); shrinkage (high and low temperature conditions). Control panels were constructed to simulate a wall in a home and observations were made and compared with results of the experimental products.

  6. A rapid liquid chromatography determination of free formaldehyde in cod.

    PubMed

    Storey, Joseph M; Andersen, Wendy C; Heise, Andrea; Turnipseed, Sherri B; Lohne, Jack; Thomas, Terri; Madson, Mark

    2015-01-01

    A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure. The formation of the DNPH formaldehyde derivative has been shortened to 2 min and a stabilising buffer has been added to the derivative to increase its stability. The average recovery of free formaldehyde in spiked cod was 63% with an RSD of 15% over the range of 25-200 mg kg(-1) (n = 48). The HPLC procedure described here was also compared to a commercial qualitative procedure - a swab test for the determination of free formaldehyde in fish. Several positive samples were compared by both methods.

  7. Determination of Formaldehyde in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A.

    1997-09-01

    Formaldehdye is considered a hazardous air pollutant with numerous sources that include environmental tobacco smoke (ETS). With the increasing interest regarding ETS and public health the measurement of formaldehyde readily lends itself to a laboratory experiment comparing methods of analysis. This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode). Reasonable agreement among the methods was obtained by lab demonstrators with spike recoveries yielding 94.7 + 6.8 (n=5) and 89.2 (n = 4) % for NPD and FPD, respectively while HPLC spiked recoveries were 83.6 + 3.2 (n = 5) %; mean class spike recoveries ranged from 80-100%. Student results (in mg/cigarette) from smoke samples were similar to literature values with 163.2 + 69.2 (n = 7) and 149.4 (n = 7) % for NPD and FPD, respectively; the HPLC result was significantly lower at 45.1 + 23.7(n = 7) with losses presumably due to hydrazone precipitating from the smoke extracted solution. Students particularly benefited from the "real world" nature of the analysis and the experience evaluating disparate methods of determining a common analyte.

  8. Human performance during experimental formaldehyde exposure

    SciTech Connect

    Bach, B.; Pedersen, O.F.; Moelhave, L. )

    1990-01-01

    Sixty-one subjects were exposed in a climate chamber for 5.5 hours to a controlled atmospheric environment. Formaldehyde vapors were added in concentrations of 0, 0.15, 0.40, or 1.20 mg/m{sup 3}. The exposures were arranged in a 4 x 4, balanced latin square design, involving four days in each of four weeks. The subjects were all males. Of these 32 had occupational exposure to formaldehyde in industrial productions of than five years. Twenty-nine were randomly selected, matched controls from the normal population. The hypothesis tested was that significant, but different dose-response relations exist in a number of performance tests for these two groups of subjects. The results indicate such differences in reactions to tests of short term memory and ability to concentrate (digit span tests, digit symbol test, graphic continuous performance test) and an addition test. Whether these results indicate chronic or acute CNS effects or they are caused by distractive sensory irritation due to formaldehyde exposure is discussed.

  9. Indoor formaldehyde removal over CMK-3

    PubMed Central

    2012-01-01

    The removal of formaldehyde at low concentrations is important in indoor air pollution research. In this study, mesoporous carbon with a large specific surface area was used for the adsorption of low-concentration indoor formaldehyde. A mesoporous carbon material, CMK-3, was synthesized using the nano-replication method. SBA-15 was used as a mesoporous template. The surface of CMK-3 was activated using a 2N H2SO4 solution and NH3 gas to prepare CMK-3-H2SO4 and CMK-3-NH3, respectively. The activated samples were characterized by N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The formaldehyde adsorption performance of the mesoporous carbons was in the order of CMK-3-NH3 > CMK-3-H2SO4 > CMK-3. The difference in the adsorption performance was explained by oxygen and nitrogen functional groups formed during the activation process and by the specific surface area and pore structure of mesoporous carbon. PMID:22221425

  10. Determination of formaldehyde in food and feed by an in-house validated HPLC method.

    PubMed

    Wahed, P; Razzaq, Md A; Dharmapuri, S; Corrales, M

    2016-07-01

    Formalin is carcinogenic and is detrimental to public health. The illegal addition of formalin (37% formaldehyde and 14% methanol) to foods to extend their shelf-life is considered to be a common practice in Bangladesh. The lack of accurate methods and the ubiquitous presence of formaldehyde in foods make the detection of illegally added formalin challenging. With the aim of helping regulatory authorities, a sensitive high performance liquid chromatography method was validated for the quantitative determination of formaldehyde in mango, fish and milk. The method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, precision, recovery and robustness. The expanded uncertainty was <35%. The validated method was applied to screen samples of fruits, vegetables, fresh fish, milk and fish feed collected from different local markets in Dhaka, Bangladesh. Levels of formaldehyde in food samples were compared with published data. The applicability of the method in different food matrices might mean it has potential as a reference standard method. PMID:26920321

  11. Determination of formaldehyde in food and feed by an in-house validated HPLC method.

    PubMed

    Wahed, P; Razzaq, Md A; Dharmapuri, S; Corrales, M

    2016-07-01

    Formalin is carcinogenic and is detrimental to public health. The illegal addition of formalin (37% formaldehyde and 14% methanol) to foods to extend their shelf-life is considered to be a common practice in Bangladesh. The lack of accurate methods and the ubiquitous presence of formaldehyde in foods make the detection of illegally added formalin challenging. With the aim of helping regulatory authorities, a sensitive high performance liquid chromatography method was validated for the quantitative determination of formaldehyde in mango, fish and milk. The method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, precision, recovery and robustness. The expanded uncertainty was <35%. The validated method was applied to screen samples of fruits, vegetables, fresh fish, milk and fish feed collected from different local markets in Dhaka, Bangladesh. Levels of formaldehyde in food samples were compared with published data. The applicability of the method in different food matrices might mean it has potential as a reference standard method.

  12. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles).

  13. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles). PMID:25598387

  14. Formaldehyde-negative allergic contact dermatitis from melamine-formaldehyde resin.

    PubMed

    Aalto-Korte, K; Jolanki, R; Estlander, T

    2003-10-01

    Melamine-formaldehyde resin (MFR) is used as a textile finish, in tableware, in surface coatings, and in glues in the furniture and wood industry. MFR is considered to be an infrequent sensitizer. Contact allergy to MFR is often combined with formaldehyde allergy. Patients allergic to textile finish often react to MFR, although other finishes are nowadays more commonly used. Besides allergy to textile finish, allergic contact dermatitis from MFR has been described in workers in composite production and in an orthopaedic plaster technician. To our knowledge, there are no previous reports of contact allergy in the plywood industry from MFR. We describe 3 cases of occupational allergic contact dermatitis from MFR without contact allergy to formaldehyde, 1 in the plywood industry, 1 in the production of melamine-laminated chipboard and 1 in laboratory work.

  15. Formaldehyde scavengers function as novel antigen retrieval agents.

    PubMed

    Vollert, Craig T; Moree, Wilna J; Gregory, Steven; Bark, Steven J; Eriksen, Jason L

    2015-11-27

    Antigen retrieval agents improve the detection of formaldehyde-fixed proteins, but how they work is not well understood. We demonstrate that formaldehyde scavenging represents a key characteristic associated with effective antigen retrieval; under controlled temperature and pH conditions, scavenging improves the typical antigen retrieval process through reversal of formaldehyde-protein adduct formation. This approach provides a rational framework for the identification and development of more effective antigen retrieval agents.

  16. Formaldehyde scavengers function as novel antigen retrieval agents

    PubMed Central

    Vollert, Craig T.; Moree, Wilna J.; Gregory, Steven; Bark, Steven J.; Eriksen, Jason L.

    2015-01-01

    Antigen retrieval agents improve the detection of formaldehyde-fixed proteins, but how they work is not well understood. We demonstrate that formaldehyde scavenging represents a key characteristic associated with effective antigen retrieval; under controlled temperature and pH conditions, scavenging improves the typical antigen retrieval process through reversal of formaldehyde-protein adduct formation. This approach provides a rational framework for the identification and development of more effective antigen retrieval agents. PMID:26612041

  17. BLM protein mitigates formaldehyde-induced genomic instability.

    PubMed

    Kumari, Anuradha; Owen, Nichole; Juarez, Eleonora; McCullough, Amanda K

    2015-04-01

    Formaldehyde is a reactive aldehyde that has been classified as a class I human carcinogen by the International Agency for Cancer Research. There are growing concerns over the possible adverse health effects related to the occupational and environmental human exposures to formaldehyde. Although formaldehyde-induced DNA and protein adducts have been identified, the genomic instability mechanisms and the cellular tolerance pathways associated with formaldehyde exposure are not fully characterized. This study specifically examines the role of a genome stability protein, Bloom (BLM) in limiting formaldehyde-induced cellular and genetic abnormalities. Here, we show that in the absence of BLM protein, formaldehyde-treated cells exhibited increased cellular sensitivity, an immediate cell cycle arrest, and an accumulation of chromosome radial structures. In addition, live-cell imaging experiments demonstrated that formaldehyde-treated cells are dependent on BLM for timely segregation of daughter cells. Both wild-type and BLM-deficient formaldehyde-treated cells showed an accumulation of 53BP1 and γH2AX foci indicative of DNA double-strand breaks (DSBs); however, relative to wild-type cells, the BLM-deficient cells exhibited delayed repair of formaldehyde-induced DSBs. In response to formaldehyde exposure, we observed co-localization of 53BP1 and BLM foci at the DSB repair site, where ATM-dependent accumulation of formaldehyde-induced BLM foci occurred after the recruitment of 53BP1. Together, these findings highlight the significance of functional interactions among ATM, 53BP1, and BLM proteins as responders associated with the repair and tolerance mechanisms induced by formaldehyde.

  18. Release of formaldehyde and melamine from tableware made of melamine-formaldehyde resin.

    PubMed

    Sugita, T; Ishiwata, H; Yoshihira, K

    1990-01-01

    The relationship between the concentrations of formaldehyde and melamine released into 4% acetic acid from dishes and bowls made of melamine-formaldehyde resin was determined. The average concentrations in the migration solution after the sample had been treated at 60, 80, and 95 degrees C for 30 min with 4% acetic acid were 0.0 +/- 0.1, 0.5 +/- 0.4 and 3.0 +/- 2.2 ppm, respectively for formaldehyde and 0.04 +/- 0.07, 0.21 +/- 0.20 and 1.19 +/- 1.18 ppm, respectively for melamine. The correlation between the concentrations of formaldehyde and melamine released at 95 degrees C was y=0.4858x-0.2728 (r=0.8860), where y is melamine concentration (ppm), x is formaldehyde concentration (ppm) and r is the correlation coefficient. The molar concentration ratios of formaldehyde to melamine (F/M ratio) were 15.4 +/- 11.6 at 80 degrees C and 14.9 +/- 10.1 at 95 degrees C. Hence the release of both migrants was affected by temperature but the F/M ratio was not affected. The release of both compounds was was increased on repetition of the migration test at 95 degrees C but their concentrations remained constant after the tenth and seventeenth repetitions of the treatment. During this period, the F/M ratio decreased according to the equation 1n y=-1.4344 1n x+3.7814 (r=-0.9984) for a sample before the tenth repetition of the treatment and remained between 1.7 and 1.9 after the twelfth repetition, where y is the F/M ratio and x is the number of repetitions of the treatment.

  19. Formaldehyde and LeukemiA: Epidemiology, Potential Mechanisms and Implications for Risk Assessment

    EPA Science Inventory

    Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging ...

  20. Characterization of Au Irradiated Glassy Polymeric Carbon at 2,000°C for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Abunaemeh, M.; Seif, M.; Batra, A.; Elsamadicy, A.; Yang, Y.; Wang, L.; Muntele, C.; Ila, D.

    The TRISO fuel has been used in some of the Generation IV nuclear reactor designs [1]. It consists of a fuel kernel of UOx coated with several layers of materials with different functions. Pyrolytic carbon (PyC) is one of the materials in the layers. In this study we investigate the possibility of using Glassy Polymeric Carbon (GPC) as an alternative to PyC. In this work, we are comparing the changes in physical and microstructure properties of GPC after exposure to irradiation fluence of 5 MeV Au equivalent to a 1 displacement per atom (dpa) for GPC prepared at 2,000°C. The GPC material is manufactured and tested at the Center for Irradiation Materials (CIM) at Alabama A&M University using Transmission electron microscopy (TEM) and stopping range of ions in matter (SRIM) software.

  1. Formaldehyde crosslinking: a tool for the study of chromatin complexes.

    PubMed

    Hoffman, Elizabeth A; Frey, Brian L; Smith, Lloyd M; Auble, David T

    2015-10-30

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function.

  2. Characterization of particleboard aerosol - size distribution and formaldehyde content

    SciTech Connect

    Stumpf, J.M.; Blehm, K.D.; Buchan, R.M.; Gunter, B.J.

    1986-12-01

    Health hazards unique to particleboard include the generation of urea-formaldehyde resin bound in wood aerosol and release of formaldehyde gas that can be inhaled by the worker. A particleboard aerosol was generated by a sanding process and collected under laboratory conditions that determined the particle size distribution and formaldehyde content. Three side-by-side Marple 296 personal cascade impactors with midget impingers attached downstream collected particleboard aerosol and gaseous formaldehyde for ten sample runs. Gravimetric analysis quantified the collected aerosol mass, and chromotropic acid/spectrophotometric analytical methods were employed for formaldehyde content in particleboard aerosol and gaseous formaldehyde liberated from sanded particleboard. Significant variations (p<.005) were observed for the particleboard mass and gaseous formaldehyde collected between sample runs. No significant differences (..cap alpha.. = .05) were observed for the aerosol size distribution determined and formaldehyde content in particle board aerosol per unit mass for sampling trials. The overall MMAD of particleboard aerosol was 8.26 ..mu..mAED with a sigmag of 2.01. A predictive model was derived for determining the expected formaldehyde content (..mu..g) by particleboard aerosol mass (mg) collected and particulate size (..mu..mAED).

  3. Formaldehyde crosslinking: a tool for the study of chromatin complexes.

    PubMed

    Hoffman, Elizabeth A; Frey, Brian L; Smith, Lloyd M; Auble, David T

    2015-10-30

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. PMID:26354429

  4. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).

    PubMed

    Pereira, N S; Zaiat, M

    2009-04-30

    The present study evaluated the degradation of formaldehyde in a bench-scale anaerobic sequencing batch reactor, which contained biomass immobilized in polyurethane foam matrices. The reactor was operated for 212 days at 35 degrees C with 8h sequential cycles, under different affluent formaldehyde concentrations ranging from 31.6 to 1104.4 mg/L (formaldehyde loading rates from 0.08 to 2.78 kg/m(3)day). The results indicate excellent reactor stability and over 99% efficiency in formaldehyde removal, with average effluent formaldehyde concentration of 3.6+/-1.7 mg/L. Formaldehyde degradation rates increased from 204.9 to 698.3mg/Lh as the initial concentration of formaldehyde was increased from around 100 to around 1100 mg/L. However, accumulation of organic matter was observed in the effluent (chemical oxygen demand (COD) values above 500 mg/L) due to the presence of non-degraded organic acids, especially acetic and propionic acids. This observation poses an important question regarding the anaerobic route of formaldehyde degradation, which might differ substantially from that reported in the literature. The anaerobic degradation pathway can be associated with the formation of long-chain oligomers from formaldehyde. Such long- or short-chain polymers are probably the precursors of organic acid formation by means of acidogenic anaerobic microorganisms. PMID:18715712

  5. Comparison of the effects of formaldehyde and gaseous ozone on HBV-contaminated hospital quilts

    PubMed Central

    Guo, Dan; Li, Ziqiong; Jia, Bei; Che, Xiaoqiong; Song, Tianshuang; Huang, Wenxiang

    2015-01-01

    Background: Besides being highly infectious, Hepatitis B virus (HBV) is a major cause of liver disease worldwide. In hospital settings, it is easy for the environment and quilts to be contaminated by HBV patient blood and body fluids. Therefore, HBV can be transmitted to other patients via contaminated environmental surfaces or quilts, resulting in an HBV nosocomial infection. Formaldehyde and ozone are commonly used disinfectants that may influence this infectious situation. Objective: To investigate the clinical effectiveness of formaldehyde and gaseous ozone for the terminal cleaning of hospital quilts contaminated by HBV. Methods: Thin cloth and thick cotton soaked with the serum from high HBV copy number patients were prepared and disinfected using formaldehyde fumigation and gaseous ozone at different times. The copy numbers of HBV DNA in the HBV-contaminated cloth and cotton samples were measured quantitatively with fluorescent quantitative polymerase chain reaction (PCR). Results: When gaseous ozone was used to disinfect HBV-contaminated quilts for 23 minutes (min), 36 min, 49 min, and 90 min, the HBV DNA copy number displayed no significant decrease compared with the copy number before disinfection (P > 0.05). In comparison, the copy number of the HBV DNA in the cloth group decreased significantly (P < 0.05) after formaldehyde fumigation disinfection for 1 hour (h), and there was no difference when longer times and increased concentrations were used. In the thick cotton group, there was also a significant decrease (P < 0.05) of the HBV DNA copy numbers, but the decrease was not as dramatic. In addition, in this group, the disinfection effect observed at 4 h was the strongest. Conclusions: The application of ozone to disinfect HBV-contaminated hospital quilts possibly has no effect, whereas, formaldehyde oxide fumigation effectively reduced HBV copy numbers. PMID:26770591

  6. BLM protein mitigates formaldehyde-induced genomic instability

    PubMed Central

    Kumari, Anuradha; Owen, Nichole; Juarez, Eleonora; McCullough, Amanda K.

    2015-01-01

    Formaldehyde is a reactive aldehyde that has been classified as a class I human carcinogen by the International Agency for Cancer Research. There are growing concerns over the possible adverse health effects related to the occupational and environmental human exposures to formaldehyde. Although formaldehyde-induced DNA and protein adducts have been identified, the genomic instability mechanisms and the cellular tolerance pathways associated with formaldehyde exposure are not fully characterized. This study specifically examines the role of a genome stability protein, Bloom (BLM) in limiting formaldehyde-induced cellular and genetic abnormalities. Here, we show that in the absence of BLM protein, formaldehyde-treated cells exhibited increased cellular sensitivity, an immediate cell cycle arrest, and an accumulation of chromosome radial structures. In addition, live-cell imaging experiments demonstrated that formaldehyde-treated cells are dependent on BLM for timely segregation of daughter cells. Both wild-type and BLM-deficient formaldehyde-treated cells showed an accumulation of 53BP1 and γH2AX foci indicative of DNA double-strand breaks (DSBs); however, relative to wild-type cells, the BLM-deficient cells exhibited delayed repair. In response to formaldehyde exposure, we observed co-localization of 53BP1 and BLM foci at the DSB repair site, where ATM-dependent accumulation of formaldehyde-induced BLM foci occurred after the recruitment of 53BP1. Together, these findings highlight the significance of functional interactions among ATM, 53BP1, and BLM proteins as responders associated with the repair and tolerance mechanisms induced by formaldehyde. PMID:25770783

  7. 78 FR 51696 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... established in the Federal Register of July 23, 2013 (78 FR 44090) (FRL-9393-9). EPA is hereby extending the..., 2013, Federal Register document (78 FR 34796) (FRL-9342-4). If you have questions, consult the... Formaldehyde Standards for Composite Wood Products; Extension of Comment Period AGENCY:...

  8. 78 FR 44090 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... comment date for a proposed rule published June 10, 2013 at 78 FR 34796. Comments, identified by docket... the Federal Register of June 10, 2013 (78 FR 34796) (FRL-9342-4). EPA is hereby extending the comment... Formaldehyde Standards for Composite Wood Products; Extension of Comment Period AGENCY:...

  9. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  10. The protective effect of L-carnitine against hippocampal damage due to experimental formaldehyde intoxication in rats.

    PubMed

    Ozmen, E; Ozsoy, S Y; Donmez, N; Ozsoy, B; Yumuşak, N

    2014-07-01

    We investigated the protective effects of L-carnitine on hippocampus tissue damage in rats during experimental formaldehyde (FA) intoxication. Male Wistar albino rats were assigned into four groups: (1) control (C), (2) formaldehyde (FA), (3) formaldehyde + 0.5 g/kg of L-carnitine (FA + 0.5 LC) (4) formaldehyde + 1 g/kg L-carnitine (FA + 1 LC). At the end of the 14 day trial period, animals were sacrificed by decapitation under anesthesia. The hippocampus tissue samples were extracted to measure MDA, GSH and SOD activity. Neuronal degeneration was assessed based on histopathological (hematoxylin and eosin) and immunohistochemical (anti-ubiquitin) examination. To detect oxidative stress, specimens were reacted with anti-Cu/Zn-SOD antibody. After administering L-carnitine with FA to the animals, the activities of SOD and GSH increased, but the levels of MDA decreased in hippocampus tissue. Neuronal degeneration was observed in the FA group. L-carnitine administration reduced neuronal degeneration and histological structure was similar to controls. After FA application, degenerated hippocampus neurons were stained with anti-ubiquitin and Cu/Zn-SOD antibodies; weakly positive staining was observed in L- carnitine-treated groups. L-carnitine may be useful for preventing oxidative damage in the hippocampus tissue due to formaldehyde intoxication.

  11. Influence of Precision of Emission Characteristic Parameters on Model Prediction Error of VOCs/Formaldehyde from Dry Building Material

    PubMed Central

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497

  12. Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages.

    PubMed

    Schroeter, Jeffry D; Campbell, Jerry; Kimbell, Julia S; Conolly, Rory B; Clewell, Harvey J; Andersen, Melvin E

    2014-04-01

    Formaldehyde is a nasal carcinogen in rodents at high doses and is an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde have relied on internal dose estimates in the upper respiratory tract. Dosimetry calculations are complicated by the presence of endogenous formaldehyde concentrations in the respiratory mucosa. Anatomically accurate computational fluid dynamics (CFD) models of the rat, monkey, and human nasal passages were used to simulate uptake of inhaled formaldehyde. An epithelial structure was implemented in the nasal CFD models to estimate formaldehyde absorption from air:tissue partitioning, species-specific metabolism, first-order clearance, DNA binding, and endogenous formaldehyde production. At an exposure concentration of 1 ppm, predicted formaldehyde nasal uptake was 99.4, 86.5, and 85.3% in the rat, monkey, and human, respectively. Endogenous formaldehyde in nasal tissues did not significantly affect wall mass flux or nasal uptake predictions at exposure concentrations > 500 ppb; however, reduced nasal uptake was predicted at lower exposure concentrations. At an exposure concentration of 1 ppb, predicted nasal uptake was 17.5 and 42.8% in the rat and monkey; net desorption of formaldehyde was predicted in the human model. The nonlinear behavior of formaldehyde nasal absorption will affect the dose-response analysis and subsequent risk estimates at low exposure concentrations. Updated surface area partitioning of nonsquamous epithelium and average flux values in regions where DNA-protein cross-links and cell proliferation rates were measured in rats and monkeys are reported for use in formaldehyde risk models of carcinogenesis.

  13. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  14. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  15. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  16. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  17. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  18. First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Keast, V. J.; Barnett, R. L.; Cortie, M. B.

    2014-07-01

    Pure Au is widely used in plasmonic applications even though its use is compromised by significant losses due to damping. There are some elements that are less lossy than Au (e.g. Ag or Al) but they will normally oxidize or corrode under ambient conditions. Here we examine whether alloying Au with a second element would be beneficial for plasmonic applications. In order to evaluate potential alternatives to pure Au, the density of states (DOS), dielectric function and plasmon quality factor have been calculated for alloys and compounds of Au with Al, Cd, Mg, Pd, Pt, Sn, Ti, Zn and Zr. Substitutional alloying of Au with Al, Cd, Mg and Zn was found to slightly improve the plasmonic response. Of the large number of intermetallic compounds studied, only AuAl2, Au3Cd, AuMg, AuCd and AuZn were found to be suitable for plasmonic applications.

  19. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water. PMID:27250594

  20. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water.

  1. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  2. Application of a magnetotactic bacterium, Stenotrophomonas sp. to the removal of Au(III) from contaminated wastewater with a magnetic separator.

    PubMed

    Song, Hui-Ping; Li, Xin-Gang; Sun, Jin-Sheng; Xu, Shi-Min; Han, Xu

    2008-06-01

    In this study, the feasibility of applying a magnetotactic bacterial isolate (MTB), Stenotrophomonas sp. to the removal of Au(III) was investigated. Biosorption experiments showed that Au(III) biosorption capacity exhibited no significant difference in the initial pH range of 1.0-5.5, while decreased more significantly in the initial pH range of 5.5-13.0. Langmuir isotherm indicated that the maximum Au(III) biosorption capacity of Stenotrophomonas sp. were 506, 369 and 308 mg g(-1) dry weight biomass at the initial pH values of 2.0, 7.0 and 12.0, respectively. Thiourea was proved to be an effective desorbent to recover Au from the MTB biomass and 91% Au adsorbed on the biomass could be recovered at equilibrium when the thiourea concentration was 0.8M. The magnetic separator developed by our research team used for separating Au loaded MTB biomass showed high separation efficiency, with 100% biomass removed at the magnetic intensity of 1200 Gs in 180 min. The analyses from FTIR and XRD further confirmed that the reduction of Au(III) to Au(0) by the reductants on the MTB biomass occurred, and the deposition of nano-crystal Au(0) particles, ranging from 24.7 to 31.4 nm, could be estimated on the biomass surface.

  3. Brain Formaldehyde is Related to Water Intake behavior

    PubMed Central

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-01-01

    A promising strategy for the prevention of Alzheimer’s disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease. PMID:27699080

  4. Brain Formaldehyde is Related to Water Intake behavior

    PubMed Central

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-01-01

    A promising strategy for the prevention of Alzheimer’s disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease.

  5. Partially-irreversible sorption of formaldehyde in five polymers

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  6. Formaldehyde exposure and acute health effects study

    SciTech Connect

    Quackenboss, J.J.; Lebowitz, M.D.; Michaud, J.P.; Bronnimann, D. )

    1989-01-01

    To assess the effects of formaldehyde exposures on health, exposure groups were defined using baseline exposure and health questionnaires. Formaldehyde concentrations were poorly correlated with these exposure classifications, perhaps due to the time delay between classification and monitoring. The 151 households reported here had a mean HCHO concentration of 35 (S.E. 1.5 and median 30) {mu}g/m{sup 3}. Passive samplers prepared in our lab were calibrated in a chamber to derive an estimated sampling rate of 0.311 {mu}g/(mg {center dot} m{sup {minus}3} {center dot} hr). They were also compared to commercially available samplers inside of the homes, with a correlation coefficient of 0.896 and mean difference of 2.6 {mu}g/m{sup 3}. In this report of initial findings from an ongoing study, daily symptoms and peak expiratory flow measurements were compared with an HCHO exposure classification based on the median measured concentrations. None of the symptoms groups were related to HCHO exposure when controlling for age and sex. There was a significant relationship between HCHO exposure and variability in peak expiratory flows that was dependent on age group. It may be especially important to assess the variability in reactive individuals and children to determine the short-term effects of HCHO exposures and possible long-term consequences.

  7. Mechanical properties of melamine-formaldehyde microcapsules.

    PubMed

    Sun, G; Zhang, Z

    2001-01-01

    The mechanical properties of melamine-formaldehyde (M-F) microcapsules were studied using a micromanipulation technique. Single microcapsules with diameters of 1-12 microm were compressed and held between two parallel planes, compressed and released, and compressed to burst at different speeds, whilst the force being imposed on the microcapsules and their deformation were measured simultaneously. This force increased as single microcapsules were compressed and then relaxed slightly as they were held. When the microcapsules were repeatedly compressed and released, a pseudo yield point was found for each microcapsule. Before the microcapsules were compressed to this point, the deformed microcapsules recovered to their original shape once the force was removed. However, when the deformation was beyond the 'yield point' there was profound hysteresis and the microcapsules showed plastic behaviour. As the microcapsules were compressed to burst at different speeds, ranging from 0.5-6.0 microm/s, it was found that their mean bursting forces did not change significantly. The deformations at the pseudo yield point and at bursting were also independent of the compression speed. On average, these melamine-formaldehyde microcapsules reached their 'yield point' at a deformation of about 19 +/- 1%, and burst at a deformation of 70 +/- 1%.

  8. ACTION OF FORMALDEHYDE ON ENZYMES AND ON CERTAIN PBOTEIDS

    PubMed Central

    Bliss, C. L.; Novy, F. G.

    1899-01-01

    The following general conclusions may be drawn from the preceding work: Fibrin is altered by formaldehyde and is then less easily digested by pepsin and by trypsin. Papaïn is apparently unable to digest fibrin even when this is exposed to very weak formaldehyde (1:1000) for a very short time. The casein of milk, on contact with formaldehyde, undergoes rapid alteration and is as a result not coagulated by rennet, or but very slowly. Such altered casein, like similar fibrin, is not readily digested by the proteolytic ferments. The longer the formaldehyde acts on casein and on fibrin the more marked is the result. Pepsin is not affected by a one per cent solution of formaldehyde, even when the mixture has stood for four weeks. Even a five per cent solution of formaldehyde acting for three weeks has no effect on pepsin. Contrary results obtained by others are due to an alteration of the fibrin by the formaldehyde. A putrid solution of pepsin in distilled water one month old digests fibrin as readily as a fresh solution. Rennet is not affected even by a four per cent solution of formaldehyde acting for several weeks. The absence of coagulation at times is due to the action of formaldehyde on the casein of the milk and not on the rennet ferment. Papaïn is very quickly altered by formaldehyde, even in very dilute solution. Moreover, it is unable to digest fibrin that has been exposed to the action of a very dilute solution of formaldehyde for a short time. Trypsin is altered by formaldehyde to such an extent that digestion of fibrin will not take place, or but very slowly. The extent to which trypsin is affected by formaldehyde depends largely upon the amount of organic matter present, as well as on the amount of ferment in the solution. Amylopsin is not destroyed by very dilute solutions of formaldehyde, but stronger solutions decrease the activity of the ferment, and if used in sufficient concentration will destroy it completely. Ptyalin, like the diastatic ferment of

  9. Transport de particules massives dans un fluide turbulent: Application a l'erosion due au sable sur les parois d'une turbine hydraulique

    NASA Astrophysics Data System (ADS)

    Bergeron, Stephen

    Le transport de particules massives par un champ turbulent est un vaste domaine de la mécanique des fluides. Il possède de nombreuses applications comme par exemple le transport de sable dans une turbine hydraulique. En raison de la dureté des grains de quartz et des grandes vitesses de collision avec les parois métalliques, un phénomène d'érosion intensif se produit. Les dommages résultants peuvent diminuer le rendement de la turbine au cours des quelques mois suivant la mise en opération. L'objectif de cette thèse est de mettre au point un outil permettant de prédire ces zones d'érosion. Ce projet de recherche en contexte industriel a été réalisé en collaboration avec la compagnie General Electric Hydro du Canada. Dans un régime hautement turbulent, il est possible d'obtenir une expression suffisamment générale en utilisant une formulation partiellement empirique: l'équation de Basset- Boussinesq-Oseen modifiée. Ce choix de modèle tient compte du niveau de précision recherché et de la méthode numérique employée afin de résoudre la phase fluide. Il permet aussi d'éliminer plusieurs ambiguïtés fréquemment rencontrées dans la littérature et implementées dans certains codes commerciaux courants. La formulation mathématique du problème est effectuée dans un espace mixte Euler-Lagrange. Les paramètres dynamiques sont relies au type de particules et à l'intensité de la turbulence. Le code numérique résultant est le plus performant développé à ce jour (août 1998). Les trajectoires de plusieurs centaines de milliers de particules peuvent être simulées et visualisées de manière interactive sur une station de travail (SGI R4K, R8K et R10K). L'utilisateur du logiciel est libre de se déplacer dans l'espace à l'aide d'un environnement similaire a un ``simulateur de vol''. Il peut ainsi analyser les détails du processus d'érosion de même que l'écoulement du fluide dans la turbine. Les zones d'érosion obtenues à l

  10. Reaction mechanism for methanol oxidation on Au(1 1 1): A density functional theory study

    NASA Astrophysics Data System (ADS)

    Liu, Shuping; Jin, Peng; Zhang, Donghui; Hao, Ce; Yang, Xueming

    2013-01-01

    The microscopic reaction mechanism for methanol oxidation on Au(1 1 1) surface has been thoroughly investigated by means of density functional theory (DFT) computations. The adsorption geometries and energies were obtained for all the adsorbates, including the reactants, the products, and various possible intermediates on the metal. According to different oxygen conditions, we propose two possible reaction pathways for methanol oxidation on Au(1 1 1): (1) HCHO esterification: the intermediate formaldehyde and methoxy couple to yield methyl formate at low oxygen coverage or without the presence of oxygen atoms; (2) HCHO oxidation: the formaldehyde is oxidized to form formate at high oxygen coverage, which further dissociates to give CO2. Our study emphasizes the critical role of oxygen coverage during the methanol oxidation reaction, and can perfectly explain the difference in product distributions observed in previous experiments.

  11. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Urea-formaldehyde resins in molded articles. 177...-formaldehyde resins in molded articles. Urea-formaldehyde resins may be safely used as the food-contact surface... conditions: (a) For the purpose of this section, urea-formaldehyde resins are those produced when 1 mole...

  12. 21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Melamine-formaldehyde resins in molded articles...-formaldehyde resins in molded articles. Melamine-formaldehyde resins may be safely used as the food-contact...: (a) For the purpose of this section, melamine-formaldehyde resins are those produced when 1 mole...

  13. 21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Melamine-formaldehyde resins in molded articles...-formaldehyde resins in molded articles. Melamine-formaldehyde resins may be safely used as the food-contact...: (a) For the purpose of this section, melamine-formaldehyde resins are those produced when 1 mole...

  14. 21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Melamine-formaldehyde resins in molded articles...-formaldehyde resins in molded articles. Melamine-formaldehyde resins may be safely used as the food-contact...: (a) For the purpose of this section, melamine-formaldehyde resins are those produced when 1 mole...

  15. 21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Melamine-formaldehyde resins in molded articles...-formaldehyde resins in molded articles. Melamine-formaldehyde resins may be safely used as the food-contact...: (a) For the purpose of this section, melamine-formaldehyde resins are those produced when 1 mole...

  16. Gold(III) Mediated Activation and Transformation of Methane on Au1-Doped Vanadium Oxide Cluster Cations AuV2O6(.).

    PubMed

    Li, Zi-Yu; Li, Hai-Fang; Zhao, Yan-Xia; He, Sheng-Gui

    2016-08-01

    Gold in the +III oxidation state (Au(III)) has been proposed as a promising species to mediate challenging chemical reactions. However, it is difficult to characterize the chemistry of individual Au(III) species in condensed-phase systems mainly due to the interference from the Au(I) counterpart. Herein, by doping Au atoms into gas-phase vanadium oxide clusters, we demonstrate that the Au(III) cation in the AuV2O6(+) cluster is active for activation and transformation of methane, the most stable alkane molecule, into formaldehyde under mild conditions. In contrast, the AuV2O6(+) cluster isomers with the Au(I) cation can only absorb CH4. The clusters were generated by laser ablation and mass selected to react with CH4, CD4, or CH2D2 in an ion trap reactor. The reactivity was characterized by mass spectrometry and quantum chemistry calculations. The structures of the reactant and product ions were identified by using collision-induced and 425 nm photo-induced dissociation techniques.

  17. Gold(III) Mediated Activation and Transformation of Methane on Au1-Doped Vanadium Oxide Cluster Cations AuV2O6(.).

    PubMed

    Li, Zi-Yu; Li, Hai-Fang; Zhao, Yan-Xia; He, Sheng-Gui

    2016-08-01

    Gold in the +III oxidation state (Au(III)) has been proposed as a promising species to mediate challenging chemical reactions. However, it is difficult to characterize the chemistry of individual Au(III) species in condensed-phase systems mainly due to the interference from the Au(I) counterpart. Herein, by doping Au atoms into gas-phase vanadium oxide clusters, we demonstrate that the Au(III) cation in the AuV2O6(+) cluster is active for activation and transformation of methane, the most stable alkane molecule, into formaldehyde under mild conditions. In contrast, the AuV2O6(+) cluster isomers with the Au(I) cation can only absorb CH4. The clusters were generated by laser ablation and mass selected to react with CH4, CD4, or CH2D2 in an ion trap reactor. The reactivity was characterized by mass spectrometry and quantum chemistry calculations. The structures of the reactant and product ions were identified by using collision-induced and 425 nm photo-induced dissociation techniques. PMID:27385079

  18. Proportional mortality patterns among chemical plant workers exposed to formaldehyde.

    PubMed Central

    Marsh, G M

    1982-01-01

    To examine the possible health risks associated with occupational exposure to formaldehyde a proportional mortality analysis was conducted on deaths occurring between 1950 and 1976 among 136 men who had been employed a month or more in one of five formaldehyde-related areas of a large chemical producing plant located in Springfield, Massachusetts, USA. Overall, no statistically significant excesses or deficits in proportional mortality were observed among the formaldehyde-exposed group based on comparisons with both United States men and men from the local county area. In addition, no important differences in mortality were observed among this group when comparisons were made with 456 male decedents from the same plant who had not had a month or more of formaldehyde exposure. Within the calendar period examined, no deaths from sinonasal cancer were observed among the chemical workers studied nor was mention made on any death certificate of sinonasal cancer as a contributory cause of death. No important excesses, trends, or patterns in cancer mortality were observed among white male formadelhyde-exposed workers when consideration was given to age and time period of death, type and duration of formaldehyde exposure, and the lapse period from the onset of the first formaldehyde-related job assignment. Although certain limitations of this study do not allow definite conclusions to be drawn, the results indicate no trends or patterns in proportional mortality that could be directly linked to exposures to formaldehyde. PMID:7138792

  19. Determination of trace amounts of formaldehyde in acetone.

    PubMed

    Huang, X H Hilda; Ip, H S Simon; Yu, Jian Zhen

    2007-12-01

    A method to quantify sub-ppm levels of formaldehyde in acetone has been developed and it is reported here. In this method, the different reactivities and stabilities of sulfite with formaldehyde and acetone are used to separate the two carbonyl compounds. Sulfite reacts with formaldehyde to form hydroxymethanesulfonate (HMS), the non-volatile and stable nature of which allows its separation from bulk acetone solvent. The resulting HMS is then converted back to formaldehyde under basic conditions, and formaldehyde is derivatized with 2,4-dinitrophenylhydrazine (DNPH) and quantified in its DNP hydrazone form using high-performance liquid chromatography-UV detection. The method detection limit at the 99% confidence level was 0.051 mg L(-1). A batch of samples can be processed within 4 h. The method has been applied to quantify the amount of formaldehyde in an analytical-grade acetone and in a commercial nail polish remover and the level of formaldehyde was found to be 0.175 and 0.184 mg L(-1), respectively. PMID:17996534

  20. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  1. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air. PMID:23181357

  2. A survey of formaldehyde in shampoos and skin creams on the Danish market.

    PubMed

    Rastogi, S C

    1992-10-01

    To evaluate the exposure of the general population to formaldehyde from the use of cosmetic products, as well as to monitor whether cosmetic products comply with national regulations, 285 shampoos, creams, etc., were analysed for formaldehyde. Identification and determination of formaldehyde was performed by the EEC method for the analysis of formaldehyde in cosmetic products. It was shown that 29.5% of the products investigated contained 0.001%-0.147% total formaldehyde. In 10 of the products (3.5%), total formaldehyde content was > 0.05%. 8 of these products contained > 0.05% free formaldehyde. None of these products was labelled 'contains formaldehyde'. 17 of the products investigated were declared to contain specific formaldehyde-releasers. Formaldehyde could not be detected (detection limit 0.001%) in cosmetic products that were declared to contain Bronidox/Bronopol.

  3. The Development of Conductive Elements for the Selective Detection of Formaldehyde and Cotinine

    NASA Astrophysics Data System (ADS)

    Antwi-Boampong, Sadik

    The development of new materials and techniques presents an opportunity to revisit old problems. Innovations in materials engineering revolutionize the status quo by expanding the tool kit needed to develop robust solutions to complex problems. Challenges that had hitherto been intractable become surmountable; previously established methods are significantly enhanced; fresh impetus is injected into the materials design engine. In one way or another, every scientist contributes to this dynamic creative process where ideas are incubated and developed through fundamental research that culminates in compelling findings applicable in various realms of science. The work presented herein embodies this ethos. Our investigations have applied the relatively nascent technology of molecular imprinting to develop sensing elements for detection of cotinine and formaldehyde. Additionally, we have used different polymer systems to address the inherent limitations of conventional materials using a simple, cost-effective and efficient materials approach. Specifically, in Part I, we investigate molecular imprinting of nylon-6, polyvinylphenol and ElvamideRTM, with cotinine. We examine the capacity of these materials as polymer hosts for molecular imprinting by studying the effect of cotinine imprinting on their nanomechanical properties. By monitoring variations in mechanical properties induced by cotinine templating, we determine the factors critical for effective imprinting and ultimately demonstrate that polyvinylphenol is the most suitable polymer host. Based on these results, we develop a cotinine-imprinted polyvinylphenol-single walled carbon nanotube sensor that readily detects cotinine. Using electrical, spectral and chromatographic characterization, we rigorously demonstrate the enhanced affinity programmed into the sensing layer via molecular imprinting. Part II is dedicated to a familiar problem: formaldehyde sensing. While this challenge has been a trope of the

  4. INSTRUCTIONS FOR OPERATING LBL FORMALDEHYDE SAMPLER

    SciTech Connect

    Fanning, L.Z.; Allen, J.R.; Miksch, R.R.

    1981-09-01

    The LBL formaldehyde sampler consists of two parts: 1) a pump box and 2) a small refrigerator housing sampling bubblers. The pump box contains two pumps, a timer, a flow controller, an electrical cord, and a ten-foot piece of tubing to connect the refrigerator to the pump box. The small refrigerator contains four columns of bubbler sampling trains attached to a metal plate. Two sampling trains each are plumbed in parallel to two sampling ports on the back of the refrigerator. The two sampling lines supplied are to be attached to these ports to allow two locations to be sampled at once (usually one indoor and one outdoor). The refrigerator also contains a rack for holding bubbler tubes. In the sampling process, air is drawn through a sampling line attached to the fitting at the back of the refrigerator and into a prlmary bubbler containing a trapping solution. This trapping solution can be distilled water or an aqueous solution of some compound that reacts with formaldehyde. From this bubbler the air goes through a second bubbler containing the same trapping solution as the first bubbler. (To maintain sample integrity, all parts that the air sample contacts are made of Teflon, polypropylene, and stainless steel.) The air then goes into the third bubbler, which contains no liquid. This bubbler contains a hypodermic needle that serves as a flow-control orifice. The hypodermic needle, in conjunction with the flow controller in the pump box, ensures a constant a flow rate. The refrigerator contains four columns of these sets of three bubblers. After samples have been collected, the bubbler bottoms are detached and the contents of the first and second bubblers in each column are poured together, capped, and labeled. The use of a refrigerated primary and secondary bubbler whose contents are combined at the end of a sampling period ensures 95% collection efficiency. After the bubbler tubes are capped and labeled, they are stored either in the rack supplied in the

  5. Synthesis and properties of melamine-formaldehyde/ montmorillonite nanocomposites.

    PubMed

    Wang, Haitao; Meng, Xiangfu; Qian, Zhongzhong; Zhoul, Hu; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2008-04-01

    In this paper, intercalated and partially exfoliated melamine-formaldehyde (MF)/montmorillonite (MMT) nanocomposites have been synthesized successfully via in-situ polymerization based on pristine montmorillonite, acidified montmorillonite and organic modified montmorillonite respectively. The obtained nanocomposites were characterized by XRD, TEM, TGA, and Raman spectroscopy. Free formaldehyde content of those composites was also determined by acetyl acetone technique. It was found that acidified montmorillonite and organic modified montmorillonite could catalyze the polycondensation reaction of methylolmelamines. The thermal stability and chemical resistance of those two nanocomposites were also improved dramatically compared to pure melamine-formaldehyde resin.

  6. Formaldehyde: a candidate toxic air contaminant. Final report

    SciTech Connect

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  7. Single and double photoionizations of methanal (formaldehyde)

    NASA Astrophysics Data System (ADS)

    Hochlaf, M.; Eland, J. H. D.

    2005-10-01

    Single and double photoionization spectra of formaldehyde have been measured at 40.81 and 48.37 eV photon energy and the spectrum of the doubly charged cation has been interpreted using high-level electronic structure calculations. The adiabatic double-ionization energy is determined as 31.7±0.25eV and the vertical ionization energy is 33 eV. The five lowest excited electronic states are identified and located. The potential-energy surfaces of the accessible states explain the lack of stable H2CO2+ dications and the lack of vibrational structure. The experimental double-ionization spectrum can be decomposed into two distinct contributions, one from direct photoionization and the second from indirect double photoionization by an inner-valence shell Auger effect.

  8. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  9. Sorption properties of porous melamine formaldehyde resins

    NASA Astrophysics Data System (ADS)

    Deryło-Marczewska, Anna; Goworek, Jacek; Kusak, Ryszard; Zgrajka, Wojciech

    2002-07-01

    Three types of melamine-formaldehyde porous sorbents were synthesized by using the fumed silica as an inorganic template. The changes in polymerization conditions lead to a differentiation of the porosity and surface area of these materials. This synthesis allowed preparing the materials of narrow pore size distributions with pore sizes over the range 2.8-6.8 nm, and specific surface areas up to 250 m 2/g. The analysis of pore structure was based on the comparison of nitrogen adsorption isotherms on a given porous sorbent and a standard nonporous polymer. Additionally the measurements of thermal stability and swelling of synthesized polymers were made. Adsorption of organic substances from aqueous solutions on porous polymers was also investigated.

  10. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D.

    1990-01-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers two one-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR linearly decreased with HCHO exposure, with estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children.

  11. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  12. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  13. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    PubMed

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells.

  14. Analysis of benzoyl-peroxide and formaldehyde as dental allergens by FT-SPR method

    NASA Astrophysics Data System (ADS)

    Bako, J.; Kelemen, M.; Hegedus, Cs

    2013-12-01

    In parallel with the appearance of new dental materials the number of induced allergic diseases increases. Based on this fact more sensitive detection of allergens is major importance. The Fourier-Transform Surface Plasmon Resonance (FT-SPR) is a sensitive, broadly applicable real-time method for analysing thin layers of materials on gold surfaces. FT-SPR measurement is performed at a fixed angel of incident light, and reflectivity is measured over a range of wavelength in the near infrared. In our study the formaldehyde and benzoyl-peroxide were examined as members of the most common dental allergens by FT-SPR spectroscopy. The aim of this work was the investigation of the suitability of this method for the direct detection of these materials. Different concentrations of formaldehyde and benzoyl-peroxide solutions were measured from this purpose. The individual spectra were measured for all of the solutions, and calibration curves were calculated for the materials for the possibility of the determination of an unknown concentration. In addition, series measurements were performed whereby the association and dissociation properties of formaldehyde or benzoyl-peroxide were described. The results of the experiments proved that the method capable to measure directly these materials and can provide appropriate calibration curves for determination of unknown concentrations.

  15. ETV REPORT: CERTEK, INC. 1414RH FORMALDEHYDE GENERATOR/NEUTRALIZER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the 1414RH Formaldehyde Generator/Neuralizer, a biological decontamination device manufactured by CERTEK, Inc. The unit was tested by evaluating its ability to decontaminate seven types ...

  16. Ion laser isotope enrichment by photo-predissociation of formaldehyde

    DOEpatents

    Marling, John B.

    1977-06-17

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.

  17. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  18. IRIS Toxicological Review of Formaldehyde (Inhalation) (External Review Draft 2010)

    EPA Science Inventory

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing ...

  19. 78 FR 34820 - Formaldehyde Emissions Standards for Composite Wood Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ...: Cindy Wheeler, National Program Chemicals Division, Office of Pollution Prevention and Toxics...-based resins (Ref. 3). Formaldehyde is an irritant and the National Toxicology Program recently... plywood and composite wood products (PCWP) National Emission Standards for Hazardous Air...

  20. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  1. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    NASA Astrophysics Data System (ADS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  2. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications.

    PubMed

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min(-1) and turnover frequency is 5457 h(-1). PMID:25665732

  3. Formaldehyde emissions from ventilation filters under different relative humidity conditions.

    PubMed

    Sidheswaran, Meera; Chen, Wenhao; Chang, Agatha; Miller, Robert; Cohn, Sebastian; Sullivan, Douglas; Fisk, William J; Kumagai, Kazukiyo; Destaillats, Hugo

    2013-05-21

    Formaldehyde emissions from fiberglass and polyester filters used in building heating, ventilation, and air conditioning (HVAC) systems were measured in bench-scale tests using 10 and 17 cm(2) coupons over 24 to 720 h periods. Experiments were performed at room temperature and four different relative humidity settings (20, 50, 65, and 80% RH). Two different air flow velocities across the filters were explored: 0.013 and 0.5 m/s. Fiberglass filters emitted between 20 and 1000 times more formaldehyde than polyester filters under similar RH and airflow conditions. Emissions increased markedly with increasing humidity, up to 10 mg/h-m(2) at 80% RH. Formaldehyde emissions from fiberglass filters coated with tackifiers (impaction oils) were lower than those from uncoated fiberglass media, suggesting that hydrolysis of other polymeric constituents of the filter matrix, such as adhesives or binders was likely the main formaldehyde source. These laboratory results were further validated by performing a small field study in an unoccupied office. At 80% RH, indoor formaldehyde concentrations increased by 48-64%, from 9-12 μg/m(3) to 12-20 μg/m(3), when synthetic filters were replaced with fiberglass filtration media in the HVAC units. Better understanding of the reaction mechanisms and assessing their overall contributions to indoor formaldehyde levels will allow for efficient control of this pollution source. PMID:23597095

  4. Health risks from indoor formaldehyde exposures in northwest weatherized residences

    SciTech Connect

    Mellinger, P.J.; Sever, L.E.

    1986-10-01

    Conflicting opinions on the potential hazards associated with formaldehyde exposure triggered a national workshop to address the toxicological questions concerning the health effects of formaldehyde. Since quantitative human data are not available to derive a dose-response curve for formaldehyde risk assessment, nonhuman data are used. In the case of formaldehyde, data from animals exposed to high concentrations are used to estimate human risk at much lower concentrations. This study presents the several steps that make up a risk assessment and examines any additional data that might alter significantly the risk estimates presented in the 1984 EIS. Rat inhalation chronic bioassay data from a study sponsored by the Chemical Industry Institute of Toxicology (CIIT) have been used to develop a risk equation that was subsequently used by BPA in its EIS. The CIIT data base remains the only acceptable animal data that can support the estimation of a dose-response curve. The development of mathematical models continues with a great deal of energy, and the use of different models is largely responsible for the great variability of the formaldehyde risk estimates. While one can calculate different values for carcinogenic risk associated with formaldehyde exposure than were presented earlier in the BPA EIS, they are not likely to be any better.

  5. Respiratory morbidity induced by occupational inhalation exposure to formaldehyde.

    PubMed

    Neghab, Masoud; Soltanzadeh, Ahmad; Choobineh, Alireza

    2011-01-01

    The potential of formaldehyde to produce chronic respiratory tract disease remains a controversial issue. The main purpose of this study was to investigate the respiratory effects, if any, of long term occupational exposure to formaldehyde. This cross-sectional study was carried out at a local melamine-formaldehyde resin producing plant. The study population consisted of seventy exposed and 24 non-exposed (referent) employees. Using respiratory questionnaire, data on respiratory symptoms were gathered. Atmospheric concentrations of formaldehyde were measured at different contaminated areas of the plant. Similarly, the parameters of pulmonary function were measured at the beginning (preshift) and at the end (postshift) of the first working day of the week. The results showed that airborne concentrations of formaldehyde exceeded current permissible levels. Additionally, significant decrements in some preshift and postshift parameters of pulmonary function of exposed workers were noted. However, a relative recovery in lung functional capacity observed following temporary cessation of exposure (preshift values). Furthermore, exposed workers had higher prevalence rates of regular cough, wheezing, phlegm, shortness of breath, chest tightness and episodes of chest illness associated with cold. The findings of this study collectively indicate that exposure to formaldehyde may induce respiratory symptoms, acute partially reversible and chronic irreversible functional impairments of the lungs.

  6. Clinical evaluation of patients with complaints related to formaldehyde exposure

    SciTech Connect

    Imbus, H.R.

    1985-12-01

    Formaldehyde is a very widely used chemical in our present society and one with which every physician has had a first-hand experience in his early days of training in the anatomy laboratory. The National Institute of Occupational Safety and Health lists 52 occupations that expose people to formaldehyde. In recent years, however, the increasing use of formaldehyde resins in the production of building materials such as particleboard and urea-formaldehyde foam insulation has resulted in exposures of large numbers of people in nonoccupational settings. Consumer products such as cosmetics, cigarettes, textiles, furniture, draperies, and preservatives release formaldehyde. It is present in the outdoor atmosphere from products of combustion and automobile exhaust and likewise in the home from such things as gas cooking. These more widespread and increased exposures have resulted in concern regarding potential health effects. Therefore, it is likely that physicians have or will encounter patients who wish evaluations of a present or potential health effect from formaldehyde. This article is for the purpose of providing assistance in such evaluation.110 references.

  7. Clinical evaluation of patients with complaints related to formaldehyde exposure.

    PubMed

    Imbus, H R

    1985-12-01

    Formaldehyde is a very widely used chemical in our present society and one with which every physician has had a first-hand experience in his early days of training in the anatomy laboratory. The National Institute of Occupational Safety and Health lists 52 occupations that expose people to formaldehyde. In recent years, however, the increasing use of formaldehyde resins in the production of building materials such as particleboard and urea-formaldehyde foam insulation has resulted in exposures of large numbers of people in nonoccupational settings. Consumer products such as cosmetics, cigarettes, textiles, furniture, draperies, and preservatives release formaldehyde. It is present in the outdoor atmosphere from products of combustion and automobile exhaust and likewise in the home from such things as gas cooking. These more widespread and increased exposures have resulted in concern regarding potential health effects. Therefore, it is likely that physicians have or will encounter patients who wish evaluations of a present or potential health effect from formaldehyde. This article is for the purpose of providing assistance in such evaluation.

  8. Formaldehyde in dentistry: a review of mutagenic and carcinogenic potential

    SciTech Connect

    Lewis, B.B.; Chestner, S.B.

    1981-09-01

    For many years there has been controversy over the value of antimicrobial drugs for intracanal dressings in endodontics. Formocresol, a formaldehyde compound, has evolved as the preferred drug for routine endodontic procedures, as well as pediatric endodontics. The increase in the use of formaldehyde has been complicated by the introduction of paraformaldehyde pastes for filling root canals. Neither of these formulas has ever been standardized. The doses are arbitrary, and the common dose of formocresol has been shown to be many times greater than the minimum dose needed for effect. The efficacy of paraformaldehyde pastes is questionable and remains clouded by inconclusive evidence, conflicting research, inadequate terminology, and a lack of convincing statistical evidence. The clinical use and delivery of formocresol and paraformaldehyde pastes remain arbitrary and unscientific. Formaldehyde has a known toxic mutagenic and carcinogenic potential. Many investigations have been conducted to measure the risk of exposure to formaldehyde; it is clear that formaldehyde poses a carcinogenic risk in humans. There is a need to reevaluate the rationale underlying the use of formaldehyde in dentistry particularly in light of its deleterious effects.

  9. Histomorphometric comparison after fixation with formaldehyde or glyoxal

    PubMed Central

    Wang, YN; Lee, K; Pai, S; Ledoux, WR

    2014-01-01

    Formaldehyde has long been the fixative of choice for histological examination of tissue. The use of alternatives to formaldehyde has grown, however, owing to the serious hazards associated with its use. Companies have striven to maintain the morphological characteristics of formaldehyde-fixed tissue when developing alternatives. Glyoxal-based fixatives now are among the most popular formaldehyde alternatives. Although there are many studies that compare staining quality and immunoreactivity, there have been no studies that quantify possible structural differences. Histomorphometric analysis commonly is used to evaluate diseased tissue. We compared fixation with formaldehyde and glyoxal with regard to the histomorphological properties of plantar foot tissue using a combination of stereological methods and quantitative morphology. We measured skin thickness, interdigitation index, elastic septa thickness, and adipocyte area and diameter. No significant differences were observed between formaldehyde and glyoxal fixation for any feature measured. The glyoxal-based fixative used therefore is a suitable fixative for structural evaluation of plantar soft tissue. Measurements obtained from the glyoxal-fixed tissue can be combined with data obtained from formalin-fixed for analysis. PMID:20854226

  10. Volatile organic compound and formaldehyde emissions from Populus davidiana wood treated with low molecular weight urea-formaldehyde resin.

    PubMed

    Wang, Jing-Xian; Shen, Jun; Lei, Cheng-Shuai; Feng, Qi

    2014-09-01

    Populus davidiana wood was usually impregnated with low molecular weight thermosetting resins to improve its physical and mechanical properties. However, volatile organic compounds (VOCs) and formaldehyde emitted from treated wood have lead to poor indoor air quality (IAQ). The trends of VOC and formaldehyde emissions as a function of the weight percent gain (WPG) factor were mainly investigated in this work. Aldehydes and alkanes were the predominant compositions indentified in the VOC emissions, although low amount of ketones, terpenes and alcohols were also found. With the increase in WPG, VOC and formaldehyde concentrations improved. However, their concentration began to decrease when WPG was over 44.06% (VOC) and 36.35% (formaldehyde), respectively. The modulus of elasticity (MOE) of untreated and treated wood at different WPG levels was detected. It showed that treatment of wood with UF resin significantly improved the mechanical properties. Therefore, it is probably helpful to comprehensively analyze correlations among environmental performance, mechanical performance and processing costs.

  11. A fluorescence bioassay to detect residual formaldehyde from clinical materials sterilized with low-temperature steam and formaldehyde.

    PubMed

    Mariscal, Alberto; Carnero-Varo, Manuel; Gomez, Enrique; Fernandez-Crehuet, Joaquin

    2005-09-01

    A microtiter plate toxicity test based on fluorescence was developed to determine the residual concentration of formaldehyde on medical items after LTSF sterilization. The residual formaldehyde on eight common materials, some of which are used in different clinical instruments and devices were analysed after sterilization with LTSF. Formaldehyde residues were detected on cotton, filter paper, natural rubber, PVC, and silicone-coated latex, but not on polyurethane, silicone or glass. Formaldehyde never exceeded the recommended maximum concentration on clinical devices of about 5 microg/cm2. The results were compared with those obtained by means of a chemical method, the correlation being good (R2=0.9396). The biological method proposed here is fast and can be automated, which means that it could be used as a screening method when there are doubts as to the accumulation of residues on clinical materials or instruments that are going to be sterilized with LTSF.

  12. Collective flow in Au + Au collisions

    SciTech Connect

    Ritter, H.G.; EOS Collaboration

    1994-05-01

    Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

  13. A review of the effects of formaldehyde release from endodontic materials.

    PubMed

    Athanassiadis, B; George, G A; Abbott, P V; Wash, L J

    2015-09-01

    Formaldehyde is present in most living cells and the environment. In dentistry, patients may be exposed to formaldehyde through the use of several endodontic materials (e.g. AH 26) and during formocresol pulpotomies. This review outlines how the human body reacts to formaldehyde exposure, how recent data has relooked at the issue of carcinogenicity and leukaemia associated with formaldehyde, and whether it is possible to quantify the amount of formaldehyde produced by endodontic cements. The review analyses the way formaldehyde is produced from epoxy resins and addresses the question of whether the amount of formaldehyde from endodontic cements is large enough to override the body's ability to deal with its own endogenous levels of formaldehyde and should the amount of formaldehyde produced be a concern.

  14. Formaldehyde degradation by Ralstonia eutropha in an immobilized cell bioreactor.

    PubMed

    Habibi, Alireza; Vahabzadeh, Farzaneh

    2013-01-01

    The formaldehyde (FA) degradation ability of the loofa-immobilized Ralstonia eutropha cells in a packed bed reactor was modeled using a statistically based design of the experiment (DOE) considering application of response surface methodology (RSM). The simultaneous effects of four operative test factors on the cells performance in terms of FA degradation rate and extent of the chemical oxygen demand (COD) removal were monitored. The combination of factors at initial FA concentration of 629.7 mg L(-1)h(-1), recycling substrate flow rate of 4.4 mL min(-1), aeration rate of 1.05 vvm, and the system's temperature of 28.8°C resulted the optimal conditions for the FA biodegradation rate and COD removal efficiency. Loofa porous structure was found to be a protective environment for the cells in exposing to the toxic substances and the scanning electron microscopy (SEM) images revealed extensive cells penetration within this support. Oxygen transfer analysis in the form of evaluating K la value was also carried out and at the optimum conditions of the DOE was equaled to 9.96 h(-1)and oxygen uptake rate was 35.6 mg L(-1)h(-1).

  15. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-01

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science.

  16. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-01

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science. PMID:26076372

  17. The Chemical Link between Isoprene and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Wolfe, G.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; De Gouw, J. A.; Gilman, J.; Graus, M.; Hatch, C. D.; Holloway, J. S.; Horowitz, L. W.; Lee, B. H.; Lerner, B. M.; Lopez-Hilfiker, F.; Mao, J.; Marvin, M. R.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.

    2015-12-01

    Isoprene-fueled photochemistry defines near-surface atmospheric composition in many regions of the world. Formaldehyde (HCHO) is a major product of, and thus a tracer for, this chemistry. As one of the few volatile organic compounds (VOC) observable via remote sensing, HCHO offers an invaluable constraint on the global distribution of isoprene emissions. Shortcomings in current chemical mechanisms, however, challenge our understanding of the link between isoprene emissions and HCHO abundance. Uncertainties are most severe under low-NOx conditions, which are often prevalent in regions with high biogenic emissions. Using observations from the 2013 SENEX mission, we will quantify the isoprene-HCHO relationship across the wide range of chemical regimes encountered in the southeast U.S. Model-assisted analysis will focus on the NOx dependence of HCHO production and its mechanistic underpinnings. Accurate model representation of this relationship is crucial for top-down constraints of isoprene emissions. It is also a benchmark for overall mechanism performance with regard to VOC degradation.

  18. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. )

    1990-08-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers during two 1-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR decreased linearly with HCHO exposure, with the estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children. The effects in asthmatic children exposed to HCHO below 50 ppb were greater than in healthy ones. The effects in adults were less evident: decrements in PEFR due to HCHO over 40 ppb were seen only in the morning, and mainly in smokers.

  19. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    SciTech Connect

    Feldman, Paul D.

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derive the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.

  20. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.

    PubMed

    Molin, Mikael; Blomberg, Anders

    2006-05-01

    To investigate Saccharomyces cerevisiae physiology during growth on the conditionally toxic triose dihydroxyacetone (DHA), protein expression was studied in strains overexpressing either of the two dihydroxyacetone kinase isogenes, DAK1 or DAK2, that grow well utilizing DHA as a carbon and energy source. DHA metabolism was found mostly similar to ethanol utilization, involving a strong component of glucose derepression, but also involved DHA-specific regulatory changes. A specific and strong (10- to 30-fold induction of formaldehyde dehydrogenase, Fdhlp, indicated activation of the formaldehyde dissimilation pathway in DHA medium. The importance of this pathway was further supported by impaired adaptation to DHA growth and DHA survival in a glutathione-dependent formaldehyde dehydrogenase (SFA1) deletion mutant. Glutathione synthase (GSH1) deletion led to decreased DHA survival in agreement with the glutathione cofactor requirement for the SFA1-encoded activity. DHA toxicity did, however, not solely appear related to formaldehyde accumulation, because SFA1 overexpression only enhanced formaldehyde but not DHA tolerance. In further agreement with a low DHA-to-formaldehyde flux, GSH supplements in the low microM range also fully suppressed the DHA sensitivity of a gsh1Delta strain. Under growth reduction on high (100 mM) DHA medium we report increased levels of advanced glycation end-product (AGE) formation on total protein. Under these high-DHA conditions expression of several stress-related proteins, e.g. a heat-shock protein (Hsp104p) and the oxidative stress indicator, alkyl hydroperoxide reductase (Ahp1p) was also found induced. However, hallmark determinants of oxidative stress tolerance (e.g. YAP1, SKN7, HYR1/GPX3 and SOD2) were redundant for DHA tolerance, thus indicating mechanisms of DHA toxicity largely independent of central oxidative stress defence mechanisms. We conclude that mechanisms for DHA growth and detoxification appear complex and that the

  1. Passive flux sampler for measurement of formaldehyde emission rates

    NASA Astrophysics Data System (ADS)

    Shinohara, Naohide; Fujii, Minoru; Yamasaki, Akihiro; Yanagisawa, Yukio

    A new passive flux sampler (PFS) was developed to measure emission rates of formaldehyde and to determine emission sources in indoor environments. The sampler consisted of a glass Petri dish containing a 2,4-dinitrophenyl hydrazine (DNPH)-impregnated sheet. At the start of sampling, the PFS was placed with the open face of the dish on each of the indoor materials under investigation, such as flooring, walls, doors, closets, desks, beds, etc. Formaldehyde emitted from a source material diffused through the inside of the PFS and was adsorbed onto the DNPH sheet. The formaldehyde emission rates could be determined from the quantities adsorbed. The lower determination limits were 9.2 and 2.3 μg m -2 h -1 for 2- and 8-h sampling periods. The recovery rate and the precision of the PFS were 82.9% and 8.26%, respectively. The emission rates measured by PFS were in good agreement with the emission rates measured by the chamber method ( R2=0.963). This shows that it is possible to take measurements of the formaldehyde emission rates from sources in a room and to compare them. In addition, the sampler can be used to elucidate the emission characteristics of a source by carrying out emission measurements with different air-layer thicknesses inside the PFS and at different temperatures. The dependency of the emission rate on the thickness of the air layer inside the PFS indicated whether the internal mass transfer inside the source material or the diffusion in the gas-phase boundary layer controlled the formaldehyde emission rate from a material. In addition, as a pilot study, the formaldehyde emission rates were measured, and the largest emission source of formaldehyde could be identified from among several suspected materials in a model house by using the PFS.

  2. Au-Free GaN High-Electron-Mobility Transistor with Ti/Al/W Ohmic and WN X Schottky Metal Structures for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Hsieh, Ting-En; Lin, Yueh-Chin; Chu, Chung-Ming; Chuang, Yu-Lin; Huang, Yu-Xiang; Shi, Wang-Cheng; Dee, Chang-Fu; Majlis, Burhanuddin Yeop; Lee, Wei-I.; Chang, Edward Yi

    2016-07-01

    In this study, an Au-free AlGaN/GaN high-electron-mobility transistor (HEMT) with Ti/Al/W ohmic and WN x Schottky metal structures is fabricated and characterized. The device exhibits smooth surface morphology after metallization and shows excellent direct-current (DC) characteristics. The device also demonstrates better performance than the conventional HEMTs under high voltage stress. Furthermore, the Au-free AlGaN/GaN HEMT shows stable device performance after annealing at 400°C. Thus, the Ti/Al/W ohmic and WN X Schottky metals can be applied in the manufacturing of GaN HEMT to replace the Au based contacts to reduce the manufacturing costs of the GaN HEMT devices with comparable device performance.

  3. Stabilized, superparamagnetic functionalized graphene/Fe3O4@Au nanocomposites for a magnetically-controlled solid-state electrochemiluminescence biosensing application.

    PubMed

    Gu, Wenling; Deng, Xi; Gu, Xiaoxiao; Jia, Xiaofang; Lou, Baohua; Zhang, Xiaowei; Li, Jing; Wang, Erkang

    2015-02-01

    Herein, a multifunctional nanoarchitecture has been developed by integrating the branched poly(ethylenimine) functionalized graphene/iron oxide hybrids (BGNs/Fe3O4) and luminol capped gold nanoparticles (luminol-AuNPs). The luminescent luminol-AuNPs as an electrochemiluminescence marker can be assembled on the nanocarrier of BGNs/Fe3O4 hybrids efficiently via the Au-N chemical bonds and electrostatic adsorption. Meanwhile, the multifunctional nanoarchitecture has been proved with excellent electron transfer, good stability, high emission intensity, etc. Furthermore, we successfully developed an ultrasensitive magnetically-controlled solid-state electrochemiluminescence (ECL) platform for label-free determination of HeLa cells using this multifunctional nanocomposite. Excellent performance of the magnetically-controlled ECL biosensing platform has been achieved including a high sensitivity for HeLa cells with a linear range from 20 to 1 × 10(4) cells/mL, good stability, and reproducibility. PMID:25541634

  4. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  5. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  6. Mortality from lung cancer among workers employed in formaldehyde industries.

    PubMed

    Blair, A; Stewart, P A; Hoover, R N

    1990-01-01

    A historical cohort of 26,561 workers employed in ten facilities was assembled to evaluate cancer risks associated with exposure to formaldehyde. Historical exposures to formaldehyde by job, work area, plant, and calendar time were estimated using monitoring data available from participating plants, comments from long-term workers and company officials, exposure evaluations from walk-through surveys conducted by project industrial hygienists, and results from monitoring specifically performed for this project. A previous report of findings from this study noted a 30% excess mortality from lung cancer among wage workers. The relative risk for lung cancer (whether estimated by SMRs or SRRs) 20 or more years after first exposure did not generally rise with increasing exposure to formaldehyde. Various estimates of exposure were investigated including duration, intensity, peak, cumulative, and average, and by exposures lagged by 5, 10, 20, and 30 years. The excess did not appear to arise gradually, but emerged suddenly among workers whose total cumulative exposure was less than 0.1 ppm-years. Slightly positive, but nonsignificant, exposure-response associations between lung cancer and level of formaldehyde occurred in only a few out of a large number of comparisons (e.g., for persons hired before the start dates for the study and for workers also exposed to particulates). There was a lack of consistency among the various plants for risk of lung cancer, with six plants having elevated SMRs and four plants having deficits. Mortality from lung cancer was more strongly associated with exposure to other substances including phenol, melamine, urea, and wood dust than with exposure to formaldehyde. Workers exposed to formaldehyde without exposure to these substances did not experience an elevated mortality from lung cancer. The risk did not increase with cumulative levels of formaldehyde among those exposed to other substances and there was a slightly negative trend for those

  7. Formaldehyde emission—Comparison of different standard methods

    NASA Astrophysics Data System (ADS)

    Risholm-Sundman, Maria; Larsen, Annelise; Vestin, Ewa; Weibull, Anders

    The emission of formaldehyde is an important factor in the evaluation of the environmental and health effects of wood-based board materials. This article gives a comparison between commonly used European test methods: chamber method [EN 717-1, 2004. Wood-based panels—determination of formaldehyde release—Part 1: formaldehyde emission by the chamber method. European Standard, October 2004], gas analysis method [EN 717-2, 1994. Wood-based panels—determination of formaldehyde release—Part 2: formaldehyde release by the gas analysis method, European Standard, November 1994], flask method [EN 717-3, 1996. Wood-based panels—determination of formaldehyde release—Part 3: formaldehyde release by the flask method, European Standard, March 1996], perforator method [EN 120, 1993. Wood based panels—determination of formaldehyde content—extraction method called perforator method, European Standard, September 1993], Japanese test methods: desiccator methods [JIS A 1460, 2001. Building boards. Determination of formaldehyde emission—desiccator method, Japanese Industrial Standard, March 2001 and JAS MAFF 233, 2001] and small chamber method [JIS A 1901, 2003. Determination of the emission of volatile organic compounds and aldehydes for building products—small chamber method, Japanese Industrial Standard, January 2003], for solid wood, particleboard, plywood and medium density fiberboard. The variations between the results from different methods can partly be explained by differences in test conditions. Factors like edge sealing, conditioning of the sample before the test and test temperature have a large effect on the final emission result. The Japanese limit for F **** of 0.3 mg l -1 (in desiccator) for particleboards was found to be equivalent to 0.04 mg m -3 in the European chamber test and 2.8 mg per 100 g in the perforator test. The variations in inter-laboratory tests are much larger than in intra-laboratory tests; the coefficient of variation is 16% and 6

  8. Comparison of ozone and formaldehyde as poultry hatchery disinfectants

    SciTech Connect

    Whistler, P.E.; Sheldon, B.W. )

    1989-10-01

    Ozone and formaldehyde were compared as poultry hatchery disinfectants in a poultry setter, and evaluated for effectiveness. Escherichia coli, Pseudomonas fluorescens, Salmonella typhimurium, and Proteus spp. were inoculated onto open petri plates and exposed to ozone or onto filter paper strips and exposed to ozone or formaldehyde in a poultry setter. Ozone (1.41 to 1.68% by weight) resulted in significant bacterial reductions of greater than 4 log10 on the open plates and greater than 3 log10 on filter paper strips, whereas formaldehyde (triple strength) resulted in greater than 7 log10 reduction on filter paper strips. Ozone was similarly lethal to organisms on filter paper strips at 90% relative humidity (RH) and 13.9 C, and at 50% RH and 37.7 C. Although under the conditions of this study formaldehyde (triple strength) was more lethal than ozone, ozone killed greater than 99.9% of the starting microbial populations. In the event that formaldehyde can no longer be used in the hatchery, an effective alternative may be ozone.

  9. Formaldehyde as a basis for residential ventilation rates

    SciTech Connect

    Sherman, M.H.; Hodgson, A.T.

    2002-04-28

    Traditionally, houses in the U.S. have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.

  10. System for dosing formaldehyde vapor at the ppb level

    NASA Astrophysics Data System (ADS)

    Röck, Frank; Barsan, Nicolae; Weimar, Udo

    2010-11-01

    Formaldehyde is one of the most relevant compounds for indoor air pollution. It is toxic, allergenic and carcinogenic and acts already at the ppb level. State-of-the-art detection methods are based on the wet chemical analysis of formaldehyde derivates. This is a complex and time-consuming approach and hinders the collection of real-time data. However, the use of wet chemistry allows for the simple calibration based on formalin solutions. By using gas sensors, online monitoring of indoor air quality is, in principle, possible. To find out whether their performance is good enough, calibration is the first issue to be resolved. Formaldehyde vapor at low concentrations has to be used, and temperature, humidity and flow rate have to be kept constant. This paper discusses the different possibilities of dosing formaldehyde and how to better meet the gas sensor calibration demands. The authors favor the use of an aqueous formaldehyde solution obtained by the depolymerization of paraformaldehyde in combination with a permeation tube used as external reference. Moreover, in the paper it is demonstrated that metal oxide sensors are appropriate detectors to calibrate the system for concentrations even down to 20 ppb. Consequently, the presented system is able to characterize gas sensors and can be used for the development of new devices which monitor indoor air quality.

  11. [Experimental value of formaldehyde exposure to preserve anatomical findings].

    PubMed

    Albertini, P; Mainardi, P; Mazzeo, N; Triassi, M

    2012-01-01

    Formaldehyde, already classified as potentially carcinogen and recently as "human carcinogen" by IARC, is generally used for fixing and preserving anatomical findings. This reason causes a problem of professional exposure for the operators who use the formaldehyde for this purpose. In this work we present the results of the periodical monitoring which is done for the determination of the exposure at formaldehyde in operating theatres and surgeries, where the operator fill the special container with the anatomical findings andformaldehyde for following tests. The measurements have been done using an instrument that continuously measure the concentration of formaldehyde, based on the infrared spectrometry, in 54 rooms which are operating theatres or surgeries in 9 public hospitals in Campania (Italy). The results show that the long-term exposure limits are not exceeded and that the average of the highest values of concentration obtained during its use was 0.15 +/- 0.04 ppm, that is below the limits. It is important to point out that such a limit was never exceeded during every single measurement. Finally, analyzing statistically the data, we can infer that the probability of exceeding the short-term limit is less than 0.1%, when formaldehyde is used for the purposes mentioned above.

  12. Amended safety assessment of formaldehyde and methylene glycol as used in cosmetics.

    PubMed

    Boyer, Ivan J; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2013-01-01

    Formaldehyde and methylene glycol may be used safely in cosmetics if established limits are not exceeded and are safe for use in nail hardeners in the present practices of use and concentration, which include instructions to avoid skin contact. In hair-smoothing products, however, in the present practices of use and concentration, formaldehyde and methylene glycol are unsafe. Methylene glycol is continuously converted to formaldehyde, and vice versa, even at equilibrium, which can be easily shifted by heating, drying, and other conditions to increase the amount of formaldehyde. This rapid, reversible formaldehyde/methylene glycol equilibrium is distinguished from the slow, irreversible release of formaldehyde resulting from the so-called formaldehyde releaser preservatives, which are not addressed in this safety assessment (formaldehyde releasers may continue to be safely used in cosmetics at the levels established in their individual Cosmetic Ingredient Review safety assessments). PMID:24335968

  13. Systematic review of the epidemiology literature on formaldehyde and cancers of the upper respiratory tract

    EPA Science Inventory

    Background: EPA is currently drafting a Toxicological Review of formaldehyde. As part of the comprehensive evaluation of potential hazards associated with exposure to formaldehyde, the potential hazards for cancers of the upper respiratory tract are being evaluated. We are aware ...

  14. Systematic review of the epidemiology literature on formaldehyde and lymphohematopoietic cancers

    EPA Science Inventory

    Background: EPA is currently drafting a Toxicological Review of formaldehyde. As part of the comprehensive evaluation of potential hazards associated with exposure to formaldehyde, the potential hazards for lymphohematopoietic cancers are being evaluated. We are aware of multiple...

  15. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  16. Protective effect of curcumin against formaldehyde-induced genotoxicity in A549 Cell Lines.

    PubMed

    Zhang, Ben-Yan; Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Zhi-Bing

    2013-12-01

    Formaldehyde is ubiquitous in the environment. It is known to be a genotoxic substance. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell lines A549. To test this hypothesis, we investigated the effects of antioxidant on formaldehyde-induced genotoxicity in A549 Cell Lines. Formaldehyde exposure caused induction of DNA-protein cross-links (DPCs). Curcumin is an important antioxidant. Formaldehyde significantly increased malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity. In addition, the activation of NF-κB and AP-1 were induced by formaldehyde treatment. Pretreatment with curcumin counteracted formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated activation of NF-κB and AP-1 in A549 Cell Lines. These results, taken together, suggest that formaldehyde induced genotoxicity through its ROS and lipid peroxidase activity and caused DPCs effects in A549 cells.

  17. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conditions: (a) For the purpose of this section, urea-formaldehyde resins are those produced when 1 mole of urea is made to react with not more than 2 moles of formaldehyde in water solution. (b) The resins...

  18. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, urea-formaldehyde resins are those produced when 1 mole of urea is made to react with not more than 2 moles of formaldehyde in water solution. (b) The resins may be mixed with refined wood pulp...

  19. 21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conditions: (a) For the purpose of this section, urea-formaldehyde resins are those produced when 1 mole of urea is made to react with not more than 2 moles of formaldehyde in water solution. (b) The resins...

  20. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  1. Preparation and Characterization of Au-ZrO2-SiO2 Nanocomposite Spheres and Their Application in Enrichment and Detection of Organophosphorus Agents

    SciTech Connect

    Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-03-01

    Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of orananophosphorous agents. A non-enzymatic electrochemical sensor based on an Au-ZrO{sub 2}-SiO{sub 2} modified electrode was developed for selective detection of orananophosphorous pesticides (OPs). The Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized by hydrolysis and condensation of zirconia n-butoxide (TBOZ) on the surface of SiO{sub 2} spheres and then introduction of gold nanoparticles on the surface. Transmission electron microscope and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite sphere. Fast extraction of OP was achieved by Au-ZrO{sub 2}-SiO{sub 2} modified electrode within 5 min via the specific affinity between zirconia and phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng/mL{sup -1} with a detection limit 0.5 ng/mL{sup -1}. This selective and sensitive method holds great promise for the enrichment and detection of OPs.

  2. Wood dust and formaldehyde exposures in the cabinet-making industry.

    PubMed

    Sass-Kortsak, A M; Holness, D L; Pilger, C W; Nethercott, J R

    1986-12-01

    Time-weighted average (TWA) personal total and respirable dust exposures were determined gravimetrically for 48 subjects in 4 cabinet-making plants. TWA personal formaldehyde exposures also were obtained, with the use of 3M 3750 passive monitors. Selective area sampling for formaldehyde was undertaken using two methods. The results obtained with the passive monitors were compared to the standard chromotropic acid impinger method. Considerable variation was noted in the dust exposures. Cabinet-makers exposed to softwoods were found to have a mean exposure of approximately one half of the current applicable ACGIH TWA-TLV, while hard-wood exposure was twice the applicable TWA-TLV. The highest dust exposures were recorded for those workers sanding, the mean total dust being 2.91 mg/m3 (S.E. 0.70) and respirable dust 0.63 mg/m3 (S.E. 0.20). Sanding operations also were found to produce a higher proportion of respirable dust (22%) than other woodworking operations (6%-14%). Workers in assembly areas also were found to have higher dust exposures, likely reflecting the fact that conventional dust collection devices for stationary woodworking equipment are not appropriate for hand held tools and hand sanding. The importance of making respirable dust measurements is discussed. The poor correlation between paired total and respirable dust concentrations indicates that both measurements should be made. Some potential limitations to respirable wood dust sampling using 10 mm nylon cyclones are noted, however. Area dust concentrations were found to be significantly lower than personal exposures, emphasizing the importance of personal sampling data. Formaldehyde vapor exposures were very low, with a mean of 0.06 ppm (S.E. 0.01).

  3. Health effects of low-level exposure to formaldehyde

    SciTech Connect

    Main, D.M.; Hogan, T.J.

    1983-12-01

    Twenty-one subjects exposed to formaldehyde (at levels between 0.12 and 1.6 parts per million (ppm)) in two mobile trailers and the remaining 18 unexposed workers of the same workforce were examined by questionnaire and spirometry. Symptoms of eye and throat irritation and increased headache and fatigue were significantly more common among the exposed group than the comparison group. Irritation of the nose, chest tightness, and shortness of breath were also more common among the exposed. Spirometry revealed no decrease in ventilatory function among the exposed workers. The significant increase in frequency of individuals with symptoms indicated an adverse health effect from exposure to formaldehyde at levels between 0.12 and 1.6 ppm. This may have implications regarding the adequacy of the US permissable exposure limit value and suggest the need for further examination of the health effects of formaldehyde in the nonoccupational environment.

  4. Formaldehyde--study of indoor air pollution in Austria.

    PubMed

    Koeck, M; Pichler-Semmelrock, F P; Schlacher, R

    1997-09-01

    As part of a long-term study of indoor air pollution, formaldehyde concentrations were determined in 792 apartments following complaints by inhabitants. Measurements were carried out using Draeger tubes as well as the acetyl acetone method. In 157 apartments, HCHO concentrations of more than 0.1 ppm, exceeding the recommended standard values for indoor air concentrations, were determined. The concentrations determined tended to decrease over time. As far as they were caused by furnishings, they were limited to the spaces where these furnishings were installed. In older-style prefabricated houses with foam-filled particle-board wall systems, concentrations of more than 1.0 ppm were determined. In spite of legal regulations governing the release of formaldehyde from substances, preparations and products containing formaldehyde which have been in existence in Austria since 1990, this substance must still be considered as a possible factor of indoor pollution in causing feelings of ill-health. PMID:9386898

  5. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  6. THE DISTRIBUTION OF DEUTERATED FORMALDEHYDE WITHIN ORION-KL

    SciTech Connect

    Favre, Cécile; Bergin, Edwin A.; Neill, Justin L.; Crockett, Nathan R.; Zhang, Qizhou; Lis, Dariusz C.

    2015-08-01

    We report the first high angular resolution imaging (3.″4 × 3.″0) of deuterated formaldehyde (HDCO) toward Orion-KL, carried out with the Submillimeter Array. We find that the spatial distribution of the formaldehyde emission systematically differs from that of methanol: while methanol is found toward the inner part of the region, HDCO is found in colder gas that wraps around the methanol emission on four sides. The HDCO/H{sub 2}CO ratios are determined to be 0.003–0.009 within the region, up to an order of magnitude higher than the D/H measured for methanol. These findings strengthen the previously suggested hypothesis that there are differences in the chemical pathways leading to HDCO (via deuterated gas-phase chemistry) and deuterated methanol (through conversion of formaldehyde into methanol on the surface of icy grain mantles)

  7. An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors.

    PubMed

    He, Longwei; Yang, Xueling; Ren, Mingguang; Kong, Xiuqi; Liu, Yong; Lin, Weiying

    2016-07-21

    An ultra-fast illuminating fluorescent formaldehyde (FA) probe (R6-FA) was designed and synthesized, and it exhibited a significant response to both FA in aqueous solution and as a gas. We have employed R6-FA not only to image FA in living cells, but also to detect FA in dried shiitake mushrooms and indoors for the first time, indicating its broad potential applications for monitoring FA in living systems, the food industry, and the environment. PMID:27398723

  8. Comparison of standard methods and gas chromatography method in determination of formaldehyde emission from MDF bonded with formaldehyde-based resins.

    PubMed

    Kim, Sumin; Kim, Hyun-Joong

    2005-09-01

    Formaldehyde emissions from MDF bonded with urea-formaldehyde resin (UF), melamine-formaldehyde resin (MF) and the co-polycondensation resin of urea-melamine-formaldehyde (UMF) and melamine-formaldehyde, measured by the Japanese standard method of determining formaldehyde emission with a desiccator (JIS A 5908) and the DIN EN 120 (European Committee For Standardization, 1991) method using the perforator value, were used as the typical standard methods. While the UF resin showed a desiccator value of 7.05 ppm and a perforator value of 12.1 mg/100 g panel, the MF resin exhibited a desiccator value of 0.6 ppm and a perforator value of 2.88 mg/100 g panel. According to the Japanese industrial standard and the European standard, the formaldehyde emission level of the MDF panels made with UF resin in this study was E(2) grade. The formaldehyde emission level was dramatically reduced by the addition of MF resin. This is because the addition of formaldehyde to melamine occurs more easily and completely than its addition to urea, even though the condensation reaction of melamine with formaldehyde is similar to that between urea and formaldehyde. These two methods, the desiccator method and the perforator method, produced proportionally equivalent results. Gas chromatography, a more sensitive and advanced method, was also used. The samples used for gas chromatography were gathered during the experiment involving the perforator method. The formaldehyde emission levels obtained from gas chromatography were similar to those obtained from the perforator method. The formaldehyde contents measured by gas chromatography were directly proportional to the perforator values.

  9. The margin of exposure to formaldehyde in alcoholic beverages.

    PubMed

    Monakhova, Yulia B; Jendral, Julien A; Lachenmeier, Dirk W

    2012-06-01

    Formaldehyde has been classified as carcinogenic to humans (WHO IARC group 1). It causes leukaemia and nasopharyngeal cancer, and was described to regularly occur in alcoholic beverages. However, its risk associated with consumption of alcohol has not been systematically studied, so this study will provide the first risk assessment of formaldehyde for consumers of alcoholic beverages.Human dietary intake of formaldehyde via alcoholic beverages in the European Union was estimated based on WHO alcohol consumption data and literature on formaldehyde contents of different beverage groups (beer, wine, spirits, and unrecorded alcohol). The risk assessment was conducted using the margin of exposure (MOE) approach with benchmark doses (BMD) for 10 % effect obtained from dose-response modelling of animal experiments.For tumours in male rats, a BMD of 30 mg kg(-1) body weight per day and a "BMD lower confidence limit" (BMDL) of 23 mg kg(-1) d(-1) were calculated from available long-term animal experiments. The average human exposure to formaldehyde from alcoholic beverages was estimated at 8·10(-5) mg kg(-1) d(-1). Comparing the human exposure with BMDL, the resulting MOE was above 200,000 for average scenarios. Even in the worst-case scenarios, the MOE was never below 10,000, which is considered to be the threshold for public health concerns.The risk assessment shows that the cancer risk from formaldehyde to the alcohol-consuming population is negligible and the priority for risk management (e.g. to reduce the contamination) is very low. The major risk in alcoholic beverages derives from ethanol and acetaldehyde.

  10. Coal as a catalyst in the oxidative decomposition of formaldehyde

    SciTech Connect

    Nehemia, V.; Davidi, S.; Richter, U.B.; Haenel, M.W.; Cohen, H.

    1997-12-31

    Recently it has been reported that molecular hydrogen is released in small, but appreciable concentrations as a result of the low temperature (40--120 C) oxidation of bituminous coal during long term storage. The amounts of hydrogen produced correlates linearly with the amounts of oxygen consumed. An oxidation process promoted by molecular oxygen is generally not expected to produce a reduction product such as hydrogen. It has been suggested that formaldehyde might be formed in the low temperature oxidation of the coal, and that this acts as the hydrogen precursor. Batch reactor studies have proved that formaldehyde undergoes oxidative decomposition with oxygen. The authors now propose that formaldehyde is oxidized by coal-derived hydroperoxides to form dioxirane, which subsequently decomposes into hydrogen and carbon dioxide. It is known that acetone is oxidized by potassium peroxomonosulfate (KHSO{sub 5}), ``oxone`` to dimethyldioxirane, which recently has become an important oxidant in preparative chemistry. According to a theoretical study (published in 1993) the decomposition of dioxirane yielding hydrogen and carbon dioxide is exothermic by {minus}420 kJ/mole. In order to further support their mechanistic proposal, the authors investigated the oxidative decomposition of formaldehyde by tert-butyl hydroperoxide (BuOOH) in the absence and the presence of a German bituminous coal. It is observed that indeed hydrogen and CO{sub 2} are produced in about a 1:1 ratio. A demineralized coal sample was prepared in order to investigate the influence of the mineral matter within the coal on the oxidative decomposition of formaldehyde. The results corroborate the suggestion that the hydrogen emission in the low temperature oxidation of coal originates from formaldehyde oxidation by coal-derived hydroperoxides, both of which appeared to be formed by decomposition of surface oxides within the coal.

  11. Safety in the Chemical Laboratory: Atmospheric Formaldehyde Levels in an Academic Laboratory.

    ERIC Educational Resources Information Center

    Clausz, John C.; And Others

    1984-01-01

    Determined whether improved ventilation and use of "formaldehyde-free" biological specimens could reduce the levels of formaldehyde in air to which students and faculty would be exposed. Both methods were found to be effective in reducing formaldehyde levels in air. (JN)

  12. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  13. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  14. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  15. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  16. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  17. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  18. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  19. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  20. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  1. 21 CFR 177.1460 - Melamine-formaldehyde resins in molded articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Melamine-formaldehyde resins in molded articles... Repeated Use Food Contact Surfaces § 177.1460 Melamine-formaldehyde resins in molded articles. Melamine...-formaldehyde resins are those produced when 1 mole of melamine is made to react with not more than 3 moles...

  2. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde reaction products with... New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... identified generically as formaldehyde reaction products with aryl amine (PMN P-09-546) is subject...

  3. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde reaction products with... New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... identified generically as formaldehyde reaction products with aryl amine (PMN P-09-546) is subject...

  4. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with...

  5. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with...

  6. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with...

  7. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with...

  8. 40 CFR 721.10358 - Formaldehyde reaction products with aryl amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde reaction products with... New Uses for Specific Chemical Substances § 721.10358 Formaldehyde reaction products with aryl amine... identified generically as formaldehyde reaction products with aryl amine (PMN P-09-546) is subject...

  9. 40 CFR 721.3805 - Formaldehyde, reaction products with 1,3-benzenedimethanamine and bisphenol A.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Formaldehyde, reaction products with 1... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3805 Formaldehyde, reaction products... to reporting. (1) The chemical substance identified as formaldehyde, reaction products with...

  10. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  11. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  12. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  13. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  14. 40 CFR 721.7220 - Polymer of substituted phenol, formaldehyde, epichlorohydrin, and disubstituted benzene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., formaldehyde, epichlorohydrin, and disubstituted benzene. 721.7220 Section 721.7220 Protection of Environment..., formaldehyde, epichlorohydrin, and disubstituted benzene. (a) Chemical substance and significant new uses..., formaldehyde, epichlorohydrin, and disubstituted benzene (PMN P-89-1104) is subject to reporting under...

  15. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  16. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  17. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  18. 40 CFR 721.7046 - Formaldehyde, polymer with substituted phenols, glycidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with substituted... New Uses for Specific Chemical Substances § 721.7046 Formaldehyde, polymer with substituted phenols... substance identified as formaldehyde, polymer with substituted phenols, glycidyl ether (PMN P-93-955)...

  19. 40 CFR 721.3807 - Formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with phenol and... Significant New Uses for Specific Chemical Substances § 721.3807 Formaldehyde, polymer with phenol and 1,2,3... chemical substance identified as formaldehyde, polymer with phenol and 1,2,3-propanetriol, methylated...

  20. 40 CFR 721.3810 - Formaldehyde, polymers with substituted phenols (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymers with... New Uses for Specific Chemical Substances § 721.3810 Formaldehyde, polymers with substituted phenols... identified generically as Formaldehyde, polymers with substituted phenols (PMN P-99-0558) is subject...

  1. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins

    PubMed Central

    Ullah, Sami; Bustam, M. A.; Nadeem, M.; Tan, W. L.; Shariff, A. M.

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10. PMID:25436237

  2. Synthesis and thermal degradation studies of melamine formaldehyde resins.

    PubMed

    Ullah, Sami; Bustam, M A; Nadeem, M; Naz, M Y; Tan, W L; Shariff, A M

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.

  3. Occupational exposure to formaldehyde and wood dust and nasopharyngeal carcinoma

    PubMed Central

    Vaughan, T.; Stewart, P.; Teschke, K.; Lynch, C.; Swanson, G; Lyon, J.; Berwick, M.

    2000-01-01

    OBJECTIVES—To investigate whether occupational exposures to formaldehyde and wood dust increase the risk of nasopharyngeal cancer (NPC).
METHODS—A multicentred, population based case-control study was carried out at five cancer registries in the United States participating in the National Cancer Institute's SEER program. Cases (n=196) with a newly diagnosed NPC between 1987 and 1993, and controls (n=244) selected over the same period from the general population through random digit dialing participated in structured telephone interviews which inquired about suspected risk factors for the disease, including a lifetime history of occupational and chemical exposure. Histological type of cancer was abstracted from clinical records of the registries. Potential exposure to formaldehyde and wood dust was assessed on a job by job basis by experienced industrial hygienists who were blinded as to case or control status.
RESULTS—For formaldehyde, after adjusting for cigarette use, race, and other risk factors, a trend of increasing risk of squamous and unspecified epithelial carcinomas was found for increasing duration (p=0.014) and cumulative exposure (p=0.033) but not for maximum exposure concentration. The odds ratio (OR) for people cumulatively exposed to >1.10 ppm-years was 3.0 (95% confidence interval (95% CI) 1.3 to 6.6) compared with those considered unexposed. In analyses limited to jobs considered definitely exposed, these trends became stronger. The associations were most evident among cigarette smokers. By contrast, there was no association between potential exposure to formaldehyde and undifferentiated and non-keratinising carcinomas. There was little evidence that exposure to wood dust increased risk of NPC, as modest crude associations essentially disappeared after control for potential exposure to formaldehyde.
CONCLUSIONS—These results support the hypothesis that occupational exposure to formaldehyde, but not wood dust, increases risk of NPC

  4. Some effects of formaldehyde on the upper respiratory tract

    SciTech Connect

    Ballenger, J.J.

    1984-11-01

    Being highly soluble in water gaseous formaldehyde (HCHO) is virtually completely removed by the nose during nasal respiration so that nasal disease may follow. This report is a review of pertinent information that is known about the effect of formaldehyde on the nose both in animals and humans. It is evident from the literature that rats develop nasal carcinoma at ambient levels of HCHO occasionally encountered by humans and it is hoped that this report will elucidate the possible threat HCHO presents to humans.

  5. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    PubMed

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line.

  6. Contact allergic dermatitis from melamine formaldehyde resins in a patient with a negative patch-test reaction to formaldehyde.

    PubMed

    García Gavin, Juan; Loureiro Martinez, Manuel; Fernandez-Redondo, Virginia; Seoane, Maria-José; Toribio, Jaime

    2008-01-01

    Melamine paper is a basic material used in the furniture industry for home and office interiors. Contact allergic dermatitis from melamine formaldehyde resins (MFRs) should be considered in patients who work on melamine paper impregnation lines. We report a case of a 28-year-old female plywood worker who developed eczema on the dorsal side of her hands and wrists after 2 years of working on the melamine paper impregnation line. She had a relevant positive patch-test reaction to MFR, with a negative reaction to formaldehyde. Contact dermatitis due to MFR is not common, and it is usually related to products that are not fully cured or to close contact with intermediate products on the assembly line. Formaldehyde release from MFR can explain most of the positive responses. To our knowledge, this is the first report of MFR contact allergic dermatitis in a worker on a melamine paper impregnation line. PMID:18413102

  7. Evaluation of methods to reduce formaldehyde levels of cadavers in the dissection laboratory.

    PubMed

    Whitehead, Mark C; Savoia, Maria C

    2008-01-01

    Dissection of conventionally embalmed cadavers exposes students, staff, and faculty to formaldehyde, a probable carcinogen. Therefore, prudent practices should seek to minimize formaldehyde exposure. In this study, we evaluated two commercially available chemicals, InfuTrace and Perfect Solution, for their effectiveness in reducing ambient formaldehyde levels. Four cadavers embalmed conventionally with formaldehyde and/or with the above agents were compared for their formaldehyde levels under conditions that strictly controlled for air circulation and for locations and methods of testing, and during activities that simulated student dissecting. For InfuTrace, one cadaver was reinfused with InfuTrace after initial standard perfusion with formaldehyde; a second cadaver had InfuTrace injected into the thoracic and abdominal body cavities after formaldehyde perfusion. For Perfect Solution, the product was used for embalming a third cadaver in lieu of formaldehyde. For a control, a fourth cadaver was embalmed with the standard formaldehyde solution. Testing of personal and ambient room air samples and of fluid obtained from the cadavers was performed and analyzed in a blinded fashion. Results indicated that both Perfect Solution, substituted for standard formaldehyde embalming, and InfuTrace infused through the vasculature after formaldehyde embalming, resulted in lower concentrations of formaldehyde than embalming with formaldehyde solution alone or in combination with body cavity injection of InfuTrace. These differences in formaldehyde concentrations are consistent across measuring methods, for example, of room air, of breathing zone air during cadaver handling and dissection, and of liquid samples obtained from the cadavers. Perfect Solution yielded suboptimum fixation and a different texture, color, and smell than the formaldehyde treatments.

  8. Using high-temperature formaldehyde sterilization as a model for studying gaseous sterilization.

    PubMed

    Mosley, Gregg A

    2008-01-01

    This study uses the high-temperature formaldehyde sterilization system provided by the Harvey Chemiclave, manufactured by Barnstead Thermolyne Corporation (Dubuque, IA), as a model to investigate certain phenomena associated with gaseous chemical sterilization systems. Although formaldehyde sterilization presents some unique and complex system attributes, the current studies provide helpful insights into general sterilization methods by chemicals in the gaseous state. Both population recovery and fraction negative (FN) techniques were used to assay surviving populations from biological indicators of the organism Geobacillus stearothermophilus following exposure to incremental Chemiclave cycles. Models 5500 and 6000 of the Barnstead/Thermolyne Chemiclave were used in the study. Reusable instruments such as scalers, explorers, and various hinged pieces were tested in minimum versus maximum load studies. Population recovery study results demonstrated that lethality rates increase with time throughout the Chemiclave sterilization process and that there are significant variations in lethality according to load location. The population recovery data in conjunction with the FN studies and temperature data confirm that one-half the full-cycle time is not a good estimator of one-half the full-cycle lethality because lethality curves are concave downward and lethality varies by load location. This conclusion can also be applied to other types of gaseous, chemical sterilization such as ethylene oxide. The work outlined in this study was a result of investigations into the parameters affecting formaldehyde chemical vapor sterilization with the Harvey Chemiclave sterilizer. During these studies, it became apparent that results clearly depicted the effects of continued acceleration of the rate of microbial lethality, as well as variations in delivered lethality as a function of position in the sterilizer load. This publication focuses on these observations because they are

  9. Allergic contact dermatitis from formaldehyde textile resins in surgical uniforms and nonwoven textile masks.

    PubMed

    Donovan, Jeff; Skotnicki-Grant, Sandy

    2007-03-01

    Despite a trend for reduction in the concentration of free formaldehyde in textiles, formaldehyde textile resin (FTR) allergic contact dermatitis (ACD) remains an important clinical issue and is likely underdiagnosed. Patients with FTR ACD may react to formaldehyde released from the resin or to the resin itself. Screening with formaldehyde and ethyleneurea/melamine formaldehyde resin will uncover most cases. Patch testing with the suspected offending fabric most often leads to false-negative results. We present a case of a 49-year-old pediatrician who developed a severe widespread dermatitis caused by contact with FTRs from her hospital "greens" ("scrubs") and mask.

  10. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.

    PubMed

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S; Weidner, Donald J

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  11. Contribution of β' and β precipitates to hardening in as-solutionized Ag-20Pd-12Au-14.5Cu alloys for dental prosthesis applications.

    PubMed

    Kim, Yonghwan; Niinomi, Mitsuo; Hieda, Junko; Nakai, Masaaki; Cho, Ken; Fukui, Hisao

    2014-04-01

    Dental Ag-20Pd-12Au-14.5Cu alloys exhibit a unique hardening behavior, which the mechanical strengths enhance significantly which enhances the mechanical strength significantly after high-temperature (1123K) solution treatment without aging treatment. The mechanism of the unique hardening is not clear. The contribution of two precipitates (β' and β phases) to the unique hardening behavior in the as-solutionized Ag-20Pd-12Au-14.5Cu alloys was investigated. In addition, the chemical composition of the β' phase was investigated. The fine β' phase densely precipitates in a matrix. The β' phase (semi-coherent precipitate), which causes lattice strain, contributes greatly to the unique hardening behavior. On the other hand, the coarse β phase sparsely precipitates in the matrix. The contribution of the β phase (incoherent precipitate), which does not cause lattice strain, is small. The chemical composition of the β' phase was determined. This study reveals that the fine β' phase precipitated by high-temperature solution treatment leads to the unique hardening behavior in dental Ag-20Pd-12Au-14.5Cu alloys in the viewpoints of the lattice strain contrast and interface coherency. It is expected to make the heat treatment process more practical for hardening. The determined chemical composition of β' phase would be helpful to study an unknown formation process of β' phase.

  12. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    PubMed Central

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  13. Green synthesis, characterization of Au-Ag core-shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies

    NASA Astrophysics Data System (ADS)

    Kirubha, E.; Palanisamy, P. K.

    2014-12-01

    In recent years there has been excessive progress in the ‘green’ chemistry approach for the synthesis of gold and silver nanoparticles. Bimetallic nanoparticles have gained special significance due to their unique tunable optical properties. Herein we report a facile one-pot, eco-friendly synthesis of Au-Ag bimetallic core-shell nanoparticles using gripe water as reducing as well as stabilizing agent. The as-synthesized Au-Ag nanoparticles are characterized using UV-Vis spectroscopy to determine the surface plasmon resonance, and using transmission electron microscopy to study the morphology and the particle size. The optical nonlinearity of the bimetallic nanoparticles investigated by z-scan technique using femtosecond Ti:sapphire is in the order of 109. The nonlinear optical parameters such as the nonlinear refractive index n2, nonlinear absorption coefficient β and the third order nonlinear susceptibility χ3 are measured for various wavelengths from 700 nm to 950 nm. The Au-Ag nanoparticles are also used in surface enhanced Raman spectroscopic studies to enhance the Raman signals of rhodamine 6G.

  14. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    NASA Astrophysics Data System (ADS)

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.

  15. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures.

    PubMed

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S; Weidner, Donald J

    2016-01-01

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K-B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10-15 μm) has been achieved at energies of 66 and 81 keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DAC can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71 GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. The coupling of sagittally bent Laue crystals with K-B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source. PMID:26902122

  16. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    SciTech Connect

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-02-04

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.

  17. High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures

    DOE PAGES

    Hong, Xinguo; Ehm, Lars; Zhong, Zhong; Ghose, Sanjit; Duffy, Thomas S.; Weidner, Donald J.

    2016-02-23

    We report development of micro-focusing optics for high-energy x-rays by combining a sagittally bent Laue crystal monchromator with Kirkpatrick-Baez (K–B) X-ray focusing mirrors. The optical system is able to provide a clean, high-flux X-ray beam suitable for pair distribution function (PDF) measurements at high pressure using a diamond anvil cell (DAC). A focused beam of moderate size (10–15 μm) has been achieved at energies of 66 and 81keV. PDF data for nanocrystalline platinum (n-Pt) were collected at 12.5 GPa with a single 5 s X-ray exposure, showing that the in-situ compression, decompression, and relaxation behavior of samples in the DACmore » can be investigated with this technique. PDFs of n-Pt and nano Au (n-Au) under quasi-hydrostatic loading to as high as 71GPa indicate the existence of substantial reduction of grain or domain size for Pt and Au nanoparticles at pressures below 10 GPa. In conclusion, the coupling of sagittally bent Laue crystals with K–B mirrors provides a useful means to focus high-energy synchrotron X-rays from a bending magnet or wiggler source.« less

  18. Development of Formaldehyde Biosensor for Determination of Formalin in Fish Samples; Malabar Red Snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol)

    PubMed Central

    Noor Aini, Bohari; Siddiquee, Shafiquzzaman; Ampon, Kamaruzaman

    2016-01-01

    Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD+ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique. PMID:27376338

  19. Development of Formaldehyde Biosensor for Determination of Formalin in Fish Samples; Malabar Red Snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol).

    PubMed

    Noor Aini, Bohari; Siddiquee, Shafiquzzaman; Ampon, Kamaruzaman

    2016-06-30

    Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD⁺ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique.

  20. Development of Formaldehyde Biosensor for Determination of Formalin in Fish Samples; Malabar Red Snapper (Lutjanus malabaricus) and Longtail Tuna (Thunnus tonggol).

    PubMed

    Noor Aini, Bohari; Siddiquee, Shafiquzzaman; Ampon, Kamaruzaman

    2016-01-01

    Electrochemical biosensors are widely recognized in biosensing devices due to the fact that gives a direct, reliable, and reproducible measurement within a short period. During bio-interaction process and the generation of electrons, it produces electrochemical signals which can be measured using an electrochemical detector. A formaldehyde biosensor was successfully developed by depositing an ionic liquid (IL) (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), gold nanoparticles (AuNPs), and chitosan (CHIT), onto a glassy carbon electrode (GCE). The developed formaldehyde biosensor was analyzed for sensitivity, reproducibility, storage stability, and detection limits. Methylene blue was used as a redox indicator for increasing the electron transfer in the electrochemical cell. The developed biosensor measured the NADH electron from the NAD⁺ reduction at a potential of 0.4 V. Under optimal conditions, the differential pulse voltammetry (DPV) method detected a wider linear range of formaldehyde concentrations from 0.01 to 10 ppm within 5 s, with a detection limit of 0.1 ppm. The proposed method was successfully detected with the presence of formalin in fish samples, Lutjanus malabaricus and Thunnus Tonggol. The proposed method is a simple, rapid, and highly accurate, compared to the existing technique. PMID:27376338

  1. Susceptibility of Mycobacterium immunogenum and Pseudomonas fluorescens to formaldehyde and non-formaldehyde biocides in semi-synthetic metalworking fluids.

    PubMed

    Selvaraju, Suresh B; Khan, Izhar U H; Yadav, Jagjit S

    2011-01-01

    Mycobacterium immunogenum, a newly identified member of the Mycobacterium chelonae_M. abscessus complex is considered a potential etiological agent for hypersensitivity pneumonitis (HP) in machine workers exposed to contaminated metalworking fluid (MWF). This study investigated the biocidal efficacy of the frequently applied commercial formaldehyde-releasing (HCHO) biocides Grotan and Bioban CS 1135 and non-HCHO type biocides Kathon 886 MW (isothiazolone) and Preventol CMK 40 (phenolic) toward this emerging mycobacterial species (M. immunogenum) in HP-linked MWFs, alone and in presence of a representative of the Gram-negative bacterial contaminants, Pseudomonas fluorescens, using two semi-synthetic MWF matrices (designated Fluid A and Fluid B). Relative biocide susceptibility analysis indicated M immunogenum to be comparatively more resistant (2-1600 fold) than P. fluorescens to the tested biocides under the varied test conditions. In terms of minimum inhibitory concentration, Kathon was the most effective biocide against M. immunogenum. Fluid factors had a major effect on the biocide susceptibility. Fluid A formulation provided greater protective advantage to the test organisms than Fluid B. Fluid dialysis (Fluid A) led to an increased biocidal efficacy of Grotan, Kathon and Preventol against M. immunogenum further implying the role of native fluid components. Used fluid matrix, in general, increased the resistance of the two test organisms against the biocides, with certain exceptions. M. immunogenum resistance increased in presence of the co-contaminant P. fluorescens. Collectively, the results show a multifactorial nature of the biocide susceptibility of MWF-colonizing mycobacteria and highlight the importance of more rigorous efficacy testing and validation of biocides prior to and during their application in metalworking fluid operations. PMID:21340010

  2. Promotion effect of Pd on TiO2 for visible light photocatalytic degradation of gaseous formaldehyde.

    PubMed

    Wu, Ren-Jang; Liu, Yung-Shiuan; Lai, Hsiao-Fang; Wang, Jhe-Hao; Chavali, Murthy

    2014-09-01

    TiO2 and Pd doped TiO2 (Pd/TiO2) nanoparticles were prepared by sol gel method. Pd/TiO2 material was characterized by XRD, TEM, TPR, XPS and BET. From XRD data, the crystalline type of TiO2 is known to as Anatase type. TiO2 and Pd/TiO2 were in the order of 9-10 nm and 10-13 nm respectively. The photocatalytic activities of the TiO2 and Pd/TiO2 nanomaterials were evaluated and compared for the photodegradation of formaldehyde (HCHO). HCHO degradation on Pd/TiO2 catalyst, at 60 min, the degradation rate of gaseous HCHO is 95%. Using Pd/TiO2, the rate was faster than TiO2 or doped with other metals (Au/TiO2; Ag/TiO2; Pt/TiO2).

  3. An Alternative to Formaldehyde. Avoiding the Carcinogenic Risks.

    ERIC Educational Resources Information Center

    Ealy, Julie B.

    1991-01-01

    Demonstrations in which glyoxal may be substituted for formaldehyde, a known carcinogen, are presented. An acid-base clock reaction and a copper mirror on the inside of a test tube are described. Directions for the demonstrations and safety precautions are included. (KR)

  4. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  5. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  6. Sol-gel based sensor for selective formaldehyde determination.

    PubMed

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Séamus P J

    2010-02-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with beta-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  7. IRIS Toxicological Review of Formaldehyde (Interagency Science Consultation Draft)

    EPA Science Inventory

    On June 2, 2010, the Toxicological Review of Formaldehyde and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices...

  8. The methods of formaldehyde emission testing of engine: A review

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Geng, Peng; Cao, Erming; Wei, Lijiang

    2015-12-01

    A number of measurements have been provided to detect formaldehyde in the atmosphere, but there are no clear unified standards in engine exhaust. Nowadays, formaldehyde, an unregulated emission from methanol engine, has been attracting increasing attention by researchers. This paper presents the detection techniques for formaldehyde emitted from the engines applied in recent market, introducing the approaches in terms of unregulated emission tests of formaldehyde, which involved gas chromatography, liquid chromatography, chromatography-mass spectrometry, chromatography-spectrum, Fourier infrared spectroscopy and spectrophotometry. The author also introduces the comparison regarding to the advantages of the existing detection techniques based on the principle, to compare with engine exhaust sampling method, the treatment in advance of detection, obtaining approaches accessing to the qualitative and quantitative analysis of chromatograms or spectra. The accuratest result obtained was chromatography though it cannot be used continuously. It also can be utilized to develop high requirements of emissions and other regulations. Fourier infrared spectroscopy has the advantage of continuous detection for a variety of unregulated emissions and can be applied to the bench in variable condition. However, its accuracy is not as good as chromatography. As the conclusion, a detection technique is chosen based on different requirements.

  9. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases.

    PubMed

    Karmakar, Saswata; Harcourt, Emily M; Hewings, David S; Scherer, Florian; Lovejoy, Alexander F; Kurtz, David M; Ehrenschwender, Thomas; Barandun, Luzi J; Roost, Caroline; Alizadeh, Ash A; Kool, Eric T

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  10. Organocatalytic removal of formaldehyde adducts from RNA and DNA bases

    NASA Astrophysics Data System (ADS)

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-09-01

    Formaldehyde is universally used to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here, we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, while avoiding the high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5-2.4-fold using a catalyst under optimized conditions and by 7-25-fold compared with a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens.

  11. Organocatalytic Removal of Formaldehyde Adducts from RNA and DNA Bases

    PubMed Central

    Karmakar, Saswata; Harcourt, Emily M.; Hewings, David S.; Lovejoy, Alexander F.; Kurtz, David M.; Ehrenschwender, Thomas; Barandun, Luzi J.; Roost, Caroline; Alizadeh, Ash A.; Kool, Eric T.

    2015-01-01

    Formaldehyde is universally employed to fix tissue specimens, where it forms hemiaminal and aminal adducts with biomolecules, hindering the ability to retrieve molecular information. Common methods for removing these adducts involve extended heating, which can cause extensive degradation of nucleic acids, particularly RNA. Here we show that water-soluble bifunctional catalysts (anthranilates and phosphanilates) speed the reversal of formaldehyde adducts of mononucleotides over standard buffers. Studies with formaldehyde-treated RNA oligonucleotides show that the catalysts enhance adduct removal, restoring unmodified RNA at 37 °C even when extensively modified, and avoiding high temperatures that promote RNA degradation. Experiments with formalin-fixed, paraffin-embedded cell samples show that the catalysis is compatible with common RNA extraction protocols, with detectable RNA yields increased by 1.5–2.4 fold using a catalyst under optimized conditions, and by 7–25 fold compared to a commercial kit. Such catalytic strategies show promise for general use in reversing formaldehyde adducts in clinical specimens. PMID:26291948

  12. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Kim, Seong Kyu; Park, Sungho

    2016-06-01

    We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications.We developed a new method for synthesizing multiblock Ag-Au-Ag nanorods using Pt nanoframes that had been deposited on the edges of Au nanorod seeds. As a function of Au etching time, the length of the Au nanorod decreased symmetrically starting from the two ends, leading to the formation of empty inner space at the ends. Subsequent reduction of Ag ions could be selectively performed in the inner space confined by Pt nanoframes and the resulting Ag-Au-Ag nanorods exhibited characteristic LSPR modes originating from each block component (in a transverse direction) and SPR coupling (in a longitudinal direction). The high quality of the resulting multiblock nanorods enabled observation of the longitudinal quadrupole mode that was induced by Ag-Au SPR coupling in a long axis. The mode exhibited high sensitivity in accordance with the change in the surrounding media, demonstrating great potential for sensor applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03484e

  13. Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction

    NASA Astrophysics Data System (ADS)

    Fangyuan, Wang; Guiqin, Li

    2016-07-01

    The spin transport properties of S-Au-S junction and Au-Au-Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S-Au-S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au-Au-Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au-Au-Au junction may transform information between distance, bias, and electron spin. Those unique properties make them potential candidates for a logical nanocircuit. Project supported by the National Basic Research Program of China (Grants No. 2011CB921602) and the National Natural Science Foundation of China (Grants No. 20121318158).

  14. Engineering and Analysis of a Saccharomyces cerevisiae Strain That Uses Formaldehyde as an Auxiliary Substrate▿

    PubMed Central

    Baerends, Richard J. S.; de Hulster, Erik; Geertman, Jan-Maarten A.; Daran, Jean-Marc; van Maris, Antonius J. A.; Veenhuis, Marten; van der Klei, Ida J.; Pronk, Jack T.

    2008-01-01

    We demonstrated that formaldehyde can be efficiently coutilized by an engineered Saccharomyces cerevisiae strain that expresses Hansenula polymorpha genes encoding formaldehyde dehydrogenase (FLD1) and formate dehydrogenase (FMD), in contrast to wild-type strains. Initial chemostat experiments showed that the engineered strain coutilized formaldehyde with glucose, but these mixed-substrate cultures failed to reach steady-state conditions and did not exhibit an increased biomass yield on glucose. Subsequent transcriptome analyses of chemostat cultures of the engineered strain, grown on glucose-formaldehyde mixtures, indicated that the presence of formaldehyde in the feed caused biotin limitations. Further transcriptome analysis demonstrated that this biotin inactivation was prevented by using separate formaldehyde and vitamin feeds. Using this approach, steady-state glucose-limited chemostat cultures were obtained that coutilized glucose and formaldehyde. Coutilization of formaldehyde under these conditions resulted in an enhanced biomass yield of the glucose-limited cultures. The biomass yield was quantitatively consistent with the use of formaldehyde as an auxiliary substrate that generates NADH and subsequently, via oxidative phosphorylation, ATP. On an electron pair basis, the biomass yield increase observed with formaldehyde was larger than that observed previously for formate, which is tentatively explained by different modes of formate and formaldehyde transport in S. cerevisiae. PMID:18378663

  15. A mathematical model for the absorption and metabolism of formaldehyde vapour by humans

    SciTech Connect

    Franks, S.J. . E-mail: Susan.Franks@hsl.gov.uk

    2005-08-15

    Epidemiological studies of occupational exposure to formaldehyde gas (HCHO) have suggested possible links between concentration and duration of exposure, and elevated risks of leukaemia and other cancers at sites distant from the site of contact. Formaldehyde is a highly water soluble gas which, when inhaled, reacts rapidly at the site of contact and is quickly metabolised by enzymes in the respiratory tissue. Inhaled formaldehyde is almost entirely absorbed in the respiratory tract and, for formaldehyde induced toxicity to occur at distant sites, HCHO must enter the blood and be transported to systemic tissues via the circulatory system. A mathematical model describing the absorption and removal of inhaled formaldehyde in the nasal tissue is therefore formulated to predict the proportion of formaldehyde entering into the blood. Accounting for the spatial distribution of the formaldehyde concentration and the metabolic activity within the mucosa, the concentration of formaldehyde in the mucus, the epithelium and the blood has been determined and was found to attain a steady-state profile within a few seconds of exposure. The increase of the formaldehyde concentration in the blood was predicted to be insignificant compared with the existing pre-exposure levels in the body, indicating that formaldehyde is rapidly removed in the nasal tissue. The results of the model thus suggest that it is highly unlikely that following inhalation by the nose, formaldehyde itself will cause toxicity at sites other than the initial site of contact in the respiratory tract.

  16. Lack of bronchomotor response to up to 3 ppm formaldehyde in subjects with asthma

    SciTech Connect

    Sheppard, D.; Eschenbacher, W.L.; Epstein, J.

    1984-10-01

    A study was undertaken to determine whether exposure to concentrations of formaldehyde occasionally encountered in polluted indoor air would cause bronchoconstriction in subjects with mild asthma. In seven subjects the increase in specific airways resistance (SR/sub aw/) caused by inhalation of 1 ppm formaldehyde for 10 min was compared with the response caused by inhalation of formaldehyde-free air. Also, the increase in SR/sub aw/ caused by inhalation of 1 and 3 ppm formaldehyde during moderate exercise for 10 min was compared with the response caused by inhalation of formaldehyde-free air during exercise for 10 min. Inhalation of formaldehyde at rest and during exercise did not cause a signficant increase in SR/aw/ in the subjects. It is concluded that brief exposure to these concentrations of formaldehyde, even in association with moderate exercise, is unlikely by itself to cause significant bronchoconstriction in most subjects with mild asthma.

  17. Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry.

    PubMed

    Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal

    2005-06-01

    An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).

  18. Occupational exposure to formaldehyde and alterations in lymphocyte subsets

    PubMed Central

    Hosgood, H. Dean; Zhang, Luoping; Tang, Xiaojiang; Vermeulen, Roel; Hao, Zhenyue; Shen, Min; Qiu, Chuangyi; Ge, Yichen; Hua, Ming; Ji, Zhiying; Li, Senhua; Xiong, Jun; Reiss, Boris; Liu, Songwang; Xin, Kerry X.; Azuma, Mariko; Xie, Yuxuan; Freeman, Laura Beane; Ruan, Xiaolin; Guo, Weihong; Galvan, Noe; Blair, Aaron; Li, Laiyu; Huang, Hanlin; Smith, Martyn T.; Rothman, Nathaniel; Lan, Qing

    2012-01-01

    Background Formaldehyde is used in many occupational settings, most notably in manufacturing, health care, and embalming. Formaldehyde has been classified as a human carcinogen, but its mechanism of action remains uncertain. Methods We carried out a cross-sectional study of 43 formaldehyde exposed-workers and 51 unexposed age and sex-matched controls in Guangdong, China to study formaldehyde’s early biologic effects. To follow-up our previous report that the total lymphocyte count was decreased in formaldehyde-exposed workers compared to controls, we evaluated each major lymphocyte subset (i.e., CD4+ T cells, CD8+ T cells, natural killer (NK) cells, and B cells) and T cell lymphocyte subset (CD4+ naïve and memory T cells, CD8+ naïve and memory T cells, and regulatory T cells). Linear regression of each subset was used to test for differences between exposed workers and controls, adjusting for potential confounders. Results Total NK cell and T cell counts were about 24% (p=0.037) and 16% (p=0.0042) lower, respectively, among exposed workers. Among certain T cell subsets, decreased counts among exposed workers were observed for CD8+ T cells (p=0.026), CD8+ effector memory T cells (p=0.018), and regulatory T cells (CD4+FoxP3+: p=0.04; CD25+FoxP3+: p=0.008). Conclusions Formaldehyde exposed-workers experienced decreased counts of NK cells, regulatory T cells, and CD8+ effector memory T cells; however, due to the small sample size these findings need to be confirmed in larger studies. PMID:22767408

  19. Anthracycline-Formaldehyde Conjugates and Their Targeted Prodrugs

    NASA Astrophysics Data System (ADS)

    Koch, Tad H.; Barthel, Benjamin L.; Kalet, Brian T.; Rudnicki, Daniel L.; Post, Glen C.; Burkhart, David J.

    The sequence of research leading to a proposal for anthracycline cross-linking of DNA is presented. The clinical anthracycline antitumor drugs are anthraquinones, and as such are redox active. Their redox chemistry leads to induction of oxidative stress and drug metabolites. An intermediate in reductive glycosidic cleavage is a quinone methide, once proposed as an alkylating agent of DNA. Subsequent research now implicates formaldehyde as a mediator of anthracycline-DNA cross-linking. The cross-link at 5'-GC-3' sites consists of a covalent linkage from the amino group of the anthracycline to the 2-amino group of the G-base through a methylene from formaldehyde, hydrogen bonding from the 9-OH to the G-base on the opposing strand, and hydrophobic interactions through intercalation of the anthraquinone. The combination of these interactions has been described as a virtual cross-link of DNA. The origin of the formaldehyde in vivo remains a mystery. In vitro, doxorubicin reacts with formaldehyde to give firstly a monomeric oxazolidine, doxazolidine, and secondly a dimeric oxazolidine, doxoform. Doxorubicin reacts with formaldehyde in the presence of salicylamide to give the N-Mannich base conjugate, doxsaliform. Doxsaliform is several fold more active in tumor cell growth inhibition than doxorubicin, but doxazolidine and doxoform are orders of magnitude more active than doxorubicin. Exploratory research on the potential for doxsaliform and doxazolidine as targeted cytotoxins is presented. A promising lead design is pentyl PABC-Doxaz, targeted to a carboxylesterase enzyme overexpressed in liver cancer cells and/or colon cancer cells.

  20. Electrocatalytic oxidation of small organic molecules on Pt-Au nanoparticles supported by POMAN-MWCNTs

    NASA Astrophysics Data System (ADS)

    Dong, Qi-Zhi; Li, Li-Li; Chen, Qian-Shan; Guo, Can-Cheng; Yu, Gang

    2015-08-01

    Poly ( o-methoxyaniline) and multi-wall carbon nanotube composite (POMAN-MWCNT) films were deposited onto the platinum (Pt) electrode surface by cyclic voltammetry (CV). Then, platinum and gold (Au) nano-particles were deposited by CV and the double potential deposition method to modify the composite film on the Pt electrode. The morphology of the composite film was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and its electrocatalytic activity toward methanol and formaldehyde oxidation was studied by CV and other electrochemical methods. The results demonstrated that Pt-Au/POMAN-MWCNTs obtained by the double potential deposition method had a much higher catalytic activity and better anti-poisoning property for electrooxidation of methanol and formaldehyde. The improved catalytic performance could be attributed to the uniformly distribution of duel-metal nanoparticles and the synergistic effect between Pt and Au metals. The abstract should briefly state the problem or purpose of the research, indicate the methodology used, summarize the principal findings and major conclusions.

  1. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method.

  2. Heatless synthesis of well dispersible Au nanoparticles using pectin biopolymer.

    PubMed

    Ahmed, Hanan B; Zahran, M K; Emam, Hossam E

    2016-10-01

    Due to its potency to utilize in enormous applications, preparation of nanogold is of interest. Moreover, getting of highly dispersed nanogold with small size is extremely needful in specific fields. Herein, Au nanocolloid was prepared using alkali catalyzed pectin biopolymer. Pectin was concurrently used as reductant for Au ions and stabilizer for the produced Au nanoparticles (AuNPs). Reducing sugars were evaluated in the colloidal solution reflecting the role alkali in catalytic degradation of pectin to produce much powerful reducing moieties. The obtained Au nanocolloid was monitored via changing in color, UV-visible spectral and transmission electron microscopy. Using of NaOH as strong alkali achieving rapid rate of degradation reaction, resulted in 0.45g/L reducing sugars from 0.2g/L pectin which produced AuNPs with mean size of 6.5nm. In case of Na2CO3 which attained slow degradation rate led to, slightly low reducing sugar content (0.41g/L), fabricated comparatively size of AuNPs (7.5nm). In both cases, well distributed AuNPs was obtained with suitable stabilization up to 5 months and Na2CO3 exhibited higher stability. The current successful method used to produce small sized AuNPs with high dispersion is an innovative, one-step, easily, costless, energy saving and eco-friendly method. PMID:27212212

  3. The vital function of Fe3O4@Au nanocomposites for hydrolase biosensor design and its application in detection of methyl parathion

    NASA Astrophysics Data System (ADS)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe; Du, Dan

    2013-01-01

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned by OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng mL-1 and a detection limit of 0.1 ng mL-1. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P-S containing pesticides and provides a promising strategy to construct a robust biosensor.A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH-NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike

  4. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  5. Structure of SiAu16: Can a silicon atom be stabilized in a gold cage?

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Wang, Qian; Chen, Gang; Jena, Puru

    2007-12-01

    Nanostructures of Au and Si as well as Au-Si hybrid structures are topics of great current interest from both scientific and technological points of view. Recent discovery of Au clusters having fullerenelike geometries and the possibility of endohedral complexes with Si atoms inside the Au cage opens new possibilities for designing Au-Si nanostructures. Using ab initio simulated annealing method we have examined the stability of Si -Au16 endohedral complex. Contrary to what we believed, we find that the endohedral configuration is metastable and the structure where Si atom binds to the exterior surface of the Au16 cage is the lowest energy structure. The bonding of Si to Au cluster mimics its behavior of that in bulk and liquid phase of Au. In addition, doping of Si in high concentration would cause fracture and embrittlement in gold nanostructures just as it does in the bulk phase. Covalent bonding between Au-Au and Au-Si is found to be a dominant feature in the stability of the Au-Si nanostructures. Our study provides insight that may be useful in fabricating hybrid Au-Si nanostructures for applications microelectronics, catalysis, biomedine, and jewelry industry.

  6. Ag-Modified In₂O₃/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance.

    PubMed

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  7. Ag-Modified In₂O₃/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance.

    PubMed

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-08-14

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  8. An investigation of the radiolytic stability of a resorcinol- formaldehyde ion exchange resin

    SciTech Connect

    Crawford, C.L.; Bibler, N.E.; Bibler, J.P.

    1993-12-31

    Radiolytic stability of a resorcinol-formaldehyde polycondensation-type cation exchange resin was investigated for up to lE09 rads total dose. The resorcinol-formaldehyde resin is a resin that has potential cesium decontamination applications at Pacific Northwest and Savannah River. We have determined both radiation and storage effects on performance of the resin using 101-AW Hanford simulant and ASTM Type-I water. Distribution coefficient determinations, total carbon analysis, and physical observations lead us to conclude that radiation up to lE08 rads does not significantly affect the performance of the resin. The resin is more stable to radiation in water than in 101-AW Hanford simulant. Also radiation or storage does not affect the thermal stability of the resin. Gas production rates for several resin slurries increased in the order of resin/101-AW Hanford simulant, resin/ASTM water, and resin/0.5 M HNO{sub 3}. H{sub 2} is produced from radiolysis of resin in 101-AW Hanford simulant with a G value of G(H{sub 2}) of 0.11 {plus_minus} 0.02 molecules/100eV and in 0.5 M HNO{sub 3} with a G value of G(H{sub 2}) of 0.27 {plus_minus} 0.02 molecules/lOOeV.

  9. Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts

    NASA Astrophysics Data System (ADS)

    Li, Han-Jung; Lausche, Adam C.; Peterson, Andrew A.; Hansen, Heine A.; Studt, Felix; Bligaard, Thomas

    2015-11-01

    Direct dehydrogenation of methanol to produce anhydrous formaldehyde is investigated using periodic density functional theory (DFT) and combining the microkinetic model to estimate rates and selectivities on stepped (211) surfaces under a desired reaction condition. Binding energies of reaction intermediates and transition state energies for each elementary reaction can be accurately scaled with CHO and OH binding energies as the only descriptors. Based on these two descriptors, a steady-state microkinetic model is constructed with a piecewise adsorbate-adsorbate interaction model that explicitly includes the effects of adsorbate coverage on the rates and selectivities as well as the volcano plots are obtained. Our results show that most of the stepped (211) pure-metallic surfaces such as Au, Pt, Pd, Rh, Ru, Ni, Fe, and Co are located in a region of low activity and selectivity toward CH2O production due to higher rate for CH2O dehydrogenation than CH2O desorption. The selectivities toward CH2O production on Zn, Cu, and Ag surfaces are located on the boundary between the high and low selectivity regions. To find suitable catalysts for anhydrous CH2O production, a large number of A3B-type transition metal alloys are screened based on their predicted rates and selectivities, as well as their estimated stabilities and prices. We finally propose several promising candidates for the dehydrogenation of CH3OH.

  10. Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Tang, Zheng; Zhang, Weidong; Li, Yi; Huang, Zuming; Guo, Huishan; Wu, Feng; Li, Jinjun

    2016-02-01

    This study aimed to optimize synthesis of gold catalyst supported on nanosized iron oxide and to evaluate the activity in oxidation of carbon monoxide and formaldehyde. Nanosized iron oxide was prepared from a colloidal dispersion of hydrous iron oxide through a dispersion-precipitation method. Gold was adsorbed onto nanosized iron oxide under self-generated basic conditions. Characterization results indicate that the iron oxide consisted of hematite/maghemite composite with primary particle sizes of 6-8 nm. Gold was highly dispersed on the surface of the support. The catalysts showed good activity in the oxidation of airborne carbon monoxide and formaldehyde. The optimal pH for their synthesis was ∼7. The catalytic performance could be enhanced by extending the adsorption time of gold species on the support within 21 h. The optimized catalyst was capable of achieving complete oxidation of 1% carbon monoxide at -20 °C and 33% conversion of 450 ppm formaldehyde at ambient temperature. The catalyst may be applicable to indoor air purification.

  11. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells.

    PubMed

    Zerin, Tamanna; Kim, Jin-Sun; Gil, Hyo-Wook; Song, Ho-Yeon; Hong, Sae-Yong

    2015-12-01

    Methanol ingestion is neurotoxic in humans due to its metabolites, formaldehyde and formic acid. Here, we compared the cytotoxicity of methanol and its metabolites on different types of cells. While methanol and formic acid did not affect the viability of the cells, formaldehyde (200-800 μg/mL) was strongly cytotoxic in all cell types tested. We investigated the effects of formaldehyde on oxidative stress, mitochondrial respiratory functions, and apoptosis on the sensitive neuronal SK-N-SH cells. Oxidative stress was induced after 2 h of formaldehyde exposure. Formaldehyde at a concentration of 400 μg/mL for 12 h of treatment greatly reduced cellular adenosine triphosphate (ATP) levels. Confocal microscopy indicated that the mitochondrial membrane potential (MMP) was dose-dependently reduced by formaldehyde. A marked and dose-dependent inhibition of mitochondrial respiratory enzymes, viz., NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), and oxidative stress-sensitive aconitase was also detected following treatment with formaldehyde. Furthermore, formaldehyde caused a concentration-dependent increase in nuclear fragmentation and in the activities of the apoptosis-initiator caspase-9 and apoptosis-effector caspase-3/-7, indicating apoptosis progression. Our data suggests that formaldehyde exerts strong cytotoxicity, at least in part, by inducing oxidative stress, mitochondrial dysfunction, and eventually apoptosis. Changes in mitochondrial respiratory function and oxidative stress by formaldehyde may therefore be critical in methanol-induced toxicity.

  12. Selenium pretreatment attenuates formaldehyde-induced genotoxicity in A549 cell lines.

    PubMed

    Shi, Yu-Qin; Chen, Xin; Dai, Juan; Jiang, Zhong-Fa; Li, Ning; Zhang, Ben-Yan; Zhang, Zhi-Bing

    2014-11-01

    Formaldehyde is a major industrial chemical and has been extensively used in the manufacture of synthetic resins and chemicals. Numerous studies indicate that formaldehyde can induce various genotoxic effects in vitro and in vivo. A recent study indicated that formaldehyde impaired antioxidant cellular defences and enhanced lipid peroxidation. Selenium is an important antioxidant. We hypothesized that reactive oxygen species (ROS) and lipid peroxidation are involved in formaldehyde-induced genotoxicity in human lung cancer cell line, A549 cell line. To test the hypothesis, we investigated the effects of selenium on formaldehyde-induced genotoxicity in A549 cell lines. The results indicated that exposure to formaldehyde showed the induction of DNA-protein cross-links (DPCs). Formaldehyde significantly increased the malondialdehyde levels and decreased the activities of superoxide dismutase and glutathione peroxidase. In addition, the activations of necrosis factor-κB (NF-κB) and activator protein 1 (AP-1) were induced by the formaldehyde treatment. The pretreatment with selenium counteracted the formaldehyde-induced oxidative stress, ameliorated DPCs and attenuated the activation of NF-κB and AP-1 in A549 cell lines. All the results suggested that the pretreatment with selenium attenuated the formaldehyde-induced genotoxicity through its ROS scavenging and anti-DPCs effects in A549 cell lines.

  13. Determination of particulate-bound formaldehyde from burning incense by solid phase microextraction.

    PubMed

    Liou, S W; Chen, C Y; Yang, T T; Lin, J M

    2008-04-01

    This work studied the feasibility of using a solid phase microextraction (SPME) fiber for sampling and analysis of gaseous formaldehyde as well as particulate-bound formaldehyde from burning Chinese incense. The SPME fiber with PDMS/DVB coating were partially coated with o-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride (PFBHA), and used for sampling formaldehyde. The sampling rate for formaldehyde and its dependence on temperature, relative humidity and sampling time were observed. The same PFBHA treated fibers were, in parallel, exposed to incense burning smoke with pre-filtration and without pre- filtration for 0.5-1 min. The NIOSH method 2541 using an XAD-2 tube at a flow rate of 0.1 Lpm was also applied for sampling simultaneously. The results demonstrate that commercially available PDMS/DVB fibers partially coated with PFBHA are capable of sampling the gas phase of formaldehyde as well as particulate-bound formaldehyde. The determined level of formaldehyde was close to the result obtained by the NIOSH method 2541. However, a reduction of the fiber's formaldehyde loading capacity in the aerosol sampling in comparison with gas sampling was noticed. This indicates that the particulate characteristics, and their bound chemicals other than formaldehyde may influence the maximum loading capacity of formaldehyde, and some characteristic particulates in high concentrations may even deteriorate the fiber coating.

  14. Novel photoswitchable dielectric properties on nanomaterials of electronic core-shell γ-FeOx@Au@fullerosomes for GHz frequency applications.

    PubMed

    Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y

    2016-03-28

    We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)](n)2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e(-)-polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (∼1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved. PMID:26936772

  15. One-step electrodeposition of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPs hybrid film and its application in the selective determination of p-nitrophenol.

    PubMed

    Li, Shanshan; Du, Dan; Huang, Jing; Tu, Haiyang; Yang, Yuqi; Zhang, Aidong

    2013-05-01

    This paper presents the fabrication of a molecularly imprinting sol-gel hybrid film by the one-step electrodeposition of the constitutional individuals including chitosan (CS), phenyltrimethoxysilane (PTMS), in situ formed gold nanoparticles (AuNPs) and template p-nitrophenol (p-NP). The electrodeposition was triggered by applying an optimal potential at -0.30 V vs. SCE, leading to the formation of the p-NP imprinting CS/PTMS/AuNPs hybrid film on a glassy carbon electrode (GCE) with a roughly architectural and conductive nature, as revealed by scanning electron microscopy and electrochemical impedance analysis. The mechanism of the hybrid film formation was discussed accordingly. Upon complete removal of the template molecules assisted by cyclic voltammetry, the p-NP imprinted film modified electrode exhibited differential pulse voltammetric (DPV) responses to p-NP in a linear range from 3.0 × 10(-8) to 3.5 × 10(-4) M with a detection limit of 5.0 × 10(-9) M. The selectivity and reusability of the sensor was demonstrated by discriminating the p-NP response from its analogues and successive rebinding/debinding cycles, respectively. The methodology is extendable as a simple and general platform for developing hybrid film sensors for the specific determination of various electrochemically active species.

  16. Reduction of graphene oxide by 100 MeV Au ion irradiation and its application as H2O2 sensor

    NASA Astrophysics Data System (ADS)

    Hareesh, K.; Joshi, R. P.; Shateesh, B.; Asokan, K.; Kanjilal, D.; Late, D. J.; Dahiwale, S. S.; Bhoraskar, V. N.; Haram, S. K.; Dhole, S. D.

    2015-09-01

    Graphene oxide (GO) synthesized from a modified Hummer’s method was reduced (referred, rGO) by using 100 MeV Au ion species and its response to the sense H2O2 was investigated. The changes in the atomic composition and structural properties of rGO after irradiation were studied using x-ray diffraction, Fourier transform infrared spectroscopy and x-ray photo-electron spectroscopy. These results suggested that the removal of the oxygen-containing functional groups and the improvement of the electrochemical performance of reduced graphene oxide (rGO) after ion irradiation. Raman spectroscopic results revealed the increase in the disorder parameter (I D/I G) after Au ion irradiation and also the formation of a large number of small sp2 domains due to the electronic energy loss of ion beam. The resultant rGO was investigated for H2O2 sensing using electrochemical techniques and it showed a good response.

  17. B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis

    NASA Astrophysics Data System (ADS)

    Shahbazi Kootenaei, Amirhossein; Ansari, Goodarz

    2016-08-01

    Pristine carbon nanotubes and graphene show great sensitivity toward several lethal gases but cannot identify some extremely toxic chemicals such as formaldehyde (HCOH). Recent successful synthesis of all-boron graphene-like sheets attracted strong interest in exploring their possible applications. Herein, we inspected the potential application of B36 borophene sheet as a sensor for HCOH detection, using density functional theory computations. Different theoretical levels including B97D and Minnesota 06 functionals with different basis sets were employed. It was predicted that the electrical conductivity of B36 borophene significantly increases at the presence of HCOH molecules, thereby generating an electrical signal. The electrical signal is increased by increasing the number of adsorbed HCOH molecules, indicating that this sensor is sensitive to the concentration (or pressure) of HCOH gas. These results suggest that the pristine borophene may be used in the HCOH chemical sensors.

  18. Formaldehyde-releasers in cosmetics: relationship to formaldehyde contact allergy. Part 1. Characterization, frequency and relevance of sensitization, and frequency of use in cosmetics.

    PubMed

    de Groot, Anton C; White, Ian R; Flyvholm, Mari-Ann; Lensen, Gerda; Coenraads, Pieter-Jan

    2010-01-01

    In this part of a series of review articles on formaldehyde-releasers and their relationship to formaldehyde contact allergy, formaldehyde-releasers in cosmetics are discussed. In this first part of the article, key data are presented including frequency of sensitization and of their use in cosmetics. In Europe, low frequencies of sensitization have been observed to all releasers: 2-bromo-2-nitropropane-1,3-diol 0.4-1.2%, diazolidinyl urea 0.5-1.4%, imidazolidinyl urea 0.3-1.4%, quaternium-15 0.6-1.9% (for DMDM hydantoin no recent data are available). All releasers score (far) higher prevalences in the USA; the possible explanations for this are discussed. The relevance of positive patch test reactions has been insufficiently investigated. In the USA, approximately 20% of cosmetics and personal care products (stay-on products: 17%, rinse-off products 27%) contain a formaldehyde-releaser. The use of quaternium-15 is decreasing. For Europe, there are no comparable recent data available. In the second part of the article, the patch test relationship of the releasers in cosmetics to formaldehyde contact allergy will be reviewed and it will be assessed whether products preserved with formaldehyde-releasers may contain enough free formaldehyde to pose a threat to individuals who have contact allergy to formaldehyde. PMID:20136875

  19. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced & Cooled) A Appendix A to Subpart HHHH of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  20. Hydraulic Permeability of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen

    2010-01-01

    An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing

  1. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    SciTech Connect

    Birdwell Jr, Joseph F; Lee, Denise L; Taylor, Paul Allen; Collins, Robert T; Hunt, Rodney Dale

    2010-09-01

    A small column ion exchange (SCIX) system has been proposed for removal of cesium from caustic, supernatant, and dissolved salt solutions stored or generated from high-level tank wastes at the US Department of Energy (DOE) Hanford Site and Savannah River Sites. In both instances, deployment of SCIX systems, either in-tank or near-tank, is a means of expediting waste pretreatment and dispositioning with minimal or no new infrastructure requirements. Conceptually, the treatment approach can utilize a range of ion exchange media. Previously, both crystalline silicotitanate (CST), an inorganic, nonelutable sorbent, and resorcinol-formaldehyde (RF), an organic, elutable resin, have been considered for cesium removal from tank waste. More recently, Pacific Northwest National Laboratory (PNNL) evaluated use of SuperLig{reg_sign} 644, an elutable ion exchange medium, for the subject application. Results of testing indicate hydraulic limitations of the SuperLig{reg_sign} resin, specifically a high pressure drop through packed ion exchange columns. This limitation is likely the result of swelling and shrinkage of the irregularly shaped (granular) resin during repeated conversions between sodium and hydrogen forms as the resin is first loaded then eluted. It is anticipated that a similar flow limitation would exist in columns packed with conventional, granular RF resin. However, use of spherical RF resin is a likely means of mitigating processing limitations due to excessive pressure drop. Although size changes occur as the spherical resin is cycled through loading and elution operations, the geometry of the resin is expected to effectively mitigate the close packing that leads to high pressure drops across ion exchange columns. Multiple evaluations have been performed to determine the feasibility of using spherical RF resin and to obtain data necessary for design of an SCIX process. The work performed consisted of examination of radiation effects on resin performance

  2. /Au Back Contacts

    NASA Astrophysics Data System (ADS)

    Paudel, Naba R.; Compaan, Alvin D.; Yan, Yanfa

    2014-08-01

    We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3- x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda-lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3- x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3- x layer was found to improve the open circuit voltage ( V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.

  3. A DFT study of formaldehyde adsorption on functionalized graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Maaghoul, Zohreh; Fazileh, Farhad; Kakemam, Jamal

    2015-02-01

    Density functional theory (DFT) based ab initio calculations were done to monitor the formaldehyde (CHOH) adsorptive behavior on pristine and Ni-decorated graphene sheet. Structural optimization indicates that the formaldehyde molecule is physisorbed on the pristine sheet via partly weak van der Waals attraction having the adsorption energy of about -15.7 kcal/mol. Metal decorated sheet is able to interact with the CHOH molecule, so that single Ni atoms prefer to bind strongly at the bridge site of graphene and each metal atom bound on sheet may adsorb up to four CHOH. The findings also show that the Ni decoration on graphene surface results in some changes in electronic properties of the sheet and its Eg is remained unchanged after adsorption of CHOH molecules. It is noteworthy to say that no bond cleavage was observed for the adsorption of CHOH on Ni-decorated graphene.

  4. Phase Space Structures Explain Hydrogen Atom Roaming in Formaldehyde Decomposition.

    PubMed

    Mauguière, Frédéric A L; Collins, Peter; Kramer, Zeb C; Carpenter, Barry K; Ezra, Gregory S; Farantos, Stavros C; Wiggins, Stephen

    2015-10-15

    We re-examine the prototypical roaming reaction--hydrogen atom roaming in formaldehyde decomposition--from a phase space perspective. Specifically, we address the question "why do trajectories roam, rather than dissociate through the radical channel?" We describe and compute the phase space structures that define and control all possible reactive events for this reaction, as well as provide a dynamically exact description of the roaming region in phase space. Using these phase space constructs, we show that in the roaming region, there is an unstable periodic orbit whose stable and unstable manifolds define a conduit that both encompasses all roaming trajectories exiting the formaldehyde well and shepherds them toward the H2···CO well.

  5. Rotational Spectra of Adducts of Formaldehyde with Freons

    NASA Astrophysics Data System (ADS)

    Qian, Gou; Feng, Gang; Evangelisti, Luca; Caminati, W.; Lopez, Montserrat Vallejo; Lesarri, Alberto; Cocinero, Emilio

    2013-06-01

    The rotational spectra of three 1:1 complexes of formaldehyde (H_{2}CO) with freons, i.e. difluoromethane (CH_{2}F_{2}), fluorochloromethane (CH_{2}FCl) and trifluorochloromethane (CF_{3}Cl), have been observed and assigned using pulsed jet Fourier transform microwave technique. Several isotopologues (including some ^{13}C species) have been measured in natural abundance. The tunnelling splittings have been measured in the first two adducts with relative intensity 1:3, due to the internal rotation of the formaldehyde moity along its symmetry axis. The barriers to this motion have been estimated by using a flexible model. For the latter two complexes, each of transition displays the hyperfine structures due to the quadrupolar effects of ^{35}Cl (^{37}Cl) nucleus. The dissociation energy has been estimated within the pseudo-diatomic approximation for all three complexes.

  6. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection.

    PubMed

    Wang, Na; Wang, Xianfeng; Jia, Yongtang; Li, Xiaoqi; Yu, Jianyong; Ding, Bin

    2014-08-01

    Here we describe a formaldehyde sensor fabricated by coating polyethyleneimine (PEI) functionalized chitosan nanofiber-net-binary structured layer on quartz crystal microbalance (QCM). The chitosan fibrous substrate comprising nanofibers and spider-web-like nano-nets constructed by a facile electro-spinning/netting process provided an ideal structure for the uniform PEI modification and sensing performance enhancement. Benefiting from the fascinating nanostructure, abundant primary amine groups of PEI, and strong adhesive force to the QCM electrode of PEI-chitosan membranes, the developed formaldehyde sensor presented rapid response and low detection limit (5 ppm) at room temperature. These findings have important implications in fabricating multi-dimensional nanostructures on QCM for gas sensing and chemical analysis.

  7. Formaldehyde and Glyoxal: New Products in the SCIAMACHY Operational Processor

    NASA Astrophysics Data System (ADS)

    Hrechanyy, Serhiy; de Smedt, Isabelle; Kretschel, Klaus; Lichtenberg, Günter; Meringer, Markus; Wittrock, Folkard

    In sommer of 2010 version 6 of the SCIAMACHY operational processor is planned to be deliv-ered to ESA. The SCIAMACHY Quality Working Group recommended an implementation of the formalde-hyde (HCHO) and glyoxal (CHOCHO) vertical columns into version 6 of the off-line processor. They are formed during the oxidation of volatile organic compounds (VOCs) emitted by plants, anthropogenic activities, and biomass burning. Due to a rather short lifetime of formaldehyde and glyoxal, their distribution maps, obtained by the SCIAMACHY, represent the emission fields of their precursors, VOCs. The descriptions of reference algorithm as well as all the cross-sections for formaldehyde and glyoxal retrievals were delivered to DLR by the Belgian Institute for Space Aeronomy (BIRA) (I. De Smedt, 2008) and by the IUP (F. Wittrock, 2006), respectively. Both retrievals are based on the DOAS technique. For the formaldehyde retrieval the spectral region of 328.5-346 nm was recommended. The absorption cross-sections of HCHO, O3, NO2, BrO, OClO, a Ring spectrum and a polynomial of the fifth order are included into the fitting procedure. Before conversion to the vertical columns, the slant columns have to be normal-ized by subtracting the slant columns measured over Pacific ocean, where the only source of formaldehyde is methane oxidation. After the conversion to the vertical columns, part of HCHO removed during the previous procedure has to be re-added to the final vertical column by adding of the mean vertical column calculated by the tropospheric chemistry model IMAGES (J.-F. Müller, 1995). This normalization is necessary to compensate for the offset introduced by the solar reference measurements and interferences by other absorbers. For the determination of glyoxal columns, the spectral region 435-457 nm was selected. In this case, the absorption cross-sections of CHOCHO, O3, NO2, H2O, O4, a Ring spectrum and a cubic polynomial are included in the fitting procedure. The normalization of

  8. Enzymatic synthesis of C-11 formaldehyde: concise communication

    SciTech Connect

    Slegers, G.; Lambrecht, R.H.D.; Vandewalle, T.; Meulewaeter, L.; Vandecasteele, C.

    1984-03-01

    An enzymatic synthesis of C-11 formaldehyde from C-11 methanol is presented, with immobilized alcohol oxidase and catalase: a rapid, simple procedure, with a high and reproducible yield. Carbon-11 methanol is oxidized to C-11 formaldehyde by passage over a column on which the enzymes alcohol oxidase and catalase are immobilized. The catalase increases reaction velocity by recycling the oxygen, and prevents destruction of the alcohol oxidase by eliminating the excess of hydrogen peroxide. The yield of the enzyme-catalyzed oxidation was 80-95%. A specific activity of 400-450 mCi/..mu..mole was obtained at EOB + 20 min. Various immobilization techniques and the optimal reaction conditions of the immobilized enzymes are investigated.

  9. Tentative identification of formaldehyde in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Korablev, O. I.; Ackerman, M.; Krasnopolsky, V. A.; Moroz, V. I.; Muller, C.; Rodin, A. V.; Atreya, S. K.

    1993-01-01

    Solar occultation observations of the Martian atmosphere near the limb of the planet were performed during the Phobos mission by means of the Auguste infrared spectrometer in the ranges 2707-2740 and 5392-5272/cm with a resolving power of approximately = 1300. The spectra exhibit features at 2710 and 2730/cm which have not been identified previously. After applying a set of corrections to the data and examining the spectra of various molecules, we are led to conclude that the best candidate for the above-mentioned features is formaldehyde (CH2O). It was observed in eight of the nine successful occultation sequences, mainly between 8 and 20 km with an average mixing ratio of 0.5 (+0.8, - 0.3) ppm (there are no good data below 8 km). The observations are performed in equatorial spring conditions. The altitude distribution of formaldehyde reveals correlation with the permanent haze opacity.

  10. Simple, rapid method for the preparation of isotopically labeled formaldehyde

    DOEpatents

    Hooker, Jacob Matthew; Schonberger, Matthias; Schieferstein, Hanno; Fowler, Joanna S.

    2011-10-04

    Isotopically labeled formaldehyde (*C.sup..sctn.H.sub.2O) is prepared from labeled methyl iodide (*C.sup..sctn.H.sub.3I) by reaction with an oxygen nucleophile having a pendant leaving group. The mild and efficient reaction conditions result in good yields of *C.sup..sctn.H.sub.2O with little or no *C isotopic dilution. The simple, efficient production of .sup.11CH.sub.2O is described. The use of the .sup.11CH.sub.2O for the formation of positron emission tomography tracer compounds is described. The reaction can be incorporated into automated equipment available to radiochemistry laboratories. The isotopically labeled formaldehyde can be used in a variety of reactions to provide radiotracer compounds for imaging studies as well as for scintillation counting and autoradiography.

  11. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  12. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  13. Magnetoresistance of Au films

    DOE PAGES

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  14. SONEX-Hydrogen Peroxide, Methylhydroperoxide and Formaldehyde Measurements

    NASA Technical Reports Server (NTRS)

    Heikes, Brian

    1999-01-01

    We measured gas phase H2O2, CH3OOH, and CH2O on board the NASA DC-8 during the SONEX field mission, presented preliminary results at three scientific meetings, participated in two data workshops and contributed to joint publications of final results. The observations of peroxides and formaldehyde were instrumental in assessing odd-hydrogen radical chemistry, ozone chemistry, and in tracing meteorological transport paths.

  15. A cucurbit[5]uril analogue from dimethylpropanediurea-formaldehyde condensation.

    PubMed

    Jiang, Xiaoqing; Yao, Xuyang; Huang, Xinghua; Wang, Qiaochun; Tian, He

    2015-02-18

    A new host was prepared for the first time from propanediurea-formaldehyde condensation. is soluble in both water and common organic solvents, and binds protonated amines in a 1 : 2 stoichiometry in H2O with the K1 and K2 values on the order of 10(3) M(-1). The self-assembly of with 1,4-xylylene diamine dihydrochloride results in the formation of a linear supramolecular polymer. PMID:25582698

  16. MCSCF potential energy surface for photodissociation of formaldehyde

    NASA Technical Reports Server (NTRS)

    Jaffe, R. L.; Morokuma, K.

    1976-01-01

    The ground state potential energy surface for the dissociation of formaldehyde (H2CO to H2 and CO) is calculated with the ab initio MCSCF method with an extended (4-31G) basis set. The location, barrier height, and force constants of the transition state are determined, and the normal coordinate analysis is carried out. The calculated barrier height is 4.5 eV. Based on the calculated quantities, the detailed mechanism of the photochemical dissociation is discussed.

  17. Formaldehyde Distribution over North America: Implications for Satellite Retrievals of Formaldehyde Columns and Isoprene Emission

    NASA Technical Reports Server (NTRS)

    Millet, Dylan B.; Jacob, Daniel J.; Turquety, Solene; Hudman, Rynda C.; Wu, Shiliang; Anderson, Bruce E.; Fried, Alan; Walega, James; Heikes, Brian G.; Blake, Donald R.; Singh, Hanwant B.; Clarke, Antony D.

    2006-01-01

    Formaldehyde (HCHO) columns measured from space provide constraints on emissions of volatile organic compounds (VOCs). Quantitative interpretation requires characterization of errors in HCHO column retrievals and relating these columns to VOC emissions. Retrieval error is mainly in the air mass factor (AMF) which relates fitted backscattered radiances to vertical columns and requires external information on HCHO, aerosols, and clouds. Here we use aircraft data collected over North America and the Atlantic to determine the local relationships between HCHO columns and VOC emissions, calculate AMFs for HCHO retrievals, assess the errors in deriving AMFs with a chemical transport model (GEOS-Chem), and draw conclusions regarding space-based mapping of VOC emissions. We show that isoprene drives observed HCHO column variability over North America; HCHO column data from space can thus be used effectively as a proxy for isoprene emission. From observed HCHO and isoprene profiles we find an HCHO molar yield from isoprene oxidation of 1.6 +/- 0.5, consistent with current chemical mechanisms. Clouds are the primary error source in the AMF calculation; errors in the HCHO vertical profile and aerosols have comparatively little effect. The mean bias and 1Q uncertainty in the GEOS-Chem AMF calculation increase from <1% and 15% for clear skies to 17% and 24% for half-cloudy scenes. With fitting errors, this gives an overall 1 Q error in HCHO satellite measurements of 25-31%. Retrieval errors, combined with uncertainties in the HCHO yield from isoprene oxidation, result in a 40% (1sigma) error in inferring isoprene emissions from HCHO satellite measurements.

  18. Inhibition of sulfide generation by dosing formaldehyde and its derivatives in sewage under anaerobic conditions.

    PubMed

    Zhang, L; Mendoza, L; Marzorati, M; Verstraete, W

    2008-01-01

    Hydrogen sulfide emission in sewers is associated with toxicity, corrosion, odor nuisance and a lot of costs. The possibility to inhibit sulfide generation by formaldehyde and its derivatives (paraformaldehyde and urea formaldehyde) has been evaluated under anaerobic conditions. The impact of formaldehyde on an activated sludge system and an appraisal of the economic aspects are also presented. The optimum dosage to inhibit sulfide generation in sewage was 12-19 mg L(-1) formaldehyde. The dosages of 32 mg L(-1) paraformaldehyde or 100 mg L(-1) urea formaldehyde were not capable of inhibiting sulfide generation in sewage. The impact of 19 mg L(-1) formaldehyde on activated sludge system was negligible in terms of COD removal, nitrification rate and oxygen uptake rate.

  19. [Analysis of formaldehyde in various chemical products for household use and in shampoos and bath liquids].

    PubMed

    Piekacz, H; Kiss, E

    1989-01-01

    In the years 1987-1988 in cooperation with 34 Province Sanitary-Epidemiological Stations 938 samples of shampoos and bathing fluids were investigated, among them 40 imported shampoos, besides that 829 samples of chemical products for household use were analysed for the presence of formaldehyde. In the products which should not contain formaldehyde this compound was found in amounts from 0 to 50 mg/kg in 84.75% of shampoos and bathing fluids (77.18% of the samples contained no formaldehyde), 87.03% of fluids for washing of vessels, rinsing and softening of fabrics, and for washing or refrigerators (in 75.13% of these products formaldehyde was not found). The authors suggest that the permissible formaldehyde level for these products should be 50 mg/kg and should be accepted as contamination. In these products in which the permitted formaldehyde level was 0.1% already 99.12% of the samples was below that value.

  20. Novel photoswitchable dielectric properties on nanomaterials of electronic core-shell γ-FeOx@Au@fullerosomes for GHz frequency applications

    NASA Astrophysics Data System (ADS)

    Wang, Min; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Hu, Bin; Urbas, Augustine; Chiang, Long Y.

    2016-03-01

    We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Surface-stabilized 2 in a core-shell structure was found to be capable of photoinducing the surface plasmonic resonance (SPR) effect by white LED light. The accumulated SPR energy was subsequently transferred to the partially bilayered C60(>DPAF-C9) fullerosomic membrane layer in a near-field (~1.5 nm) region without producing radiation heat. Since the monostatic SAR signal is dielectric property-dependent, we used these measurements to provide evidence of derived reflectivity changes on a surface coated with 2 at 0.5-4.0 GHz upon illumination of LED white light. We found that a high, >99%, efficiency of response amplification in image amplitude can be achieved.We unexpectedly observed a large amplification of the dielectric properties associated with the photoswitching effect and the new unusual phenomenon of delayed photoinduced capacitor-like (i.e. electric polarization) behavior at the interface on samples of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9)]n2 nanoparticles (NPs) in frequencies of 0.5-4.0 GHz. The detected relative dielectric constant amplification was initiated upon switching off the light followed by relaxation to give an excellent recyclability. These NPs having e--polarizable fullerosomic structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@Au

  1. Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications

    DOE PAGES

    Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; Mokari, Taleb

    2009-01-01

    We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).

  2. Preparation of radioactive core-shell type 198Au@SiO2 nanoparticles as a radiotracer for industrial process applications.

    PubMed

    Jung, Sung-Hee; Kim, Kyo-Il; Ryu, Jung-Ho; Choi, Seong-Ho; Kim, Jong-Bum; Moon, Jin-Ho; Jin, Joon-Ha

    2010-06-01

    Silica-coated gold nanoparticles produced by gamma-ray irradiation were bombarded with neutrons in a nuclear reactor in order to activate gold nuclides into Au-198 emitting gamma radiation of 0.412-1.088 MeV. The particle size ranges from 20 to 200 nm. The physical integrity of the particles was examined by TEM before and after the neutron irradiation and the silica-gold particles were not affected in terms of structural appearance under gamma radiation environment. The gamma emitting NPs can be utilized as a tracer in petrochemical and refinery industrial processes where the internal temperature is extremely high and the conventional organic radioactive labeled compound would be decomposed.

  3. Effect of Silicon on Activity Coefficients of Siderophile Elements (P, Au, Pd, As, Ge, Sb, and In) in Liquid Fe, with Application to Core Formation

    NASA Technical Reports Server (NTRS)

    Righter, K.; Pando, K.; Danielson, L. R.; Humayun, M.; Righter, M.; Lapen, T.; Boujibar, A.

    2016-01-01

    Earth's core contains approximately 10 percent light elements that are likely a combination of S, C, Si, and O, with Si possibly being the most abundant. Si dissolved into Fe liquids can have a large effect on the magnitude of the activity coefficient of siderophile elements (SE) in Fe liquids, and thus the partitioning behavior of those elements between core and mantle. The effect of Si can be small such as for Ni and Co, or large such as for Mo, Ge, Sb, As. The effect of Si on many siderophile elements is unknown yet could be an important, and as yet unquantified, influence on the core-mantle partitioning of SE. Here we report new experiments designed to quantify the effect of Si on the partitioning of P, Au, Pd, and many other SE between metal and silicate melt. The results will be applied to Earth, for which we have excellent constraints on the mantle siderophile element concentrations.

  4. Low-density carbonized resorcinol-formaldehyde foams

    SciTech Connect

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-07-04

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 {Angstrom}, and cell sizes are less than 0.1 {mu}m. We have achieved densities of 16 to 200 mg/cm{sup 3}. The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-{mu}m cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells.

  5. Low-density carbonized resorcinol-formaldehyde foams. Final report

    SciTech Connect

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-07-04

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 {Angstrom}, and cell sizes are less than 0.1 {mu}m. We have achieved densities of 16 to 200 mg/cm{sup 3}. The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-{mu}m cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells.

  6. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  7. Synthesis of 4H/fcc-Au@Metal Sulfide Core-Shell Nanoribbons.

    PubMed

    Fan, Zhanxi; Zhang, Xiao; Yang, Jian; Wu, Xue-Jun; Liu, Zhengdong; Huang, Wei; Zhang, Hua

    2015-09-01

    Although great advances on the synthesis of Au-semiconductor heteronanostructures have been achieved, the crystal structure of Au components is limited to the common face-centered cubic (fcc) phase. Herein, we report the synthesis of 4H/fcc-Au@Ag2S core-shell nanoribbon (NRB) heterostructures from the 4H/fcc Au@Ag NRBs via the sulfurization of Ag. Remarkably, the obtained 4H/fcc-Au@Ag2S NRBs can be further converted to a novel class of 4H/fcc-Au@metal sulfide core-shell NRB heterostructures, referred to as 4H/fcc-Au@MS (M = Cd, Pb or Zn), through the cation exchange. We believe that these novel 4H/fcc-Au@metal sulfide NRB heteronanostructures may show some promising applications in catalysis, surface enhanced Raman scattering, solar cells, photothermal therapy, etc.

  8. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs).

  9. Acute effect upon pulmonary function of low level exposure to phenol-formaldehyde-resin-coated wood.

    PubMed

    Imbus, H R; Tochilin, S J

    1988-09-01

    In order to determine whether phenol-formaldehyde-resin-coated wood particles would cause an acute decline in pulmonary function, 176 workers in 2 oriented strandboard production plants were given respiratory questionnaires and pulmonary function tests before and during their work shifts. Measurements of dust and adsorbed formaldehyde were made on the same day as the pulmonary function tests. Measured formaldehyde levels were low, and measured dust levels were low to moderate. There was no evidence of an acute effect upon pulmonary function.

  10. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway.

    PubMed

    Rosado, Ivan V; Langevin, Frédéric; Crossan, Gerry P; Takata, Minoru; Patel, Ketan J

    2011-11-13

    Metabolism is predicted to generate formaldehyde, a toxic, simple, reactive aldehyde that can damage DNA. Here we report a synthetic lethal interaction in avian cells between ADH5, encoding the main formaldehyde-detoxifying enzyme, and the Fanconi anemia (FA) DNA-repair pathway. These results define a fundamental role for the combined action of formaldehyde catabolism and DNA cross-link repair in vertebrate cell survival.

  11. Physicochemical behavior of sulphonated acetone-formaldehyde resin and naphthalene sulfonate-formaldehyde condensate in coal-water interface

    SciTech Connect

    Zhou, M.S.; Qiu, X.Q.; Yang, D.J.; Ouyang, X.P.

    2009-07-01

    This article studies the physicochemical characteristic of two anionic dispersants sulphonated acetone-formaldehyde resin (SAF) and naphthalene sulfonate-formaldehyde condensate (FDN) at coal-water interface, including contact angle, adsorption amount, thickness of adsorbed film, and zeta potential, using four different ranks of coals. The results show that SAF has better wetting property than FDN on coal surface. The adsorption amount of SAF in coal-water interface is greater than that of FDN, and that the thickness of adsorbed films of SAF and FDN on Datong coal measured by x-ray photoelectron spectroscopy (XPS) are respectively 6.38nm and 2.11nm. Moreover, the measurements of zeta potentials in coal-water interface show that SAF has greater capacity in charging coal surface with electronegativity. Based on the investigation, the adsorption models of SAF and FDN on different rank of coals are presented.

  12. Robust Au-Ag-Au bimetallic atom-scale junctions fabricated by self-limited Ag electrodeposition at Au nanogaps.

    PubMed

    Hwang, Tai-Wei; Bohn, Paul W

    2011-10-25

    Atom-scale junctions (ASJs) exhibit quantum conductance behavior and have potential both for fundamental studies of adsorbate-mediated conductance in mesoscopic conductors and as chemical sensors. Electrochemically fabricated ASJs, in particular, show the stability needed for molecular detection applications. However, achieving physically robust ASJs at high yield is a challenge because it is difficult to control the direction and kinetics of metal deposition. In this work, a novel electrochemical approach is reported, in which Au-Ag-Au bimetallic ASJs are reproducibly fabricated from an initially prepared Au nanogap by sequential overgrowth and self-limited thinning. Applying a potential across specially prepared Au nanoelectrodes in the presence of aqueous Ag(I) leads to preferential galvanic reactions resulting in the deposition of Ag and the formation of an atom-scale junction between the electrodes. An external resistor is added in series with the ASJ to control self-termination, and adjusting solution chemical potential (concentration) is used to mediate self-thinning of junctions. The result is long-lived, mechanically stable ASJs that, unlike previous constructions, are stable in flowing solution, as well as to changes in solution media. These bimetallic ASJs exhibit a number of behaviors characteristic of quantum structures, including long-lived fractional conductance states, that are interpreted to arise from two or more quantized ASJs in series.

  13. Presence of formaldehyde in topical corticosteroid preparations available on the Swedish market.

    PubMed

    Goon, Anthony Teik-Jin; Gruvberger, Birgitta; Persson, Lena; Isaksson, Marléne; Bruze, Magnus

    2003-04-01

    The aim of this study was to investigate the formaldehyde content of topical corticosteroid preparations available on the Swedish market. 73 samples were analysed with the chromotropic acid (CA) method for semi-quantitative formaldehyde determination and 30 samples with a high-performance liquid chromatographic method. These included 24 ointments, 28 creams, 1 lotion, 6 liniments, 2 gels, 9 solutions, 2 mousses and 1 oral paste. Formaldehyde was found in 5 creams and 1 ointment. Sources of formaldehyde in these preparations were discussed. Isopropanol was identified as a probable source of yellow discoloration, leading to false-negative results with the CA method.

  14. Inactivation kinetics of formaldehyde on N-acetyl-β-D-glucosaminidase from Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Wei-Ni; Bai, Ding-Ping; Lin, Xin-Yu; Chen, Qing-Xi; Huang, Xiao-Hong; Huang, Yi-Fan

    2014-04-01

    Formaldehyde is a widely used sanitizer in aquaculture in China, while the appropriate concentration is not available to be used effectively and without damage to tilapia much less to its reproductive function. N-acetyl-β-D-glucosaminidase (EC 3.2.1.52, NAGase), hydrolyzing the oligomers of N-acetyl-β-D-glucosamine into monomer, is proved to be correlated with reproduction of male animals. In this paper, NAGase from spermary of tilapia was chosen as the material to study the effects of formaldehyde on its activity in order to further investigate the effects of formaldehyde use on tilapia reproduction. The results showed the relationship between the residual enzyme activity and the concentration of formaldehyde was concentration dependent, and the IC50 value was estimated to be 3.2 ± 0.1 %. Appropriate concentration of formaldehyde leaded to competitive reversible inhibition on tilapia NAGase. Moreover, formaldehyde could reduce the thermal and pH stability of the enzyme. The inactivation kinetics of formaldehyde on the enzyme was studied using the kinetic method of substrate reaction. The inactivation model was setup, and the rate constants were determined. The results showed that the inactivation of formaldehyde on tilapia NAGase was a slow, reversible reaction with partially residual activity. The results will give some basis to determine the concentration of formaldehyde used in tilapia culture.

  15. A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

    SciTech Connect

    Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L; Apte, Michael G.

    2010-10-01

    The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.

  16. Formaldehyde release from selected consumer products: influence of chamber loading, multiple products, relative humidity, and temperature

    SciTech Connect

    Pickrell, J.A.; Griffis, L.C.; Mokler, B.V.; Kanapilly, G.M.; Hobbs, C.H.

    1984-09-01

    Formaldehyde release rates were measured for one sample each of a variety of consumer products under various conditions of temperature, humidity, and mass loading in a ventilated chamber. The rate of formaldehyde released from pressed wood products was much greater than from insulation material or carpeting, whether measured in a dynamic (ventilated) or static (nonventilated) chamber. Formaldehyde was released from wood products at a more rapid rate when chamber loadings (product surface area/chamber volume) and chamber concentrations of formaldehyde were reduced. Formaldehyde release from particle board and plywood was not substantially affected by the different temperatures (25-35/sup 0/C) and humidities (40-90%) tested. When particle board was paired with plywood, insulation, or carpet, the formaldehyde released was less than the sum of that released when each product was tested alone. These data suggest that these samples of plywood, insulation, or carpet (slow releasers of formaldehyde) absorbed formaldehyde released from the higher emitting particle board. Consequently, the surface area of carpet, insulation, and/or wood in a ventilated room relative to that of pressed wood products may be an important determinant of formaldehyde concentrations in the air of that room.

  17. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Treatment after certification. If certified plywood or particleboard subsequently is treated with paint, varnish, or any other substance containing formaldehyde, then the certification is no longer valid....

  18. 24 CFR 3280.308 - Formaldehyde emission controls for certain wood products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Treatment after certification. If certified plywood or particleboard subsequently is treated with paint, varnish, or any other substance containing formaldehyde, then the certification is no longer valid....

  19. Examination of the chemical changes in cured phenol-formaldehyde resins during storage.

    PubMed

    Strzemiecka, B; Zięba-Palus, J; Voelkel, A; Lachowicz, T; Socha, E

    2016-04-01

    Chemical changes occurring within cured phenol-formaldehyde resins (resite and novolak type) during their storage were investigated by FT-NIR, py-GCMS and inverse gas chromatography. It was shown that a mixture of resite with novolak was less stable than resite or novolak itself as regards bulk properties. This aging phenomenon is mainly due to reaction of ammonia (product of hexa decomposition) with CH2OH groups present in resite. FT-NIR technique seems to be the least sensitive method for assessment chemical changes occurring during cured resins storage. Applications of py-GCMS and IGC method made able to indicate that more significant changes were for bulk samples (py-GCMS results) than on their surface (IGC results). PMID:26961916

  20. Asymmetric supercapacitor based on nanostructured graphene foam/polyvinyl alcohol/formaldehyde and activated carbon electrodes

    NASA Astrophysics Data System (ADS)

    Bello, Abdulhakeem; Barzegar, Farshad; Momodu, Damilola; Dangbegnon, Julien; Taghizadeh, Fatemeh; Fabiane, Mopeli; Manyala, Ncholu

    2015-01-01

    We present the electrochemical results of highly porous and interconnected carbon material by activation of graphene foam/polyvinyl alcohol-formaldehyde composite material designated as GF/PVA-F. Asymmetric supercapacitor devices were fabricated using the activated material (GF/PVA-F) and activated carbon (AC) as the positive and negative electrodes respectively. The device exhibited a maximum energy density of 42 mWh cm-2, a power density of 0.5 W cm-2 and 98% retention of its initial capacitance after 2000 cycles in an extended cell potential window of 1.8 V in 1 M Na2SO4 aqueous electrolyte. This work shows the great potential of this material for high performance energy storage application.

  1. A Formaldehyde-based Whole-Mount In Situ Hybridization Method for Planarians

    PubMed Central

    Pearson, Bret J.; Eisenhoffer, George T.; Gurley, Kyle A.; Rink, Jochen C.; Miller, Diane E.; Alvarado, Alejandro Sánchez

    2009-01-01

    Whole-mount in situ hybridization (WISH) is a powerful tool for visualizing gene expression patterns in specific cell and tissue types. Each model organism presents its own unique set of challenges for achieving robust and reproducible staining with cellular resolution. Here we describe a formaldehyde-based WISH method for the freshwater planarian Schmidtea mediterranea developed by systematically comparing and optimizing techniques for fixation, permeabilization, hybridization and post-processing. The new method gives robust, high-resolution labeling in fine anatomical detail, allows co-labeling with fluorescent probes, and is sufficiently sensitive to resolve the expression pattern of a microRNA in planarians. Our WISH methodology not only provides significant advancements over current protocols that make it a valuable asset for the planarian community, but should also find wide applicability in WISH methods used in other systems. PMID:19161223

  2. FORMATION OF FORMALDEHYDE AND CARBON DIOXIDE ON AN ICY GRAIN ANALOG USING FAST HYDROGEN ATOMS

    SciTech Connect

    Madzunkov, S. M.; MacAskill, J. A.; Chutjian, A.; Darrach, M. R.; Vidali, G.; Shortt, B. J.

    2009-05-20

    Formaldehyde (H{sub 2}CO) and carbon dioxide (CO{sub 2}) were produced in collisions of a superthermal, 3 eV beam of H({sup 2}S) atoms with CO molecules adsorbed on a gold surface at 4.8 K. The reaction-generated products were detected and analyzed using the techniques of temperature programmed desorption (TPD), quadrupole mass spectrometry, and a novel application of the Metropolis algorithm, random-walk procedure to identify the unique fractionation patterns of H{sub 2}CO and CO{sub 2} from the patterns of other species such as N{sub 2}, CO, and H{sub 2}O embedded in the CO blanket and devolved in the TPD/mass spectrometry process. Reaction sequences are given to account for the formation of H{sub 2}CO and CO{sub 2}.

  3. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  4. Dynamic features of rod-shaped Au nanoclusters

    NASA Astrophysics Data System (ADS)

    So, Woong Young; Das, Anindita; Wang, Shuxin; Zhao, Shuo; Byun, Hee Young; Lee, Dana; Kumar, Santosh; Jin, Rongchao; Peteanu, Linda A.

    2015-08-01

    Gold nanoclusters hold many potential applications such as biosensing and optics due to their emission characteristics, small size, and non-toxicity. However, their low quantum yields remain problematic for further applications, and their fluorescence mechanism is still unclear. To increase the low quantum yields, various methods have been performed: doping, tuning structures, and changing number of gold atoms. In the past, most characterizations have been performed on spherical shaped nanoclusters; in this paper, several characterizations of various rod-shaped Au nanoclusters specifically on Au25 are shown. It has been determined that the central gold atom in Au25 nano-rod is crucial in fluorescence. Furthermore, single molecule analysis of silver doped Au25 nano-rod revealed that it has more photo-stability than conjugated polymers and quantum dots.

  5. Au and Ag/Au double-shells hollow nanoparticles with improved near infrared surface plasmon and photoluminescence properties.

    PubMed

    Ghosh Chaudhuri, Rajib; Paria, Santanu

    2016-01-01

    Metallic hollow nanoparticles have been continuously drawing researcher's attention because of their excellent improved performance compare to the spherical particles in catalysis, photonics, information storage, surface-enhanced Raman scattering, and sensors applications. In this article we demonstrate a novel route for the synthesis of single and double-shells Au and Ag/Au bimetallic hollow nanoparticles using elemental sulfur as a sacrificial core. We also investigate the optical properties of these new hollow particles and compare with that of pure spherical nanoparticles. The surface plasmon resonance spectra of solid Au, hollow single shell Au, and double shells Ag/Au nanoparticles show that there is gradual shifting of Au peak position towards the higher wavelengths for these three nanoparticles respectively. A similar observation was also found for photoluminescence spectra. In case of double-shells Ag/Au hollow nanoparticles the emission spectrum shifts towards the NIR region with significant higher intensity, which is beneficial for in vivo biomedical applications of these particles.

  6. Application of modified multiwalled carbon nanotubes as a sorbent for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II).

    PubMed

    Shamspur, Tayebeh; Mostafavi, Ali

    2009-09-15

    A solid phase extraction procedure is proposed for simultaneous separation and preconcentration trace amounts of Au(III) and Mn(II) in an aqueous medium by using a column of multiwalled carbon nanotubes modified with the analytical reagent N,N'-bis(2-hydroxybenzylidene)-2,2'(aminophenylthio)ethane. An implementation, it was found that the sorption is quantitative in the pH range 5.0-7.5, whereas quantitative desorption occurs instantaneously with 4.0 mL of 0.1 mol L(-1) Na(2)S(2)O(3.) Selected elements were also determined by flame atomic absorption spectrometry. Linearity was maintained between 0.2 ng mL(-1) to 25 microg mL(-1) for gold and 0.08 ng mL(-1) to 5 microg mL(-1) for manganese in the original solution. Various parameters such as the effect of pH, flow rate, type and amount of eluent, breakthrough volume and interference of a large number of anions and cations on the recovery of the selected ions was studied. Under optimum conditions, the detection limits (3s, n=10) for analytes were 0.03 ng mL(-1) (gold) and 0.01 ng mL(-1) (manganese). The method was successfully applied for separation and determination of gold and manganese ions in water and standard samples. PMID:19346070

  7. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia.

    PubMed

    Tong, Zhiqian; Zhang, Jinling; Luo, Wenhong; Wang, Weishan; Li, Fangxu; Li, Hui; Luo, Hongjun; Lu, Jing; Zhou, Jiangning; Wan, You; He, Rongqiao

    2011-01-01

    It is widely known that exogenous formaldehyde exposure induces human cognitive impairment and animal memory loss; and recent studies show that formaldehyde at pathological levels induces Aβ deposition and misfolding of tau protein to form globular amyloid-like aggregates. Endogenous formaldehyde may be a marker for progressive senile dementia. The aim of this study was to investigate the correlation of endogenous formaldehyde in urine of senile dementia and mini mental state examination (MMSE) scores. Formaldehyde level was analyzed by high-performance liquid chromatography (with fluorescence detection) in human urine from dementia patients (n=141), patients with hypertension (n=33) or diabetes (n=16) and healthy individuals (n=38), autopsy hippocampus samples from Alzheimer's disease (AD) patients and brains of three types of AD animal model: namely, senescence accelerated mice (SAMP8), APP-transgenic mice and APP/PS1-transgenic mice. In a double-blind study, there was marked elevation of urine formaldehyde levels in patients (n=91) with dementia, and a slight increase in patients (n=50) with mild cognitive impairment. Urine formaldehyde level was inversely correlated with mini mental state examination scores (Rs=-0.441, p<0.0001). Furthermore, formaldehyde levels were significantly increased in the autopsy hippocampus from Alzheimer's patients (n=4). In SAMP8 brains the formaldehyde level was significantly increased, suggesting that the endogenous formaldehyde is related to aging in mice. The brain formaldehyde level in APP/PS1-transgenic (n=8) mice at age of 3 months and APP-transgenic (n=8) mice at age of 6 months was increased (0.56 ± 0.02 mM), respectively, as compared with their respective age-matched controls, when these two types of AD-like animals, respectively, started to form Aβ deposits and memory loss obviously. According to the level of formaldehyde in the brain of the transgenic mice, we treated normal mice with formaldehyde (0.5m

  8. Formaldehyde and Leukemia: Epidemiology, Potential Mechanisms and Implications for Risk Assessment

    PubMed Central

    Zhang, Luoping; Freeman, Laura E. Beane; Nakamura, Jun; Hecht, Stephen S.; Vandenberg, John J.; Smith, Martyn T.; Sonawane, Babasaheb R.

    2009-01-01

    Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging due to inconsistencies in human and animal studies and the lack of a known mechanism for leukemia induction. Here we provide a summary of the symposium at the Environmental Mutagen Society Meeting in 2008, which focused on the epidemiology of formaldehyde and leukemia, potential mechanisms, and implication for risk assessment, with emphasis on future directions in multidisciplinary formaldehyde research. Updated results of two of the three largest industrial cohort studies of formaldehyde-exposed workers have shown positive associations with leukemia, particularly myeloid leukemia, and a recent meta-analysis of studies to date supports this association. Recent mechanistic studies have shown the formation of formaldehyde-induced DNA adducts and characterized the essential DNA repair pathways that mitigate formaldehyde toxicity. The implications of the updated findings for the design of future studies to more effectively assess the risk of leukemia arising from formaldehyde exposure were discussed and specific recommendations were made. A toxicogenomic approach in experimental models and human exposure studies, together with the measurement of biomarkers of internal exposure, such as formaldehyde-DNA and protein adducts, should prove fruitful. It was recognized that increased communication among scientists who perform epidemiology, toxicology, biology, and risk assessment could enhance the design of future studies, which could ultimately reduce uncertainty in the risk assessment of formaldehyde and leukemia. PMID:19790261

  9. Mechanistic Insight into a Sugar-Accelerated Tin-Catalyzed Cascade Synthesis of α-Hydroxy-γ-butyrolactone from Formaldehyde.

    PubMed

    Yamaguchi, Sho; Matsuo, Takeaki; Motokura, Ken; Sakamoto, Yasuharu; Miyaji, Akimitsu; Baba, Toshihide

    2015-11-01

    Applications of the formose reaction, which involves the formation of sugars from formaldehyde, have previously been confined to the selective synthesis of unprotected sugars. Herein, it is demonstrated that α-hydroxy-γ-butyrolactone (HBL), which is one of the most important intermediates in pharmaceutical syntheses, can be produced from paraformaldehyde. In the developed reaction system, homogeneous tin chloride exhibits high catalytic activity and the addition of mono- and disaccharides accelerates the formation of HBL. These observations suggest that the formose reaction may serve as a feasible pathway for the synthesis of important chemicals.

  10. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    PubMed Central

    2013-01-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins’ luminescence maxima and sufficient enhancement of the second one were observed. PMID:24373347

  11. Surface enhanced Raman scattering based sensitive detection of histone demethylase activity using a formaldehyde-selective reactive probe.

    PubMed

    Wang, Yu; Deng, Xianghua; Liu, Jinwen; Tang, Hao; Jiang, Jianhui

    2013-10-01

    A novel surface enhanced Raman scattering (SERS) based assay using a formaldehyde-selective reactive probe for sensitive detection of activity of histone demethylases (HDMs) by direct observation of by-product formaldehyde was reported.

  12. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods. PMID:27497571

  13. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Chaffin, Elise; O'Connor, Ryan T.; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ˜410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  14. Dependence of SERS enhancement on the chemical composition and structure of Ag/Au hybrid nanoparticles.

    PubMed

    Chaffin, Elise; O'Connor, Ryan T; Barr, James; Huang, Xiaohua; Wang, Yongmei

    2016-08-01

    Noble metal nanoparticles (NPs) such as silver (Ag) and gold (Au) have unique plasmonic properties that give rise to surface enhanced Raman scattering (SERS). Generally, Ag NPs have much stronger plasmonic properties and, hence, provide stronger SERS signals than Au NPs. However, Ag NPs lack the chemical stability and biocompatibility of comparable Au NPs and typically exhibit the most intense plasmonic resonance at wavelengths much shorter than the optimal spectral region for many biomedical applications. To overcome these issues, various experimental efforts have been devoted to the synthesis of Ag/Au hybrid NPs for the purpose of SERS detections. However, a complete understanding on how the SERS enhancement depends on the chemical composition and structure of these nanoparticles has not been achieved. In this study, Mie theory and the discrete dipole approximation have been used to calculate the plasmonic spectra and near-field electromagnetic enhancements of Ag/Au hybrid NPs. In particular, we discuss how the electromagnetic enhancement depends on the mole fraction of Au in Ag/Au alloy NPs and how one may use extinction spectra to distinguish between Ag/Au alloyed NPs and Ag-Au core-shell NPs. We also show that for incident laser wavelengths between ∼410 nm and 520 nm, Ag/Au alloyed NPs provide better electromagnetic enhancement than pure Ag, pure Au, or Ag-Au core-shell structured NPs. Finally, we show that silica-core Ag/Au alloy shelled NPs provide even better performance than pure Ag/Au alloy or pure solid Ag and pure solid Au NPs. The theoretical results presented will be beneficial to the experimental efforts in optimizing the design of Ag/Au hybrid NPs for SERS-based detection methods.

  15. Comparison of photoluminescence properties of HSA-protected and BSA-protected Au25 nanoclusters

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Masato; Kawasaki, Hideya; Saitoh, Tadashi; Inada, Mitsuru; Kansai Univ. Collaboration

    Gold nanoclusters (NCs) have attracted great interest for a wide range of applications. In particular, red light-emitting Au25 NCs have been prepared with various biological ligands. It has been shown that Au25 NCs have Au13-core/6Au2(SR)3-semiring structure. The red luminescence thought to be originated from both core (670 nm) and semiring (625 nm). It is important to reveal a structure of Au25 NCs to facilitate the progress of applications. However, the precise structure of Au25 NCs has not been clarified. There is a possibility of obtaining structural information about Au25 NCs to compare optical properties of the NCs that protected by slightly different molecules. Bovine and human serum albumin (BSA, HSA) are suitable one for this purpose. It has been suggested that rich tyrosine and cysteine residues in these molecules are important to produce the thiolate-protected Au NCs. If Au25 NCs have core/shell structure, only the luminescence of the semiring will be affected by the difference of the albumin molecules. We carefully compared PL characteristics of BSA- and HSA- protected Au25 NCs. As a result, there was no difference in the PL at 670 nm (core), while differences were observed in the PL at 625 nm (semiring). The results support that Au25 NCs have core/semiring structure.

  16. Fluctuations Magnetiques des Gaz D'electrons Bidimensionnels: Application AU Compose Supraconducteur LANTHANE(2-X) Strontium(x) Cuivre OXYGENE(4)

    NASA Astrophysics Data System (ADS)

    Benard, Pierre

    Nous presentons une etude des fluctuations magnetiques de la phase normale de l'oxyde de cuivre supraconducteur La_{2-x}Sr _{x}CuO_4 . Le compose est modelise par le Hamiltonien de Hubbard bidimensionnel avec un terme de saut vers les deuxiemes voisins (modele tt'U). Le modele est etudie en utilisant l'approximation de la GRPA (Generalized Random Phase Approximation) et en incluant les effets de la renormalisation de l'interaction de Hubbard par les diagrammes de Brueckner-Kanamori. Dans l'approche presentee dans ce travail, les maximums du facteur de structure magnetique observes par les experiences de diffusion de neutrons sont associes aux anomalies 2k _{F} de reseau du facteur de structure des gaz d'electrons bidimensionnels sans interaction. Ces anomalies proviennent de la diffusion entre particules situees a des points de la surface de Fermi ou les vitesses de Fermi sont tangentes, et conduisent a des divergences dont la nature depend de la geometrie de la surface de Fermi au voisinage de ces points. Ces resultats sont ensuite appliques au modele tt'U, dont le modele de Hubbard usuel tU est un cas particulier. Dans la majorite des cas, les interactions ne determinent pas la position des maximums du facteur de structure. Le role de l'interaction est d'augmenter l'intensite des structures du facteur de structure magnetique associees a l'instabilite magnetique du systeme. Ces structures sont souvent deja presentes dans la partie imaginaire de la susceptibilite sans interaction. Le rapport d'intensite entre les maximums absolus et les autres structures du facteur de structure magnetique permet de determiner le rapport U_ {rn}/U_{c} qui mesure la proximite d'une instabilite magnetique. Le diagramme de phase est ensuite etudie afin de delimiter la plage de validite de l'approximation. Apres avoir discute des modes collectifs et de l'effet d'une partie imaginaire non-nulle de la self-energie, l'origine de l'echelle d'energie des fluctuations magnetiques est examinee

  17. Formaldehyde: a comparative evaluation of four monitoring methods

    SciTech Connect

    Coyne, L.B.; Cook, R.E.; Mann, J.R.; Bouyoucos, S.; McDonald, O.F.; Baldwin, C.L.

    1985-10-01

    The performances of four formaldehyde monitoring devices were compared in a series of laboratory and field experiments. The devices evaluated included the DuPont C-60 formaldehyde badge, the SKC impregnated charcoal tube, an impinger/polarographic method and the MDA Lion formaldemeter. The major evaluation parameters included: concentration range, effects of humidity, sample storage, air velocity, accuracy, precision, interferences from methanol, styrene, 1,3-butadiene, sulfur dioxide and dimethylamine. Based on favorable performances in the laboratory and field, each device was useful for monitoring formaldehyde in the industrial work environment; however, these devices were not evaluated for residential exposure assessment. The impinger/polarographic method had a sensitivity of 0.06 ppm, based on a 20-liter air sample volume, and accurately determined the short-term excursion limit (STEL). It was useful for area monitoring but was not very practical for time-weighted average (TWA) personal monitoring measurements. The DuPont badge had a sensitivity of 2.8 ppm-hr and accurately and simply determined TWA exposures. It was not sensitive enough to measure STEL exposures, however, and positive interferences resulted if 1,3-butadiene was present. The SKC impregnated charcoal tube measured both TWA and STEL concentrations and had a sensitivity of 0.06 ppm based on a 25-liter air sample volume. Lightweight and simple to use, the MDA Lion formaldemeter had a sensitivity of 0.2 ppm. It had the advantage of giving an instantaneous reading in the field; however, it must be used with caution because it responded to many interferences. The method of choice depended on the type of sampling required, field conditions encountered during sampling and an understanding of the limitations of each monitoring device.

  18. NMR studies of proton exchange kinetics in aqueous formaldehyde solutions

    NASA Astrophysics Data System (ADS)

    Rivlin, Michal; Eliav, Uzi; Navon, Gil

    2014-05-01

    Aqueous solutions of formaldehyde, formalin, are commonly used for tissue fixation and preservation. Treatment with formalin is known to shorten the tissue transverse relaxation time T2. Part of this shortening is due to the effect of formalin on the water T2. In the present work we show that the shortening of water T2 is a result of proton exchange between water and the major constituent of aqueous solutions of formaldehyde, methylene glycol. We report the observation of the signal of the hydroxyl protons of methylene glycol at 2 ppm to high frequency of the water signal that can be seen at low temperatures and at pH range of 6.0 ± 1.5 and, at conditions where it cannot be observed by the single pulse experiment, it can be detected indirectly through the water signal by the chemical exchange saturation transfer (CEST) experiment. The above finding made it possible to obtain the exchange rate between the hydroxyl protons of the methylene glycol and water in aqueous formaldehyde solutions, either using the dispersion of the spin-lattice relaxation rate in the rotating frame (1/T1ρ) or, at the slow exchange regime, from the line width hydroxyl protons of methylene glycol. The exchange rate was ∼104 s-1 at pH 7.4 and 37 °C, the activation energy, 50.2 kJ/mol and its pH dependence at 1.1 °C was fitted to: k (s-1) = 520 + 6.5 × 107[H+] + 3.0 × 109[OH-].

  19. In situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors.

    PubMed

    Kisner, A; Heggen, M; Fischer, W; Tillmann, K; Offenhäusser, A; Kubota, L T; Mourzina, Y

    2012-12-01

    In situ fabrication in a single step of thin films of alumina exhibiting a thickness of less than 100 nm and nanopores with a highly regular diameter distribution in order to pattern nanostructures over field-effect devices is a critical issue and has not previously been demonstrated. Here we report the fabrication in situ of 50 nm thick ultrathin nanoporous alumina membranes with a regular pore size directly over metal-free gate ion-sensitive field-effect transistors. Depositing thin films of aluminum by an electron beam at a relatively low rate of deposition on top of chips containing the transistors and using a conventional single-step anodization process permits the production of a well-adhering nanoporous ultrathin layer of alumina on the surface of the devices. The anodization process does not substantially affect the electrical properties of the transistors. The small thickness and pore size of ultrathin alumina membranes allow them to be sequentially employed as masks for patterning Au nanocrystals grown by an electroless approach directly on the top of the transistors. The patterning process using a wet chemical approach enables the size of the patterned crystals to be controlled not only by the dimensions of the pores of alumina, but also by the concentration of the reactants employed. Surface modification of these nanocrystals with alkanethiol molecules demonstrates that the electrostatic charge of the functional groups of the molecules can modulate the electrical characteristics of the transistors. These results represent substantial progress towards the development of novel nanostructured arrays on top of field-effect devices that can be applied for chemical sensing or non-volatile memories. PMID:23124114

  20. In situ fabrication of ultrathin porous alumina and its application for nanopatterning Au nanocrystals on the surface of ion-sensitive field-effect transistors.

    PubMed

    Kisner, A; Heggen, M; Fischer, W; Tillmann, K; Offenhäusser, A; Kubota, L T; Mourzina, Y

    2012-12-01

    In situ fabrication in a single step of thin films of alumina exhibiting a thickness of less than 100 nm and nanopores with a highly regular diameter distribution in order to pattern nanostructures over field-effect devices is a critical issue and has not previously been demonstrated. Here we report the fabrication in situ of 50 nm thick ultrathin nanoporous alumina membranes with a regular pore size directly over metal-free gate ion-sensitive field-effect transistors. Depositing thin films of aluminum by an electron beam at a relatively low rate of deposition on top of chips containing the transistors and using a conventional single-step anodization process permits the production of a well-adhering nanoporous ultrathin layer of alumina on the surface of the devices. The anodization process does not substantially affect the electrical properties of the transistors. The small thickness and pore size of ultrathin alumina membranes allow them to be sequentially employed as masks for patterning Au nanocrystals grown by an electroless approach directly on the top of the transistors. The patterning process using a wet chemical approach enables the size of the patterned crystals to be controlled not only by the dimensions of the pores of alumina, but also by the concentration of the reactants employed. Surface modification of these nanocrystals with alkanethiol molecules demonstrates that the electrostatic charge of the functional groups of the molecules can modulate the electrical characteristics of the transistors. These results represent substantial progress towards the development of novel nanostructured arrays on top of field-effect devices that can be applied for chemical sensing or non-volatile memories.