Science.gov

Sample records for application au formaldehyde

  1. Formaldehyde.

    PubMed

    Pontén, Ann; Bruze, Magnus

    2015-01-01

    Formaldehyde is the American Contact Dermatitis Society Contact Allergen of the Year for 2015. The exposure is widespread, and contact allergy might be difficult to suspect in the individual dermatitis patient. The relevance of contact allergy to formaldehyde might also be difficult to evaluate. Recently, however, several studies have been performed aimed at enhancing the patch test technique and evaluating the clinical relevance of contact allergy to formaldehyde. The patch test concentration of formaldehyde has been recommended by the European Environmental Contact Dermatitis Research Group to be 2.0%, that is, the dose of 0.60 mg/cm (wt/vol) instead of 1.0%, which is the concentration previously used for the baseline series in most countries. Without causing any more irritant reactions, the patch test concentration of 2.0% detects twice as many contact allergies and enables the diagnosis of formaldehyde-allergic patients who otherwise would have been missed. The studies that underpin the decision were performed in Europe and partly in the United States. The Finn Chamber patch test system was used. The allergen dose per area was kept uniform with a micropipette. This report describes the background for routinely using formaldehyde 2.0% instead of 1.0% and for using a micropipette when applying the test solution.

  2. Formaldehyde

    Integrated Risk Information System (IRIS)

    Formaldehyde ; CASRN 50 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  3. The microcapsule-type formaldehyde scavenger: the preparation and the application in urea-formaldehyde adhesives.

    PubMed

    Duan, Hongyun; Qiu, Teng; Guo, Longhai; Ye, Jun; Li, Xiaoyu

    2015-08-15

    The limitation and regulation of formaldehyde emissions (FE) now shows great importance in wood-based materials such as plywood and particle board manufactured for building and furnishing materials. The widely used formaldehyde-based adhesives are one of the main sources of FE from the wood products. In this work, a new kind of long-term effective formaldehyde scavenger in the microcapsule form was prepared by using an intra-liquid desiccation method. The characterizations of the capsule (UC) were performed including the morphologies, the yields, the loading efficiency as well as its sustained-release of urea in aqueous conditions. The prepared UC could be integrated in urea-formaldehyde resins by simply physical blending, and the mixtures were available to be applied as the adhesives for the manufacture of plywood. The bonding strength (BS) and the FE of the bonded plywood in both short (3h) and long (12 week) period were evaluated in detail. It was found that the FE profile of the plywood behaved following a duple exponential law within 12 week. The addition of UC in the adhesive can effectively depress the FE of the plywood not only in a short period after preparation but also in a long-term period during its practical application. The slow released urea would continuously suppress the emission of toxic formaldehyde in a sustained manner without obviously deteriorating on the BS of the adhesives.

  4. Synthesis of multifunctional Ag@Au@phenol formaldehyde resin particles loaded with folic acids for photothermal therapy.

    PubMed

    Yang, Ping; Xu, Qi-Zhi; Jin, Sheng-Yu; Lu, Yang; Zhao, Yang; Yu, Shu-Hong

    2012-07-23

    Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.

  5. Molecular Beam Surface Scattering of Formaldehyde from Au(111): Characterization of the Direct Scatter and Trapping-Desorption Channels

    NASA Astrophysics Data System (ADS)

    Krueger, Bastian C.; Park, Barratt; Meyer, Sven; Wagner, Roman J. V.; Wodtke, Alec; Schaefer, Tim

    2017-06-01

    Quantum state resolved molecular beam scattering studies of small polyatomic molecules from metal surfaces present new challenges for experimentalists, but provide unprecedented new opportunities for detailed study of polyatomic molecular dynamics at surfaces. In the current work, we report preliminary characterization of the scattering of formaldehyde from the Au(111) surface. We report the measured desorption energy (0.31 eV), and characterize the distinct trapping-desorption and direct scattering channels, via the dependence of the scattered velocity and rotational distributions on surface temperature and incident molecular beam energy. Finally, we estimate the trapping probability as a function of incidence energy, which indicates the importance of molecular degrees of freedom in the mechanism for trapping.

  6. Density functional theory study of the carbonyl-ene reaction of encapsulated formaldehyde in Cu(I), Ag(I), and Au(I) exchanged FAU zeolites.

    PubMed

    Wannakao, Sippakorn; Khongpracha, Pipat; Limtrakul, Jumras

    2011-11-17

    Carbonyl-ene reactions, which involve C-C bond formation, are essential in many chemical syntheses. The formaldehyde-propene reaction catalyzed by several of the group 11 metal cations, Cu(+), Ag(+), and Au(+) exchanged on the faujasite zeolite (metal-FAU) has been investigated by density functional theory at the M06-L/6-31G(d,p) level. The Au-FAU exhibits a higher activity than the others due to the high charge transfer between the Au and the reactant molecules, even though it is located at a negatively charged site of the zeolite. This site enables it to compensate for the charge of the Au(+) ion. The NBO analysis reveals that the 6s orbital of the Au atom plays an important role, inducing a charge on the probe molecules. Moreover, the effect of the zeolite framework makes the Au-FAU more active than the others by stabilizing the high charge induced transition structure. The activation energy of the reaction catalyzed by Au-FAU is 13.0 kcal/mol whereas that of Cu and Ag-FAU is found to be around 17 kcal/mol. The product desorption needs to be improved for Au-FAU; however, we suggest that catalysts with high charge transfer might provide a promising activity.

  7. Biomolecule-based formaldehyde resin microspheres loaded with Au nanoparticles: a novel immunoassay for detection of tumor markers in human serum.

    PubMed

    Lu, Wenbo; Qian, Chen; Bi, Liyan; Tao, Lin; Ge, Juan; Dong, Jian; Qian, Weiping

    2014-03-15

    A surfactant-free and template-free method for the high-yield synthesis of biomolecule (serotonin)-based formaldehyde resin (BFR) microspheres is proposed for the first time. The colloidal microspheres loaded with Au nanoparticles (AuNPs) prepared by a convenient in-situ synthesis of AuNPs on BFR (AuNPs/BFR) microsphere surface show good stability. AuNPs/BFR microspheres not only favor the immobilization of antibody but also facilitate the electron transfer. It is found that the resultant AuNPs/BFR microspheres can be designed to act as a sensitive label-free electrochemical immunosensor for carcinoembryonic antigen (CEA) determination. The immunosensor is prepared by immobilizing capture anti-CEA on AuNPs/BFR microspheres assembled on thionine (TH) modified glassy carbon electrode (GCE). TH acts as the redox probe. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 25 pg/mL to 2000 pg/mL (R=0.998) and the detection limit is estimated to be 3.5 pg/mL at a signal-to-noise ratio of 3. The prepared immunosensor for detection of CEA shows high sensitivity, reproducibility and stability. Our study demonstrates that the immunosensor can be used for the CEA detection in humans serum.

  8. Urea-formaldehyde resins: production, application, and testing

    NASA Astrophysics Data System (ADS)

    Nuryawan, A.; Risnasari, I.; Sucipto, T.; Heri Iswanto, A.; Rosmala Dewi, R.

    2017-07-01

    Urea-formaldehyde (UF) resin, one of the most important formaldehyde resin adhesives, is a polymeric condensation product of formaldehyde with urea, and being widely used for the manufacture of wood-based composite panels, such as plywood, particleboard, and fiberboard. In spite of its benefits such as fast curing, good performance in the panels (colorless), and lower cost; formaldehyde emission (FE) originated from either UF resin itself or composite products bonded by UF resins is considered a critical drawback as it affects human health particularly in indoor environment. In order to reduce the FE, lowering formaldehyde/urea (F/U) mole ratio in the synthesis of the UF resin was done. In this study, synthesis of UF resins was carried out following the conventional alkaline-acid two-step reaction with a second addition of urea, resulting in F/U mole ratio around 1.0, namely 0.95; 1.05, and 1.15. The UF resins produced were used as binder for particleboard making. The board was manufactured in the laboratory using shaving type particle of Gmelina wood, 8% UF resin based on oven dry particle, and 1% NH4Cl (20%wt) as hardener for the resin. The target of the thickness was 10 mm and the dimension was 25 cm x 25 cm. The resulted particleboard then was evaluated the physical and the mechanical properties by Japanese Industrial Standard (JIS) A 5908 (2003). Further, the resulted particleboard also was used for the mice cage’s wall in order to mimic the real living environment. After four weeks exposure in the cages, the mice then were evaluated their mucous organs as well as their blood. The experiment results were as follows: 1) It was possible to synthesis UF resins with low F/U mole ratio; 2) However, the particleboard bonded UF resins with low F/U mole ratio showed poor properties, particularly on the thickness swelling and modulus of elasticity; 3) There was no significant differences among the mucous organs of the mice after a month exposure FE originated from

  9. A permeation-controlled formaldehyde reference source for application in environmental test chambers.

    PubMed

    Salthammer, Tunga; Giesen, Ruth; Schripp, Tobias

    2017-10-01

    In a wide range of indoor air pollutants, formaldehyde is one of the most-used and best-known substances. In order to protect human health, many countries have established threshold values for the release of formaldehyde from miscellaneous products and revise them constantly. Compliance with these regulations is usually assessed by emission test chamber measurements or derived methods. To control and improve the mechanisms of an emission test chamber, a reliable reference source with sample mimicking emission properties is required but not available so far. This study describes a permeation-controlled reference source based on the application of paraformaldehyde as formaldehyde releasing polymeric compound. Interactions between the formaldehyde release of the source and the governing chamber parameters temperature, relative humidity and air velocity were investigated in 1 m(3) emission chambers. Depending on the conditions, constant formaldehyde concentrations between approximately 10 ppb and 150 ppb can be adjusted for up to 600 h. A linear correlation between the logarithm of the chamber concentration and the reciprocal temperature was found. The results support the feasibility of the source for validation of emission test chamber performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Au Based Nanocomposites Towards Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Panniello, A.; Curri, M. L.; Placido, T.; Reboud, V.; Kehagias, N.; Sotomayor Torres, C. M.; Mecerreyes, D.; Agostiano, A.; Striccoli, M.

    2010-06-01

    Incorporation of nano-sized metals in polymers can transfer their unique features to the host matrix, providing nanocomposite materials with improved optical, electric, magnetic and mechanical properties. In this work, colloidal Au nanorods have been incorporated into PMMA based random co-polymer, properly functionalized with amino groups and the optical and morphological properties of the resulting nanocomposite have been investigated by spectroscopic and AFM measurements. Au nanorods have demonstrated to preserve the plasmon absorption and to retain morphological features upon the incorporation, thus making the final metal modified polymer composite exploitable for the fabrication of plasmonic devices. The prepared nanocomposites have been then patterned by Nano Imprint Lithography technique in order to demonstrate the viability of the materials towards optical applications.

  11. Application of hydroalcoholic solutions of formaldehyde in preparation of acetylsalicylic acid gastro-resistant capsules.

    PubMed

    Pina, M E; Sousa, A T

    2002-04-01

    Enteric coating of hard gelatin capsules by application of hydroalcoholic solutions of formaldehyde was studied and developed in accordance with previous publications. It is possible to affirm that this coating constitutes a simple, stable, reproducible, and inexpensive method, being a valid alternative to those which have been proposed. The aim of the present investigation is the preparation of acetylsalicylic acid gelatin capsules with good conditions of gastro-resistance and enteros solubility.

  12. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human

    PubMed Central

    McHale, Cliona M.; Smith, Martyn T.; Zhang, Luoping

    2014-01-01

    Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene–environment (GxE) associations, genome-wide association studies (GWAS) and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, we applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line (KBM7). Through comparative genomic and computational analyses of the resulting data, we have identified human genes and pathways that may modulate susceptibility to benzene and formaldehyde. We have validated the roles of several genes in mammalian cell models. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies (CWAS) in lymphocytes. In this review of the literature, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers. PMID:24571325

  13. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers.

    PubMed

    de Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda; Menné, Torkil; Coenraads, Pieter-Jan

    2009-08-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literature as formaldehyde-releasers, data are inadequate to consider them as such beyond doubt. Several (nomenclature) mistakes and outdated information are discussed. Formaldehyde and formaldehyde allergy are reviewed: applications, exposure scenarios, legislation, patch testing problems, frequency of sensitization, relevance of positive patch test reactions, clinical pattern of allergic contact dermatitis from formaldehyde, prognosis, threshold for elicitation of allergic contact dermatitis, analytical tests to determine formaldehyde in products and frequency of exposure to formaldehyde and releasers. The frequency of contact allergy to formaldehyde is consistently higher in the USA (8-9%) than in Europe (2-3%). Patch testing with formaldehyde is problematic; the currently used 1% solution may result in both false-positive and false-negative (up to 40%) reactions. Determining the relevance of patch test reactions is often challenging. What concentration of formaldehyde is safe for sensitive patients remains unknown. Levels of 200-300 p.p.m. free formaldehyde in cosmetic products have been shown to induce dermatitis from short-term use on normal skin.

  14. Rotationally-Resolved Scattering of Formaldehyde from the 111Au Surface: AN Axis Specific Rotational Rainbow and its Role in Trapping Probability

    NASA Astrophysics Data System (ADS)

    Park, Barratt; Krueger, Bastian C.; Meyer, Sven; Kandratsenka, Alexander; Wodtke, Alec; Schaefer, Tim

    2017-06-01

    The conversion of translational to rotational motion often plays a major role in the trapping of small molecules at surfaces, a crucial first step for a wide variety of chemical processes that occur at gas-surface interfaces. However, to date most quantum-state resolved surface scattering experiments have been performed on diatomic molecules, and very little detailed information is available about how the structure of non-linear polyatomic molecules influences the mechanisms for energy exchange with surfaces. In the current work, we employ a new rotationally-resolved 1+1' resonance-enhanced multiphoton ionization (REMPI) scheme to measure rotational distribution in formaldehyde molecules directly scattered from the Au(111) surface at incident kinetic energies in the range 0.3-1.2 eV. The results indicate a pronounced propensity to excite a-axis rotation (twirling) rather than b- or c-axis rotation (tumbling or cartwheeling), and are consistent with a rotational rainbow scattering model. Classical trajectory calculations suggest that the effect arises--to zeroth order--from the three-dimensional shape of the molecule (steric effects). The results have broad implications for the enhanced trapping probability of prolate and near-prolate molecules at surfaces.

  15. Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism.

    PubMed

    Ma, Chunyan; Wang, Donghui; Xue, Wenjuan; Dou, Baojuan; Wang, Hailin; Hao, Zhengping

    2011-04-15

    Formaldehyde is regarded as the major indoor pollutant emitted from widely used building and decorative materials in airtight buildings, which should be eliminated under indoor environmental conditions. We report here catalytic oxidation process of formaldehyde over mesoporous Co(3)O(4), Co(3)O(4)-CeO(2), Au/Co(3)O(4), and Au/Co(3)O(4)-CeO(2) catalysts and their excellent catalytic performances at room temperature. These catalysts were prepared by a "nanocasting" method with the mesostructure generated from SBA-15 silica with 2D structure. The adsorbed surface species in the formaldehyde oxidation process are analyzed, and some key steps in the oxidation pathway, active sites, and intermediate species are proposed. Among the detected species, some kinds of formate species formed on the catalysts were indentified as intermediates, which further transformed into bicarbonate or carbonate and which decomposed to carbon dioxide. The role of the mesoporous Co(3)O(4) and the gold nanoparticles in the mechanism are also revealed.

  16. Polyatomic, anharmonic, vibrational-rotational analysis. Application to accurate Ab initio results for formaldehyde

    SciTech Connect

    Harding, L.B.; Ermler, W.C.

    1985-01-01

    A computer program SURVIB is described for calculating vibrational anharmonicity constants for polyatomic molecules. The program requires as input a grid of calculated energies in the vicinity of a stationary point. This grid is fit, in a least squares sense, to a polynomial function of the internal coordinates. This analytic representation of the energy surface is employed in a normal mode analysis, and the energy is reexpanded as a polynomial function of the normal mode coordinates (expressed as vectors in the mass-weighted atomic Cartesian coordinate space). The resulting coefficients are used in a second-order perturbation theory analysis to obtain the vibrational anharmonicity constants. Also reported is an application of this program to formaldehyde employing ab initio, RHF, MP2, MP3, and RHF-CI calculations. The spectroscopic constants obtained for H/sub 2/CO are in good agreement with experimentally derived values recently reported by Reisner. 28 references, 9 tables.

  17. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    PubMed

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  19. Synthesis, Characterization and Applications of New Nonmetallic Photocatalysts -- Resorcinol Formaldehyde Resin and Boron Carbon Oxynitride

    NASA Astrophysics Data System (ADS)

    Gu, Ting

    This thesis describes the synthesis, characterization and applications of two kinds of nonmetallic photocatalysts: resorcinol formaldehyde (RF) resin and boron carbon oxynitride (BCNO). Part I: Catalyst-free hydrothermal method was developed to synthesize RF resin. It started with a solution containing only resorcinol and formaldehyde. The products were characterized by transmission electron microscopy (TEM), Solid state 13C nuclear magnetic resonance (13C-NMR) spectrometer and UV-Visible absorption spectroscopy. The particle size (diameter: 100nm-4microm) of RF the spheres was controlled by changing the concentration of the reactants. With increasing particle size, visible light absorption of the product was also increased. These RF spheres could degrade Rhodamine B and generate OH radicals under visible light irradiation. Besides, highly concentrated starting reactants would form large macroporous gel instead of individual particles. This kind of gel could be easily shaped to dishes and tubes, which could be used in filtration and degradation of air pollutants. Part II: The BCNO was prepared by heating a mixture of boric acid, melamine and PEG in atmosphere. The optical properties of the products were measured by UV-Visible absorption spectroscopy with integrating sphere. The X-ray powder diffraction (XRD) patterns indicated that all BCNO compounds had the turbostratic boron nitride (t-BN) structure. Meanwhile, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectrum (EELS) were used to determine the chemical composition of the catalyst. The BCNO could be identified as t-BN with N atoms partly substituted by O and C atoms. The degree of substitution affected its photocatalytic properties. Perdew--Burke--Ernzerhof (PBE) exchange model was introduced to simulate the density of state (DOS) of BCNO using these supercells. Simulation results indicated that C and O substitution induced occupied impurity states in the gap region which modified the band

  20. New ideally absorbing Au plasmonic nanostructures for biomedical applications

    NASA Astrophysics Data System (ADS)

    Zakomirnyi, Vadim I.; Rasskazov, Ilia L.; Karpov, Sergey V.; Polyutov, Sergey P.

    2017-01-01

    In this paper a new set of plasmonic nanostructures operating at the conditions of an ideal absorption (Grigoriev et al., 2015 [1]) was proposed for novel biomedical applications. We consider spherical x/Au nanoshells and Au/x/Au nanomatryoshkas, where 'x' changes from conventional Si and SiO2 to alternative plasmonic materials (Naik and Shalaev, 2013 [2]), such as zinc oxide doped with aluminum, gallium and indium tin oxide. The absorption peak of proposed nanostructures lies within 700-1100 nm wavelength region and corresponds to the maximal optical transparency of hemoglobin and melanin as well as to the radiation frequency of available pulsed medical lasers. It was shown that the ideal absorption takes place in a given wavelength region for Au coatings with thickness less than 12 nm. In this case finite quantum size effects for metallic nanoshells play a significant role. The mathematical model for the search of the ideal absorption conditions was modified by taking into account the finite quantum size effects.

  1. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  2. Development of gas sensing application for formaldehyde gas detection and characterization of tin dioxide

    NASA Astrophysics Data System (ADS)

    Zaki, M.; Hashim, U.; Arshad, M. K. Md; Nasir, M.

    2017-03-01

    This paper presents the development of sensor in ultrasensitive detection of formaldehyde gas. The chemical compound, tin dioxide (SnO2) thin film is deposited onto glass insulator. Next, the resistance and voltage of the sensing layer on the interdigitated electrodes (IDE) sensor's substrate is measured. The resistivity of sensor is changed by heat the sensing layer to 150 °C, 175 °C and 200 °C. When formaldehyde gas is supplied inside the test chamber, absorption process occurred at the surface of the heated SnO2 sensing layer. The experimental results show the sensor is capable of high sensitivity sensing of formaldehyde gas at 200 °C, repeatability, and capability detection as low as 11 ppm which produced 0.8 V on electronic reader. Characterization of surface morphological, temperature effect and electrical properties are demonstrated by various measurements.

  3. Synthesis and application of water-soluble phenol-formaldehyde resin crosslinking agent

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Gao, Shanshan; You, Jing; Yu, Jiliang; Jiang, Tao; He, Dehai; Gong, Hui; Zhang, Tiantian; Wei, Junjie; Guo, Suzhen

    2017-04-01

    Polyacrylamide and water-soluble phenol-formaldehyde resin can produce crosslinking reaction to generate the movable gel, which can be used in deep profile control to enhance oil recovery. In this paper, the preparation process of water-soluble phenol-formaldehyde resin crosslinking agent (polyhydroxymethyl phenolic) was presented, including the raw material mixture ratio and synthesis process. The water-soluble phenol-formaldehyde resin was synthesized by the technology of two-step base catalysis with NaOH and Ba(OH)2•8H2O composite catalyst. The movable gel prepared with this crosslinking agent and polyacrylamide has good stability and long shelf life through the performance evaluation experiment. The above movable gel was applied to deep profile control and obtained better flooding efficiency.

  4. Control of formaldehyde emission from wood-based panels by doping adsorbents: optimization and application

    NASA Astrophysics Data System (ADS)

    He, Zhongkai; Zhang, Yinping

    2013-06-01

    This paper puts forward an approach to determine the optimal mode of doping adsorbents into the wood-based panels for control of their formaldehyde emission. Based on the optimization conclusion, a novel design method for low-emitting wood-based panels by daubing adsorbent layer on the panel's surface is proposed. The formaldehyde emission results from the prepared laboratory specimens indicate the feasibility of the proposed method. This study provides a meaningful guidance on designing low-emitting wood-based panels.

  5. Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications

    DTIC Science & Technology

    2011-02-11

    1 Project Title:- Development of Pt-Au-Graphene- Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au-graphene- carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...05-2010 4. TITLE AND SUBTITLE Development of Pt-Au-Graphene- Carbon nanotube composite for fuel cells and biosensors applications 5a. CONTRACT

  6. Au-Pt bimetallic nanoparticles supported on nest-like MnO2: synthesis and application in HCHO decomposition

    NASA Astrophysics Data System (ADS)

    Yu, Xuehua; He, Junhui; Wang, Donghui; Hu, Yucai; Tian, Hua; Dong, Tongxin; He, Zhicheng

    2012-11-01

    Facile synthesis of Au-Pt bimetallic nanoparticles (Au1- x Pt x NPs) and mixtures of Au NPs and Pt NPs ((100 % - y)Au/ yPt NPs) and their subsequent deposition on nest-like MnO2 nanostructures were presented. The as-prepared products were characterized by means of UV-visible spectroscopy, X-ray diffraction, scanning and transmission electron microscopy, and energy dispersive spectroscopy. TEM analyses showed that noble metal NPs were evenly dispersed on the surface of nest-like MnO2 nanostructures and no agglomeration was observed. The as-prepared metal NPs supported catalysts showed higher catalytic activities than MnO2 nanostructures for oxidative decomposition of formaldehyde (HCHO). The forms of noble metal NPs and Au/Pt molar ratio have significant effects on the catalytic performance, and Au0.5Pt0.5/MnO2 has the highest catalytic activity among all the as-prepared metal NPs supported MnO2 catalysts, and the temperature for complete decomposition of HCHO reached as low as 313 K. The high catalytic activities of Au1- x Pt x /MnO2 catalysts resulted from the synergistic effect between Au1- x Pt x NPs and MnO2 nanostructure, as well as the synergistic effect between Au and Pt. The current Au1- x Pt x /MnO2 catalysts are among the first trials to apply bimetallic NP-supported catalysts to the decomposition of HCHO, and proved that the Au1- x Pt x /MnO2 catalysts are promising for indoor decomposition of formaldehyde due to their easy synthesis, low cost, and excellent catalytic performance.

  7. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 μM, high sensitivity of 162.69 μA mM(-1) cm(-2), and wide linear range of 0.05 μM-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication.

  8. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng

    2017-01-01

    In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  9. The effect of formaldehyde or glutaraldehyde application to lucerne before ensiling on silage fermentation and silage N digestion in sheep.

    PubMed

    Siddons, R C; Arricastres, C; Gale, D L; Beever, D E

    1984-09-01

    The primary growth of lucerne (Medicago sativa) was ensiled after treatment with either formic acid alone (4.1 litres/t; silage F) or with formic acid and either formaldehyde (30.5 g/kg crude protein (nitrogen X 6.25; CP); silage FF), glutaraldehyde (44.2 g/kg CP; silage FG) or a mixture of the two aldehydes at approximately half their individual application rates (silage FFG). Compared with formic acid alone, both formaldehyde and glutaraldehyde reduced protein breakdown and carbohydrate fermentation during ensiling. The extent of protein protection afforded within the silo was similar for the two aldehydes, whereas formaldehyde was more effective in restricting carbohydrate fermentation. The effect of treatment FFG on silage fermentation was confounded by the silo bag bursting and the development of a clostridial-type fermentation. All aldehyde treatments reduced silage soluble-N content but N disappearance when the silages were incubated in polyester bags in the rumen was high for all silages and reductions due to the aldehydes were small. Silage digestion was studied in four mature sheep each fitted with a rumen cannula and re-entrant cannulas in the proximal duodenum and distal ileum. The apparent digestibility of organic matter (OM) in the whole tract was reduced (P less than 0.05) to a similar extent by both aldehydes, whereas rumen OM digestion was reduced (P less than 0.05) more by glutaraldehyde than by formaldehyde. The effects on digestion appeared to be due to the action of the aldehydes on the foods rather than to any adverse influences of the aldehydes on the metabolism of the rumen microbes because, although rumen ammonia levels were lower (P less than 0.05) when the aldehyde-treated silages were given, rumen casein-degrading activity, the degradation of different feedstuffs when incubated in polyester bags in the rumen and microbial N flow at the duodenum did not differ (P greater than 0.05) between silages. All aldehyde treatments decreased (P

  10. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Formaldehyde. Note: The requirements applicable to shipyard employment under this section are identical to...

  11. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Formaldehyde. Note: The requirements applicable to shipyard employment under this section are identical to...

  12. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Formaldehyde. Note: The requirements applicable to shipyard employment under this section are identical to...

  13. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Formaldehyde. Note: The requirements applicable to shipyard employment under this section are identical to...

  14. 29 CFR 1915.1048 - Formaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Formaldehyde. 1915.1048 Section 1915.1048 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Formaldehyde. Note: The requirements applicable to shipyard employment under this section are identical to...

  15. Economically applicable Ti(2)O(3) decorated m-aminophenol-formaldehyde resin microspheres for dye-sensitized solar cells (DSSCs).

    PubMed

    Sasikumar, Ragu; Ranganathan, Palraj; Chen, Shen-Ming; Sireesha, Pedaballi; Chen, Tse-Wei; Veerakumar, Pitchaimani; Rwei, Syang-Peng; Kavitha, Thavuduraj

    2017-05-15

    In this present study, we focus on economically applicable polymeric material as photo-anode for dye-sensitized solar cells (DSSCs). Water droplets on grass like Ti2O3 decorated m-aminophenol-formaldehyde resin microspheres (mAPFR@Ti2O3) synthesized by surfactant-free and template-free hydrothermal method. The synthesized mAPFR@Ti2O3 material morphology was characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). From that results, it was found in uniform arrangements with excellent thermal stability. As we know from the literature we are the first to report the mechanism about mAPFR microspheres formations. Owing to the low temperature processing, cheap cost and easy preparation in this current study we propose to use mAPFR@Ti2O3 microspheres as an active material for the preparation of doped photo-anode in DSSCs exhibited the short-circuit photocurrent density (Jsc) of 18.14mAcm(-2), open circuit voltage (Voc) of 0.70V, fill factor (FF) of 0.62, power conversion efficiency is 7.90% which is 84% greater than that of DSSCs with conventional TiO2 electrode. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  17. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  18. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.

    PubMed

    Zhang, Hongfang; Liu, Ruixiao; Sheng, Qinglin; Zheng, Jianbin

    2011-02-01

    This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Highly selective ratiometric fluorescent probe for Au3+ and its application to bioimaging.

    PubMed

    Choi, Ji Young; Kim, Gun-Hee; Guo, Zhiqian; Lee, Hye Yeon; Swamy, K M K; Pai, Jaeyoung; Shin, Seunghoon; Shin, Injae; Yoon, Juyoung

    2013-11-15

    The 4-propargylamino-1,8-naphthalimide based fluorescent probe 1 has been explored as a sensor for selective detection of Au(3+). 4-Amino-1,8-naphthalimides, that possess typical intramolecular charge transfer (ICT) electronic characteristics, have been widely used as versatile platforms for fluorescent probes. The newly designed probe 1 contains a propargylamine moiety at C-4 of the naphthalimide chromophore that reacts with Au(3+) to generate a product that has distinctly different electronic properties from 1. Specifically, the probe undergoes a remarkable change in its absorption spectrum upon addition of Au(3+) that is associated with a distinct color change from yellow to light pink. In addition, a blue shift of ca. 56 nm also takes place in the emission spectra of the probe. Consequently, 1 serves as a reaction-based sensor or so called chemodosimeter for Au(3+). Importantly, surfactants enhance the rate of reaction of 1 with Au(3+), thus, enhancing its use as a real time sensor. Finally, the results of studies probing its application to bioimaging of Au(3+) in live cells show that the probe 1 has a unique ability to sense Au(3+) in cells and, in particular, in lipid droplets within cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Synthesis and biosensor application of Ag@Au bimetallic nanoparticles based on localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Arsalani, S.; Neishaboorynejad, T.

    2014-05-01

    This work demonstrates a simple method for synthesizing gold-silver bimetallic nanoparticles (Ag@Au BNPs). Ag@Au BNPs on the carbon thin film are prepared by co-deposition of RF-sputtering and RF-PECVD using acetylene gas and gold-silver target. X-ray diffraction analysis indicates that Au and Ag NPs with FCC crystal structure are formed in our samples. From AFM image and data, average particles size of gold and silver are estimated to be about 5 and 8 nm, respectively. XRD profile and localized surface plasmon resonance (LSPR) spectroscopy indicate that Ag NPs in Ag@Au BNPs composite have a more chemical activity with respect to bare Ag NPs. Biosensor application of Ag@Au BNPs without probe immobilization is introduced too. The change in LSPR absorption peak of Ag@Au BNPs in presence of DNA primer decamer (ten-deoxycytosine) at fM concentrations is investigated. The LSPR absorption peak of Au NPs has a blue shift and the LSPR absorption peak of Ag NPs has a red shift by addition of DNA primer and under DNA exposure up to 1 h. Our sample shows a good response to low concentration of DNA and has a short response time. Both of these are prerequisite for applying this sample as LSPR biosensor chip.

  1. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons.

    PubMed

    Tulpule, Ketki; Hohnholt, Michaela C; Dringen, Ralf

    2013-04-01

    Formaldehyde is endogenously produced in the human body and brain levels of this compound are elevated in neurodegenerative conditions. Although the toxic potential of an excess of formaldehyde has been studied, little is known on the molecular mechanisms underlying its neurotoxicity as well as on the ability of neurons to metabolize formaldehyde. To address these topics, we have used cerebellar granule neuron cultures as model system. These cultures express mRNAs of various enzymes that are involved in formaldehyde metabolism and were remarkably resistant toward acute formaldehyde toxicity. Cerebellar granule neurons metabolized formaldehyde with a rate of around 200 nmol/(h × mg) which was accompanied by significant increases in the cellular and extracellular concentrations of formate. In addition, formaldehyde application significantly increased glucose consumption, almost doubled the rate of lactate release from viable neurons and strongly accelerated the export of the antioxidant glutathione. The latter process was completely prevented by inhibition of the known glutathione exporter multidrug resistance protein 1. These data indicate that cerebellar granule neurons are capable of metabolizing formaldehyde and that the neuronal glycolysis and glutathione export are severely affected by the presence of formaldehyde. © 2013 International Society for Neurochemistry.

  2. Formaldehyde surface emission monitor

    SciTech Connect

    Matthews, T.G.; Hawthorne, A.R.; Daffron, C.R.; Corey, M.D.; Reed, T.J.; Schrimsher, J.M.

    1984-03-01

    A passive surface emission monitor has been developed for nondestructive measurement of formaldehyde (CH/sub 2/O) emission rates from CH/sub 2/O resin-containing materials such as urea-formaldehyde foam insulation (UFFI) and pressed-wood products. Emitted CH/sub 2/O is sorbed by a planar distribution of 13X molecular sleve supported inside the monitor and analyzed by using a water-rinse desorption, colorimetric analysis procedure. A detection limit of similarly ordered 0.025 mg of CH/sub 2/O/(M/sup 2/ h) is achieved with a 20.3 cm diameter monitor and a 2-h collection period. Measurements of CH/sub 2/O emission rates from pressed-wood products and UFFI encased in simulated wall panels show a strong correlation with reference chamber techniques. The surface monitor has been used to measure the CH/sub 2/O emission rate from interior walls and floors in one UFFI and two non-UFFI homes. By application of a simple single compartment model to predict indoor CH/sub 2/O concentrations from in situ CH/sub 2/O emission rate and tracer gas infiltration rate measurements, a good correlation between the predicted and measured CH/sub 2/O concentrations was achieved. 22 references, 5 figures, 4 tables.

  3. Nitrite ion-induced fluorescence quenching of luminescent BSA-Au(25) nanoclusters: mechanism and application.

    PubMed

    Unnikrishnan, Binesh; Wei, Shih-Chun; Chiu, Wei-Jane; Cang, Jinshun; Hsu, Pang-Hung; Huang, Chih-Ching

    2014-05-07

    Fluorescence quenching is an interesting phenomenon which is highly useful in developing fluorescence based sensors. A thorough understanding of the fluorescence quenching mechanism is essential to develop efficient sensors. In this work, we investigate different aspects governing the nitrite ion-induced fluorescence quenching of luminescent bovine serum albumin stabilized gold nanoclusters (BSA-Au NCs) and their application for detection of nitrite in urine. The probable events leading to photoluminescence (PL) quenching by nitrite ions were discussed on the basis of the results obtained from ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), fluorescence measurements, circular dichroism (CD) spectroscopy, zeta potential and dynamic light scattering (DLS) studies. These studies suggested that PL quenching mainly occurred through the oxidation of Au(0) atoms to Au(i) atoms in the core of BSA-Au NCs mediated by nitrite ions. The interference caused by certain species such as Hg(2+), Cu(2+), CN(-), S(2-), glutathione, cysteine, etc. during the nitrite determination by fluorescence quenching was eliminated by using masking agents and optimising the conditions. Based on these findings we proposed a BSA-Au NC-modified membrane based sensor which would be more convenient for the real life applications such as nitrite detection in urine samples. The BSA-Au NC-modified nitrocellulose membrane (NCM) enabled the detection of nitrite at a level as low as 100 nM in aqueous solutions. This Au NC-based paper probe was validated to exhibit good performance for nitrite analysis in environmental water and urine samples, which makes it useful in practical applications.

  4. Polymers effects on synthesis of AuNPs, and Au/Ag nanoalloys: indirectly generated AuNPs and versatile sensing applications including anti-leukemic agent.

    PubMed

    Jahan, Shanaz; Mansoor, Farrukh; Kanwal, Shamsa

    2014-03-15

    Polymers either serve as shielding or capping agents to restrict the nanoparticle size. This study demonstrates the polymer depositions and their effects in synthesis and sharp stabilization of gold nanoparticles (AuNPs) and to develop gold/silver nanoalloys (Au/Ag nanoalloys). Effects of different polymers are tested to justify their role in synthesis and stability of phloroglucinol (PG) coated AuNPs and Au/Ag nanoalloys. Cationic and anionic i.e. [Polydiallyldimethylammonium](+) (PDDA), [Polyethyleneimine](+) (PEI), [Polystyrene sulfonate](2-) (PSS) and neutral polymer Polychlorotriflouroethylene (PCTFE) produce praiseworthy stable AuNPs and Au/Ag nanoalloy. To prove polymer effects characterization protocols including UV-vis, Fluorescence (PL), IR and AFM imaging are performed to fully investigate the mechanism and size characteristics of these nanoparticles/nanoalloys. In this study sharp size controlling/sheilding effects were observed particularly with cationic polymers simply through the favorable electrostatic interactions with the terminal ends of PG Potent/significant detection of doxorubicin (DOX, an antileukemic agent) via fluorescence resonance energy transfer (FRET) between PEI shielded AuNPs (AuNPEI) and DOX was achieved upto 10 pM level, while PDDA protected AuNPs facilitated the detection of ascorbic acid based on fluorescence enhancement effects in wide range (10-200 nM) and with detection limit of 200 pM. Similarly sensing performance of PEI stabilized Au/Ag nanoalloys on addition of halides (Cl(-), Br(-), I(-)) is evaluated through red shifted SPR along with continuous increase in absorbance and also through AFM. Moreover the addition of halide ions also helped the regeneration of AuNPs by taking away silver from the Au/Ag nanoalloys enabling their detections upto subnanomolar levels.

  5. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    NASA Astrophysics Data System (ADS)

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m-3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  6. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  7. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.

    PubMed

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-10-13

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m(-3) and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells.

  8. Preparation of biaxially cube textured Ag, Cu-Au and Cu-Au-Ag films on Cu substrates for HTS coated conductor applications

    NASA Astrophysics Data System (ADS)

    Díaz, J.; Segarra, M.; Espiell, F.; Piñol, S.

    2001-08-01

    Copper (100) cube textured tapes have been covered successfully with biaxially textured thin and thick films of silver, gold and gold-silver by electrodeposition techniques for high temperature superconductors (HTS) coated conductor applications. The cube texture of Cu was promoted by recrystallization after smooth cold rolling. The biaxially cube textured Ag films were obtained by the electro-epitaxial deposition technique using no post-deposition heat treatment. Intermediate gold buffer layers were prepared in order to increase the thermal stability of the cube-textured Ag-buffered Cu substrates. The as-electrodeposited Au buffer layers were polycrystalline, but after an annealing treatment at high temperature the Au is absorbed by diffusion mechanism into the Cu tapes and a biaxially solid solution of Au-Cu(100) is formed on the surface. Ag thin films deposited on Cu-Au substrates form the same biaxial cube texture as the rolled Cu tapes after recrystallization at high temperature.

  9. Formaldehyde in pathology departments.

    PubMed Central

    Clark, R P

    1983-01-01

    Toxic effects of formaldehyde in humans are discussed in relation to occupational exposure and tolerance to this agent. Carcinogenic and mutagenic properties of formaldehyde have been reported in animals and this has led to concern about a possible role in human cancer. The current state of affairs is reviewed in the light of a lack of direct evidence linking formaldehyde with cancer in man and in relation to recommended exposure levels. It is important to employ effective means of containment and practical methods for reducing exposure to formaldehyde in pathology departments and post-mortem rooms are described. Images PMID:6223948

  10. Formaldehyde: toxicology and hazards

    SciTech Connect

    Casteel, S.W.; Vernon, R.J.; Bailey, E.M. Jr.

    1987-02-01

    The widespread use of formaldehyde-based resins had led to the observation of consumer annoyance and health problems associated with its release. Formaldehyde vapor now is known to off-gas from many of these products. Vapor exposure of humans results in symptoms of eye and upper respiratory tract irritation. Inhaled formaldehyde also produces nasal carcinomas in rats and mice (following exposure to 14.1 ppm in mice and 5.6 ppm in rats for 6 hr/day, 5 days/week for 24 mo). These findings resulted in intensified concern over the amount of formaldehyde released into the indoor environment from various laboratory and consumer products.

  11. Magnetic susceptibility and hardness of Au-xPt-yNb alloys for biomedical applications.

    PubMed

    Uyama, Emi; Inui, Shihoko; Hamada, Kenichi; Honda, Eiichi; Asaoka, Kenzo

    2013-09-01

    Metal devices in the human body induce serious metal artifacts in magnetic resonance imaging (MRI). Metals artifacts are mainly caused by a volume magnetic susceptibility (χv) mismatch between a metal device and human tissue. In this research, Au-xPt-yNb alloys were developed for fabricating MRI artifact-free biomedical metal devices. The magnetic properties, hardness and phase constitutions of these alloys were investigated. The Au-xPt-8Nb alloys showed satisfactory χv values. Heat treatments did not clearly change the χv values for Au-xPt-8Nb alloys. The Vickers hardness (HV) of these two alloys was much higher than that of high-Pt alloys; moreover, aging at 700°C increased the HV values of these two alloys. A dual phase structure consisting of face-centered cubic α1 and α2 phases was observed and aging at 700°C promoted phase separation. The Au-5Pt-8Nb and Au-10Pt-8Nb alloys showed satisfactory χv values and high hardness and are thus suggested as candidates for MRI artifact-free alloys for biomedical applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Au dotted magnetic network nanostructure and its application for on-site monitoring femtomolar level pesticide.

    PubMed

    Yang, Tianxi; Guo, Xiaoyu; Wang, Hui; Fu, Shuyue; Yu, Jie; Wen, Ying; Yang, Haifeng

    2014-04-09

    A novel magnetically responsive and surface-enhanced Raman spectroscopy (SERS) active nanocomposite is designed and prepared by direct grafting of Au nanoparticles onto the surface of magnetic network nanostructure (MNN) with the help of a nontoxic and environmentally friendly reagent of inositol hexakisphosphate shortly named as IP6. The presence of IP6 as a stabilizer and a bridging agent could weave Fe3O4 nanoparticles (NPs) into magnetic network nanostructure, which is easily dotted with Au nanoparticles (Au NPs). It has been shown firstly that the huge Raman enhancement of Au-MNN is reached by an external magnetic collection. Au-MNN presenting the large surface and high detection sensitivity enables it to exhibit multifunctional applications involving sufficient adsorption of dissolved chemical species for enrichment, separation, as well as a Raman amplifier for the analysis of trace pesticide residues at femtomolar level by a portable Raman spectrometer. Therefore, such multifunctional nanocomposites can be developed as a smart and promising nanosystem that integrates SERS approach with an easy assay for concentration by an external magnet for the effective on-site assessments of agricultural and environmental safety.

  13. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  14. Formaldehyde in Our Environment.

    ERIC Educational Resources Information Center

    Ojanlatva, Ansa; Weeks, Charlie A.

    During the energy crisis of the early 1970s, there was a drive to conserve energy in every segment of society. Citizens were encouraged to insulate their homes and tighten them up to avoid loss of energy. One of the products to emerge from this crisis was urea formaldehyde foam insulation. (Urea formaldehyde is a well-known agent for preserving…

  15. Formaldehyde risk assessment

    EPA Science Inventory

    We would like to comment on the paper by Crump et al. (2008), ‘Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans’. We are authors of the formaldehyde cancer risk assessment described in Conolly et al. (2003, 2004) that is t...

  16. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  17. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard Walter

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  18. Formaldehyde in Our Environment.

    ERIC Educational Resources Information Center

    Ojanlatva, Ansa; Weeks, Charlie A.

    During the energy crisis of the early 1970s, there was a drive to conserve energy in every segment of society. Citizens were encouraged to insulate their homes and tighten them up to avoid loss of energy. One of the products to emerge from this crisis was urea formaldehyde foam insulation. (Urea formaldehyde is a well-known agent for preserving…

  19. Formaldehyde risk assessment

    EPA Science Inventory

    We would like to comment on the paper by Crump et al. (2008), ‘Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans’. We are authors of the formaldehyde cancer risk assessment described in Conolly et al. (2003, 2004) that is t...

  20. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1992-01-14

    Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

  1. The formaldehyde dilemma.

    PubMed

    Salthammer, Tunga

    2015-06-01

    The IARC's 2004 classification of formaldehyde as a human carcinogen has led to intensive discussion on scientific and regulatory levels. In June 2014, the European Union followed and classified formaldehyde as a cause of cancer. This automatically triggers consequences in terms of emission minimization and the health-related assessment of building and consumer products. On the other hand, authorities are demanding and authorizing technologies and products which can release significant quantities of formaldehyde into the atmosphere. In the outdoor environment, this particularly applies to combusting fuels. The formation of formaldehyde through photochemical smog has also been a recognized problem for years. Indoors there are various processes which can contribute to increased formaldehyde concentrations. Overall, legislation faces a dilemma: primary sources are often over-regulated while a lack of consideration of secondary sources negates the regulations' effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Microbial Formaldehyde Oxidation

    SciTech Connect

    Timothy J. Donohue

    2004-12-09

    This project analyzed how cells sense and generate energy from formaldehyde oxidation. Formaldehyde is a toxin that is produced naturally, chemically or by metabolism of a wide variety of methyl-containing compounds. Our goals are to identify how cells sense the presence of this toxic compound and determine how they generate energy and nutrients from the oxidation of formaldehyde. This research capitalizes on the role of the Rhodobacter sphaeroides glutathione dependent formaldehyde dehydrogenase (GSH FDH) in a formaldehyde oxidation pathway that is apparently found in a wide variety of microbes, plants and animals. Thus, our findings illustrate what is required for a large variety of cells to metabolize this toxic compound. A second major focus of our research is to determine how cells sense the presence of this toxic compound and control the expression of gene products required for its detoxification.

  3. Skincare products containing low concentrations of formaldehyde detected by the chromotropic acid method cannot be safely used in formaldehyde-allergic patients.

    PubMed

    Hauksson, I; Pontén, A; Gruvberger, B; Isaksson, M; Engfeldt, M; Bruze, M

    2016-02-01

    Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in skincare products. It has been found that formaldehyde at concentrations allowed by the European Cosmetics Directive can cause allergic contact dermatitis. However, we still lack information on whether formaldehyde at low concentrations affects dermatitis in formaldehyde-allergic individuals. To study the effects of low concentrations of formaldehyde on irritant contact dermatitis in formaldehyde-allergic individuals. Fifteen formaldehyde-allergic individuals and a control group of 12 individuals without contact allergy to formaldehyde and formaldehyde releasers were included in the study. The individuals performed the repeated open application test (ROAT) during 4 weeks with four different moisturizers releasing formaldehyde in concentrations that had been determined as > 40, 20-40, 2·5-10 and 0 p.p.m. by the chromotropic acid (CA) spot test. Dimethyloldimethylhydantoin was used as a formaldehyde releaser in the moisturizers. The ROAT was performed on areas of experimentally induced sodium lauryl sulfate dermatitis. The study was double blind, controlled and randomized. Nine of the 15 formaldehyde-allergic individuals had reappearance or worsening of dermatitis on the areas that were treated with moisturizers containing formaldehyde. No such reactions were observed in the control group (P < 0·001) or for the moisturizers without formaldehyde in the formaldehyde-allergic individuals (P < 0·001). Our results demonstrate that the low concentrations of formaldehyde often found in skincare products by the CA method are sufficient to worsen an existing dermatitis in formaldehyde-allergic individuals. © 2015 British Association of Dermatologists.

  4. High resolution transmission electron microscopy of age-hardenable Au-Cu-Zn alloys for dental applications.

    PubMed

    Seol, Hyo Joung; Shiraishi, Takanobu; Tanaka, Yasuhiro; Miura, Eri; Hisatsune, Kunihiro

    2003-05-01

    Microstructures of age-hardenable AuCu-Zn pseudobinary alloys for dental applications were studied by means of high resolution transmission electron microscopic (HRTEM) observation and X-ray diffraction study. HRTEM study revealed that the appearance frequency of antiphase boundaries (APBs) per unit volume of the AuCu II superstructure effectively increased by Zn addition to AuCu, which may be the reason for that high hardness was maintained for a long time in AuCu-Zn alloys. The disordered APBs zone in the AuCu II superstructure had wavy characteristics and fluctuated within regular range. With increasing Zn content in AuCu-Zn alloys, the fluctuation range of APBs' width became narrower, thus random APBs' spacing and irregular APBs' shape of AuCu II superstructure changed to comparatively regular APBs' spacing and shape. Due to the APBs' wavy characteristics, spacing between successive APBs, M, was not constant but scattered, and the magnitude of the scattering of M value decreased with increasing Zn content. By Zn addition to AuCu, phase transformation from a disordered alpha phase to AuCu II phase was greatly accelerated, which made it possible for the AuCu-Zn alloy to have excellent age-hardenability at relatively low temperature like intraoral temperature.

  5. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.

    PubMed

    Baraka, Ahmad; Hall, P J; Heslop, M J

    2007-02-09

    A new chelating resin was synthesised by anchoring nitrilotriacetic acid (NTA) to melamine during the melamine-formaldehyde gelling reaction in the presence of water, using acetone and guaiacol as a porogen mixture. This technique gives a porous chelating gel resin capable of removing heavy metals from wastewater. FT-IR, XRD, elemental analysis, surface area and water regain measurements were conducted for characterization of the new chelating gel resin. A comprehensive adsorption study (kinetics isotherm, and thermodynamics) of Cu(II) removal from synthetic acidic aqueous solutions by adsorption on this resin was conducted regarding the effects of time, temperature, initial pH and copper(II) initial concentration.

  6. Green synthesis and applications of Au-Ag bimetallic nanoparticles.

    PubMed

    Meena Kumari, M; Jacob, John; Philip, Daizy

    2015-02-25

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenolapplication. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  8. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  9. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Spadavecchia, J.; Taurino, A.; Rella, R.

    2010-03-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV-vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA-Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA-DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T)15ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality.

  10. Selective Au-Si eutectic bonding for Si-based MEMS applications

    SciTech Connect

    Lee, A.; Lehew, S.; Yu, C.

    1995-05-22

    A novel method of fabricating three-dimensional silicon micro electromechanical systems (MEMS) is presented, using selectivity thin film deposited Au-Si eutectic bond pads. Utilizing this process, complicated structures such as microgrippers and microchannels are fabricated. Bond strengths are higher than the silicon fracture strength and the bond areas can be localized and aligned to the processed wafer. The process and the applications are described in this paper.

  11. Formaldehyde Workshop Agenda

    EPA Pesticide Factsheets

    This is the agenda for the Formaldehyde Workshop hosted by the Office of Research and Development's National Center for Environmental Assessments in cooperation with the IRIS Program. The workshop was held in April 2014

  12. The 'Formaldehyde Window'

    NASA Astrophysics Data System (ADS)

    Lawton, A. T.

    1981-09-01

    The characteristics obtained by using the absorption line of formaldehyde as a background for a transmitted signal are examined and compared with the Water Hole concept. It is shown that much greater distance may be accessed for a given transmitter power level and that the narrow band characteristics of the formaldehyde line are ideally suited to the transmission of low frequency coded 'calling' signals. It is further shown that two unique harmonic overtones lie above and below the 4830 MHz formaldehyde line, and by using these further aids, a clear and unambiguous interstellar communication system could be established without the background maser noise that would be expected from the use of the Water Hole. It is concluded that the Formaldehyde Window is a viable alternative to the Water Hole concept, with an advantage of being an easily distinguished artifact of intelligence.

  13. Au/(Ti-W) and Au/Cr metallization of chemically vapor-deposited diamond substrates for multichip module applications

    NASA Astrophysics Data System (ADS)

    Meyyappan, Ilango; Malshe, A. P.; Naseem, H. A.; Brown, W. D.

    1994-12-01

    Since diamond obtained by chemical vapor deposition (CVD) has an extremely high thermal conductivity, it holds great promise in solving thermal management problems in high performance multichip modules (MCMs). Consequently, there is a need to develop a reliable metallization system for CVD diamond. Refractory metals such as Ti, Mo, Ta and W are known to form adhering carbide layers at high temperatures. Also, transition metals such as Cr, Ni and Ni-Cr are widely used in other MCM technologies involving Si, AlN, SiC and alumina substrates. In the work reported here, adherent Au/Cr and Au/(Ti-W) metallization systems were produced at low temperatures using d.c. magnetron sputtering and electron beam evaporation techniques. Adhesion at low temperature is essential since CVD diamond could lose its thermal and electrical properties at high temperatures. Furthermore, interaction between metal layers may cause an increase in conductor trace resistivity and delamination. Adhesion was measured using a Sebastian V-A thin film stud pull tester. The deposition parameters were optimized to give maximum adhesion using a statistical design software package, echip. In the case of the sputtered metallization, pre-sputter cleaning of diamond surface improved adhesion significantly. Values above 9 klbf/sq in were obtained in the case of Au/(Ti-W) and 11.8 klbf/sq in in the case of Au/Cr. Post-deposition annealing was performed in nitrogen ambient to investigate the effect of post-metallization processing on adhesion and also to test for any possible interaction between the metals at high temperatures. Annealing temperatures were limited to 450 C since MCM substrates are seldom exposed to temperatures higher than these. Energy-dispersive spectroscopy (EDS) analysis indicated outdiffusion of W through Au at 400 deg C. No interdiffusion was observed in the case of Au/Cr as per optical microscopy and EDS analysis. Auger electron spectroscopy results indicate interaction between the

  14. Formaldehyde: assessing the risk

    SciTech Connect

    Hileman, B.

    1984-07-01

    The US Environmental Protection Agency has listed formaldehyde as a priority chemical for regulatory assessment under section 4 (f) of the Toxic Substances Control Act. They will give priority consideration to human formaldehyde exposure in two areas because of the large numbers of people involved: clothing workers who handle textiles treated with formaldehyde-based resins and residents of mobile homes that contain formaldehyde-based resins in construction materials such as foam insulation. Much of the scientific data for determining risks associated with formaldehyde is conflicting and ambiguous, due in part to its presence as a normal metabolite in human biochemistry. Although the chemical induces squamous cell carcinoma in rats, epidemiological studies in occupationally exposed groups show no strong evidence of a causal relationship between formaldehyde and cancer. Dose-response data from an experiment sponsored by the Chemical Industry Institute of Toxicology are used as the primary basis in constructing risk assessments for the human population. The most conservative model and the one chosen by EPA is the linearized multistage model. When the results of this model are examined, most of the groups studied are subject to an unacceptable risk.

  15. Effect of natural compounds on reducing formaldehyde emission from plywood

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Matsushima, Erica; Kitao, Nahoko; Tokunaga, Hiroshi; Ando, Masanori; Otsubo, Yasufumi

    The effects of natural compounds on reducing formaldehyde emission from plywood were investigated. Urea, catechin and vanillin were examined as the natural formaldehyde reducers. The microemission cell, with an internal volume of 35 ml, the maximum exposed test surface area of 177 cm 2 and an air purge flow rate of 50 ml min -1, was used to measure specific emission rate (SER). In the case of no reducer treatment, formaldehyde emission from plywood was fast and SERs were 4.4 mg m -2 h -1 at 30 °C and 15 mg m -2 h -1 at 60 °C. When this plywood was treated with the natural compounds, the SERs of formaldehyde were decreased at all temperatures. In the case of urea treatment, the SERs of formaldehyde decreased to 0.30 mg m -2 h -1 at 30 °C and 0.65 mg m -2 h -1 at 60 °C. When the urea treatment was applied to the inside of kitchen cabinet (made from plywood; 270 cm wide, 60 cm deep, 250 cm high), the concentration of formaldehyde was reduced substantially from 1600 to 130 μg m -3. The reducing effect of formaldehyde continued during the observation period (6 months), with a mean concentration of 100 μg m -3. Reducers in the plywood would react with released formaldehyde. Application of natural compounds such as urea, catechin and vanillin could provide a simple and effective approach for suppressing formaldehyde emission from plywood.

  16. Analysis of the applicability of Ni, Cu, Au, Pt, and Pd nanoclusters for data recording

    NASA Astrophysics Data System (ADS)

    Redel', L. V.; Gafner, S. L.; Gafner, Yu. Ya.; Zamulin, I. S.; Goloven'ko, Zh. V.

    2017-02-01

    The applicability of individual Ni, Cu, Au, Pt, and Pd nanoclusters as data bits in next generation memory devices constructed on the phase-change carrier principle is studied. To this end, based on the modified tight-binding potential (TB-SMA), structure formation from the melt of nanoparticles of these metals to 10 nm in diameter was simulated by the molecular dynamics method. The effect of various crystallization conditions on the formation of the internal structures of Ni, Cu, Au, Pt, and Pd nanoclusters is studied. The stability boundaries of various crystalline isomers are analyzed. The obtained systematic features are compared for nanoparticles of copper, nickel, gold, platinum, and palladium of identical sizes. It is concluded that platinum nanoclusters of diameter D > 8 nm are the best materials among studied metals for producing memory elements based on phase transitions.

  17. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation

    PubMed Central

    Son, Sejin; Kim, Namho; You, Dong Gil; Yoon, Hong Yeol; Yhee, Ji Young; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, Sun Hwa

    2017-01-01

    Nucleic acid-directed self-assembly provides an attractive method to fabricate prerequisite nanoscale structures for a wide range of technological applications due to the remarkable programmability of DNA/RNA molecules. In this study, exquisite RNAi-AuNP nanoconstructs with various geometries were developed by utilizing anti-VEGF siRNA molecules as RNAi-based therapeutics in addition to their role as building blocks for programmed self-assembly. In particular, the anti-VEGF siRNA-functionalized AuNP nanoconstructs can take additional advantage of gold-nanoclusters for photothermal cancer therapeutic agent. A noticeable technical aspect of self-assembled RNAi-AuNP nanoconstructs in this study is the precise conjugation and separation of designated numbers of therapeutic siRNA onto AuNP to develop highly sophisticated RNA-based building blocks capable of creating various geometries of RNAi-AuNP nano-assemblies. The therapeutic potential of RNAi-AuNP nanoconstructs was validated in vivo as well as in vitro by combining heat generation capability of AuNP and anti-angiogenesis mechanism of siRNA. This strategy of combining anti-VEGF mechanism for depleting angiogenesis process at initial tumor progression and complete ablation of residual tumors with photothermal activity of AuNP at later tumor stage showed effective tumor growth inhibition and tumor ablation with PC-3 tumor bearing mice. PMID:28042312

  18. Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor.

    PubMed

    Liu, Na; Chen, Xia; Ma, Zhanfang

    2013-10-15

    In this work, a new nanocomposite, which was composed of ionic liquid functionalized graphene sheet (IL-GS) loaded gold nanoparticles (AuNPs), was prepared. The IL-GS was directly synthesized by the electrochemical exfoliation of graphite in ionic liquid (IL). Due to the modification of the IL, IL-GS can not only be dispersed easily in aqueous solution to form a homogeneous colloidal suspension of individual sheet, but also exhibits an improved conductivity. Meanwhile, the loaded AuNPs on the nanocomposites can increase the specific surface area to capture a large amount of antibodies as well as improve the capability of electron transfer. The IL-GS-Au nanocomposites were successfully employed for the fabrication of a facile and sensitive electrochemical immunosensor. Carcinoembryonic antigen (CEA) was used as a model protein. The proposed immunosensor exhibits a wide linear detection range (LDR) from 1 fg mL⁻¹ to 100 ng mL⁻¹, and an ultralow limit of detection (LOD) of 0.1 fg mL⁻¹ (S/N=3). In addition, for the detection of clinical serum samples, it is well consistent with the data determined by the developed immunoassay and ELISA, indicating that the immunosensor provides a possible application for the detection of CEA in clinical diagnostics. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications.

    PubMed

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Vinogradova, Ekaterina; Ayon, Arturo A

    2014-09-10

    In recent years, there has been considerable interest in the use of plasmons, that is, free electron oscillations in conductors, to boost the performance of both organic and inorganic thin film solar cells. This has been driven by the possibility of employing thin active layers in solar cells in order to reduce materials costs, and is enabled by significant advances in fabrication technology. The ability of surface plasmons in metallic nanostructures to guide and confine light in the nanometer scale has opened up new design possibilities for solar cell devices. Here, we report the synthesis and characterization of highly monodisperse, reasonably stable, multipode Au/Ag bimetallic nanostructures using an inorganic additive as a ligand for photovoltaic applications. A promising surface enhanced Raman scattering (SERS) effect has been observed for the synthesized bimetallic Au/Ag multispiked nanoparticles, which compare favorably well with their Au and Ag spherical nanoparticle counterparts. The synthesized plasmonic nanostructures were incorporated on the rear surface of an ultrathin planar c-silicon/organic polymer hybrid solar cell, and the overall effect on photovoltaic performance was investigated. A promising enhancement in solar cell performance parameters, including both the open circuit voltage (VOC) and short circuit current density (JSC), has been observed by employing the aforementioned bimetallic multispiked nanoparticles on the rear surface of solar cell devices. A power conversion efficiency (PCE) value as high as 7.70% has been measured in a hybrid device with Au/Ag multispiked nanoparticles on the rear surface of an ultrathin, crystalline silicon (c-Si) membrane (∼ 12 μm). This value compares well to the measured PCE value of 6.72% for a similar device without nanoparticles. The experimental observations support the hope for a sizable PCE increase, due to plasmon effects, in thin-film, c-Si solar cells in the near future.

  20. Development of melamine-formaldehyde resin microcapsules with low formaldehyde emission suited for seed treatment.

    PubMed

    Yuan, Huizhu; Li, Guangxing; Yang, Lijuan; Yan, Xiaojing; Yang, Daibin

    2015-04-01

    To reduce the application frequency and improve the efficacy of insecticides, melamine-formaldehyde (MF) resin microcapsules suited for seed treatment containing a mixture of fipronil and chlorpyrifos were prepared by in situ polymerization. A formaldehyde/melamine molar ratio of 4:1 yielded microcapsules with the smallest size and the most narrow size distribution. The level of unreacted formaldehyde in the microcapsule suspension increased proportionally with the F/M molar ratio. When the MF resin microcapsule suspension was used as a seed treatment to coat peanut seeds, the unreacted formaldehyde did not significantly inhibit the seedling emergence, but the ongoing release of formaldehyde generated from the degradation of MF resins played an important role in inhibiting emergence. Melamine was shown to be an effective formaldehyde scavenger that mitigated this inhibition when it was incorporated within the microcapsule wall. Field experiments showed that MF-resin-encapsulated mixtures of fipronil and chlorpyrifos have much greater efficacies against white grubs than the conventional formulation.

  1. Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis.

    PubMed

    Li, Qiong; Sritharathikhum, Piyanete; Oshima, Mitsuko; Motomizu, Shoji

    2008-04-07

    In this paper, a novel detection reagent for formaldehyde determination is proposed, and is applied to a simple and highly sensitive flow injection method for the spectrophotometric determination of formaldehyde. The method is based on the reaction of formaldehyde with methyl acetoacetate in the presence of ammonia. The increase in the absorbance of the reaction product was measured at 375 nm. An inexpensive light emitting diode (LED)-based UV detector (375 nm) was, for the first time, used. Under the optimized experimental conditions, formaldehyde in an aqueous solution was determined over the concentration range from 0.25 to 20.0 x 10(-6)M with a liner calibration graph; the limit of detection (LOD) of 5 x 10(-8)M (1.5 microgL(-1)) was possible. The relative standard deviation of 12 replicate measurements of 5 x 10(-6)M formaldehyde was 1.2%. Maximum sampling throughput was about 21 samples/h. The effect of potential interferences such as metals, organic compounds and other aldehyde was also examined. The analytical performance for formaldehyde determination was compared with those obtained by the conventional acetylacetone method, which uses visible absorption spectrophotometry. Finally, the proposed method was successfully applied to the determination of formaldehyde in natural water samples.

  2. Formaldehyde: an analysis of its respiratory, cutaneous, and immunologic effects

    SciTech Connect

    Bardana, E.J. Jr.; Montanaro, A. )

    1991-06-01

    Formaldehyde is truly ubiquitous in our ecology and continuing important commercial applications. Most of us have daily contact with this chemical. The most significant outdoor source of this chemical is gasoline and diesel fuel combustion. The primary indoor source is combustion of tobacco products. Formaldehyde is associated with a disagreeable odor that can produce annoyance symptoms and at higher concentrations can be a transient and completely reversible irritant to the eyes and mucous membranes of the respiratory tract. It is so soluble and rapidly metabolized that it rarely reaches the lower respiratory tract to inflict damage. The exception is in cigarette smokers who actively inhale. Formaldehyde may on rare occasions induce bronchial asthma at relatively high exposure doses. There are no conclusive studies that prove the development of de novo IgE-mediated respiratory tract symptoms secondary to inhalation of formaldehyde vapors. The approach to formaldehyde-induced symptoms should be one of careful documentation of objective physiologic changes.147 references.

  3. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  4. Air Mass Factor Formulation for Spectroscopic Measurements from Satellites: Application to Formaldehyde Retrievals from the Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Palmer, Paul I.; Jacob, Daniel J.; Chance, Kelly; Martin, Randall V.; Spurr, Robert J. D.; Kurosu, Thomas P.; Bey, Isabelle; Yantosca, Robert; Fiore, Arlene; Li, Qinbin

    2004-01-01

    We present a new formulation for the air mass factor (AMF) to convert slant column measurements of optically thin atmospheric species from space into total vertical columns. Because of atmospheric scattering, the AMF depends on the vertical distribution of the species. We formulate the AMF as the integral of the relative vertical distribution (shape factor) of the species over the depth of the atmosphere, weighted by altitude-dependent coefficients (scattering weights) computed independently from a radiative transfer model. The scattering weights are readily tabulated, and one can then obtain the AMF for any observation scene by using shape factors from a three dimensional (3-D) atmospheric chemistry model for the period of observation. This approach subsequently allows objective evaluation of the 3-D model with the observed vertical columns, since the shape factor and the vertical column in the model represent two independent pieces of information. We demonstrate the AMF method by using slant column measurements of formaldehyde at 346 nm from the Global Ozone Monitoring Experiment satellite instrument over North America during July 1996. Shape factors are cumputed with the Global Earth Observing System CHEMistry (GEOS-CHEM) global 3-D model and are checked for consistency with the few available aircraft measurements. Scattering weights increase by an order of magnitude from the surface to the upper troposphere. The AMFs are typically 20-40% less over continents than over the oceans and are approximately half the values calculated in the absence of scattering. Model-induced errors in the AMF are estimated to be approximately 10%. The GEOS-CHEM model captures 50% and 60% of the variances in the observed slant and vertical columns, respectively. Comparison of the simulated and observed vertical columns allows assessment of model bias.

  5. Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage.

    PubMed

    Kang, Dong-Ho; Choi, Woo-Young; Woo, Hyunsuk; Jang, Sungkyu; Park, Hyung-Youl; Shim, Jaewoo; Choi, Jae-Woong; Kim, Sungho; Jeon, Sanghun; Lee, Sungjoo; Park, Jin-Hong

    2017-08-16

    In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (10(5)), excellent cyclic endurance (>10(3)), and long retention time (>10(4) s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.

  6. Properties of ordered titanium templates covered with Au thin films for SERS applications

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Sokołowski, Michał; Karczewski, Jakub; Szkoda, Mariusz; Śliwiński, Gerard

    2016-12-01

    Currently, roughened metal nanostructures are widely studied as highly sensitive Raman scattering substrates that show application potential in biochemistry, food safety or medical diagnostic. In this work the structural properties and the enhancement effect due to surface enhanced Raman scattering (SERS) of highly ordered nano-patterned titanium templates covered with thin (5-20 nm) gold films are reported. The templates are formed by preparation of a dense structure of TiO2 nanotubes on a flat Ti surface (2 × 2 cm2) and their subsequent etching down to the substrate. SEM images reveal the formation of honeycomb nanostructures with the cavity diameter of 80 nm. Due to the strongly inhomogeneous distribution of the electromagnetic field in the vicinity of the Au film discontinuities the measured average enhancement factor (107-108) is markedly higher than observed for bare Ti templates. The enhancement factor and Raman signal intensity can be optimized by adjusting the process conditions and thickness of the deposited Au layer. Results confirm that the obtained structures can be used in surface enhanced sensing.

  7. Suitability of Au- and self-assisted GaAs nanowires for optoelectronic applications.

    PubMed

    Breuer, Steffen; Pfüller, Carsten; Flissikowski, Timur; Brandt, Oliver; Grahn, Holger T; Geelhaar, Lutz; Riechert, Henning

    2011-03-09

    The incorporation of Au during vapor-liquid-solid nanowire growth might inherently limit the performance of nanowire-based devices. Here, we assess the material quality of Au-assisted and Au-free grown GaAs/(Al,Ga)As core-shell nanowires using photoluminescence spectroscopy. We show that at room temperature, the internal quantum efficiency is systematically much lower for the Au-assisted nanowires than for the Au-free ones. In contrast, the optoelectronic material quality of the latter is comparable to that of state-of-the-art planar double heterostructures.

  8. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  9. Preparation of Ag/Au bimetallic nanostructures and their application in surface-enhanced fluorescence.

    PubMed

    Dong, Jun; Ye, Yanyan; Zhang, Wenhui; Ren, Zebin; Huo, Yiping; Zheng, Hairong

    2015-11-01

    An effective substrate for surface-enhanced fluorescence, which consists of cluster Ag/Au bimetallic nanostructures on a copper surface, was synthesized via a multi-stage galvanic replacement reaction of a Ag cluster in a chlorauric acid (HAuCl4) solution at room temperature. The fabricated silver/gold bimetallic cluster were found to yield large surface-enhanced fluorescence (SEF) enhancement factors for rhodamine 6G probe molecules deposited on the substrate, and also the fluorescence efficiency is critically dependent on the period of nanostructure growth. With the help of proper control reaction conditions, such as the reaction time, and concentration of reaction solutions, the maximum fluorescence enhanced effect was obtained. Therefore, the bimetallic nanostructure substrate also can be adapted to studies in SEF, which will expand the application of SEF.

  10. Formaldehyde exposure in nonoccupational environments

    SciTech Connect

    Dally, K.A.; Hanahan, L.P.; Woodbury, M.A.; Kanarek, M.S.

    1981-01-01

    Free formaldehyde may be released from wood products and foam insulation where urea-formaldehyde resins have been used. From January, 1978 to November, 1979, 100 structures were investigated by the Wisconsin Division of Health after receiving complaints of health problems from occupants. Air samples were collected in midget impingers and analyzed for formaldehyde content by the chromotropic acid procedure. Health information was obtained from the occupants via questionnaires. Mean formaldehyde concentrations observed ranged from below the limit of detection to 3.68 ppm. Eye irritation, burning eyes, runny nose, dry or sore throat, headache, and cough were the primary symptoms which were reported by the occupants. Statistically significant associations were seen between formaldehyde levels and age of home/building materials. Observations presented suggest nonoccupational, indoor environmental exposure to formaldehyde is significant and may reach levels which exceed occupational exposure standards.

  11. Formaldehyde exposure during pregnancy.

    PubMed

    Amiri, Azita; Pryor, Erica; Rice, Marti; Downs, Charles A; Turner-Henson, Anne; Fanucchi, Michelle V

    2015-01-01

    Pregnancy is a particularly vulnerable time for exposure to indoor air pollutants, such as formaldehyde (FA), which is linked to spontaneous abortion, congenital malformations, and premature birth. To determine personal exposure to FA during pregnancy, and to identify the relationship between FA exposure levels and potential residential sources of FA. The study sample consisted of 140 pregnant women recruited from obstetrical clinics in Huntsville, Alabama. Formaldehyde exposure was measured by FA vapor monitor badges. Questionnaires were administered to participants to identify potential residential sources of FA. Urine cotinine, a surrogate for tobacco smoke exposure, was also used as an indicator of a possible source of residential exposure to FA. The mean level of FA exposure by vapor monitor badge was 0.04 parts per million (ppm) (SD = 0.06; range 0.003-0.54 ppm). Minimum risk levels of 0.03 and higher were found in 36.4% of participants. Exposure levels of FA were higher in spring than winter (p < 0.001). Exposure levels of FA were correlated with indoor temperature of dwellings (p < 0.02), installation of new carpet within last 5 years (p < 0.04), and use of nail polish (p < 0.01). No relationship was found between FA exposure and urine cotinine levels. Formaldehyde exposure may increase at various times in the lives of women; however, it is of particular concern during pregnancy because of perinatal risk to the exposed fetus.

  12. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  13. Photoelectrocatalytic oxidation of formaldehyde using a Ti/TiO2 foil electrode. Application for its novel and simple photoelectrochemical determination.

    PubMed

    Ojani, Reza; Raoof, Jahan-Bakhsh; Zarei, Ebrahim

    2012-09-15

    It was firstly described, that a TiO(2) film modified titanium foil electrode (Ti/TiO(2)) shows an efficient photoelectrocatalytic activity towards formaldehyde oxidation in a phosphate buffer solution. Ti/TiO(2) foil electrode was prepared by anodizing Ti foil in aqueous solution. Also, this electrode was applied for the hydrodynamic photoamperometry measurement of formaldehyde in the optimum conditions (pH 7.0 as biological pH and bias potential 0.8 V vs. reference electrode). The photoelectrocatalytic oxidation photocurrent of the photoelectrode determined by photoamperometry method was linearly dependent on the formaldehyde concentration and the linearity range obtained was 6.70×10(-4)-1.48×10(-2) mol L(-1). Detection limit was found to be 3.09×10(-4) mol L(-1) (2σ).

  14. Application of cellulose acetate to the selective adsorption and recovery of Au(III).

    PubMed

    Yang, Jian; Kubota, Fukiko; Baba, Yuzo; Kamiya, Noriho; Goto, Masahiro

    2014-10-13

    Cellulose acetyl derivatives were examined for the selective recovery of Au(III) from acidic chloride solutions as an adsorbent, and cellulose acetate fibers (CAF) were found to be effective for the separation of Au(III) from other metal ions, including the precious metal ions Pt(IV) and Pd(II). The amount of Au(III) adsorbed by the fibers increased with an increase in the hydrochloric acid concentration, but decreased with an increase in the ionic strength of the solution. The adsorption of Au(III) onto CAF took place quickly and an adsorption equilibrium was reached within 1h. The maximum adsorption capacity of Au(III) was determined to be 110 mg/g at 2M hydrochloric acid. The loaded Au(III) was readily recovered by incineration.

  15. Formation of Au nanoparticles on CNTs three dimensional structure for LSPR biosensor application

    NASA Astrophysics Data System (ADS)

    Yang, Ming; Shimizu, Tetsuhide

    2017-02-01

    A 3D LSPR sensor was fabricated by using CNTs as support and depositing AuNPs on the support in this study. We proposed a simple process to arrange AuNPs to CNTs by using vacuum deposition and annealing for 3D LSPR sensor. In order to fabricate 3D LSPR sensor, CNTs was synthesized and patterned on quartz glass substrate by CVD method and photolithography. For the synthesis of AuNPs, Au thin film was deposited on glass and CNTs by vacuum deposition. After deposition, Au thin film on glass and CNTs was particulated by annealing. The performance of 3D LSPR sensor was confirmed using BSA for bio analysis. LSPR characteristics was measured and compared before and after adsorption of BSA. The detection limit was 100ng/ml and detection sensitivity was 10 times in comparison with 2D LSPR sensor of same AuNPs formation condition.

  16. Solid-state ionics method fabricated centimeter level CuAu alloy nanowires: Application in SERS.

    PubMed

    Xu, Dapeng; Dong, Jing; Yang, Wei; Zhang, Song; Peng, Yuli; Chen, Jian

    2017-04-08

    CuAu alloy nanowires were prepared by a solid-state ionics method under a direct current electric field (DCEF) using fast ionic conductor Rb4Cu16Cl13I7 films. The surface morphology, chemical composition and crystal structures of the CuAu alloy nanowires were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD), respectively. Raman enhancement performance of the CuAu alloy nanowires substrates was detected by Rhodamine 6G (R6G) aqueous solutions as probe molecules. Long-range disorder and short-range order CuAu alloy nanowires with the length of 1 cm were prepared by a solid-state ionics method. The nanowires were bamboo-shaped and the diameters of nanowires ranged from 40 to 100nm. The molar ratio of Cu to Au is 16:1. The crystal structure of the CuAu alloy nanowires is crystallized. A part of Cu and Au formed Au3Cu alloy structure. The limiting concentrations of R6G for the prepared CuAu alloy nanowires SERS substrates is 10(-15)mol/L.

  17. Residual formaldehyde after low-temperature steam and formaldehyde sterilization

    PubMed Central

    Gibson, G. L.; Johnston, H. P.; Turkington, V. E.

    1968-01-01

    The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551

  18. Synthesis of biocompatible AuAgS/Ag2S nanoclusters and their applications in photocatalysis and mercury detection

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Chen, Shenna; Zhang, Lingyang; Huang, Haowen; Liu, Fengping; Liu, Xuanyong

    2014-12-01

    In this paper, a facile approach for preparation of AuAgS/Ag2S nanoclusters was developed. The unique AuAgS/Ag2S nanoclusters capped with biomolecules exhibit interesting excellent optical and catalytic properties. The fluorescent AuAgS/Ag2S nanoclusters show tunable luminescence depending on the nanocluster size. The apoptosis assay demonstrated that the AuAgS/Ag2S nanoclusters showed low cytotoxicity and good biocompatibility. Therefore, the nanoclusters can be used not only as a probe for labeling cells but also for their photocatalytic activity for photodegradation of organic dye. Moreover, a highly selective and sensitive assay for detection of mercury including Hg2+ and undissociated mercury complexes was developed based on the quenching fluorescent AuAgS/Ag2S nanoclusters, which provides a promising approach for determining various forms of Hg in the mercury-based compounds in environment. These unique nanoclusters may have potential applications in biological labeling, sensing mercury, and photodegradation of various organic pollutants in waste water.

  19. Pd-on-Au Supra-nanostructures Decorated Graphene Oxide: An Advanced Electrocatalyst for Fuel Cell Application.

    PubMed

    Tao, Yingzhou; Dandapat, Anirban; Chen, Liming; Huang, Youju; Sasson, Yoel; Lin, Zhenyu; Zhang, Jiawei; Guo, Longhua; Chen, Tao

    2016-08-30

    We report a very easy and effective approach for synthesizing unique palladium-on-gold supra-nanostructure (Au@Pd-SprNS)-decorated graphene oxide (GO) nanosheets. The SprNSs comprising Au nanorods as core and a unique close-packed assembly of tiny anisotropic Pd nanoparticles (NPs) as shell were homogeneously distributed on the GO surface via electrostatic self-assembly. Compared with the traditional one-pot method for synthesis of metal NPs on GO sheets, the size and shape of core-shell Au@Pd SprNSs can be finely controlled and uniformly distributed on the GO carrier. Interestingly, this Au@Pd-SprNSs/GO nanocomposite displayed high electrocatalytic activities toward the oxidation of methanol, ethanol, and formic acid, which can be attributed to the abundance of intrinsic active sites including high density of atomic steps, ledges and kinks, Au-Pd heterojunctions and cooperative action of the two metals of the SprNSs. Additionally, uniform dispersion of the SprNSs over the GO nanosheets prevent agglomeration between the SprNSs, which is of great significance to enhance the long-term stability of catalyst. This work will introduce a highly efficient Pd-based nanoelectrocatalyst to be used in fuel cell application.

  20. Sonophotodeposition of bimetallic photocatalysts Pd-Au/TiO2 : application to selective oxidation of methanol to methyl formate.

    PubMed

    Colmenares, Juan C; Lisowski, Paweł; Łomot, Dariusz; Chernyayeva, Olga; Lisovytskiy, Dmytro

    2015-05-22

    The aim of this work is to develop bimetallic Pd-Au/TiO2 P90 systems, which are highly active and selective for the photocatalytic oxidation of methanol to form methyl formate. Modification of commercial TiO2 P90 with Pd-Au nanoparticles was successfully achieved for the first time by means of a sonophotodeposition (SPD) method. The prepared materials were characterized by TEM, UV/Vis spectroscopy, X-ray photoelectron spectroscopy, and powder XRD. The Pd-Au bimetallic nanoparticles supported on titania exhibited remarkably enhanced catalytic activity in selective methanol oxidation to form methyl formate due to the synergism of Au and Pd particles, as well as the strong interaction between TiO2 and Pd-Au. SPD is a green methodology that can be used to prepare well-defined bimetallic surfaces on semiconductor supports with great promise for catalytic applications, in which selectivity can be tuned through adjustment of the surface composition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    PubMed

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Single gold nanowire electrodes and single Pt@Au nanowire electrodes: electrochemistry and applications.

    PubMed

    Zhang, Yaoyao; Xu, Shen; Xiao, Xiaoqing; Liu, Yong; Qian, Yuanyuan; Li, Yongxin

    2017-03-02

    Single Au nanowire electrodes and single Pt@Au nanowire electrodes showed steady-state voltammetric responses and a fast electron-transfer rate, which have been used to fabricate an E-DNA sensor and investigate the oxygen reduction reaction at the single nanowire level.

  3. Electrical performance of Ti-ZnO-Au thin film composite structure for device application

    NASA Astrophysics Data System (ADS)

    Joshi, Priyanka; Singh, Jitendra; Das, Surajit; Desai, J. V.; Akhtar, Jamil

    2016-04-01

    Thin film layers of Au/Ti approximately 2200 Å thick and ZnO approximately 2.24 µm thick were sputtered sequentially onto silicon dioxide coated <100> Si-wafer. Conventional wisdom confirms the adhesion of gold over zinc oxide (ZnO) by an intermediate layer of titanium for better adhesion. But, in Au/Ti/ZnO/Au/Ti structure, it was observed that with the passing of time the gold diffused into ZnO thin film at room temperature, making a very low resistance between the two gold layers eventually making a conductive path in ZnO. Therefore, electrical connectivity was found between the metal layers. A detailed experimental analysis has been carried out in support of the observed Au diffusion. In the present work, reliability of Ti/Au metallisation and anomalous electrical behavior due to gold diffusion has been studied.

  4. Preparation of Au coated polystyrene beads and their application in an immunoassay.

    PubMed

    Cao, Yuan-Cheng; Hua, Xiao-Feng; Zhu, Xiao-Xia; Wang, Zhan; Huang, Zhen-Li; Zhao, Yuan-Di; Chen, Hong; Liu, Man-Xi

    2006-12-20

    A novel immunoassay method based on polystyrene beads coated with Au nanoparticles (Au@PS) is described. Au nanoparticles were prepared by reductive reaction, and then deposited on the surface of polystyrene beads to form Au coatings. Results indicated that the Au coatings had good stability and that human IgG was immobilized at a concentration of 16 microg/g Au@PS. FITC-labeled rabbit-anti-human IgG and FITC-labeled rabbit-anti-goat IgG were employed to react with the human IgG on Au@PS. Fluorescence imaging results showed that the reaction had good immuno-specificity. In addition, further experiments at the single-bead level indicated that the linear range was 0.05-15 microg/ml, and that the FITC signal could be detected even when the target antibody concentration was as low as 0.01 microg/ml. The assay results were compared with an enzyme-linked immunosorbent assay (ELISA), and showed relatively good reliability.

  5. Application of Turkevich Method for Gold Nanoparticles Synthesis to Fabrication of SiO2@Au and TiO2@Au Core-Shell Nanostructures

    PubMed Central

    Dobrowolska, Paulina; Krajewska, Aleksandra; Gajda-Rączka, Magdalena; Bartosewicz, Bartosz; Nyga, Piotr; Jankiewicz, Bartłomiej J.

    2015-01-01

    The Turkevich synthesis method of Au nanoparticles (AuNPs) was adopted for direct fabrication of SiO2@Au and TiO2@Au core-shell nanostructures. In this method, chloroauric acid was reduced with trisodium citrate in the presence of amine-functionalized silica or titania submicroparticles. Core-shells obtained in this way were compared to structures fabricated by mixing of Turkevich AuNPs with amine-functionalized silica or titania submicroparticles. It was found that by modification of reaction conditions of the first method, such as temperature and concentration of reagents, control over gold coverage on silicon dioxide particles has been achieved. Described method under certain conditions allows fabrication of semicontinuous gold films on the surface of silicon dioxide particles. To the best of our knowledge, this is the first report describing use of Turkevich method to direct fabrication of TiO2@Au core-shell nanostructures.

  6. Tuning the Composition of AuPt Bimetallic Nanoparticles for Antibacterial Application**

    PubMed Central

    Zhao, Yuyun; Ye, Chunjie; Liu, Wenwen; Chen, Rong; Jiang, Xingyu

    2014-01-01

    We show that bimetallic nanoparticles (NPs) of AuPt without any surface modification are potent antibiotic reagents, while pure Au NPs or pure Pt NPs display no antibiotic activities. The most potent antibacterial AuPt NPs happen to be the most effective catalysts for chemical transformations. The mechanism of antibiotic action includes the dissipation of membrane potential and the elevation of adenosine triphosphate (ATP) levels. These bimetallic NPs are unique in that they do not produce reactive oxygen species as most antibiotics do. Being non-toxic to human cells, these bimetallic noble NPs might open an entry to a new class of antibiotics. PMID:24828967

  7. Formaldehyde impairs transepithelial sodium transport

    PubMed Central

    Cui, Yong; Li, Huiming; Wu, Sihui; Zhao, Runzhen; Du, Deyi; Ding, Yan; Nie, Hongguang; Ji, Hong-Long

    2016-01-01

    Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure. PMID:27762337

  8. Facile Synthesis of Quasi-One-Dimensional Au/PtAu Heterojunction Nanotubes and Their Application as Catalysts in an Oxygen-Reduction Reaction.

    PubMed

    Cai, Kai; Liu, Jiawei; Zhang, Huan; Huang, Zhao; Lu, Zhicheng; Foda, Mohamed F; Li, Tingting; Han, Heyou

    2015-05-11

    An intermediate-template-directed method has been developed for the synthesis of quasi-one-dimensional Au/PtAu heterojunction nanotubes by the heterogeneous nucleation and growth of Au on Te/Pt core-shell nanostructures in aqueous solution. The synthesized porous Au/PtAu bimetallic nanotubes (PABNTs) consist of porous tubular framework and attached Au nanoparticles (AuNPs). The reaction intermediates played an important role in the preparation, which fabricated the framework and provided a localized reducing agent for the reduction of the Au and Pt precursors. The Pt7 Au PABNTs showed higher electrocatalytic activity and durability in the oxygen-reduction reaction (ORR) in 0.1 M HClO4 than porous Pt nanotubes (PtNTs) and commercially available Pt/C. The mass activity of PABNTs was 218 % that of commercial Pt/C after an accelerated durability test. This study demonstrates the potential of PABNTs as highly efficient electrocatalysts. In addition, this method provides a facile strategy for the synthesis of desirable hetero-nanostructures with controlled size and shape by utilizing an intermediate template.

  9. Catalytic process for formaldehyde oxidation

    NASA Technical Reports Server (NTRS)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  10. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.

    PubMed

    Saha, Sandip; Pal, Anjali; Kundu, Subrata; Basu, Soumen; Pal, Tarasankar

    2010-02-16

    Silver and gold nanoparticles have been grown on calcium alginate gel beads using a green photochemical approach. The gel served as both a reductant and a stabilizer. The nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive X-ray (EDS), and selected area electron diffraction (SAED) analyses. The particles are spherical, crystalline, and the size ranges for both Ag and Au nanoparticles are <10 nm. It is noticed from the sorption experiment that the loading of gold on calcium alginate beads is much more compared to that of Ag. The effectiveness of the as-prepared dried alginate-stabilized Ag and Au nanoparticles as a solid phase heterogeneous catalyst has been evaluated, for the first time, on the well-known 4-nitrophenol (4-NP) reduction to 4-aminophenol (4-AP) in the presence of excess borohydride. The reduction was very efficient and followed zero-order kinetics for both Ag and Au nanocomposites. The effects of borohydride, initial 4-NP concentration, and catalyst dose were evaluated. The catalyst efficiency was examined on the basis of turnover frequency (TOF) and recyclability. The catalytic efficiency of alginate-based Ag catalyst was much more compared to that of the Au catalyst. The as-prepared new solid-phase biopolymer-based catalysts are very efficient, stable, easy to prepare, eco-friendly, and cost-effective, and they have the potential for industrial applications.

  11. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  12. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications.

    PubMed

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-02-06

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future.

  13. Sporostatic and sporocidal properties of aqueous formaldehyde.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; David, T. J.

    1972-01-01

    Aqueous formaldehyde is shown to exert both sporostatic and sporocidal effects on Bacillus subtilis spores. The sporostatic effect is a result of the reversible inhibition of spore germination occasioned by aqueous formaldehyde; the sporocidal effect is due to the temperature-dependent inactivation of these spores in aqueous formaldehyde. The physicochemical state of formaldehyde in solution provides a framework with which to interpret both the sporostatic and sporocidal properties of aqueous formaldehyde.

  14. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash.

    PubMed

    Liu, She-Jiang; Guo, Yu-Peng; Yang, Hong-Yang; Wang, Shen; Ding, Hui; Qi, Yun

    2016-11-01

    Because of the high concentrations of heavy metals, municipal solid waste incineration (MSWI) fly ash is classified as a hazardous waste, which need to be treated to avoid damaging the environment. A novel water-soluble thiourea-formaldehyde (WTF) resin was synthesized by two step reactions (hydroxymethylation reaction and condensation reaction) in the laboratory. Synthetic conditions, removal of free formaldehyde in the resin and the ability of immobilization heavy metals in the MSWI fly ash were studied. The possible molecular structure of the resin was also discussed by elemental analysis and FTIR spectra. Experimental results showed that the synthesis conditions of WTF resin were the formaldehyde/thiourea (T/F) mole ratio of 2.5:1, hydroxymethylation at pH 7.0-8.0 and 60 °C for 30min, and condensation of at pH 4.5-5.0 and 80 °C. In addition, the end point of condensation reaction was measured by turbidity point method. The result of elemental analysis and FTIR spectra indicated that thiourea functional group in the WTF resin chelated the heavy metal ions. Melamine can efficiently reduce the free formaldehyde content in the resin from 8.5% to 2%. The leaching test showed that the immobilization rates of Cr, Pb and Cd were 96.5%, 92.0% and 85.8%, respectively. Leaching concentrations of Cr, Pb and Cd in the treated fly ash were decreased to 0.08 mg/L, 2.44 mg/L and 0.23 mg/L, respectively. The MSWI fly ash treated by WTF resin has no harm to the environment.

  15. Photoabsorption in formaldehyde

    NASA Technical Reports Server (NTRS)

    Langhoff, P. W.; Langhoff, S. R.; Corcoran, C. T.

    1977-01-01

    Theoretical studies of the vertical electronic dipole excitation and ionization spectra in molecular formaldehyde are reported. The investigations relied on configuration-interaction calculations and moment-theory techniques. A double-zeta basis of contracted Gaussian-lobe functions supplemented with appropriate polarization and bond functions was used to construct Fock spectra in C(2 nu) symmetry for certain states near the ground state equilibrium geometry. The ionization energies, discrete vertical transition frequencies, and oscillator strengths for occupied and vertical Fock orbitals are in general accord with experimental determinations and other theoretical calculations. Stieltjes and Chebyshev vertical electronic photoionization profiles were calculated and found to be in good agreement with appropriately averaged photoionization-mass spectrometric measurements of the cross section for parent H2CO(+) ion production.

  16. Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application.

    PubMed

    Qiu, Jian-Ding; Xiong, Meng; Liang, Ru-Ping; Peng, Hua-Ping; Liu, Fen

    2009-04-15

    A novel dopamine sensor was fabricated by forming the 6-ferrocenylhexanethiol (HS(CH(2))(6)Fc) functionalized Fe(3)O(4)@Au nanoparticles (NPs) films on the surface of a carbon paste electrode with the aid of a permanent magnet. HS(CH(2))(6)Fc, which acted as the redox mediator, was self-assembled to Fe(3)O(4)@Au NPs via Au-S bond. Transmission electron microscopy, UV-visible absorption spectroscopy, Fourier transform infrared spectra, and cyclic voltammetry were used to characterize the properties of the Fe(3)O(4)@Au NPs/HS(CH(2))(6)Fc nanocomposite. It is shown that the prepared ferrocene-functionalized Fe(3)O(4)@Au NPs composite shuttled electrons between analyte and electrode, increased the mediator loading, and more importantly prevented the leakage of the mediator during measurements, which resulted in the substantially enhanced stability and reproducibility of the modified electrode. The electrooxidation of dopamine could be catalyzed by Fc/Fc(+) couple as a mediator and had a higher electrochemical response due to the unique performance of Fe(3)O(4)@Au NPs. The nanocomposite modified electrode exhibited fast response (3 s) and the linear range was from 2.0x10(-6) to 9.2x10(-4) M with a detection limit of 0.64 microM. This immobilization approach effectively improved the stability of the electron transfer mediator and is promising for construction of other sensors and bioelectronic devices.

  17. Cytocompatibility and electrochemical properties of Ti-Au alloys for biomedical applications.

    PubMed

    Oh, Keun-Taek; Kang, Dong-Kuk; Choi, Good-Sun; Kim, Kyoung-Nam

    2007-11-01

    The purpose of this study was to develop Ti-Au alloys with a higher resistant to corrosion, better biocompatibility, and better mechanical properties than the commercially pure titanium and its alloys. Ti-Au alloys were designed with a gold content that ranged from 0 to 5.0 at % in steps of 1.0 at %. Properties of the alloys including chemical composition, microstructure, phase, hardness, electrochemical properties, and the cytotoxicity were investigated. Only the alpha phase existed in the Ti-Au alloys. The addition of gold to the titanium decreased the alpha to beta transformation temperature. The acicular alpha phase became thinner and the hardness value increased with increasing gold content. In the electrochemical tests, Ti-Au alloys had a higher resistant to corrosion than had pure titanium and did not exhibit pitting corrosion in artificial saliva. The cytotoxicities of the Ti-Au alloys were similar to that of pure titanium. Therefore, Ti-Au alloys could be used as biomaterials in the medical and dental fields.

  18. Realization of improved metallization-Ti/Al/Ti/W/Au ohmic contacts to n-GaN for high temperature application

    NASA Astrophysics Data System (ADS)

    Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.

    2005-05-01

    Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.

  19. TEM characterization of Au-based alloys to join YSZ to steel for SOFC applications

    SciTech Connect

    Lin, Kun-Lin; Singh, Mrityunjay; Asthana, Rajiv

    2012-01-15

    The microstructures of two gold-based alloys with compositions (in wt.%) of 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V following oxidation at 850 Degree-Sign C for 200 min were characterized by analytical transmission electron microscopy with energy dispersive spectroscopy and by scanning electron microscopy. In the oxidized 96.4Au-3Ni-0.6Ti interlayer, a dense scale composed of nickel oxide (NiO) and nickel titanate (NiTiO{sub 3}) formed at the alloy surface. No evidence of titanium oxide was found because there was not enough Ti present to form titanium oxide. In the oxidized 97.5Au-0.75Ni-1.75V interlayer, loose vanadium oxide (V{sub 2}O{sub 5}) and nickel vanadate (Ni{sub 2}V{sub 2}O{sub 7}) formed and were distributed within the oxidized 97.5Au-0.75Ni-1.75V interlayer. Similarly, because of the low Ni content in the alloys, no NiO formed. The oxide products in the 96.4Au-3Ni-0.6Ti and 97.5Au-0.75Ni-1.75V interlayers after oxidation are consistent with the Pilling-Bedworth (PB) ratio considerations. - Highlights: Black-Right-Pointing-Pointer Two commercial Au-based reactive metallic interlayers were oxidized at 850 Degree-Sign C for 200 min. Black-Right-Pointing-Pointer The oxidized products at the surface were characterized by TEM/EDS and SEM. Black-Right-Pointing-Pointer NiO and NiTiO{sub 3} formed at the oxidized 96.4Au-3Ni-0.6Ti interlayer. Black-Right-Pointing-Pointer V{sub 2}O{sub 5} and Ni{sub 2}V{sub 2}O{sub 7} were found in the oxidized 97.5Au-0.75Ni-1.75V interlayer. Black-Right-Pointing-Pointer These oxide products are consistent with the Pilling-Bedworth (PB) ratio considerations.

  20. Formaldehyde Gas Sensors: A Review

    PubMed Central

    Chung, Po-Ren; Tzeng, Chun-Ta; Ke, Ming-Tsun; Lee, Chia-Yen

    2013-01-01

    Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly-trained operators. Accordingly, the emergence of sophisticated technologies in recent years has prompted the development of many microscale gaseous formaldehyde detection systems. Besides their compact size, such devices have many other advantages over their macroscale counterparts, including a real-time response, a more straightforward operation, lower power consumption, and the potential for low-cost batch production. This paper commences by providing a high level overview of the formaldehyde gas sensing field and then describes some of the more significant real-time sensors presented in the literature over the past 10 years or so. PMID:23549368

  1. Protect Against Exposure on Formaldehyde

    EPA Pesticide Factsheets

    Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes.

  2. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  3. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  4. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  5. Binary self-assembled monolayers modified Au nanoparticles as carriers in biological applications.

    PubMed

    Chang, Hsun-Yun; You, Yun-Wen; Liao, Hua-Yang; Shyue, Jing-Jong

    2014-12-01

    Gold nanoparticles (AuNPs) are good nonviral carriers because of their ease of synthesis and conjugation in biochemistry, and self-assembled monolayers (SAMs) provide a tunable system to change their interfacial properties. Using homogeneously mixed carboxylic acid and amine functional groups, a series of surface potentials and isoelectric points (IEPs) could be obtained and allow systematic study of the effect of surface potential. In this work, the result of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed that binary-SAM modified AuNPs have high biocompatibility with HEK293T cells. The amount of AuNPs ingested by the cells was found to increase with increasing surface potential and the difference was also confirmed with a scanning transmission electron microscope. The ability of binary-SAM modified AuNPs as carriers was examined, and the plasmid deoxyribose nucleic acid (DNA)-containing eGFP reporter gene was used as the model cargo. Fluorescence imaging revealed that the transfection efficiency generally increased with increasing surface potential. More importantly, when the IEP of the AuNPs was higher than that of the environment of the endosome but lower than that of the cytoplasm, the plasmid DNA can be protected better and released more easily during the endocytosis process hence higher efficiency is obtained with 60% NH2 and 40% COOH in the binary-SAM.

  6. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    PubMed Central

    Slaughter, Gymama; Stevens, Brian

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed on the surface of Al/Au/ZnO anode in various electrolyte environments were examined by electrochemical methods. The presence of phosphate buffer and physiological saline (NaCl) buffer allows for the formation of aluminum hyrdroxide and zinc phosphite composite films on the surface of the Al/Au/ZnO anode that prevent further corrosion of the anode. The highly protective films formed on the Al/Au/ZnO anode during energy harvesting in a physiological saline environment resulted in 98.5% corrosion protective efficiency, thereby demonstrating that the formation of aluminum hydroxide and zinc phosphite composite films are effective in the prevention of anode corrosion during energy harvesting. A cell assembly consisting of the Al/Au/ZnO anode and platinum cathode resulted in an open circuit voltage of 1.03 V. A maximum power density of 955.3 μW/ cm2 in physiological saline buffer at a cell voltage and current density of 345 mV and 2.89 mA/ cm2, respectively. PMID:26580661

  7. Nature of, and the formaldehyde off-gassing characteristics of, urea-formaldehyde foam insulation (UFFI). Final report to the Canadian Department of Consumer and Corporate Affairs: Product Safety Branch

    SciTech Connect

    Gammage, R.B.

    1981-07-30

    This report is divisible into the following four sections that pertain to the nature, application, and performance of urea-formaldehyde (UF) resins and foams in regard to their formaldehyde outgassing characteristics: elements of basic chemistry that affect hydrolysis and stability; pertinent experimental findings of several studies on the release of formaldehyde from urea-formaldehyde foam insulation (UFFI); studies that model the diffusion of formaldehyde through drywall and correlate the rate of formaldehyde emission with the air exchange rate and the concentration of formaldehyde; and, viability of materials and equipment for the controlled production of UFFI. Results indicate that UFFI is a complex and intrinsically unstable material that releases formaldehyde over long-time periods. Even the best foams available in the US, prepared from low formaldehyde resins according to eight different manufacturers' specifications, have abundant potential for long-term or chronic release of formaldehyde. At the present time it is not possible to state that UFFI is a material whose long-term formaldehyde release characteristics can be adequately controlled or predicted.

  8. Synthesis, characterization and potential application of MnZn ferrite and MnZn ferrite @ Au nanoparticles.

    PubMed

    Wang, Xin; Wang, Lingyan; Lim, I-Im S; Bao, Kun; Mott, Derrick; Park, Hye-Young; Luo, Jin; Hao, Shunli; Zhong, Chuan-Jian

    2009-05-01

    The ability to tune the magnetic properties of magnetic nanoparticles by manipulating the composition or surface properties of the nanoparticles is important for exploiting the application of the nanomaterials. This report describes preliminary findings of an investigation of the viability of synthesizing MnZn ferrite and core @ shell MnZn ferrite @ Au nanoparticles as potentially magnetization-tunable nanomaterials. The synthesis of the core-shell magnetic nanoparticles involved a simple combination of seed formation of the MnZn ferrite magnetic nanoparticles and surface coating of the seeds with gold shells. Water-soluble MnZn ferrite nanoparticles of 20-40 nm diameters and MnZn ferrite @ Au nanoparticles of 30-60 nm have been obtained. The MnZn ferrite @ Au nanoparticles have been demonstrated to be viable in magnetic separation of nanoparticles via interparticle antibody-specific binding reactivity between antibodies on the gold shells of the core-shell magnetic particles and proteins on gold nanoparticles. These findings have significant implications to the design of the core @ shell magnetic nanomaterials with core composition tuned magnetization for bioassay application.

  9. Comparative hazard evaluation, an approach to regulation: Formaldehyde in drinking water

    SciTech Connect

    Owen, B.A.; Dudney, C.S.; Tan, E.; Easterly, C.E.

    1990-04-01

    Formaldehyde is an important industrial chemical that is ubiquitous to the human environment. The estimated 7 billion pounds of formaldehyde produced annually in the US are consumed in a great diversity of manufacturing and processing applications resulting in occupational exposure of more than 1 million workers and in the nonoccupational exposure of 11 million consumers. Exposure to formaldehyde can result in a spectrum of adverse health effects depending on the concentration and route of entry into the body. This report will attempt to provide a comprehensive analysis of the available data regarding health effects of formaldehyde exposure, incorporating information on metabolism and biological mechanisms into a framework of comparative hazard evaluation. Integral to this effort will be a comparison of ingestion of formaldehyde in drinking water with ingestion of naturally occurring formaldehyde in foods and other substances generally regarded as safe. The perspective offered by this approach should provide a rational framework enabling regulatory authorities and other concerned individuals to evaluate objectively the potential hazard of ingesting formaldehyde as a low-level contaminant in drinking water. A brief overview will examine the nature of residential exposure to formaldehyde from both air and water sources. A discussion of typical dietary sources of formaldehyde will extend the exposure assessment and provide data for later comparisons. In order to provide a better understanding of the health effects of formaldehyde, an overview of the metabolism and biological effects of formaldehyde, including toxic, teratogenic, mutagenic and carcinogenic effects will precede discussion of the potential carcinogenicity of formaldehyde in humans. Then, the comparative hazard evaluation will be followed by a summary and conclusion. 161 refs., 2 figs., 2 tabs.

  10. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-01

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ~442 nm RIU-1. The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ~7.5 × 10-7 M. This photochemical method allows

  11. Production of radio-gold {sup 199}Au for diagnostic and therapeutic applications

    SciTech Connect

    Khandaker, Mayeen Uddin Kassim, Hasan Abu; Haba, Hiromitsu

    2016-01-22

    Production cross-sections of the {sup nat}Pt(d,x){sup 199}Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data. Theoretical data extracted from the TENDL-2013 library shows large discrepancy with the measured ones. Physical thick target yield for the {sup 199}Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched {sup 198}Pt (100%) target could be used to obtain {sup 199}Au in no carrier added form.

  12. Production of radio-gold 199Au for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-01-01

    Production cross-sections of the natPt(d,x)199Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data. Theoretical data extracted from the TENDL-2013 library shows large discrepancy with the measured ones. Physical thick target yield for the 199Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 199Au in no carrier added form.

  13. Cyclotron produced 198gAu, a potential radionuclide for diagnostic and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Haba, Hiromitsu; Kassim, Hasan Abu

    2016-02-01

    Production cross-sections of the natPt(d,x)198Au reactions have been measured from a 24-MeV deuteron energy down to the threshold by using a stacked-foil activation technique combined with HPGe γ-ray spectrometry. Only a partial agreement is obtained with the existing literature data and the theoretical data extracted from the TENDL-2013 library. Physical thick target yield for the 198Au radionuclide was deduced using the measured cross-sections, and found a general agreement with the directly measured yield available in the literature. This study reveals that a low deuteron energy (<15 MeV) cyclotron and an enriched 198Pt (100%) target could be used to obtain 198Au in no carrier added form.

  14. Nonlinear stability of solar type 3 radio bursts. 2: Application to observations near 1 AU

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, R. A.; Papadopoulos, K.

    1978-01-01

    A set of rate equations including strong turbulence effects and anomalous resitivity are solved using parmeters which model several solar type 3 bursts. Exciter distributions observed at 1 AU are excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two stream instability (OTSI). The OTSI, and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. Further energy loss of the beam is thus precluded. The various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Again, the OTSI is excited and decouples the electron beam from the Langmuir radiation. Reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU. The theory provides a natural explanation for the observed realationship between radio flux, and the electron flux.

  15. Application of an adjoint neighborhood-scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.

    2013-05-01

    During the 2006 Second Texas Air Quality Study (TexAQS II) field study, ambient mixing ratios of formaldehyde (HCHO) up to 52 ppbv were observed at Lynchburg Ferry in the Houston Ship Channel on the morning of 27 September 2006. These elevated mixing ratios coincided with a flare event during a sequential planned shutdown of a petrochemical facility ~8 km from the monitoring site. An adjoint version of the Houston Advanced Research Center (HARC) neighborhood air quality model was used to perform 4-D variational inverse modeling of industrial emissions of HCHO and other ozone precursors based on Lynchburg Ferry observations. The simulation employed a horizontal domain size and grid resolution of 8 km × 8 km and 400 m, and was conducted for a 1.5 h period (8-9:30 A.M.) during which the highest HCHO concentrations were recorded. The event emissions of ethene and propene computed by the inverse model are consistent with the largest estimated emissions for the facility in question derived from the Solar Occultation Flux technique during TexAQS II. Moreover, the computed peak flare emissions of HCHO during the shutdown event were around 282 kg/h, which is less than but comparable in magnitude to the largest area-wide total (primary plus secondary) formaldehyde flux from the Houston Ship Channel measured by Differential Optical Absorption Spectroscopy during TexAQS II. The estimated flare event emissions of primary formaldehyde are roughly 50 times larger than HCHO emissions from flares used in routine operations, as inferred from remote sensing and/or real-time in situ measurements during the 2009 SHARP campaign.

  16. Enhancement of the transverse magneto-optical Kerr effect via resonant tunneling in Au/Ce:YIG/Au trilayers and its application

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tang, Tingting; Zhang, Yanfen; Luo, Li

    2017-02-01

    We propose a new structure to enhance the transverse magneto-optical Kerr effect (TMOKE) via resonant photon tunneling. In trilayer structures with a magnetic dielectric layer sandwiched between non-magnetic metal layers, an enhanced TMOKE can be observed. The TMOKE in Au/Ce:YIG/Au trilayers with different widths of magnetic dielectric layers are calculated using a 4  ×  4 transfer-matrix method, in which the maximum absolute value reaches 0.7. Based on the enhanced TMOKE, we apply the structure proposed above in magnetic field sensing, and TMOKE values are calculated when the external magnetic field intensity is increasing. Compared with other magnetic field sensing methods, the Au/Ce:YIG/Au trilayer possesses a very simple structure and shows high sensitivity to magnetic field variation, which is promising as a highly integrated and sensitive magneto-optical device.

  17. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine.

    PubMed

    Premaratne, Gayan; Farias, Sabrina; Krishnan, Sadagopan

    2017-06-01

    Measurement of ultra-low (e.g., parts-per-billion) levels of small-molecule markers in body fluids (e.g., serum, urine, saliva) involves a considerable challenge in view of designing assay strategies with sensitivity and selectivity. Herein we report for the first time an amperometric nano-bioelectrode design that uniquely combines 1-pyrenebutyric acid units pi-pi stacked with carboxylated multiwalled carbon nanotubes on the surface of gold screen printed electrodes for covalent attachment of NAD(+) dependent formaldehyde dehydrogenase (FDH). The designed enzyme bioelectrode offered 6 ppb formaldehyde detection in 10-times diluted urine with a wide dynamic range of 10 ppb to 10 ppm. Fourier transform infrared, Raman, and electrochemical impedance spectroscopic characterizations confirmed the successful design of the FDH bioelectrode. Flow injection analysis provided lower detection limit and greater affinity for formaldehyde (apparent KM 9.6 ± 1.2 ppm) when compared with stirred solution method (apparent KM 19.9 ± 4.6 ppm). Selectivity assays revealed that the bioelectrode was selective toward formaldehyde with a moderate cross-reactivity for acetaldehyde (∼25%) and negligible cross-reactivity toward propanaldehyde, acetone, methanol, and ethanol. Formaldehyde is an indoor pollutant, and studies have indicated neurotoxic characteristics and systemic toxic effects of this compound upon chronic and high doses of exposure. Moreover, reported chromatography and mass spectrometry methods identified elevated urine formaldehyde levels in patients with bladder cancer, dementia, and early stages of cognitive impairments compared to healthy people. Results demonstrate that pyrenyl carbon nanostructures-based FDH bioelectrode design represents novelty and simplicity for enzyme-selective electrochemical quantitation of small 30 Da formaldehyde. Broader applicability of the presented approach for other small-molecule markers is feasible that requires only the

  18. Simultaneous Au(III) Extraction and In Situ Formation of Polymeric Membrane-Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis.

    PubMed

    Mora-Tamez, Lucía; Esquivel-Peña, Vicente; Ocampo, Ana L; Rodríguez de San Miguel, Eduardo; Grande, Daniel; de Gyves, Josefina

    2017-04-10

    A polymeric membrane-supported catalyst with immobilized gold nanoparticles (AuNPs) was prepared through the extraction and in situ reduction of Au(III) salts in a one-step strategy. Polymeric inclusion membranes (PIMs) and polymeric nanoporous membranes (PNMs) were tested as different membrane-support systems. Transport experiments indicated that PIMs composed of cellulose triacetate, 2-nitrophenyloctyl ether, and an aliphatic tertiary amine (Adogen 364 or Alamine 336) were the most efficient supports for Au(III) extraction. The simultaneous extraction and reduction processes were proven to be the result of a synergic phenomenon in which all the membrane components were involved. Scanning electron microscopy characterization of cross-sectional samples suggested a distribution of AuNPs throughout the membrane. Transmission electron microscopy characterization of the AuNPs indicated average particle sizes of 36.7 and 2.9 nm for the PIMs and PNMs, respectively. AuNPs supported on PIMs allowed for >95.4 % reduction of a 0.05 mmol L(-1) 4-nitrophenol aqueous solution with 10 mmol L(-1) NaBH4 solution within 25 min. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Mechanism of the Formaldehyde Clock Reaction.

    ERIC Educational Resources Information Center

    Burnett, M. G.

    1982-01-01

    Provides background information and problems with the formaldehyde clock reaction, including comparisons of experimental clock times reported in the literature and conditions for the reliable use of the formaldehyde clock based on a method discussed. (JN)

  20. Formaldehyde Stress Responses in Bacterial Pathogens

    PubMed Central

    Chen, Nathan H.; Djoko, Karrera Y.; Veyrier, Frédéric J.; McEwan, Alastair G.

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  1. The Mechanism of the Formaldehyde Clock Reaction.

    ERIC Educational Resources Information Center

    Burnett, M. G.

    1982-01-01

    Provides background information and problems with the formaldehyde clock reaction, including comparisons of experimental clock times reported in the literature and conditions for the reliable use of the formaldehyde clock based on a method discussed. (JN)

  2. Formaldehyde exposures from tobacco smoke: a review.

    PubMed Central

    Godish, T

    1989-01-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532

  3. Physicochemical studies on the reaction between formaldehyde and DNA.

    PubMed

    FREIFELDER, D; DAVISON, P F

    1963-01-01

    The reaction between formaldehyde and phage T7 DNA has been studied by optical absorbance and sedimentation measurements. Through the course of denaturation, OD(200) and s(20, w) rise; after the attainment of full hyperchromicity the s(20, w) falls sharply, suggesting a decrease in molecular weight. Conditions in which formaldehyde causes cross-linking are defined. Some experimental applications of the denaturation technique are given. Evidence which suggests that preformed single-strand interruptions may exist in phage DNA is briefly discussed.

  4. Physicochemical Studies on the Reaction between Formaldehyde and DNA

    PubMed Central

    Freifelder, David; Davison, Peter F.

    1963-01-01

    The reaction between formaldehyde and phage T7 DNA has been studied by optical absorbance and sedimentation measurements. Through the course of denaturation, OD200 and s20, w rise; after the attainment of full hyperchromicity the s20, w falls sharply, suggesting a decrease in molecular weight. Conditions in which formaldehyde causes cross-linking are defined. Some experimental applications of the denaturation technique are given. Evidence which suggests that preformed single-strand interruptions may exist in phage DNA is briefly discussed. PMID:13959526

  5. Separation of long RNA by agarose-formaldehyde gel electrophoresis.

    PubMed

    Mansour, Farrah H; Pestov, Dimitri G

    2013-10-01

    We describe a method to facilitate electrophoretic separation of high-molecular-weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative "pK-matched" buffer systems were substituted for the traditionally used Mops-based conductive medium. The key advantages include shortened run times, a 5-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a streamlined work flow that helps to minimize errors and is broadly applicable to agarose gel electrophoresis of RNA samples and their subsequent analysis by Northern blotting.

  6. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  7. Formaldehyde reactions in dark clouds

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Federman, S. R.

    1992-01-01

    The low-pressure reactions of formaldehyde (H2CO) with D(+), D2(+), D3(+), and He(+) are studied by the ion-cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D(+), D2(+), and He(+) ions. Only the D3(+) reaction exhibits a proton-transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions are found to be inefficient processes in the formaldehyde system.

  8. A Short Review on Photocatalytic Degradation of Formaldehyde.

    PubMed

    Tasbihi, Minoo; Bendyna, Joanna K; Notten, Peter H L; Hintzen, H T

    2015-09-01

    Nowadays, it is a great challenge to eliminate toxic and harmful organic pollutants from air and water. This paper reviews the role of TiO2 as a photocatalyst, light source and photoreactor in the particular case of removal of formaldehyde using the photocatalytic reaction by titanium dioxide (TiO2) in aqueous and gaseous systems. The reaction mechanisms of the photocatalytic oxidation of gaseous formaldehyde are given. We also present a detailed review of published articles on photocatalytic degradation of formaldehyde by modified titanium dioxide doped with foreign species such as metal and non-metal components. We point out the most prospective developments of the photocatalyst compositions for the future potential commercial applications.

  9. Studies on adsorption of formaldehyde in zirconium phosphate-glyphosates

    NASA Astrophysics Data System (ADS)

    Zhang, Yuejuan; Yi, Jianjun; Xu, Qinghong

    2011-01-01

    In our previous work [22], a kind of layered compound of zirconium phosphate-glyphosate (ZrGP) was synthesized. Its large surface area (445 m 2/g) indicates this compound has possible application in adsorptions. In this paper, adsorption to formaldehyde in ZrGP and mechanisms of the adsorption were studied carefully. Balance time of adsorption (about 6 h) and largest adsorbed amount (7.8%) were found when adsorption temperature was at 40 °C and pH value of adsorption environment was about 3.0. H-bonds were found existing between molecules of formaldehyde and ZrGP, and formaldehyde molecules could exist in ZrGP stably.

  10. Synthesis of Photoswitchable Magnetic Au-Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications.

    PubMed

    Wang, Min; Jeon, Seaho; Su, Chefu; Yu, Tzuyang; Tan, Loon-Seng; Chiang, Long Y

    2015-08-13

    We designed and synthesized several nanomaterials 3 of three-layered core-shell (γ-FeOx@AuNP)@[C60(>DPAF-C9) 1 or 2]n nanoparticles (NPs). These NPs having e(-)-polarizable fullerosome structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Fullerosomic polarization of 3 was found to be capable of causing a large amplification of material permittivity that is also associated with the photoswitching effect in the frequency range of 0.5-4.0 GHz. Multilayered synthetic construction allows Förster resonance energy transfer (FRET) of photoinduced accumulative surface plasmon resonance (SPR) energy in the gold layer to the partially bilayered C60(>DPAF-C9) 1 or 2-derived fullerosome membrane shell layer in a near-field of direct contact without producing radiation heat, which is commonly associated with SPR.

  11. Approximate treatment of semicore states in GW calculations with application to Au clusters

    NASA Astrophysics Data System (ADS)

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-01

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  12. Approximate treatment of semicore states in GW calculations with application to Au clusters.

    PubMed

    Xian, Jiawei; Baroni, Stefano; Umari, P

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G0W0 level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au20 and Au32, that would be otherwise very difficult to deal with.

  13. Approximate treatment of semicore states in GW calculations with application to Au clusters

    SciTech Connect

    Xian, Jiawei; Baroni, Stefano; Umari, P.

    2014-03-28

    We address the treatment of transition metal atoms in GW electronic-structure calculations within the plane-wave pseudo-potential formalism. The contributions of s and p semi-core electrons to the self-energy, which are essential to grant an acceptable accuracy, are dealt with using a recently proposed scheme whereby the exchange components are treated exactly at the G{sub 0}W{sub 0} level, whereas a suitable approximation to the correlation components is devised. This scheme is benchmarked for small gold nano-clusters, resulting in ionization potentials, electron affinities, and density of states in very good agreement with those obtained from calculations where s and p semicore states are treated as valence orbitals, and allowing us to apply this same scheme to clusters of intermediate size, Au{sub 20} and Au{sub 32}, that would be otherwise very difficult to deal with.

  14. Home Is Where the Formaldehyde Is.

    ERIC Educational Resources Information Center

    Godish, Thad

    1983-01-01

    Discusses indoor air pollution in general and formaldehyde in particular, citing major sources of formaldehyde in home building materials and home furnishings. Also describes a laboratory procedure necessary to test for formaldehyde levels in the air and in materials. Includes list of equipment required. (JM)

  15. Formaldehyde elimination with formaldehyde and formate oxidase in membrane of acetic acid bacteria.

    PubMed

    Shinagawa, Emiko; Toyama, Hirohide; Matsushita, Kazunobu; Tuitemwong, Pravate; Theeragool, Gunjana; Adachi, Osao

    2008-03-01

    Formaldehyde elimination was successfully carried out with Acetobacter sp. SKU 14, having strong formaldehyde-oxidizing activity in the cytoplasmic membrane. Formaldehyde was decomposed via formate to carbon dioxide by formaldehyde- and formate-oxidizing activities. A resting-cell suspension of the organism was more convenient for practical purposes than the isolated membrane fraction. In Gluconobacter suboxydans IFO 12528, formaldehyde elimination was not so prominent when compared with that in Acetobacter sp. SKU 14.

  16. Formaldehyde in cosmetics in patch tested dermatitis patients with and without contact allergy to formaldehyde.

    PubMed

    Hauksson, Inese; Pontén, Ann; Isaksson, Marléne; Hamada, Haneen; Engfeldt, Malin; Bruze, Magnus

    2016-03-01

    Formaldehyde is a well-known contact sensitizer. Formaldehyde releasers are widely used preservatives in cosmetics. To survey the release of formaldehyde in cosmetics brought by patients investigated because of suspected allergic contact dermatitis, to compare it with information given by the manufacturers on the packages, and to investigate whether formaldehyde-allergic patients are potentially exposed to more cosmetics releasing formaldehyde than dermatitis patients without contact allergy to formaldehyde. Cosmetics from 10 formaldehyde-allergic and 30 non-allergic patients (controls) matched for age and sex were investigated with the chromotropic acid spot test, which is a semiquantitative method measuring the release of formaldehyde. Formaldehyde was found in 58 of 245 (23.7%) products. Twenty-six of 126 (20.6%) leave-on products released formaldehyde, and 17 of 26 (65.4%) of these were not declared to contain formaldehyde or formaldehyde releasers. Among the rinse-off products, there were 32 of 119 (26.8%) formaldehyde-releasing products, and nine of 32 (28.0%) of these were not labelled as containing formaldehyde or formaldehyde releasers. Five of 10 formaldehyde-allergic patients brought leave-on products with ≥ 40 ppm formaldehyde, as compared with 4 of 30 in the control group (p = 0.029). Cosmetic products used by formaldehyde-allergic patients that are not declared to contain formaldehyde or formaldehyde-releasing preservatives should be analysed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Occupational asthma due to formaldehyde resin dust with and without reaction to formaldehyde gas.

    PubMed

    Lemière, C; Desjardins, A; Cloutier, Y; Drolet, D; Perrault, G; Cartier, A; Malo, J L

    1995-05-01

    We report the cases of three subjects who developed asthma after being exposed to formaldehyde dust or gas. For two subjects, specific bronchial provocation tests with formaldehyde gas did not cause significant bronchoconstriction, whereas exposure to formaldehyde resin dust did. One subject experienced asthmatic reaction after being exposed to formaldehyde resin dust and gas. These findings suggest that the physical and chemical properties of formaldehyde are relevant to its likelihood of causing asthma.

  18. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application.

    PubMed

    Zhao, Yuyun; Ye, Chunjie; Liu, Wenwen; Chen, Rong; Jiang, Xingyu

    2014-07-28

    We show that bimetallic nanoparticles (NPs) of AuPt without any surface modification are potent antibiotic reagents, while pure Au NPs or pure Pt NPs display no antibiotic activities. The most potent antibacterial AuPt NPs happen to be the most effective catalysts for chemical transformations. The mechanism of antibiotic action includes the dissipation of membrane potential and the elevation of adenosine triphosphate (ATP) levels. These bimetallic NPs are unique in that they do not produce reactive oxygen species as most antibiotics do. Being non-toxic to human cells, these bimetallic noble NPs might open an entry to a new class of antibiotics. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. Nanostructuring of thin Au films deposited on ordered Ti templates for applications in SERS

    NASA Astrophysics Data System (ADS)

    Grochowska, Katarzyna; Siuzdak, Katarzyna; Macewicz, Łukasz; Skiba, Franciszek; Szkoda, Mariusz; Karczewski, Jakub; Burczyk, Łukasz; Śliwiński, Gerard

    2017-10-01

    In this work the results on thermal nanostructuring of the Au films on Ti templates as well as morphology and optical properties of the obtained structures are reported. The bimetal nanostructures are fabricated in a multi-step process. First, the titania nanotubes are produced on the surface of Ti foil by anodization in an ethylene glycol-water solution containing fluoride ions. This is followed by chemical etching in oxalic acid and results in a highly ordered dimpled surface. Subsequently, thin gold films (5-20 nm) are deposited onto prepared Ti substrates by magnetron sputtering. The as-prepared layers are then dewetted by the UV nanosecond laser pulses or alternatively in the furnace (temperature < 500 °C). The SEM inspection reveals formation of honeycomb nanostructures (cavity diameter: ∼100 nm) covered with Au nanoparticles (NPs). It is observed that both the laser annealing and continuous thermal treatment in furnace can lead to the creation of NPs inside every Ti dimple and result in uniform coating of the whole area of structured templates. The size and localization of NPs obtained via both dewetting processes as well as their shape can be tuned by the annealing time and the laser processing parameters and also by initial thickness of Au layer and presence of the dimples themselves in the substrate. Results confirm that the prepared material can be used as substrate for SERS (Surface Enhanced Raman Spectroscopy).

  20. ZnO/Au-based surface plasmon resonance for CO2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Nuryadi, Ratno; Mayasari, Rina Dewi

    2016-01-01

    We fabricate surface plasmon resonance (SPR) device using a modified ZnO/Au-Kretschmann configuration to investigate the possibility of using ZnO for CO2 gas sensing at room temperature. Here, nanostructured ZnO/Au layer was deposited on the flat surface of the prism and then gas chamber was placed on the ZnO/Au surface to observe the gas response. The ZnO structures were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. We found that ZnO structures have two types of nanostructures, i.e., individual nanorods and flower-like structures, which have hexagonal crystal structure. The ZnO nanorod has a diameter ranged from 200 to 300 nm and length ranged from 3 to 5 μm. The effect of gas response is demonstrated by a shift of SPR spectra and a change in light reflectance. It is found that the adsorption of gas molecules on the ZnO nanorods produces the shift of SPR angle to the lower light incident angle. A consistent sensing behavior over repetitive circles is also demonstrated.

  1. Atomistic simulation of finite-temperature magnetism of nanoparticles: Application to cobalt clusters on Au(111)

    NASA Astrophysics Data System (ADS)

    Lászlóffy, A.; Udvardi, L.; Szunyogh, L.

    2017-05-01

    We developed a technique to determine suitable spin models for small embedded clusters of arbitrary geometry by combining the spin-cluster expansion with the relativistic disordered local moment scheme. We present results for uncovered and covered hexagonal Co clusters on Au(111) surface, and use classical Monte Carlo simulations to study the temperature dependent properties of the systems. To test the new method we compare the calculated spin-model parameters of the uncovered clusters with those of a Co monolayer deposited on Au(111). In general, the isotropic and Dzyaloshinsky-Moriya interactions are larger between atoms at the perimeter than at the center of the clusters. For Co clusters covered by Au, both the contribution to the magnetic anisotropy and the easy axis direction of the perimeter atoms differ from those of the inner atoms due to reduced symmetry. We investigate the spin reversals of the covered clusters with perpendicular magnetic anisotropy and based on the variance of the magnetization component parallel to the easy direction we suggest a technique to determine the blocking temperature of superparamagnetic particles. We also determine the Néel relaxation time from the Monte Carlo simulations and find that it satisfies the Néel-Arrhenius law with an energy barrier close to the magnetic anisotropy energy of the clusters.

  2. Inactivation of poliovirus by formaldehyde

    PubMed Central

    Gard, Sven

    1957-01-01

    Since formaldehyde, either alone or in combination with other inactivating agents, is at present used in the production of all so-called “killed” poliovirus vaccines, a thorough knowledge of the kinetics of the reaction between the chemical agent and the virus, and of the mechanisms involved, is of great practical importance. In this paper the problem is discussed against the background of present knowledge of the structure of the virus and the chemical nature of the action of formaldehyde. PMID:13511143

  3. Woodstoves, formaldehyde, and respiratory disease

    SciTech Connect

    Tuthill, R.W.

    1984-12-01

    Telephone interviews were completed in Western Massachusetts in April 1983 for 399 households (91.5 percent) in a random sample of households with elementary school children. Woodstoves were used in 64.7 percent of the homes, but such use was not associated with acute respiratory illness. However, formaldehyde exposure was significantly related, with a risk ratio of 2.4 (95 percent confidence interval 1.7-3.4). New construction/remodeling and new upholstered furniture had additive effects. Neither woodstove use nor formaldehyde exposure were significantly associated with asthma, chronic bronchitis, or allergies.

  4. Photoionization of methanol and formaldehyde

    NASA Technical Reports Server (NTRS)

    Warneck, P.

    1971-01-01

    Photoions produced in methanol and formaldehyde by radiation in the spectral region 450-1150 A were analyzed mass spectrometrically, and their relative yields were determined as a function of wavelength. First ionization potentials were determined, and the ion yield curves were interpreted in terms of ionization processes in conjunction with other data. Fragment ions were detected on mass numbers of 31, 30, 29, 15, and 14 for methanol, and 29, 2, and 1 for formaldehyde. The associated appearance potentials were determined and were used to calculate heats of formation of the ions CH2OH(+) and HCO(+), and the radicals CH3, CH2, and HCO.

  5. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg(2+) ion sensing, cellular imaging and antibacterial applications.

    PubMed

    Khandelwal, Puneet; Singh, Dheeraj K; Sadhu, Subha; Poddar, Pankaj

    2015-12-21

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD--an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg(2+) ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg(2+) ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We

  6. Controlled preparation of Au/Ag/SnO2 core-shell nanoparticles using a photochemical method and applications in LSPR based sensing.

    PubMed

    Zhou, Na; Ye, Chen; Polavarapu, Lakshminarayana; Xu, Qing-Hua

    2015-05-21

    A photochemical method for the controlled preparation of core-shell Au/Ag/SnO2 nanorods (NRs) and nanospheres (NSs) has been developed based on photo-induced electron transfer processes in the plasmonic metal-semiconductor system. Au/AgNR/SnO2 and Au/AgNS/SnO2 were prepared by the UV irradiation of a mixture of mesoporous SnO2 coated AuNRs, or AuNSs, and AgNO3, in which AgNO3 was reduced by electrons transferred from the photo-excited mesoporous SnO2 (semiconductor) to the gold (metal). This method allows precise control over the composition and optical properties of the obtained nanoparticles. The LSPR refractive index sensitivity of the obtained Au/AgNR/SnO2 nanoparticles has been optimized to obtain a refractive index sensitivity of ∼442 nm RIU(-1). The optimized nanoparticles were subsequently chosen for the LSPR based sensing of glutathione (GSH) with the limit of detection of ∼7.5 × 10(-7) M. This photochemical method allows the controlled preparation of various Au/Ag/SnO2 nanoparticles to adjust their LSPR to suit various applications.

  7. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium

    PubMed Central

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-01-01

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O82− system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01–100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore. PMID:26902375

  8. Formaldehyde in Insulation: Villain or Innocent Bystander?

    PubMed Central

    Lees, R. E. M.

    1983-01-01

    When urea formaldehyde foam insulation (UFFI) deteriorates, it produces an off-gas mixture whose major constituent is formaldehyde. Most investigative studies of UFFI have concentrated on formaldehyde. Health concerns fall into three groups: irritant characteristics, allergenic capabilities and potential carcinogenicity. Except for the first of these, formaldehyde's hazard potential is not clear. The extent to which formaldehyde may be responsible for UFFI's evil reputation is explored in this paper but the degree to which either substance is a real threat to health still appears to open to debate. PMID:21283296

  9. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  10. Study of the nucleation and growth of antibiotic labeled Au NPs and blue luminescent Au8 quantum clusters for Hg2+ ion sensing, cellular imaging and antibacterial applications

    NASA Astrophysics Data System (ADS)

    Khandelwal, Puneet; Singh, Dheeraj K.; Sadhu, Subha; Poddar, Pankaj

    2015-11-01

    Herein, we report a detailed experimental study supported by DFT calculations to understand the mechanism behind the synthesis of cefradine (CFD - an antibiotic) labeled gold nanoparticles (Au NPs) by employing CFD as both a mild reducing and capping agent. The analysis of the effect of growth conditions reveals that a higher concentration of HAuCl4 results in the formation of an increasing fraction of anisotropic structures, higher temperature leads to the formation of quasi-spherical particles instead of anisotropic ones, and larger pH leads to the formation of much smaller particles. The cyclic voltammetry (CV) results show that when the pH of the reaction medium increases from 4 to 6, the reduction potential of CFD increases which leads to the synthesis of nanoparticles (in a pH 4 reaction) to quantum clusters (in a pH 6 reaction). The MALDI-TOF mass spectrometry results of supernatant of the pH 6 reaction indicate the formation of [Au8(CFD)2S6] QCs which show fluorescence at ca. 432 nm with a Stokes shift of ca. 95 nm. The blue luminescence from Au8 QCs was applied for sensing of Hg2+ ions on the basis of an aggregation-induced fluorescence quenching mechanism and offers good selectivity and a high sensitivity with a limit of detection ca. 2 nM which is lower than the detection requirement of 10 nM by the U.S. EPA and 30 nM by WHO for drinking water. We have also applied the sensing probe to detect Hg2+ ions in bacterial samples. Further, we have investigated the antibacterial property of as-synthesized Au NPs using MIC, growth curve and cell survival assay. The results show that Au NPs could reduce the cell survival very efficiently rather than the cell growth in comparison to the antibiotic itself. The scanning electron microscopy study shows the degradation and blebbing of the bacterial cell wall upon exposure with Au NPs which was further supported by fluorescence microscopy results. These Au NPs did not show reactive oxygen species generation. We believe

  11. Highly narrow nanogap-containing Au@Au core-shell SERS nanoparticles: size-dependent Raman enhancement and applications in cancer cell imaging

    NASA Astrophysics Data System (ADS)

    Hu, Chongya; Shen, Jianlei; Yan, Juan; Zhong, Jian; Qin, Weiwei; Liu, Rui; Aldalbahi, Ali; Zuo, Xiaolei; Song, Shiping; Fan, Chunhai; He, Dannong

    2016-01-01

    Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on the surface of cancer cells. First, plasmonic nanostructures are made of gold nanoparticles (~15 nm) coated with gold shells, between which a highly narrow and uniform nanogap (~1.1 nm) is formed owing to polyA anchored on the Au cores. The well controlled distribution of Raman reporter molecules, such as 4,4'-dipyridyl (44DP) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), are readily encoded in the nanogap and can generate strong, reproducible SERS signals. In addition, we have investigated the size-dependent SERS activity of GCNPs and found that with the same laser wavelength, the Raman enhancement discriminated between particle sizes. The maximum Raman enhancement was achieved at a certain threshold of particle size (~76 nm). High narrow nanogap-containing Au@Au core-shell SERS tags (GCTs) were prepared via the functionalization of hyaluronic acid (HA) on GCNPs, which recognized the CD44 receptor, a tumor-associated surface biomarker. And it was shown that GCTs have a good targeting ability to tumour cells and promising prospects for multiplex biomarker detection.Cellular imaging technologies employing metallic surface-enhanced Raman scattering (SERS) tags have gained much interest toward clinical diagnostics, but they are still suffering from poor controlled distribution of hot spots and reproducibility of SERS signals. Here, we report the fabrication and characterization of high narrow nanogap-containing Au@Au core-shell SERS nanoparticles (GCNPs) for the identification and imaging of proteins overexpressed on

  12. Formaldehyde monitor for automobile exhausts

    NASA Technical Reports Server (NTRS)

    Easley, W. C.

    1973-01-01

    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  13. Report of the Federal Panel on Formaldehyde.

    PubMed Central

    1982-01-01

    The Federal Panel on Formaldehyde concluded that definitive experiments exist which demonstrate the mutagenicity and carcinogenicity of formaldehyde under laboratory conditions. Formaldehyde induces both gene mutations and chromosomal aberrations in a variety of test systems. Inhalation of formaldehyde causes cancer of the nose in rats. The concentrations of formaldehyde in inhaled air that caused nasal cancer in Fisher 344 rats are within the same order of magnitude as those to which humans may be exposed. The data presently available do not permit a direct assessment of the carcinogenicity of formaldehyde to man. Epidemiologic studies on exposed human populations are in progress and may further clarify the situation. Other experimental and human studies on toxic effects such as teratogenicity and reproductive disorders are as yet inadequate for a health risk assessment. The CIIT 24 month study on animal carcinogenicity has not yet been completely evaluated. Additional data are expected on the effects of prolonged exposure to lower doses of formaldehyde and on the possible carcinogenicity of formaldehyde in the mouse. The panel recommends that, for a comprehensive health risk assessment, further experiments be conducted on the effects of other modes of exposure (ingestion and skin penetration), the effects in humans, and on the pharmacokinetics of formaldehyde in man and animals and the possible role for formaldehyde in reproductive and chronic respiratory disorders. It is the conclusion of the panel that formaldehyde should be presumed to pose a carcinogenic risk to humans. PMID:6977445

  14. Transfert radiatif entre une petite particule et un diélectrique: application au chauffage local

    NASA Astrophysics Data System (ADS)

    Mulet, J.-P.; Joulain, K.; Carminati, R.; Greffet, J. J.

    2002-06-01

    nous montrons dans cette étude que le transfert radiatif entre une particule de taille nanométrique et un diélectrique petit être très important lorsque les distances mises en jeu sont petites devant la longueur d'onde caractéristique du rayonnement thermique. Ce transfert peut devenir dominant lorsque les matériaux utilisés sont polaires. Nous discuterons de la possibilité d'appliquer ces résultats au chauffage local dans les nano-structures.

  15. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate)

    PubMed Central

    Chuang, Wen-Yu; Yang, Sung-Yuan; Wu, Wen-Jong; Lin, Chih-Ting

    2015-01-01

    This work demonstrates a printable blending material, i.e., reduced graphene oxide (RGO) mixed with poly(methyl methacrylate) (PMMA), for formaldehyde sensing. Based on experimental results, 2% RGO/10% PMMA is an optimal ratio for formaldehyde detection, which produced a 30.5% resistance variation in response to 1000 ppm formaldehyde and high selectivity compared to different volatile organic compounds (VOCs), humidity, CO, and NO. The demonstrated detection limit is 100 ppm with 1.51% resistance variation. Characterization of the developed formaldehyde sensing material was performed by Fourier-transform infrared (FTIR) spectrometry, scanning electron microscopy (SEM), and Raman spectroscopy. Based on Raman spectroscopy, the basic sensing mechanism is the band distortion of RGO due to blending with PMMA and the adsorption of formaldehyde. This work establishes insights into the formaldehyde sensing mechanism and explores a potential printable sensing material for diverse applications. PMID:26580624

  16. Formaldehyde in hair straightening products: rapid ¹H NMR determination and risk assessment.

    PubMed

    Monakhova, Yulia B; Kuballa, Thomas; Mildau, Gerd; Kratz, Evamaria; Keck-Wilhelm, Andrea; Tschiersch, Christopher; Lachenmeier, Dirk W

    2013-04-01

    Despite official regulations, the illegal use of formaldehyde-containing or releasing hair straightening products has become a popular practice in Europe and high contents of formaldehyde in such products have been reported. In this study, a methodology utilizing (1)H NMR spectroscopy has been developed to measure the concentration of formaldehyde in hair straightening products. For sample preparation, a dilution and alkaline hydrolysis is required. The total formaldehyde content can then be quantified by a distinct peak of the CH2 group of the methanediol molecule in the δ4.84-4.82 ppm range. The developed methodology was applied for the analysis of 10 hair straightening products. Seven of these products contained detectable amounts of formaldehyde that were higher than the maximum allowed concentration of 0.2%. The formaldehyde content of these products was found to be in the range 0.42-5.83% with an average concentration of 1.46%. The accuracy and reliability of the NMR results were confirmed by the EU reference photometric method. The air formaldehyde concentrations after application of hair straightening products were estimated in ranges 20-423 ppm and 1-18 ppm (for 1 and 24 m(3) salon volume). A probabilistic exposure estimation using Monte Carlo simulation found the average formaldehyde concentration to be 6 ppm (standard deviation 15 ppm). All exposure scenarios considerably exceeded the safe level of 0.1 ppm. Our findings confirmed that the risk of cosmetic formulations with formaldehyde above 0.2% is not negligible, as these products may facilitate considerable exposure of formaldehyde for consumers especially for salon workers. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Cu2O and Au/Cu2O particles: surface properties and applications in glucose sensing.

    PubMed

    Won, Yu-Ho; Stanciu, Lia A

    2012-09-26

    In this work we investigated the surface and facet-dependent catalytic properties of metal oxide particles as well as noble metal/metal oxide heterogeneous structures, with cuprous oxide (Cu(2)O) and Au/Cu(2)O being selected as model systems. As an example of application, we explored the potential of these materials in developing electrocatalytic devices. Cu(2)O particles were synthesized in various shapes, then used for testing their morphology-dependent electrochemical properties applied to the detection of glucose. While we did not attempt to obtain the best detection limit reported to date, the octahedral and hexapod Cu(2)O particles showed reasonable detection limits of 0.51 and 0.60 mM, respectively, which are physiologically relevant concentrations. However, detection limit seems to be less affected by particle shapes than sensitivity. Heterogeneous systems where Au NPs were deposited on the surface of Cu(2)O particles were also tested with similar results in terms of the effect of surface orientation.

  18. Crystallographic investigation of Au nanoparticles embedded in a SrTiO{sub 3} thin film for plasmonics applications by means of synchrotron radiation

    SciTech Connect

    Pincini, Davide; Mazzoli, Claudio; Bernhardt, Hendrik; Katzer, Christian; Schmidl, Frank; Uschmann, Ingo; Detlefs, Carsten

    2015-03-14

    Self-organized monocrystalline Au nanoparticles with potential applications in plasmonics are grown in a SrTiO{sub 3} matrix by a novel two-step deposition process. The crystalline preferred orientation of these Au nanoparticles is investigated by synchrotron hard x-ray diffraction. Nanoparticles preferentially align with the (111) direction along the substrate normal (001), whereas two in-plane orientations are found with [110]{sub SrTiO{sub 3}}∥[110]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. Additionally, a smaller diffraction signal from nanoparticles with the (001) direction parallel to the substrate normal (001) is observed; once again, two in-plane orientations are found, with [100]{sub SrTiO{sub 3}}∥[100]{sub Au} and [100]{sub SrTiO{sub 3}}∥[110]{sub Au}. The populations of the two in-plane orientations are found to depend on the thickness of the gold film deposited in the first step of the growth.

  19. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay.

    PubMed

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-18

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3',5,5'-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  20. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    PubMed Central

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-01-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at −0.65 V, −0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes. PMID:26577799

  1. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  2. A new airborne formaldehyde instrument: Compact Formaldehyde Fluorescence Experiment (COFFEE)

    NASA Astrophysics Data System (ADS)

    Hanisco, T. F.; Bailey, S. A.; Swanson, A. K.; Wolfe, G. M., Jr.

    2014-12-01

    We present the operating principles of a new instrument designed for operation on small aircraft. The instrument uses a new non-resonant fluorescence technique to take advantage of compact industrial lasers to make a small, robust package that can measure formaldehyde at sensitivities better than 100 ppt in 1 second integration. The instrument is designed to fly on the Alphajet at NASA Ames but can be modified to fly on other small aircraft.

  3. Highly efficient and stable Au/CeO2-TiO2 photocatalyst for nitric oxide abatement: potential application in flue gas treatment.

    PubMed

    Zhu, Wei; Xiao, Shuning; Zhang, Dieqing; Liu, Peijue; Zhou, Hongjun; Dai, Wenrui; Liu, Fanfan; Li, Hexing

    2015-10-06

    In the present work, highly efficient and stable Au/CeO2-TiO2 photocatalysts were prepared by a microwave-assisted solution approach. The Au/CeO2-TiO2 composites with optimal molar ratio of Au/Ce/Ti of 0.004:0.1:1 delivered a remarkably high and stable NO conversion rate of 85% in a continuous flow reactor system under simulated solar light irradiation, which far exceeded the rate of 48% over pure TiO2. The tiny Au nanocrystals (∼1.1 nm) were well stabilized by CeO2 via strong metal-support bonding even it was subjected to calcinations at 550 °C for 6 h. These Au nanocrystals served as the very active sites for activating the molecule of nitric oxide and reducing the transmission time of the photogenerated electrons to accelerate O2 transforming to reactive oxygen species. Moreover, the Au-Ce(3+) interface formed and served as an anchoring site of O2 molecule. Then more adsorbed oxygen could react with photogenerated electrons on TiO2 surfaces to produce more superoxide radicals for NO oxidation, resulting in the improved efficiency. Meanwhile, O2 was also captured at the Au/TiO2 perimeter site and the NO molecules on TiO2 sites were initially delivered to the active perimeter site via diffusion on the TiO2 surface, where they assisted O-O bond dissociation and reacted with oxygen at these perimeter sites. Therefore, these finite Au nanocrystals can consecutively expose active sites for oxidizing NO. These synergistic effects created an efficient and stable system for breaking down NO pollutants. Furthermore, the excellent antisintering property of the catalyst will allow them for the potential application in photocatalytic treatment of high-temperature flue gas from power plant.

  4. 78 FR 51696 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Environmental protection, Composite wood products, Formaldehyde, Reporting and recordkeeping, Third-party... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... Formaldehyde Standards for Composite Wood Products; Extension of Comment Period AGENCY:...

  5. Collisional excitation of interstellar formaldehyde

    NASA Technical Reports Server (NTRS)

    Green, S.; Garrison, B. J.; Lester, W. A., Jr.; Miller, W. H.

    1978-01-01

    Previous calculations for rates of excitation of ortho-H2CO by collisions with He have been extended to higher rotational levels and kinetic temperatures to 80 K. Rates for para-H2CO have also been computed. Pressure-broadening widths for several spectral lines have been obtained from these calculations and are found to agree with recent data within the experimental uncertainty of 10%. Excitation of formaldehyde by collisions with H2 molecules is also discussed.

  6. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde.

    PubMed

    Akshath, Uchangi Satyaprasad; Bhatt, Praveena

    2017-09-09

    Supramolecular nanoparticle hybrids for biosensing of analytes have been a major focus due to their tunable optical and surface properties. Quantum dots-Gold nanoparticle (QDs-GNP) based FRET probes involving turn on/off principles have gained immense interest due to their specificity and sensitivity. Recent focus is on applying these supramolecular hybrids for enzyme operated biosensors that can specifically turn-on fluorescence induced by co-factor or product formed from enzymatic reaction. The present study focuses on locking and unlocking the interaction between QD-GNP pair leading to differential fluorescent properties. Cationic GNPs efficiently quenched the anionic QD fluorescence by forming nanoparticle hybrid. Quenching interaction between QD-GNP pair was unlocked by NADH leading to QD fluorescence turn-on. This phenomenon was applied for the successful detection of formaldehyde using NAD(+) dependent formaldehyde dehydrogenase. The proposed nano-sniffer could successfully detect formaldehyde from 0.001 to 100000ng/mL (R(2) = 0.9339) by the turn off-turn on principle. It could also detect formaldehyde in fruit juice and wine samples indicating its stability and sensitivity in real samples. The proposed nanoprobe can have wide applications in developing enzyme biosensors in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Gaseous reference standards of formaldehyde from trioxane.

    PubMed

    Brewer, Paul J; di Meane, Elena Amico; Vargha, Gergely M; Brown, Richard J C; Milton, Martin J T

    2013-04-15

    We have developed a dynamic reference standard of gaseous formaldehyde based on diffusion of the sublimate of trioxane and thermal conversion to formaldehyde in the gas phase. We have also produced a gravimetric standard for formaldehyde in a nitrogen matrix, also by thermal conversion of the sublimate of trioxane. Analysis of the gravimetric standard with respect to the dynamic standard has confirmed the comparability of the static and dynamic gravimetric values. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Eye irritation response of humans to formaldehyde

    SciTech Connect

    Bender, J.R.; Mullin, L.S.; Graepel, G.J.; Wilson, W.E.

    1983-01-01

    Human panelists sensitive to formaldehyde eye irritation were exposed to low concentrations of formaldehyde vapor (0.35 to 1.0 ppM) for 6 minutes. Eye irritation was evaluated by time to detection of the first trace of irritation and by subjective ranking of severity. Both time to response and severity appeared to be functions of formaldehyde concentration. Severity of response was above slight only with highest test concentration, 1.0 ppM.

  9. Allergic contact dermatitis from formaldehyde textile resins.

    PubMed

    Reich, Hilary C; Warshaw, Erin M

    2010-01-01

    Formaldehyde-based resins have been used to create permanent-press finishes on fabrics since the 1920s. These resins have been shown to be potent sensitizers in some patients, leading to allergic contact dermatitis. This review summarizes the history of formaldehyde textile resin use, the diagnosis and management of allergic contact dermatitis from these resins, and current regulation of formaldehyde resins in textiles.

  10. Ethanol as an alternative to formaldehyde for the enhancement of manganese(IV) chemiluminescence detection.

    PubMed

    Smith, Zoe M; Terry, Jessica M; Barnett, Neil W; Francis, Paul S

    2014-12-01

    Previous applications of manganese(IV) as a chemiluminescence reagent have required the use of formaldehyde to enhance the emission intensity to analytically useful levels. However, this known human carcinogen (by inhalation) is not ideal for routine application. A wide range of alternative enhancers have been examined but to date none have been found to provide the dramatic increase in chemiluminescence intensities obtained using formaldehyde. Herein, we demonstrate that ethanol offers a simple, safe and inexpensive alternative to the use of formaldehyde for manganese(IV) chemiluminescence detection, without compromising signal intensity or sensitivity. For example, chemiluminescence signals for opiate alkaloids using 50-100% ethanol were 0.8-1.6-fold those using 2M formaldehyde. This innocuous alternative enhancer is shown to be a particularly effective for the direct detection of thiols and disulfides by manganese(IV) chemiluminescence, which we have applied to a simple HPLC procedure to determine a series of biomarkers of oxidative stress.

  11. Heat stability of cured urea-formaldehyde resins by measuring formaldehyde emission

    Treesearch

    Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi

    1999-01-01

    A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high tempera­tures was developed and used to assess the influence of the reaction pH at synthesis on the formaldehyde emission during cure and heat stability of the cured resins without water. Additionally, 13C-CP/MAS solid-state nuclear magnetic resonance (NMR)...

  12. Formaldehyde emission and high-temperature stability of cured urea-formaldehyde resins

    Treesearch

    Shin-ichiro Tohmura; Chung-Yun Hse; Mitsuo Higuchi

    2000-01-01

    A test method for measuring formaldehyde from urea-formaldehyde (UF) resins at high temperature was developed and used to assess the influence of the reaction pH on the formaldehyde emission and heat stability of the cured resins. Additionally, solid-state 13C CP/MAS nuclear magnetic resonance (NMR) techniques were used to investigate the...

  13. Applications de la tranformee en ondelettes au traitement de l'information optique

    NASA Astrophysics Data System (ADS)

    Deschenes, Sylvain

    La these presente l'apport d'un outil mathematique recemment decouvert, la transformee en ondelettes, au traitement de l'information optique. Les ondelettes continues sont d'abords introduites et leur realisation optique est presentee. Ensuite, une ondelette repondant aux equations de Maxwell est developpee. Cette derniere permet de tisser des liens entre la transformee en ondelettes et le principe de Huygens utilise pour etudier la diffraction scalaire. La possibilite d'utiliser cette ondelette pour generer des faisceaux non diffractants est egalement discutee. Dans un deuxieme temps, les ondelettes discretes sont utilisees dans le but d'extraire des informations pertinentes dans une banque d'images infrarouges. Ces images representent les vues de vehicules prises a tous les cinq degres. La transformee en ondelettes genere une analyse multiresolution permettant d'extraire des contours moins bruites. Cette information est alors traitee par de nouveaux algorithmes de reconnaissance de forme dans un espace qui caracterise de facon invariante les objets 3-D.

  14. Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Pullithadathil, Biji; Prasad, Arun K.; Dhara, Sandip; Ashok, Anuradha; Mohamed, Kamruddin; Tyagi, Ashok Kumar; Raj, Baldev

    2015-11-01

    A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO2 sensors (300 °C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable.

  15. Graphene decorated with PtAu alloy nanoparticles: facile synthesis and promising application for formic acid oxidation

    SciTech Connect

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Liu, Jun; Aksay, Ilhan A.; Yin, Geping; Lin, Yuehe

    2011-03-01

    PtAu alloy nanoparticles (~ 3.2 nm in diameter) are synthesized in poly(diallyldimethylammonium chloride) (PDDA) aqueous solution and uniformly dispersed on graphene nanosheets. PtAu/graphene exhibits high electrocatalytic activity and stability for formic acid oxidation, which is attributed to the high dispersion of PtAu nanoparticles and the specific interaction between PtAu and graphene, indicating a promising catalyst for direct formic acid fuel cells. The facile method can be readily extended to the synthesis of other alloy nanoparticles.

  16. Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants.

    PubMed

    Cheng, Ningyan; Tian, Jingqi; Liu, Qian; Ge, Chenjiao; Qusti, Abdullah H; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2013-08-14

    Au nanoparticles (AuNPs) were loaded on graphitic carbon nitride (g-C3N4) nanosheets prepared by ultrasonication-assisted liquid exfoliation of bulk g-C3N4 via green photoreduction of Au(III) under visible light irradiation using g-C3N4 as an effective photocatalyst. The nanohybrids show superior photocatalytic activities for the decomposition of methyl orange under visible-light irradiation to bulk g-C3N4, g-C3N4 nanosheets, and AuNP/bulk g-C3N4 hybrids.

  17. Sensitization to Formaldehyde in Northeastern Italy, 1996 to 2012.

    PubMed

    Prodi, Andrea; Rui, Francesca; Belloni Fortina, Anna; Corradin, Maria Teresa; Larese Filon, Francesca

    2016-01-01

    Formaldehyde is a widely used organic compound, used in several applications (hard thermoset resins, adhesives, disinfectants, tissue fixatives, etc), in its free form or released by formaldehyde releaser products. Its use is under control due to its toxic, carcinogenic, and allergenic properties. The aim of this study was to investigate the frequency of formaldehyde sensitization, time trend, and correlation to occupations. This study is a cross-sectional study on a population of 23,774 patients tested from 1996 to 2012 in Northeastern Italy. Frequency of sensitization was 3.3%, without any significant time trend. Hands (39.8% overall) and face (25.6% females, 15.5% males) were mainly involved. We found a trend toward decrease by age in females (3.11% in first quintile [14-26 years], 2.29% in fifth quintile [59-97 years], P < 0.01). On a logistic regression analysis (control group: white-collar workers), we found associations in health care (odds ratio [OR], 1.37; 95% confidence interval [CI], 1.04-1.81), wood (OR, 2.14; 95% CI, 1.30-3.51), and textile (OR, 1.79; 95% CI, 1.14-2.79) sectors and professional drivers (OR, 1.94; 95% CI, 1.05-3.60). We found a high rate of cosensitization to formaldehyde in patients with positive patch test reactions to quaternium-15 (OR, 18.7; 95% CI, 12.6-27.7). Sensitization to formaldehyde is relevant in our population, especially in the health care sector, wood and textile industries, and professional drivers. No significant time trend was found.

  18. The Preparation of Au@TiO2 Yolk-Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue.

    PubMed

    Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen

    2017-09-18

    This paper reports the synthesis of a new type of Au@TiO2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO2 nanotubes, Au@TiO2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.

  19. Formaldehyde Emissions from Urea-Formaldehyde- and no-added-formaldehyde-Bonded particleboard as Influenced by Temperature and Relative Humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Timothy L. Chaffee; Kyle M. Gonner

    2012-01-01

    It is well documented that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF)–type adhesives. This work investigates the effect of temperature and humidity on newer commercial California Air Resources Board (CARB) phase II–compliant particleboard produced with UF-type adhesives. These...

  20. Measurement of formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave.

    PubMed Central

    Marcos, D; Wiseman, D

    1979-01-01

    A method has been developed for measuring formaldehyde concentrations in a subatmospheric steam-formaldehyde autoclave. Data obtained using this method indicate that the concentration of formaldehyde in the chamber atmosphere is not homogeneous and that it decreases rapidly with time. The penetration of formaldehyde vapour into narrow tubes has also been investigated and was shown to be dependent on the length-to-bore ratio of the tubes. The formaldehyde concentration within the tubes could be increased by using a lower vacuum in the air removal stage at the beginning of the cycle. PMID:572833

  1. A Grand Avenue to Au Nanocluster Electrochemiluminescence.

    PubMed

    Hesari, Mahdi; Ding, Zhifeng

    2017-02-21

    In most cases of semiconductor quantum dot nanocrystals, the inherent optical and electrochemical properties of these interesting nanomaterials do not translate into expected efficient electrochemiluminescence or electrogenerated chemiluminescence (ECL) because of the surface-state induction effect. Thus, their low ECL efficiencies, while very interesting to explore, limit their applications. As their electrochemistry is not well-defined, insight into their ECL mechanistic details is also limited. Alternatively, gold nanoclusters possess monodispersed sizes with atomic precision, low and well defined HOMO-LUMO energy gaps, and stable optical and electrochemical properties that make them suitable for potential ECL applications. In this Account, we demonstrate strong and sustainable ECL of gold nanoclusters Au25(z) (i.e., Au25(SR)18(z), z = 1-, 0, 1+), Au38(SR)24, and Au144(SR)60, where the ligand SR is 2-phenylethanethiol. By correlation of the optical and electrochemical features of Au25 nanoclusters, a Latimer-type diagram can be constructed to reveal thermodynamic relationships of five oxidation states (Au25(2+), Au25(+), Au25(0), Au25(-), and Au25(2-)) and three excited states (Au25(-)*, Au25(0)*, and Au25(+)*). We describe ECL mechanisms and reaction kinetics by means of conventional ECL-voltage curves and novel spooling ECL spectroscopy. Notably, their ECL in the presence of tri-n-propylamine (TPrA), as a coreactant, is attributed to emissions from Au25(-)* (950 nm, strong), Au25(0)* (890 nm, very strong), and Au25(+)* (890 nm, very strong), as confirmed by the photoluminescence (PL) spectra of the three Au25 clusters electrogenerated in situ. The ECL emissions are controllable by adjustment of the concentrations of TPrA· and Au25(-), Au25(0), and Au25(+) species in the vicinity of the working electrode and ultimately the applied potential. It was determined that the Au25(-)/TPrA coreactant system should have an ECL efficiency of >50% relative to the Ru(bpy)3

  2. Electrooxidation of formaldehyde based on nickel-palladium modified ordered mesoporous silicon.

    PubMed

    Miao, Fengjuan; Tao, Bairui

    2013-04-01

    Nickel and palladium nanoparticles were finely dispersed on ordered mesoporous silicon microchannels plate (MCP) by electroless plating. The structure and composition of the resulting Ni-Pd/Si MCP were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The electrocatalystic properties of Ni-Pd/Si MCP electrode for formaldehyde oxidation have been investigated by cyclic voltammetry. The results show that Ni-Pd/Si MCP has a higher catalytic activity and better steady-state behavior for formaldehyde oxidation. This may be attributed to the synergistic property of high dispersion of Nickel and Palladium nanoparticles and particular properties of mesoporous Si MCP. The present study shows a promising choice of Ni-Pd nanoparticles supported by mesoporous silicon as effective electrocatalyst for formaldehyde electrooxidation in alkaline medium. The results imply that the Ni-Pd/Si MCP nanocomposite has good potential application in formaldehyde fuel cells and sensors.

  3. Mechanistic study on formaldehyde-induced hepatotoxicity.

    PubMed

    Strubelt, O; Younes, M; Pentz, R; Kühnel, W

    1989-01-01

    In isolated, hemoglobin-free perfused livers of fasted rats, formaldehyde at an initial concentration of 10 mmol/l produced toxicity as evidenced by a release of enzymes (GPT, SDH) and of glutathione (mainly GSSG) into the perfusate, an accumulation of calcium in the liver, and a depletion of hepatic glutathione. Formaldehyde also led to an enhanced release of malondialdehyde into the perfusate, indicating peroxidative processes and decreased hepatic oxygen consumption by about 50-70%. The electron microscopic investigation of formaldehyde-exposed livers showed a destruction of the mitochondria (ruptured membranes, loss of the cristae) and some damage of the rough endoplasmic reticulum. Feeding the rats prior to surgery attenuated the hepatotoxic effects of 10 mmol/l formaldehyde. At an initial concentration of 3 mmol/l, formaldehyde did not release enzymes from livers of fed or fasted rats but only from those whose glutathione content had been depleted by treatment with phorone (250 mg/kg ip 2 h earlier). Formaldehyde liberated glucose and lactate from the livers of fed but not from those of fasted rats, indicating anaerobic energy supply in the fed state. The hepatotoxic action of formaldehyde is not due to its metabolism to formate or to the 10% methanol added as a stabilizing agent to the commercially available 37% solution named formalin. In conclusion, by destruction of mitochondria, formaldehyde inhibits aerobic energy supply and thereby presumably produces hepatocellular damage.

  4. Formaldehyde, aspartame, and migraines: a possible connection.

    PubMed

    Jacob, Sharon E; Stechschulte, Sarah

    2008-01-01

    Aspartame is a widely used artificial sweetener that has been linked to pediatric and adolescent migraines. Upon ingestion, aspartame is broken, converted, and oxidized into formaldehyde in various tissues. We present the first case series of aspartame-associated migraines related to clinically relevant positive reactions to formaldehyde on patch testing.

  5. 29 CFR 1926.1148 - Formaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Formaldehyde. 1926.1148 Section 1926.1148 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1148 Formaldehyde...

  6. 29 CFR 1926.1148 - Formaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Formaldehyde. 1926.1148 Section 1926.1148 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1148 Formaldehyde...

  7. 29 CFR 1926.1148 - Formaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Formaldehyde. 1926.1148 Section 1926.1148 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1148 Formaldehyde...

  8. 29 CFR 1926.1148 - Formaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Formaldehyde. 1926.1148 Section 1926.1148 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1148 Formaldehyde...

  9. 29 CFR 1926.1148 - Formaldehyde.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Formaldehyde. 1926.1148 Section 1926.1148 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1148 Formaldehyde...

  10. Formaldehyde concentrations in biology department teaching facilities

    SciTech Connect

    Korky, J.K.; Schwarz, S.R.; Lustigman, B.K.

    1987-05-01

    As students and faculty in the biological sciences can attest, low grade exposure to formaldehyde by skin contact and inhalation during dissection is quite irritating. Health effects noted upon exposure to formaldehyde at concentrations of 0.1 to 5 ppm are burning of the eyes, lacrimation, and general irritation to the upper respiratory passages. Symptoms reported for higher exposures, 10 to 20 ppm, include coughing, tightening of the chest, headache and palpitation of the heart. Long exposures at 50 to 100 ppm or more might result in pulmonary edema, pneumonitis, and even death. There is also concern with regard to potential long term detrimental effects. Formaldehyde has been cited as a possible carcinogen in animals. It is a known mutagen in laboratory experimental systems involving Drosophilia, grasshoppers, flowering plants, fungi and bacteria. Animal testing has led investigators to postulate that the primary damage resulting from formaldehyde exposure may involve DNA synthesis and ribosomal RNA transcription. The National Institute of Occupational Safety and Health Administration (NIOSH) investigators have been studying occupational exposure to formaldehyde for over a decade in a variety of industries. This study was undertaken to assess formaldehyde concentrations in biology department dissecting facilities in the 1982-1983 academic year in order if routine dissection produces levels of formaldehyde which were unsafe according to NIOSH and OSHA standards. Chronic formaldehyde exposure is cause for greater concern than incidental exposure.

  11. Isolation of humic acid from peat soil and its application as an adsorbent for AuCl4- in solution

    NASA Astrophysics Data System (ADS)

    Lestari, Puji

    2017-03-01

    Humic acid (HA) has been isolated from South Kalimantan (Indonesia) peat soil using alkali extraction method. The isolated HA then was applied on the adsorption process of AuCl4- in solution. Parameters investigated in the adsorption process consisted of the effect of initial pH, adsorption rate constant (k) and the adsorption capacity of AuCl4- on peat soil HA. The adsorption rate constant was determined according to the kinetic model proposed by Santosa (2007). The adsorption of AuCl4- on peat soil HA was optimum at pH 2. The adsorption rate constant (k) was 1.11 × 10-3 min-1. Adsorption of AuCl4- on peat soil HA fitted the Langmuir isotherm with the adsorption capacity of 90.91 mg.g-1. The adsorption of AuCl4- on peat soil HA was accompanied by the reduction of AuCl4- to Au(0), clarified by the existence of several peaks belonging to Au(0) in the XRD pattern of HA after the adsorption process.

  12. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  13. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production.

    PubMed

    Kalász, Huba

    2003-05-01

    An overview is given on the analysis, formation, role and occurrence of formaldehyde in living organisms. Various methods have been used for the determination of formaldehyde in tissues and body fluids. Gas chromatography, thin-layer chromatography and HPLC were employed for the analysis of formaldehyde, mainly after derivatization. The formaldehyde level of human blood and urine was found at the low ppm level. The formaldehyde level could be increased upto several ten micro g/mL(-1) following special dietary supply. Biochemical pathway of both the formaldehyde production and demethylation/methylation processes is generally connected to the methionine - homocysteine cycles. Another important way of demethylation generated formaldehyde production is given by microsomal cytochrome P-450 dependent oxidation of xenobiotics, such as various drugs prescribed by doctors. Semicarbazide sensitive amine oxidase also produces formaldehyde. Increased level of formaldehyde may be the indication of either patho-physiological processes, or environmental contamination, or malnutrition. The formaldehyde-related methylation and demethylation procedures are also detailed. DNA methylation may have an important role in the pathogenesis of certain diseases.

  14. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  15. 78 FR 34820 - Formaldehyde Emissions Standards for Composite Wood Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... AGENCY 40 CFR Part 770 RIN 2070-AJ92 Formaldehyde Emissions Standards for Composite Wood Products AGENCY... the Formaldehyde Standards for Composite Wood Products Act, or Title VI of the Toxic Substances... with no-added formaldehyde resins or ultra low-emitting formaldehyde resins, testing requirements...

  16. IRIS Toxicological Review of Formaldehyde (Inhalation) ...

    EPA Pesticide Factsheets

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing the risks from chronic inhalation exposure to formaldehyde. To facilitate discussion of several scientific issues pertinent to the assessment, EPA convened a state-of-the-science workshop on April 30 and May 1, 2014. This workshop focused on the following three themes: Evidence pertaining to the influence of formaldehyde that is produced endogenously (by the body during normal biological processes) on the toxicity of inhaled formaldehyde, and implications for the health assessment; Mechanistic evidence relevant to formaldehyde inhalation exposure and lymphohematopoietic cancers (leukemia and lymphomas); and Epidemiological research examining the potential association between formaldehyde exposure and lymphohematopoietic cancers (leukemia and lymphomas). June 2010: EPA is conducting an independent expert peer review by the National Academy of Sciences and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Formaldehyde-Inhalation that when finalized will appear on the Integrated Risk Information System (IRIS) database. This draft IRIS health assessment addresses both noncancer and cancer human health effects that may result from chronic inhal

  17. Mechanistic study on formaldehyde-induced hepatotoxicity

    SciTech Connect

    Strubelt, O.; Younes, M.; Pentz, R.; Kuehnel, W. )

    1989-01-01

    In isolated, hemoglobin-free perfused livers of fasted rats, formaldehyde at an initial concentration of 10 mmol/l produced toxicity as evidenced by a release of enzymes (GPT, SDH) and of glutathione (mainly GSSG) into the perfusate, an accumulation of calcium in the liver, and a depletion of hepatic glatathione. Formaldehyde also led to an enhanced release of malondialdehyde into the perfusate, indicating peroxidative processes and decreased hepatic oxygen consumption by about 50-70%. The electron microscopic investigation of formaldehyde-exposed livers showed a destruction of the mitochondria (ruptured membranes, loss of the cristae) and some damage of the rough endoplasmic reticulum. Feeding the rats prior to surgery attenuated the hepatotoxic effects of 10 mmol/l formaldehyde. At an initial concentration of 3 mmol/l, formaldehyde did not release enzymes from livers of fed or fasted rats but only from whose glutathione content had been depleted by treatment with phorone (250 mg/kg ip 2 h earlier). Formaldehyde liberated glucose and lactate from the livers of fed but not from those of fasted rats, indicating anaerobic energy supply in the fed state. The hepatotoxic action of formaldehyde is not due to its metabolism to formate or to the 10% methanol added as a stabilizing agent to the commercially available 37% solution named formalin.

  18. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  19. The Effect of Formaldehyde Fixation on RNA

    PubMed Central

    Evers, David L.; Fowler, Carol B.; Cunningham, Brady R.; Mason, Jeffrey T.; O'Leary, Timothy J.

    2011-01-01

    Formalin-fixed, paraffin-embedded tissues generally provide low yields of extractable RNA that exhibit both covalent modification of nucleic acid bases and strand cleavage. This frustrates efforts to perform retrospective analyses of gene expression using archival tissue specimens. A variety of conditions have been reported to demodify formaldehyde-fixed RNA in different model systems. We studied the reversal of formaldehyde fixation of RNA using a 50 base RNA oligonucleotide and total cellular RNA. Formaldehyde-adducted, native, and hydrolyzed RNA species were identified by their bioanalyzer electrophoretic migration patterns and RT–quantitative PCR. Demodification conditions included temperature, time, buffer, and pH. The reversal of formaldehyde-fixed RNA to native species without apparent RNA hydrolysis was most successfully performed in dilute Tris, phosphate, or similar buffers (pH 8) at 70°C for 30 minutes. Amines were not required for efficient formaldehyde demodification. Formaldehyde-fixed RNA was more labile than native RNA to treatment with heat and buffer, suggesting that antigen retrieval methods for proteins may impede RNA hybridization or RNA extraction. Taken together, the data indicate that reliable conditions may be used to remove formaldehyde adducts from RNA to improve the quality of RNA available for molecular studies. PMID:21497290

  20. Precisely controlled resorcinol-formaldehyde resin coating for fabricating core-shell, hollow, and yolk-shell carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Fang, Xiaoliang; Liu, Shengjie; Zang, Jun; Xu, Chaofa; Zheng, Ming-Sen; Dong, Quan-Feng; Sun, Daohua; Zheng, Nanfeng

    2013-07-01

    This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic spheres are promising catalyst supports for oxygen reduction reaction. And yolk-shell structured Au@HCS nanoreactors with ultrathin shells exhibit high catalytic activity and recyclability in confined catalysis.This work provides a facile one-step sol-gel route to synthesize high-quality resorcinol-formaldehyde (RF) resin coated nanocomposites that can be further used to fabricate desired carbon nanostructures. Colloidal particles with different morphologies and sizes can be coated with high-quality RF resin shells by the proposed cationic surfactant assisted RF resin coating strategy. The as-synthesized RF resin coated nanocomposites are ideal candidates for selective synthesis of core-shell, hollow, and yolk-shell carbon nanostructures. Based on the carboxylic functional RF resin coating, graphitic carbon nanostructures can also be synthesized by employing the graphitization catalyst. The as-synthesized carbon nanostructures show the advantageous performances in several applications. Hollow carbon spheres are potential electrode materials for lithium-sulfur batteries. Hollow graphitic

  1. Therapeutic role of curcumin in oxidative DNA damage caused by formaldehyde.

    PubMed

    Ciftci, Gulay; Aksoy, Abdurrahman; Cenesiz, Sena; Sogut, Mehtap Unlu; Yarim, Gul Fatma; Nisbet, Cevat; Guvenc, Dilek; Ertekin, Ali

    2015-05-01

    Formaldehyde is a common environmental contaminant that causes oxidative DNA damage in cells by increasing the production of reactive oxygen species. The aim of this study was to investigate the amount of 8-hydroxy-deoxyguanosine (8-OhdG), tumor protein 53(TP53), beta-amyloid[Aß(1-42), Aß (1-40)], total antioxidant capacity (TAC) and malondialdehyde (MDA) and the therapeutic role of curcumin in rat cells with oxidative DNA damage caused by formaldehyde. The control group was given physiological saline for 15 days (i.p.) and the second group was given 37% formaldehyde (i.p.) at a dose of 9 mg/kg group every other day. The third group was given 9 mg/kg formaldehyde (i.p.) every other day and treated therapeutically with 100 mg/kg curcumin every day by gavage. At the end of the trial period, urine, blood, and brain tissue was collected from the rats. The levels of MDA in sera were increased and the TAC, TP53, and Aß (1-40) levels were reduced in the formaldehyde-treated group with respect to the control group (p<0.005). After treatment with curcumin, the levels of sera MDA were significantly reduced, the TAC, TP53, and Aß (1-40) levels were significantly increased (P < 0.05). The levels of whole brain Aß (1-42) and 8-OhdG were increased in the formaldehyde-treated group and reduced after treatment with curcumin (P < 0.05). Urinary 8-OhdG excretion increased in the formaldehyde-treated group (P < 0.05) and decreased after treatment with curcumin (P > 0.05). In conclusion, the oxidative stress caused by formaldehyde exposure was reduced with the application of curcumin. © 2015 Wiley Periodicals, Inc.

  2. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements.

    PubMed

    Burkert, A; Müller, D; Rieger, S; Schmidl, G; Triebel, W; Paa, W

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (41 (4) absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  3. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  4. Au102(p-MBA)44 nanocluster, a superatom suitable for bio-applications

    NASA Astrophysics Data System (ADS)

    Häkkinen, Hannu

    2016-12-01

    Inorganic nanoparticles, including metals, semiconductors and metal oxides, comprise a common set of structures exhibiting an inorganic core `passivated' by an organic shell. Ligated inorganic nanoparticles currently provoke widespread fundamental interest in their structural, optical and magnetic properties, which differ fundamentally from bulk counterparts. These nanomaterials are already finding applications in biology, medicine, solar energy, and display panels. 1-6 Conjugating inorganic nanoparticles with organic (biological) material for applications in nanobiology and nanomedicine creates significant challenges for controlling the effects on the environment, particularly regarding toxicity. Chemical reactions of almost identical substances can lead to drastically different outcomes in a biological environment. As a simplistic example one can consider the case of ethanol vs. methanol. Ethanol (CH3CH2OH) can be consumed by humans while even a small dose of methanol (CH3OH) can be fatal, yet the difference between the molecular formulas of these substances is just the smallest meaningful hydrocarbon unit CH2. This illuminates the fact that minute differences in the size and structure of molecular compounds can have drastically different end effects in a biological environment due to the way the compounds start to react with the environment. In recent years, gold nanoparticles covered by ligands that make them water-soluble have become a popular target for research in nanobiology and nanomedicine. 1,2 In most cases up to now, colloidal nanoparticles (5 nm and larger) have been used for sensing and photothermal applications. However, this class of gold-based nanomaterials still has large uncertainties regarding the atomic composition of the nanoparticle surface and particularly the metal-ligand interface. A simple example illuminates the facts. The density of atoms in the fcc lattice of macrosocopic gold metal is about 59 atoms/nm3. This means that a spherical

  5. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    PubMed

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere.

  6. Seed-induced growth of flower-like Au-Ni-ZnO metal-semiconductor hybrid nanocrystals for photocatalytic applications.

    PubMed

    Chen, Yuanzhi; Zeng, Deqian; Cortie, Michael B; Dowd, Annette; Guo, Huizhang; Wang, Junbao; Peng, Dong-Liang

    2015-03-25

    The combination of metal and semiconductor components in nanoscale to form a hybrid nanocrystal provides an important approach for achieving advanced functional materials with special optical, magnetic and photocatalytic functionalities. Here, a facile solution method is reported for the synthesis of Au-Ni-ZnO metal-semiconductor hybrid nanocrystals with a flower-like morphology and multifunctional properties. This synthetic strategy uses noble and magnetic metal Au@Ni nanocrystal seeds formed in situ to induce the heteroepitaxial growth of semiconducting ZnO nanopyramids onto the surface of metal cores. Evidence of epitaxial growth of ZnO{0001} facets on Ni {111} facets is observed on the heterojunction, even though there is a large lattice mismatch between the semiconducting and magnetic components. Adjustment of the amount of Au and Ni precursors can control the size and composition of the metal core, and consequently modify the surface plasmon resonance (SPR) and magnetic properties. Room-temperature superparamagnetic properties can be achieved by tuning the size of Ni core. The as-prepared Au-Ni-ZnO nanocrystals are strongly photocatalytic and can be separated and re-cycled by virtue of their magnetic properties. The simultaneous combination of plasmonic, semiconducting and magnetic components within a single hybrid nanocrystal furnishes it multifunctionalities that may find wide potential applications.

  7. A rapid green strategy for the synthesis of Au "meatball"-like nanoparticles using green tea for SERS applications

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Zhou, Xi; Yang, Xiangrui; Hou, Zhenqing; Shi, Yanfeng; Zhong, Lubin; Jiang, Qian; Zhang, Qiqing

    2014-09-01

    We report a simple and rapid biological approach to synthesize water-soluble and highly roughened "meatball"-like Au nanoparticles using green tea extract under microwave irradiation. The synthesized Au meatball-like nanoparticles possess excellent monodispersity and uniform size (250 nm in diameter). Raman measurements show that these tea-generated meatball-like gold nanostructures with high active surface areas exhibit a high enhancement of surface-enhanced Raman scattering. In addition, the Au meatball-like nanoparticles demonstrate good biocompatibility and remarkable in vitro stability at the biological temperature. Meanwhile, the factors that influence the Au meatball-like nanoparticles morphology are investigated, and the mechanisms behind the nonspherical shape evolution are discussed.

  8. Urea formaldehyde foam: a dangerous insulation

    SciTech Connect

    Keough, C.

    1980-12-01

    Insulating a home with urea formaldehyde foam can lead to severe health problems due to poisoning from formaldehyde gas. Respiratory problems, allergies, memory loss, and mental problems can result from exposure to foam insulation fumes. Research is now under way at the Chemical Industry Inst., Univ. of Washington, and other institutions to learn more about the health effects of formaldehyde foam and to develop possible remedies to these problems. Several states are either banning or controlling the use of this type of home insulation.

  9. Hexapole transmission spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Roeterdink, W. G.; Bulthuis, J.; Lee, E. P. F.; Ding, D.; Taatjes, C. A.

    2014-04-01

    In this theoretical study we explore the feasibility to obtain molecular properties of the Criegee intermediate formaldehyde oxide (CH2OO) with hexapole state selection. Ab-initio calculations yielding the rotational constants and dipole moments of formaldehyde oxide are used as input for the simulations. Subsequently the hexapole focusing spectra are simulated for the low field seeking states. The focusing curves are sensitive to the details of the dipole moment, suggesting that the hexapole can be a useful tool to study the molecular properties of formaldehyde oxide, or potentially to select CH2OO for molecular beam scattering or photodissociation measurements.

  10. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications.

    PubMed

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G; Grimaldi, Maria G; Privitera, Vittorio

    2014-10-07

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (∼8 nm mean diameter) with a thin layer of TiO2 (∼4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  11. An enhanced photocatalytic response of nanometric TiO2 wrapping of Au nanoparticles for eco-friendly water applications

    NASA Astrophysics Data System (ADS)

    Scuderi, Viviana; Impellizzeri, Giuliana; Romano, Lucia; Scuderi, Mario; Brundo, Maria V.; Bergum, Kristin; Zimbone, Massimo; Sanz, Ruy; Buccheri, Maria A.; Simone, Francesca; Nicotra, Giuseppe; Svensson, Bengt G.; Grimaldi, Maria G.; Privitera, Vittorio

    2014-09-01

    We propose a ground-breaking approach by an upside-down vision of the Au/TiO2 nano-system in order to obtain an enhanced photocatalytic response. The system was synthesized by wrapping Au nanoparticles (~8 nm mean diameter) with a thin layer of TiO2 (~4 nm thick). The novel idea of embedding Au nanoparticles with titanium dioxide takes advantage of the presence of metal nanoparticles, in terms of electron trapping, without losing any of the TiO2 exposed surface, so as to favor the photocatalytic performance of titanium dioxide. A complete structural characterization was made by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The remarkable photocatalytic performance together with the stability of the nano-system was demonstrated by degradation of the methylene blue dye in water. The non-toxicity of the nano-system was established by testing the effect of the material on the reproductive cycle of Mytilus galloprovincialis in an aquatic environment. The originally synthesized material was also compared to conventional TiO2 with Au nanoparticles on top. The latter system showed a dispersion of Au nanoparticles in the liquid environment, due to their instability in the aqueous solution that clearly represents an environmental contamination issue. Thus, the results show that nanometric TiO2 wrapping of Au nanoparticles has great potential in eco-friendly water/wastewater purification.

  12. Pulse electrodeposition to prepare core-shell structured AuPt@Pd/C catalyst for formic acid fuel cell application

    NASA Astrophysics Data System (ADS)

    Lu, Xueyi; Luo, Fan; Song, Huiyu; Liao, Shijun; Li, Hualing

    2014-01-01

    A novel core-shell structured AuPt@Pd/C catalyst for the electrooxidation of formic acid is synthesized by a pulse electrodeposition process, and the AuPt core nanoparticles are obtained by a NaBH4 reduction method. The catalyst is characterized with X-ray powder diffraction and transmission electron microscopy, thermogravimetric analysis, cyclic voltammetry, CO stripping and X-ray photoelectron spectroscopy. The core-shell structure of the catalyst is revealed by the increase in particle size resulting from a Pd layer covering the AuPt core, and by a negative shift in the CO stripping peaks. The addition of a small amount of Pt improves the dispersion of Au and results in smaller core particles. The catalyst's activity is evaluated by cyclic voltammetry in formic acid solution. The catalyst shows excellent activity towards the anodic oxidation of formic acid, the mass activity reaches 4.4 A mg-1Pd and 0.83 A mg-1metal, which are 8.5 and 1.6 times that of commercial Pd/C. This enhanced electrocatalytic activity could be ascribed to the good dispersion of Au core particles resulting from the addition of Pt, as well as to the interaction between the Pd shell layer and the Au and Pt in the core nanoparticles.

  13. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  14. Photoelectrochemical studies of DNA-tagged biomolecules on Au and Au/Ni/Au multilayer nanowires

    PubMed Central

    2011-01-01

    The use of nanowires (NWs) for labeling, sensing, and sorting is the basis of detecting biomolecules attached on NWs by optical and magnetic properties. In spite of many advantages, the use of biomolecules-attached NWs sensing by photoelectrochemical (PEC) study is almost non-existent. In this article, the PEC study of dye-attached single-stranded DNA on Au NWs and Au-Ni-Au multilayer NWs prepared by pulse electrodeposition are investigated. Owing to quantum-quenching effect, the multilayer Au NWs exhibit low optical absorbance when compared with Au NWs. The tagged Au NWs show good fluorescence (emission) at 570 nm, indicating significant improvement in the reflectivity. Optimum results obtained for tagged Au NWs attached on functionalized carbon electrodes and its PEC behavior is also presented. A twofold enhancement in photocurrent is observed with an average dark current of 10 μA for Au NWs coated on functionalized sensing electrode. The importance of these PEC and optical studies provides an inexpensive and facile processing platform for Au NWs that may be suitable for biolabeling applications. PMID:21961940

  15. Conversion and toxicity characteristics of formaldehyde in acetoclastic methanogenic sludge.

    PubMed

    Gonzalez-Gil, G; Kleerebezem, R; Lettinga, G

    2002-08-05

    An unadapted mixed methanogenic sludge transformed formaldehyde into methanol and formate. The methanol to formate ratio obtained was 1:1. Formaldehyde conversion proceeded without any lag phase, suggesting the constitutive character of the formaldehyde conversion enzymes involved. Because the rate of formaldehyde conversion declined at increased formaldehyde additions, we hypothesized that some enzymes and/or cofactors might become denatured as a result of the excess of formaldehyde. Furthermore, formaldehyde was found to be toxic to acetoclastic methanogenesis in a dual character. Formaldehyde toxicity was partly reversible because once the formaldehyde concentration was extremely low or virtually removed from the system, the methane production rate was partially recovered. Because the degree of this recovery was not complete, we conclude that formaldehyde toxicity was partly irreversible as well. The irreversible toxicity likely can be attributed to biomass formaldehyde-related decay. Independent of the mode of formaldehyde addition (i.e., slug or continuous), the irreversible toxicity was dependent on the total amount of formaldehyde added to the system. This finding suggests that to treat formaldehyde-containing waste streams, a balance between formaldehyde-related decay and biomass growth should be attained.

  16. Resorcinol-formaldehyde and carbon aerogel microspheres

    SciTech Connect

    Alviso, C.T.; Pekela, R.W.; Gross, J.; Lu, X.; Caps, R.; Fricke, J

    1996-04-01

    Aerogels are a unique class of materials possessing an open-cell structure with ultrafine cells/pores (<100nm), high surface area (400--1100 m{sup 2}/g), and a solid matrix composed of interconnected particles, fibers, or platelets with characteristic dimensions of 10nm. Although monolithic aerogels are ideal candidates for many applications (e.g. transparent window insulation), current processing methods have limited their introduction into the commercial marketplace. Our research focuses on the formation of resorcinol-formaldehyde (RF) aerogel microspheres which offer an attractive alternative to monolith production. An inverse emulsion polymerization is used to produce these spherical gel particles which undergo solvent exchange followed by supercritical drying with carbon dioxide. This process yields aerogel microspheres (10--80{mu} diameter) which can be used as loosely packed powders, compression molded into near-net shapes using a polymer binder, or used as additives in conventional foaming operations to produce new aerogel composites with superior thermal properties. The emulsification procedure, thermal characterization, mechanical properties, and potential applications of RF aerogel microspheres will be discussed.

  17. Formaldehyde sensor using non-dispersive UV spectroscopy at 340nm

    NASA Astrophysics Data System (ADS)

    Davenport, J. J.; Hodgkinson, J.; Saffell, J. R.; Tatam, R. P.

    2014-05-01

    Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10-5 AU was estimated (as ΔI/I0), corresponding to a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 2 × 10-4 AU.

  18. A framework and experimental study of an improved VOC/formaldehyde emission reference for environmental chamber tests

    NASA Astrophysics Data System (ADS)

    Wei, Wenjuan; Xiong, Jianyin; Zhao, Weiping; Zhang, Yinping

    2014-01-01

    Environmental chamber systems are usually employed in the testing of volatile organic compound (VOC) and formaldehyde emissions from building materials. The measurement accuracy of environmental chamber systems can be evaluated by VOC/formaldehyde emission references. However, the available VOC/formaldehyde emission references all have some limitations for applications to various scales of chambers. A framework for designing and using a target VOC/formaldehyde emission references to evaluate the performance of chamber systems for measuring VOC/formaldehyde emissions from building materials is studied. Liquid-inner tube diffusion-film-emission (LIFE) reference is improved in this study to meet the requirements of a target VOC/formaldehyde emission reference, such as reliability, similarity as building materials, efficiency for measurement. Equivalent emission characteristic parameters are designed for a toluene LIFE reference to perform similar to a building material. Chamber test of the LIFE reference is made in a 30 m3 stainless steel ventilated environmental chamber at 23 ± 1 °C and 50 ± 5% relative humidity. The experimental data match the predictions using LIFE emission model as well as building material emission model. The improvement of the LIFE reference enables its application for the evaluation of the performance of all kinds of environmental chambers as a general reference in tests of VOCs/formaldehyde emissions from building materials.

  19. A brief review of control measures for indoor formaldehyde

    SciTech Connect

    Matthews, T.G.

    1988-01-01

    Indoor environments contain a variety of consumer and construction products that emit formaldehyde (CH/sub 2/O) vapor. The strongest CH/sub 2/O emitters are typically particleboard underlayment and industrial particleboard, hardwood plywood paneling, urea-formaldehyde foam insulation, and medium density fiberboard, all of which contain urea-formaldehyde (UF) resins. The contribution of individual products to indoor CH/sub 2/O levels depends on several parameters, including the quantity and age of the product, building ventilation rate, presence of permeation barriers, temperature (T), relative humidity (RH), and CH/sub 2/O vapor concentration resulting from all of the CH/sub 2/O emitters (1,3-8). Combustion sources (e.g., kerosene heaters, gas stoves and cigarettes), carpet and carpet padding, resilient flooring (e.g., linoleum), gypsum board, non-apparel and apparel textiles, ceiling tiles, fibrous glass insulation and softwood plywood subflooring are generally weak emitters that do not contribute significantly to steady-state, indoor CH/sub 2/O levels. Control measures exist to reduce CH/sub 2/O emissions from consumer and construction products during their manufacturer and in post-installation applications. This note summarized the effectiveness of the following subset of post-installation control measures: product aging, installations of permeation barriers (i.e., flooring) and increased building ventilation. 14 refs.

  20. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  1. Formaldehyde and leukemia: an improbable causal relationship.

    PubMed

    Cole, Philip; Axten, Charles

    2004-10-01

    Formaldehyde has been the subject of numerous toxicological and epidemiological investigations for almost 25 years. Though most toxicology studies have focused on the effects of the chemical on the nasal tract and respiratory system, epidemiology investigations have been more extensive evaluating the association between formaldehyde and cancers not only of the nasal cavities, nasopharynx, and lung, but also of the brain, prostate, pancreas, and hematopoietic system. Recently, three studies have been published which report on the possible association between exposure to formaldehyde and an increased incidence of leukemia, specifically myeloid leukemia. The article summarizes the results of these three studies, evaluates the evidence for causality based on recognized epidemiologic criteria, and provides an assessment that the association between formaldehyde and the increased incidence of leukemia reported in these studies is not plausible.

  2. Formaldehyde's Impact on Indoor Air Quality

    EPA Pesticide Factsheets

    Formaldehyde is an important chemical used widely by industry to manufacture building materials and numerous household products. It is also a by-product of combustion and certain other natural processes.

  3. IRIS Toxicological Review of Formaldehyde (Interagency ...

    EPA Pesticide Factsheets

    On June 2, 2010, the Toxicological Review of Formaldehyde and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the IRIS Toxicological Review of Formaldehyde and the charge to external peer reviewers are posted on this site. The draft Toxicological Review of Formaldehyde-Inhalation Assessment provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic inhalation exposure to formaldehyde.

  4. [Formaldehyde exposure and multiple chemical sensitivity].

    PubMed

    Kunugita, Naoki

    2003-06-01

    Multiple chemical sensitivity (MCS) is characterized by various somatic symptoms which cannot be explained organically and by sensitivity to extremely low concentrations of chemicals including formaldehyde. In the absence of a widely accepted definition of MCS, contradictory etiological hypotheses and therapeutic suggestions are discussed. Formaldehyde is a flammable, colorless and readily polymerized gas at ambient temperature. It is present in the environment as a result of natural processes and from man-made sources, including motor vehicle exhaust, residues, emissions, or wastes produced during the manufacture of formaldehyde, and cigarette smoke. Formaldehyde exposure is considered to be one of the causes of MCS. This review describes the current knowledge about MCS and preventive measures of the administration.

  5. Intense fluorescence of Au20

    NASA Astrophysics Data System (ADS)

    Yu, Chongqi; Harbich, Wolfgang; Sementa, Luca; Ghiringhelli, Luca; Aprá, Edoardo; Stener, Mauro; Fortunelli, Alessandro; Brune, Harald

    2017-08-01

    Ligand-protected Au clusters are non-bleaching fluorescence markers in bio- and medical applications. Here we show that their fluorescence can be an intrinsic property of the Au cluster itself. We find a very intense and sharp fluorescence peak located at λ =739.2 nm (1.68 eV) for Au20 clusters in a Ne matrix held at 6 K. The fluorescence reflects the Highest Occupied Molecular Orbital-Lowest Unoccupied Molecular Orbital (HOMO-LUMO) diabatic bandgap of the cluster. Au20 shows a very rich absorption fine structure reminiscent of well defined molecule-like quantum levels. These levels are resolved since Au20 has only one stable isomer (tetrahedral); therefore our sample is mono-disperse in cluster size and conformation. Density-functional theory (DFT) and time-dependent DFT calculations clarify the nature of optical absorption and predict both main absorption peaks and intrinsic fluorescence in fair agreement with experiment.

  6. The synthesis of ethylene glycol from formaldehyde

    NASA Astrophysics Data System (ADS)

    Korneeva, G. A.; Loktev, S. M.

    1989-01-01

    The literature and patent data on the hydroformylation of formaldehyde to glycolaldehyde — an intermediate in the synthesis of ethylene glycol — are surveyed. The principal types of catalytic systems based on rhodium and cobalt carbonyl complexes and the characteristic features of the reaction are examined and compared with the hydroformylation of olefins. The reaction mechanism is discussed in the light of the reactions of the formaldehyde complexes of transition metals. The bibliography includes 116 references.

  7. Contribution of formaldehyde to respiratory cancer.

    PubMed Central

    Nelson, N; Levine, R J; Albert, R E; Blair, A E; Griesemer, R A; Landrigan, P J; Stayner, L T; Swenberg, J A

    1986-01-01

    This article reviews the available data on the carcinogenicity of formaldehyde from experimental and epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14 ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit mucociliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde, but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocarcinogen; and the importance of glutathione as a host defense at low exposure. PMID:3830109

  8. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    NASA Astrophysics Data System (ADS)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  9. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction.

    PubMed

    Shi, Jianping; Ma, Donglin; Han, Gao-Feng; Zhang, Yu; Ji, Qingqing; Gao, Teng; Sun, Jingyu; Song, Xiuju; Li, Cong; Zhang, Yanshuo; Lang, Xing-You; Zhang, Yanfeng; Liu, Zhongfan

    2014-10-28

    Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼ 200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm(2)). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.

  10. Report on the consensus workshop on formaldehyde

    SciTech Connect

    Gough, M.; Hart, R.; Karrh, B.W.; Koestner, A.; Neal, R.; Parkinson, D.; Perera, F.; Powell, K.E.; Rosenkranz, S.

    1984-01-01

    The Consensus Workshop on Formaldehyde consisted of bringing together scientists from academia, government, industry and public interest groups to address some important toxicological questions concerning the health effects of formaldehyde. The participants in the workshop, the Executive Panel which coordinated the meeting, and the questions posed, all were chosen through a broadly based nomination process in order to achieve as comprehensive a consensus as possible. The subcommittees considered the toxicological problems associated with formaldehyde in the areas of exposure, epidemiology, carcinogenicity/histology/genotoxicity, immunology/sensitization/irritation, structure activity/biochemistry metabolism, reproduction/teratology, behavior/neurotoxicity/psychology and risk estimation. Some questions considered included the possible human carcinogenicity of formaldehyde, as well as other human health effects, and the interpretation of pathology induced by formaldehyde. These reports, plus introductory material on the procedures used in setting up the Consensus Workshop are presented here. Additionally, there is included a listing of the data base that was made available to the panel chairmen prior to the meeting and was readily accessible to the participants during their deliberations in the meeting. This data base, since it was computerized, was also capable of being searched for important terms. These materials were supplemented by information brought by the panelists. The workshop has defined the consensus concerning a number of major points in formaldehyde toxicology and has identified a number of major deficits in understanding which are important guides to future research. 264 references.

  11. Report on the Consensus Workshop on Formaldehyde.

    PubMed Central

    1984-01-01

    The Consensus Workshop on Formaldehyde consisted of bringing together scientists from academia, government, industry and public interest groups to address some important toxicological questions concerning the health effects of formaldehyde. The participants in the workshop, the Executive Panel which coordinated the meeting, and the questions posed, all were chosen through a broadly based nomination process in order to achieve as comprehensive a consensus as possible. The subcommittees considered the toxicological problems associated with formaldehyde in the areas of exposure, epidemiology, carcinogenicity/histology/genotoxicity, immunology/sensitization/irritation, structure activity/biochemistry/metabolism, reproduction/teratology, behavior/neurotoxicity/psychology and risk estimation. Some questions considered included the possible human carcinogenicity of formaldehyde, as well as other human health effects, and the interpretation of pathology induced by formaldehyde. These reports, plus introductory material on the procedures used in setting up the Consensus Workshop are presented here. Additionally, there is included a listing of the data base that was made available to the panel chairmen prior to the meeting and was readily accessible to the participants during their deliberations in the meeting. This data base, since it was computerized, was also capable of being searched for important terms. These materials were supplemented by information brought by the panelists. The workshop has defined the consensus concerning a number of major points in formaldehyde toxicology and has identified a number of major deficits in understanding which are important guides to future research. PMID:6525992

  12. Low temperature activation of Au/Ti getter film for application to wafer-level vacuum packaging

    NASA Astrophysics Data System (ADS)

    Wu, Ming; Moulin, Johan; Lani, Sébastien; Hallais, Géraldine; Renard, Charles; Bosseboeuf, Alain

    2015-03-01

    Non-evaporable getter (NEG) thin films based on alloys of transition metals have been studied by various authors for vacuum control in wafer-level packages of micro electro mechanical systems (MEMS). These materials have typically a relatively high activation temperature (300-450 °C) which is incompatible with some temperature sensitive MEMS devices. In this work we investigate the potential of Au/Ti system with a thin or ultrathin non oxidizable Au layer as a low activation temperature getter material. In this bilayer system, gettering activation is produced by thermal outdiffusion of titanium atoms through the gold film. The outdiffusion kinetics of titanium was modelled and characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS) at various temperatures. Results confirm that Au/Ti bilayer is a promising getter material for wafer-level packaging with an activation temperature below 300 °C for 1 h annealing time.

  13. Formaldehyde as hypothetical primer of biohomochirality

    NASA Astrophysics Data System (ADS)

    Goldanskii, Vitalii I.

    1996-07-01

    One of the most intriguing and crucial problems of the prebiotic evolution and the origin of life is the explanation of the origin of biohomochirality. A scheme of conversions originated by formaldehyde (FA) as hypothetical primer of biohomochirality is proposed. The merit of FA as executor of this function is based -inter alia - on the distinguished role of FA as one of the earliest and simplest molecules in both warm, terrestrial and cold, extraterrestrial scenarios of the origin of life. The confirmation of the role of FA as primer of biohomochirality would support the option of an RNA world as an alternative to the protein world. The suggested hypothesis puts forward for the first time a concrete sequence of chemical reactions which can lead to biohomochirality. The spontaneous breaking of the mirror symmetry is secured by the application of the well-known Frank scheme (combination of autocatalysis and ``annihilation'' of L and D enantiomers) to the series of interactions of FA ``trimers'' (i.e. C3H6O3 compounds) of (aaa), (apa) and (app) types, where the monomeric groups (a) means ``achirons'' (a=CHn, n>=2 and C=M, M=C,O) and (p) mean ``prochirons'' (p=HC*OM, M=H,C).

  14. 78 FR 34795 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... odor. It is found in resins used in the manufacture of composite wood products (e.g., hardwood plywood... for manufacturers of composite wood products with ULEF and NAF resins. Under the CARB ATCM... Certification Framework for the Formaldehyde Standards for Composite Wood Products; Formaldehyde Emissions...

  15. Preservatives in cosmetics: reactivity of allergenic formaldehyde-releasers towards amino acids through breakdown products other than formaldehyde.

    PubMed

    Kireche, Mustapha; Gimenez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2010-10-01

    Compounds slowly releasing formaldehyde, the so-called formaldehyde-releasers, are commonly employed as preservatives in cosmetics instead of free formaldehyde, which is a strong skin sensitizer. It has been long accepted that formaldehyde-releaser sensitization is attributable to released formaldehyde. However, clinical studies show the existence of patients allergic to formaldehyde-releasers but not to formaldehyde itself. To prove that, for certain formaldehyde-releasers, reactive intermediates other than formaldehyde could be involved in the formation of the hapten-protein antigenic complex, a key step of the sensitization process, thus explaining their sensitizing potential. DMDM hydantoin, 2-bromo-2-nitropropane-1,3-diol and methenamine were synthesized, (13) C-labelled at the position(s) precursor of formaldehyde. Their reactivity towards amino acids was followed by one-dimensional and two-dimensional (13) C-nuclear magnetic resonance. Many adducts formed by reacting formaldehyde-releasers with amino acids resulted from a direct interaction of the releaser or from reaction of a breakdown product, and not from a reaction involving simply released formaldehyde. DMDM hydantoin was reactive per se, and 2-bromo-2-nitropropane-1,3-diol and methenamine decomposed in water, producing bromoethanol and diaminomethane, respectively, which were reactive towards some of the amino acids tested. The reactivity of distinctive formaldehyde-releasers towards amino acids is not limited to formaldehyde release. © 2010 John Wiley & Sons A/S.

  16. Formaldehyde absorption toward W51

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Smoot, G. F.; Bennett, C. L.; Petuchowski, S. J.

    1989-01-01

    Formaldehyde (H2CO) absorption toward the H II region complex W51A (G49.5 - 0.4) in the 6 cm and 2 cm wavelength rotational transitions has been measured with angular resolution of about 0.15 pc. The continuum H II region shows a large, previously undetected shell structure 5.5 pc along the major axis. The absorption, converted to optical depth, shows a higher degree of clumping throughout the map than previous maps at lower resolution; in particular, two narrow regions of enhanced opacity are observed. The absorption in the velocity range 64-67 km/s LSR extends over most of the region, with an observed velocity gradient of 5.2 km/s pc. The opacity structure largely parallels the velocity structure, with a ridge of enhanced opacity to the north of the highest velocity feature. The S/N of the maps allows accurate modeling of the spectral profiles. Nine distinct clumps in the foreground clouds have been identified and parametrized, and column densities for the 1(11) and 2(12) rotational levels of orthoformaldehyde have been derived.

  17. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  18. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay.

    PubMed

    Lv, Jun; Wang, Xiaonan; Zhang, Yuanyuan; Li, Defeng; Zhang, Juan; Sun, Lizhou

    2015-12-07

    Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs). Taking protein tyrosine phosphatase 1B (PTP1B) as an example, 4-aminophenyl phosphate (APP) can be hydrolyzed into 4-aminophenol (AP) by PTP1B, resulting in the disappearance of the phosphate group on the outer layer of MNPs and the loss of corresponding adsorptive ability. Upon addition of TC/AuNP solution, TC/AuNPs will remain in the supernatant solution after magnetic separation and a high absorbance value can be observed. So PTP1B activity is related to the concentrations of TC/AuNPs in the supernatant solution. In this work, the enzyme activity can be determined at levels as low as 0.0885 U mL(-1) and over a linear detection range as wide as 0.1 U mL(-1) to 0.9 U mL(-1). Moreover, using the proposed method, the inhibition effect of betulinic acid (BA) and sodium orthovanadate (Na3VO4) on PTP1B activity can be tested with IC50 values of 30 μM and 4 μM, respectively. Therefore, a universal platform for the accurate colorimetric analysis of kinase and phosphatase activities can be established through the adsorption between TC and phosphate groups.

  19. Synthesis of Au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic.

    PubMed

    Wang, Demeng; Zhao, Yuewu; Jin, Huile; Zhuang, Jinxia; Zhang, Weiming; Wang, Shun; Wang, Jichang

    2013-06-26

    Novel Au-decorated Te hybrids with a tripod-shaped planar microstructure were prepared through a two-step hydrothermal process: the synthesis of Te single crystals and the subsequent self-sacrificial reaction of Te template with HAuCl4. Based on the influences of reaction temperature and solvent compositions on the as-obtained microstructures, a plausible mechanism was proposed to account for the formation of the tripod-shaped Te and Au/Te crystals. The as-prepared Au/Te hybrids have the sensitivity of 6.35 μA/ppb in the electrochemical detection of As(III), which represents the highest sensitivity reported in literature. The Au/Te sensor also has a low detection limit of 0.0026 ppb and could work in complex mixtures containing As(III), Cu(II) and other heavy metal ions, exhibiting excellent selectivity on As(III) and Cu(II) ions. The enhanced electrocatalytic property may be attributed to the synergetic interactions between the noble metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  20. Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions

    EPA Science Inventory

    An efficient and sustainable protocol is described for the oxidative esterification of aldehydes and the reduction of aromatic nitro compounds that uses magnetically separable and reusable maghemite-supported gold nanocatalyst (nanocat-Fe-Au) under mild conditions. The complex ch...

  1. Fabrication of Lab-on-Paper Using Porous Au-Paper Electrode: Application to Tumor Marker Electrochemical Immunoassays.

    PubMed

    Ge, Shenguang; Zhang, Yan; Yan, Mei; Huang, Jiadong; Yu, Jinghua

    2017-01-01

    A simple, low-cost, and sensitive electrochemical lab-on-paper assay is developed based on a novel gold nanoparticle modified porous paper working electrode for use in point-of-care testing (POCT). Electrochemical methods are introduced for lab-on-paper based on screen-printed paper electrodes. To further improve specificity, performance, and sensitivity for point-of-care testing, a novel porous Au-paper working electrode (Au-PWE) is designed for lab-on-paper using growth of an interconnected Au nanoparticle (NP) layer on the surface of cellulose fibers in order to enhance the conductivity of the paper sample zone and immobilize the primary antibodies (Ab1). With a sandwich-type immunoassay format, Pd-Au bimetallic nanoparticles possessing peroxidase-like activity are used as a matrix to immobilize secondary antibodies (Ab2) for rapid detection of targets. This lab-on-paper based immunodevice is applied to the diagnosis of a cancer biomarker in clinical serum samples.

  2. MO-FG-303-08: PET-Detectable Bimetallic (Zn@Au) Nanoparticles for Radiotherapy and Molecular Imaging Applications

    SciTech Connect

    Cho, J; Cho, S; Wang, M; Zubarev, E; Gonzalez-Lepera, C

    2015-06-15

    Purpose: A technical challenge in clinical translation of GNP-mediated radiotherapy is lack of in-vivo imaging tools for monitoring biodistribution of GNPs. While several modalities (x-ray fluorescence, photoacoustic, etc.) are investigated, we propose a potentially more effective technique based on PET imaging. We developed Zn@Au NPs whose Zn core acts as positron emitters when activated by protons, while the Au shell plays the original role for GNP-mediated radiosensitization. Methods: Spherical Zn NPs (∼7nm diameter) were synthesized and then coated with ∼7nm thick Au layer to make Zn@Au NPs (∼20nm diameter). A water slurry containing 29mg of Zn@Au NPs was deposited (<10µm thickness) on a thin cellulose target and subsequently baked to remove the water. The cellulose matrix was placed in an aluminum target holder and irradiated with 14.5MeV protons from a GE PETtrace cyclotron with 4µA for 5min. After irradiation the cellulose matrix with the NPs was placed in a dose calibrator to assay radioactivity. Gamma spectroscopy using a HPGe detector was conducted on a very small fraction (<1mg) of the irradiated NPs. Results: We measured 158µCi of activity 32min after end of bombardment (EOB) using 66Ga setting on the dose calibrator (contribution from the cellulose matrix is negligible) which decreased to 2µCi over a 24hrs period. A gamma spectrum started one hour after EOB on the small fraction and acquired for 700sec showed a strong peak at 511keV (∼40,000 counts) with several other peaks (highest peak <1200 counts) of smaller magnitude. Conclusion: Strong 511keV gamma emission from proton-activated Zn cores can potentially be utilized to image the biodistribution of Zn@Au NPs using a PET scanner. The developed Zn@Au NPs are expected to retain radiosensitizing capability similar to solid GNPs, while observable through PET imaging for human-sized objects. Moreover, bioconjugated PET-detectable GNPs would allow a new option to perform molecular imaging.

  3. Preparation of Au-polydopamine functionalized carbon encapsulated Fe₃O₄ magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen.

    PubMed

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-02-12

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL-20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers.

  4. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone).

    PubMed

    Hayashi, Naoto; Sakai, Yuka; Tsunoyama, Hironori; Nakajima, Atsushi

    2014-09-02

    On account of their novel properties, bimetallic nanoparticles and nanoclusters (NCs) are strong potential candidates for optical, magnetic, and catalytic functional materials. These properties depend on the chemical composition and size (number of constituent atoms) of the NCs. Control of size, structure, and composition is particularly important for fabricating highly functional materials based on bimetallic NCs. Size- and structure-controlled synthesis of two-element alloys can reveal their intrinsic electronic synergistic effects. However, because synergistic enhancement of activity is strongly affected by composition as well as by size and structure, controlled synthesis is a challenging task, particularly in catalytic applications. To investigate catalytic synergistic effects, we have synthesized highly monodisperse, sub-2 nm, solid-solution AuPd NCs stabilized with poly(N-vinylpyrrolidone) (AuPd:PVP) using a newly developed ultrafine microfluidic mixing device with 15 μm wide multiple lamination channels. The synergistic enhancement for catalytic aerobic oxidation of benzyl alcohol exhibited a volcano-shaped trend, with a maximum at 20-65 at. % Pd. From X-ray photoelectron spectroscopic measurements, we confirmed that the enhanced activity originates from the enhanced electron density at the Au sites, donated by Pd sites.

  5. Preparation of Au-polydopamine functionalized carbon encapsulated Fe3O4 magnetic nanocomposites and their application for ultrasensitive detection of carcino-embryonic antigen

    PubMed Central

    Ji, Lei; Yan, Tao; Li, Yan; Gao, Jian; Wang, Qi; Hu, Lihua; Wu, Dan; Wei, Qin; Du, Bin

    2016-01-01

    A novel carbon encapsulated Fe3O4 nanoparticles embedded in two-dimensional (2D) porous graphitic carbon nanocomposites (Fe3O4@C@PGC nanocomposites) were synthesized by situ synthesis strategy, which provided a sensor platform owing to a large aspect ratio and porous structure. Polydopamine (PDA) were modified on the surface of Fe3O4@C@PGC nanocomposites through self-polymerization of dopamine, acting as both the reductant and template for one-step synthesis of gold nanoparticles. The prepared Au/PDA/Fe3O4@C@PGC nanocomposites show ferromagnetic features, extremely excellent electron transfer, large specific surface area and excellent dispersing property. These are conducive to the electrochemical signal output and the immobilization of antibody. In this work, a highly label-free sensitive magnetic immunosensor was developed based on Au/PDA/Fe3O4@C@PGC nanocomposites for the detection of carcino-embryonic antigen (CEA). The magnetic glassy carbon electrode was used to fix the Au/PDA/Fe3O4@C@PGC nanocomposites with the help of magnetic force. Under the optimal conditions, the immunosensor exhibited a wide linear range (0.001 ng/mL–20.0 ng/mL), a low detection limit (0.33 pg/mL), good reproducibility, selectivity and acceptable stability. The proposed sensing strategy may provide a potential application in the detection of other cancer biomarkers. PMID:26868035

  6. Formaldehyde in brain: an overlooked player in neurodegeneration?

    PubMed

    Tulpule, Ketki; Dringen, Ralf

    2013-10-01

    Formaldehyde is an environmental pollutant that is also generated in substantial amounts in the human body during normal metabolism. This aldehyde is a well-established neurotoxin that affects memory, learning, and behavior. In addition, in several pathological conditions, including Alzheimer's disease, an increase in the expression of formaldehyde-generating enzymes and elevated levels of formaldehyde in brain have been reported. This article gives an overview on the current knowledge on the generation and metabolism of formaldehyde in brain cells as well as on formaldehyde-induced alterations in metabolic processes. Brain cells have the potential to generate and to dispose formaldehyde. In culture, both astrocytes and neurons efficiently oxidize formaldehyde to formate which can be exported or further oxidized. Although moderate concentrations of formaldehyde are not acutely toxic for brain cells, exposure to formaldehyde severely affects their metabolism as demonstrated by the formaldehyde-induced acceleration of glycolytic flux and by the rapid multidrug resistance protein 1-mediated export of glutathione from both astrocytes and neurons. These formaldehyde-induced alterations in the metabolism of brain cells may contribute to the impaired cognitive performance observed after formaldehyde exposure and to the neurodegeneration in diseases that are associated with increased formaldehyde levels in brain. © 2013 International Society for Neurochemistry.

  7. Tailored synthesis of photoactive TiO ₂ nanofibers and Au/TiO ₂ nanofiber composites: structure and reactivity optimization for water treatment applications.

    PubMed

    Nalbandian, Michael J; Greenstein, Katherine E; Shuai, Danmeng; Zhang, Miluo; Choa, Yong-Ho; Parkin, Gene F; Myung, Nosang V; Cwiertny, David M

    2015-02-03

    Titanium dioxide (TiO2) nanofibers with tailored structure and composition were synthesized by electrospinning to optimize photocatalytic treatment efficiency. Nanofibers of controlled diameter (30-210 nm), crystal structure (anatase, rutile, mixed phases), and grain size (20-50 nm) were developed along with composite nanofibers with either surface-deposited or bulk-integrated Au nanoparticle cocatalysts. Their reactivity was then examined in batch suspensions toward model (phenol) and emerging (pharmaceuticals, personal care products) pollutants across various water qualities. Optimized TiO2 nanofibers meet or exceed the performance of traditional nanoparticulate photocatalysts (e.g., Aeroxide P25) with the greatest reactivity enhancements arising from (i) decreasing diameter (i.e., increasing surface area), (ii) mixed phase composition [74/26 (±0.5) % anatase/rutile], and (iii) small amounts (1.5 wt %) of surface-deposited, more so than bulk-integrated, Au nanoparticles. Surface Au deposition consistently enhanced photoactivity by 5- to 10-fold across our micropollutant suite independent of their solution concentration, behavior that we attribute to higher photocatalytic efficiency from improved charge separation. However, the practical value of Au/TiO2 nanofibers was limited by their greater degree of inhibition by solution-phase radical scavengers and higher rate of reactivity loss from surface fouling in nonidealized matrixes (e.g., partially treated surface water). Ultimately, unmodified TiO2 nanofibers appear most promising for use as reactive filtration materials because their performance was less influenced by water quality, although future efforts must increase the strength of TiO2 nanofiber mats to realize such applications.

  8. Quantitative cancer risk estimation for formaldehyde

    SciTech Connect

    Starr, T.B. )

    1990-03-01

    Of primary concern are irreversible effects, such as cancer induction, that formaldehyde exposure could have on human health. Dose-response data from human exposure situations would provide the most solid foundation for risk assessment, avoiding problematic extrapolations from the health effects seen in nonhuman species. However, epidemiologic studies of human formaldehyde exposure have provided little definitive information regarding dose-response. Reliance must consequently be placed on laboratory animal evidence. An impressive array of data points to significantly nonlinear relationships between rodent tumor incidence and administered dose, and between target tissue dose and administered dose (the latter for both rodents and Rhesus monkeys) following exposure to formaldehyde by inhalation. Disproportionately less formaldehyde binds covalently to the DNA of nasal respiratory epithelium at low than at high airborne concentrations. Use of this internal measure of delivered dose in analyses of rodent bioassay nasal tumor response yields multistage model estimates of low-dose risk, both point and upper bound, that are lower than equivalent estimates based upon airborne formaldehyde concentration. In addition, risk estimates obtained for Rhesus monkeys appear at least 10-fold lower than corresponding estimates for identically exposed Fischer-344 rats. 70 references.

  9. MMENT>Computational study of complete methanol dehydrogenation on Au(100) and Au(310) surfaces: Dominant role of atomic oxygen

    NASA Astrophysics Data System (ADS)

    Hussain, A.; Shah, S. H.

    2014-02-01

    Methanol dehydrogenation to CO and H2 has been systematically investigated on Au(100) and Au(310) surfaces using density functional theory (DFT). All possible intermediates involved are calculated. Methanol and formaldehyde being saturated molecules adsorb weakly on both the surfaces. The thermochemistry and kinetics of the decomposition via sequential hydrogen abstraction are both found to be highly unfavorable for these species. Nevertheless, atomic oxygen pre-covered surfaces substantially enhance CH3OH and CH2O (resulting in CH2O2 complex formation) interaction with Au and offer weak activation barrier for methanol disintegration into CH3O and H. On the other hand, methoxy, formyl, and atomic hydrogen are predicted to make strong chemical bonds with the clean Au surfaces. The abstraction of hydrogen from the methoxy intermediate on bare gold surfaces is practical, while formyl splits instantaneously during optimization. A feasible mechanism on oxygen pre-covered surfaces for complete methanol dehydrogenation has been presented.

  10. In vitro study on cytotoxicity and intracellular formaldehyde concentration changes after exposure to formaldehyde and its derivatives.

    PubMed

    Ke, Y J; Qin, X D; Zhang, Y C; Li, H; Li, R; Yuan, J L; Yang, X; Ding, S M

    2014-08-01

    HeLa cells were exposed to formaldehyde and its metabolic derivatives, methanol, formic acid, and acetaldehyde, to investigate that the toxicity of formaldehyde is not caused by the chemical group. After 1 h of treatment with formaldehyde, mitochondrial assays showed that low concentrations (e.g. 10 μmol/L) of formaldehyde promoted growth of the HeLa cells, while higher concentrations (e.g. ≥62.5 μmol/L) inhibited cell growth; while all four chemicals at a concentration of 125 μmol/L affected cell growth, formaldehyde affected the largest. Reactive oxygen species concentration increased with the concentration of the exposure chemical. The endogenous formaldehyde content increased the most in the formaldehyde group, but in other three groups, it did not increase as the exposure concentration increased. Expression of dehydrogenase (formaldehyde dehydrogenase (FDH)) in the formaldehyde (10.40) and methanol (10.60) groups increased significantly compared with the control (1), while it was similar to the control in formic acid (0.90) and acetaldehyde (1.10) groups. Our results suggest that formaldehyde could affect cell activity and even enter cells. Exposure to formaldehyde changes the endogenous formaldehyde concentration in cells within 24 h, and this induces expression of FDH for formaldehyde degradation to maintain the formaldehyde balance. The toxicity of formaldehyde is not caused by the carbon atoms in the aldehyde, hydroxyl, or carboxyl groups. Formaldehyde is hypothesized to be an important signaling molecule in the regulation of cell growth and maintenance of the endogenous formaldehyde level. © The Author(s) 2014.

  11. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.

    PubMed

    Nuasaen, Sukanya; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan

    2014-01-30

    Chitosan and polyethyleneimine (PEI) functionalized hollow latex (HL) particles were conveniently fabricated by coating poly(methyl methacrylate-co-divinyl benzene-co-acrylic acid) (P(MMA/DVB/AA)) HL particles with 5 wt% chitosan or 14 wt% PEI. The materials were used as formaldehyde adsorbent, where their adsorbent activity was examined by Fourier Transform Infrared (FTIR) spectroscopy. The nucleophilic addition of amines to carbonyls generated a carbinolamine intermediate with a characteristic band at 1,020 cm(-1) and Schiff base product at 1650 cm(-1), whose intensity increased with prolonged formaldehyde exposure times. The major products observed in HL-chitosan were carbinolamine and Schiff base, whereas a small amount of Schiff base was obtained in HL-PEI particles, confirming a chemical bond formation without re-emission of formaldehyde. Compared to HL-PEI, HL-chitosan possesses higher formaldehyde adsorption efficiency. Besides providing opacity and whiteness, the multilayer HL-chitosan particles can effectively remove indoor air pollutants, i.e., formaldehyde gas, and, hence, would be useful in special coating applications.

  12. Evaluation of possible health risk associated with occupational exposure to formaldehyde

    NASA Astrophysics Data System (ADS)

    Vargova, Maria; Janota, Stanislav; Karelova, Jarmila; Barancokova, Maria; Sulcova, Margita

    1993-03-01

    Widespread us of formaldehyde in a variety of applications is known to result in appreciable exposure of workers and large segments of the general population. Because of possible genotoxic and immunotoxic effects, we investigated the health condition of people occupationally exposed to formaldehyde in a plant in which woodsplinter materials are manufactured. The concentration of formaldehyde in the workplace was greater than the average and peak concentrations of formaldehyde in Czechoslovakia (0.5 mg/m3 and 1 mg/m3 respectively). Selected parameters of genotoxicity (cytogenetic analysis, nucleolus test) and immunotoxocity (serum immunoglobulin G, A, M; complement C3, C4; alpha-1-anti-trypsine, alpha-2 macroglobulin, ceruloplasmin, transferrin, prealbumin, orosomucoid levels) were determined. The results of the evaluation of mitotic indices and the blastogen transformation point to an effect of the exposure to formaldehyde on r-RNA synthesis inhibition and lymphocyte maturation decrease. The frequency of aberrant cells in the peripheral blood lymphocytes was increased in both, exposed and control group and was above 1.2 - 2% of aberrant cells observed in the normal population in Czechoslovakia. There was no significant differences in the values of natural immunity and specific humoral immunity. Significant differences were observed in the values of mitogen-induced proliferation of lymphocytes between the exposed and the matching and background control groups. These changes are considered to be sensitive indicators of the potential effects on the integrity of a more important immunologic function.

  13. Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction.

    PubMed

    Sumiga, Boštjan; Knez, Emil; Vrtačnik, Margareta; Ferk-Savec, Vesna; Starešinič, Marica; Boh, Bojana

    2011-03-01

    Paraffinic phase change materials (PCM) were microencapsulated by in situ polymerization of melamine-formaldehyde prepolymers. Partly methylated trimethylolmelamine was used as an aminoaldehyde prepolymer for the microcapsule wall, a styrene-maleic acid anhydride copolymer as an emulsifier and modifying agent, and ammonia as a scavenger for reducing residual formaldehyde. For the determination of residual formaldehyde in a ppm concentration range, EDANA and malachite green analytical methods were studied, and the EDANA 210.1-99 was applied for the determination of residual formaldehyde in 25 samples of microcapsules, produced in a 200-L reactor. A linear correlation was observed between the added ammonia scavenger concentration and the reduction of residual formaldehyde concentration. Compared with 0.45% (4500 ppm) formaldehyde in a non-treated microcapsule suspension, with ammonia scavenger concentrations 0.80, 0.90 and 1.35%, the concentration of residual formaldehyde dropped to 0.27, 0.20 and 0.09% (i.e. 2700, 2000 and 900 ppm), respectively. Morphological characterisation of microcapsules by SEM and microcapsule wall permeability measurements by gravimetry / mass loss at an elevated temperature (135 °C) suggested that ammonia positively contributed to the wall elasticity / durability, while microcapsules with no ammonia scavenger added tended to have more brittle walls, and were more prone to cracking.

  14. Evaluation of formaldehyde emission from test panels of urea-formaldehyde foam insulation

    SciTech Connect

    Hawthorne, A.R.; Gammage, R.B.

    1982-01-01

    One important potential source of formaldehyde in the home is urea-formaldehyde foam insulation (UFFI). Measurements of the formaldehyde emission from test panels simulating a section of a house wall were made approximately 16 months after initial foaming. The test panels are approximately 16'' wide and 8' tall with a latex-painted gypsum board interior wall and an exterior wall consisting of cellulose sheathing with aluminum or cedar siding. Nine different commercially available foams were tested. Three types of measurements were conducted. The first type was designed to simulate the conditions in a corner room of a house with an air exchange rate of approximately 0.7 h/sup -1/. Clean air was flowed over the face of the interior wall and the emitted concentration of formaldehyde measured. Based on these measurements, projected room concentrations for the nine UFFI panels ranged from 0.03 to 0.4 ppM with an average of 0.13 +- 0.11 ppM. A second type of measurement was taken of air from within the foamed cavity. Formaldehyde concentrations of several ppM were observed. The final type of experiment simulated a near-zero air exchange rate. The test chambers were sealed and the formaldehyde concentration was allowed to equilibrate. The formaldehyde concentration measured ranged from 2.2 to 6.6 ppM. These concentrations could build up in poorly ventilated air volumes such as inside closets next to walls with UFFI.

  15. A simple approach to the synthesis of eccentric Au@SiO2 Janus nanostructures and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Yang, Di; Hu, Huicheng; Chen, Lei; Xu, Yong; Qu, Lili; Yang, Peipei; Zhang, Qiao

    2016-06-01

    In this paper, we present a simple method to synthesize eccentric Au@SiO2 Janus nanoparticles. By simply tuning the concentration of poly(vinyl pyrrolidone) (PVP), the surface of gold nanoparticle can be partially or fully wrapped with the amphiphilic ligand. As a result, Janus nanoparticle or concentric core-shell nanostructures can be obtained, respectively. A systematic study has been carried out to confirm the function of PVP molecules. The as-prepared Janus nanoparticle can act as a catalyst to catalyze the reduction of 4-nitrophenol, while the core-shell nanostructure is not active due to the coverage of dense silica shell. This work provides a robust and scalable method to produce Au@SiO2 Janus nanoparticles.

  16. Degradation of formaldehyde by advanced oxidation processes.

    PubMed

    Guimarães, José Roberto; Farah, Carolina Rittes Turato; Maniero, Milena Guedes; Fadini, Pedro Sérgio

    2012-09-30

    The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluent's CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.

  17. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  18. Quantitative determination of formaldehyde in cosmetics using combined headspace-solid-phase microextraction-gas chromatography.

    PubMed

    Rivero, Rene Thomas; Topiwala, Vinod

    2004-01-01

    The objective of this research was the application of headspace (HS)-solid-phase microextraction (SPME) for the quantitation of formaldehyde present in raw materials and cosmetic formulations. The formaldehyde was derivatized in situ first with pentafluorophenylhydrazine (PFPH), to form a derivative hydrazone. The formed hydrozone was adsorbed on a SPME fiber during headspace extraction under controlled conditions (time, temperature, volume, etc.). After the adsorption step, the SPME fiber was directly transferred into the gas chromatography (GC) injection port in which the analytes were thermally desorbed. Deuterated acetone was used as an internal standard (IS) in order to quantitate the formaldehyde content. For the experiment, a gas chromatograph equipped with a flame ionization detector (GC/FID) was employed. A gas chromatograph/mass spectrometer (GC/MS) was used for the qualitative confirmation of results in this work.

  19. Computational criterion for application of the characteristic effective medium approximation to ultrathin Co Au multi-bilayer structures

    NASA Astrophysics Data System (ADS)

    Haija, A. J.; Larry Freeman, W.; DeNinno, Matthew

    2008-11-01

    The basic optical properties, reflectivity and transmissivity, of three sets of Co-Au bilayer structures are calculated for normal incidence in the wavelength range 300-700 nm. Each set consists of a total number of bilayer identity periods m=1, 2, 3, 4, 5, 6. The thickness of the bilayer in each set is 5, 7, and 9 nm. The composition of the bilayer is kept fixed: 40% Co and 60% Au. The calculations are done for ideal layered Co-Au stacks using the characteristic matrix technique. Calculations for each stack based on the thicknesses of the two composite layers and their optical constants are contrasted against calculations using the characteristic effective medium approximation, CEMA. A third calculation of the optical properties for each stack is performed, again using the CEMA, but when the whole stack, called the effective stack, ES, is treated as one uniform medium of effective optical constants. The comparison of the three sets of calculations for all sets is intended to shed more light onto the validity of the CEMA approximation that has been established for thin bilayer structures whose constituents have thicknesses much less than the wavelength of the incident radiation. The study establishes a limit based on the product of the number of layers m and the identity period of the stack h, beyond which the CEMA approximation cannot be applied. This limit is consistent with a previous study carried out on Ag-SiO ultrathin stacks.

  20. Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application

    PubMed Central

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm−1 and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect. PMID:24886913

  1. Controlling formaldehyde emissions with MBS scrubbing

    SciTech Connect

    Lundquist, P.R.

    1998-12-31

    Sodium metabisulfite (MBS)-assisted water scrubbing was selected as the most cost-effective and reliable technology for removal of dilute formaldehyde emissions from a resin manufacturing plant. Dilute formaldehyde emission streams (e.g., from process hoods, sample hoods, and other miscellaneous captured sources) required treatment in order to meet the anticipated Maximum Achievable Control Technology (MACT) standards and state air toxic requirements. Other conventional technologies (e.g., thermal oxidation, carbon adsorption, and biofiltration) were considered, but later discarded because they were cost prohibitive or technically impractical. Segregation of dilute volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from other more concentrated VOC and HAP emissions facilitated the use of technologies tailored to the characteristics of each stream type, and thereby provided significant cost savings. While past experience has shown that simple water scrubbing of dilute formaldehyde emissions would not meet generally accepted treatment performance (90+% control), removals in excess of 95% can be readily achieved with the addition of a reactant like MBS to the scrubbing liquor. MBS in solution reacts with formaldehyde absorbed by the scrubber water to form a bisulfite salt, rendering the reacted formaldehyde non-volatile. The reaction accelerates mass transfer of formaldehyde into the scrubbing liquid, thereby decreasing the size and cost of emission control equipment. Design of such systems should also consider the chemistry of the make-up water (and scrubber water) used in the process. Recirculating water scrubbers can be susceptible to carbonate scaling and other inorganic fouling experienced in similar water treatment systems (e.g., air strippers). The addition of salts to the recirculating scrubber solutions can be controlled to limit potential sulfur dioxide emissions and deposits.

  2. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  3. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  4. Formaldehyde removal by potted plant-soil systems.

    PubMed

    Xu, Zhongjun; Wang, Li; Hou, Haiping

    2011-08-15

    Formaldehyde is a major indoor air pollutant. Formaldehyde removal from indoor air conduces to decrease the health risk for urban inhabitants. In this study, a dynamic chamber technique was employed to investigate formaldehyde removal by potted spider plant (Chlorphytum comosum), aloe (Aloe vera) and golden pothos (Epipremnum aureum) with potted soils. The results showed that the potted plant-soil systems could remove formaldehyde from air in a long time. The spider plant-soil system had the highest formaldehyde removal capacity compared with others. Higher metabolisms in plants and microorganisms in daytime may give a reasonable explanation for higher formaldehyde removal capacities for plant-soil systems in daytime. The order of formaldehyde removal capacity for the three plant species agreed well with the sequence of formaldehyde dehydrogenase activities from plant leaves. Formaldehyde removal by plant may be diffusion-limited rather than reaction-limited since the detached formaldehyde dehydrogenase activities from the leaves of the three plant species were higher than in vivo metabolic capacities. Formaldehyde in air can be largely absorbed and metabolized by the microorganisms in the potted soils indicating that further elevating formaldehyde removal capacity for plant-soil system will be realized by increasing exposed surface of potted soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  6. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  7. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  8. Wetting behaviors of phenol- and urea-formaldehyde resins as compatiblizers

    Treesearch

    Sangyeob Lee; Todd F. Shupe; Leslie H. Groom; Chung Y. Hse

    2006-01-01

    Understanding wetting behavior and surface coverage of resins on a wood surface is important to obtain satisfactory adhesion and optimize adhesive application for wood composite manufacturing. Sessile and micro-droplets of urea- and phenol-formaldehyde (UF and PF) resins were generated on wood surfaces to observe wetting behaviors using three directional image...

  9. Resorcinol-formaldehyde reactions in dilute solution observed by carbon-13 NMR spectroscopy

    Treesearch

    Alfred W. Christiansen

    2000-01-01

    A recently discovered coupling agent, hydroxymethylated resorcinol (HMR), based on resorcinol-formaldehyde, can greatly enhance wood-to-epoxy resin bond durability in exterior applications. However, for HMR to be most effective, it needs to be prepared a few hours before it is applied to the...

  10. Adsorption/desorption process of formaldehyde onto iron doped graphene: a theoretical exploration from density functional theory calculations.

    PubMed

    Cortés-Arriagada, Diego; Villegas-Escobar, Nery; Miranda-Rojas, Sebastián; Toro-Labbé, Alejandro

    2017-02-08

    The interaction of formaldehyde (H2CO) onto Fe-doped graphene (FeG) was studied in detail from density functional theory calculations and electronic structure analyses. Our aim was to obtain insights into the adsorption, desorption and sensing properties of FeG towards H2CO, a hazardous organic compound. The adsorption of H2CO was shown to be energetically stable onto FeG, with adsorption energies of up to 1.45 eV and favored in different conformations. This interaction was determined to be mostly electrostatic in nature, where the oxygen plays an important role in this contribution; besides, our quantum molecular dynamics results showed the high stability of the FeG-H2CO interaction at ambient temperature (300 K). All the interactions were determined to be accompanied by an increase in the HOMO-LUMO energy gap with respect to the isolated adsorbent, indicating that FeG is highly sensitive to H2CO with respect to pristine graphene. Finally, it was found that external electric fields of 0.04-0.05 a.u. were able to induce the pollutant desorption from the adsorbent, allowing the adsorbent reactivation for repetitive applications. These results indicate that FeG could be a promising candidate for adsorption/sensing platforms of H2CO.

  11. Formaldehyde as hypothetical primer of biohomochirality

    SciTech Connect

    Goldanskii, V.I.

    1996-07-01

    One of the most intriguing and crucial problems of the prebiotic evolution and the origin of life is the explanation of the origin of biohomochirality. A scheme of conversions originated by formaldehyde (FA) as hypothetical primer of biohomochirality is proposed. The merit of FA as executor of this function is based -inter alia - on the distinguished role of FA as one of the earliest and simplest molecules in both warm, terrestrial and cold, extraterrestrial scenarios of the origin of life. The confirmation of the role of FA as primer of biohomochirality would support the option of an RNA world as an alternative to the protein world. The suggested hypothesis puts forward for the first time a concrete sequence of chemical reactions which can lead to biohomochirality. The spontaneous breaking of the mirror symmetry is secured by the application of the well-known Frank scheme (combination of autocatalysis and {open_quote}{open_quote}annihilation{close_quote}{close_quote} of L and D enantiomers) to the series of interactions of FA {open_quote}{open_quote}trimers{close_quote}{close_quote} (i.e. C{sub 3}H{sub 6}O{sub 3} compounds) of (aaa), (apa) and (app) types, where the monomeric groups (a) means {open_quote}{open_quote}achirons{close_quote}{close_quote} (a=CH{sub n}, n{ge}2 and C=M, M=C,O) and (p) mean {open_quote}{open_quote}prochirons{close_quote}{close_quote} (p=HC{asterisk}OM, M=H,C). {copyright} {ital 1996 American Institute of Physics.}

  12. 78 FR 44090 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... CONTACT. List of Subjects in 40 CFR Part 770 Environmental protection, Composite wood products... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... Formaldehyde Standards for Composite Wood Products; Extension of Comment Period AGENCY:...

  13. Unusual formaldehyde-induced hypersensitivity in two schoolgirls

    SciTech Connect

    Gammage, R.B. ); Hanna, W.T.; Painter, P.B. )

    1990-01-01

    Two schoolgirls developed a syndrome resembling Henoch-Schonlein purpura while attending a recently opened school insulated with urea-formaldehyde foam (UFFI). Skin rashes and swellings were accompanied by bizarre, blue-green discoloration of the skin. Subsequent investigations by county, state and federal authorities, and low measured concentrations of formaldehyde, prompted initial conclusions that in-school formaldehyde exposures were not responsible for the girls' problems. Subsequent controlled exposures to UFFI and formaldehyde while in hospital elicited the whole cascade of symptoms. The chronology of the onset and amplification of systems make it probable that the formaldehyde exposures precipitating the girls' hypersensitivity, occurred in the school. 3 refs.

  14. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  15. Edible carbohydrates from formaldehyde in a spacecraft

    NASA Technical Reports Server (NTRS)

    Weiss, A. H.

    1975-01-01

    The autocatalytic nature of the base catalyzed condensation of formaldehyde to formose sugars is eliminated by using as a cocatalyst, an aldose, or ketose having an alpha-hydrogen. This is more strongly complexed by base than is formaldehyde and the cocatalyst and sugar products accumulate as catalyst complexes instead of formaldehyde. Because of the presence of alpha-hydrogen atoms in cocatalysts and formose sugars, their removal by cross Cannizzaro reaction of complexed sugars does not occur, so the formose reaction behaves autocatalytically due to this accumulation. It is believed that a given catalytic formose complex is not a discrete complexed sugar, but rather, a scrambled dynamic mixture of sugars having weakened structures. The sugar complexes derive from a common salt-like formaldehyde complex, which, because of the absence of alpha-hydrogen, has a greater tendency to undergo Cannizzaro reaction, rather than formose condensation. Because of this, the Cannizzaro reaction can proceed without measurable formose condensation. The reverse is not possible.

  16. Formaldehyde - An Assessment of its Health Effects.

    DTIC Science & Technology

    1980-03-01

    edema of the cornea and conjunctiva and iritis, graded 8 on a scale of 1-10 (Carpenter and Smyth, 1946). Exposure of rabbits and guinea pigs to airborne...Wilmington, Del. Kulle, T.J., and Cooper G.P. 1975. Effects of formaldehyde and ozone on the trigeminal nasal sensory system. Arch. Environ. Health 30

  17. Carbohydrate modified phenol-formaldehyde resins

    Treesearch

    Anthony H. Conner; Linda F. Lorenz

    1986-01-01

    For adhesive self-sufficiency, the wood industry needs new adhesive systems in which all or part of the petroleum-derived phenolic component is replaced by a renewable material without sacrificing high durability or ease of bonding. We tested the bonding of wood veneers, using phenolic resins in which part of the phenol-formaldehyde was replaced with carbohydrates. Our...

  18. Electrospinning formaldehyde cross-linked zein solutions

    USDA-ARS?s Scientific Manuscript database

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  19. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  20. Formaldehyde and hydroperoxides at Mauna Loa Observatory

    NASA Astrophysics Data System (ADS)

    Heikes, Brian G.

    1992-11-01

    Measurements of formaldehyde, hydrogen peroxide, and a measure of organic hydroperoxides are presented. Modifications are described for the dual-enzyme H2O2 technique. These modifications facilitate the quantification of soluble ROOH and H2O2, the analysis of O3-H2O2 artifact, and catalase H2O2 residual.

  1. Identification of formaldehyde-responsive genes by suppression subtractive hybridization.

    PubMed

    Lee, Min-Ho; Kim, Young-Ae; Na, Tae-Young; Kim, Sung-Hye; Shin, Young Kee; Lee, Byung-Hoon; Shin, Ho-Sang; Lee, Mi-Ock

    2008-01-14

    Formaldehyde is frequently used in indoor household and occupational environments. Inhalation of formaldehyde invokes an inflammatory response, including a variety of allergic signs and symptoms. Therefore, formaldehyde has been considered as the most prevalent cause of sick building syndrome, which has become a major social problem, especially in developing urban areas. Further formaldehyde is classified as a genotoxicant in the respiratory tract of rats and humans. To better understand the molecular mechanisms involved in formaldehyde intoxication, we sought differentially regulated genes by formaldehyde exposure to Hs 680.Tr human trachea cells, using polymerase chain reaction (PCR)-based suppression subtractive hybridization. We identified 27 different formaldehyde-inducible genes, including those coding for the major histocompatibility complex, class IA, calcyclin, glutathione S-transferase pi, mouse double minute 2 (MDM2), platelet-derived growth factor receptor alpha, and which are known to be associated with cell proliferation and differentiation, immunity and inflammation, and detoxification. Induction of these genes by formaldehyde treatment was confirmed by reverse transcription PCR and western blot analysis. Further, the expression of calcyclin, glutathione S-transferase pi, PDGFRA and MDM2 were significantly induced in the tracheal epithelium of Sprague Dawley rats after formaldehyde inhalation. Our results suggest that the elevated levels of these genes may be associated with the formaldehyde-induced toxicity, and that they deserve evaluation as potential biomarkers for formaldehyde intoxication.

  2. Formaldehyde may be found in cosmetic products even when unlabelled

    PubMed Central

    Blaziene, Audra; Chomiciene, Anzelika; Isaksson, Marléne

    2015-01-01

    Concomitant contact allergy to formaldehyde and formaldehyde-releasers remains common among patients with allergic contact dermatitis. Concentration of free formaldehyde in cosmetic products within allowed limits have been shown to induce dermatitis from short-term use on normal skin. The aim of this study was to investigate the formaldehyde content of cosmetic products made in Lithuania. 42 samples were analysed with the chromotropic acid (CA) method for semi-quantitative formaldehyde determination. These included 24 leave-on (e.g., creams, lotions) and 18 rinse-off (e.g., shampoos, soaps) products. Formaldehyde releasers were declared on the labels of 10 products. No formaldehyde releaser was declared on the label of the only face cream investigated, but levels of free formaldehyde with the CA method was >40 mg/ml and when analysed with a high-performance liquid chromatographic method – 532 ppm. According to the EU Cosmetic directive, if the concentration of formaldehyde is above 0.05% a cosmetic product must be labelled “contains formaldehyde“. It could be difficult for patients allergic to formaldehyde to avoid contact with products containing it as its presence cannot be determined from the ingredient labelling with certainty. The CA method is a simple and reliable method for detecting formaldehyde presence in cosmetic products.

  3. Fixed-frequency and Frequency-agile (au, HTS) Microstrip Bandstop Filters for L-band Applications

    NASA Technical Reports Server (NTRS)

    Saenz, Eileen M.; Subramanyam, Guru; VanKeuls, Fred W.; Chen, Chonglin; Miranda, Felix A.

    2001-01-01

    In this work, we report on the performance of a highly selective, compact 1.83 x 2.08 cm(exp 2) (approx. 0.72 x 0.82 in(exp 2) microstrip line bandstop filter of YBa2CU3O(7-delta) (YBCO) on LaAlO3 (LAO) substrate. The filter is designed for a center frequency of 1.623 GHz for a bandwidth at 3 dB from reference baseline of less than 5.15 MHz, and a bandstop rejection of 30 dB or better. The design and optimization of the filter was performed using Zeland's IE3D circuit simulator. The optimized design was used to fabricate gold (Au) and High-Temperature Superconductor (HTS) versions of the filter. We have also studied an electronically tunable version of the same filter. Tunability of the bandstop characteristics is achieved by the integration of a thin film conductor (Au or HTS) and the nonlinear dielectric ferroelectric SrTiO3 in a conductor/ferroelectric/dielectric modified microstrip configuration. The performance of these filters and comparison with the simulated data will be presented.

  4. Design and application of Au decorated ZnO/TiO2 as a stable photocatalyst for wide spectral coverage.

    PubMed

    Mukhopadhyay, Soumita; Maiti, Debabrata; Chatterjee, Sabyasachi; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-11-23

    A ternary nanostructured photocatalyst consisting of ZnO/TiO2/Au was designed to achieve an enhanced solar absorption due to the coupling of surface enhanced plasmonic absorption of metal and semiconductor excitons. TiO2 coated ZnO rods with an aspect ratio of 8-12 were decorated with citrate capped gold nanoparticles for photocatalytic degradation of organic pollutants in simulated waste water under solar irradiation. Simulated waste water was prepared so as to get a mixture exhibiting a wide range of spectral distribution in the UV-visible region by deliberately mixing congo red, methylene blue and malachite green. Photo-oxidation of few phenolic compounds such as phenol, 4-chlorophenol and polycyclic aromatic hydrocarbons viz. anthracene and phenanthrene were also investigated in order to rule out the visible light sensitization of the dye molecules and confirm the photocatalytic efficacy of the ternary composite for a wide range of water pollutants under simulated solar irradiation. The composite exhibited enhanced photocatalytic activity and photoelectrochemical stability upon UV and visible light exposure. This enhanced efficiency was also corroborated with the photocarrier lifetime and chronoamperometric studies. Under simulated solar irradiation, UV light induced well separated charge carriers coupled with the visible light induced local surface plasmon resonance of AuNPs to exert significantly enhanced photocatalytic activity in a broad spectral region. This type of material may evolve as a novel photocatalyst for the efficient removal of organic contaminants in waste water and photoelectrochemical water splitting under the solar spectrum.

  5. Study of an Au colloid self-assembled electrode and its application to the determination of carbon monoxide.

    PubMed

    Shi, G; Luo, M; Xue, J; Xu, F; Jin, L; Jin, J

    2001-08-01

    A novel electrochemical sensor has been developed for the detection of carbon monoxide. The chemically modified electrode, prepared by reaction of cysteine and then an Au colloid of size approximately 15 nm with a platinum microelectrode, has excellent catalytic activity toward carbon monoxide, with an oxidation potential of +600 mV relative to the Ag/AgCl electrode. The CO gas sensor is based on an Au colloid self-assembled modified electrode as working electrode, an Ag/AgCl electrode as reference electrode, a Pt electrode as counter electrode, and a porous film which is in direct contact with the gas-containing atmosphere. The effects on the determination of CO of different internal electrolyte solutions of perchloric acid, hydrochloric acid, sulfuric acid, nitric acid, and phosphate buffer of different concentrations were also studied. The sensor is characterized by a short response time and highly reproducible detection of CO. This sensor can be used in the field of environmental monitoring and control.

  6. Formaldehyde decomposition and oxidation on Pt(110)

    NASA Astrophysics Data System (ADS)

    Attard, G. A.; Ebert, H. D.; Parsons, R.

    1990-12-01

    The decomposition reactions of formaldehyde on clean and oxygen dosed Pt(110) have been studied by LEED, XPS and TPRS. Formaldehyde is adsorbed in two states, a monolayer phase and a multilayer phase which were distinguishable by both TPRS and XPS. The saturated monolayer (corresponding to 8.06 × 10 14 molecules cm -2) desorbed at 134 K and the multilayer phase (which could not be saturated) desorbed at 112 K. The only other reaction products observed at higher temperatures were CO and H 2 produced in desorption limited processes and these reached a maximum upon saturation of the formaldehyde monolayer. The desorption spectrum of hydrogen was found to be perturbed by the presence of CO as reported by Weinberg and coworkers. It is proposed that local lifting of the clean surface (1 × 2) reconstruction is responsible for this behaviour. Analysis of the TPRS and XPS peak areas demonstrated that on the clean surface approximately 50% of the adsorbed monolayer dissociated with the remainder desorbing intact. Reaction of formaldehyde with preadsorbed oxygen resulted in the formation of H 2O (hydroxyl recombination) and CO 2 (decomposition of formate) desorbing at 200 and 262 K, respectively. The CO and H 2 desorption peaks were both smaller relative to formaldehyde decomposition on the clean surface and in particular, H 2 desorbed in a reaction limited process associated with decomposition of the formate species. No evidence was found for methane or hydrocarbon evolution in the present study under any circumstances. The results of this investigation are discussed in the light of our earlier work on the decomposition of methanol on the same platinum surface.

  7. Identification and characterization of a new member of the SINE Au retroposon family (GmAu1) in the soybean, Glycine max (L.) Merr., genome and its potential application.

    PubMed

    Shu, Yongjun; Li, Yong; Bai, Xi; Cai, Hua; Ji, Wei; Ji, Zuojun; Guo, Changhong; Zhu, Yanming

    2011-12-01

    A plant short interspersed element (SINE) was identified in Glycine max after re-sequencing of the soybean sequence characterized amplified region (SCAR) markers. Detailed analysis revealed that this newly recognized SINE element consisted of a tRNA-related region, a tRNA non-related region, direct flanking repeat sequences, and a short stretch of Ts at the 3'-terminal region. These features are similar to previously characterized SINEs. To investigate the evolution of the SINE retroposon, BLASTN was used to search against genome sequences of other plants. Since it is homologous with the retroposon Au in Aegilops umbellulata (wheat) and its homology in soybean, the SINE is named as GmAu1. Genome analysis of the Glycine max var. Willimas 82 uncovered more than 847 copies of GmAu1 per haploid genome of soybean. Examination of the regions flanking the inserted GmAu1 sequences indicated a preference for introns over exons or other noncoding regions. Considering the flanking insertion sequences, 146 primers were designed in order to detect insertion mutations by a PCR-based method. Seventy-seven primers displayed polymorphism and were used to develop corresponding GmAu1-based SCAR markers. The retroposon GmAu1 and its related SCAR markers identified in this study will prove valuable to future investigations into the genetic mapping, phylogeny, and evolution of the Glycine genus.

  8. 40 CFR Appendix A to Subpart Hhhh... - Method for Determining Free-Formaldehyde in Urea-Formaldehyde Resins by Sodium Sulfite (Iced...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... formaldehyde standard solution test should be carried out. 3.1Preparation and Standardization of a 1 Percent... for standardization of Formaldehyde Standard Solution). Quantitatively transfer, using distilled...

  9. Precursor polymers for the carbon coating of Au@ZnO multipods for application as active material in lithium-ion batteries.

    PubMed

    Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Bresser, Dominic; Lieberwirth, Ingo; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2015-06-01

    The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by Raman spectroscopy and energy-dispersive X-ray (EDX) spectroscopy. The benefit of the conformal carbon coating of the Au@ZnO multipods regarding its application as lithium-ion anode material is revealed by performing galvanostatic cycling, showing a highly enhanced and stabilized electrochemical performance of the carbon-coated particles (still 831 mAh g(-1) after 150 cycles) with respect to the uncoated ones (only 353 mAh g(-1) after 10 cycles).

  10. Capture of formaldehyde by adsorption on nanoporous materials.

    PubMed

    Bellat, Jean-Pierre; Bezverkhyy, Igor; Weber, Guy; Royer, Sébastien; Averlant, Remy; Giraudon, Jean-Marc; Lamonier, Jean-François

    2015-12-30

    The aim of this work is to assess the capability of a series of nanoporous materials to capture gaseous formaldehyde by adsorption in order to develop air treatment process and gas detection in workspaces or housings. Adsorption-desorption isotherms have been accurately measured at room temperature by TGA under very low pressure (p<2 hPa) on various adsorbents, such as zeolites, mesoporous silica (SBA15), activated carbon (AC NORIT RB3) and metal organic framework (MOF, Ga-MIL-53), exhibiting a wide range of pore sizes and surface properties. Results reveal that the NaX, NaY and CuX faujasite (FAU) zeolites are materials which show strong adsorption capacity and high affinity toward formaldehyde. In addition, these materials can be completely regenerated by heating at 200°C under vacuum. These cationic zeolites are therefore promising candidates as adsorbents for the design of air depollution process or gas sensing applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Defect-free functionalized graphene sensor for formaldehyde detection

    NASA Astrophysics Data System (ADS)

    Tang, Xiaohui; Mager, Nathalie; Vanhorenbeke, Beatrice; Hermans, Sophie; Raskin, Jean-Pierre

    2017-02-01

    Graphene has attracted much attention for sensing applications in recent years. Its largest surface-to-volume ratio makes graphene sensors able to potentially detect a single molecule and its extremely high carrier mobility ensures low electrical noise and energy consumption. However, pristine graphene is chemically inert and weakly adsorbs gas molecules, while defective and/or doped graphene has stronger adsorption ability (high sensitivity). The high sensitivity is related to the increased number of defects or traps in graphene where the gas molecules can be readily grafted, changing the sensor resistance. Nonetheless, similar resistance changes could be induced under exposure to different gases, resulting in a lack of selectivity. Functional groups differ drastically from defects or traps since the former selectively anchor specific molecules. Here, we comparatively investigate three functionalization routes and optimize a defect-free one (2,3,5,6,-Tetrafluorohydroquinone, TFQ molecules) for the fabrication of graphene gas sensors. We use TFQ organic molecules as chemical recognition links between graphene and formaldehyde, the most common indoor pollutant gas. The sensor demonstrates a high response and a good selectivity for formaldehyde compared with interfering organic vapours. Particularly, the sensor has a strong immunity to humidity. Our results highlight that defect-free functionalization based on organic molecules not only increases the sensor’s response but also its selectivity, paving the way to the design of efficient graphene-based sensors.

  12. State-correlated DC slice imaging of formaldehyde photodissociation

    NASA Astrophysics Data System (ADS)

    Suits, Arthur G.; Chambreau, Steven D.; Lahankar, Sridhar A.

    High-resolution slice imaging methods allow for detection of single product quantum states with sufficient velocity resolution to infer the full correlated product state distribution of the undetected fragment. This is a level of detail not available in previous studies of formaldehyde photodissociation, and in this application it reveals startling new aspects of unimolecular decomposition. The CO rotational distributions from near ultraviolet dissociation of formaldehyde are bimodal, and the imaging experiments allow us to decompose these into two dynamically distinct components: the conventional molecular dissociation over a high exit barrier, and a novel `roaming atom' reaction in which frustrated radical dissociation events lead to intramolecular H abstraction, bypassing the transition state entirely. In probing the dynamics of the conventional molecular dissociation over the barrier, we use the complete vH2-jCO correlation to model the exit channel dynamics in new detail. Furthermore, these state-correlated measurements provide insight into radical-radical reactions and the underlying dynamics and energy dependence of the roaming pathway.

  13. Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge.

    PubMed

    Łebkowska, Maria; Narożniak-Rutkowska, Anna; Pajor, Elżbieta

    2013-03-01

    The goal of this study was to assess the efficiency of treating industrial urea-formaldehyde wastewater by activated sludge in a static magnetic field (MF) of 7 mT and the efficiency of treating the wastewater in a bioreactor not exposed to an MF. Exposure to the MF increased formaldehyde (FA) removal from industrial wastewater with an FA concentration of 1600 mg/l by 20%. The MF had also a positive effect on the efficiency of chemical oxygen demand (COD) removal, and bacteria and activated sludge biomass growth, especially when the COD loading increased rapidly. Industrial wastewater may contain up to 13000 mg FA/l. Therefore, its treatment can require the application of more than one method to ensure that the final FA concentration will be within the permissible limit. The application of an MF to enhance the biological processes may be favourable solution to this problem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effectiveness of various methods of formaldehyde neutralization using monoethanolamine.

    PubMed

    Coskey, Andrew; Gest, Thomas R

    2015-05-01

    Formaldehyde is the most commonly used fixative chemical for the preservation of human cadavers used for educational purposes in the United States. Formaldehyde is also a known carcinogenic agent whose exposure level is regulated by guidelines of the Occupational Safety and Health Administration. Various methods for formaldehyde neutralization exist, yet many donations programs do not take any steps to neutralize the formaldehyde in embalmed donor bodies. The effectiveness of monoethanolamine (MEA) in neutralizing formaldehyde is well documented when used as a final injection during embalming. The purpose of this study is to report the effectiveness of several post-embalming techniques of formaldehyde neutralization. Twenty-four donor bodies were assigned to four experimental groups of six. For the three experimental groups, the techniques tested involve delivery of a 20:1 dilution of deionized water:MEA via recannulization and gravity flow infusion, compartment injection, and alternate wetting solution containing four percent MEA. Our results indicated that spray bottle delivery was not effective in neutralization of formaldehyde compared to the control group, but that formaldehyde levels decreased when recannulization or compartment injection were used. The most effective method of formaldehyde neutralization was compartment injection of MEA solution (P < 0.01). The results of this study indicate that, in situations where MEA is not used as a final infusion during embalming, compartment injection of MEA solution is an effective method of formaldehyde neutralization.

  15. Patch test reactivity to DMDM hydantoin. Relationship to formaldehyde allergy.

    PubMed

    de Groot, A C; van Joost, T; Bos, J D; van der Meeren, H L; Weyland, J W

    1988-04-01

    The relationship between contact allergy to formaldehyde and positive patch test reactions to DMDM hydantoin was investigated. 35 formaldehyde-allergic patients were patch tested with serial dilutions of formaldehyde (0.1%-0.3%-1.0% aq.) and DM hydantoin (the non-formaldehyde-containing parent compound of DMDM hydantoin). 21 were also patch tested with MDM hydantoin (1 molecule formaldehyde) in serial dilutions: 7 (33%) reacted to 1 or more concentrations. The other 14 were also tested with DMDM hydantoin (2 molecules formaldehyde) in serial dilutions: 8 (57%) reacted to 1 or more concentrations. Patients patch-test-positive to formaldehyde 0.1% and/or 0.3% tended to show more patch test reactivity to (D)MDM hydantoin than those who reacted only to 1%. Aqueous solutions of (D)MDM hydantoin in concentrations as used in cosmetic products therefore contain enough free formaldehyde to cause dermatitis in a patch test system in some formaldehyde-allergic patients: 12 such patients applied a cream containing 1% DMDM hydantoin to the flexor aspect of the lower arm twice daily for 1 week; 4 (33%) developed dermatitis. The use of a cream containing 0.25% DMDM hydantoin in these 4 patients still caused dermatitis in 1 and provoked itching in another. An increase in the use of DMDM hydantoin in cosmetic products will also inevitable increase the risk of cosmetic dermatitis in consumers allergic to formaldehyde.

  16. Investigation on formaldehyde release from preservatives in cosmetics.

    PubMed

    Lv, C; Hou, J; Xie, W; Cheng, H

    2015-10-01

    To understand formaldehyde residue in cosmetics, an investigation on formaldehyde release from eight preservatives (methenamine - MA, paraformaldehyde - PF, poly(p-toluenesulfonamide-co-formaldehyde) -PTSAF, quaternium-15 - QU, imidazolidinyl urea - IU, diazolidinyl urea - DU, dimethyloldimethyl hydantoin - DMDM and bronopol - BP) under various conditions was performed. The concentration of released formaldehyde was determined by high-performance liquid chromatography with photodiode array detection after derivatization with 2,4-dinitrophenylhydrazine. The amounts of formaldehyde release were in the order of PF > DU > DMDM ≈ QU ≈ IU > MA > BP > PTSAF. The releasing amounts of formaldehyde were the highest in the presence of aqueous matrices for the releasers except QU and IU, and the releasing effect was also relative to pH. More formaldehyde was released with longer storage time and higher temperature. Furthermore, all preservatives in cosmetic matrices released fewer amounts of formaldehyde than in pure aqueous or organic matrices, and the formaldehyde-releasing amounts were also cosmetic specific. Formaldehyde release was dependent on the matrix, pH, time and mainly temperature, and the releasing effect was also cosmetic specific. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Formaldehyde exposure in a gross anatomy laboratory

    SciTech Connect

    Perkins, J.L.; Kimbrough, J.D.

    1985-11-01

    A gross anatomy laboratory for medical students was evaluated for formaldehyde levels throughout its eight-week term. Results indicated that exposures for students and instructors were below the 3-ppm permissible exposure limit (assuming a maximum of five hours of daily exposure) established by the Occupational Safety and Health Administration. However, about one third of the eight-hour time-weighted-average exposures were greater than 1 ppm under the same assumptions. Exposure levels for students and instructors did not differ. Exposures tended to decrease over the term unless internal cadaver cavities were being dissected. These exposures are significant in light of the recent implication of formaldehyde as an animal carcinogen and the trend to reduce permissible levels to 1 ppm or lower.

  18. Formaldehyde in envelopes of interstellar dark clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Allen, M.

    1991-01-01

    Observed formaldehyde column densities of 1 x 10 to the 12th - 3 x 10 to the 13th/sq cm in cloud envelopes along lines of sight with A(V) = 1-4 mag can not be explained with the current understanding of interstellar gas phase chemistry. However, these column densities can be reproduced by a simple time-dependent model in which H2CO is supplied to the gas phase by the erosion of icy grain mantles. The release of H2CO from the grain mantles must occur on time scales comparable to the time scales for mixing from the cloud interior to the cloud envelope. Thus, in low-density regions of clouds, it appears that formaldehyde is the second molecule whose gas phase source is primarily ejection from grains. This simple model suggests understanding gas phase steady state in clouds on macroscopic, rather than microscopic, spatial scales.

  19. Measurement of atmospheric hydroxyacetone, glycolaldehyde, and formaldehyde.

    PubMed

    Zhou, Xianliang; Huang, Gu; Civerolo, Kevin; Schwab, James

    2009-04-15

    A method has been modified and optimized for the measurements of hydroxyacetone as well as formaldehyde and glycolaldehyde, based on aqueous scrubbing using a coil sampler followed by DNPH derivatization and HPLC analysis. Derivatization equilibrium and kinetics were studied to optimize the hydroxyacetone-DNPH derivative yield. It was found that the low sensitivity of hydroxyacetone by this method is due to a relatively small equilibrium constant for the hydroxyacetone-DNPH derivatization reaction, and thus it can be improved by increasing DNPH reagent concentration. In a medium containing 500 microM DNPH and 50 mM HCl, the derivatization reaches equilibrium within 30 min. An online reagent purification procedure using a DNPH-saturated Sep-Pak C-18 cartridge effectively removed hydrazone impurities in the DNPH reagent solution, and a sample preconcentration procedure using a C-18 guard column greatly enhanced the sensitivity and lowered the detection limits. The lower detection limits of the system under optimized conditions are 30, 9, and 36 pptv for hydroxyacetone, glycolaldehyde, and formaldehyde, respectively, with a sampling/analysis cycle time of 30 min. The method has been successfully deployed at a rural site in Pinnacle State Park in Addison, NY, for a 5 week period during the summer of 1998. The ambient concentration means (medians) were 372 (332), 301 (323), and 2040 (2030) pptv for hydroxyacetone, glycolaldehyde, and formaldehyde, respectively. A late-afternoon maximum and an early morning minimum were observed in the diurnal concentration distributions of all three carbonyl compounds. Good correlations among the three carbonyl compounds suggest that they originated from a common source, i.e., photochemical oxidation of biogenic hydrocarbons. Formaldehyde photolysis accounted for about 23% of the total radical photoproduction, whereas contributionsfrom hydroxyacetone and glycolaldehyde photolysis were insignificant because of the much slower photolysis

  20. Alkylaniline/formaldehyde oligomers as corrosion inhibitors

    SciTech Connect

    Bacskai, R.; Schroeder, A.H.

    1988-10-25

    This patent describes a method of inhibiting corrosion of a corrodible metal material in or around a well through which a corrosive fluid is produced, which comprises contacting the metal material with an effective amount of a corrosion inhibitor composition comprising the reaction product obtained by the acid-catalyzed oligomerization of: (A) an alkylaniline having from 4 to 30 carbon atoms in the alkyl substituent, and (B) formaldehyde.

  1. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  2. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part II. The effects of temperature and humidity on free formaldehyde, extractable formaldehyde, formaldehyde emission, and physical characteristics of the foam

    SciTech Connect

    Schutte, W.C.; Cole, R.S.; Frank, C.W.; Long, K.R.

    1981-02-01

    Results of testing with two products of urea-formaldehyde based foams are described. Results of three products have previously been reported. Methods for detection and quantitative determination of formaldehyde, design of the experimental chambers, and the procedures are described. Samples of Product D were monitored for about 29 days and samples of Product E were monitored for 60 days in chambers and results are tabulated for formaldehyde emission. Additional tests performed on the two products are: extractable formaldehyde (high and low temperature conditions); free formaldehyde (high and low temperature conditions); comparison of free formaldehyde concentration; density (high and low temperature conditions); shrinkage (high and low temperature conditions). Control panels were constructed to simulate a wall in a home and observations were made and compared with results of the experimental products.

  3. A rapid liquid chromatography determination of free formaldehyde in cod.

    PubMed

    Storey, Joseph M; Andersen, Wendy C; Heise, Andrea; Turnipseed, Sherri B; Lohne, Jack; Thomas, Terri; Madson, Mark

    2015-01-01

    A rapid method for the determination of free formaldehyde in cod is described. It uses a simple water extraction of formaldehyde which is then derivatised with 2,4-dinitrophenylhydrazine (DNPH) to form a sensitive and specific chromophore for high-performance liquid chromatography (HPLC) detection. Although this formaldehyde derivative has been widely used in past tissue analysis, this paper describes an improved derivatisation procedure. The formation of the DNPH formaldehyde derivative has been shortened to 2 min and a stabilising buffer has been added to the derivative to increase its stability. The average recovery of free formaldehyde in spiked cod was 63% with an RSD of 15% over the range of 25-200 mg kg(-1) (n = 48). The HPLC procedure described here was also compared to a commercial qualitative procedure - a swab test for the determination of free formaldehyde in fish. Several positive samples were compared by both methods.

  4. Determination of formaldehyde in food and feed by an in-house validated HPLC method.

    PubMed

    Wahed, P; Razzaq, Md A; Dharmapuri, S; Corrales, M

    2016-07-01

    Formalin is carcinogenic and is detrimental to public health. The illegal addition of formalin (37% formaldehyde and 14% methanol) to foods to extend their shelf-life is considered to be a common practice in Bangladesh. The lack of accurate methods and the ubiquitous presence of formaldehyde in foods make the detection of illegally added formalin challenging. With the aim of helping regulatory authorities, a sensitive high performance liquid chromatography method was validated for the quantitative determination of formaldehyde in mango, fish and milk. The method was fit-for-purpose and showed good analytical performance in terms of specificity, linearity, precision, recovery and robustness. The expanded uncertainty was <35%. The validated method was applied to screen samples of fruits, vegetables, fresh fish, milk and fish feed collected from different local markets in Dhaka, Bangladesh. Levels of formaldehyde in food samples were compared with published data. The applicability of the method in different food matrices might mean it has potential as a reference standard method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Determination of Formaldehyde in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A.

    1997-09-01

    Formaldehdye is considered a hazardous air pollutant with numerous sources that include environmental tobacco smoke (ETS). With the increasing interest regarding ETS and public health the measurement of formaldehyde readily lends itself to a laboratory experiment comparing methods of analysis. This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode). Reasonable agreement among the methods was obtained by lab demonstrators with spike recoveries yielding 94.7 + 6.8 (n=5) and 89.2 (n = 4) % for NPD and FPD, respectively while HPLC spiked recoveries were 83.6 + 3.2 (n = 5) %; mean class spike recoveries ranged from 80-100%. Student results (in mg/cigarette) from smoke samples were similar to literature values with 163.2 + 69.2 (n = 7) and 149.4 (n = 7) % for NPD and FPD, respectively; the HPLC result was significantly lower at 45.1 + 23.7(n = 7) with losses presumably due to hydrazone precipitating from the smoke extracted solution. Students particularly benefited from the "real world" nature of the analysis and the experience evaluating disparate methods of determining a common analyte.

  6. Isotopic composition of formaldehyde in urban air.

    PubMed

    Rice, Andrew L; Quay, Paul

    2009-12-01

    The isotopic composition of atmospheric formaldehyde was measured in air samples collected in urban Seattle, Washington. A recently developed gas chromatography-isotope ratio mass spectrometry analytical technique was used to extract formaldehyde directly from whole air, separate it from other volatile organic compounds, and measure its (13)C/(12)C and D/H ratio. Measurements of formaldehyde concentration were also made concomitant with isotope ratio. Results of the analysis of nine discrete air samples for delta(13)C-HCHO have a relatively small range in isotopic composition (-31 to -25 per thousand versus VPDB [+/-1.3 per thousand]) over a considerable concentration range (0.8-4.4 ppb [+/-15%]). In contrast, analyses of 17 air samples for deltaD-HCHO show a large range (-296 to +210 per thousand versus VSMOW [+/-50 per thousand]) over the concentrations measured (0.5-2.9 ppb). Observations of deltaD are weakly anticorrelated with concentration. Isotopic data are interpreted using both source- and sink-based approaches. Results of delta(13)C-HCHO are similar to those observed previously for a number of nonmethane hydrocarbons in urban environments and variability can be reconciled with a simple sink-based model. The large variability observed in deltaD-HCHO favors a source-based interpretation with HCHO depleted in deuterium from primary sources of HCHO (i.e., combustion) and HCHO enriched in deuterium from secondary photochemical sources (i.e., hydrocarbon oxidation).

  7. Indoor formaldehyde removal over CMK-3

    PubMed Central

    2012-01-01

    The removal of formaldehyde at low concentrations is important in indoor air pollution research. In this study, mesoporous carbon with a large specific surface area was used for the adsorption of low-concentration indoor formaldehyde. A mesoporous carbon material, CMK-3, was synthesized using the nano-replication method. SBA-15 was used as a mesoporous template. The surface of CMK-3 was activated using a 2N H2SO4 solution and NH3 gas to prepare CMK-3-H2SO4 and CMK-3-NH3, respectively. The activated samples were characterized by N2 adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The formaldehyde adsorption performance of the mesoporous carbons was in the order of CMK-3-NH3 > CMK-3-H2SO4 > CMK-3. The difference in the adsorption performance was explained by oxygen and nitrogen functional groups formed during the activation process and by the specific surface area and pore structure of mesoporous carbon. PMID:22221425

  8. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  9. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  10. Synthesis of Au microwires by selective oxidation of Au-W thin-film composition spreads.

    PubMed

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-02-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au-W matrix by selective oxidation, in view of a possible application as 'micro-Velcro'. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au-W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications.

  11. Formaldehyde scavengers function as novel antigen retrieval agents

    PubMed Central

    Vollert, Craig T.; Moree, Wilna J.; Gregory, Steven; Bark, Steven J.; Eriksen, Jason L.

    2015-01-01

    Antigen retrieval agents improve the detection of formaldehyde-fixed proteins, but how they work is not well understood. We demonstrate that formaldehyde scavenging represents a key characteristic associated with effective antigen retrieval; under controlled temperature and pH conditions, scavenging improves the typical antigen retrieval process through reversal of formaldehyde-protein adduct formation. This approach provides a rational framework for the identification and development of more effective antigen retrieval agents. PMID:26612041

  12. BLM protein mitigates formaldehyde-induced genomic instability.

    PubMed

    Kumari, Anuradha; Owen, Nichole; Juarez, Eleonora; McCullough, Amanda K

    2015-04-01

    Formaldehyde is a reactive aldehyde that has been classified as a class I human carcinogen by the International Agency for Cancer Research. There are growing concerns over the possible adverse health effects related to the occupational and environmental human exposures to formaldehyde. Although formaldehyde-induced DNA and protein adducts have been identified, the genomic instability mechanisms and the cellular tolerance pathways associated with formaldehyde exposure are not fully characterized. This study specifically examines the role of a genome stability protein, Bloom (BLM) in limiting formaldehyde-induced cellular and genetic abnormalities. Here, we show that in the absence of BLM protein, formaldehyde-treated cells exhibited increased cellular sensitivity, an immediate cell cycle arrest, and an accumulation of chromosome radial structures. In addition, live-cell imaging experiments demonstrated that formaldehyde-treated cells are dependent on BLM for timely segregation of daughter cells. Both wild-type and BLM-deficient formaldehyde-treated cells showed an accumulation of 53BP1 and γH2AX foci indicative of DNA double-strand breaks (DSBs); however, relative to wild-type cells, the BLM-deficient cells exhibited delayed repair of formaldehyde-induced DSBs. In response to formaldehyde exposure, we observed co-localization of 53BP1 and BLM foci at the DSB repair site, where ATM-dependent accumulation of formaldehyde-induced BLM foci occurred after the recruitment of 53BP1. Together, these findings highlight the significance of functional interactions among ATM, 53BP1, and BLM proteins as responders associated with the repair and tolerance mechanisms induced by formaldehyde. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Determination of ultra-trace formaldehyde in air using ammonium sulfate as derivatization reagent and capillary electrophoresis coupled with on-line electrochemiluminescence detection.

    PubMed

    Deng, Biyang; Liu, Yang; Yin, Huihui; Ning, Xi; Lu, Hua; Ye, Li; Xu, Quanxiu

    2012-03-15

    The reaction between formaldehyde and ammonium ion to produce hexamethylenetetramine is well known. The reaction conditions are very easily controlled in situ and the experiment operation is very simple. However, such derivatization reaction for trace formaldehyde determination using capillary electrophoresis (CE) electrochemiluminescence (ECL) has not been reported before. In this study, the application of ammoniun sulfate as derivatization reagent to in-situ determination of formaldehyde in air was reported. Based on ECL enhancement of tris(2,2'-bipyridyl)ruthenium(II) with hexamethylenetetramine, a novel approach for the determination of ultra-trace formaldehyde in air using CE coupled with on-line ECL of tris(2,2'-bipyridyl)ruthenium(II) has been developed. The parameters affecting separation and detection such as detection potential, concentration and pH of phosphate buffer, and electrokinetic voltage, were investigated. Under the optimal conditions, the linear concentration range of formaldehyde in air was from 0.48 μg/m(3) to 96 mg/m(3) (linear range covering 5 orders of magnitude). The limit of detection (3σ) was 0.15 μg/m(3). The relative standard deviations of peak height and migration time for six consecutive injection of 1 ng/mL formaldehyde derivative were 0.9% and 0.8%, respectively. The recoveries of formaldehyde in air were between 99.3% and 101%. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  15. Formaldehyde and LeukemiA: Epidemiology, Potential Mechanisms and Implications for Risk Assessment

    EPA Science Inventory

    Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging ...

  16. Formaldehyde and LeukemiA: Epidemiology, Potential Mechanisms and Implications for Risk Assessment

    EPA Science Inventory

    Formaldehyde is widely used in the United States and other countries. Occupational and environmental exposures to formaldehyde may be associated with an increased risk of leukemia in exposed individuals. However, risk assessment of formaldehyde and leukemia has been challenging ...

  17. Formaldehyde Crosslinking: A Tool for the Study of Chromatin Complexes*

    PubMed Central

    Hoffman, Elizabeth A.; Frey, Brian L.; Smith, Lloyd M.; Auble, David T.

    2015-01-01

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. PMID:26354429

  18. Formaldehyde crosslinking: a tool for the study of chromatin complexes.

    PubMed

    Hoffman, Elizabeth A; Frey, Brian L; Smith, Lloyd M; Auble, David T

    2015-10-30

    Formaldehyde has been used for decades to probe macromolecular structure and function and to trap complexes, cells, and tissues for further analysis. Formaldehyde crosslinking is routinely employed for detection and quantification of protein-DNA interactions, interactions between chromatin proteins, and interactions between distal segments of the chromatin fiber. Despite widespread use and a rich biochemical literature, important aspects of formaldehyde behavior in cells have not been well described. Here, we highlight features of formaldehyde chemistry relevant to its use in analyses of chromatin complexes, focusing on how its properties may influence studies of chromatin structure and function. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO22+

    NASA Astrophysics Data System (ADS)

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH4 as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl2 and NaH2PO2, and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO22+, AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L-1 UO22+ and 5.0-50 pmol L-1 UO22+, respectively.

  20. Development of Ag-Pd-Au-Cu alloys for multiple dental applications. Part 2. Mechanical properties of experimental Ag-Pd-Au-Cu alloys containing Sn or Ga for ceramic-metal restorations.

    PubMed

    Goto, S; Nakai, A; Miyagawa, Y; Ogura, H

    2001-06-01

    Eighteen Ag-Pd-Au-Cu alloys, consisting of nine Ag-Pd-Au-Cu mother compositions (Pd: 20, 30 or 40%, Au: 20%, Cu: 10, 15 or 20%, Ag: balance) containing either 5% Sn or 5% Ga as an additive metal, were experimentally prepared. Tensile strength, proof stress, elongation, elastic modulus, and Vickers hardness of these alloys were evaluated to clarify the potential of these alloys for use as ceramic-metal restorations as well as the effects of the Pd and Cu contents on their mechanical properties. The tensile strength, proof stress, elongation, elastic modulus and Vickers hardness of the 18 experimental alloys were in the range of 410.0-984.0 MPa, 289.7-774.3 MPa, 2.2-23.7%, 81.3-123.0 GPa and 135.7-332.3 HV1, respectively. Ten of the 18 experimental alloys can be used for ultra-low fusing ceramics based on their proof stress, elastic modulus, elongation and hardness. Between the Ga- and Sn-added alloys, differences in tensile strength, proof stress, elongation and hardness were found at several Ag-Pd-Au-Cu compositions.

  1. Efficient removal of formaldehyde by nanosized gold on well-defined CeO₂ nanorods at room temperature.

    PubMed

    Xu, Quanlong; Lei, Wanying; Li, Xinyang; Qi, Xiaoying; Yu, Jiaguo; Liu, Gang; Wang, Jinlong; Zhang, Pengyi

    2014-08-19

    Gold (Au) nanoparticles (NPs) supported on well-defined ceria (CeO2) nanorods with exposed {110} and {100} facets were prepared by a deposition-precipitation method and characterized by powder X-ray diffraction, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption, transmission electron microscopy, high-resolution transmission electron microscopy, and high-angle annular dark-field scanning transmission electron microscopy. Both nanometer and subnanometer gold particles were found to coexist on ceria supports with various Au contents (0.01-5.4 wt %). The catalytic performance of Au/CeO2 catalysts was examined for formaldehyde (HCHO) oxidation into CO2 and H2O at room temperature and shown to be Au content dependent, with 1.8 wt % Au/CeO2 displaying the best performance. On the basis of the results from hydrogen temperature-programmed reduction and in situ Fourier transform infrared spectroscopy observations, the high reactivity and stability of Au/CeO2 catalysts is mainly attributed to the well-defined ceria nanorods with {110} and {100} facets which present a relatively low energy for oxygen vacancy formation. Furthermore, gold NPs could induce the weakened Ce-O bond which in turn promotes HCHO oxidation.

  2. Balancing redox activity allowing spectrophotometric detection of Au(I) using tetramethylbenzidine dihydrochloride.

    PubMed

    Jang, Gyoung-Gug; Roper, D Keith

    2011-03-01

    Aqueous, acid solutions containing balanced amounts of a strong reductant (formaldehyde, HCHO) and a strong oxididant (N-bromosuccinimide, NBS) allow the first sensitive spectrophotometric analysis of monovalent gold ion, Au(I), using oxidation of color reagent 3,3',5,5'-tetramethylbenzidine dihydrochloride (TMB). This new method enables various oxidation states of Au ion to be quantified by balancing reduction potential in a Au solution. At low reductant levels, NBS oxidizes Au(I), which linearly suppresses subsequent oxidation of TMB by NBS to its blue charge-transfer complex of diamine and diimine to 2.00 mg L(-1) of Au, resulting in reduced color formation. The linear range of Au(I) quantitation was increased substantially relative to existing methods: from 0.005 to 1.00 mg L(-1) (R(2) = 0.988). For this range, the limit of detection was 0.0025 mg L(-1), which is comparable to the best reported spectroscopic method to analyze Au(III). At relatively high reductant levels, Au(I) is reduced to Au(0), then subsequently oxidized from Au(0) to Au(III) by addition of NBS. TMB is oxidized to its blue charge-transfer complex via the reduction of the reoxidized Au(III) to Au(0). Balancing redox conditions of HCHO/NBS at a molar ration of 22.7 allows quantitative measurement of Au(I) across a linear concentration range of 0.05-2.00 mg L(-1) (R(2) = 0.997). This balancing redox condition could allow sensitive, quantitative, spectrophotometric analysis of other metal ions besides Au by targeting the metal ion's reduction potential with an associated redox-sensitive color reagent.

  3. Fabrication and spectroscopic studies of folic acid-conjugated Fe3O4@Au core-shell for targeted drug delivery application

    NASA Astrophysics Data System (ADS)

    Karamipour, Sh.; Sadjadi, M. S.; Farhadyar, N.

    2015-09-01

    Gold coated magnetite core shell is a kind of nanoparticle that include magnetic iron oxide core with a thin layer nanogold. Fe3O4-gold core-shell nanostructure can be used in biomedical applications such as magnetic bioseparation, bioimaging, targeting drug delivery and cancer treatment. In this study, the synthesis and characterization of gold coated magnetite nanoparticles were discussed. Magnetite nanoparticles with an average size of 6 nm in diameter were synthesized by the chemical co-precipitation method and gold-coated Fe3O4 core-shell nanostructures were produced with an average size of 11.5 nm in diameter by reduction of Au3+ with citrate ion in the presence of Fe3O4. Folate-conjugated gold coated magnetite nanoparticles were synthesized to targeting folate receptor that is overexpressed on the surface of cancerous cells. For this purpose, we used L-cysteine, as a bi-functional linker for attachment to gold surface and it was linked to the gold nanoparticles surface through its thiol group. Then, we conjugated amino-terminated nanoparticles to folic acid with an amide-linkage formation. These gold magnetic nanoparticles were characterized by various techniques such as X-ray powder diffraction (XRD) analysis, Fourier transform infrared spectrometer (FT-IR), UV-visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dispersive analysis of X-ray (EDAX) and vibrating sample magnetometer (VSM) analysis. The magnetic and optical properties of Fe3O4 nanostructure were changed by gold coating and attachment of L-cysteine and folic acid to Fe3O4@Au nanoparticles.

  4. Au-Ag@Au Hollow Nanostructure with Enhanced Chemical Stability and Improved Photothermal Transduction Efficiency for Cancer Treatment.

    PubMed

    Jiang, Tongtong; Song, Jiangluqi; Zhang, Wenting; Wang, Hao; Li, Xiaodong; Xia, Ruixiang; Zhu, Lixin; Xu, Xiaoliang

    2015-10-07

    Despite the fact that Au-Ag hollow nanoparticles (HNPs) have gained much attention as ablation agents for photothermal therapy, the instability of the Ag element limits their applications. Herein, excess Au atoms were deposited on the surface of a Au-Ag HNP by improving the reduction power of l-ascorbic acid (AA) and thereby preventing the reaction between HAuCl4 and the Ag element in the Au-Ag alloy nanostructure. Significantly, the obtained Au-Ag@Au HNPs show excellent chemical stability in an oxidative environment, together with remarkable increase in extinction peak intensity and obvious narrowing in peak width. Moreover, finite-difference time-domain (FDTD) was used to simulate the optical properties and electric field distribution of HNPs. The calculated results show that the proportion of absorption cross section in total extinction cross section increases with the improvement of Au content in HNP. As predicted by the theoretical calculation results, Au-Ag@Au nanocages (NCs) exhibit a photothermal transduction efficiency (η) as high as 36.5% at 808 nm, which is higher than that of Au-Ag NCs (31.2%). Irradiated by 808 nm laser at power densities of 1 W/cm(2), MCF-7 breast cancer cells incubated with PEGylated Au-Ag@Au NCs were seriously destroyed. Combined together, Au-Ag@Au HNPs with enhanced chemical stability and improved photothermal transduction efficiency show superior competitiveness as photothermal agents.

  5. Comparison of the effects of formaldehyde and gaseous ozone on HBV-contaminated hospital quilts

    PubMed Central

    Guo, Dan; Li, Ziqiong; Jia, Bei; Che, Xiaoqiong; Song, Tianshuang; Huang, Wenxiang

    2015-01-01

    Background: Besides being highly infectious, Hepatitis B virus (HBV) is a major cause of liver disease worldwide. In hospital settings, it is easy for the environment and quilts to be contaminated by HBV patient blood and body fluids. Therefore, HBV can be transmitted to other patients via contaminated environmental surfaces or quilts, resulting in an HBV nosocomial infection. Formaldehyde and ozone are commonly used disinfectants that may influence this infectious situation. Objective: To investigate the clinical effectiveness of formaldehyde and gaseous ozone for the terminal cleaning of hospital quilts contaminated by HBV. Methods: Thin cloth and thick cotton soaked with the serum from high HBV copy number patients were prepared and disinfected using formaldehyde fumigation and gaseous ozone at different times. The copy numbers of HBV DNA in the HBV-contaminated cloth and cotton samples were measured quantitatively with fluorescent quantitative polymerase chain reaction (PCR). Results: When gaseous ozone was used to disinfect HBV-contaminated quilts for 23 minutes (min), 36 min, 49 min, and 90 min, the HBV DNA copy number displayed no significant decrease compared with the copy number before disinfection (P > 0.05). In comparison, the copy number of the HBV DNA in the cloth group decreased significantly (P < 0.05) after formaldehyde fumigation disinfection for 1 hour (h), and there was no difference when longer times and increased concentrations were used. In the thick cotton group, there was also a significant decrease (P < 0.05) of the HBV DNA copy numbers, but the decrease was not as dramatic. In addition, in this group, the disinfection effect observed at 4 h was the strongest. Conclusions: The application of ozone to disinfect HBV-contaminated hospital quilts possibly has no effect, whereas, formaldehyde oxide fumigation effectively reduced HBV copy numbers. PMID:26770591

  6. Embryo toxicity and teratogenicity of formaldehyde.

    PubMed

    Thrasher, J D; Kilburn, K H

    2001-01-01

    C-14 formaldehyde crosses the placenta and enters fetal tissues. The incorporated radioactivity is higher in fetal organs (i.e., brain and liver) than in maternal tissues. The incorporation mechanism has not been studied fully, but formaldehyde enters the single-carbon cycle and is incorporated as a methyl group into nucleic acids and proteins. Also, formaldehyde reacts chemically with organic compounds (e.g., deoxyribonucleic acid, nucleosides, nucleotides, proteins, amino acids) by addition and condensation reactions, thus forming adducts and deoxyribonucleic acid-protein crosslinks. The following questions must be addressed: What adducts (e.g., N-methyl amino acids) are formed in the blood following formaldehyde inhalation? What role do N-methyl-amino adducts play in alkylation of nuclear and mitochondrial deoxyribonucleic acid, as well as mitochondrial peroxidation? The fact that the free formaldehyde pool in blood is not affected following exposure to the chemical does not mean that formaldehyde is not involved in altering cell and deoxyribonucleic acid characteristics beyond the nasal cavity. The teratogenic effect of formaldehyde in the English literature has been sought, beginning on the 6th day of pregnancy (i.e., rodents) (Saillenfait AM, et al. Food Chem Toxicol 1989, pp 545-48; Martin WJ. Reprod Toxicol 1990, pp 237-39; Ulsamer AG, et al. Hazard Assessment of Chemicals; Academic Press, 1984, pp 337-400; and U.S. Department of Health and Human Services. Toxicological Profile of Formaldehyde; ATSDR, 1999 [references 1-4, respectively, herein]). The exposure regimen is critical and may account for the differences in outcomes. Pregnant rats were exposed (a) prior to mating, (b) during mating, (c) or during the entire gestation period. These regimens (a) increased embryo mortality; (b) increased fetal anomalies (i.e., cryptochordism and aberrant ossification centers); (c) decreased concentrations of ascorbic acid; and (d) caused abnormalities in enzymes of

  7. Your prodrug releases formaldehyde: should you be concerned? No!

    PubMed

    Dhareshwar, Sundeep S; Stella, Valentino J

    2008-10-01

    The title of this commentary contains a frequently asked question whenever someone presents or proposes a prodrug strategy that releases formaldehyde as a result of bioconversion of a prodrug to parent drug. Formaldehyde, a highly water-soluble one-carbon molecule, is endogenous to cells, tissues, and body fluids. Although formaldehyde is generated and incorporated into essential metabolic processes by the human body, exposure to large amounts of formaldehyde vapor can irritate the nasal mucosa and may potentially be carcinogenic. It also gives a positive Ames test. Metabolism of both endogenous and exogenous formaldehyde involves rapid oxidation to formic acid catalyzed by glutathione dependent and independent dehydrogenases in the liver and erythrocytes. Balancing this rapid detoxification pathway is endogenous formation from normal metabolic processes and exogenous formaldehyde input, resulting in approximately 0.1 mM systemic levels. The possibility that formaldehyde released upon bioconversion of prodrugs might induce toxicity has been repeatedly stated, but no convincing evidence for this perceived toxicity has been documented in experimental studies. Therefore, as pharmaceutical chemists and not as toxicologists, we present our perspective on the apparent concern with release of formaldehyde as a by-product of in vivo bioconversion of selective prodrugs, and suggest that in comparison to the total amount of daily endogenous formaldehyde production from metabolism, and exogenous exposure from food and the environment, the amount generated by prodrugs is minute and is unlikely to cause any systemic toxicity in humans. Such an argument does not preclude formaldehyde-based toxicity assessment of a prodrug. Instead, it reduces the risk that in vivo liberation of formaldehyde will cause undue toxicity. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  8. BLM protein mitigates formaldehyde-induced genomic instability

    PubMed Central

    Kumari, Anuradha; Owen, Nichole; Juarez, Eleonora; McCullough, Amanda K.

    2015-01-01

    Formaldehyde is a reactive aldehyde that has been classified as a class I human carcinogen by the International Agency for Cancer Research. There are growing concerns over the possible adverse health effects related to the occupational and environmental human exposures to formaldehyde. Although formaldehyde-induced DNA and protein adducts have been identified, the genomic instability mechanisms and the cellular tolerance pathways associated with formaldehyde exposure are not fully characterized. This study specifically examines the role of a genome stability protein, Bloom (BLM) in limiting formaldehyde-induced cellular and genetic abnormalities. Here, we show that in the absence of BLM protein, formaldehyde-treated cells exhibited increased cellular sensitivity, an immediate cell cycle arrest, and an accumulation of chromosome radial structures. In addition, live-cell imaging experiments demonstrated that formaldehyde-treated cells are dependent on BLM for timely segregation of daughter cells. Both wild-type and BLM-deficient formaldehyde-treated cells showed an accumulation of 53BP1 and γH2AX foci indicative of DNA double-strand breaks (DSBs); however, relative to wild-type cells, the BLM-deficient cells exhibited delayed repair. In response to formaldehyde exposure, we observed co-localization of 53BP1 and BLM foci at the DSB repair site, where ATM-dependent accumulation of formaldehyde-induced BLM foci occurred after the recruitment of 53BP1. Together, these findings highlight the significance of functional interactions among ATM, 53BP1, and BLM proteins as responders associated with the repair and tolerance mechanisms induced by formaldehyde. PMID:25770783

  9. Transport de particules massives dans un fluide turbulent: Application a l'erosion due au sable sur les parois d'une turbine hydraulique

    NASA Astrophysics Data System (ADS)

    Bergeron, Stephen

    Le transport de particules massives par un champ turbulent est un vaste domaine de la mécanique des fluides. Il possède de nombreuses applications comme par exemple le transport de sable dans une turbine hydraulique. En raison de la dureté des grains de quartz et des grandes vitesses de collision avec les parois métalliques, un phénomène d'érosion intensif se produit. Les dommages résultants peuvent diminuer le rendement de la turbine au cours des quelques mois suivant la mise en opération. L'objectif de cette thèse est de mettre au point un outil permettant de prédire ces zones d'érosion. Ce projet de recherche en contexte industriel a été réalisé en collaboration avec la compagnie General Electric Hydro du Canada. Dans un régime hautement turbulent, il est possible d'obtenir une expression suffisamment générale en utilisant une formulation partiellement empirique: l'équation de Basset- Boussinesq-Oseen modifiée. Ce choix de modèle tient compte du niveau de précision recherché et de la méthode numérique employée afin de résoudre la phase fluide. Il permet aussi d'éliminer plusieurs ambiguïtés fréquemment rencontrées dans la littérature et implementées dans certains codes commerciaux courants. La formulation mathématique du problème est effectuée dans un espace mixte Euler-Lagrange. Les paramètres dynamiques sont relies au type de particules et à l'intensité de la turbulence. Le code numérique résultant est le plus performant développé à ce jour (août 1998). Les trajectoires de plusieurs centaines de milliers de particules peuvent être simulées et visualisées de manière interactive sur une station de travail (SGI R4K, R8K et R10K). L'utilisateur du logiciel est libre de se déplacer dans l'espace à l'aide d'un environnement similaire a un ``simulateur de vol''. Il peut ainsi analyser les détails du processus d'érosion de même que l'écoulement du fluide dans la turbine. Les zones d'érosion obtenues à l

  10. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    PubMed

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  11. Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin β1

    PubMed Central

    Klockenbusch, Cordula; Kast, Juergen

    2010-01-01

    Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin β1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin β1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin β1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin β1, α4 and α6 or β1, α6, α2, and α5, respectively. PMID:20634879

  12. The protective effect of L-carnitine against hippocampal damage due to experimental formaldehyde intoxication in rats.

    PubMed

    Ozmen, E; Ozsoy, S Y; Donmez, N; Ozsoy, B; Yumuşak, N

    2014-07-01

    We investigated the protective effects of L-carnitine on hippocampus tissue damage in rats during experimental formaldehyde (FA) intoxication. Male Wistar albino rats were assigned into four groups: (1) control (C), (2) formaldehyde (FA), (3) formaldehyde + 0.5 g/kg of L-carnitine (FA + 0.5 LC) (4) formaldehyde + 1 g/kg L-carnitine (FA + 1 LC). At the end of the 14 day trial period, animals were sacrificed by decapitation under anesthesia. The hippocampus tissue samples were extracted to measure MDA, GSH and SOD activity. Neuronal degeneration was assessed based on histopathological (hematoxylin and eosin) and immunohistochemical (anti-ubiquitin) examination. To detect oxidative stress, specimens were reacted with anti-Cu/Zn-SOD antibody. After administering L-carnitine with FA to the animals, the activities of SOD and GSH increased, but the levels of MDA decreased in hippocampus tissue. Neuronal degeneration was observed in the FA group. L-carnitine administration reduced neuronal degeneration and histological structure was similar to controls. After FA application, degenerated hippocampus neurons were stained with anti-ubiquitin and Cu/Zn-SOD antibodies; weakly positive staining was observed in L- carnitine-treated groups. L-carnitine may be useful for preventing oxidative damage in the hippocampus tissue due to formaldehyde intoxication.

  13. Influence of Precision of Emission Characteristic Parameters on Model Prediction Error of VOCs/Formaldehyde from Dry Building Material

    PubMed Central

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C. PMID:24312497

  14. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  15. Au nanorod helical superstructures with designed chirality.

    PubMed

    Lan, Xiang; Lu, Xuxing; Shen, Chenqi; Ke, Yonggang; Ni, Weihai; Wang, Qiangbin

    2015-01-14

    A great challenge for nanotechnology is to controllably organize anisotropic nanomaterials into well-defined three-dimensional superstructures with customized properties. Here we successfully constructed anisotropic Au nanorod (AuNR) helical superstructures (helices) with tailored chirality in a programmable manner. By designing the 'X' pattern of the arrangement of DNA capturing strands (15nt) on both sides of a two-dimensional DNA origami template, AuNRs functionalized with the complementary DNA sequences were positioned on the origami and were assembled into AuNR helices with the origami intercalated between neighboring AuNRs. Left-handed (LH) and right-handed (RH) AuNR helices were conveniently accomplished by solely tuning the mirrored-symmetric 'X' patterns of capturing strands on the origami. The inter-rod distance was precisely defined as 14 nm and inter-rod angle as 45°, thus a full helix contains 9 AuNRs with its length up to about 220 nm. By changing the AuNR/origami molar ratio in the assembly system, the average number of AuNR in the helices was tuned from 2 to 4 and 9. Intense chiroptical activities arose from the longest AuNR helices with a maximum anisotropy factor of ∼0.02, which is highly comparable to the reported macroscopic AuNR assemblies. We expect that our strategy of origami templated assembly of anisotropic chiral superstructures would inspire the bottom-up fabrication of optically active nanostructures and shed light on a variety of applications, such as chiral fluids, chiral signal amplification, and fluorescence combined chiral spectroscopy.

  16. One-step synthesis of graphene-AuNPs by HMTA and the electrocatalytical application for O2 and H2O2.

    PubMed

    Hu, Jianguo; Li, Fenghua; Wang, Kaikai; Han, Dongxue; Zhang, Qixian; Yuan, Junhua; Niu, Li

    2012-05-15

    A green, one-step method for synthesis of graphene-Au nanoparticles (graphene-AuNPs) was introduced in this article, using an environmentally benign hexamethylenetetramine (HMTA) as reducing and stabilizing agent. HMTA slowly was hydrolyzed to generate aldehyde ammonia to reduce graphene oxides (GO) and hydrogen tetrachloroaurate (Au precursor). The structure and composition of the graphene-AuNPs nanocomposites were studied by means of ultraviolet visible (UV) absorption spectra, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM). The AuNPs are well-dispersed on graphene nanosheets in narrow size range. The nanocomposites have excellent electrocatalytical properties for catalytic reduction of O(2) and H(2)O(2).

  17. Effects of endogenous formaldehyde in nasal tissues on inhaled formaldehyde dosimetry predictions in the rat, monkey, and human nasal passages.

    PubMed

    Schroeter, Jeffry D; Campbell, Jerry; Kimbell, Julia S; Conolly, Rory B; Clewell, Harvey J; Andersen, Melvin E

    2014-04-01

    Formaldehyde is a nasal carcinogen in rodents at high doses and is an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde have relied on internal dose estimates in the upper respiratory tract. Dosimetry calculations are complicated by the presence of endogenous formaldehyde concentrations in the respiratory mucosa. Anatomically accurate computational fluid dynamics (CFD) models of the rat, monkey, and human nasal passages were used to simulate uptake of inhaled formaldehyde. An epithelial structure was implemented in the nasal CFD models to estimate formaldehyde absorption from air:tissue partitioning, species-specific metabolism, first-order clearance, DNA binding, and endogenous formaldehyde production. At an exposure concentration of 1 ppm, predicted formaldehyde nasal uptake was 99.4, 86.5, and 85.3% in the rat, monkey, and human, respectively. Endogenous formaldehyde in nasal tissues did not significantly affect wall mass flux or nasal uptake predictions at exposure concentrations > 500 ppb; however, reduced nasal uptake was predicted at lower exposure concentrations. At an exposure concentration of 1 ppb, predicted nasal uptake was 17.5 and 42.8% in the rat and monkey; net desorption of formaldehyde was predicted in the human model. The nonlinear behavior of formaldehyde nasal absorption will affect the dose-response analysis and subsequent risk estimates at low exposure concentrations. Updated surface area partitioning of nonsquamous epithelium and average flux values in regions where DNA-protein cross-links and cell proliferation rates were measured in rats and monkeys are reported for use in formaldehyde risk models of carcinogenesis.

  18. Measurement of formaldehyde H{sub 2}CO concentration in air using diode vertical-cavity lasers

    SciTech Connect

    Zaslavskii, V Ya; Nadezhdinskii, Aleksandr I; Ponurovskii, Ya Ya; Chernin, S M

    2011-01-31

    A two-channel gas-analysing spectrometer is developed using a vertical-cavity surface-emitting laser (VCSEL) ({lambda}=1.79 {mu}m) and a multi-pass cell (total optical length 39 m) for studying the absorption spectra and measuring the background concentration of formaldehyde. High-resolution absorption spectra of formaldehyde are obtained within the VCSEL frequency tuning range ({lambda} {approx}1.79 {mu}m). Changing the background concentration of H{sub 2}CO, the sensitivity limit of the gas analyser is estimated. (laser applications)

  19. Accumulated hippocampal formaldehyde induces age-dependent memory decline.

    PubMed

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Wang, Xiaohui; Li, Hui; Luo, Hongjun; Zhou, Jiangning; Qi, Jinshun; He, Rongqiao

    2013-06-01

    Aging is an important factor in memory decline in aged animals and humans and in Alzheimer's disease and is associated with the impairment of hippocampal long-term potentiation (LTP) and down-regulation of NR1/NR2B expression. Gaseous formaldehyde exposure is known to induce animal memory loss and human cognitive decline; however, it is unclear whether the concentrations of endogenous formaldehyde are elevated in the hippocampus and how excess formaldehyde affects LTP and memory formation during the aging process. In the present study, we report that hippocampal formaldehyde accumulated in memory-deteriorating diseases such as age-related dementia. Spatial memory performance was gradually impaired in normal Sprague-Dawley rats by persistent intraperitoneal injection with formaldehyde. Furthermore, excess formaldehyde treatment suppressed the hippocampal LTP formation by blocking N-methyl-D-aspartate (NMDA) receptor. Chronic excess formaldehyde treatment over a period of 30 days markedly decreased the viability of the hippocampus and down-regulated the expression of the NR1 and NR2B subunits of the NMDA receptor. Our results indicate that excess endogenous formaldehyde is a critical factor in memory loss in age-related memory-deteriorating diseases.

  20. Effect of Formaldehyde on Asthmatic Response to Inhaled Allergen Challenge

    PubMed Central

    Ezratty, Véronique; Bonay, Marcel; Neukirch, Catherine; Orset-Guillossou, Gaëlle; Dehoux, Monique; Koscielny, Serge; Cabanes, Pierre-André; Lambrozo, Jacques; Aubier, Michel

    2007-01-01

    Background Exposure to formaldehyde may lead to exacerbation of asthma. Objectives Our aim in this study was to investigate whether exposure to a low level (500 μg/m3) of formaldehyde enhances inhaled allergen responses. Methods Twelve subjects with intermittent asthma and allergy to pollen were exposed, at rest, in a double-blind crossover study to either formaldehyde or purified air for 60 min. The order of exposure to formaldehyde and air-only was randomized, and exposures were separated by 2 weeks. We also performed an allergen inhalation challenge after each exposure. Airway responsiveness to methacholine and lower airway inflammation (induced sputum) were assessed 8 hr after allergen challenge. Results The median dose of allergen producing a 15% decrease in forced expiratory volume in 1 sec (PD15FEV1) was 0.80 IR (index of reactivity) after formaldehyde exposure compared with 0.25 IR after air-only exposure (p = 0.06). Formaldehyde exposure did not affect allergen-induced increase in responsiveness to methacholine (p = 0.42). We found no formaldehyde-associated effect on the airway inflammatory response, in particular the eosinophilic inflammatory response, induced by the allergen challenge 8 hr before. Conclusion In this study, exposure to 500 μg/m3 formaldehyde had no significant deleterious effect on airway allergen responsiveness of patients with intermittent asthma; we found a trend toward a protective effect. PMID:17384766

  1. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    R.W. Hemingway; G.W. McGraw

    1978-01-01

    Gel permeation chromatograpy of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechin, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  2. Formaldehyde condensation products of model phenols for conifer bark tannins

    Treesearch

    Richard W. Hemingway; Gerald W. McGraw

    1978-01-01

    Gel permeation chromatography of the condensation products of phenols and formaldehyde proved effective in understanding the reactions of condensed tannins with formaldehyde. Rates of condensation of phloroglucinols, resorcinols, catechols, (+)catechins, and (-)epicatechin were examined to determine if methylol-tannins from southern pine bark could be prepared as resin...

  3. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  4. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  5. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  6. Low density, resorcinol-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  7. Emission rates of formaldehyde from materials and consumer products found in California homes

    SciTech Connect

    Kelly, T.J.; Smith, D.L.; Satola, J.

    1999-01-01

    Formaldehyde (HCHO) is a toxic air contaminant released indoors from pressed-wood materials and numerous consumer products. Formaldehyde emission data are needed for modeling of indoor personal exposures, health risks, and risk reduction measures. This study determined HCHO emission rates from 55 diverse materials and consumer products under two realistic chamber test conditions, using both time-integrated and continuous real-time measurements. Among dry products, relatively high emissions were found from bare pressed-wood materials made with urea-formaldehyde (UF) resins, and from new (unwashed) permanent press fabrics. UF materials with paper, vinyl, laminate, and other coatings showed HCHO emissions lower by about a factor of 10 than those from bare UF materials. Among wet products, an acid-cured floor finish showed the highest HCHO emissions, greatly exceeding those of any dry product even 24 h after application. Fingernail polish and hardener showed relatively high emission rates, and latex paint and wallpaper relatively low emission rates, but these products emit similar amounts of HCHO because of widely different surface areas of application. Acid-cured finishes, and personal activity patterns and exposures during application of wet products, are key areas for further study.

  8. Associated species in vaporized methanol-formaldehyde solutions

    SciTech Connect

    Silverman, D.C.; Freeman, J.J.

    1983-07-01

    Analysis of vaporized methanolic formaldehyde (50 mol % methanol) by gas chromatography revealed a sum of mole percents of formaldehyde, water, and methanol greater than 100%. This inconsistency was not found with vaporized solutions containing 1 or 10 mol % methanol. Direct evidence for an adduct of methanol and formaldehyde (CH/sub 3/OCH/sub 2/OH) in the vapor phase was found by use of infrared spectroscopy. The spectrum exhibited an absorption at 1140 cm/sup -1/ corresponding to a C-O-C stretch. Reasonable agreement was found between the C-O-C mole percent estimated from infrared spectroscopy, the increased amount of material detected by gas chromatography, and the estimated equilibrium mole percent of the adduct CH/sub 3/OCH/sub 2/OH. These results confirm that in completely vaporized methanolic formaldehyde at 373 to 423 K, one type of adduct predominates. It contains one molecule each of formaldehyde and methanol.

  9. Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles.

    PubMed

    El Sayed, Sameh; Pascual, Lluı́s; Licchelli, Maurizio; Martínez-Máñez, Ramón; Gil, Salvador; Costero, Ana M; Sancenón, Félix

    2016-06-15

    Silica nanoparticles functionalized with thiol reactive units and bulky polar polyamines were used for the selective colorimetric detection of formaldehyde. The reaction of thiols groups in the nanoparticles surface with a squaraine dye resulted in loss of the π-conjugation of the chromophores, and the subsequent bleaching of the solution. However, when formaldehyde was present in the suspension, the thiol-squaraine reaction was inhibited and a chromogenic response was observed. A selective response to formaldehyde was observed only when the thiol and polyamine groups were anchored to the silica surface. The observed selective response was ascribed to the fact that bulky polyamines generate a highly polar environment around thiols, which were only able to react with the small and polar formaldehyde, but not with other aldehydes. The sensing nanoparticles showed a limit of detection (LOD) for formaldehyde of 36 ppb in water.

  10. Removal of Formaldehyde by Activated Carbons Containing Amino Groups.

    PubMed

    Tanada; Kawasaki; Nakamura; Araki; Isomura

    1999-06-01

    Formaldehyde has been used for disinfection and antisepsis in hospitals due to its bactericidal action, but it is toxic to humans. Hence, we developed adsorbates for the removal of formaldehyde. The adsorbate was prepared by the amination of an activated carbon surface. The removal efficiency and the adsorption mechanism of formaldehyde onto the aminated activated carbon were studied. The concentrated sulfuric acid and nitric acid treatment introduced nitro groups onto the surface of the activated carbon. The nitro groups were reduced by the reaction of powdered iron and hydrochloric acid to the amino groups. The amount of formaldehyde adsorbed onto the activated carbon increased with the amination of the activated carbon because of the increasing interaction between the surface of the activated carbon and the formaldehyde. Copyright 1999 Academic Press.

  11. Potential health risks from exposure to indoor formaldehyde.

    PubMed

    Lemus, R; Abdelghani, A A; Akers, T G; Horner, W E

    1998-01-01

    An indoor air quality survey was conducted in Southern Louisiana to determine levels of airborne formaldehyde. Gas chromatography analyses of 419 air samples collected from 53 houses revealed levels of formaldehyde ranging from non-detectable to 6.60 mg/m3. Seventy four percent (312/419) of the samples had detectable amounts of airborne formaldehyde. Of the 312 positive samples, approximately 60% exceeded the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) guideline of 0.123 mg/m3. The highest number of samples exceeding the formaldehyde benchmark were collected in winter. It would appear that in some Southern Louisiana houses, a high level of formaldehyde could serve as a potential upper respiratory irritant.

  12. Lignin-based Phenol-Formaldehyde Resins from Purified CO2 Precipitated Kraft lignin (PCO2KL)

    Treesearch

    Yao Chen; Charles R. Frihart; Zhiyong Cai; Linda F. Lorenz; Nicole M. Stark

    2013-01-01

    To investigate the potential for using purified CO2-precipitated Kraft lignin (PCO2KL) with phenol-formaldehyde (PF) for application as an adhesive in plywood production, two lignin replacement procedures were examined to assess lignin’s effect on bond quality. Methylolation and oxidation with hydrogen peroxide (H

  13. Brain Formaldehyde is Related to Water Intake behavior.

    PubMed

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-10-01

    A promising strategy for the prevention of Alzheimer's disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease.

  14. Brain Formaldehyde is Related to Water Intake behavior

    PubMed Central

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-01-01

    A promising strategy for the prevention of Alzheimer’s disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease. PMID:27699080

  15. Partially-irreversible sorption of formaldehyde in five polymers

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Cox, Steven S.; Zhao, Xiaomin; Frazier, Charles E.; Little, John C.

    2014-12-01

    Due to its environmental ubiquity and concern over its potential toxicity, the mass-transfer characteristics of formaldehyde are of critical importance to indoor air quality research. Previous studies have suggested that formaldehyde mass transfer in polymer is partially irreversible. In this study, mechanisms that could cause the observed irreversibility were investigated. Polycarbonate and four other polymeric matrices were selected and subjected to formaldehyde sorption/desorption cycles. Mass transfer of formaldehyde was partially irreversible in all cases, and three potential mechanisms were evaluated. First, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis was used to investigate possible formaldehyde polymerization on polymer surfaces. ATR-FTIR showed no detectable paraformaldehyde or formaldehyde on the film surfaces that had been exposed to formaldehyde and air. ATR-FTIR did detect aliphatic acids suggesting oxidation had occurred on film surfaces as a result of exposure to formaldehyde. However, additional study suggested that air is not the primary cause for irreversibility. Second, statistical physics theory was tested as a possible explanation. According to this theory, reversible and irreversible sorption could be taking place simultaneously. The irreversible fraction should be constant during sorption and the fraction could be determined by performing a complete sorption/desorption test. The sorption/desorption data was consistent with this theory. Third, chemisorption was considered as another possible cause for irreversibility. Extraction/fluorimetry testing of post-sorption and post-desorption polymer films showed measurable quantities of formaldehyde suggesting that some of the chemisorbed formaldehyde was reversible at the higher extraction temperature. Further quantitative study on chemical reaction products is needed.

  16. Development of melamine modified urea formaldehyde resins based o nstrong acidic pH catalyzed urea formaldehyde polymer

    Treesearch

    Chung-Yun Hse

    2009-01-01

    To upgrade the performance of urea-formaldehyde (UF) resin bonded particleboards, melamine modified urea-formaldehyde (MUF) resins based on strong acidic pH catalyzed UF polymers were investigated. The study was conducted in a series of two experiments: 1) formulation of MUF resins based on a UF polymer catalyzed with strong acidic pH and 2) determination of the...

  17. Hardness evaluation of cured urea-formaldehyde resins with different formaldehyde/urea mole ratios using nanoindentation method

    Treesearch

    Byung-Dae Park; Charles R. Frihart; Yan Yu; Adya P. Singh

    2013-01-01

    To understand the influence of formaldehyde/urea (F/U) mole ratio on the properties of urea–formaldehyde (UF) resins, this study investigated hardness of cured UF resins with different F/U mole ratios using a nanoindentation method. The traditional Brinell hardness (HB) method was also used...

  18. AuPdFe ternary solution model and applications to understanding the fO2 of hydrous, high-pressure experiments

    NASA Astrophysics Data System (ADS)

    Barr, Jay A.; Grove, Timothy L.

    2010-11-01

    This study provides an experimental calibration of the equilibrium constant for AuPdFe alloys with Fe-bearing silicate melts. The ideal metal capsules for H2O-bearing experiments are pure Au, because of its slow hydrogen diffusivity. However, above the melting point of Au, other materials must be used. The solution to this problem is to use AuPd alloy capsules. However, under most relevant fO2 conditions, this alloy absorbs Fe from the coexisting silicate melt, thus changing the bulk composition of the experimental charge. This study combines previous work on the Au-Pd, Pd-Fe, and Au-Fe binary systems to develop a ternary thermodynamic solution model for AuPdFe. This solution model is used with experiments to calculate an equilibrium reaction coefficient for the FeOmelt → Fealloy + 1/2O2 exchange reaction. Using a non-ideal ternary solution model, the fO2 conditions of hydrous, piston cylinder experiments can be estimated by analyzing the sample capsule alloy and the coexisting liquid composition.

  19. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant.

    PubMed

    Tabakova, Tatyana; Manzoli, Maela; Vindigni, Floriana; Idakiev, Vasko; Boccuzzi, Flora

    2010-03-25

    The impact of ceria doping by Zn (atomic ratio Zn/(Zn + Ce) = 0.05) on the structural and catalytic properties of Au/CeO(2) catalyst was studied. The ceria modification influenced the catalytic activity toward purification of hydrogen via water-gas shift (WGS) and preferential CO oxidation (PROX) reactions in a different way: it diminished the WGS activity and improved the PROX performance. A characterization by FTIR spectroscopy was conducted to explain differences in the catalytic performance. The nature of gold active species after different pretreatments, under different atmospheres (H(2), D(2)), and after admission of CO and its subsequent interaction with (18)O(2) was investigated. Evidence has been found of the dissociation of hydrogen at room temperature on gold, producing on the oxidized sample a broad absorption assigned to Au-OH vibrations, whereas on the reduced one, bands at 3200 and 1800 cm(-1) ascribed, respectively, to Au-OH and Au-H species have been detected. For the first time, the formation of Au-hydride on supported heterogeneous catalysts was proposed. These features were stronger on the Au/CeO(2) sample than on the Au/Zn-CeO(2) sample. The availability of highly dispersed gold clusters in contact with oxygen vacancies on the ceria surface could contribute to higher WGS activity, whereas the steps of small gold particles are the active sites for both CO and oxygen activation during the PROX reaction.

  20. Aβ seeds resist inactivation by formaldehyde.

    PubMed

    Fritschi, Sarah K; Cintron, Amarallys; Ye, Lan; Mahler, Jasmin; Bühler, Anika; Baumann, Frank; Neumann, Manuela; Nilsson, K Peter R; Hammarström, Per; Walker, Lary C; Jucker, Mathias

    2014-10-01

    Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer's disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material.

  1. Aβ seeds resist inactivation by formaldehyde

    PubMed Central

    Fritschi, Sarah K.; Cintron, Amarallys; Ye, Lan; Mahler, Jasmin; Bühler, Anika; Baumann, Frank; Neumann, Manuela; Nilsson, K. Peter R.; Hammarström, Per; Walker, Lary C.; Jucker, Mathias

    2014-01-01

    Cerebral β-amyloidosis can be exogenously induced by the intracerebral injection of brain extracts containing aggregated β-amyloid (Aβ) into young, pre-depositing Aβ precursor protein- (APP) transgenic mice. Previous work has shown that the induction involves a prion-like seeding mechanism in which the seeding agent is aggregated Aβ itself. Here we report that the β-amyloid-inducing activity of Alzheimer’s disease (AD) brain tissue or aged APP-transgenic mouse brain tissue is preserved, albeit with reduced efficacy, after formaldehyde fixation. Moreover, spectral analysis with amyloid conformation-sensitive luminescent conjugated oligothiophene dyes reveals that the strain-like properties of aggregated Aβ are maintained in fixed tissues. The resistance of Aβ seeds to inactivation and structural modification by formaldehyde underscores their remarkable durability, which in turn may contribute to their persistence and spread within the body. The present findings can be exploited to establish the relationship between the molecular structure of Aβ aggregates and the variable clinical features and disease progression of AD even in archived, formalin-fixed autopsy material. PMID:25193240

  2. Formaldehyde exposure and acute health effects study

    SciTech Connect

    Quackenboss, J.J.; Lebowitz, M.D.; Michaud, J.P.; Bronnimann, D. )

    1989-01-01

    To assess the effects of formaldehyde exposures on health, exposure groups were defined using baseline exposure and health questionnaires. Formaldehyde concentrations were poorly correlated with these exposure classifications, perhaps due to the time delay between classification and monitoring. The 151 households reported here had a mean HCHO concentration of 35 (S.E. 1.5 and median 30) {mu}g/m{sup 3}. Passive samplers prepared in our lab were calibrated in a chamber to derive an estimated sampling rate of 0.311 {mu}g/(mg {center dot} m{sup {minus}3} {center dot} hr). They were also compared to commercially available samplers inside of the homes, with a correlation coefficient of 0.896 and mean difference of 2.6 {mu}g/m{sup 3}. In this report of initial findings from an ongoing study, daily symptoms and peak expiratory flow measurements were compared with an HCHO exposure classification based on the median measured concentrations. None of the symptoms groups were related to HCHO exposure when controlling for age and sex. There was a significant relationship between HCHO exposure and variability in peak expiratory flows that was dependent on age group. It may be especially important to assess the variability in reactive individuals and children to determine the short-term effects of HCHO exposures and possible long-term consequences.

  3. The roaming atom pathway in formaldehyde decomposition

    NASA Astrophysics Data System (ADS)

    Lahankar, Sridhar A.; Chambreau, Steven D.; Townsend, Dave; Suits, Frank; Farnum, John; Zhang, Xiubin; Bowman, Joel M.; Suits, Arthur G.

    2006-07-01

    We present a detailed experimental and theoretical investigation of formaldehyde photodissociation to H2 and CO following excitation to the 2141 and 2143 transitions in S1. The CO velocity distributions were obtained using dc slice imaging of single CO rotational states (v =0, jCO=5-45). These high-resolution measurements reveal the correlated internal state distribution in the H2 cofragments. The results show that rotationally hot CO (jCO˜45) is produced in conjunction with vibrationally "cold" H2 fragments (v =0-5): these products are formed through the well-known skewed transition state and described in detail in the accompanying paper. After excitation of formaldehyde above the threshold for the radical channel (H2CO→H+HCO) we also find formation of rotationally cold CO (jCO=5-28) correlated to highly vibrationally excited H2 (v =6-8). These products are formed through a novel mechanism that involves near dissociation followed by intramolecular H abstraction [D. Townsend et al., Science 306, 1158 (2004)], and that avoids the region of the transition state entirely. The dynamics of this "roaming" mechanism are the focus of this paper. The correlations between the vibrational states of H2 and rotational states of CO formed following excitation on the 2143 transition allow us to determine the relative contribution to molecular products from the roaming atom channel versus the conventional molecular channel.

  4. Conceptual design study of concentrator enhanced solar arrays for space applications. 2kW Si and GaAs systems at 1 AU

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The effect of concentration level on the specific power for a deployable, thin, gallium arsenide cell array in geosynchronous orbit for 10 years in conjunction with a two dimensional flat plate trough concentrator (V trough) and also with a multiple flat plate concentrator was investigated as well as the effects for a conventional silicon cell array on a rigid substrate. For application to a thin GaAs array at 1 AU for 10 years, the V trough produces a 19% benefit in specific power and a dramatic reduction in array area, while the multiple flat plate collector design is not only of no benefit, but is a considerable detriment. The benefit it achieves by reducing array area is duplicated by the 2D design. For the silicon array on a rigid substrate, improvement in performance due to a concentrator with ordinary mirror coating is quite small: 9% increase in specific power, and 13% reduction in array area. When the concentrator mirrors are coated with an improved cold mirror coating, somewhat more significant results are obtained: 31% specific power improvement; and 27% area reduction. In both cases, a 10 year exposure reduces BOL output by 23%.

  5. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  6. ACTION OF FORMALDEHYDE ON ENZYMES AND ON CERTAIN PBOTEIDS

    PubMed Central

    Bliss, C. L.; Novy, F. G.

    1899-01-01

    The following general conclusions may be drawn from the preceding work: Fibrin is altered by formaldehyde and is then less easily digested by pepsin and by trypsin. Papaïn is apparently unable to digest fibrin even when this is exposed to very weak formaldehyde (1:1000) for a very short time. The casein of milk, on contact with formaldehyde, undergoes rapid alteration and is as a result not coagulated by rennet, or but very slowly. Such altered casein, like similar fibrin, is not readily digested by the proteolytic ferments. The longer the formaldehyde acts on casein and on fibrin the more marked is the result. Pepsin is not affected by a one per cent solution of formaldehyde, even when the mixture has stood for four weeks. Even a five per cent solution of formaldehyde acting for three weeks has no effect on pepsin. Contrary results obtained by others are due to an alteration of the fibrin by the formaldehyde. A putrid solution of pepsin in distilled water one month old digests fibrin as readily as a fresh solution. Rennet is not affected even by a four per cent solution of formaldehyde acting for several weeks. The absence of coagulation at times is due to the action of formaldehyde on the casein of the milk and not on the rennet ferment. Papaïn is very quickly altered by formaldehyde, even in very dilute solution. Moreover, it is unable to digest fibrin that has been exposed to the action of a very dilute solution of formaldehyde for a short time. Trypsin is altered by formaldehyde to such an extent that digestion of fibrin will not take place, or but very slowly. The extent to which trypsin is affected by formaldehyde depends largely upon the amount of organic matter present, as well as on the amount of ferment in the solution. Amylopsin is not destroyed by very dilute solutions of formaldehyde, but stronger solutions decrease the activity of the ferment, and if used in sufficient concentration will destroy it completely. Ptyalin, like the diastatic ferment of

  7. Advanced Characterization Techniques for Nanoparticles for Cancer Research: Applications of SEM and NanoSIMS for Locating Au Nanoparticles in Cells

    PubMed Central

    Kempen, Paul J; Hitzman, Chuck; Sasportas, Laura S; Gambhir, Sanjiv S; Sinclair, Robert

    2014-01-01

    The ability of nano secondary ion mass spectrometry (NanoSIMS) to locate and analyze Raman active gold core nanoparticles (R-AuNPs) in a biological system is compared with the standard analysis using the scanning electron microscope (SEM). The same cell with R-AuNPs on and inside the macrophage was analyzed with both techniques to directly compare them. SEM analysis showed a large number of nanoparticles within the cell. Subsequent NanoSIMS analysis showed fewer R-AuNPs with lower spatial resolution. SEM was determined to be superior to NanoSIMS for the analysis of inorganic nanoparticles in complex biological systems. PMID:25364091

  8. Advanced Characterization Techniques for Nanoparticles for Cancer Research: Applications of SEM and NanoSIMS for Locating Au Nanoparticles in Cells.

    PubMed

    Kempen, Paul J; Hitzman, Chuck; Sasportas, Laura S; Gambhir, Sanjiv S; Sinclair, Robert

    2013-05-13

    The ability of nano secondary ion mass spectrometry (NanoSIMS) to locate and analyze Raman active gold core nanoparticles (R-AuNPs) in a biological system is compared with the standard analysis using the scanning electron microscope (SEM). The same cell with R-AuNPs on and inside the macrophage was analyzed with both techniques to directly compare them. SEM analysis showed a large number of nanoparticles within the cell. Subsequent NanoSIMS analysis showed fewer R-AuNPs with lower spatial resolution. SEM was determined to be superior to NanoSIMS for the analysis of inorganic nanoparticles in complex biological systems.

  9. Facile synthesis and intraparticle self-catalytic oxidation of dextran-coated hollow Au-Ag nanoshell and its application for chemo-thermotherapy.

    PubMed

    Jang, Hongje; Kim, Young-Kwan; Huh, Hyun; Min, Dal-Hee

    2014-01-28

    Galvanic replacement reaction is a useful method to prepare various hollow nanostructures. We developed fast and facile preparation of biocompatible and structurally robust hollow Au-Ag nanostructures by using dextran-coated Ag nanoparticles. Oxidation of the surface dextran alcohols was enabled by catalytic activity of the core Au-Ag nanostructure, introducing carbonyl groups that are useful for further bioconjugation. Subsequent doxorubicin (Dox) conjugation via Schiff base formation was achieved, giving high payload of approximately 35 000 Dox per particle. Near-infrared-mediated photothermal conversion showed high efficacy of the Dox-loaded Au-Ag nanoshell as a combinational chemo-thermotherapy to treat cancer cells.

  10. Au20Si12: A hollow Catalan pentakis dodecahedron.

    PubMed

    Guo, J J; Zhao, H Y; Wang, J; Ai, L Y; Liu, Y

    2017-02-14

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  11. Au20Si12: A hollow Catalan pentakis dodecahedron

    NASA Astrophysics Data System (ADS)

    Guo, J. J.; Zhao, H. Y.; Wang, J.; Ai, L. Y.; Liu, Y.

    2017-02-01

    A stable hollow Au20Si12 cage with Ih symmetry has been predicted using first-principles density functional theory. The stability of the cage-like Au20Si12 structure is verified by vibrational frequency analysis and molecular dynamics simulations. A relatively large highest occupied molecular orbital-lowest unoccupied molecular orbital gap of 1.057 eV is found. Electronic structure analysis shows that clearly p-d hybridizations between Si atoms and Au atoms are of great importance for the stability of Au20Si12 cage. The cage-like Au20Si12 structure may have potential applications in semiconductor industry and microelectronics.

  12. Effects of soft beam energy on the microstructure of Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu solder joints in lensed-SM-fiber to laser-diode-affixing application

    NASA Astrophysics Data System (ADS)

    Tan, C. W.; Chan, Y. C.; Leung, Bernard; Liu, H. D.

    2008-01-01

    This paper reports on the effectiveness of soft beam energy as a heat source to form an optimum solder joint to fix a lensed fiber permanently on a Ni/Au-plated substrate. Solders, i.e., Pb37Sn, Au20Sn, and Sn3.5Ag0.5Cu (SAC) [wt%] were evaluated for this fluxless application. The microstructures of the solder joints have been examined using scanning electron microscopy (SEM), in order to understand the response of these solder materials to the focussed white light. Obviously, the exposure time has a greater effect on the soldering temperature before reaching the peak temperature, which is determined by the power. A power setting of 40 W can reach approximately 340 °C, 30 W can reach about 310 °C while 25 W can easily reach 260 °C. In general, a higher soldering temperature than the melting temperature is required to form good wetting solder joints for fluxless applications. However, too high an input thermal energy may result in premature aging for the cases of Pb37Sn and SAC, and lateral cracks for the case of Au20Sn. The thermal cracks and voids observed in Au20Sn solder joint were attributed to the fact that the soft beam heating profile does not suit the AuSn preform. Out of these three solder types, SAC demonstrated just the right response to the soft beam, i.e., good wetting, fine and homogeneous structure, and no cracks or other visible failures.

  13. High-yield electrochemical production of formaldehyde from CO2 and seawater.

    PubMed

    Nakata, Kazuya; Ozaki, Takuya; Terashima, Chiaki; Fujishima, Akira; Einaga, Yasuaki

    2014-01-13

    The catalytic, electrocatalytic, or photocatalytic conversion of CO2 into useful chemicals in high yield for industrial applications has so far proven difficult. Herein, we present our work on the electrochemical reduction of CO2 in seawater using a boron-doped diamond (BDD) electrode under ambient conditions to produce formaldehyde. This method overcomes the usual limitation of the low yield of higher-order products, and also reduces the generation of H2 . In comparison with other electrode materials, BDD electrodes have a wide potential window and high electrochemical stability, and, moreover, exhibit very high Faradaic efficiency (74%) for the production of formaldehyde, using either methanol, aqueous NaCl, or seawater as the electrolyte. The high Faradaic efficiency is attributed to the sp(3)-bonded carbon of the BDD. Our results have wide ranging implications for the efficient and cost-effective conversion of CO2.

  14. A Formaldehyde Sensor Based on Molecularly-Imprinted Polymer on a TiO₂ Nanotube Array.

    PubMed

    Tang, Xiaohui; Raskin, Jean-Pierre; Lahem, Driss; Krumpmann, Arnaud; Decroly, André; Debliquy, Marc

    2017-03-24

    Today, significant attention has been brought to the development of sensitive, specific, cheap, and reliable sensors for real-time monitoring. Molecular imprinting technology is a versatile and promising technology for practical applications in many areas, particularly chemical sensors. Here, we present a chemical sensor for detecting formaldehyde, a toxic common indoor pollutant gas. Polypyrrole-based molecularly-imprinted polymer (PPy-based MIP) is employed as the sensing recognition layer and synthesized on a titanium dioxide nanotube array (TiO₂-NTA) for increasing its surface-to-volume ratio, thereby improving the sensor performance. Our sensor selectively detects formaldehyde in the parts per million (ppm) range at room temperature. It also shows a long-term stability and small fluctuation to humidity variations. These are attributed to the thin fishnet-like structure of the PPy-based MIP on the highly-ordered and vertically-aligned TiO₂-NTA.

  15. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  16. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  17. 40 CFR 80.56 - Measurement methods for formaldehyde and acetaldehyde.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Measurement methods for formaldehyde... Measurement methods for formaldehyde and acetaldehyde. (a) Formaldehyde and acetaldehyde will be measured by....140 of this chapter for formaldehyde analysis. Diluted exhaust sample volumes must be at least 15 L...

  18. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  19. Plasmon coupling-enhanced two-photon photoluminescence of Au@Ag core-shell nanoparticles and applications in the nuclease assay

    NASA Astrophysics Data System (ADS)

    Yuan, Peiyan; Ma, Rizhao; Gao, Nengyue; Garai, Monalisa; Xu, Qing-Hua

    2015-05-01

    Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity.Au and Ag nanoparticles (NPs) have been known to display significantly enhanced two-photon photoluminescence (2PPL) upon the formation of nanoparticle aggregates. The enhancement effect of the core-shell nanoparticles has not been explored so far. Here we have prepared Au@Ag bimetallic core-shell nanoparticles with different thicknesses (1.1, 2.1, 3.5, 4.5, and 5.5 nm) of silver coating on 19 nm Au NPs to investigate the composition effects on plasmon coupling-enhanced 2PPL. A maximum 2PPL enhancement factor (IcoupledNPs/IisolatedNPs) of up to 840-fold was obtained for Au@Ag NPs with ~3.5 nm Ag nanoshells. These Au@Ag NPs were subsequently utilized in two-photon detection of S1 nuclease as a photoluminescence turn on probe. This method displayed high sensitivity with the limit of detection of 1.4 × 10-6 U μL-1 and an excellent selectivity. Electronic supplementary information (ESI) available: TEM images, histograms of the sizes of Au@Ag NPs; extinction, 2PPL spectra of aggregated NPs, cysteamine, ssDNA and S1 nuclease; 2-photon action cross section of aggregated NPs; lengths of ssDNA and [NaCl] effect; excitation power

  20. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    SciTech Connect

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has been developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.

  1. Toxicology of urea formaldehyde and polyurethane foam insulation.

    PubMed

    Harris, J C; Rumack, B H; Aldrich, F D

    1981-01-16

    Two types of foam insulation are in wide use. Urea formaldehyde foam is a relatively inexpensive, easily installed, and efficient insulation. Toxicity from this insulation is related to release of free formaldehyde into the home. Mild to incapacitating symptoms have been reported in occupants of urea formaldehyde-insulated homes. Airborne formaldehyde levels frequently have exceeded standards set for occupational exposure. The long-term consequences of such exposure are unknown. Because of publicity over the toxicity of urea formaldehyde foam, many physicians and patients have confused urea formaldehyde and polyurethane foam. Unlike urea formaldehyde, polyurethane foam is fully cured before construction. Toxicity occurs only during manufacture and curing. To date, there have been no reports to our knowledge of toxicity in occupants of polyurethane-insulated homes. However, toxicity caused by pyrolysis products may occur during combustion in homes insulated with either type of insulation. This report details 48 patients in whom complete medical data were obtained out of the first 100 patients contacting the Rocky Mountain Poison Center.

  2. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  3. Initial Measurements of Radiocarbon In Atmospheric Formaldehyde at Narragansett, RI

    NASA Astrophysics Data System (ADS)

    Shen, H.; Heikes, B. G.; Xu, L.; McNichol, A. P.; Olson, J. R.

    2008-12-01

    Formaldehyde is an intermediate in the atmospheric oxidation of nearly every volatile organic compound (VOC) and is important to odd-hydrogen radicals and ozone chemistry. It is directly observed from space and its distributions are used to constrain biogenic emissions of VOCs, specifically isoprene. The relative contribution of fossil VOCs and biogenic VOCs to formaldehyde, to isoprene emission estimates and subsequently to ozone and oxidant chemistry is expected to vary seasonally and spatially due to VOC speciation, emission patterns, and reactivity. The radiocarbon, 14C, content of formaldehyde is useful in assessing the relative contributions of fossil and biogenic VOC groups to formaldehyde. We report a compound specific radiocarbon analysis (CSRA) method for formaldehyde based upon gaseous formaldehyde collection, derivatization to thiazolidine, preparative capillary gas chromatography separation, and AMS analysis. Ambient measurements from Narragansett, RI, made in winter and summer 2007 are presented. On 11 of 13 samples, we find 80 to >95% of the collected formaldehyde is of fossil origin and, contrary to our initial hypothesis, we see no seasonal shift in proportion. The remaining 2 samples, one each from winter and summer, are 30-40% biogenic carbon. The measurements are interpreted considering fossil-biogenic source attribution and local transport conditions and contrasted with prior measurements from Nova Scotia. Further, CSRA measurement of acetaldehyde is feasible with the method.

  4. Systemic Allergic Contact Dermatitis After Formaldehyde-Containing Influenza Vaccination.

    PubMed

    Kuritzky, L Alexandra; Pratt, Melanie

    2015-01-01

    Systemic contact dermatitis occurs when a patient sensitized to an allergen topically is systemically reexposed to the allergen and develops a cutaneous eruption. To report the case of a 48-year-old male who developed explosive dermatitis following injection of a formaldehyde-containing influenza vaccine and was subsequently shown to be strongly positive to formaldehyde and formaldehyde-releasing allergens by patch testing, as well as to review the literature for similar cases. A PubMed search was made using the following search terms: systemic contact dermatitis, formaldehyde, influenza, and vaccine. A review of the literature revealed 2 cases of systemic contact dermatitis from formaldehyde derived from aspartame and 1 case from a thimerosal-containing influenza vaccine. No cases caused by formaldehyde in influenza or other vaccines were found. This case highlights the importance of considering systemic allergic contact dermatitis in any patient presenting with dermatitis following injection of a formaldehyde-containing vaccine. © The Author(s) 2015.

  5. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    SciTech Connect

    Kapoor, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-N and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  6. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2016-05-01

    We present electronic properties of atomic layer of Au, Au2-N, Au2-O and Au2-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G0. Similarly, Au2-N and Au2-F monolayers show 4G0 and 2G0 quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au2-O monolayer. Most interestingly, half metalicity has been predicted for Au2-N and Au2-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  7. Comparison of formaldehyde emission from building finishing materials at various temperatures in under heating system; ONDOL.

    PubMed

    Kim, Sumin; Kim, Hyun-Joong

    2005-10-01

    The objective of this research was to investigate the effect of various temperatures, room, 37 and 50 degrees C, on formaldehyde emission from floor materials, such as laminate and plywood floorings, and furniture materials, such as MDF and particleboard veneered with decorative paper foil, by desiccator's method. The temperature conditions were set up by, measuring the temperature in a Korean under heating system. To maintain an indoor air temperature of 20 degrees C, the temperature of the flooring surface was about 37 degrees C and the temperature of the cement mortar was 50 degrees C. The initial formaldehyde emission of the laminate flooring and plywood flooring was 1.44 and 0.63 mg/l, and for MDF and particleboard it was 4.73 and 4.95 mg/l, respectively. Floor materials were under E1 grade while furniture materials were under E2 grade in terms of formaldehyde emission. Because of the under heating system, the flooring materials were exposed to 37 and 50 degrees C, while the furniture materials mostly existed at room temperature. At 37 and 50 degrees C, the formaldehyde emission level of the flooring materials was already under 0.3 ppm (F level by JIS A 1460, application possibility without area limit) after 10 days and the emission had decreased further (0.03-0.10 mg/l) after 28 days. These levels are not injurious to the human body and will not cause sick house syndrome (SHS). The problem, however, is the furniture materials such as MDF and particleboard. As these materials are not exposed to high temperature (50 degrees C in this experiment) in living condition, it was still E2 grade of formaldehyde emission level at room temperature remained even after 28 days. Although there will be variations with the volume of furniture materials and the indoor conditions, furniture materials are the principal cause of indoor air quality pollution in Korean with the under heating system. Koreans spend most of their time sitting on ONDOL (heated) floors, with their

  8. The Development of Conductive Elements for the Selective Detection of Formaldehyde and Cotinine

    NASA Astrophysics Data System (ADS)

    Antwi-Boampong, Sadik

    The development of new materials and techniques presents an opportunity to revisit old problems. Innovations in materials engineering revolutionize the status quo by expanding the tool kit needed to develop robust solutions to complex problems. Challenges that had hitherto been intractable become surmountable; previously established methods are significantly enhanced; fresh impetus is injected into the materials design engine. In one way or another, every scientist contributes to this dynamic creative process where ideas are incubated and developed through fundamental research that culminates in compelling findings applicable in various realms of science. The work presented herein embodies this ethos. Our investigations have applied the relatively nascent technology of molecular imprinting to develop sensing elements for detection of cotinine and formaldehyde. Additionally, we have used different polymer systems to address the inherent limitations of conventional materials using a simple, cost-effective and efficient materials approach. Specifically, in Part I, we investigate molecular imprinting of nylon-6, polyvinylphenol and ElvamideRTM, with cotinine. We examine the capacity of these materials as polymer hosts for molecular imprinting by studying the effect of cotinine imprinting on their nanomechanical properties. By monitoring variations in mechanical properties induced by cotinine templating, we determine the factors critical for effective imprinting and ultimately demonstrate that polyvinylphenol is the most suitable polymer host. Based on these results, we develop a cotinine-imprinted polyvinylphenol-single walled carbon nanotube sensor that readily detects cotinine. Using electrical, spectral and chromatographic characterization, we rigorously demonstrate the enhanced affinity programmed into the sensing layer via molecular imprinting. Part II is dedicated to a familiar problem: formaldehyde sensing. While this challenge has been a trope of the

  9. Core pathways operating during methylotrophy of Bacillus methanolicus MGA3 and induction of a bacillithiol-dependent detoxification pathway upon formaldehyde stress.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Vorholt, Julia A

    2015-12-01

    Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations. © 2015 John Wiley & Sons Ltd.

  10. A rapid analytical and quantitative evaluation of formaldehyde in squid based on Tri-step IR and partial least squares (PLS).

    PubMed

    Gu, Dong-Chen; Zou, Meng-Jun; Guo, Xiao-Xi; Yu, Pan; Lin, Zhi-Wei; Hu, Tu; Wu, Ya-Fen; Liu, Yuan; Gan, Jian-Hong; Sun, Su-Qin; Wang, Xi-Chang; Xu, Chang-Hua

    2017-08-15

    Formaldehyde abuse for retaining squid freshness is detrimental to public health. The aim is to establish a rapid and quantitative detection method of formaldehyde in squid for screening massive samples. A linear relationship between formaldehyde concentration in squid and formaldehyde concentration in squid soaked water was observed using HPLC. Chemical profile variances of squids were rapidly analyzed by Tri-step infrared spectroscopy. Specifically, with increasing formaldehyde concentration, peak intensities of 2927cm(-1) (vas(CH2)), 1081cm(-1) (glycogen), 1631cm(-1) (β-sheet proteins) decreased while 1655cm(-1) (α-helix proteins) increased. Spectral curve-fitting results further disclosed that β-sheet proteins were transformed to α-helix and β-turn conformations. Furthermore, a quantitative prediction model based on IR spectra was established by PLS (R(2), 0.9787; RMSEC, 5.51). The developed method was applicable for rapid (c.a. 5min) and quantitative analysis of formaldehyde in squids with LOD of 15mg/kg. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres and their catalytic applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Tan, Li; Wang, Ge; Yang, Mu

    2015-03-01

    Double-shelled sea urchin-like yolk-shell Fe3O4/TiO2/Au microspheres were successfully synthesized through loading Au nanoparticles on the Fe3O4/TiO2 support by a in situ reduction of HAuCl4 with NaBH4 aqueous solution. These microspheres possess tunable cavity size, adjustable shell layers, high structural stability and large specific surface area. The Au nanoparticles of approximately 5 nm in diameter were loaded both on the TiO2 nanofibers and inside the cavities of sea urchin-like yolk-shell Fe3O4/TiO2 microspheres. The sea urchin-like structure composed of TiO2 nanofibers ensure the good distribution of the Au nanoparticles, while the novel double-shelled yolk-shell structure guarantees the high stability of the Au nanoparticles. Furthermore, the Fe3O4 magnetic core facilitates the convenient recovery of the catalyst by applying an external magnetic field. The Fe3O4/TiO2/Au microspheres display excellent activities and recycling properties in the catalytic reduction of 4-nitrophenol (4-NP): the rate constant is 1.84 min-1 and turnover frequency is 5457 h-1.

  12. A study on the effect of low energy ion beam irradiation on Au/TiO2 system for its application in photoelectrochemical splitting of water

    NASA Astrophysics Data System (ADS)

    Verma, Anuradha; Srivastav, Anupam; Sharma, Dipika; Banerjee, Anamika; Sharma, Shailja; Satsangi, Vibha Rani; Shrivastav, Rohit; Avasthi, Devesh Kumar; Dass, Sahab

    2016-07-01

    Nanostructured TiO2 thin films were deposited on indium tin oxide (ITO) substrate via sol-gel technique and were modified by plasmonic Au layer. The plasmonic Au modified TiO2 (Au/TiO2) thin films were then irradiated with 500 keV Ar2+ ion beam at different ion fluences viz. 1 × 1016, 3 × 1016 and 1 × 1017 to study the effect of nuclear energy deposition on the morphology, crystallinity, band gap, surface plasmon resonance (SPR) peak exhibited by Au particles and photoelectrochemical properties of the system. Prepared thin films were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS) measurements and UV-visible spectroscopy. The photoelectrochemical measurements revealed that both Au/TiO2 and Au/TiO2 thin film irradiated at 1 × 1016 fluence exhibits enhanced photoelectrochemical response in comparison to pristine TiO2. The film irradiated at 1 × 1016 fluence offered maximum applied bias photon-to-current efficiency (ABPE) and shows 6 times increment in photocurrent density which was attributed to more negative flat band potential, maximum decrease in band gap, high open circuit voltage (Voc) and reduced charge transfer resistance.

  13. Β-cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application.

    PubMed

    Chen, Ming; Shen, Xiao; Liu, Peipei; Wei, Ying; Meng, Yang; Zheng, Gang; Diao, Guowang

    2015-03-30

    Based on the self-assembly strategy, β-cyclodextrin polymer (β-CDP) was used as a linker to connect reduced graphene oxide (rGO) and p-aminothiophenol (pATP). Then, pre-prepared gold nanoparticles (AuNPs) can self-assemble onto the surface of pATP-β-CDP/rGO to obtain new ternary nanocomposites AuNPs/pATP-β-CDP/rGO. The amount or the density of AuNPs can be adjusted by changing the concentration of pATP. UV-vis and (1)H NMR spectra confirmed the formation of inclusion complex between pATP and β-CDP. β-CDP might improve the dispersity of rGO in aqueous and the surface property of rGO. AuNPs/pATP-β-CDP/rGO modified electrode displayed high electrochemical response toward a pesticide-imidacloprid (IDP). The enrichment capability and molecular recognition of β-CDP and the catalytic property of AuNPs for IDP molecules synergistically promoted the electrochemical response of rGO modified electrode. Additionally, ternary nanocomposites exhibited the good electrocatalytic performance for oxygen reduction in O2-saturated 0.1M H2SO4 solution. The proposed synthesis strategy provided a facile, feasible and effective method for development of electrochemical sensors and Au-based catalysts for fuel cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO(2)2+.

    PubMed

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH(4) as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl(2) and NaH(2)PO(2), and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO(2)(2+), AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L(-1) UO(2)(2+) and 5.0-50 pmol L(-1) UO(2)(2+), respectively.

  15. Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria.

    PubMed

    Vorholt, Julia A

    2002-10-01

    Methylotrophic bacteria can grow on a number of substrates as energy source with only one carbon atom, such as methanol, methane, methylamine, and dichloromethane. These compounds are metabolized via the cytotoxin formaldehyde. The formaldehyde consumption pathways, especially the pathways for the oxidation of formaldehyde to CO(2) for energy metabolism, are a central and critical part of the metabolism of these aerobic bacteria. Principally, two main types of pathways for the conversion of formaldehyde to CO(2) have been described: (1) a cyclic pathway initiated by the condensation of formaldehyde with ribulose monophosphate, and (2) distinct linear pathways that involve a dye-linked formaldehyde dehydrogenase or C(1) unit conversion bound to the cofactors tetrahydrofolate (H(4)F), tetrahydromethanopterin (H(4)MPT), glutathione (GSH), or mycothiol (MySH). The pathways involving the four cofactors have in common the following sequence of events: the spontaneous or enzyme-catalyzed condensation of formaldehyde and the respective C(1) carrier, the oxidation of the cofactor-bound C(1) unit and its conversion to formate, and the oxidation of formate to CO(2). However, the H(4)MPT pathway is more complex and involves intermediates that were previously known solely from the energy metabolism of methanogenic archaea. The occurrence of the different formaldehyde oxidation pathways is not uniform among different methylotrophic bacteria. The pathways are in part also used by other organisms to provide C(1) units for biosynthetic reactions (e.g., H(4)F-dependent enzymes) or detoxification of formaldehyde (e.g., GSH-dependent enzymes).

  16. [Inactivation of formaldehyde by semicarbazide in disinfectant tests with viruses].

    PubMed

    Schoenemann, W

    1986-10-01

    In suspension tests with viruses formaldehyde is--even in weak concentrations--toxic for tissue cultures. Through addition of semicarbazide in a ratio of one part of 10% semicarbazide to one part of 0.7% formaldehyde, which is equivalent to a molar ratio of 3.8:1, the toxicity will be neutralized if semicarbazide is added to the tissue cultures before their being inoculated with the virus-disinfectant-mixture. In qualitative experiments the toxicity is completely neutralized, in quantitative ones it is reduced by a factor of 10 up to 100. Thus the evaluation of the virucidal capacity of disinfectants containing formaldehyde is conspicuously improved.

  17. Formaldehyde: a candidate toxic air contaminant. Final report

    SciTech Connect

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  18. [Effects of formaldehyde on germ cells of male mice].

    PubMed

    Tang, Mingde; Xie, Ying; Yi, Yizhen; Wang, Wei

    2003-11-01

    General toxicity and genetic materials damage of formaldehyde on germ cells in different stages was studied. In order to discover the toxicity mechanism of formaldehyde on germ cells and the biomarkers of effect after the presence of damage in germ cells and the estimation index, the relationships between the damage of germ cells and the MDA, SDH activity and Cu and Zn. in testicle tissue were investigated. Male mice exposed to formaldehyde by i.p. for 5 days. Formaldehyde doses were: 0.20 mg/kg, 2.00 mg/kg, 20.00 mg/kg. Mice were killed at the 6th day and the 14th day. HE staining was used to study the pathological changes happened in testicle tissue. In order to study the changes in sperm, the sperms and the abnormality of the sperm's heads were observed. In order to study the damage of the genetic material in the germ cells, the frequencies of sister chromosome exchanges and the frequencies of MN cells were studied. MDA was measured by MDA diagnosis box. Copper and zinc were determined by FAAS. US was used to determine the SDH activity in serum and testicle tissue. The results showed that: The main pathological changes in testicle tissue of formaldehyde groups were degeneration; The sperm quantity was decreased and the sperm heads deformation ratio was increased in all formaldehyde groups; There were a significant increase of MN ratio in early spermatogenic cells and SCE ratio in medial and high dose groups; The MDA in testicle tissue significant increased in high dose group. The SDH activity in testicle tissue was declined in all formaldehyde groups; There were a significant decline of copper and zinc in testicle tissue in high dose group. It is suggested that: Formaldehyde could induce genetic materials in spermatogone, primary spermatocyte and caused degeneration and necrosis in secondary spermatocyte, spermatogenic cell, sperm; The damage of LPO, decline of copper and zinc and SDH activity in mice's testicle tissue could be caused by formaldehyde; The effect

  19. Photochemical production of formaldehyde in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Pinto, J. P.; Gladstone, G. R.; Yung, Y. L.

    1980-01-01

    Formaldehyde could have been produced by photochemical reactions in the earth's primitive atmosphere, at a time when it consisted mainly of molecular nitrogen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation can provide a source of organic carbon to the oceans at the rate of 100 billion moles per year. Subsequent reactions of formaldehyde in primeval aquatic environments would have implications for the abiotic synthesis of complex organic molecules and the origin of life.

  20. Interference by chemicals in the determination of formaldehyde

    SciTech Connect

    van der Wal, J.F. ); Korf, Ch. ); Kuypers, A.T.J.M. ); Neele, J. )

    1989-01-01

    Twenty-three chemicals were investigated for their interference in the determination of formaldehyde in ambient air by three colorimetric methods: the pararosaniline, acetylacetone, and chromotropic acid methods. Interlaboratory comparisons by four laboratories were involved in this study. All three methods suffer from interference by many chemicals when applied to aqueous formaldehyde solutions, the chromotropic acid by most (twelve) chemicals. The experiments were continued in the gaseous phase with the pararosaniline and the acetylacetone method. Interference is much less when formaldehyde and chemicals are sampled as gases. A deviation of more than 10% is found only for SO{sub 2} in the acetylacetone method.

  1. Photochemical production of formaldehyde in earth's primitive atmosphere

    NASA Technical Reports Server (NTRS)

    Pinto, J. P.; Gladstone, G. R.; Yung, Y. L.

    1980-01-01

    Formaldehyde could have been produced by photochemical reactions in the earth's primitive atmosphere, at a time when it consisted mainly of molecular nitrogen, water vapor, carbon dioxide, and trace amounts of molecular hydrogen and carbon monoxide. Removal of formaldehyde from the atmosphere by precipitation can provide a source of organic carbon to the oceans at the rate of 100 billion moles per year. Subsequent reactions of formaldehyde in primeval aquatic environments would have implications for the abiotic synthesis of complex organic molecules and the origin of life.

  2. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D.

    1990-01-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers two one-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR linearly decreased with HCHO exposure, with estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children.

  3. The emission structure of formaldehyde megamasers

    NASA Astrophysics Data System (ADS)

    Baan, Willem A.; An, Tao; Klöckner, Hans-Rainer; Thomasson, Peter

    2017-07-01

    The formaldehyde megamaser emission has been mapped for the three host galaxies IC 860, IRAS 15107+0724 and Arp 220. Elongated emission components are found at the nuclear centres of all galaxies with an extent ranging between 30 and 100 pc. These components are superposed on the peaks of the nuclear continuum. Additional isolated emission components are found superposed in the outskirts of the radio continuum structure. The brightness temperatures of the detected features ranges from 0.6 to 13.4 × 104 K, which confirms their masering nature. The masering scenario is interpreted as amplification of the radio continuum by foreground molecular gas that is pumped by far-infrared radiation fields in these starburst environments of the host galaxies.

  4. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  5. Growth of cedar-like Au nanoparticles coating on an etched stainless steel wire and its application for selective solid-phase microextraction.

    PubMed

    Zhang, Yida; Yang, Yaoxia; Li, Yi; Zhang, Min; Wang, Xuemei; Du, Xinzhen

    2015-05-30

    A novel cedar-like Au nanoparticles (AuNPs) coating was fabricated on an etched stainless steel (SS) wire by direct chemical deposition and used as an efficient and unbreakable solid phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent growth of AuNPs in chloroauric acid solution. As a result, the uniform cedar-like AuNPs coating with larger surface area was tightly attached to the etched SS wire substrate. The AuNPs coated etched SS fiber (AuNPs/SS) was examined for SPME of ultraviolet (UV) filters, phthalate esters and aromatic hydrocarbons coupled to high-performance liquid chromatography with UV detection. The fabricated fiber exclusively exhibited excellent extraction efficiency and selectivity for some aromatic hydrocarbons. Influential parameters of extraction and desorption time, temperature, stirring rate and ionic strength were investigated and optimized. The limits of detection ranged from 0.008 μg L(-1) to 0.037 μg L(-1). The single fiber repeatability varied from 3.90% to 4.50% and the fiber-to-fiber reproducibility ranged from 5.15% to 6.87%. The recovery of aromatic hydrocarbons in real water samples spiked at 2.0 μg L(-1) and 20 μg L(-1) ranged from 94.38% to 106.2% with the relative standard deviations below 6.44%. Furthermore the growth of the cedar-like AuNPs coating can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and withstands at least 200 extraction and desorption replicates. Copyright © 2015. Published by Elsevier B.V.

  6. Au@Ag Heterogeneous Nanorods as Nanozyme Interfaces with Peroxidase-Like Activity and Their Application for One-Pot Analysis of Glucose at Nearly Neutral pH.

    PubMed

    Han, Lei; Li, Cuncheng; Zhang, Tao; Lang, Qiaolin; Liu, Aihua

    2015-07-08

    As substitutes for natural peroxidases, most nanomaterial-based enzyme mimetics (nanozymes) have unique properties such as high stability, low-cost, large surface area, and high catalytic activity. However, they usually work in acidic conditions and thus impede their real applications. In this work, by modulating the nanostructure, composition, and surface property of the bimetallic materials, the positively charged poly(diallyldimethylammonium)-stabilized Au@Ag heterogeneous nanorods (NRs) were developed as synergistic peroxidase-like interfaces, which exhibited high activity over a wide pH range (pH 4.0-6.5) using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) as the chromogenic substrate. At pH 6.5, the peroxidase-like activity for the Au@Ag heterogeneous NRs was stable and optimal within 20-40 °C. Moreover, the Au@Ag heterogeneous NRs showed excellent temperature stability and long-term storage stability. Given these characters, the detection of H2O2 at pH 6.5 was proposed on the basis of the Au@Ag heterogeneous NRs catalyzing the colorimetric reaction of H2O2 and ABTS, where the oxidized ABTS showed a typical absorption peak at 414 nm. The absorbance at 414 nm was linear with H2O2 concentration from 0.01 to 10 mM. Further, considering that Au@Ag heterogeneous NRs and glucose oxidase (GOx) have similar optimal pH for catalytic activities, a novel one-pot method for the detection of glucose was developed by the coupled catalytic reaction using GOx, Au@Ag heterogeneous NRs, and ABTS at nearly neutral pH (pH 6.5) and 37 °C. This proposed method had simple and rapid processes, wide linear range (0.05-20 mM), and reliability for the successful analysis of real samples. On the basis of these attractive and unique characteristics, Au@Ag heterogeneous NRs can become promising substitutes for peroxidase in analytical chemistry and environmental science.

  7. Formaldehyde cross-linking of gliadin films: effects on mechanical and water barrier properties.

    PubMed

    Hernández-Muñoz, Pilar; López-Rubio, Amparo; Lagarón, José M; Gavara, Rafael

    2004-01-01

    In this study, pioneering results on specific chemical modifications of wheat gluten gliadins and the corresponding impact on mechanical and water barrier properties of derived films are presented. Films were prepared from gliadins chemically treated with formaldehyde and subsequently mixed with different concentrations of glycerol as a plasticizing agent. Water vapor barrier and mechanical properties of the films were evaluated as a function of relative humidity and glycerol concentration. Formaldehyde treatment led to enhanced mechanical properties and, to a lesser extent, improved water barrier of the films, effects which point to the formation of new intermolecular bonds between monomeric gliadins. The occurrence of cross-linking was supported by SDS-PAGE analysis. Cross-linked films maintained their integrity after immersion in water and had similar optical properties to control films. The effect of glycerol and humidity on water vapor permeability and the mechanical properties of films was less acute when proteins were treated with formaldehyde. Thus, chemical treatment of proteins is shown to be a very effective route for optimizing the use of these films in packaging applications.

  8. Production of scallop shell nanoparticles by mechanical grinding as a formaldehyde adsorbent

    NASA Astrophysics Data System (ADS)

    Yamanaka, Shinya; Suzuma, Akifumi; Fujimoto, Toshiyuki; Kuga, Yoshikazu

    2013-04-01

    Scallop shells, which are a waste product in the seafood industry, are disposed more than 200,000 ton per year in Hokkaido, Japan. We report effective uses and simple application for discarded shells as a formaldehyde adsorbent. The adsorption performance of scallop shells to remove formaldehyde vapor is investigated. Planetary ball milling under dry conditions and subsequent water addition realize shells with a crystallite size (35-90 nm) and equivalent size of the specific surface area (41-191 nm) in the nanometer range. The comminution properties of the scallop shells, especially the grinding limit, are estimated via a semi-theoretical consideration for the grinding limit. Additionally, the adsorbed amount of gaseous formaldehyde using a self-designed adsorption line is estimated. The nanosized scallop shells exhibit an excellent adsorption performance rather than the feed shell, and the adsorbed amount is positively correlated with the specific surface area of the shell. Hence, scallop shells have potential to adsorb volatile organic compounds.

  9. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde

    NASA Astrophysics Data System (ADS)

    Zhang, Guangxin; Sun, Zhiming; Duan, Yongwei; Ma, Ruixin; Zheng, Shuilin

    2017-08-01

    The TiO2/diatomite composite was synthesized through a mild hydrolysis of titanyl sulfate. The prepared composite was characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffused reflectance spectroscopy. The results demonstrate that the anatase TiO2 nanopartilces anchored on the surface of diatomite with Ti-O-Si bonds between diatomite and TiO2. The photodegradation of gaseous formaldehyde under UV irradiation by the TiO2/diatomite composite was studied under various operating conditions, including relative humidity, illumination intensity and catalyst amount, which have significant influence on the degradation process. The TiO2/diatomite composite exhibited better photocatalytic activity than pure TiO2, which could be attributed to the favorable nanoparticles dispersibility and strong formaldehyde adsorption capacity. In addition, the composite exhibited outstanding reusability over five cycles. The TiO2/diatomite composite shows great promising application foreground in formaldehyde degradation.

  10. An assessment of formaldehyde emissions from laminate flooring manufactured in China.

    PubMed

    Pierce, Jennifer S; Abelmann, Anders; Lotter, Jason T; Ruestow, Peter S; Unice, Kenneth M; Beckett, Evan M; Fritz, Heidi A; Bare, Jennifer L; Finley, Brent L

    2016-11-01

    Formaldehyde emissions from two laminate flooring products, labeled as California Air Resources Board (CARB) compliant, were evaluated. Passive 24-hr samples (n = 79) and real-time measurements were collected following installation and removal of the products in two rooms of similar size. Mean formaldehyde concentrations following installation were 0.038 and 0.022 ppm for Products 1 and 2 respectively, and 7 days after flooring removal the concentrations returned to background pre-installation levels. Both products were also evaluated in a small chamber (ASTM D6007) using Deconstructive (de-laminated product) and Non-Deconstructive (intact product) methods. Deconstructive testing showed that Product 1 exceeded the applicable CARB emission standard by 4-fold, while Product 2 was equivalent to the standard. Non-Deconstructive measurements were far below the Deconstructive results and were used to predict 24-hr steady-state room air concentrations. Based on the products that we tested (one of which was found to not be compliant with the CARB standard), the airborne formaldehyde concentrations measured following installation in a real-world setting would not be expected to elicit adverse acute health effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Analysis of benzoyl-peroxide and formaldehyde as dental allergens by FT-SPR method

    NASA Astrophysics Data System (ADS)

    Bako, J.; Kelemen, M.; Hegedus, Cs

    2013-12-01

    In parallel with the appearance of new dental materials the number of induced allergic diseases increases. Based on this fact more sensitive detection of allergens is major importance. The Fourier-Transform Surface Plasmon Resonance (FT-SPR) is a sensitive, broadly applicable real-time method for analysing thin layers of materials on gold surfaces. FT-SPR measurement is performed at a fixed angel of incident light, and reflectivity is measured over a range of wavelength in the near infrared. In our study the formaldehyde and benzoyl-peroxide were examined as members of the most common dental allergens by FT-SPR spectroscopy. The aim of this work was the investigation of the suitability of this method for the direct detection of these materials. Different concentrations of formaldehyde and benzoyl-peroxide solutions were measured from this purpose. The individual spectra were measured for all of the solutions, and calibration curves were calculated for the materials for the possibility of the determination of an unknown concentration. In addition, series measurements were performed whereby the association and dissociation properties of formaldehyde or benzoyl-peroxide were described. The results of the experiments proved that the method capable to measure directly these materials and can provide appropriate calibration curves for determination of unknown concentrations.

  12. Directional light scattering from individual Au nanocup

    NASA Astrophysics Data System (ADS)

    Bai, Jinjun; Li, Yong; Zhao, Bo

    2017-03-01

    We investigate the optical scattering properties of gold nanocup with different orientation and fractional height by full vector finite element method. All of the scattering cross section, the distribution of electric field intensity, and the ability of directional light scattering are simulated, respectively. It is demonstrated that the scattering cross section of Au nanocup is a superposition of scattering spectrum of a transverse mode and an axial mode. The wavelength and the intensity of the maximum value of the scattering cross section increase initially then reduce with the fractional height increasing for transverse mode, while they increase monotonously with the fractional height increasing for axial mode. Furthermore, the calculation results show that the ability of redirecting incident light of Au nanocup mainly depends on the transverse mode. And the deflected angle of scattering increases with the fractional height of Au nanocup decreasing. These results indicate that Au nanocup has a promising application in the planar plasmon devices.

  13. IRIS Toxicological Review of Formaldehyde (Inhalation) (External Review Draft 2010)

    EPA Science Inventory

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing ...

  14. Formaldehyde generators: relationship between stability, lipophilicity and carcinogenic potency.

    PubMed

    Ashby, J; Lefevre, P A

    1982-01-01

    The rate of hydrolysis to formaldehyde of methylenedimorpholine (MDM), hexamethylenetetramine (HMT) and dinitrosopentamethylenetetramine (DNPT) have been compared with the enzyme-mediated formation of formaldehyde from hexamethylphosphoramide (HMPA). The bio-distribution of [14C]HMPA following nasal instillation in rats has also been studied and compared with that of [14C]methyl methanesulphonate (MMS). These data are used to relate the several carcinogenic/genotoxic properties of the chemicals named above. It is concluded from these data and related considerations that three classes of formaldehyde-generators should be recognized (a) labile agents such as MDM (and formaldehyde) which are likely to be locally active as carcinogens, (b) lipophilic and relatively stable agents such as HMPA which may be both locally active (if bio-accumulated) and systemically active as carcinogens, and (c) agents such as HMT and DNPT, of intermediate stability, which are unlikely to be systemically active and to be of low or zero activity locally.

  15. Ion laser isotope enrichment by photo-predissociation of formaldehyde

    DOEpatents

    Marling, John B.

    1977-06-17

    Enrichment of carbon, hydrogen and/or oxygen isotopes by means of isotopically selective photo-predissociation of formaldehyde is achieved by irradiation with a fixed frequency ion laser, specifically, a neon, cadmium, or xenon ion laser.

  16. Retention of Preservative Levels of Formaldehyde in Desiccated Biological Products

    PubMed Central

    Pemberton, John R.

    1975-01-01

    Concentrations ranging from 8 to 100% of the preservative level of formalin (37% formaldehyde solution) were retained by desiccated biologics, with most products retaining about 50% regardless of the amount originally present. PMID:972183

  17. ETV REPORT: CERTEK, INC. 1414RH FORMALDEHYDE GENERATOR/NEUTRALIZER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the 1414RH Formaldehyde Generator/Neuralizer, a biological decontamination device manufactured by CERTEK, Inc. The unit was tested by evaluating its ability to decontaminate seven types ...

  18. ETV REPORT: CERTEK, INC. 1414RH FORMALDEHYDE GENERATOR/NEUTRALIZER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the 1414RH Formaldehyde Generator/Neuralizer, a biological decontamination device manufactured by CERTEK, Inc. The unit was tested by evaluating its ability to decontaminate seven types ...

  19. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  20. IRIS Toxicological Review of Formaldehyde (Inhalation) (External Review Draft 2010)

    EPA Science Inventory

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing ...

  1. Observation of DNA pinning at laser focal point on Au surface and its application to single DNA nanowire and cross-wire formation.

    PubMed

    Fujii, Sho; Kobayashi, Katsuaki; Kanaizuka, Katsuhiko; Okamoto, Tetsuaki; Toyabe, Shoichi; Muneyuki, Eiro; Haga, Masa-Aki

    2010-11-01

    We report a new technique for fabricating a single DNA nanowire at a desired position in a sequential manner using the micronanobubble generated by laser local heating at the Au/water interface. In our previous report, we found the reversible pull-in/shrinkage of one end immobilized DNA strands near a Nd:YAG laser focal point on an Au surface. In further experiments, the pinning of DNA strands in the stretched state was observed on the Au surface only when the bubble has touched the free end of DNA. This pinning phenomenon was observed even on the alkane thiol modified Au surface as self-assembled monolayers (SAMs) such as hexanethiol, mercaptohexanol, and hexadecanethiol. However, no pinning was observed on the bovine serum albumin (BSA) modified surface. Since optical tweezers can manipulate a DNA modified bead (radius=1.87 μm), the bead was firstly fixed on a solid surface by being compressed with the optical tweezers, and the pulling and pinning of DNA on the bead were achieved. As a consequence, the laser local heating on the Au surface enables us to control the number and position of the one end immobilized DNA strands as DNA nanowires. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Formaldehyde emissions from ULEF- and NAF-bonded commercial hardwood plywood as influenced by temperature and relative humidity

    Treesearch

    Charles R. Frihart; James M. Wescott; Michael J. Birkeland; Kyle M. Gonner

    2010-01-01

    It is well documented in the literature that temperature and humidity can influence formaldehyde emissions from composite panels that are produced using urea-formaldehyde (UF) adhesives. This work investigates the effect of temperature and humidity on newer, ultra-low emitting formaldehyde urea formaldehyde (ULEF-UF) and no-added formaldehyde (NAF) adhesives. A...

  3. Inactivation of poliovirus by formaldehyde: theoretical and practical aspects.

    PubMed

    GARD, S

    1957-01-01

    Since formaldehyde, either alone or in combination with other inactivating agents, is at present used in the production of all so-called "killed" poliovirus vaccines, a thorough knowledge of the kinetics of the reaction between the chemical agent and the virus, and of the mechanisms involved, is of great practical importance. In this paper the problem is discussed against the background of present knowledge of the structure of the virus and the chemical nature of the action of formaldehyde.

  4. Wettability of southern pine veneer by phenol formaldehyde wood adhesives

    Treesearch

    C. -Y. Hse

    1972-01-01

    Wettabillty of southern pine veneers was judged by measuring the contact angles made by 36 phenol formaldehyde resins. Formulation of the resins was by factorial design. the molar ratios of sodium hydroxide to phenol being 0.4, 0.7, and 1.0, the levels of resin solids content in the reaction mixture 37, 40, and 43 percent, and the molar ratios of formaldehyde to phenol...

  5. Association between formaldehyde exposure and miscarriage in Chinese women.

    PubMed

    Xu, Wenjing; Zhang, Weiqiang; Zhang, Xuezhen; Dong, Taowei; Zeng, Huiqian; Fan, Qiyun

    2017-06-01

    The aim of this study was to assess whether higher plasma formaldehyde concentration existed in women diagnosed with miscarriage and whether it contributed to higher risk of miscarriage in Chinese women.A case-control study was conducted in 118 women with a diagnosed miscarriage at the first trimester and 191 healthy women who delivered at term. Plasma levels of formaldehyde were measured by gas chromatography in conjunction with mass spectrometry after derivatization of the formaldehyde to the pentafluorophenylhydrazone and characteristics of the subjects including age, education level, occupation, family income, home decoration status, and exposure to second-hand smoke were recorded. Logistic regression analyses were performed to investigate the relationship between miscarriage and levels of formaldehyde.Women with miscarriage were comparable to controls in terms of age, education level, occupation, family income, and home decoration status. They were, however, more likely to be exposed to second-hand smoke. Plasma levels of formaldehyde were significantly higher in women with miscarriage (0.0944 ± 0.0105 vs. 0.0239 ± 0.0032 μg/mL, P < .001). Multivariate logistic regression showed that higher level of formaldehyde (odds ratio [OR]: 8.06, 95% confidence interval [CI]: 4.96-13.09) and exposure to second-hand smoke (OR: 3.60, 95% CI: 1.58-8.20) were independently and significantly associated with higher risk of miscarriage.Plasma levels of formaldehyde were significantly higher in women who were diagnosed with miscarriage than those who delivered at term and higher levels of formaldehyde was an independent risk factor for miscarriage, with higher levels being associated with higher risk of miscarriage.

  6. [Effect of formaldehyde inhalation on allergic rhinitis in mice].

    PubMed

    Xiang, Rong; Xu, Yu

    2015-08-01

    To observe the effect of formaldehyde inhalation on the allergic rhinitis mice model. Forty-eight male BALB/C mice in six experimental group were exposure to (A) saline control; (B) Der p1; (C) formaldehyde (3.0 mg/m3); (D) Derp1 + formaldehyde (1.5 mg/m3); (E) Der p1 + formaldehyde (3.0 mg/M3); (F) Der p1+ formaldehyde (6.0 mg/m3). The concentrations of IL-4, IL-10 and IFN-γ in the peripheral serum were measured by enzyme-linked immunosorbent assay(ELISA). Nasal mucosal inflammation was evaluated by HE staining. Result: Formaldehyde exposure could increase the number of allergic rhinitis mice with sneezing and rubbing nose. The levels of IL-4 and IL-10 in group B, D, E and F were higher than that ingroup A (P < 0.05). Compared with the group C, the group D, E and F could effectively increase serum IL-4 and IL-10. The concentration of IL-4 in group E and F was higher than that of group B, while the group C was lower (P < 0.05). The concentration of IL-10 in group D, E and F was higher than that in group B (P < 0.05). The expression of IFN-γ in group B, D, E and F was lower than that in group A. While, the IFN-γ expression in group B was lower than that of group C and higher than that in group F (P < 0.05). Moreover, the concentration of IFN-γ in group D, E and F was lower compared with group C (P < 0.05). The nasal mucosa HE staining showed that the density of EOS increased simultaneously in formaldehyde exposure allergic rhinitis groups. The study showed that formaldehyde exposure can promote Th2 cytokines and eosinophil infiltration and then aggravate the allergic rhinitis symptoms.

  7. Wettability of southern pine veneer by phenol formaldehyde wood adhesives

    Treesearch

    Chung-Yun Hse

    1972-01-01

    Wettability of southern pine veneers was judged by measuring the contact angles made by 36 phenol formaldehyde resins. Formulation of the resins was by factorial design, the molar ratios of sodium hydroxide to phenol being 0.4, 0.7, and 1.0, the levels of resin solids content in the reaction mixture 37, 40, and 43 percent, and the molar ratios of formaldehyde to phenol...

  8. Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar

    NASA Technical Reports Server (NTRS)

    Schwemmer, G.; Yakshin, M.; Prasad, C.; Hanisco, T.; Mylapore, A. R.; Hwang, I. H.; Lee, S.

    2016-01-01

    We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO) fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.

  9. A Density Functional Theory Study of Formaldehyde Adsorption on Ceria

    SciTech Connect

    Mei, Donghai; Deskins, N. Aaron; Dupuis, Michel

    2007-11-01

    Molecular adsorption of formaldehyde on the stoichiometric CeO2(111) and CeO2(110) surfaces was studied using periodic density functional theory. Two adsorption modes (strong chemisorbed and weak physisorbed) were identified on both surfaces. This is consistent with recent experimental observations. On the (111) surface, formaldehyde strongly chemisorbs with an adsorption energy of 0.86 eV to form a dioxymethylene-like structure, in which a surface O lifts from the surface to bind with the C of formaldehyde. A weak physisorbed state with adsorption energy of 0.28 eV was found with the O of formaldehyde interacting with a surface Ce. On the (110) surface, dioxymethyelene formation was also observed, with an adsorption energy of 1.31 eV. The weakly adsorbed state of formaldehyde on the (110) surface was energetically comparable to the weak adsorption state on the (111) surface, but adsorption occurred through a formaldehyde C and surface O interaction. Analysis of the local density of states and charge density differences after adsorption shows that strong covalent bonding occurs between the C of formaldehyde and surface O when dioxymethylene forms. Calculated vibrational frequencies also confirm dioxymethylene formation. Our results also show that as the coverage increases, the adsorption of formaldehyde on the (111) surface becomes weak, but is nearly unaffected on the (110) surface. This work was supported by a Laboratory Directed Research and Development (LDRD) project of the Pacific Northwest National Laboratory (PNNL). The computations were performed using the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory, which is a U.S. Department of Energy national scientific user facility located at PNNL in Richland, Washington. Computing time was made under a Computational Grand Challenge “Computational Catalysis”. Part of the computing time was also granted by the National Energy Research Scientific Computing

  10. Formaldehyde Five-Day Passive Chemical Dosimeter Badge Validation Study

    DTIC Science & Technology

    2012-11-30

    DNPH-cartridges. ............................... 7 Figure 8 Example of commercially available packed granular potassium iodide (KI) ozone scrubber...Example of commercially available packed granular potassium iodide (KI) ozone scrubber. Figure 9 Example of configuration of a single-port carbonyl...formaldehyde vapor stream. Formaldehyde-DNPH at 500 µg/mL (as aldehyde) in acetonitrile was purchased from Cerilliant Corporation, Round Rock, TX. Potassium

  11. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-06-01

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2.4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting

  12. Formaldehyde levels in traditional and portable classrooms: A pilot investigation

    PubMed Central

    2015-01-01

    This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349

  13. Aging-associated excess formaldehyde leads to spatial memory deficits.

    PubMed

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Li, Hui; Luo, Hongjun; Qiang, Min; Su, Tao; Wu, Beibei; Liu, Ying; Yang, Xu; Wan, You; Cui, Dehua; He, Rongqiao

    2013-01-01

    Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging.

  14. Formaldehyde in dentistry: a review of mutagenic and carcinogenic potential

    SciTech Connect

    Lewis, B.B.; Chestner, S.B.

    1981-09-01

    For many years there has been controversy over the value of antimicrobial drugs for intracanal dressings in endodontics. Formocresol, a formaldehyde compound, has evolved as the preferred drug for routine endodontic procedures, as well as pediatric endodontics. The increase in the use of formaldehyde has been complicated by the introduction of paraformaldehyde pastes for filling root canals. Neither of these formulas has ever been standardized. The doses are arbitrary, and the common dose of formocresol has been shown to be many times greater than the minimum dose needed for effect. The efficacy of paraformaldehyde pastes is questionable and remains clouded by inconclusive evidence, conflicting research, inadequate terminology, and a lack of convincing statistical evidence. The clinical use and delivery of formocresol and paraformaldehyde pastes remain arbitrary and unscientific. Formaldehyde has a known toxic mutagenic and carcinogenic potential. Many investigations have been conducted to measure the risk of exposure to formaldehyde; it is clear that formaldehyde poses a carcinogenic risk in humans. There is a need to reevaluate the rationale underlying the use of formaldehyde in dentistry particularly in light of its deleterious effects.

  15. Health risks from indoor formaldehyde exposures in northwest weatherized residences

    SciTech Connect

    Mellinger, P.J.; Sever, L.E.

    1986-10-01

    Conflicting opinions on the potential hazards associated with formaldehyde exposure triggered a national workshop to address the toxicological questions concerning the health effects of formaldehyde. Since quantitative human data are not available to derive a dose-response curve for formaldehyde risk assessment, nonhuman data are used. In the case of formaldehyde, data from animals exposed to high concentrations are used to estimate human risk at much lower concentrations. This study presents the several steps that make up a risk assessment and examines any additional data that might alter significantly the risk estimates presented in the 1984 EIS. Rat inhalation chronic bioassay data from a study sponsored by the Chemical Industry Institute of Toxicology (CIIT) have been used to develop a risk equation that was subsequently used by BPA in its EIS. The CIIT data base remains the only acceptable animal data that can support the estimation of a dose-response curve. The development of mathematical models continues with a great deal of energy, and the use of different models is largely responsible for the great variability of the formaldehyde risk estimates. While one can calculate different values for carcinogenic risk associated with formaldehyde exposure than were presented earlier in the BPA EIS, they are not likely to be any better.

  16. Aging-associated excess formaldehyde leads to spatial memory deficits

    PubMed Central

    Tong, Zhiqian; Han, Chanshuai; Luo, Wenhong; Li, Hui; Luo, Hongjun; Qiang, Min; Su, Tao; Wu, Beibei; Liu, Ying; Yang, Xu; Wan, You; Cui, Dehua; He, Rongqiao

    2013-01-01

    Recent studies show that formaldehyde participates in DNA demethylation/methylation cycle. Emerging evidence identifies that neuronal activity induces global DNA demethylation and re-methylation; and DNA methylation is a critical step for memory formation. These data suggest that endogenous formaldehyde may intrinsically link learning-responsive DNA methylation status and memory formation. Here, we report that during spatial memory formation process, spatial training induces an initial global DNA demethylation and subsequent re-methylation associated with hippocampal formaldehyde elevation then decline to baseline level in Sprague Dawley rats. Scavenging this elevated formaldehyde by formaldehyde-degrading enzyme (FDH), or enhancing DNA demethylation by a DNA demethylating agent, both led to spatial memory deficits by blocking DNA re-methylation in rats. Furthermore, we found that the normal adult rats intrahippocampally injected with excess formaldehyde can imitate the aged-related spatial memory deficits and global DNA methylation decline. These findings indicate that aging-associated excess formaldheyde contributes to cognitive decline during aging. PMID:23657727

  17. Clinical evaluation of patients with complaints related to formaldehyde exposure

    SciTech Connect

    Imbus, H.R.

    1985-12-01

    Formaldehyde is a very widely used chemical in our present society and one with which every physician has had a first-hand experience in his early days of training in the anatomy laboratory. The National Institute of Occupational Safety and Health lists 52 occupations that expose people to formaldehyde. In recent years, however, the increasing use of formaldehyde resins in the production of building materials such as particleboard and urea-formaldehyde foam insulation has resulted in exposures of large numbers of people in nonoccupational settings. Consumer products such as cosmetics, cigarettes, textiles, furniture, draperies, and preservatives release formaldehyde. It is present in the outdoor atmosphere from products of combustion and automobile exhaust and likewise in the home from such things as gas cooking. These more widespread and increased exposures have resulted in concern regarding potential health effects. Therefore, it is likely that physicians have or will encounter patients who wish evaluations of a present or potential health effect from formaldehyde. This article is for the purpose of providing assistance in such evaluation.110 references.

  18. Primary Formation Path of Formaldehyde in Hydrothermal Vents.

    PubMed

    Inaba, Satoshi

    2017-09-05

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  19. Evaluation of a passive air sampler for measuring indoor formaldehyde.

    PubMed

    Kim, Sun-Tae; Yim, Bongbeen; Jeong, Jaeho

    2007-04-01

    A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.

  20. Histomorphometric comparison after fixation with formaldehyde or glyoxal

    PubMed Central

    Wang, YN; Lee, K; Pai, S; Ledoux, WR

    2014-01-01

    Formaldehyde has long been the fixative of choice for histological examination of tissue. The use of alternatives to formaldehyde has grown, however, owing to the serious hazards associated with its use. Companies have striven to maintain the morphological characteristics of formaldehyde-fixed tissue when developing alternatives. Glyoxal-based fixatives now are among the most popular formaldehyde alternatives. Although there are many studies that compare staining quality and immunoreactivity, there have been no studies that quantify possible structural differences. Histomorphometric analysis commonly is used to evaluate diseased tissue. We compared fixation with formaldehyde and glyoxal with regard to the histomorphological properties of plantar foot tissue using a combination of stereological methods and quantitative morphology. We measured skin thickness, interdigitation index, elastic septa thickness, and adipocyte area and diameter. No significant differences were observed between formaldehyde and glyoxal fixation for any feature measured. The glyoxal-based fixative used therefore is a suitable fixative for structural evaluation of plantar soft tissue. Measurements obtained from the glyoxal-fixed tissue can be combined with data obtained from formalin-fixed for analysis. PMID:20854226

  1. The mechanism of a formaldehyde-sensing transcriptional regulator

    PubMed Central

    Denby, Katie J.; Iwig, Jeffrey; Bisson, Claudine; Westwood, Jodie; Rolfe, Matthew D.; Sedelnikova, Svetlana E.; Higgins, Khadine; Maroney, Michael J.; Baker, Patrick J.; Chivers, Peter T.; Green, Jeffrey

    2016-01-01

    Most organisms are exposed to the genotoxic chemical formaldehyde, either from endogenous or environmental sources. Therefore, biology has evolved systems to perceive and detoxify formaldehyde. The frmRA(B) operon that is present in many bacteria represents one such system. The FrmR protein is a transcriptional repressor that is specifically inactivated in the presence of formaldehyde, permitting expression of the formaldehyde detoxification machinery (FrmA and FrmB, when the latter is present). The X-ray structure of the formaldehyde-treated Escherichia coli FrmR (EcFrmR) protein reveals the formation of methylene bridges that link adjacent Pro2 and Cys35 residues in the EcFrmR tetramer. Methylene bridge formation has profound effects on the pattern of surface charge of EcFrmR and combined with biochemical/biophysical data suggests a mechanistic model for formaldehyde-sensing and derepression of frmRA(B) expression in numerous bacterial species. PMID:27934966

  2. Formaldehyde emissions from ventilation filters under different relative humidity conditions.

    PubMed

    Sidheswaran, Meera; Chen, Wenhao; Chang, Agatha; Miller, Robert; Cohn, Sebastian; Sullivan, Douglas; Fisk, William J; Kumagai, Kazukiyo; Destaillats, Hugo

    2013-05-21

    Formaldehyde emissions from fiberglass and polyester filters used in building heating, ventilation, and air conditioning (HVAC) systems were measured in bench-scale tests using 10 and 17 cm(2) coupons over 24 to 720 h periods. Experiments were performed at room temperature and four different relative humidity settings (20, 50, 65, and 80% RH). Two different air flow velocities across the filters were explored: 0.013 and 0.5 m/s. Fiberglass filters emitted between 20 and 1000 times more formaldehyde than polyester filters under similar RH and airflow conditions. Emissions increased markedly with increasing humidity, up to 10 mg/h-m(2) at 80% RH. Formaldehyde emissions from fiberglass filters coated with tackifiers (impaction oils) were lower than those from uncoated fiberglass media, suggesting that hydrolysis of other polymeric constituents of the filter matrix, such as adhesives or binders was likely the main formaldehyde source. These laboratory results were further validated by performing a small field study in an unoccupied office. At 80% RH, indoor formaldehyde concentrations increased by 48-64%, from 9-12 μg/m(3) to 12-20 μg/m(3), when synthetic filters were replaced with fiberglass filtration media in the HVAC units. Better understanding of the reaction mechanisms and assessing their overall contributions to indoor formaldehyde levels will allow for efficient control of this pollution source.

  3. Airborne formaldehyde causes skin barrier dysfunction in atopic dermatitis.

    PubMed

    Kim, J; Han, Y; Ahn, J H; Kim, S W; Lee, S I; Lee, K H; Ahn, K

    2016-08-01

    It remains to be elucidated whether exposure to air pollutants aggravates atopic dermatitis (AD). This study aimed to evaluate the effects of exposure to formaldehyde for 1 h and 2 h on skin barrier function in both the control and the AD groups. In 41 patients with AD and 34 healthy children, a provocation test was performed in which two different areas of normal-appearing skin on the forearm were stimulated with airborne formaldehyde at 500 μg m(-3) or placebo for 2 h. We measured transepidermal water loss (TEWL) and skin pH, and calculated the percentage change from baseline. Exposure to formaldehyde increased TEWL in the control group [P < 0·001; median of difference 1·4; interquartile range (IQR) 0·9-1·6] and in the AD group (P < 0·001; median of difference 2·5; IQR 2·0-3·6). The percentage change of TEWL after formaldehyde exposure in the AD group was higher than in the control group (P < 0·001), whereas exposure to placebo showed no differences between both groups. The AD group also demonstrated a higher percentage increase in skin pH after exposure to formaldehyde than the control group (P < 0·001). Short-term exposure to formaldehyde causes skin barrier dysfunction in both healthy children and children with AD, and this effect is more prominent in children with AD. © 2015 British Association of Dermatologists.

  4. Primary Formation Path of Formaldehyde in Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Inaba, Satoshi

    2017-09-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  5. Formaldehyde Levels in Traditional and Portable Classrooms: A Pilot Investigation.

    PubMed

    Ribeiro, Isabela C; Kowalski, Peter J; Callahan, David B; Noonan, Gary P; Moffett, Daphne B; Olson, David R; Malilay, Josephine

    2016-03-01

    The pilot study discussed in this article assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms the authors evaluated formaldehyde levels in day and overnight indoor air (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide, temperature, and relative humidity). In a cross-sectional design, samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 parts per million (ppm). In both types of classroom, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). Carbon dioxide levels measured 470-790 ppm at 7:00 a.m. and 470-1800 ppm at 4:00 p.m. Afternoon medians were higher in TCs (1,400 ppm) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing carbon dioxide levels by improving ventilation is recommended for classrooms.

  6. Extending the Millimeter-Submillimeter Spectrum of Protonated Formaldehyde

    NASA Astrophysics Data System (ADS)

    Roenitz, Kevin; Zou, Luyao; Widicus Weaver, Susanna L.

    2017-06-01

    Protonated formaldehyde has been detected in the interstellar medium, where it participates in the formation and destruction of methanol. The rotational spectrum for protonated formaldehyde has been previously recorded by Amano and coworkers from 120-385 GHz using a hollow cathode discharge source for ion production. Additionally, protonated formaldehyde was produced in a supersonic expansion discharge source by Duncan and coworkers, but it was detected using time-of-flight mass spectrometry. Higher frequency spectra would help to guide additional observational studies of protonated formaldehyde using instruments such as the ALMA and SOFIA observatories. As such, we have used a supersonic expansion discharge source to produce protonated formaldehyde, and recorded its spectrum using millimeter-submillimeter direct absorption spectroscopy. The rotational spectrum was recorded from 350-1000 GHz. Here we will present the experimental design, specifically focusing on the optimization of the source for production of organic ions. We will also present the spectroscopic results for protonated formaldehyde and a spectral analysis with associated prediction that can be extended to frequencies above 1 THz.

  7. Investigation of formaldehyde interaction with carbon nanotubes and quartz sand

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Maria P.; Chrysikopoulos, Constantinos V.

    2017-04-01

    Assessment of the potential impact of synthetic carbon nanotubes on the fate and transport of common chemical contaminants (pesticides, pharmaceuticals, etc.) in groundwater systems is considered to be an increasingly important aspect of environmental research. This study investigates the interaction of formaldehyde with multi-walled carbon nanotubes (MWCNTs) and quartz sand under static and dynamic conditions. Due to polarity, formaldehyde, is expected to develop strong adsorptive interactions with carbon nanotubes. Several batch adsorption experiments were conducted in test tubes, under controlled conditions. Various initial formaldehyde solution concentration (2, 5, 8 ppm), contact times, and temperatures (8, 18, 25 °C) were considered. Supernatant liquid samples were collected at regular intervals, and centrifuged. Subsequently, the formaldehyde concentration in the supernatant was quantified indirectly, by derivatization with Nash reagent and subsequent measurement of the resulting complex using spectrophotometry in the visible spectral range. Experimental results suggested that formaldehyde has a low affinity for quartz sand, but an enhanced potential for adsorption onto carbon nanotubes. Formaldehyde adsorption onto both absorbents (quartz sand and MWCNTs) was more pronounced under dynamic than static conditions, probably, because agitation improves the mixing of the absorbent within the solution. Also, it was shown that the adsorption data were adequately described by the pseudo-second order kinetic model, suggesting that the primary adsorption mechanism was chemisorption, where two or more (sequential or parallel) processes (e.g. surface chemisorption, intraparticle diffusion) were taking place. Therefore, MWCNTs could be promising adsorbent materials for groundwater remediation.

  8. A simple way to prepare Au@polypyrrole/Fe3O4 hollow capsules with high stability and their application in catalytic reduction of methylene blue dye.

    PubMed

    Yao, Tongjie; Cui, Tieyu; Wang, Hao; Xu, Linxu; Cui, Fang; Wu, Jie

    2014-07-07

    Metal nanoparticles are promising catalysts for dye degradation in treating wastewater despite the challenges of recycling and stability. In this study, we have introduced a simple way to prepare Au@polypyrrole (PPy)/Fe3O4 catalysts with Au nanoparticles embedded in a PPy/Fe3O4 capsule shell. The PPy/Fe3O4 capsule shell used as a support was constructed in one-step, which not only dramatically simplified the preparation process, but also easily controlled the magnetic properties of the catalysts through adjusting the dosage of FeCl2·4H2O. The component Au nanoparticles could catalyze the reduction of methylene blue dye with NaBH4 as a reducing agent and the reaction rate constant was calculated through the pseudo-first-order reaction equation. The Fe3O4 nanoparticles permitted quick recycling of the catalysts with a magnet due to their room-temperature superparamagnetic properties; therefore, the catalysts exhibited good reusability. In addition to catalytic activity and reusability, stability is also an important property for catalysts. Because both Au and Fe3O4 nanoparticles were wrapped in the PPy shell, compared with precursor polystyrene/Au composites and bare Fe3O4 nanoparticles, the stability of Au@PPy/Fe3O4 hollow capsules was greatly enhanced. Since the current method is simple and flexible to create recyclable catalysts with high stability, it would promote the practicability of metal nanoparticle catalysts in industrial polluted water treatment.

  9. A review of the effects of formaldehyde release from endodontic materials.

    PubMed

    Athanassiadis, B; George, G A; Abbott, P V; Wash, L J

    2015-09-01

    Formaldehyde is present in most living cells and the environment. In dentistry, patients may be exposed to formaldehyde through the use of several endodontic materials (e.g. AH 26) and during formocresol pulpotomies. This review outlines how the human body reacts to formaldehyde exposure, how recent data has relooked at the issue of carcinogenicity and leukaemia associated with formaldehyde, and whether it is possible to quantify the amount of formaldehyde produced by endodontic cements. The review analyses the way formaldehyde is produced from epoxy resins and addresses the question of whether the amount of formaldehyde from endodontic cements is large enough to override the body's ability to deal with its own endogenous levels of formaldehyde and should the amount of formaldehyde produced be a concern. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  10. Catalytic effect of ReAu nanoalloy on the Te particle reaction and its application to resonance scattering spectral assay of CA125.

    PubMed

    Cai, Wei; Liang, Aihui; Liu, Qingye; Liao, Xianjiu; Jiang, Zhiliang; Shang, Guangyi

    2011-01-01

    ReAu nanoparticles with a molar ratio of 2:8 Re and Te nanoparticles were prepared by NaBH₄ reduction. In HCl medium at 65°C, ultratrace Re, Te and ReAu bimetallic nanoparticles strongly catalyzed the slow reaction between Sn(II) and Te(VI) to form Te particles, which exhibited the strongest resonance scattering (RS) peak at 782 nm. As the amount of nanocatalyst increased, the RS intensity at 782 nm (I(782 nm) ) increased linearly, and the increase in intensity ΔI(782 nm) was linear to the ReAu, Re and Te concentrations in the ranges 0.07-9.0, 0.01-4.5 and 30-1200 nM, respectively. As a model, a ReAu immunonanoprobe catalytic Te-particle resonance scattering spectral (RSS) method was established for detection of CA125, using ReAu nanoparticle labeling CA125 antibody (CA125Ab) to obtain an immunonanoprobe (ReAuCA125Ab) for CA125. In pH 7.6 citric acid-Na₂HPO₄ buffer solution, ReAuCA125Ab aggregated nonspecifically. Upon addition of CA125, the immunonanoprobe reacted with it to form ReAuCA125Ab-CA125 dispersive immunocomplex in the solution. After the centrifugation, the supernatant containing the immunocomplex was used to catalyze the reaction of Te(VI)-Sn(II) to produce the Te particles that resulted in the I(782 nm) increasing. The ΔI(782 nm) was linear to CA125 concentration (C(CA125)) in the range 0.1-240 mU/mL. The regression equation, correlation coefficient and detection limit were ΔI(782 nm) = 1.61 C(CA125) + 1.5, 0.9978 and 0.02 mU/mL, respectively. The proposed method was applied to detect CA125 in serum samples, with satisfactory results.

  11. Ultrafast hydrothermal synthesis of high quality magnetic core phenol-formaldehyde shell composite microspheres using the microwave method.

    PubMed

    You, Li-Jun; Xu, Shuai; Ma, Wan-Fu; Li, Dian; Zhang, Yu-Ting; Guo, Jia; Hu, Jack J; Wang, Chang-Chun

    2012-07-17

    An ultrafast, facile, and efficient microwave hydrothermal approach was designed to fabricate magnetic Fe(3)O(4)/phenol-formaldehyde (PF) core-shell microspheres for the first time. The structure of the Fe(3)O(4)/PF core-shell microspheres could be well controlled by the in situ polycondensation of phenol and formaldehyde with magnetic Fe(3)O(4) clusters as the seeds in an aqueous solution without any surfactants. The effect of synthetic parameters, such as the feeding amounts of phenol, the dosages of formaldehyde, the reaction temperatures, and the microwave heating time, on the morphologies and sizes of the Fe(3)O(4)/PF microspheres were investigated in details. The phenol-formaldehyde shell is found to be evenly coated on Fe(3)O(4) clusters within 10 min of the irradiation. The as-prepared microspheres were highly uniform in morphology, and the method was found to allow the shell thickness to be finely controlled in the range of 10-200 nm. The properties of the composite microspheres were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetic analysis (TGA), Fourier transform infrared (FT-IR) spectra, X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The as-prepared Fe(3)O(4)/PF microspheres were monodisperse and highly dispersible in water, ethanol, N,N-dimethyformamide, and acetone, a beneficial quality for the further functionalization and applications of the Fe(3)O(4)/PF microspheres.

  12. Effect of formaldehyde inactivation on poliovirus.

    PubMed

    Wilton, Thomas; Dunn, Glynis; Eastwood, David; Minor, Philip D; Martin, Javier

    2014-10-01

    Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. Importance: This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing of

  13. Effect of Formaldehyde Inactivation on Poliovirus

    PubMed Central

    Dunn, Glynis; Eastwood, David; Minor, Philip D.; Martin, Javier

    2014-01-01

    ABSTRACT Inactivated polio vaccines, which have been used in many countries for more than 50 years, are produced by treating live poliovirus (PV) with formaldehyde. However, the molecular mechanisms underlying virus inactivation are not well understood. Infection by PV is initiated by virus binding to specific cell receptors, which results in viral particles undergoing sequential conformational changes that generate altered structural forms (135S and 80S particles) and leads to virus cell entry. We have analyzed the ability of inactivated PV to bind to the human poliovirus receptor (hPVR) using various techniques such as ultracentrifugation, fluorescence-activated cell sorting flow cytometry and real-time reverse transcription-PCR (RT-PCR). The results showed that although retaining the ability to bind to hPVR, inactivated PV bound less efficiently in comparison to live PV. We also found that inactivated PV showed resistance to structural conversion in vitro, as judged by measuring changes in antigenicity, the ability to bind to hPVR, and viral RNA release at high temperature. Furthermore, viral RNA from inactivated PV was shown to be modified, since cDNA yields obtained by RT-PCR amplification were severely reduced and no infectious virus was recovered after RNA transfection into susceptible cells. IMPORTANCE This study represents a novel insight into the molecular mechanisms responsible for poliovirus inactivation. We show that inactivation with formaldehyde has an effect on early steps of viral replication as it reduces the ability of PV to bind to hPVR, decreases the sensitivity of PV to convert to 135S particles, and abolishes the infectivity of its viral RNA. These changes are likely responsible for the loss of infectivity shown by PV following inactivation. Techniques used in this study represent new approaches for the characterization of inactivated PV products and could be useful in developing improved methods for the production and quality control testing

  14. Deuterated formaldehyde in ρ Ophiuchi A

    NASA Astrophysics Data System (ADS)

    Bergman, P.; Parise, B.; Liseau, R.; Larsson, B.

    2011-03-01

    Context. Formaldehyde is an organic molecule that is abundant in the interstellar medium. High deuterium fractionation is a common feature in low-mass star-forming regions. Observing several isotopologues of molecules is an excellent tool for understanding the formation paths of the molecules. Aims: We seek an understanding of how the various deuterated isotopologues of formaldehyde are formed in the dense regions of low-mass star formation. More specifically, we adress the question of how the very high deuteration levels (several orders of magnitude above the cosmic D/H ratio) can occur using H2CO data of the nearby ρ Oph A molecular cloud. Methods: From mapping observations of H2CO, HDCO, and D2CO, we have determined how the degree of deuterium fractionation changes over the central 3' × 3' region of ρ Oph A. The multi-transition data of the various H2CO isotopologues, as well as from other molecules (e.g., CH3OH and N2D + ) present in the observed bands, were analysed using both the standard type rotation diagram analysis and, in selected cases, a more elaborate method of solving the radiative transfer for optically thick emission. In addition to molecular column densities, the analysis also estimates the kinetic temperature and H2 density. Results: Toward the SM1 core in ρ Oph A, the H2CO deuterium fractionation is very high. In fact, the observed D2CO/HDCO ratio is 1.34 ± 0.19, while the HDCO/H2CO ratio is 0.107 ± 0.015. This is the first time, to our knowledge, that the D2CO/HDCO abundance ratio is observed to be greater than 1. The kinetic temperature is in the range 20-30 K in the cores of ρ Oph A, and the H2 density is (6-10) × 105 cm-3. We estimate that the total H2 column density toward the deuterium peak is (1-4) × 1023 cm-2. As depleted gas-phase chemistry is not adequate, we suggest that grain chemistry, possibly due to abstraction and exchange reactions along the reaction chain H2CO → HDCO → D2CO, is at work to produce the very high

  15. @AuAg nanostructures

    NASA Astrophysics Data System (ADS)

    Singh, Rina; Soni, R. K.

    2014-09-01

    Bimetallic and trimetallic nanoparticles have attracted significant attention in recent times due to their enhanced electrochemical and catalytic properties compared to monometallic nanoparticles. The numerical calculations using Mie theory has been carried out for three-layered metal nanoshell dielectric-metal-metal (DMM) system consisting of a particle with a dielectric core (Al@Al2O3), a middle metal Ag (Au) layer and an outer metal Au (Ag) shell. The results have been interpreted using plasmon hybridization theory. We have also prepared Al@Al2O3@Ag@Au and Al@Al2O3@AgAu triple-layered core-shell or alloy nanostructure by two-step laser ablation method and compared with calculated results. The synthesis involves temporal separations of Al, Ag, and Au deposition for step-by-step formation of triple-layered core-shell structure. To form Al@Ag nanoparticles, we ablated silver for 40 min in aluminium nanoparticle colloidal solution. As aluminium oxidizes easily in water to form alumina, the resulting structure is core-shell Al@Al2O3. The Al@Al2O3 particle acts as a seed for the incoming energetic silver particles for multilayered Al@Al2O3@Ag nanoparticles is formed. The silver target was then replaced by gold target and ablation was carried out for different ablation time using different laser energy for generation of Al@Al2O3@Ag@Au core-shell or Al@Al2O3@AgAu alloy. The formation of core-shell and alloy nanostructure was confirmed by UV-visible spectroscopy. The absorption spectra show shift in plasmon resonance peak of silver to gold in the range 400-520 nm with increasing ablation time suggesting formation of Ag-Au alloy in the presence of alumina particles in the solution.

  16. Technical Evaluation Report on Knowledge Based System Applications for Guidance and Control (Application des Systemes a Base de Connaissances au Guidage-Pilotage),

    DTIC Science & Technology

    1991-07-01

    Sanz-Aranguez SP ProfessorJohn T.Shcpherd UK Dr Elihu Zimet us HOST PAINEL COORDINATOR Mdr Carlos A. Garriga. Lopez SENER Ingenieria y Sistemas SA...real-time expert systems. This problem arises when the prototype phase is finished and the goal is to produce an industrialized system. A methodology...meaningful in terms of industrial applications. The industrial exploitation of AI technology is strictly associated with the combination of both

  17. The application of Au nanoclusters in the fluorescence imaging of human serum proteins after native PAGE: enhancing detection by low-temperature plasma treatment.

    PubMed

    Zhang, Jing; Sajid, Muhammad; Na, Na; Huang, Lingyun; He, Dacheng; Ouyang, Jin

    2012-05-15

    Proteins in human serum are increasingly being studied for their roles in a wide variety of biochemical interactions. To improve the sensitivity of the detection of human serum proteins after native polyacrylamide gel electrophoresis (PAGE), we have developed a fluorescence imaging detection technique for the detection. BSA (bovine serum albumin)-stabilized Au nanoclusters (NCs) were applied as fluorescent probes for imaging, and low-temperature plasma (LTP) treatment of the Au NCs was introduced to enhance the fluorescence imaging. Here, a series of optimization experiments (e.g. those to optimize for pH) were conducted for protein detection after 1-DE and 2-DE, and several types of discharge gases (He, O(2), and N(2)) were selected for the LTP treatment. The possible mechanism of interaction between the proteins and the Au NCs was demonstrated by an isothermal titration calorimetry experiment. Using the present method, a sensitivity of 7-14 times higher than that of traditional staining detection methods was observed in the oxygen LTP-treated Au NCs fluorescence images, and some relatively low abundance proteins (identified by the MS/MS technique) were easily detected. In addition, this fluorescence imaging method was applied to distinguish between the serum samples of patients with liver diseases and those of healthy people. Thus, this fluorescence imaging method is suitable for the highly sensitive detection of various serum proteins, and it shows potential capabilities for clinical diagnosis. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Preparation and Characterization of Au-ZrO2-SiO2 Nanocomposite Spheres and Their Application in Enrichment and Detection of Organophosphorus Agents

    SciTech Connect

    Yang, Yuqi; Tu, Haiyang; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-03-01

    Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized and used as selective sorbents for the solid-phase extraction (SPE) of orananophosphorous agents. A non-enzymatic electrochemical sensor based on an Au-ZrO{sub 2}-SiO{sub 2} modified electrode was developed for selective detection of orananophosphorous pesticides (OPs). The Au-ZrO{sub 2}-SiO{sub 2} nanocomposite spheres were synthesized by hydrolysis and condensation of zirconia n-butoxide (TBOZ) on the surface of SiO{sub 2} spheres and then introduction of gold nanoparticles on the surface. Transmission electron microscope and X-ray photoelectron spectroscopy were performed to characterize the formation of the nanocomposite sphere. Fast extraction of OP was achieved by Au-ZrO{sub 2}-SiO{sub 2} modified electrode within 5 min via the specific affinity between zirconia and phosphoric group. The assay yields a broad concentration range of paraoxon-ethyl from 1.0 to 500 ng/mL{sup -1} with a detection limit 0.5 ng/mL{sup -1}. This selective and sensitive method holds great promise for the enrichment and detection of OPs.

  19. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application.

    PubMed

    Tian, Juan; Deng, Sheng-Yuan; Li, Da-Li; Shan, Dan; He, Wei; Zhang, Xue-Ji; Shi, You

    2013-11-15

    We report here an efficient approach to enhance the performance of biosensing platform based on graphene or graphene derivate. Initially, graphene oxides (GO) nanosheets were reduced and surface functionalized by one-step oxidative polymerization of dopamine in basic solution at environment friendly condition to obtain the polydopamine (Pdop) modified reduced graphene oxides (PDRGO). The bioinspired surface was further used as a support to anchor active gold nanoparticles (AuNPs). The morphology and structure of the as-prepared AuNPs/PDRGO nanocomposite were investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform-infrared spectroscopy (FT-IR). Electrochemical studies demonstrate that the as-prepared AuNPs/PDRGO hybrid materials possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH at low potential (0.1 V vs. SCE) with the fast response (15s) and the broad linear range (5.0 × 10(-8)-4.2 × 10(-5)M). Thus, this AuNPs/PDRGO nanocomposite can be further used to fabricate a sensitive alcohol biosensor using alcohol dehydrogenase (ADH), by simply incorporating the specific enzyme within the composite matrix with the aid of chitosan (Chit). Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Synthesis of Au-BiVO4 nanocomposite through anodic electrodeposition followed by galvanic replacement and its application to the photocatalytic decomposition of methyl orange.

    PubMed

    Myung, Noseung; Lee, Wooju; Lee, Changhyun; Jeong, Seonghan; Rajeshwar, Krishnan

    2014-07-21

    A Au-BiVO(4) nanocomposite is synthesized by a two-step strategy involving anodic electrodeposition combined with in situ galvanic replacement. First, a BiVO(4) layer is prepared by the anodic oxidation of pre-electrodeposited Bi film in a VO(4)(3-) containing electrolyte. Thus-prepared BiVO(4) film contains excess metallic Bi, which is then galvanically replaced with Au from an aqueous HAuCl(4) solution, resulting in the Au-BiVO(4) composite in the second step. Optical, photoelectrochemical and photocatalytic properties are investigated by using X-ray diffraction, energy-dispersive X-ray analysis, diffuse reflectance spectrometry, and photoelectrochemical analyses. The visible-light photocatalytic activity of the Au-BiVO(4) composite is evaluated using the decomposition of methyl orange dye and is superior to the bare BiVO(4) film counterpart. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The synthesis of Au@C@Pt core-double shell nanocomposite and its application in enzyme-free hydrogen peroxide sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Yayun; Li, Yuhui; Jiang, Yingying; Li, Yancai; Li, Shunxing

    2016-08-01

    A novel Au@C@Pt core-double shell nanocomposite was synthesized and used to fabricate enzyme-free electrochemical sensor for rapid and sensitive detection of hydrogen peroxide (H2O2). The well-designed Au@C@Pt core-double shell nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and energy-dispersed spectrum (EDS). The Au@C@Pt core-double shell nanocomposite modified glassy carbon electrode (Au@C@Pt/GCE) exhibits good electrocatalytic activity towards H2O2 reduction at 0.0 V and can be used as H2O2 sensor. The sensor displays two wide linear ranges towards H2O2 detection. The one is 9.0 μM-1.86 mM with high sensitivity of 144.7 μA mM-1 cm-2, and the other is 1.86 mM-7.11 mM with sensitivity of 80.1 μA mM-1 cm-2. When signal to noise (S/N) is 3, the calculated detection limit (LOD) is 0.13 μM. Furthermore, the interference from the common interfering species such as glucose, ascorbic acid, dopamine and uric acid can be effectively avoided to H2O2 detection. Additionally, the H2O2 sensor also displays good stability and reproducibility.

  2. Chronic respiratory effects of indoor formaldehyde exposure

    SciTech Connect

    Krzyzanowski, M.; Quackenboss, J.J.; Lebowitz, M.D. )

    1990-08-01

    The relation of chronic respiratory symptoms and pulmonary function to formaldehyde (HCHO) in homes was studied in a sample of 298 children (6-15 years of age) and 613 adults. HCHO measurements were made with passive samplers during two 1-week periods. Data on chronic cough and phlegm, wheeze, attacks of breathlessness, and doctor diagnoses of chronic bronchitis and asthma were collected with self-completed questionnaires. Peak expiratory flow rates (PEFR) were obtained during the evenings and mornings for up to 14 consecutive days for each individual. Significantly greater prevalence rates of asthma and chronic bronchitis were found in children from houses with HCHO levels 60-120 ppb than in those less exposed, especially in children also exposed to environmental tobacco smoke. In children, levels of PEFR decreased linearly with HCHO exposure, with the estimated decrease due to 60 ppb of HCHO equivalent to 22% of PEFR level in nonexposed children. The effects in asthmatic children exposed to HCHO below 50 ppb were greater than in healthy ones. The effects in adults were less evident: decrements in PEFR due to HCHO over 40 ppb were seen only in the morning, and mainly in smokers.

  3. The Chemical Link between Isoprene and Formaldehyde

    NASA Astrophysics Data System (ADS)

    Wolfe, G.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; De Gouw, J. A.; Gilman, J.; Graus, M.; Hatch, C. D.; Holloway, J. S.; Horowitz, L. W.; Lee, B. H.; Lerner, B. M.; Lopez-Hilfiker, F.; Mao, J.; Marvin, M. R.; Peischl, J.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Thornton, J. A.; Veres, P. R.; Warneke, C.

    2015-12-01

    Isoprene-fueled photochemistry defines near-surface atmospheric composition in many regions of the world. Formaldehyde (HCHO) is a major product of, and thus a tracer for, this chemistry. As one of the few volatile organic compounds (VOC) observable via remote sensing, HCHO offers an invaluable constraint on the global distribution of isoprene emissions. Shortcomings in current chemical mechanisms, however, challenge our understanding of the link between isoprene emissions and HCHO abundance. Uncertainties are most severe under low-NOx conditions, which are often prevalent in regions with high biogenic emissions. Using observations from the 2013 SENEX mission, we will quantify the isoprene-HCHO relationship across the wide range of chemical regimes encountered in the southeast U.S. Model-assisted analysis will focus on the NOx dependence of HCHO production and its mechanistic underpinnings. Accurate model representation of this relationship is crucial for top-down constraints of isoprene emissions. It is also a benchmark for overall mechanism performance with regard to VOC degradation.

  4. In vitro reaction of barbiturates with formaldehyde.

    PubMed

    Gannett, P M; Daft, J R; James, D; Rybeck, B; Knopp, J B; Tracy, T S

    2001-09-01

    Barbiturates are widely used as sedatives, hypnotics, and antiepileptics, and, when coupled with their narrow therapeutic index, the probability that their use will result in accidental or intentional death is significant. When barbiturates are implicated in a murder or suicide, analysis for their presence is often required. Under certain conditions, barbiturates are quite stable, but conditions found in vivo immediately after death or after embalming may promote barbiturate decomposition. If extensive decomposition occurs, analysis for them may be difficult or impossible. Here, the stability of three representative barbiturates, under conditions that model those likely to prevail in vivo shortly after death and after embalming, have been studied. Solutions of phenobarbital were found to slowly decompose in water over the pH range of approximately 3.5 to 9.5. More rapid decomposition occurred at higher pH, and 2-phenylbutyric acid was the main decomposition product. Formaldehyde (5-20%) accelerated the decomposition rate 3-10-fold such that phenobarbital decomposition could be complete after 30 days. In contrast, pentobarbital decomposed roughly 10 times more slowly and secobarbital did not detectably decompose under any of the conditions studied. Thus, certain barbiturates may partially or completely decompose in vivo after death, especially after embalming, and thus analysis for them may lead to false negatives. However, this work shows that analysis for the parent barbiturate or its predicted decomposition product may provide data that will reduce the likelihood of false negatives.

  5. THE PHOTODISSOCIATION OF FORMALDEHYDE IN COMETS

    SciTech Connect

    Feldman, Paul D.

    2015-10-20

    Observations of comets in the 905–1180 Å spectral band made with the Far Ultraviolet Spectroscopic Explorer in 2001 and 2004 show unusual features in the fluorescent emissions of CO and H{sub 2}. These include emission from a non-thermal high-J rotational population of CO and solar Lyα induced fluorescence from excited vibrational levels of H{sub 2}, both of which are attributed to the photodissociation of formaldehyde. In this paper we model the large number of observed H{sub 2} lines and demonstrate the dependence of the pumping on the heliocentric velocity of the comet and the solar line profiles. We also derive the rotational and vibrational populations of H{sub 2} and show that they are consistent with the results of laboratory studies of the photodissociation of H{sub 2}CO. In addition to the principal series of H i and O i, the residual spectrum is found to consist mainly of the Rydberg series of C i multiplets from which we derive the mean carbon column abundance in the coma. Fluorescent emissions from N i and N{sub 2} are also searched for.

  6. Formaldehyde dose-response in healthy nonsmokers

    SciTech Connect

    Kulle, T.J.; Sauder, L.R.; Hebel, J.R.; Green, D.J.; Chatham, M.D.

    1987-08-01

    Industrial, commercial, and domestic levels of formaldehydes exposure range from <0.1 to >5.0 ppm. Irritation of the eyes and upper respiratory tract predominate, and bronchoconstriction is described in case reports. However, pulmonary function and irritant symptoms together have not been assessed over a range of HCHO concentrations in a controlled environment. The authors investigated dose response in both symptoms and pulmonary function associated with 3-h exposures to 0.0-3.0 ppm HCHO in a controlled environmental chamber. Ten subjects were randomly exposed to 0.0, 0.5, 1.0, and 2.0 ppm HCHO at rest plus 2.0 ppm HCHO with exercise and nine additional subjects were randomly exposed to 0.0, 1.0, 2.0, and 3.0 ppm HCHO at rest plus 2.0 ppm HCHO with exercise. Significant dose-response relationships in odor and eye irritation were observed (p < 0.05). Nasal flow resistance was increased at 3.0 ppm (p < 0.01), but not at 2.0 ppm HCHO. There were no significant decrements in pulmonary function (FVC, FEV/sub 1/, FEF/sub 25-75%/, SGaw) or increases in bronchial reactivity to methacholine (log PD/sub 35SGaw/) with exposure to 0.5-3.0 ppm HCHO at rest or to 2.0 ppm HCHO with exercise.

  7. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.

    PubMed

    Molin, Mikael; Blomberg, Anders

    2006-05-01

    To investigate Saccharomyces cerevisiae physiology during growth on the conditionally toxic triose dihydroxyacetone (DHA), protein expression was studied in strains overexpressing either of the two dihydroxyacetone kinase isogenes, DAK1 or DAK2, that grow well utilizing DHA as a carbon and energy source. DHA metabolism was found mostly similar to ethanol utilization, involving a strong component of glucose derepression, but also involved DHA-specific regulatory changes. A specific and strong (10- to 30-fold induction of formaldehyde dehydrogenase, Fdhlp, indicated activation of the formaldehyde dissimilation pathway in DHA medium. The importance of this pathway was further supported by impaired adaptation to DHA growth and DHA survival in a glutathione-dependent formaldehyde dehydrogenase (SFA1) deletion mutant. Glutathione synthase (GSH1) deletion led to decreased DHA survival in agreement with the glutathione cofactor requirement for the SFA1-encoded activity. DHA toxicity did, however, not solely appear related to formaldehyde accumulation, because SFA1 overexpression only enhanced formaldehyde but not DHA tolerance. In further agreement with a low DHA-to-formaldehyde flux, GSH supplements in the low microM range also fully suppressed the DHA sensitivity of a gsh1Delta strain. Under growth reduction on high (100 mM) DHA medium we report increased levels of advanced glycation end-product (AGE) formation on total protein. Under these high-DHA conditions expression of several stress-related proteins, e.g. a heat-shock protein (Hsp104p) and the oxidative stress indicator, alkyl hydroperoxide reductase (Ahp1p) was also found induced. However, hallmark determinants of oxidative stress tolerance (e.g. YAP1, SKN7, HYR1/GPX3 and SOD2) were redundant for DHA tolerance, thus indicating mechanisms of DHA toxicity largely independent of central oxidative stress defence mechanisms. We conclude that mechanisms for DHA growth and detoxification appear complex and that the

  8. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  9. Photoemission study of Au on a-Si:H

    NASA Astrophysics Data System (ADS)

    Pi, Tun-Wen; Yang, A.-B.; Olson, C. G.; Lynch, D. W.

    1990-11-01

    We report a high-resolution photoemission study of Au evaporated on rf-sputtered a-Si:H at room temperature. Three regions of coverage can be classified according to the behavior of the valence-band and core-level spectra: an unreacted region with an equivalent thickness of 2 Å, followed by an intermixed Au/a-Si overlayer (~9 Å), and a dual-phase region at higher coverage. Au adatoms are dispersed in the unreacted region. They subsequently cluster in the intermixed region, where they attach to Si atoms that are not hydrogen bonded, suggesting that the intermixed Si is mainly from those that have dangling bonds. In the dual-phase region, two sets of Au 4f core levels evolve with higher binding energy, one from Au intermixed with Si, and the lower one exhibiting pure gold character. The interface eventually ends up with the sequence: a-Si:H(sub.)+(pure Au mixed with intermixed Au/Si)+(vac). This is unlike the case of Au on c-Si, which has a pure gold layer sandwiched by intermixed Au/Si complexes along the surface normal. Traces of silicon atoms on top of composite surfaces appear even at the highest coverage, 205 Å, of the gold deposit. The applicability of the four models previously used for the Au/c-Si interface is also briefly discussed.

  10. Foliar uptake and translocation of formaldehyde with Bracket plants (Chlorophytum comosum).

    PubMed

    Su, Yuhong; Liang, Yongchao

    2015-06-30

    The foliar uptake and transport of formaldehyde into Bracket plants from air via leaves and roots to external water was investigated in an air-plant-water system. The results indicated that formaldehyde could be quickly taken up by plant tissues, and that formaldehyde accumulated in leaves could be released rapidly back into air when the formaldehyde level in air was diminished. This rapid reversible translocation of formaldehyde between plant leaves and air resulted in high formaldehyde concentrations in leaf dews, depending upon exposure levels of formaldehyde in air. Meanwhile, formaldehyde could be transported from air to plant rhizosphere solution through downward transport. The concentration of formaldehyde in rhizosphere solutions increased with exposure time and the formaldehyde level in air. The efficiency of the leaf extracts to break down formaldehyde increased, probably because of an increase in oxidative potential of the leaf extracts. Taken together, the main mechanism of formaldehyde loss in air can be attributed to the accumulation by (or breakdown in) plant tissues; the removal rate of formaldehyde from air reached 135 μg h(-1) plant(-1) in the experimental condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. NORMACAT project: normalized closed chamber tests for evaluation of photocatalytic VOC treatment in indoor air and formaldehyde determination.

    PubMed

    Kartheuser, B; Costarramone, N; Pigot, T; Lacombe, S

    2012-11-01

    The aims of the NORMACAT project are: to develop tools and unbiased standardized methods to measure the performance and to validate the safety of new materials and systems integrating photocatalysis, to develop new photocatalytic media with higher efficiency and to give recommendations aimed at improving the tested materials and systems. To achieve this objective, it was necessary to design standardized test benches and protocols to assess photocatalytic efficiency of materials or systems used in the treatment of volatile organic compounds (VOCs) and odour under conditions close to applications. The tests are based on the validation of robust analytical methods at the parts per billion by volume level that not only follow the disappearance of the initial VOCs but also identify the secondary species and calculate the mineralization rates. The first results of inter-laboratory closed chamber tests, according to XP B44-013 AFNOR standard, are described. The photocatalytic degradation of mixtures of several defined pollutants under controlled conditions (temperature, relative humidity, initial concentration) was carried out in two independent laboratories with the same photocatalytic device and with various analytical procedures. Comparison of the degradation rate and of the mineralization efficiency allowed the determination of the clean air delivery rate in both cases. Formaldehyde was the only by-product detected during photocatalytic test under standardized experimental conditions. The concentration of transient formaldehyde varied according to the initial VOC concentration. Moreover the photocatalytic reaction rate of formaldehyde in mixture with other pollutants was analysed. It was concluded that formaldehyde concentration did not increase with time. CONCLUSION-PERSPECTIVE: This type of experiment should allow the comparison of the performances of different photoreactors and of photocatalytic media under controlled and reproducible conditions against mixtures of

  12. Formaldehyde emission—Comparison of different standard methods

    NASA Astrophysics Data System (ADS)

    Risholm-Sundman, Maria; Larsen, Annelise; Vestin, Ewa; Weibull, Anders

    The emission of formaldehyde is an important factor in the evaluation of the environmental and health effects of wood-based board materials. This article gives a comparison between commonly used European test methods: chamber method [EN 717-1, 2004. Wood-based panels—determination of formaldehyde release—Part 1: formaldehyde emission by the chamber method. European Standard, October 2004], gas analysis method [EN 717-2, 1994. Wood-based panels—determination of formaldehyde release—Part 2: formaldehyde release by the gas analysis method, European Standard, November 1994], flask method [EN 717-3, 1996. Wood-based panels—determination of formaldehyde release—Part 3: formaldehyde release by the flask method, European Standard, March 1996], perforator method [EN 120, 1993. Wood based panels—determination of formaldehyde content—extraction method called perforator method, European Standard, September 1993], Japanese test methods: desiccator methods [JIS A 1460, 2001. Building boards. Determination of formaldehyde emission—desiccator method, Japanese Industrial Standard, March 2001 and JAS MAFF 233, 2001] and small chamber method [JIS A 1901, 2003. Determination of the emission of volatile organic compounds and aldehydes for building products—small chamber method, Japanese Industrial Standard, January 2003], for solid wood, particleboard, plywood and medium density fiberboard. The variations between the results from different methods can partly be explained by differences in test conditions. Factors like edge sealing, conditioning of the sample before the test and test temperature have a large effect on the final emission result. The Japanese limit for F **** of 0.3 mg l -1 (in desiccator) for particleboards was found to be equivalent to 0.04 mg m -3 in the European chamber test and 2.8 mg per 100 g in the perforator test. The variations in inter-laboratory tests are much larger than in intra-laboratory tests; the coefficient of variation is 16% and 6

  13. Formaldehyde as a basis for residential ventilation rates.

    PubMed

    Sherman, M H; Hodgson, A T

    2004-02-01

    Traditionally, houses in the US have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.

  14. Formaldehyde as a basis for residential ventilation rates

    SciTech Connect

    Sherman, M.H.; Hodgson, A.T.

    2002-04-28

    Traditionally, houses in the U.S. have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.

  15. Assessing Satellite Column Observation of Formaldehyde over Continental United States

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; White, A.; Khan, M. N.; McNider, R. T.

    2016-12-01

    The advent of satellite observation of trace gases has provided valuable information for better understanding of chemical atmosphere. One of these products, satellite observation of column formaldehyde, can be especially valuable in air quality studies. Since photochemical production of formaldehyde constitutes a large portion of summertime atmospheric concentration, satellite observations can be used to constraint the uncertainties in primary aldehyde emissions. In particular, isoprene as the major precursor of formaldehyde in most areas during summer, contributes 20-60% of total production. However, the magnitude of this contribution is spatially variable. Therefore, in comparing model column formaldehyde to that of the satellite, environmental factors affecting this variation must agree with observations. In this study, first we correct the radiation field used in the model for estimating emissions of biogenic volatile organic compounds (BVOC). Then by performing photochemical simulations for the summer of 2013, model formaldehyde field will be compared to that of satellite observed. WRF/SMOKE/CMAQ modeling system is being used for these simulations. The model simulations use satellite-based estimates of photosynthetically active radiation (PAR) in BVOC emission estimates produced by the latest version of biogenic emission inventory system (BEIS). The results for the period of August-September 2013 (NASA's Discover-AQ field campaign) will be presented.

  16. System for dosing formaldehyde vapor at the ppb level

    NASA Astrophysics Data System (ADS)

    Röck, Frank; Barsan, Nicolae; Weimar, Udo

    2010-11-01

    Formaldehyde is one of the most relevant compounds for indoor air pollution. It is toxic, allergenic and carcinogenic and acts already at the ppb level. State-of-the-art detection methods are based on the wet chemical analysis of formaldehyde derivates. This is a complex and time-consuming approach and hinders the collection of real-time data. However, the use of wet chemistry allows for the simple calibration based on formalin solutions. By using gas sensors, online monitoring of indoor air quality is, in principle, possible. To find out whether their performance is good enough, calibration is the first issue to be resolved. Formaldehyde vapor at low concentrations has to be used, and temperature, humidity and flow rate have to be kept constant. This paper discusses the different possibilities of dosing formaldehyde and how to better meet the gas sensor calibration demands. The authors favor the use of an aqueous formaldehyde solution obtained by the depolymerization of paraformaldehyde in combination with a permeation tube used as external reference. Moreover, in the paper it is demonstrated that metal oxide sensors are appropriate detectors to calibrate the system for concentrations even down to 20 ppb. Consequently, the presented system is able to characterize gas sensors and can be used for the development of new devices which monitor indoor air quality.

  17. Comparison of ozone and formaldehyde as poultry hatchery disinfectants

    SciTech Connect

    Whistler, P.E.; Sheldon, B.W. )

    1989-10-01

    Ozone and formaldehyde were compared as poultry hatchery disinfectants in a poultry setter, and evaluated for effectiveness. Escherichia coli, Pseudomonas fluorescens, Salmonella typhimurium, and Proteus spp. were inoculated onto open petri plates and exposed to ozone or onto filter paper strips and exposed to ozone or formaldehyde in a poultry setter. Ozone (1.41 to 1.68% by weight) resulted in significant bacterial reductions of greater than 4 log10 on the open plates and greater than 3 log10 on filter paper strips, whereas formaldehyde (triple strength) resulted in greater than 7 log10 reduction on filter paper strips. Ozone was similarly lethal to organisms on filter paper strips at 90% relative humidity (RH) and 13.9 C, and at 50% RH and 37.7 C. Although under the conditions of this study formaldehyde (triple strength) was more lethal than ozone, ozone killed greater than 99.9% of the starting microbial populations. In the event that formaldehyde can no longer be used in the hatchery, an effective alternative may be ozone.

  18. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    EPA Science Inventory

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  19. Formaldehyde quantitation in air samples by thiazolidine derivatization: Factors affecting analysis

    SciTech Connect

    Yasuhara, A.; Shibamoto, T. )

    1989-11-01

    A new method for the determination of trace levels of formaldehyde in air was developed and validated. The method is based on the reaction of formaldehyde with cysteamine to form thiazolidine. Air samples containing trace levels of formaldehyde were prepared from paraformaldehyde. The percent yield of formaldehyde from paraformaldehyde was 85.1 +/- 1.14%. Air samples were bubbled into an aqueous cysteamine trap. Thiazolidine formed from formaldehyde and cysteamine in the trap was determined by gas chromatography with a fused silica capillary column and a nitrogen-phosphorus detector (NPD). The lowest detection level for thiazolidine was 17.2 pg, equivalent to 5.80 pg formaldehyde. The recovery efficiency of trace gas phase formaldehyde in air was greater than 90%. Formaldehyde levels in ambient laboratory air were 48.9-56.2 ppb (v/v).

  20. Resources, Guidance Materials for the Formaldehyde Emission Standards for Composite Wood Products Rule

    EPA Pesticide Factsheets

    This page provides guidance documents and resources pertaining to formaldehyde including guidance materials pertaining to the Formaldehyde Emissions Standards for Composite Wood Products final rule at 40 CFR part 770.