Sample records for application au site

  1. Synthesis of octahedral gold tip-blobbed nanoparticles and their dielectric sensing properties.

    PubMed

    Zhang, Liqiu; Jang, Hee-Jeong; Yoo, Sung Jae; Cho, Sanghyun; Won, Ji Hye; Liu, Lichun; Park, Sungho

    2018-06-22

    Site-selective synthesis of nanostructures is an important topic in the nanoscience community. Normally, the difference between seeds and deposition atoms in terms of crystallinity triggers the deposition atoms to grow initially at the specific site of nucleation. It is more challenging to control the deposition site of atoms that have the same composition as the seeds because the atoms tend to grow epitaxially, covering the whole surface of the seed nanoparticles. Gold (Au) nano-octahedrons used as seeds in this study possess obvious hierarchical surface energies depending on whether they are at vertices, edges, or terraces. Although vertices of Au nano-octahedrons have the highest surface energy, it remains a challenge to selectively deposit Au atoms at the vertices but not at the edges and faces; this selectivity is required to meet the ever-increasing demands of engineered nanomaterial properties. This work demonstrates an easy and robust method to precisely deposit Au nanoparticles at the vertices of Au nano-octahedrons via wet-chemical seed-mediated growth. The successful synthesis of octahedral Au tip-blobbed nanoparticles (Oh Au TBPs) benefited from the cooperative use of thin silver (Ag) layers at the surface of Au nano-octahedron seeds and iodide ions in the Au growth solution. As-synthesized Au nanostructures gave rise to hybrid optical properties, as evidenced from the UV-VIS-NIR extinction spectra, in which a new extinction peak appeared after Au nanoparticles were formed at the vertices of Au nano-octahedrons. A sensitivity evaluation toward dielectric media of a mixture of dimethyl sulfoxide and water suggested that Au TBPs were more optically sensitive compared to the original Au nano-octahedrons. The method demonstrated in this work is promising in the synthesis of advanced Au nanostructures with hybrid optical properties for versatile applications by engineering the surface energy of vertex-bearing Au nanostructures to trigger site-selective overgrowth of congener Au atoms. © 2018 IOP Publishing Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoch, Neha, E-mail: nehakatoch2@gmail.com; Kapoor, Pooja; Sharma, Munish

    We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G{sub 0} to 2G{sub 0} suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.

  3. Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2.

    PubMed

    Ndokoye, Pancras; Zhao, Qidong; Li, Xinyong; Li, Tingting; Tade, Moses O; Wang, Shaobin

    2016-09-01

    In this study, we demonstrate for the first time that highly branched gold nanostars (AuNSs) and silica-coated AuNSs (AuNSs@mSiO2) could potentially serve as efficient hydrogenation catalysts. The catalytic activity could be promoted by raising the number of tipped-branches of AuNSs, which reveals that the tips play an important role as active sites. The fabricated sharply-pointed AuNSs benefit the electron transfer from BH4 anions to 4-nitrophenol. Coating AuNSs with mesoporous silica (AuNSs@mSiO2) further enhanced the reduction rate and recyclability, and also contributed to reducing the induction period. The AuNSs@mSiO2 (50-100nm in diameter) are large enough to be catalytically inactive, but they consist of sharply-pointed tips with the radius of 2.6-3.6nm, which are rich in coordinately unsaturated sites similar to those of nanoparticles and clusters. Such features in structure and activity would also extend their application range in heterogeneous catalysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Efficient DFT+U calculations of ballistic electron transport: Application to Au monatomic chains with a CO impurity

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea

    2013-02-01

    An efficient method for computing the Landauer-Büttiker conductance of an open quantum system within DFT+U is presented. The Hubbard potential is included in electronic-structure and transport calculations as a simple renormalization of the nonlocal pseudopotential coefficients by restricting the integration for the onsite occupations within the cutoff spheres of the pseudopotential. We apply the methodology to the case of an Au monatomic chain in the presence of a CO molecule adsorbed on it. We show that the Hubbard U correction removes the spurious magnetization in the pristine Au chain at the equilibrium spacing, as well as the unphysical contribution of d electrons to the conductance, resulting in a single (spin-degenerate) transmission channel and a more realistic conductance of 1G0. We find that the conductance reduction due to CO adsorption is much larger for the atop site than for the bridge site, so that the general picture of electron transport in stretched Au chains given by the local density approximation remains valid at the equilibrium Au-Au spacing within DFT+U.

  5. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses.

    PubMed

    Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P

    2017-03-01

    Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.

  6. Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin

    PubMed Central

    Peng, Xin; Qi, Wei; Huang, Renliang; Su, Rongxin; He, Zhimin

    2015-01-01

    Salvianolic acid B and rosmarinic acid are two main water-soluble active ingredients from Salvia miltiorrhiza with important pharmacological activities and clinical applications. The interactions between salvianolic acid B (or rosmarinic acid) and bovine serum albumin (BSA) in the presence and absence of gold nanoparticles (Au NPs) with three different sizes were investigated by using biophysical methods for the first time. Experimental results proved that two components quenched the fluorescence of BSA mainly through a static mechanism irrespective of the absence or presence of Au NPs. The presence of Au NPs decreased the binding constants of salvianolic acid B with BSA from 27.82% to 10.08%, while Au NPs increased the affinities of rosmarinic acid for BSA from 0.4% to 14.32%. The conformational change of BSA in the presence of Au NPs (caused by a noncompetitive binding between Au NPs and drugs at different albumin sites) induced changeable affinity and binding distance between drugs and BSA compared with no Au NPs. The competitive experiments revealed that the site I (subdomain IIA) of BSA was the primary binding site for salvianolic acid B and rosmarinic acid. Additionally, two compounds may induce conformational and micro-environmental changes of BSA. The results would provide valuable binding information between salvianolic acid B (or rosmarinic acid) and BSA, and also indicated that the Au NPs could alter the interaction mechanism and binding capability of drugs to BSA, which might be beneficial to understanding the pharmacokinetics and biological activities of the two drugs. PMID:25861047

  7. Vesicular gold assemblies based on host-guest inclusion and its controllable release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Ha, Wei; Kang, Yang; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-12-01

    We have developed a kind of gold nanoparticle (AuNP) in which polyethylene glycol (PEG) and poly(N-isopropylacrylamide) (PNIPAM) are attached on the surface of a gold nanocrystal through the host-guest inclusion between adamantane groups (ADA) and β-cyclodextrin (β-CD). The resulting AuNPs become amphiphilic in water above body temperature and self-assemble into vesicles. It is found that these vesicles can load doxorubicin (Dox) effectively. With a decrease in temperature, the PNIPAM shifted from hydrophobic to hydrophilic, causing Au vesicles to disassemble into stable small AuNPs, triggering the release of Dox. These hybrid vesicles, combining polymer functionality with the intriguing properties of AuNPs, can first release free Dox and AuNP/Dox at a site of a tumor through the application of either simple ice packs or deeply penetrating cryoprobes, then the AuNP/Dox can be taken in by tumor cells and destroy them like miniature munitions. Furthermore, these vesicles showed other therapeutic possibilities due to the presence of gold. We believe that the development of such multi-functional vesicles will provide new and therapeutically useful means for medical applications.

  8. Computational insights into the concomitant changes of hollow interior evolution in [SbnAunSbn]m (n=3, 4, 5, 6; m= -3, -2, -1, -2) complex

    NASA Astrophysics Data System (ADS)

    Zhu, Tingting; Ning, Ping; Tang, Lihong; Li, Kai; Bao, Shuangyou; Jin, Xu; Song, Xin; Zhang, Xiuying; Han, Shuang

    2017-02-01

    A series of novel all-metal sandwich species, [SbnAunSbn]m (n= 3, 4, 5, 6; m= -3, -2, -1, -2), are carefully designed and are systematically investigated in term of structure, bonding nature, stability, and potential application. These results show that [SbnAunSbn]m (n=3, 4, 5, 6; m= -3, -2, -1, -2), have local minimum values on their potential energy surfaces. For the Sb-Sb and Sb-Au bond, they are obviously covalent features, while in Au-Au, there is a typical aurophilic interaction. Furthermore, these species present expected stability owing to the positive dissociation energy, great Egap, ionization potential (IP), aromaticity and perfected mechanical stability. Interestingly, [Sb5Au5Sb5]- and [Sb6Au6Sb6]2- are aromatic, while both [Sb3Au3Sb3]3- and [Sb4Au4Sb4]2- possess conflicting aromaticity. And all the title species hold tube aromaticty and δ aromaticty. prediction The application suggests that the Sb site is favorable for absorbing CO in the units, and [Sb3Au3Sb3]3- is more suitable than others; CO is absorbed by the p-p interaction between the C and Sb atoms.

  9. Superparamagnetic Au-Fe3O4 nanoparticles: one-pot synthesis, biofunctionalization and toxicity evaluation

    NASA Astrophysics Data System (ADS)

    Pariti, A.; Desai, P.; Maddirala, S. K. Y.; Ercal, N.; Katti, K. V.; Liang, X.; Nath, M.

    2014-09-01

    Superparamagnetic Au-Fe3O4 bifunctional nanoparticles have been synthesized using a single step hot-injection precipitation method. The synthesis involved using Fe(CO)5 as iron precursor and HAuCl4 as gold precursor in the presence of oleylamine and oleic acid. Oleylamine helps in reducing Au3+ to Au0 seeds which simultaneously oxidizes Fe(0) to form Au-Fe3O4 bifunctional nanoparticles. Triton® X-100 was employed as a highly viscous solvent to prevent agglomeration of Fe3O4 nanoparticles. Detailed characterization of these nanoparticles was performed by using x-ray powder diffraction, transmission electron microscopy, scanning tunneling electron microscopy, UV-visible spectroscopy, Mössbauer and magnetometry studies. To evaluate these nanoparticles’ applicability in biomedical applications, L-cysteine was attached to the Au-Fe3O4 nanoparticles and cytotoxicity of Au-Fe3O4 nanoparticles was tested using CHO cells by employing MTS assay. L-cysteine modified Au-Fe3O4 nanoparticles were qualitatively characterized using Fourier transform infrared spectroscopy and Raman spectroscopy; and quantitatively using acid ninhydrin assay. Investigations reveal that that this approach yields Au-Fe3O4 bifunctional nanoparticles with an average particle size of 80 nm. Mössbauer studies indicated the presence of Fe in Fe3+ in A and B sites (tetrahedral and octahedral, respectively) and Fe2+ in B sites (octahedral). Magnetic measurements also indicated that these nanoparticles were superparamagnetic in nature due to Fe3O4 region. The saturation magnetization for the bifunctional nanoparticles was observed to be ˜74 emu g-1, which is significantly higher than the previously reported Fe3O4 nanoparticles. Mössbauer studies indicated that there was no significant Fe(0) impurity that could be responsible for the superparamagnetic nature of these nanoparticles. None of the investigations showed any presence of other impurities such as Fe2O3 and FeOOH. These Au-Fe3O4 bifunctional nanoparticles showed no significant cytotoxicity to the CHO cells up to 48 h even at concentrations of 1 mg ml-1 making them suitable for biomedical applications such as local heat generators (hyperthermia) for cancer treatment and drug delivery vehicles.

  10. Fabrication of Au 25(SG) 18–ZIF-8 Nanocomposites: A Facile Strategy to Position Au 25(SG) 18 Nanoclusters Inside and Outside ZIF-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25(SG) 18 with ZIF-8 (Zn(MeIm) 2, MeIm = 2-methylimidazole), is developed in this paper via the typical Zn-carboxylate type of linkage. Au 25(SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25(SG) 18@ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25(SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25(SG) 18/ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption–desorption isothermal analysis and thermal gravimetric analysis. The distribution ofmore » Au 25(SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25(SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25(SG) 18 nanoclusters (NCs). Au 25(SG) 18@ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. Finally, the structural distinction between Au 25(SG) 18@ZIF-8 and Au 25(SG) 18/ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25(SG) 18 for applications in bioimaging and biotherapy.« less

  11. Fabrication of Au 25(SG) 18–ZIF-8 Nanocomposites: A Facile Strategy to Position Au 25(SG) 18 Nanoclusters Inside and Outside ZIF-8

    DOE PAGES

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian; ...

    2017-12-22

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25(SG) 18 with ZIF-8 (Zn(MeIm) 2, MeIm = 2-methylimidazole), is developed in this paper via the typical Zn-carboxylate type of linkage. Au 25(SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25(SG) 18@ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25(SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25(SG) 18/ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption–desorption isothermal analysis and thermal gravimetric analysis. The distribution ofmore » Au 25(SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25(SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25(SG) 18 nanoclusters (NCs). Au 25(SG) 18@ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. Finally, the structural distinction between Au 25(SG) 18@ZIF-8 and Au 25(SG) 18/ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25(SG) 18 for applications in bioimaging and biotherapy.« less

  12. Fabrication of Au25 (SG)18 -ZIF-8 Nanocomposites: A Facile Strategy to Position Au25 (SG)18 Nanoclusters Inside and Outside ZIF-8.

    PubMed

    Luo, Yucheng; Fan, Shiyan; Yu, Wenqian; Wu, Zili; Cullen, David A; Liang, Chaolun; Shi, Jianying; Su, Chengyong

    2018-02-01

    Multifunctional composite materials are currently highly desired for sustainable energy applications. A general strategy to integrate atomically precise Au 25 (SG) 18 with ZIF-8 (Zn(MeIm) 2 , MeIm = 2-methylimidazole), is developed via the typical Zn-carboxylate type of linkage. Au 25 (SG) 18 are uniformly encapsulated into a ZIF-8 framework (Au 25 (SG) 18 @ZIF-8) by coordination-assisted self-assembly. In contrast, Au 25 (SG) 18 integrated by simple impregnation is oriented along the outer surface of ZIF-8 (Au 25 (SG) 18 /ZIF-8). The porous structure and thermal stability of these nanocomposites are characterized by N 2 adsorption-desorption isothermal analysis and thermal gravimetric analysis. The distribution of Au 25 (SG) 18 in the two nanocomposites is confirmed by electron microscopy, and the accessibility of Au 25 (SG) 18 is evaluated by the 4-nitrophenol reduction reaction. The as-prepared nanocomposites retain the high porosity and thermal stability of the ZIF-8 matrix, while also exhibiting the desired catalytic and optical properties derived from the integrated Au 25 (SG) 18 nanoclusters (NCs). Au 25 (SG) 18 @ZIF-8 with isolated Au 25 sites is a promising heterogenous catalyst with size selectivity imparted by the ZIF-8 matrix. The structural distinction between Au 25 (SG) 18 @ZIF-8 and Au 25 (SG) 18 /ZIF-8 determines their different emission features, and provides a new strategy to adjust the optical behavior of Au 25 (SG) 18 for applications in bioimaging and biotherapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A comparative theoretical study of the catalytic activities of Au2(-) and AuAg(-) dimers for CO oxidation.

    PubMed

    Liu, Peng; Song, Ke; Zhang, Dongju; Liu, Chengbu

    2012-05-01

    The detailed mechanisms of catalytic CO oxidation over Au(2)(-) and AuAg(-) dimers, which represent the simplest models for monometal Au and bimetallic Au-Ag nanoparticles, have been studied by performing density functional theory calculations. It is found that both Au(2)(-) and AuAg(-) dimers catalyze the reaction according to the similar mono-center Eley-Rideal mechanism. The catalytic reaction is of the multi-channel and multi-step characteristic, which can proceed along four possible pathways via two or three elementary steps. In AuAg(-), the Au site is more active than the Ag site, and the calculated energy barrier values for the rate-determining step of the Au-site catalytic reaction are remarkably smaller than those for both the Ag-site catalytic reaction and the Au(2)(-) catalytic reaction. The better catalytic activity of bimetallic AuAg(-) dimer is attributed to the synergistic effect between Au and Ag atom. The present results provide valuable information for understanding the higher catalytic activity of Au-Ag nanoparticles and nanoalloys for low-temperature CO oxidation than either pure metallic catalyst.

  14. Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein.

    PubMed

    Liu, Feng; Wang, Lei; Wang, Hongwei; Yuan, Lin; Li, Jingwen; Brash, John Law; Chen, Hong

    2015-02-18

    The key property of protein-nanoparticle conjugates is the bioactivity of the protein. The ability to accurately modulate the activity of protein on the nanoparticles at the interfaces is important in many applications. In the work reported here, modulation of the activity of protein-gold nanoparticle (AuNP) conjugates by specifically orienting the protein and by varying the surface density of the protein was investigated. Different orientations were achieved by introducing cysteine (Cys) residues at specific sites for binding to gold. We chose Escherichia coli inorganic pyrophosphatase (PPase) as a model protein and used site-directed mutagenesis to generate two mutant types (MTs) with a single Cys residue on the surface: MT1 with Cys near the active center and MT2 with Cys far from the active center. The relative activities of AuNP conjugates with wild type (WT), MT1, and MT2 were found to be 44.8%, 68.8%, and 91.2% of native PPase in aqueous solution. Site-directed orientation with the binding site far from the active center thus allowed almost complete preservation of the protein activity. The relative activity of WT and MT2 conjugates did not change with the surface density of the protein, while that of MT1 increased significantly with increasing surface density. These results demonstrate that site-directed orientation and surface density can both modulate the activity of proteins conjugated to AuNP and that orientation has a greater effect than density. Furthermore, increasing the surface density of the specifically oriented protein MT2, while having no significant effect on the specific activity of the protein, still allowed increased protein loading on the AuNP and thus increased the total protein activity. This is of great importance in the study on the interface of protein and nanoparticle and the applications for enzyme immobilization, drug delivery, and biocatalysis.

  15. Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    NASA Astrophysics Data System (ADS)

    Benson, Jamie; Fung, Chung Man; Lloyd, Jonathan Stephen; Deganello, Davide; Smith, Nathan Andrew; Teng, Kar Seng

    2015-03-01

    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM-1 cm-2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices.

  16. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection.

    PubMed

    Wang, Yingcheng; Jin, Yuanhao; Xiao, Xiaoyang; Zhang, Tianfu; Yang, Haitao; Zhao, Yudan; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan; Li, Qunqing

    2018-05-30

    A flexible and transparent film assembled from the cross-nanoporous structures of Au on PET (CNS of Au@PET) is developed as a versatile and effective SERS substrate for rapid, on-site trace analysis with high sensitivity. The fabrication of the CNS of Au can be achieved on a large scale at low cost by employing an etching process with super-aligned carbon nanotubes as a mask, followed by metal deposition. A strongly enhanced Raman signal with good uniformity can be obtained, which is attributed to the excitation of "hot spots" around the metal nanogaps and sharp edges. Using the CNS of Au@PET film as a SERS platform, real-time and on-site SERS detection of the food contaminant crystal violet (CV) is achieved, with a detection limit of CV solution on a tomato skin of 10-7 M. Owing to its ability to efficiently extract trace analytes, the resulting substrate also achieves detection of 4-ATP contaminants and thiram pesticides by swabbing the skin of an apple. A SERS detection signal for 4-ATP has a relative standard deviation of less than 10%, revealing the excellent reproducibility of the substrate. The flexible, transparent and highly sensitive substrates fabricated using this simple and cost-effective strategy are promising for practical application in rapid, on-site SERS-based detection.

  17. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction

    DOE PAGES

    Yao, Siyu; Zhang, Xiao; Zhou, Wu; ...

    2017-06-22

    Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCmore » at 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less

  18. Molecule-specific darkfield and multiphoton imaging using gold nanocages

    NASA Astrophysics Data System (ADS)

    Powless, Amy J.; Jenkins, Samir V.; McKay, Mary Lee; Chen, Jingyi; Muldoon, Timothy J.

    2015-03-01

    Due to their robust optical properties, biological inertness, and readily adjustable surface chemistry, gold nanostructures have been demonstrated as contrast agents in a variety of biomedical imaging applications. One application is dynamic imaging of live cells using bioconjugated gold nanoparticles to monitor molecule trafficking mechanisms within cells; for instance, the regulatory pathway of epidermal growth factor receptor (EGFR) undergoing endocytosis. In this paper, we have demonstrated a method to track endocytosis of EGFR in MDA-MB-468 breast adenocarcinoma cells using bioconjugated gold nanocages (AuNCs) and multiphoton microscopy. Dynamic imaging was performed using a time series capture of 4 images every minute for one hour. Specific binding and internalization of the bioconjugated AuNCs was observed while the two control groups showed non-specific binding at fewer surface sites, leading to fewer bound AuNCs and no internalization.

  19. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE PAGES

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.; ...

    2017-03-17

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  20. Elucidation of Active Sites for the Reaction of Ethanol on TiO 2 /Au(111)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, David T.; Wilke, Jeremy A.; Palomino, Robert M.

    Obtaining a molecular-level understanding of the reaction of alcohols with heterogeneous model catalysts is critical for improving industrial catalytic processes, such as the production of H 2 from alcohols. Gold has been shown to be an excellent oxidation catalyst once oxygen is added to it. The use of reducible oxides provides a source of oxygen on Au(111) for the reaction of ethanol, which is easily regenerated in the presence of an oxygen background. In this work, ethanol operates as a probe molecule to investigate the role of Au(111), TiO 2 nanoparticles, and TiO 2/Au interfacial surface sites on the catalyticmore » properties of TiO 2/Au(111). Ultrahigh vacuum temperature-programmed desorption (TPD) studies with ethanol/Au(111) elucidate previously unreported adsorption sites for ethanol. Ethanol molecularly adsorbs to Au terrace sites, step edges, and undercoordinated kink sites with adsorption energies of -51.7, -55.8, and -65.1 kJ/mol, respectively. In a TPD coverage study of ethanol on TiO 2/Au(111) indicates ethanol undergoes dissociative adsorption to form H*(a) and CH 3CH 2O*(a) on the inverse model catalyst surface. The desorption temperature of low coverages of ethanol from TiO2/Au(111) (Tdes ≈ 235 K) is at an intermediate temperature between the desorption temperatures from bulk Au(111) and TiO 2(110), indicating both Au and TiO 2 play a role in the adsorption of ethanol. Both low-temperature adsorption and high-temperature reactions are studied and indicate that ethanol-derived products such as acetaldehyde and ethylene desorb from TiO 2/Au(111) at ~500 K. Here, we report the identification of catalytically active sites on TiO 2/Au(111) as interfacial sites between the oxide and Au(111) surface through the use of temperature-programmed desorption and infrared reflection absorption spectroscopy.« less

  1. High-affinity gold nanoparticle pin to label and localize histidine-tagged protein in macromolecular assemblies

    PubMed Central

    Anthony, Kelsey C.; You, Changjiang; Piehler, Jacob; Pomeranz Krummel, Daniel A.

    2014-01-01

    SUMMARY There is significant demand for experimental approaches to aid protein localization in electron microscopy micrographs and ultimately in three-dimensional reconstructions of macromolecular assemblies. We report preparation and use of a reagent consisting of tris-nitrilotriacetic acid (tris-NTA) conjugated with a monofunctional gold nanoparticle (AuNPtris-NTA) for site-specific, non-covalent labeling of protein termini fused to a histidine-tag (His-tag). Multivalent binding of tris-NTA to a His-tag via complexed Ni(II) ions results in subnanomolar affinity and a defined 1:1 stoichiometry. Precise localization of AuNPtris-NTA labeled proteins by electron microscopy is further ensured by the reagent’s short conformationally restricted linker. We have employed AuNPtris-NTA to localize His-tagged proteins in an oligomeric ATPase and in the bacterial 50S ribosomal subunit. AuNPtris-NTA can specifically bind to the target proteins in these assemblies and is clearly discernible. Our new labeling reagent should find broad application in non-covalent site-specific labeling of protein termini to pinpoint their location in macromolecular assemblies. PMID:24560806

  2. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    NASA Astrophysics Data System (ADS)

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-08-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood.

  3. Structural and morphological peculiarities of hybrid Au/nanodiamond engineered nanostructures

    PubMed Central

    Matassa, Roberto; Orlanducci, Silvia; Reina, Giacomo; Cassani, Maria Cristina; Passeri, Daniele; Terranova, Maria Letizia; Rossi, Marco

    2016-01-01

    Nanostructured Au nano-platelets have been synthesized from an Au(III) complex by growth process triggered by nanodiamond (ND). An electroless synthetic route has been used to obtain 2D Au/ND architectures, where individual nanodiamond particles are intimately embedded into face-centered cubic Au platelets. The combined use of high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED), was able to reveal the unusual organization of these hybrid nanoparticles, ascertaining the existence of preferential crystallographic orientations for both nanocrystalline species and highlighting their mutual locations. Detailed information on the sample microstructure have been gathered by fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of HR-TEM images, allowing us to figure out the role of Au defects, able to anchor ND crystallites and to provide specific sites for heteroepitaxial Au growth. Aggregates constituted by coupled ND and Au, represent interesting systems conjugating the best optoelectronics and plasmonics properties of the two different materials. In order to promote realistically the applications of such outstanding Au/ND materials, the cooperative mechanisms at the basis of material synthesis and their influence on the details of the hybrid nanostructures have to be deeply understood. PMID:27514638

  4. Size matters: gold nanoparticles in targeted cancer drug delivery

    PubMed Central

    Dreaden, Erik C; Austin, Lauren A; Mackey, Megan A; El-Sayed, Mostafa A

    2013-01-01

    Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward. PMID:22834077

  5. Defect Effects on TiO2 Nanosheets: Stabilizing Single Atomic Site Au and Promoting Catalytic Properties.

    PubMed

    Wan, Jiawei; Chen, Wenxing; Jia, Chuanyi; Zheng, Lirong; Dong, Juncai; Zheng, Xusheng; Wang, Yu; Yan, Wensheng; Chen, Chen; Peng, Qing; Wang, Dingsheng; Li, Yadong

    2018-03-01

    Isolated single atomic site catalysts have attracted great interest due to their remarkable catalytic properties. Because of their high surface energy, single atoms are highly mobile and tend to form aggregate during synthetic and catalytic processes. Therefore, it is a significant challenge to fabricate isolated single atomic site catalysts with good stability. Herein, a gentle method to stabilize single atomic site metal by constructing defects on the surface of supports is presented. As a proof of concept, single atomic site Au supported on defective TiO 2 nanosheets is prepared and it is discovered that (1) the surface defects on TiO 2 nanosheets can effectively stabilize Au single atomic sites through forming the Ti-Au-Ti structure; and (2) the Ti-Au-Ti structure can also promote the catalytic properties through reducing the energy barrier and relieving the competitive adsorption on isolated Au atomic sites. It is believed that this work paves a way to design stable and active single atomic site catalysts on oxide supports. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; McEntee, Monica; Tang, Wenjie

    2016-01-12

    Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less

  7. Detection of cell surface calreticulin as a potential cancer biomarker using near-infrared emitting gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Subramaniyam Ramesh, Bala; Giorgakis, Emmanouil; Lopez-Davila, Victor; Kamali Dashtarzheneha, Ashkan; Loizidou, Marilena

    2016-07-01

    Calreticulin (CRT) is a cytoplasmic calcium-binding protein. The aim of this study was to investigate CRT presence in cancer with the use of fluorescent gold nanoclusters (AuNCs) and to explore AuNC synthesis using mercaptosuccinic acid (MSA) as a coating agent. MSA-coated AuNCs conferred well-dispersed, bio-stable, water-soluble nanoparticles with bioconjugation capacity and 800-850 nm fluorescence after broad-band excitation. Cell-viability assay revealed good AuNC tolerability. A native CRT amino-terminus corresponding peptide sequence was synthesised and used to generate rabbit site-specific antibodies. Target specificity was demonstrated with antibody blocking in colorectal and breast cancer cell models; human umbilical vein endothelial cells served as controls. We demonstrated a novel route of AuNC/MSA manufacture and CRT presence on colonic and breast cancerous cell surface. AuNCs served as fluorescent bio-probes specifically recognising surface-bound CRT. These results are promising in terms of AuNC application in cancer theranostics and CRT use as surface biomarker in human cancer.

  8. Gold Nanoparticles Stabilized with MPEG-Grafted Poly(l-lysine): in Vitro and in Vivo Evaluation of a Potential Theranostic Agent

    PubMed Central

    2015-01-01

    As the number of diagnostic and therapeutic applications utilizing gold nanoparticles (AuNPs) increases, so does the need for AuNPs that are stable in vivo, biocompatible, and suitable for bioconjugation. We investigated a strategy for AuNP stabilization that uses methoxypolyethylene glycol-graft-poly(l-lysine) copolymer (MPEG-gPLL) bearing free amino groups as a stabilizing molecule. MPEG-gPLL injected into water solutions of HAuCl4 with or without trisodium citrate resulted in spherical (Zav = 36 nm), monodisperse (PDI = 0.27), weakly positively charged nanoparticles (AuNP3) with electron-dense cores (diameter: 10.4 ± 2.5 nm) and surface amino groups that were amenable to covalent modification. The AuNP3 were stable against aggregation in the presence of phosphate and serum proteins and remained dispersed after their uptake into endosomes. MPEG-gPLL-stabilized AuNP3 exhibited high uptake and very low toxicity in human endothelial cells, but showed a high dose-dependent toxicity in epithelioid cancer cells. Highly stable radioactive labeling of AuNP3 with 99mTc allowed imaging of AuNP3 biodistribution and revealed dose-dependent long circulation in the blood. The minor fraction of AuGNP3 was found in major organs and at sites of experimentally induced inflammation. Gold analysis showed evidence of a partial degradation of the MPEG-gPLL layer in AuNP3 particles accumulated in major organs. Radiofrequency-mediated heating of AuNP3 solutions showed that AuNP3 exhibited heating behavior consistent with 10 nm core nanoparticles. We conclude that PEG-pPLL coating of AuNPs confers “stealth” properties that enable these particles to exist in vivo in a nonaggregating, biocompatible state making them suitable for potential use in biomedical applications such as noninvasive radiofrequency cancer therapy. PMID:25496453

  9. Influence of Au and TiO2 structures on hydrogen dissociation over TiO2/Au(100)

    NASA Astrophysics Data System (ADS)

    Nakamura, I.; Mantoku, H.; Furukawa, T.; Takahashi, A.; Fujitani, T.

    2012-11-01

    We performed H2-D2 exchange reactions over TiOx/Au(100) and compared the observed reaction kinetics with those reported for TiOx/Au(111) in order to clarify the influence of the Au and TiO2 structures on dissociation of H2 molecules. Low energy electron diffraction observations showed that the TiO2 produced on Au(100) was disordered, in contrast to the comparatively ordered TiO2 structure formed on Au(111). The activation energies and the turnover frequencies for HD formation over TiO2/Au(100) agreed well with those for TiO2/Au(111), clearly indicating that the hydrogen dissociation sites created over TiO2/Au(100) were the perimeter interface between stoichiometric TiO2 and Au, as was previously concluded for TiO2/Au(111). We concluded that the creation of active sites for hydrogen dissociation was independent of the Au and TiO2 structures consisting perimeter interface, and that local bonds that formed between Au and O atoms of stoichiometric TiO2 were essential for the creation of active sites.

  10. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water.

    PubMed

    Li, Gao; Zeng, Chenjie; Jin, Rongchao

    2014-03-05

    We report the synthesis and catalytic application of thermally robust gold nanoclusters formulated as Au99(SPh)42. The formula was determined by electrospray ionization and matrix-assisted laser desorption ionization mass spectrometry in conjunction with thermogravimetric analysis. The optical spectrum of Au99(SPh)42 nanoclusters shows absorption peaks at ~920 nm (1.35 eV), 730 nm (1.70 eV), 600 nm (2.07 eV), 490 nm (2.53 eV), and 400 nm (3.1 eV) in contrast to conventional gold nanoparticles, which exhibit a plasmon resonance band at 520 nm (for spherical particles). The ceria-supported Au99(SPh)42 nanoclusters were utilized as a catalyst for chemoselective hydrogenation of nitrobenzaldehyde to nitrobenzyl alcohol in water using H2 gas as the hydrogen source. The selective hydrogenation of the aldehyde group catalyzed by nanoclusters is a surprise because conventional nanogold catalysts instead give rise to the product resulting from reduction of the nitro group. The Au99(SPh)42/CeO2 catalyst gives high catalytic activity for a range of nitrobenzaldehyde derivatives and also shows excellent recyclability due to its thermal robustness. We further tested the size-dependent catalytic performance of Au25(SPh)18 and Au36(SPh)24 nanoclusters, and on the basis of their crystal structures we propose a molecular adsorption site for nitrobenzaldehyde. The nanocluster material is expected to find wide application in catalytic reactions.

  11. In situ growth of gold nanoparticles on Hg2+-binding M13 phages for mercury sensing.

    PubMed

    Wang, Xiaoyan; Yang, Ting; Zhang, Xiaoxiao; Chen, Mingli; Wang, Jianhua

    2017-11-09

    Mercury poses a serious threat to human health and the ecosystem. Its pollution is still prevalent in developing areas, which calls for the development of a simple on-site method for Hg 2+ detection. Plasmonic nanosensors for mercury, especially those based on gold nanoparticles (AuNPs), have been increasingly developed due to the flourish of nanotechnology in the last decade. However, the limitation on either selectivity or stability hindered their practical applications. Herein, by taking advantage of the unique optical properties of AuNPs and the versatility of M13 phages, a novel Hg 2+ sensing strategy is proposed. AuNPs grew in situ on the surface of Hg 2+ -binding M13 phages at room temperature and the resulting AuNP-phage networks were directly used for mercury sensing. Hg 2+ was selectively captured by M13 phages indwelling in the networks and gathered around AuNPs, followed by the reduction into Hg(0) and deposition on the AuNP surfaces, wherein it resulted in a blue shift of the SPR band of AuNPs and an increase in the absorbance. An LOD of 8 × 10 -8 mol L -1 was achieved based on the quantification of the absorption ratio of AuNPs at 525 and 650 nm. As the Hg 2+ recognition was double guaranteed by the capture of Hg 2+ -binding phages as well as the unique affinity between mercury and gold, the sensing system showed a high selectivity and a superior interference tolerance capability, facilitating its practical applications in environmental water bodies without deterioration of the sensing performance.

  12. Progressive biogeochemical transformation of placer gold particles drives compositional changes in associated biofilm communities.

    PubMed

    Rea, Maria Angelica; Standish, Christopher D; Shuster, Jeremiah; Bissett, Andrew; Reith, Frank

    2018-05-03

    Biofilms on placer gold (Au)-particle surfaces drive Au solubilization and re-concentration thereby progressively transforming the particles. Gold solubilization induces Au-toxicity; however, Au-detoxifying community members ameliorates Au-toxicity by precipitating soluble Au to metallic Au. We hypothesize that Au-dissolution and re-concentration (precipitation) places selective pressures on associated microbial communities, leading to compositional changes and subsequent Au-particle transformation. We analyzed Au-particles from eight United Kingdom sites using next generation sequencing, electron microscopy and micro-analyses. Gold particles contained biofilms composed of prokaryotic cells and extracellular polymeric substances intermixed with (bio)minerals. Across all sites communities were dominated by Proteobacteria (689, 97% Operational Taxonomic Units, 59.3% of total reads), with β-Proteobacteria being the most abundant. A wide range of Au-morphotypes including nanoparticles, micro-crystals, sheet-like Au and secondary rims, indicated that dissolution and re-precipitation occurred, and from this transformation indices were calculated. Multivariate statistical analyses showed a significant relationship between the extent of Au-particle transformation and biofilm community composition, with putative metal-resistant Au-cycling taxa linked to progressive Au transformation. These included the genera Pseudomonas, Leptothrix and Acinetobacter. Additionally, putative exoelectrogenic genera Rhodoferax and Geobacter were highly abundant. In conclusion, biogeochemical Au-cycling and Au-particle transformation occurred at all sites and exerted a strong influence on biofilm community composition.

  13. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters.

    PubMed

    Yan, Xu; Li, Hongxia; Hu, Tianyu; Su, Xingguang

    2017-05-15

    Assays for organophosphorus pesticides (OPs) with high sensitivity as well as on-site screening have been urgently required to protect ecosystem and prevent disease. Herein, a novel fluorimetric sensing platform was constructed for quantitative detection of OPs via tyrosinase (TYR) enzyme-controlled quenching of gold nanoclusters (AuNCs). One-step green synthetic approach was developed for the synthesis of AuNCs by using chicken egg white (CEW) as template and stabilizer. Initially, TYR can catalyze the oxidation of dopamine to dopaminechrome, which can efficiently quench the fluorescence intensity of AuNCs at 630nm based on dynamic quenching process. However, with the presence of OPs, the activity of TYR was inhibited, resulting in the fluorescence recovery of AuNCs. This proposed fluorescence platform was demonstrated to enable rapid detection for OPs (paraoxon as model) and to provide excellent sensitivity with a detection limit of 0.1ngmL -1 . Significantly, the fluorescence probe was used to prepare paper-based test strips for visual detection of OPs, which validated the excellent potential for real-time and on-site application. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Au@TiO2 yolk-shell nanostructures for enhanced performance in both photoelectric and photocatalytic solar conversion

    NASA Astrophysics Data System (ADS)

    He, Qinrong; Sun, Hang; Shang, Yinxing; Tang, Yanan; She, Ping; Zeng, Shan; Xu, Kongliang; Lu, Guolong; Liang, Song; Yin, Shengyan; Liu, Zhenning

    2018-05-01

    Solar energy conversion is an important field gaining increasing interest. Herein, bio-inspired Au@TiO2 yolk-shell nanoparticles (NPs) have been prepared via a facial one-pot hydrothermal approach. The Au@TiO2 yolk-shell NPs can self-assemble into 3D-structure to form photoelectrode for photoelectric conversion. The obtained photoelectrode demonstrates a swift and stable photocurrent of 3.5 μA/cm2, which is 4.2 and 1.6 times higher than those of the photocurrents generated by the counterparts of commercial TiO2 and Au@TiO2 core-shell NPs, respectively. Moreover, compared to the commercial TiO2 and Au@TiO2 core-shell NPs, the Au@TiO2 yolk-shell NPs also exhibit superior photocatalytic activity, delivering a H2 evolution rate of 4.92 mmol/g h. The performance improvement observed for the Au@TiO2 yolk-shell NPs is likely contributed by two synergistic factors, i.e. the incorporation of AuNPs and the unique hollow structure, which benefit the activity by simultaneously enhancing light utilization, charge separation and reaction site accessibility. The rational design and fabrication of Au@TiO2 yolk-shell NPs hold great promise for future application in efficient solar energy conversion.

  15. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    PubMed

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    PubMed Central

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  17. Constructing Ordered Three-Dimensional TiO2 Channels for Enhanced Visible-Light Photocatalytic Performance in CO2 Conversion Induced by Au Nanoparticles.

    PubMed

    Xue, Hairong; Wang, Tao; Gong, Hao; Guo, Hu; Fan, Xiaoli; Gao, Bin; Feng, Yaya; Meng, Xianguang; Huang, Xianli; He, Jianping

    2018-03-02

    As a typical photocatalyst for CO 2 reduction, practical applications of TiO 2 still suffer from low photocatalytic efficiency and limited visible-light absorption. Herein, a novel Au-nanoparticle (NP)-decorated ordered mesoporous TiO 2 (OMT) composite (OMT-Au) was successfully fabricated, in which Au NPs were uniformly dispersed on the OMT. Due to the surface plasmon resonance (SPR) effect derived from the excited Au NPs, the TiO 2 shows high photocatalytic performance for CO 2 reduction under visible light. The ordered mesoporous TiO 2 exhibits superior material and structure, with a high surface area that offers more catalytically active sites. More importantly, the three-dimensional transport channels ensure the smooth flow of gas molecules, highly efficient CO 2 adsorption, and the fast and steady transmission of hot electrons excited from the Au NPs, which lead to a further improvement in the photocatalytic performance. These results highlight the possibility of improving the photocatalysis for CO 2 reduction under visible light by constructing OMT-based Au-SPR-induced photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  19. Fabrication of Te@Au core-shell hybrids for efficient ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Jin, Huile; Wang, Demeng; Zhao, Yuewu; Zhou, Huan; Wang, Shun; Wang, Jichang

    2012-10-01

    Using Au nanoparticles to catalyze the oxidation of alcohols has garnered increasing attention due to its potential application in direct alcohol fuel cells. In this research Te@Au core-shell hybrids were fabricated for the catalytic oxidation of ethanol, where the preparation procedure involved the initial production of Te crystals with different microstructures and the subsequent utilization of the Te crystal as a template and reducing agent for the production of Te@Au hybrids. The as-prepared core-shell hybrids were characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. Electrochemical measurements illustrate that the hybrids have great electrocatalytic activity and stability toward ethanol oxidation in alkaline media. The enhanced electrocatalytic property may be attributed to the cooperative effects between the metal and semiconductor and the presence of a large number of active sites on the hybrids surface.

  20. The Air University 404 Page

    Science.gov Websites

    (National Guard) AFITC Conference Air Force Information Technology and Cyberpower Conference graphic The Air Air University Banner AU Home AETC AU FAQs AU Index AU Schools AU Site Contacts USAF AF Recruiting AFRC Recruiting AU Links About Air University AU Academic Office AU Accreditation AU Board of Visitors

  1. Interaction of size-selected gold nanoclusters with dopamine

    NASA Astrophysics Data System (ADS)

    Montone, Georgia R.; Hermann, Eric; Kandalam, Anil K.

    2016-12-01

    We present density functional theory based results on the interaction of size-selected gold nanoclusters, Au10 and Au20, with dopamine molecule. The gold clusters interact strongly with the nitrogen site of dopamine, thereby forming stable gold-dopamine complexes. Our calculations further show that there is no site specificity on the planar Au10 cluster with all the edge gold atoms equally preferred. On the other hand, in the pyramidal Au20 cluster, the vertex metal atom is the most active site. As the size increased from Au10 to Au20, the interaction strength has shown a declining trend. The effect of aqueous environment on the interaction strengths were also studied by solvation model. It is found that the presence of solvent water stabilizes the interaction between the metal cluster and dopamine molecule, even though for Au10 cluster the energy ordering of the isomers changed from that of the gas-phase.

  2. DFT calculations for Au adsorption onto a reduced TiO2 (110) surface with the coexistence of Cl

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Sakata, Kohei; Yamada, Satoru; Okazaki, Kazuyuki; Kitagawa, Yasutaka; Kawakami, Takashi; Yamanaka, Shusuke; Okumura, Mitsutaka

    2014-02-01

    Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA-PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.

  3. Electrochemical DNA biosensor based on the BDD nanograss array electrode.

    PubMed

    Jin, Huali; Wei, Min; Wang, Jinshui

    2013-04-10

    The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.

  4. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  5. Au nanoinjectors for electrotriggered gene delivery into the cell nucleus.

    PubMed

    Kang, Mijeong; Kim, Bongsoo

    2015-01-01

    Intracellular delivery of exogenous materials is an essential technique required for many fundamental biological researches and medical treatments. As our understanding of cell structure and function has been improved and diverse therapeutic agents with a subcellular site of action have been continuously developed, there is a demand to enhance the performance of delivering devices. Ideal intracellular delivery devices should convey various kinds of exogenous materials without deteriorating cell viability regardless of cell type and, furthermore, precisely control the location and the timing of delivery as well as the amount of delivered materials for advanced researches.In this chapter the development of a new intracellular delivery device, a nanoinjector made of a Au (gold) nanowire (a Au nanoinjector) is described in which delivery is triggered by external application of an electric pulse. As a model study, a gene was delivered directly into the nucleus of a neuroblastoma cell, and successful delivery without cell damage was confirmed by the expression of the delivered gene. The insertion of a Au nanoinjector directly into a cell can be generally applied to any kind of cell, and a high degree of surface modification of Au allows attachment of diverse materials such as proteins, small molecules, or nanoparticles as well as genes on Au nanoinjectors. This expands their applicability, and it is expected that they will provide important information on the effects of delivered exogenous materials and consequently contribute to the development of related therapeutic or clinical technologies.

  6. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    DOE PAGES

    Celik, Fuat E.; Mavrikakis, Manos

    2015-01-12

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  7. Stability of Surface and Subsurface Hydrogen on and in Au/Ni Near-Surface Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While themore » metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.« less

  8. Stability of surface and subsurface hydrogen on and in Au/Ni near-surface alloys

    NASA Astrophysics Data System (ADS)

    Celik, Fuat E.; Mavrikakis, Manos

    2015-10-01

    Periodic, self-consistent DFT-GGA (PW91) calculations were used to study the interaction of hydrogen atoms with the (111) surfaces of substitutional near-surface alloys (NSAs) of Au and Ni with different surface layer compositions and different arrangements of Au atoms in the surface layer. The effect of hydrogen adsorption on the surface and in the first and second subsurface layers of the NSAs was studied. Increasing the Au content in the surface layer weakens hydrogen binding on the surface, but strengthens subsurface binding, suggesting that the distribution of surface and subsurface hydrogen will be different than that on pure Ni(111). While the metal composition of the surface layer has an effect on the binding energy of hydrogen on NSA surfaces, the local composition of the binding site has a stronger effect. For example, fcc hollow sites consisting of three Ni atoms bind H nearly as strongly as on Ni(111), and fcc sites consisting of three Au atoms bind H nearly as weakly as on Au(111). Sites with one or two Au atoms show intermediate binding energies. The preference of hydrogen for three-fold Ni hollow sites alters the relative stabilities of different surface metal atom arrangements, and may provide a driving force for adsorbate-induced surface rearrangement.

  9. Magnetic-plasmonic multilayered nanorods

    NASA Astrophysics Data System (ADS)

    Thumthan, Orathai

    Multilayered nanorods which consist of alternating magnetic layers separated by Au layers combine two distinctive properties, magnetic properties and surface plasmonic resonance (SPR) properties into one nano-entity. Their magnetic properties are tunable by changing the layer thickness, varying from single domain to superparamagnetic state. Superparamagnetic is a key requirement for magnetic nanoparticles for bioapplications. Superparamagnetic nanoparticles exhibit high magnetic moments at low applied magnetic field while retain no magnetic moments when magnetic field is removed preventing them from aggregation due to magnetic attraction. Au layers in the nanorods provide anchorage sites for functional group attachment. Also, Au nanodisks exhibit SPR properties. The SPR peak can be tuned from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. In this research, there are three types of multilayered nanorod have been fabricated: Au/NiFe nanorods, Au/Fe nanorods, and Au/Co nanorods. These magnetic nanorods were fabricated by templated electrodeposition into the channels in Anodic Aluminum Oxide (AAO) membrane. The setup for AAO fabrication was developed as a part of this research. Our fabricated AAO membrane has channels with a diameter ranging from 40nm to 80 nm and a thickness of 10um to 12um. Magnetic properties of nanorods such as saturation field, saturation moment, coercivity and remanence are able to manipulate through their shape anisotropy. The magnetization will be easier in long axis rather than short axis of particle. In addition, Au nanodisks in the nanorod structure are not only serving as anchorage sites for functional groups but also provide SPR properties. Under irradiation of light Au nanodisks strongly absorb light at SPR frequency which ranging from 540 nm to 820 nm by controlling the thickness of magnetic segments while keeping Au thickness constant. The SPR tunability of nanorods in near-infrared region can be used in in-vivo biomedical applications such as photo thermal therapy because tissue has an absorption maximum in the infrared range. The magnetic nanorods were explored for the following two applications: 1) as active component orientation-tunable ferrogel for cell culture matrix, 2) as MRI contrast agent. The results show that Au/NiFe magnetic nanorods can be aligned along applied magnetic field. Using MTT assay for 3T3 fibroblast cells, the biocompatibility of Au/Co nanorods was investigated. It shows that cell proliferation after 72 hours of incubation with nanorods decreases as the concentration of nanorods increases. However, cell viability quantified by counting dead cell/live cell reveals that only few cells died after three days of incubation. Au/Co multilayered nanorods were tested as T2 MRI-contrast agent, and a very large relaxivity was observed. In summary, we have successfully fabricated multilayered nanorods with tunability in both magnetic and SPR properties. These nanorods can potentially be used in biological and biomedical fields.

  10. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells.

    PubMed

    Tlotleng, Nonhlanhla; Vetten, Melissa A; Keter, Frankline K; Skepu, Amanda; Tshikhudo, Robert; Gulumian, Mary

    2016-08-01

    Surface-modified gold nanoparticles (AuNPs) are nanomaterials that hold promise in drug delivery applications. In this study, the cytotoxicity, uptake, intracellular localization, and the exocytosis of citrate-stabilized (Cit-AuNP) and polyethylene glycol (PEG)-modified gold nanoparticles with the carboxyl (COOH) terminal functional group were assessed in human embryonic kidney (HEK 293) and the human caucasian hepatocytes carcinoma (Hep G2) cell systems, representing two major accumulation sites for AuNPs. The zeta (ζ)-potential measurements confirmed the negative surface charge of the AuNPs in water and in cell growth medium. The transmission electron microscopy confirmed the size and morphology of the AuNPs. Both types of AuNPs were shown to induce cytotoxic effects in cells. The Hep G2 cells were more sensitive cell type, with the COOH-PEG-AuNPs inducing the highest toxicity at higher concentrations. Dark field microscopy and TEM images revealed that the AuNPs were internalized in cells, mostly as agglomerates. TEM micrographs further revealed that the AuNPs were confined as agglomerates inside vesicle-like compartments, likely to be endosomal and lysosomal structures as well as in the cytosol, mostly as individual particles. The AuNPs were shown to remain in cellular compartments for up to 3 weeks, but thereafter, clearance of the gold nanoparticles from the cells by exocytosis was evident. The results presented in this study may therefore give an indication on the fate of AuNPs on long-term exposure to cells and may also assist in safety evaluation of AuNPs.

  11. Application of a parallel genetic algorithm to the global optimization of medium-sized Au-Pd sub-nanometre clusters

    NASA Astrophysics Data System (ADS)

    Hussein, Heider A.; Demiroglu, Ilker; Johnston, Roy L.

    2018-02-01

    To contribute to the discussion of the high activity and reactivity of Au-Pd system, we have adopted the BPGA-DFT approach to study the structural and energetic properties of medium-sized Au-Pd sub-nanometre clusters with 11-18 atoms. We have examined the structural behaviour and stability as a function of cluster size and composition. The study suggests 2D-3D crossover points for pure Au clusters at 14 and 16 atoms, whereas pure Pd clusters are all found to be 3D. For Au-Pd nanoalloys, the role of cluster size and the influence of doping were found to be extensive and non-monotonic in altering cluster structures. Various stability criteria (e.g. binding energies, second differences in energy, and mixing energies) are used to evaluate the energetics, structures, and tendency of segregation in sub-nanometre Au-Pd clusters. HOMO-LUMO gaps were calculated to give additional information on cluster stability and a systematic homotop search was used to evaluate the energies of the generated global minima of mono-substituted clusters and the preferred doping sites, as well as confirming the validity of the BPGA-DFT approach.

  12. An assessment of nitrogen-based manure application rates on 39 U.S. swine operations.

    PubMed

    Lory, John A; Massey, Raymond E; Zulovich, Joseph M; Hoehne, John A; Schmidt, Amy M; Carlson, Marcia S; Fulhage, Charles D

    2004-01-01

    Water quality concerns and revised regulations are changing how confined animal feeding operations manage manure. Devising acceptable and feasible changes in manure practices requires a full understanding of the forces shaping current manure management decisions. Previous theoretical models have shown that a wide range of factors influence the lowest cost solution for manure management. We used a mechanistic model to characterize the manure management practices on 39 swine operations (20 unagitated lagoon and 19 slurry operations) in five states (Iowa, Missouri, North Carolina, Oklahoma, and Pennsylvania). Information was collected from each operation about animal numbers, feed and water use, manure handling and storage characteristics, field locations, crop rotation, fertilizer need, and equipment inventory and usage. Collected data were used as input and to validate results from a mechanistic model that determined acres required for manure application, manure application rate, time required for manure application, value of manure, and costs of manure management. The 39 farms had a mean of 984 animal units (AU) per operation, 18.2 AU ha(-1) (7.4 AU acre(-1)), and manure application costs of dollar 10.49 AU(-1) yr(-1). Significant factors affecting manure management included operation size, manure handling system, state, and ownership structure. Larger operations had lower manure management costs (r2 = 0.32). Manure value potentially exceeded manure application costs on 58% of slurry and 15% of lagoon operations. But 38% of slurry operations needed to apply manure off the farm whereas all lagoon operations had sufficient land for N-based manure management. Manure management was a higher percentage of gross income on contract operations compared with independents (P < 0.01). This research emphasized the importance of site-specific factors affecting manure management decisions and the economics of U.S. swine operations.

  13. ALTERNATIVE REMEDIATION TECHNOLOGY STUDY FOR GROUNDWATER TREATMENT AT 200-PO-1 OPERABLE UNIT AT HANFORD SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DADO MA

    2008-07-31

    This study focuses on the remediation methods and technologies applicable for use at 200-PO-I Groundwater Operable Unit (OU) at the Hanford Site. The 200-PO-I Groundwater au requires groundwater remediation because of the existence of contaminants of potential concern (COPC). A screening was conducted on alternative technologies and methods of remediation to determine which show the most potential for remediation of groundwater contaminants. The possible technologies were screened to determine which would be suggested for further study and which were not applicable for groundwater remediation. COPCs determined by the Hanford Site groundwater monitoring were grouped into categories based on properties linkingmore » them by remediation methods applicable to each COPC group. The screening considered the following criteria. (1) Determine if the suggested method or technology can be used for the specific contaminants found in groundwater and if the technology can be applied at the 200-PO-I Groundwater au, based on physical characteristics such as geology and depth to groundwater. (2) Evaluate screened technologies based on testing and development stages, effectiveness, implementability, cost, and time. This report documents the results of an intern research project conducted by Mathew Dado for Central Plateau Remediation in the Soil and Groundwater Remediation Project. The study was conducted under the technical supervision of Gloria Cummins and management supervision of Theresa Bergman and Becky Austin.« less

  14. Two-dimensional ZnO ultrathin nanosheets decorated with Au nanoparticles for effective photocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jin; You, Ning; Yu, Zhe

    Two-dimensional (2D) materials, especially the inorganic 2D nanosheets (NSs), are of particular interest due to their unique structural and electronic properties, which are favorable for photoelectronic applications such as photocatalysis. Here, we design and fabricate the ultrathin 2D ZnO NSs decorated with Au nanoparticles (AuNPs), though molecular modelling 2D hydrothermal growth and followed by surface modification are used as an effective photocatalyst for photocatalytic organic dye degradation and hydrogen production. The ultrathin 2D nature enables ultrahigh atom ratio near surface to proliferate the active sites, and the Au plasmon plays a promoting role in the visible-light absorption and photogenerated chargemore » separation, thus integrating the synergistic benefits to boost the redox reactions at catalyst/electrolyte interface. The AuNPs-decorated ZnO NSs yield the impressive photocatalytic activities such as the dye degradation rate constant of 7.69 × 10{sup −2} min{sup −1} and the hydrogen production rate of 350 μmol h{sup −1} g{sup −1}.« less

  15. Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition.

    PubMed

    Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa

    2015-07-28

    The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Siyu; Zhang, Xiao; Zhou, Wu

    Here, the water-gas shift (WGS) reaction (where carbon monoxide plus water yields dihydrogen and carbon dioxide) is an essential process for hydrogen generation and carbon monoxide removal in various energy-related chemical operations. This equilibrium-limited reaction is favored at a low working temperature. Potential application in fuel cells also requires a WGS catalyst to be highly active, stable, and energy-efficient and to match the working temperature of on-site hydrogen generation and consumption units. We synthesized layered gold (Au) clusters on a molybdenum carbide (α-MoC) substrate to create an interfacial catalyst system for the ultralow-temperature WGS reaction. Water was activated over α-MoCatmore » 303 kelvin, whereas carbon monoxide adsorbed on adjacent Au sites was apt to react with surface hydroxyl groups formed from water splitting, leading to a high WGS activity at low temperatures.« less

  17. Density functional theory study on the metal-support interaction between a Au9 cluster and an anatase TiO2(001) surface.

    PubMed

    Jiang, Zong-You; Zhao, Zong-Yan

    2017-08-23

    Noble metals supported on TiO 2 surfaces have shown extraordinary photocatalytic properties in many important processes such as hydrogenation, water splitting, degradation of hazards, and so on. Using density functional theory calculations, this work has systematically investigated the microstructure and electronic structure of three different Au 9 isomers loaded on anatase TiO 2 (001) surface. The calculated results show that the interaction between the Au 9 cluster and the TiO 2 support is closely related to the adsorption site and the stability of the Au 9 cluster in the gas phase. The adsorption energy of the 2D configuration is larger than that of the 3D configuration of the Au 9 cluster, owing to the stronger interactions between more adsorption sites. The stable adsorption site for Au 9 clusters deposited on the anatase TiO 2 (001) surface tends to be the O 2c -O 2c hollow site. The presentation of the MIGS of the Au 9 cluster, the disappearance of surface states of the TiO 2 (001) surface, and the shifting of the Fermi level from the top of the valence band to the bottom of the conduction band suggest strong interactions between the Au 9 clusters and the TiO 2 (001) surface. Importantly, the electron transfer from the Au 9 clusters to the TiO 2 support occurs mainly through Au-O 2c interactions, which are mainly localized at the contact layer of the Au 9 clusters. These conclusions are useful to understand various physical and chemical properties of noble metal clusters loaded onto an oxide surface, and helpful to design novel metal/semiconductor functional composite materials and devices.

  18. The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst.

    PubMed

    Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young

    2018-06-14

    The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.

  19. Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides.

    PubMed

    Florez, Elizabeth; Viñes, Francesc; Rodriguez, Jose A; Illas, Francesc

    2009-06-28

    The adsorption of atomic Au on the (001) surface of TiC, ZrC, HfC, VC, NbC, TaC, and delta-MoC and the mechanism of diffusion of this adatom through the surface have been studied in terms of a periodic density functional theory based approach. In all the cases, the Au adsorption energies are in the range of 1.90-2.35 eV. The moderately large adsorption energies allow the Au diffusion before desorption could take place. For TiC(001), ZrC(001), and HfC(001), atomic Au is adsorbed directly on top of C atoms and diffusion takes place along the diagonal of the squares formed by M-C-M-C atoms with the transition state located above the hollow sites. For the rest of transition metal carbides the situation is less simple with the appearance of more than one stable adsorption site, as for NbC and TaC, of a small energy barrier for diffusion around the most stable adsorption site and of a more complex diffusion pathway. The small energy barrier for diffusion around the most stable site will result in a highly mobile Au species which could be observed in scanning tunnel microscope experiments. After depositing Au on metal-carbide surfaces, there is a noticeable charge transfer from the substrate to the adsorbed Au atom. The electronic perturbations on Au increase when going from TiC to ZrC or TaC. Our results indicate that metal carbides should be better supports for the chemical activation of Au than metal oxides.

  20. Giant Gold Nanowire Vesicle-Based Colorimetric and SERS Dual-Mode Immunosensor for Ultrasensitive Detection of Vibrio parahemolyticus.

    PubMed

    Guo, Zhiyong; Jia, Yaru; Song, Xinxin; Lu, Jing; Lu, Xuefei; Liu, Baoqing; Han, Jiaojiao; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2018-05-15

    Conventional methods for the detection of Vibrio parahemolyticus (VP) usually need tedious, labor-intensive processes, and have low sensitivity, which further limits their practical applications. Herein, we developed a simple and efficient colorimetry and surface-enhanced Raman scattering (SERS) dual-mode immunosensor for sensitive detection of VP, by employing giant Au vesicles with anchored tiny gold nanowires (AuNW) as a smart probe. Due to the larger specific surface and special hollow structure of giant Au vesicles, silver staining would easily lead to vivid color change for colorimetric analysis and further amplify SERS signals. The t-test was further used to determine if two sets of data from colorimetry and SERS were significantly different from each other. The result shows that there was no significant difference between data from the two methods. Two sets of data can mutually validate each other and avoid false positive and negative detection. The designed colorimetry-SERS dual-mode sensor would be very promising in various applications such as food safety inspection, personal healthcare, and on-site environmental monitoring.

  1. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.

    PubMed

    Choi, Suhee; Ahn, Miri; Kim, Jongwon

    2013-05-24

    The fabrication of effective surface-enhanced Raman scattering (SERS) substrates has been the subject of intensive research because of their useful applications. In this paper, dendritic gold (Au) rod (DAR) structures prepared by simple one-step electrodeposition in a short time were examined as an effective SERS-active substrate. The SERS activity of the DAR surfaces was compared to that of other nanostructured Au surfaces with different morphologies, and its dependence on the structural variation of DAR structures was examined. These comparisonal investigations revealed that highly faceted sharp edge sites present on the DAR surfaces play a critical role in inducing a high SERS activity. The SERS enhancement factor was estimated to be greater than 10(5), and the detection limit of rhodamine 6G at DAR surfaces was 10(-8)M. The DAR surfaces exhibit excellent spot-to-spot and substrate-to-substrate SERS enhancement reproducibility, and their long-term stability is very good. It was also demonstrated that the DAR surfaces can be effectively utilized in electrochemical SERS systems, wherein a reversible SERS behavior was obtained during the cycling to cathodic potential regions. Considering the straightforward preparation of DAR substrates and the clean nature of SERS-active Au surfaces prepared in the absence of additives, we expect that DAR surfaces can be used as cost-effective SERS substrates in analytical and electrochemical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    PubMed

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  4. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.

    PubMed

    Wang, Dongmei; Xiao, Xiaoqing; Xu, Shen; Liu, Yong; Li, Yongxin

    2018-01-15

    In this work, single Au nanowire electrodes (AuNWEs) were fabricated by laser-assisted pulling/hydrofluoric acid (HF) etching process, which then were characterized by transmission electron microscopy (TEM), electrochemical method and finite-element simulation. The as-prepared single AuNWEs were used to construct electrochemical aptamer-based nanosensors (E-AB nanosensors) based on the formation of Au-S bond that duplex DNA tagged with methylene blue (MB) was modified on the surface of electrode. In the presence of adenosine triphosphate (ATP), the MB-labeled aptamer dissociated from the duplex DNA due to the strong specific affinity between aptamer and target, which lead to the reduction of MB electrochemical signals. Moreover, BSA was employed to further passivate electrode surface bonding sites for the stable of the sensor. The as-prepared E-AB nanosensor has been used for ATP assay with excellent sensitivity and selectivity, even in a complex system like cerebrospinal fluid of rat brain. Considering the unique properties of good stability, larger surface area and smaller overall dimensions, this E-AB nanosensor should be an ideal platform for widely sensing applications in living bio-system. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts.

    PubMed

    Xie, Shaohua; Liu, Yuxi; Deng, Jiguang; Zang, Simiao; Zhang, Zhenhua; Arandiyan, Hamidreza; Dai, Hongxing

    2017-02-21

    To overcome deactivation of Pd-based catalysts at high temperatures, we herein design a novel pathway by introducing a certain amount of CoO to the supported Au-Pd alloy nanoparticles (NPs) to generate high-performance Au-Pd-xCoO/three-dimensionally ordered macroporous (3DOM) Co 3 O 4 (x is the Co/Pd molar ratio) catalysts. The doping of CoO induced the formation of PdO-CoO active sites, which was beneficial for the improvement in adsorption and activation of CH 4 and catalytic performance. The Au-Pd-0.40CoO/3DOM Co 3 O 4 sample performed the best (T 90% = 341 °C at a space velocity of 20 000 mL g -1 h -1 ). Deactivation of the 3DOM Co 3 O 4 -supported Au-Pd, Pd-CoO, and Au-Pd-xCoO nanocatalysts resulting from water vapor addition was due to the formation and accumulation of hydroxyl on the catalyst surface, whereas deactivation of the Pd-CoO/3DOM Co 3 O 4 catalyst at high temperatures (680-800 °C) might be due to decomposition of the PdO y active phase into aggregated Pd 0 NPs. The Au-Pd-xCoO/3DOM Co 3 O 4 nanocatalysts exhibited better thermal stability and water tolerance ability compared to the 3DOM Co 3 O 4 -supported Au-Pd and Pd-CoO nanocatalysts. We believe that the supported Au-Pd-xCoO nanomaterials are promising catalysts in practical applications for organic combustion.

  6. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO 2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO 2 catalyst, which is a lower energy pathway than that of CO oxidation at the interfacemore » with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  7. Biosynthesis, Characterization, and Bioactivities Evaluation of Silver and Gold Nanoparticles Mediated by the Roots of Chinese Herbal Angelica pubescens Maxim

    NASA Astrophysics Data System (ADS)

    Markus, Josua; Wang, Dandan; Kim, Yeon-Ju; Ahn, Sungeun; Mathiyalagan, Ramya; Wang, Chao; Yang, Deok Chun

    2017-01-01

    A facile synthesis and biological applications of silver (DH-AgNps) and gold nanoparticles (DH-AuNps) mediated by the aqueous extract of Angelicae Pubescentis Radix (Du Huo) are explored. Du Huo is a medicinal root belonging to Angelica pubescens Maxim which possesses anti-inflammatory, analgesic, and antioxidant properties. The absorption spectra of nanoparticles in varying root extract and metal ion concentration, pH, reaction temperatures, and time were recorded by ultraviolet-visible (UV-Vis) spectroscopy. The presence of DH-AgNps and DH-AuNps was confirmed from the surface plasmon resonance intensified at 414 and 540 nm, respectively. Field emission transmission electron micrograph (FE-TEM) analysis revealed the formation of quasi-spherical DH-AgNps and spherical icosahedral DH-AuNps. These novel DH-AgNps and DH-AuNps maintained an average crystallite size of 12.48 and 7.44 nm, respectively. The biosynthesized DH-AgNps and DH-AuNps exhibited antioxidant activity against 2,2-diphenyl-1-picrylhydrzyl (DPPH) radicals and the former exhibited antimicrobial activity against clinical pathogens including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica. The expected presence of flavonoids, sesquiterpenes, and phenols on the nanoparticle surface were conjectured to grant protection against aggregation and free radical scavenging activity. DH-AgNps and DH-AuNps were further investigated for their cytotoxic properties in RAW264.7 macrophages for their potential application as drug carriers to sites of inflammation. In conclusion, this green synthesis is favorable for the advancement of plant mediated nano-carriers in drug delivery systems, cancer diagnostic, and medical imaging.

  8. Site characterization and site response in Port-au-Prince, Haiti

    USGS Publications Warehouse

    Hough, Susan E.; Yong, Alan K.; Altidor, Jean Robert; Anglade, Dieuseul; Given, Douglas D.; Mildor, Saint-Louis

    2011-01-01

    Waveform analysis of aftershocks of the Mw7.0 Haiti earthquake of 12 January 2010 reveals amplification of ground motions at sites within the Cul de Sac valley in which Port-au-Prince is situated. Relative to ground motions recorded at a hard-rock reference site, peak acceleration values are amplified by a factor of approximately 1.8 at sites on low-lying Mio-Pliocene deposits in central Port-au-Prince and by a factor of approximately 2.5–3 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplitude, predominant periods, variability, and polarization of amplification are consistent with predicted topographic amplification by a steep, narrow ridge. A swath of unusually high damage in this region corresponds with the extent of the ridge where high weak-motion amplifications are observed. We use ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to map local geomorphology, including characterization of both near-surface and of small-scale topographic structures that correspond to zones of inferred amplification.

  9. Targeted Drug Delivery Based on Gold Nanoparticle Derivatives.

    PubMed

    Gholipourmalekabadi, Mazaher; Mobaraki, Mohammadmahdi; Ghaffari, Maryam; Zarebkohan, Amir; Omrani, Vahid Fallah; Urbanska, Aleksandra M; Seifalian, Alexander

    2017-01-01

    Drug delivery systems are effective and attractive methods which allow therapeutic substances to be introduced into the body more effectively and safe by having tunable delivery rate and release target site. Gold nanoparticles (AuNPs) have a myriad of favorable physical, chemical, optical, thermal and biological properties that make them highly suitable candidates as non-toxic carriers for drug and gene delivery. The surface modifications of AuNPs profoundly improve their circulation, minimize aggregation rates, enhance attachment to therapeutic molecules and target agents due to their nano range size which further increases their ability to cross cell membranes and reduce overall cytotoxicity. This comprehensive article reviews the applications of the AuNPs in drug delivery systems along with their corresponding surface modifications. The highlighting results obtained from the preclinical trial are promising and next five years have huge possibility move to the clinical setting. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Increasing Stability and Activity of Core-Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti-Au@Pt/C

    DOE PAGES

    Hu, J.; Wu, L.; Kuttiyiel, K.; ...

    2016-06-30

    We describe a new class of core-shell nanoparticle catalysts having edges and vertexes covered by refractory metal oxide that preferentially segregates onto these catalyst sites. The monolayer shell is deposited on the oxidefree core atoms. The oxide on edges and vertexes induces high catalyst’s stability and activity. The catalyst and synthesis are exemplified by fabrication of Au nanoparticles doped by Ti atoms that segregate as oxide onto low–coordination sites of edges and vertexes. Pt monolayer shell deposited on Au sites has the mass and specific activities for the oxygen reduction reaction about 13 and 5 times higher than those ofmore » commercial Pt/C catalysts. The durability tests show no activity loss after 10000 potential cycles from 0.6 to 1.0V. The superior activity and durability of the Ti-Au@Pt catalyst originate from protective Ti oxide located at the most dissolution-prone edge and vertex sites, and Au-supported active and stable Pt shell.« less

  11. Tuning the conductivity along atomic chains by selective chemisorption

    NASA Astrophysics Data System (ADS)

    Edler, F.; Miccoli, I.; Stöckmann, J. P.; Pfnür, H.; Braun, C.; Neufeld, S.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2017-03-01

    Adsorption of Au on vicinal Si(111) surfaces results in growth of long-range ordered metallic quantum wires. In this paper, we utilized site-specific and selective adsorption of oxygen to modify chemically the transport via different channels in the systems Si(553)-Au and Si(557)-Au. They were analyzed by electron diffraction and four-tip STM-based transport experiments. Modeling of the adsorption process by density functional theory shows that the adatoms and rest atoms on Si(557)-Au provide energetically favored adsorption sites, which predominantly alter the transport along the wire direction. Since this structural motif is missing on Si(553)-Au, the transport channels remain almost unaffected by oxidation.

  12. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  13. Design and Preparation of Supported Au Catalyst with Enhanced Catalytic Activities by Rationally Positioning Au Nanoparticles on Anatase.

    PubMed

    Wang, Liang; Wang, Hong; Rice, Andrew E; Zhang, Wei; Li, Xiaokun; Chen, Mingshu; Meng, Xiangju; Lewis, James P; Xiao, Feng-Shou

    2015-06-18

    A synergistic effect between individual components is crucial for increasing the activity of metal/metal oxide catalysts. The greatest challenge is how to control the synergistic effect to obtain enhanced catalytic performance. Through density functional theory calculations of model Au/TiO2 catalysts, it is suggested that there is strong interaction between Au nanoparticles and Ti species at the edge/corner sites of anatase, which is favorable for the formation of stable oxygen vacancies. Motivated by this theoretical analysis, we have rationally prepared Au nanoparticles attached to edge/corner sites of anatase support (Au/TiO2-EC), confirmed by their HR-TEM images. As expected, this strong interaction is well characterized by Raman, UV-visible, and XPS techniques. Very interestingly, compared with conventional Au catalysts, Au/TiO2-EC exhibits superior catalytic activity in the oxidations using O2. Our approach to controlling Au nanoparticle positioning on anatase to obtain enhanced catalytic activity offers an efficient strategy for developing more novel supported metal catalysts.

  14. Positron transport studies at the Au - (InP:Fe) interface

    NASA Astrophysics Data System (ADS)

    Au, H. L.; Lee, T. C.; Beling, C. D.; Fung, S.

    1996-03-01

    Positron mobility and lifetime measurements have been carried out on semi-insulating Fe-doped InP samples with Au contacts used for electric field application. The lifetime measurements, with electric fields directed towards the Au - InP:Fe interface, reveal no component associated with interfacial open-volume sites and thus give no evidence of any positron mobility. The mobility measurements, made using the Doppler-shifted annihilation radiation technique, however, reveal a temperature independent positron mobility of about 0953-8984/8/10/012/img1 in the range 150 - 300 K. These observations, together with results from I - V analysis, are discussed with reference to two possible band-bending schemes. The first, which requires an ionized shallow donor region adjacent to the Au - InP interface, seems less plausible on a number of grounds. In the second, however, an 0953-8984/8/10/012/img2 negative space charge produces an adverse diffusion barrier for positrons approaching the interface together with a non-uniform electric field in the samples capable of explaining the observed mobility results.

  15. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus.

    PubMed

    Liu, Pei; Han, Lei; Wang, Fei; Petrenko, Valery A; Liu, Aihua

    2016-08-15

    Staphylococcus aureus (S. aureus) is one of the most ubiquitous pathogens in public healthcare worldwide. It holds great insterest in establishing robust analytical method for S. aureus. Herein, we report a S. aureus-specific recognition element, isolated from phage monoclone GQTTLTTS, which was selected from f8/8 landscape phage library against S. aureus in a high-throughput way. By functionalizing cysteamine (CS)-stabilized gold nanoparticles (CS-AuNPs) with S. aureus-specific pVIII fusion protein (fusion-pVIII), a bifunctional nanoprobe (CS-AuNPs@fusion-pVIII) for S. aureus was developed. In this strategy, the CS-AuNPs@fusion-pVIII could be induced to aggregate quickly in the presence of target S. aureus, resulting in a rapid colorimetric response of gold nanoparticles. More importantly, the as-designed probe exhibited excellent selectivity over other bacteria. Thus, the CS-AuNPs@fusion-pVIII could be used as the indicator of target S. aureus. This assay can detect as low as 19CFUmL(-1)S. aureus within 30min. Further, this approach can be applicable to detect S. aureus in real water samples. Due to its sensitivity, specificity and rapidness, this proposed method is promising for on-site testing of S. aureus without using any costly instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Physiographic and land cover attributes of the Puget Lowland and the active streamflow gaging network, Puget Sound Basin

    USGS Publications Warehouse

    Konrad, Christopher; Sevier, Maria

    2014-01-01

    Geospatial information for the active streamflow gaging network in the Puget Sound Basin was compiled to support regional monitoring of stormwater effects to small streams. The compilation includes drainage area boundaries and physiographic and land use attributes that affect hydrologic processes. Three types of boundaries were used to tabulate attributes: Puget Sound Watershed Characterization analysis units (AU); the drainage area of active streamflow gages; and the catchments of Regional Stream Monitoring Program (RSMP) sites. The active streamflow gaging network generally includes sites that represent the ranges of attributes for lowland AUs, although there are few sites with low elevations (less than 60 meters), low precipitation (less than 1 meter year), or high stream density (greater than 5 kilometers per square kilometers). The active streamflow gaging network can serve to provide streamflow information in some AUs and RSMP sites, particularly where the streamflow gage measures streamflow generated from a part of the AU or that drains to the RSMP site, and that part of the AU or RSMP site is a significant fraction of the drainage area of the streamgage. The maximum fraction of each AU or RSMP catchment upstream of a streamflow gage and the maximum fraction of any one gaged basin in an AU or RSMP along with corresponding codes are provided in the attribute tables.

  17. Gold nanoparticles: From nanomedicine to nanosensing

    PubMed Central

    Chen, Po C; Mwakwari, Sandra C; Oyelere, Adegboyega K

    2008-01-01

    Because of their photo-optical distinctiveness and biocompatibility, gold nanoparticles (AuNPs) have proven to be powerful tools in various nanomedicinal and nanomedical applications. In this review article, we discuss recent advances in the application of AuNPs in diagnostic imaging, biosensing and binary cancer therapeutic techniques. We also provide an eclectic collection of AuNPs delivery strategies, including assorted classes of delivery vehicles, which are showing great promise in specific targeting of AuNPs to diseased tissues. However, successful clinical implementations of the promised applications of AuNPs are still hampered by many barriers. In particular, more still needs to be done regarding our understanding of the pharmacokinetics and toxicological profiles of AuNPs and AuNPs-conjugates. PMID:24198460

  18. Gold nanoparticle enhanced fluorescence anisotropy for the assay of single nucleotide polymorphisms (SNPs) based on toehold-mediated strand-displacement reaction.

    PubMed

    Wang, Xinyi; Zou, Mingjian; Huang, Hongduan; Ren, Yuqian; Li, Limei; Yang, Xiaoda; Li, Na

    2013-03-15

    We developed a highly differentiating, homogeneous gold nanoparticle (AuNP) enhanced fluorescence anisotropic method for single nucleotide polymorphism (SNP) detection at nanomolar level using toehold-mediated strand-displacement reaction. The template strand, containing a toehold domain with an allele-specific site, was immobilized on the surface of AuNPs, and the solution fluorescence anisotropy was markedly enhanced when the fluorescein-labeled blocking DNA was attached to the AuNP via hybridization. Strand-displacement by the target ssDNA strand resulted in detachment of fluorescein-labeled DNA from AuNPs, and thus decreased fluorescence anisotropy. The drastic kinetic difference in strand-displacement from toehold design was used to distinguish between the perfectly matched and the single-base mismatched strands. Free energy changes were calculated to elucidate the dependence of the differentiation ability on the mutation site in the toehold region. A solid negative signal change can be obtained for single-base mismatched strand in the dynamic range of the calibration curve, and a more than 10-fold signal difference can still be observed in a mixed solution containing 100 times the single-base mismatched strand, indicating the good specificity of the method. This proposed method can be performed with a standard spectrofluorimeter in a homogeneous and cost-effective manner, and has the potential to be extended to the application of fluorescence anisotropy method of SNP detection. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. T cells enhance gold nanoparticle delivery to tumors in vivo.

    PubMed

    Kennedy, Laura C; Bear, Adham S; Young, Joseph K; Lewinski, Nastassja A; Kim, Jean; Foster, Aaron E; Drezek, Rebekah A

    2011-04-04

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  20. Chemiluminescence of off-line and on-line gold nanoparticle-catalyzed luminol system in the presence of flavonoid.

    PubMed

    Wu, Dong; Zhang, Xiaoyue; Liu, Yong; Ma, Yan; Wang, Xiaowu; Wang, Xiaojuan; Xu, Liuxin

    2017-06-01

    It was found that flavonoids could remarkably inhibit the chemiluminescence (CL) intensity of an off-line gold nanoparticle (AuNP)-catalyzed luminol-H 2 O 2 CL system. By contrast, flavonoids enhanced the CL intensity of an on-line AuNP-catalyzed luminol-H 2 O 2 CL system. In the off-line system, the AuNPs were prepared beforehand, whereas in the on-line system, AuNPs were produced by on-line mixing of luminol prepared in a buffer solution of NaHCO 3  - Na 2 CO 3 and HAuCl 4 with no need for the preliminary preparation of AuNPs. The on-line system had prominent advantages over the off-line system, namely a lowering of the background noise and improvements in the stability of the CL system. The results show that differences in the signal suppression effect of flavonoids on the off-line AuNP-catalyzed CL system are influenced by the combined action of a free radical scavenging effect and occupy-sites function; the latter was proved to be predominant using controlled experiments. Enhancement of the on-line system was ascribed to the presence of flavonoids promoting the on-line formation of AuNPs, which better catalyzed the luminol-H 2 O 2 CL reaction, and the enhancement activity of the six flavonoids increased with the increase in reducibility. This work broadens the scope of practical applications of an AuNP-catalyzed CL system. Copyright © 2016 John Wiley & Sons, Ltd.

  1. T cells enhance gold nanoparticle delivery to tumors in vivo

    NASA Astrophysics Data System (ADS)

    Kennedy, Laura C.; Bear, Adham S.; Young, Joseph K.; Lewinski, Nastassja A.; Kim, Jean; Foster, Aaron E.; Drezek, Rebekah A.

    2011-12-01

    Gold nanoparticle-mediated photothermal therapy (PTT) has shown great potential for the treatment of cancer in mouse studies and is now being evaluated in clinical trials. For this therapy, gold nanoparticles (AuNPs) are injected intravenously and are allowed to accumulate within the tumor via the enhanced permeability and retention (EPR) effect. The tumor is then irradiated with a near infrared laser, whose energy is absorbed by the AuNPs and translated into heat. While reliance on the EPR effect for tumor targeting has proven adequate for vascularized tumors in small animal models, the efficiency and specificity of tumor delivery in vivo, particularly in tumors with poor blood supply, has proven challenging. In this study, we examine whether human T cells can be used as cellular delivery vehicles for AuNP transport into tumors. We first demonstrate that T cells can be efficiently loaded with 45 nm gold colloid nanoparticles without affecting viability or function (e.g. migration and cytokine production). Using a human tumor xenograft mouse model, we next demonstrate that AuNP-loaded T cells retain their capacity to migrate to tumor sites in vivo. In addition, the efficiency of AuNP delivery to tumors in vivo is increased by more than four-fold compared to injection of free PEGylated AuNPs and the use of the T cell delivery system also dramatically alters the overall nanoparticle biodistribution. Thus, the use of T cell chaperones for AuNP delivery could enhance the efficacy of nanoparticle-based therapies and imaging applications by increasing AuNP tumor accumulation.

  2. Site Effects in the City of Port au Prince (Haiti) Inferred From 2010 Earthquake Aftershocks Recordings.

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier De Lepinay, B. F.; Boisson, D.; Prepetit, C.; Hough, S. E.

    2014-12-01

    The Haitian earthquake of 12 January 2010 (Mw=7) caused an unprecedented disaster in Port-au-Prince as well as in smaller cities close to the epicenter. The extent of damage appears to be initially attributed to the proximity of the earthquake in Port-au-Prince, the extreme vulnerability of many structures, and a high population density. However, the damage distribution for this earthquake suggests a general correlation of damage with small-scale topographical features and local geological structure. The main objective of this work is to investigate site effects in the city of Port-au-Prince. It is also to better define the response of different sites to earthquakes and establish transfer functions between each site and a particular site defined as a reference site. Specific soil columns is determined in the vicinity of each station in order to carry out 1D simulations of soil response at these sites. About 90 earthquakes (2

  3. Electronic behaviour of Au-Pt alloys and the 4f binding energy shift anomaly in Au bimetallics- X-ray spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Wang, Dongniu; Cui, Xiaoyu; Xiao, Qunfeng; Hu, Yongfeng; Wang, Zhiqiang; Yiu, Y. M.; Sham, T. K.

    2018-06-01

    The electronic structure and charge redistribution of 6s conduction charge and 5d charge in Au and Pt alloys, Au9Pt and AuPt9 have been investigated using a charge compensation model. It is found that, both the Au and Pt 4f binding energy (BE) exhibits a negative shift in the alloys relatively to the pure metal in apparent disagreement with electroneutrality considerations (Au is the most electronegative metallic element); more interestingly, the negative Au 4f BE shift in Au-Pt alloy is in contrast to previous observations for a large number of Au bimetallic systems with more electropositive hosts in which the more electropositive the host„ the more positive the Au 4f BE shift. This anomaly is counter intuitive to electronegativity considerations. This dilemma was resolved by the charge compensation model in which both electronegativity and charge neutrality can be satisfied and the overall charge flow δ, onto Au is small and positive and δ arises from charge flow of 6s conduction charge, Δnc onto Au site, which is partially compensated by the depletion of 6d charge Δnd at the Au site (δ = Δnc+ Δnd ˜0.1 >0). The much larger Coulomb interaction between 4f and 5d than that between 4f and 6s results in positive 4f BE shifts. The Au 4f BE shift in Au-Pt alloys together with 193Au Mössbauer data were used in the charge compensation model analysis which shows that the model is still valid in that the Au 4f shift in Au-Pt alloy arises from mainly conduction charge gain with little depletion of d charge at the Au site. The model also works for Pt. The Au and Pt 5d character in the alloys have been examined with valence band spectra which show both maintain their d characteristic in dilute alloys with Pt d piling up at the Fermi level, and the top of the Au valence band being pushed toward the Fermi level; this is confirmed with DFT densities of state calculations. When Pt is diluted in Au, it gains d charge as evident from the reduction in whiteline intensity at the Pt L3-edge XANES. What emerges from this work is a picture in which the s-d charge compensation in Au bimetallic alloys is triggered by electronegativity difference between Au and the host. For Au-Pt and Au-Pd systems, the difference in electronegativity is very small, conduction charge transfer dominates, and the Au 4f shift is negative whereas in most Au bimetallics, the larger the electronegativity difference, the larger the compensation and the larger the Au 4f shifts.

  4. The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis.

    PubMed

    Yang, Hua-feng; Xie, Peng-yang; Yu, Hui-you; Li, Xiao-nian; Wang, Jian-guo

    2012-12-28

    The structures and catalytic properties of AuPd clusters supported on carbon nanotubes (CNTs) for H(2)O(2) synthesis have been investigated by means of density functional theory calculations. Firstly, the structures of AuPd clusters are strongly influenced by CNTs, in which the bottom layers are mainly composed of Pd and the top layers are a mix of Au and Pd due to the stronger binding of Pd than Au on CNTs. Especially, it is found that O(2) adsorption on the Pd/CNTs interfacial sites is much weaker than that on the only Pd sites, which is in contrast to transition metal oxide (for example TiO(2), Al(2)O(3), CeO(2)) supported metal clusters. Furthermore, Pd ensembles on the interfacial sites have far superior catalytic properties for H(2)O(2) formation than those away from CNT supports due to the changes in electronic structures caused by the CNTs. Therefore, our study provides a physical insight into the enhanced role of carbon supports in H(2)O(2) synthesis over supported AuPd catalysts.

  5. Substrate-Based Noble-Metal Nanomaterials: Shape Engineering and Applications

    NASA Astrophysics Data System (ADS)

    Hajfathalian, Maryam

    Nanostructures have potential for use in state-of-the-art applications such as sensing, imaging, therapeutics, drug delivery, and electronics. The ability to fabricate and engineer these nanoscale materials is essential for the continued development of such devices. Because the morphological features of nanomaterials play a key role in determining chemical and physical properties, there is great interest in developing and improving methods capable of controlling their size, shape, and composition. While noble nanoparticles have opened the door to promising applications in fields such as imaging, cancer targeting, photothermal treatment, drug delivery, catalysis and sensing, the synthetic processes required to form these nanoparticles on surfaces are not well-developed. Herein is a detailed account on efforts for adapting established solution-based seed-mediated synthetic protocols to structure in a substrate-based platform. These syntheses start by (i) defining heteroepitaxially oriented nanostructured seeds at site-specific locations using lithographic or directed-assembly techniques, and then (ii) transforming the seeds using either a solution or vapor phase processing route to activate kinetically- or thermodynamically-driven growth modes, to arrive at nanocrystals with complex and useful geometries. The first series of investigations highlight synthesis-routes based on heterogeneous nucleation, where templates serve as nucleation sites for metal atoms arriving in the vapor phase. In the first research direction, the vapor-phase heterogeneous nucleation of Ag on Au was carried out at high temperatures, where the Ag vapor was sourced from a sublimating foil onto adjacent Au templates. This process transformed both the composition and morphology of the initial Au Wulff-shaped nanocrystals to a homogeneous AuAg nanoprism. In the second case, the vapor-phase heterogeneous nucleation of Cu atoms on Au nanocrystal templates was investigated by placing a Cu foil next to Au templates and heating, which caused the Cu atoms from the foil to sublimate from the foil and heterogeneously nucleation on the surface of the immobilized Au seeds. This process caused the composition and morphology of the Au Wulff-shape to transform into a homogeneous AuCu nanotriangle. Lastly, we characterized the morphological features and composition, optical properties, and also the catalytic and photocatalytic performance toward hydrogenation of 4-nitrophenolate. The second series of investigations highlight synthetic routes utilizing competencies of substrate-based techniques with colloidal chemistry. We have demonstrated two substrate-based syntheses yielding bimetallic nanostructures where shape control was achieved through (i) facet-selective capping agents and (ii) additive and subtractive process. In the first case a citrate-based cubic structure has been synthesized in the presence or absence of ascorbic acid and the role of each has been considered in shape control. Reactions were carried out in which Ag+ ions were reduced onto substrate-immobilized Ag, Au, Pd, and Pt seeds. It was discovered that for syntheses lacking ascorbic acid, citrate acts as both the capping and the reducing agent, resulting in a robust nanocube growth mode; however, when ascorbic acid was included in these syntheses, then the growth mode reverted to one that advances the octahedral geometry. The conclusion of these results was that citrate, or one of its oxidation products, selectively caps (100) facets, but where this capability was compromised by ascorbic acid. In the second case, galvanic replacement reactions have been carried out on immobilized cubic and Wulff structures to create the substrate-based nanoshells and nanocages, where the prepositioned templates were chemically transformed into hollow structures. In this novel research, Wulff-shaped templates of Au, Pt, or Pd, formed through the dewetting of ultrathin films, were first transformed into core?shell structures through the reduction of Ag+ ions onto their surface and then further transformed through the galvanic replacement of Ag with Au. Detailed studies were provided highlighting discoveries related to (i) alloying, (ii) dealloying, (iii) hollowing, (iv) crystal structure and (vi) the localized surface plasmon resonance (LSPR). Overall, a series of synthetic strategies based on physical and chemical vapor deposition were devised and validated to achieve novel substrate- based nanomaterials with different shapes and compositions for a variety of applications such as sensing, plasmonics, catalysis, and photocatalysis. The novel research in this dissertation also takes advantage of competencies of substrate-based techniques with colloidal chemistry and, brings this rich and exciting chemistry and its associated functionalities to the substrate surface.

  6. AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study

    NASA Astrophysics Data System (ADS)

    Quintero, J. H.; Gonzalez-Hernandez, R.; Ospina, R.; Mariño, A.

    2017-06-01

    Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites.

  7. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent on time, concentration and nanoparticle size. Additionally, the question of cell recovery once the source of AuNPs is removed was investigated in the present work. It was found that full cell functions recovery is possible after removing the source of nanoparticles.

  8. Using a Full Complex Site Transfer Function to Estimate Strong Ground Motion in Port-au-Prince (Haiti).

    NASA Astrophysics Data System (ADS)

    ST Fleur, S.; Courboulex, F.; Bertrand, E.; Mercier De Lepinay, B. F.; Hough, S. E.; Boisson, D.; Momplaisir, R.

    2017-12-01

    To assess the possible impact of a future earthquake in the urban area of Port-au-Prince (Haiti), we have implemented a simulation approach for complex ground motions produced by an earthquake. To this end, we have integrated local site effect in the prediction of strong ground motions in Port-au-Prince using the complex transfer functions method, which takes into account amplitude changes as well as phase changes. This technique is particularly suitable for basins where a conventional 1D digital approach proves inadequate, as is the case in Port-au-Prince. To do this, we use the results of the Standard Spectral Ratio (SSR) approach of St Fleur et al. (2016) to estimate the amplitude of the response of the site to a nearby rock site. Then, we determine the phase difference between sites, interpreted as changes in the phase of the signal related to local site conditions, using the signals of the 2010 earthquake aftershocks records. Finally, the accelerogram of the simulated earthquake is obtain using the technique of the inverse Fourier transform. The results of this study showed that the strongest soil motions are expected in neighborhoods of downtown Port-au-Prince and adjacent hills. In addition, this simulation method by complex transfer functions was validated by comparison with recorded actual data. Our simulated response spectra reproduce very well both the amplitude and the shape of the response spectra of recorded earthquakes. This new approach allowed to reproduce the lengthening of the signal that could be generated by surface waves at certain stations in the city of Port-au-Prince. However, two points of vigilance must be considered: (1) a good signal-to-noise ratio is necessary to obtain a robust estimate of the site-reference phase shift (ratio at least equal to 10); (2) unless the amplitude and phase changes are measured on strong motion records, this technique does not take non-linear effects into account.

  9. Probing properties of the interfacial perimeter sites in TiO x /Au/SiO 2 with 2-propanol decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi Y.; Kung, Harold H.

    The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less

  10. A ternary functional Ag@GO@Au sandwiched hybrid as an ultrasensitive and stable surface enhanced Raman scattering platform

    NASA Astrophysics Data System (ADS)

    Zhang, Cong-yun; Hao, Rui; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2017-07-01

    The graphene-mediated surface enhanced Raman scattering (SERS) substrates by virtues of plasmonic metal nanostructures and graphene or its derivatives have attracted tremendous interests which are expected to make up the deficiency of traditional plasmonic metal substrates. Herein, we designed and fabricated a novel ternary Ag@GO@Au sandwich hybrid wherein the ultrathin graphene oxide (GO) films were seamlessly wrapped around the hierarchical flower-like Ag particle core and meanwhile provided two-dimensional anchoring scaffold for the coating of Au nanoparticles (NPs). The surface coverage density of loading Au NPs could be readily controlled by tuning the dosage amount of Au particle solutions. These features endowed the sandwiched structures high enrichment capability for analytes such as aromatic molecules and astonishing SERS performance. The Raman signals were enormously enhanced with an ultrasensitive detection limit of rhodamine-6G (R6G) as low as 10-13 M based on the chemical enhancement from GO and multi-dimensional plasmonic coupling between the metal nanoparticles. In addition, the GO interlayer as an isolating shell could effectively prevent the metal-molecule direct interaction and suppress the oxidation of Ag after exposure at ambient condition which enabled the substrates excellent reproducibility with less than 6% signal variations and prolonged life-time. To evaluate the feasibility and the practical application for SERS detection in real-world samples based on GO sandwiched hybrid as SERS-active substrate, three different prohibited colorants with a series of concentrations were measured with a minimum detected concentration down to 10-9 M. Furthermore, the prepared GO sandwiched nanostructures can be used to identify different types of colorants existing in red wine, implying the great potential applications for single-particle SERS sensing of biotechnology and on-site monitoring in food security.

  11. Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications.

    PubMed

    Santhosh, Mallesh; Chinnadayyala, Somasekhar R; Singh, Naveen K; Goswami, Pranab

    2016-10-01

    Human serum albumin (HSA)-stabilized Au18 nanoclusters (AuNCs) were synthesized and chemically immobilized on an Indium tin oxide (ITO) plate. The assembly process was characterized by advanced electrochemical and spectroscopic techniques. The bare ITO electrode generated three irreversible oxidation peaks, whereas the HSA-AuNC-modified electrode produced a pair of redox peaks for bilirubin at a formal potential of 0.27V (vs. Ag/AgCl). However, the native HSA protein immobilized on the ITO electrode failed to produce any redox peak for bilirubin. The results indicate that the AuNCs present in HSA act as electron transfer bridge between bilirubin and the ITO plate. Docking studies of AuNC with HSA revealed that the best docked structure of the nanocluster is located around the vicinity of the bilirubin binding site, with an orientation that allows specific oxidation. When the HSA-AuNC-modified electrode was employed for the detection of bilirubin using chronoamperometry at 0.3V (vs. Ag/AgCl), a steady-state current response against bilirubin in the range of 0.2μM to 7μM, with a sensitivity of 0.34μAμM(-1) and limit of detection of 86.32nM at S/N 3, was obtained. The bioelectrode was successfully applied to measure the bilirubin content in spiked serum samples. The results indicate the feasibility of using HSA-AuNC as a biorecognition element for the detection of serum bilirubin levels using an electrochemical technique. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Selective adsorption of toluene-3,4-dithiol on Si(553)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Suchkova, Svetlana; Hogan, Conor; Bechstedt, Friedhelm; Speiser, Eugen; Esser, Norbert

    2018-01-01

    The adsorption of small organic molecules onto vicinal Au-stabilized Si(111) surfaces is shown to be a versatile route towards controlled growth of ordered organic-metal hybrid one-dimensional nanostructures. Density functional theory is used to investigate the site-specific adsorption of toluene-3,4-dithiol (TDT) molecules onto the clean Si(553)-Au surface and onto a co-doped surface whose steps are passivated by hydrogen. We find that the most reactive sites involve bonding to silicon at the step edge or on the terraces, while gold sites are relatively unfavored. H passivation and TDT adsorption both induce a controlled charge redistribution within the surface layer, causing the surface metallicity, electronic structure, and chemical reactivity of individual adsorption sites to be substantially altered.

  13. Nanometer-thick gold on silicon as a proxy for single-crystal gold for the electrodeposition of epitaxial cuprous oxide thin films

    DOE PAGES

    Switzer, Jay A.; Hill, James C.; Mahenderkar, Naveen K.; ...

    2016-05-27

    Here, single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu 2O). The Au films range in thickness from 7.7 nm for a film deposited for 5 min to 28.3 nm for a film deposited for 30 min. The film thicknesses are measured bymore » low-angle X-ray reflectivity and X-ray Laue oscillations. High-resolution TEM shows that there is not an interfacial SiO x layer between the Si and Au. The Au films deposited on the Si(111) substrates are smoother and have lower mosaic spread than those deposited onto Si(100) and Si(110). The mosaic spread of the Au(111) layer on Si(111) is only 0.15° for a 28.3 nm thick film. Au films deposited onto degenerate Si(111) exhibit ohmic behavior, whereas Au films deposited onto n-type Si(111) with a resistivity of 1.15 Ω·cm are rectifying with a barrier height of 0.85 eV. The Au and the Cu 2O follow the out-of-plane and in-plane orientations of the Si substrates, as determined by X-ray pole figures. The Au and Cu 2O films deposited on Si(100) and Si(110) are both twinned. The films grown on Si(100) have twins with a [221] orientation, and the films grown on Si(110) have twins with a [411] orientation. An interface model is proposed for all Si orientations, in which the –24.9% mismatch for the Au/Si system is reduced to only +0.13% by a coincident site lattice in which 4 unit meshes of Au coincide with 3 unit meshes of Si. Although this study only considers the deposition of epitaxial Cu 2O films on electrodeposited Au/Si, the thin Au films should serve as high-quality substrates for the deposition of a wide variety of epitaxial materials.« less

  14. Spatial and temporal distribution of Au and other trace elements in an estuary using the diffusive gradients in thin films technique and grab sampling

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew R.; Salmon, S. Ursula; Rate, Andrew W.; Larsen, Sarah; Kilminster, Kieryn

    2015-12-01

    This study reports the first surface water evaluation of the temporal and spatial variability of Au in an estuary, using recently developed modifications to the diffusive gradients in thin films (DGT) and grab sampling techniques. At the two study sites in the Swan River estuary that were more marine in character, the DGT-measured concentrations of Au (26.3 and 31.3 ng/L) were within the range of total concentrations measured on individual days (13.2-30.6 ng/L and 11.2-37.2 ng/L, respectively). In contrast, at an upstream site, Au concentrations measured by DGT were significantly lower than totals (3.9 ng/L for DGT, compared with 13.2-28.8 ng/L for grab sampling), likely due to either size exclusion of colloids (>70 nm) by DGT or formation of a dissolved, non-DGT-labile Au species (<0.45 μm). DGT-measured concentrations of other metals (Cu, Co, Cr, U, V, Mo and As) were also lower than total concentrations, although in contrast to DGT-measured Au, this phenomenon occurred at all sites. Furthermore, daily grab samples for Au, taken over the 10-day deployment (which included a rain event), showed that Au concentrations could spike substantially (from 15.1 ng/L to 37.2 ng/L) over intervals as short as one day. The combination of simultaneous deployment of different DGT devices and grab sampling represents a new development in efforts to understand the transport and fate of Au together with other elements in dynamic environments such as estuaries.

  15. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein-In-vitro and in-vivo study.

    PubMed

    Javed, Ibrahim; Hussain, Syed Zajif; Shahzad, Atif; Khan, Jahanzeb Muhammad; Ur-Rehman, Habib; Rehman, Mubashar; Usman, Faisal; Razi, Muhammad Tahir; Shah, Muhammad Raza; Hussain, Irshad

    2016-05-01

    We report the synthesis and evaluation of lecithin-gold hybrid nanocarriers for the oral delivery of drugs with improved pharmacokinetics, Au-drug interactive bioactivity and controlled drug releasing behavior at physiological pH inside human body. For this purpose, diacerein, a hydrophobic anti-arthritic drug, was loaded in lecithin NPs (LD NPs), which were further coated by Au NPs either by in-situ production of Au NPs on LD NPs or by employing pre-synthesized Au NPs. All LDAu NPs were found to release drug selectively at the physiological pH of 7.4 and showed 2.5 times increase in the oral bioavailability of diacerein. Pharmacological efficacy was significantly improved i.e., greater than the additive effect of diacerein and Au NPs alone. LDAu NPs started suppressing inflammation at first phase, whereas LD NPs showed activity in the second phase of inflammation. These results indicate the interaction of Au NPs with prostaglandins and histaminic mediators of first phase of carrageenan induced inflammation. Acute toxicity study showed no hepatic damage but the renal toxicity parameters were close to the upper safety limits. Toxicity parameters were dependent on surface engineering of LDAu NPs. Apart from enhancing the oral bioavailability of hydrophobic drugs and improving their anti-inflammatory activity, these hybrid nanocarriers may have potential applications in gold-based photothermal therapy and the tracing of inflammation at atherosclerotic and arthritic site. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Ian

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO 2 is responsible for oxidative catalytic activity. O 2 molecules bind with Au atoms and Ti4+ ions in the TiO 2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atomsmore » which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO 2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO 2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO 2 catalysts with surface science on the TiO 2(110) and TiO 2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti 4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.« less

  17. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    PubMed

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  18. Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy.

    PubMed

    Wang, Yu-Hsin; Liao, Ai-Ho; Chen, Jui-Hao; Wang, Churng-Ren Chris; Li, Pai-Chi

    2012-04-01

    This study investigates a photoacoustic/ultrasound dual-modality contrast agent, including extending its applications from image-contrast enhancement to combined diagnosis and therapy with site-specific targeting. The contrast agent comprises albumin-shelled microbubbles with encapsulated gold nanorods (AuMBs). The gas-filled microbubbles, whose diameters range from submicrometer to several micrometers, are not only echogenic but also can serve as drug-delivery vehicles. The gold nanorods are used to enhance the generation of both photoacoustic and photothermal signals. The optical absorption peak of the gold nanorods is tuned to 760 nm and is invariant after microbubble encapsulation. Dual-modality contrast enhancement is first described here, and the applications to cellular targeting and laser-induced thermotherapy in a phantom are demonstrated. Photoacoustic imaging can be used to monitor temperature increases during the treatment. The targeting capability of AuMBs was verified, and the temperature increased by 26°C for a laser power of 980 mW, demonstrating the potential of combined diagnosis and therapy with the dual-modality agent. Targeted photo- or acoustic-mediated delivery is also possible.

  19. Tin-phthalocyanine adsorption and diffusion on Cu and Au (111) surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao

    2018-05-01

    Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).

  20. Nanoparticle-density-dependent field emission of surface-decorated SiC nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Qizheng; School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo City 315016; State Key Lab of New Fine Ceramics and Fine Processing, Tsinghua University, Beijing City 100084

    2016-08-22

    Increasing the electron emission site density of nanostructured emitters with limited field screening effects is one of the key issues for improving the field emission (FE) properties. In this work, we reported the Au-nanoparticles-density-dependent field emission behaviors of surface-decorated SiC nanowires. The Au nanoparticles (AuNPs) decorated around the surface of the SiC nanowires were achieved via an ion sputtering technique, by which the densities of the isolated AuNPs could be adjusted by controlling the fixed sputtering times. The measured FE characteristics demonstrated that the turn-on fields of the SiC nanowires were tuned to be of 2.06, 1.14, and 3.35 V/μm withmore » the increase of the decorated AuNPs densities, suggesting that a suitable decorated AuNPs density could render the SiC nanowires with totally excellent FE performances by increasing the emission sites and limiting the field screening effects.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zili; Hu, Guoxiang; Jiang, De-en

    Investigation of monodispersed and atomically-precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects in Au catalysis. We have explored the catalytic behavior of a newly-synthesized Au 22(L 8) 6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO 2, CeO 2 and Al 2O 3. Stability of the supported Au 22 nanoclusters was probed structurally by EXAFS and HAADF-STEM, and their adsorption and reactivity for CO oxidation were investigated by IR absorption spectroscopy and temperature programed flow reaction. Low temperature CO oxidation activity was observed for the supportedmore » pristine Au 22(L 8) 6 nanoclusters without ligand removal. Isotopically labeled O 2 was used to demonstrate that the reaction pathway occurs through a redox mechanism, consistent with the observed support-dependent activity trend: CeO 2 > TiO 2 > Al 2O 3. Substantiated by density functional theory (DFT) calculations, we conclude that the uncoordinated Au sites in the intact Au 22(L 8) 6 nanoclusters are capable of adsorbing CO, activating O2 and promoting CO oxidation reaction. Thanks to the presence of the in situ coordination unsaturated Au atoms, this work is the first clear demonstration of a ligand-protected Au nanocluster that are active for gas phase catalysis without the need of ligand removal.« less

  2. Gold nanoparticles prepared by laser ablation in aqueous biocompatible solutions: assessment of safety and biological identity for nanomedicine applications

    PubMed Central

    Correard, Florian; Maximova, Ksenia; Estève, Marie-Anne; Villard, Claude; Roy, Myriam; Al-Kattan, Ahmed; Sentis, Marc; Gingras, Marc; Kabashin, Andrei V; Braguer, Diane

    2014-01-01

    Due to excellent biocompatibility, chemical stability, and promising optical properties, gold nanoparticles (Au-NPs) are the focus of research and applications in nanomedicine. Au-NPs prepared by laser ablation in aqueous biocompatible solutions present an essentially novel object that is unique in avoiding any residual toxic contaminant. This paper is conceived as the next step in development of laser-ablated Au-NPs for future in vivo applications. The aim of the study was to assess the safety, uptake, and biological behavior of laser-synthesized Au-NPs prepared in water or polymer solutions in human cell lines. Our results showed that laser ablation allows the obtaining of stable and monodisperse Au-NPs in water, polyethylene glycol, and dextran solutions. The three types of Au-NPs were internalized in human cell lines, as shown by transmission electron microscopy. Biocompatibility and safety of Au-NPs were demonstrated by analyzing cell survival and cell morphology. Furthermore, incubation of the three Au-NPs in serum-containing culture medium modified their physicochemical characteristics, such as the size and the charge. The composition of the protein corona adsorbed on Au-NPs was investigated by mass spectrometry. Regarding composition of complement C3 proteins and apolipoproteins, Au-NPs prepared in dextran solution appeared as a promising drug carrier. Altogether, our results revealed the safety of laser-ablated Au-NPs in human cell lines and support their use for theranostic applications. PMID:25473280

  3. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE PAGES

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    2015-08-13

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  4. From the ternary Eu(Au/In) 2 and EuAu 4(Au/In) 2 with remarkable Au/In distributions to a new structure type: The gold-rich Eu 5Au 16(Au/In) 6 structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Simon; Card, Nathan; Mudring, Anja -Verena

    The ternary Eu(Au/In) 2 (EuAu 0.46In 1.54 (2)) (I), EuAu 4(Au/In) 2 (EuAu 4+xIn 2–x with x = 0.75(2) (II), 0.93(2), and 1.03(2)), and Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (III) have been synthesized, and their structures were characterized by single-crystal X-ray diffraction. I and II crystallize with the CeCu 2-type (Pearson Symbol oI12; Imma; Z = 4; a = 4.9018(4) Å; b = 7.8237(5) Å; c = 8.4457(5) Å) and the YbAl 4Mo 2-type (tI14; I4/ mmm; Z = 2; a = 7.1612(7) Å; c = 5.5268(7) Å) and exhibit significant Au/In disorder. I is composed ofmore » an Au/In-mixed diamond-related host lattice encapsulating Eu atoms, while the structure of II features ribbons of distorted, squared Au 8 prisms enclosing Eu, Au, and In atoms. Combination of these structural motifs leads to a new structure type as observed for Eu 5Au 16(Au/In) 6 (Eu 5Au 17.29In 4.71(3)) (oS108; Cmcm; Z = 4; a = 7.2283(4) Å; b = 9.0499(6) Å; c = 34.619(2) Å), which formally represents a one-dimensional intergrowth of the series EuAu 2–“EuAu 4In 2”. The site preferences of the disordered Au/In positions in II were investigated for different hypothetical “EuAu 4(Au/In) 2” models using the projector-augmented wave method and indicate that these structures attempt to optimize the frequencies of the heteroatomic Au–In contacts. Furthermore, a chemical bonding analysis on two “EuAu 5In” and “EuAu 4In 2” models employed the TB-LMTO-ASA method and reveals that the subtle interplay between the local atomic environments and the bond energies determines the structural and site preferences for these systems.« less

  5. Atomic and electronic structures of Si(1 1 1)-(√3 x √3)R30°-Au and (6 × 6)-Au surfaces.

    PubMed

    Patterson, C H

    2015-12-02

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the [Formula: see text]-Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the [Formula: see text]-Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the [Formula: see text]-Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the [Formula: see text]-Au phase. Extra Au atoms bound in interstitial sites of the [Formula: see text]-Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a [Formula: see text]-Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the [Formula: see text]-Au structure. The [Formula: see text]-Au phase is 2D chiral and this is evident in computed and actual STM images. [Formula: see text]-Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the [Formula: see text]-Au and [Formula: see text]-Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  6. Diphosphine-Protected Au 22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal

    DOE PAGES

    Wu, Zili; Hu, Guoxiang; Jiang, De-en; ...

    2016-09-29

    Investigation of monodispersed and atomically-precise Au nanoclusters provides a route to understand the roles of coordination, size, and ligand effects in Au catalysis. We have explored the catalytic behavior of a newly-synthesized Au 22(L 8) 6 nanocluster (L = 1,8-bis(diphenylphosphino) octane) with in situ uncoordinated Au sites supported on TiO 2, CeO 2 and Al 2O 3. Stability of the supported Au 22 nanoclusters was probed structurally by EXAFS and HAADF-STEM, and their adsorption and reactivity for CO oxidation were investigated by IR absorption spectroscopy and temperature programed flow reaction. Low temperature CO oxidation activity was observed for the supportedmore » pristine Au 22(L 8) 6 nanoclusters without ligand removal. Isotopically labeled O 2 was used to demonstrate that the reaction pathway occurs through a redox mechanism, consistent with the observed support-dependent activity trend: CeO 2 > TiO 2 > Al 2O 3. Substantiated by density functional theory (DFT) calculations, we conclude that the uncoordinated Au sites in the intact Au 22(L 8) 6 nanoclusters are capable of adsorbing CO, activating O2 and promoting CO oxidation reaction. Thanks to the presence of the in situ coordination unsaturated Au atoms, this work is the first clear demonstration of a ligand-protected Au nanocluster that are active for gas phase catalysis without the need of ligand removal.« less

  7. Two Homologous Intermetallic Phases in the Na-Au-Zn System with Sodium Bound in Unusual Paired Sites within 1D Tunnels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Lin, Qisheng; Corbett, John D.

    The Na-Au-Zn system contains the two intermetallic phases Na(0.97(4))Au(2)Zn(4)(I) and Na(0.72(4))Au(2)Zn(2)(II) that are commensurately and incommensurately modulated derivatives of K(0.37)Cd(2), respectively. Compound I crystallizes in tetragonal space group P4/mbm (No. 127), a = 7.986(1) Å, c = 7.971(1) Å, Z = 4, as a 1 × 1 × 3 superstructure derivative of K(0.37)Cd(2)(I4/mcm). Compound II is a weakly incommensurate derivative of K(0.37)Cd(2) with a modulation vector q = 0.189(1) along c. Its structure was solved in superspace group P4/mbm(00g)00ss, a = 7.8799(6) Å, c = 2.7326(4) Å, Z = 2, as well as its average structure in P4/mbm with themore » same lattice parameters.. The Au-Zn networks in both consist of layers of gold or zinc squares that are condensed antiprismatically along c ([Au(4/2)Zn(4)Zn(4)Au(4/2)] for I and [Au(4/2)Zn(4)Au(4/2)] for II) to define fairly uniform tunnels. The long-range cation dispositions in the tunnels are all clearly and rationally defined by electron density (Fourier) mapping. These show only close, somewhat diffuse, pairs of opposed, ≤50% occupied Na sites that are centered on (I)(shown) or between (II) the gold squares. Tight-binding electronic structure calculations via linear muffin-tin-orbital (LMTO) methods, assuming random occupancy of ≤ ∼100% of nonpaired Na sites, again show that the major Hamilton bonding populations in both compounds arise from the polar heteroatomic Au-Zn interactions. Clear Na-Au (and lesser Na-Zn) bonding is also evident in the COHP functions. These two compounds are the only stable ternary phases in the (Cs,Rb,K,Na)-Au-Zn systems, emphasizing the special bonding and packing requirements in these sodium structures« less

  8. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.

    PubMed

    Baker, Thomas A; Liu, Xiaoying; Friend, Cynthia M

    2011-01-07

    Recently, gold has been intensely studied as a catalyst for key synthetic reactions. Gold is an attractive catalyst because, surprisingly, it is highly active and very selective for partial oxidation processes suggesting promise for energy-efficient "green" chemistry. The underlying origin of the high activity of Au is a controversial subject since metallic gold is commonly thought to be inert. Herein, we establish that one origin of the high activity for gold catalysis is the extremely reactive nature of atomic oxygen bound in 3-fold coordination sites on metallic gold. This is the predominant form of O at low concentrations on the surface, which is a strong indication that it is most relevant to catalytic conditions. Atomic oxygen bound to metallic Au in 3-fold sites has high activity for CO oxidation, oxidation of olefins, and oxidative transformations of alcohols and amines. Among the factors identified as important in Au-O interaction are the morphology of the surface, the local binding site of oxygen, and the degree of order of the oxygen overlayer. In this Perspective, we present an overview of both theory and experiments that identify the reactive forms of O and their associated charge density distributions and bond strengths. We also analyze and model the release of Au atoms induced by O binding to the surface. This rough surface also has the potential for O(2) dissociation, which is a critical step if Au is to be activated catalytically. We further show the strong parallels between product distributions and reactivity for O-covered Au at low pressure (ultrahigh vacuum) and for nanoporous Au catalysts operating at atmospheric pressure as evidence that atomic O is the active species under working catalytic conditions when metallic Au is present. We briefly discuss the possible contributions of oxidants that may contain intact O-O bonds and of the Au-metal oxide support interface in Au catalysis. Finally, the challenges and future directions for fully understanding the activity of gold are considered.

  9. Electrochemical immunosensor with nanocellulose-Au composite assisted multiple signal amplification for detection of avian leukosis virus subgroup J.

    PubMed

    Liu, Chao; Dong, Jing; Waterhouse, Geoffrey I N; Cheng, Ziqiang; Ai, Shiyun

    2018-03-15

    A sensitive sandwich-type electrochemical immunosensor was developed for the detection of avian leukosis virus subgroup J (ALV-J), which benefitted from multiple signal amplification involving graphene-perylene-3,4,9,10-tetracarboxylic acid nanocomposites (GR-PTCA), nanocellulose-Au NP composites (NC-Au) and the alkaline phosphatase (ALP) catalytic reaction. GR-PTCA nanocomposites on glassy carbon electrodes served as the immunosensor platform. Due to their excellent electrical conductivity and abundant polycarboxylic sites, the GR-PTCA nanocomposites allowed fast electron transfer and good immobilization of primary antibodies, thereby affording a strong immunosensor signal in the presence of ALV-J. The detected signal could be further amplified by the introduction of NC-Au composites as a carrier of secondary antibodies (Ab 2 ) and by harnessing the catalytic properties of Au and ALP. Under optimized testing conditions, the electrochemical immunosensor displayed excellent analytical performance for the detection of ALV-J, showing a linear current response from 10 2.08 to 10 4.0 TCID 50 /mL (TCID 50 : 50% tissue culture infective dose) with a low detection limit of 10 1.98 TCID 50 /mL (S/N = 3). In addition to high sensitivity, the immunosensor showed very good selectivity, reproducibility and operational stability, demonstrating potential application for the quantitative detection of ALV-J in clinical diagnosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

    NASA Astrophysics Data System (ADS)

    Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-01-01

    A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.

  11. On the application potential of gold nanoparticles in nanoelectronics and biomedicine.

    PubMed

    Homberger, Melanie; Simon, Ulrich

    2010-03-28

    Ligand-stabilized gold nanoparticles (AuNPs) are of high interest to research dedicated to future technologies such as nanoelectronics or biomedical applications. This research interest arises from the unique size-dependent properties such as surface plasmon resonance or Coulomb charging effects. It is shown here how the unique properties of individual AuNPs and AuNP assemblies can be used to create new functional materials for applications in a technical or biological environment. While the term technical environment focuses on the potential use of AuNPs as subunits in nanoelectronic devices, the term biological environment addresses issues of toxicity and novel concepts of controlling biomolecular reactions on the surface of AuNPs.

  12. Interaction of CO with an Au monatomic chain at different strains: Electronic structure and ballistic transport

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    We study the energetics, the electronic structure, and the ballistic transport of an infinite Au monatomic chain with an adsorbed CO molecule. We find that the bridge adsorption site is energetically favored with respect to the atop site, both at the equilibrium Au-Au spacing of the chain and at larger spacings. Instead, a substitutional configuration requires a very elongated Au-Au bond, well above the rupture distance of the pristine Au chain. The electronic structure properties can be described by the Blyholder model, which involves the formation of bonding/antibonding pairs of 5σ and 2π states through the hybridization between molecular levels of CO and metallic states of the chain. In the atop geometry, we find an almost vanishing conductance due to the 5σ antibonding states giving rise to a Fano-like destructive interference close to the Fermi energy. In the bridge geometry, instead, the same states are shifted to higher energies and the conductance reduction with respect to pristine Au chain is much smaller. We also examine the effects of strain on the ballistic transport, finding opposite behaviors for the atop and bridge conductances. Only the bridge geometry shows a strain dependence compatible with the experimental conductance traces.

  13. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques

    PubMed Central

    Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Stine, Keith J.

    2018-01-01

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing. PMID:29547580

  14. Preparation, Modification, Characterization, and Biosensing Application of Nanoporous Gold Using Electrochemical Techniques.

    PubMed

    Bhattarai, Jay K; Neupane, Dharmendra; Nepal, Bishal; Mikhaylov, Vasilii; Demchenko, Alexei V; Stine, Keith J

    2018-03-16

    Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning pore and ligament sizes. The np-Au electrodes that are prepared using electrochemical techniques are robust and are easier to handle for their use in electrochemical biosensing. Here, we review different electrochemical strategies for the preparation, post-modification, and characterization of np-Au along with the synergistic use of both electrochemistry and np-Au for applications in biosensing.

  15. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-02

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.

  16. New Surface-Enhanced Raman Sensing Chip Designed for On-Site Detection of Active Ricin in Complex Matrices Based on Specific Depurination.

    PubMed

    Tang, Ji-Jun; Sun, Jie-Fang; Lui, Rui; Zhang, Zong-Mian; Liu, Jing-Fu; Xie, Jian-Wei

    2016-01-27

    Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.

  17. Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications

    NASA Astrophysics Data System (ADS)

    Poletti, Annamaria; Fracasso, Giulio; Conti, Giamaica; Pilot, Roberto; Amendola, Vincenzo

    2015-08-01

    Gold nanoparticles with efficient plasmon absorption in the visible and near infrared (NIR) regions, biocompatibility and easy surface functionalization are of interest for photothermal applications. Herein we describe the synthesis and photothermal properties of gold ``nanocorals'' (AuNC) obtained by laser irradiation of Au nanospheres (AuNS) dispersed in liquid solution. AuNC are formed in two stages: by photofragmentation of AuNS, followed by spontaneous unidirectional assembly of gold nanocrystals. The whole procedure is performed without chemicals or templating compounds, hence the AuNC can be coated with thiolated molecules in one step. We show that AuNC coated with thiolated polymers are easily dispersed in an aqueous environment or in organic solvents and can be included in polymeric matrixes to yield a plasmonic nanocomposite. AuNC dispersions exhibit flat broadband plasmon absorption ranging from the visible to the NIR and unitary light-to-heat conversion. Besides, in vitro biocompatibility experiments assessed the absence of cytotoxic effects even at a dose as high as 100 μg mL-1. These safe-by-designed AuNC are promising for use in various applications such as photothermal cancer therapy, light-triggered drug release, antimicrobial substrates, optical tomography, obscurant materials and optical coatings.

  18. Development of Pt-Au-Graphene-Carbon Nanotube Composite for Fuel Cells and Biosensors Applications

    DTIC Science & Technology

    2011-02-11

    1 Project Title:- Development of Pt-Au- Graphene -Carbon nanotube composites for fuel cells and biosensors applications Objectives:- This...project addresses the architectures needed for the processing of Pt-Au- graphene -carbon nanotube (Pt-Au/f-G/f-CNT) nanocomposites and aims at the...cells:- Graphene and nitrogen doped graphene as catalyst support materials:- Graphene and nitrogen doped graphene have been used as a catalyst

  19. The fractional laser-induced coagulation zone characterized over time by laser scanning confocal microscopy-A proof of concept study.

    PubMed

    Banzhaf, Christina A; Lin, Lynlee L; Dang, Nhung; Freeman, Michael; Haedersdal, Merete; Prow, Tarl W

    2018-01-01

    Ablative fractional laser (AFXL) is an acknowledged technique to increase uptake of topical agents in skin. Micro thermal ablation zones (MAZs) consist of ablated vertical channels surrounded by a coagulation zone (CZ). Laser scanning confocal microscopy (LSCM) images individual MAZs at 733 nm (reflectance confocal microscopy (RCM)). Further, LSCM can image sodium fluorescein (NaF) fluorescence with 488 nm excitation (fluorescence confocal microcopy (FCM)), a small hydrophilic test molecule (370 MW, log P -1.52), which may simulate uptake, bio-distribution and kinetics of small hydrophilic drugs. To explore LSCM for combined investigations of CZ thickness and uptake, bio-distribution and kinetics of NaF in AFXL-exposed skin. Excised human abdominal skin samples were exposed to AFXL (15 mJ/microbeam, 2% density) and NaF gel (1000 μg/ml, 10 μl/cm2) in six repetitions, including untreated control samples. CZ thickness and spatiotemporal fluorescence intensities (FI) were quantified up to four hours after NaF application by RCM and FCM. Test sites were scanned to a depth of 200 μm, quantifying thickness of skin compartments (stratum corneum, epidermis, upper dermis), individual CZ thicknesses and FI in CZ and surrounding skin. RCM images established skin morphology to a depth of 200 μm. The CZ thickness measurements were feasible to a depth of 50 μm, and remained unchanged over time at 50 μm (P > 0.5). FI were detected to a depth of 160 μm and remained constant in CZ up to four hours after NaF application (15 minutes: 79 AU (73-92 AU), 60 minutes: 72 AU (58-82 AU), four hours: 78 AU (71-90 AU), P > 0.1). In surrounding skin, FI increased significantly over time, but remained lower than FI in CZ (15 minutes: 21 AU (17-22 AU), 60 minutes: 21 AU (19-26 AU), four hours: 42 (31- 48 AU), P = 0.03). AFXL-processed skin generated higher FI compared to non-laser processed skin in epidermis and upper dermis at 60 minutes and four hours (P = 0.03). By LSCM, assessment of the AFXL-induced CZ thickness was feasible to a depth of 50 μm, and assessment of FI from a small hydrophilic test molecule, NaF in CZ and surrounding skin feasible to a depth of 160 μm. Lasers Surg. Med. 50:70-77, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Conductive Au nanowires regulated by silk fibroin nanofibers

    NASA Astrophysics Data System (ADS)

    Dong, Bo-Ju; Lu, Qiang

    2014-03-01

    Conductive Au-biopolymer composites have promising applications in tissue engineering such as nerve tissue regeneration. In this study, silk fibroin nanofibers were formed in aqueous solution by regulating silk self-assembly process and then used as template for Au nanowire fabrication. We performed the synthesis of Au seeds by repeating the seeding cycles for several times in order to increase the density of Au seeds on the nanofibers. After electroless plating, densely decorated Au seeds grew into irregularly shaped particles following silk nanofiber to fill the gaps between particles and finally form uniform continuous nanowires. The conductive property of the Au-silk fibroin nanowires was studied with current-voltage ( I-V) measurement. A typical ohmic behavior was observed, which highlighted their potential applications in nerve tissue regeneration.

  1. High Activity of Au/K/TiO 2(110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO

    DOE PAGES

    Rodriguez, Jose A.; Grinter, David C.; Ramirez, Pedro J.; ...

    2018-02-14

    In this paper, images from scanning tunneling microscopy show high mobility for potassium (K) on an oxidized TiO 2(110) surface. At low coverages, the alkali metal occupies mainly terrace sites of the o-TiO 2(110) system. The results of X-ray photoelectron spectroscopy indicate that K is fully ionized. The electron transferred from K to the titania affects the reactivity of this oxide, favoring the dispersion of Au particles on the terraces of the o-TiO 2(110) surface. When small coverages of K and Au are present on the o-TiO 2(110) system, only a few K–Au pairs are formed and the alkali metalmore » affects Au chemisorption mainly through the oxide interactions. Addition of K to Au/o-TiO 2(110) enhances the reactivity of the system, opening new reaction paths for the adsorption and oxidation of carbon monoxide. CO can undergo disproportionation (2CO → C ads + CO 2,ads) on K/o-TiO 2(110) and Au/K/o-TiO 2(110) surfaces. The Au–KO x interface binds CO much better than plain Au–TiO 2, increasing the surface coverage of CO and facilitating its oxidation. Kinetic tests show that K promotes CO oxidation on Au/TiO 2. Finally, turnover frequencies of 2.1 and 10.8 molecules (Au site) -1 s –1 were calculated for oxidation of CO on Au/o-TiO 2(110) and Au/K/o-TiO 2(110) catalysts, respectively.« less

  2. High Activity of Au/K/TiO 2(110) for CO Oxidation: Alkali-Metal-Enhanced Dispersion of Au and Bonding of CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Jose A.; Grinter, David C.; Ramirez, Pedro J.

    In this paper, images from scanning tunneling microscopy show high mobility for potassium (K) on an oxidized TiO 2(110) surface. At low coverages, the alkali metal occupies mainly terrace sites of the o-TiO 2(110) system. The results of X-ray photoelectron spectroscopy indicate that K is fully ionized. The electron transferred from K to the titania affects the reactivity of this oxide, favoring the dispersion of Au particles on the terraces of the o-TiO 2(110) surface. When small coverages of K and Au are present on the o-TiO 2(110) system, only a few K–Au pairs are formed and the alkali metalmore » affects Au chemisorption mainly through the oxide interactions. Addition of K to Au/o-TiO 2(110) enhances the reactivity of the system, opening new reaction paths for the adsorption and oxidation of carbon monoxide. CO can undergo disproportionation (2CO → C ads + CO 2,ads) on K/o-TiO 2(110) and Au/K/o-TiO 2(110) surfaces. The Au–KO x interface binds CO much better than plain Au–TiO 2, increasing the surface coverage of CO and facilitating its oxidation. Kinetic tests show that K promotes CO oxidation on Au/TiO 2. Finally, turnover frequencies of 2.1 and 10.8 molecules (Au site) -1 s –1 were calculated for oxidation of CO on Au/o-TiO 2(110) and Au/K/o-TiO 2(110) catalysts, respectively.« less

  3. Label-free okadaic acid detection using growth of gold nanoparticles in sensor gaps as a conductive tag.

    PubMed

    Pan, Yuxiang; Wan, Zijian; Zhong, Longjie; Li, Xueqin; Wu, Qi; Wang, Jun; Wang, Ping

    2017-06-01

    Okadaic acid (OA) is a marine toxin ingested by shellfish. In this work, a simple, sensitive and label-free gap-based electrical competitive bioassay has been developed for this biotoxin detection. The gap-electrical biosensor is constructed by modifying interdigitated microelectrodes with gold nanoparticles (AuNPs) and using the self-catalytic growth of AuNPs as conductive bridges. In this development, the AuNPs growth is realized in the solution of glucose and chloroauric acid, with glucose oxidation used as the catalysis for growth of the AuNPs. The catalytic reaction product H 2 O 2 in turn reduces chloroauric acid to make the AuNPs grow. The conductance signal amplification is directly determined by the growth efficiency of AuNPs and closely related to the catalytic activity of AuNPs upon their interaction with OA molecule and OA aptamer. In the absence of OA molecule, the OA aptamer can absorb onto the surfaces of AuNPs due to electrostatic interaction, and the catalytically active sites of AuNPs are fully blocked. Thus the AuNPs growth would not happen. In contrast, the presence of OA molecule can hinder the interaction of OA aptamer and AuNPs. Then the AuNPs sites are exposed and the catalytic growth induces the conductance signal change. The results demonstrated that developed biosensor was able to specifically respond to OA ranging from 5 ppb to 80 ppb, providing limit of detection of 1 ppb. The strategy is confirmed to be effective for OA detection, which indicates the label-free OA biosensor has great potential to offer promising alternatives to the traditional analytical and immunological methods for OA detection.

  4. Enhancing the reactivity of gold: Nanostructured Au(111) adsorbs CO

    DOE PAGES

    Hoffmann, F. M.; Hrbek, J.; Ma, S.; ...

    2015-12-02

    Low-coordinated sites are surface defects whose presence can transform a surface of inert or noble metal such as Au into an active catalyst. We prepared gold surfaces modified by pits, starting with a well-ordered Au(111) surface; we then used microscopy (STM) for their structural characterization and CO spectroscopy (IRAS and NEXAFS) for probing reactivity of surface defects. In contrast to the Au(111) surface CO adsorbs readily on the pitted surfaces bonding to low-coordinated sites identified as step atoms forming {111} and {100} microfacets. Finally, pitted nanostructured surfaces can serve as interesting and easily prepared models of catalytic surfaces with definedmore » defects that offer an attractive alternative to vicinal surfaces or nanoparticles commonly employed in catalysis science.« less

  5. Transformation from gold nanoclusters to plasmonic nanoparticles: A general strategy towards selective detection of organophosphorothioate pesticides.

    PubMed

    Lu, Qian; Zhou, Tingyao; Wang, Yaping; Gong, Lingshan; Liu, Jinbin

    2018-01-15

    Luminescent gold nanoclusters (AuNCs) synthesized using non-thiolate DNA ligands were reported to show both optical and structure responses toward diethyposphorthioate (DEP) derived from the hydrolysis of chlorpyrifos (CP). After incubation of AuNCs with DEP, the non-thiolate DNA ligands were immediately replaced and the tiny AuNCs with ultrasmall size transformed gradually to plasmonic nanoparticles, which resulted in significant luminescence quenching of the AuNCs, offering a new possibility to selectively detect organophosphorothioate pesticides that could be easily hydrolyzed to form the special structures such as DEP containing two binding sites (e.g. S and O atoms). Therefore, selecting CP as a model analyte, we here developed a general strategy for the construction of a novel chemosensor for the determination of CP using the non-thiolate DNA coated AuNCs as an optical probe. Based on aggregation-induced luminescence quenching, this strategy exhibited highly sensitive and selective responses towards CP with a limit of detection (LOD) of 0.50μM, and was applied successfully to the analysis of CP in real sample. More interestingly, this facile strategy could easily distinguish CP from other thiol reagents through solution color change in spite of the existence of the coordination between Au and S atom for both of them, and the response mechanisms for them were studied in detail. In additional, it could be extended to detect the other organophosphorothioate pesticides with the similar structure as CP, which exploits a new platform for the construction of chemosensor and application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release.

    PubMed

    Jin, Yongdong

    2014-01-21

    Gold nanoshells (AuNSs) with tunable localized surface plasmon resonance (LSPR) peaks in the near-infrared (NIR) region possess unique optical properties-particularly that soft tissues are "transparent" at these wavelengths-making them of great interest in cancer diagnosis and treatment. Since 1998 when Halas and co-workers invented the first generation of AuNS, with a silica core and Au shell, researchers have studied and designed AuNSs for theranostic-individualized, combination diagnosis and therapy-nanomedicine. As demand has increased for more powerful and practical theranostic applications, so has demand for the next generation of AuNSs-compact yet complex multifunctional AuNSs with finely integrated plasmonic and nonplasmonic inorganic components. For in vivo biomedical applications, such a hybrid AuNS offers the desirable optical properties of NIR LSPR. Size, however, has proved a more challenging parameter to control in hybrid AuNSs. The ideal size of therapeutic NPs is 10-100 nm. Larger particles have limited diffusion in the extracellular space, while particles less than 5 nm are rapidly cleared from the circulation through extravasation or renal clearance. Conventional methods of preparing AuNS have failed to obtain small-sized hybrid AuNSs with NIR LSPR responses. In this Account, we present a new class of multifunctional hybrid AuNSs with ultrathin AuNSs and varied, functional (nonplasmonic) core components ranging from "hard" semiconductor quantum dots (QDs), to superparamagnetic NPs, to "soft" liposomes made using poly-l-histidine as a template to direct Au deposition. The resultant hybrid AuNSs are uniform and compact (typically 15-60 nm) but also preserve the optical properties and shell-type NIR response necessary for biomedical use. We also demonstrate these particles' innovative plasmonic applications in biosensing, multimodal imaging and controlled release. More importantly, the magnetic-plasmonic Fe3O4/Au core-shell NP enables a new biological imaging method-magnetomotive photoacoustic (mmPA) imaging, which suppresses the nonmagnetomotive background and therefore offers remarkable contrast enhancement and improved specificity compared with photoacoustic images using conventional NP contrast agents. The advantages of our AuNSs are obvious: they are monodisperse, small (<100 nm), highly integrated, and have tunable visible-NIR plasmonic responses. All of these properties are crucial for in vitro or in vivo biological/biomedical studies and many applications, especially for studies of single cells or molecules which require particle monodispersity and tight size control. The plasmonic fluorescent QD/Au and the magnetic plasmonic Fe3O4/Au core-shell NPs may also reveal new physical phenomena that may lead to useful applications, owing to their well-defined core-shell nanoarchitectures and underlying nanoscale physical interactions.

  7. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.

    PubMed

    Ali, Sajjad; Fu Liu, Tian; Lian, Zan; Li, Bo; Sheng Su, Dang

    2017-08-23

    The mechanism of CO oxidation by O 2 on a single Au atom supported on pristine, mono atom vacancy (m), di atom vacancy (di) and the Stone Wales defect (SW) on single walled carbon nanotube (SWCNT) surface is systematically investigated theoretically using density functional theory. We determine that single Au atoms can be trapped effectively by the defects on SWCNTs. The defects on SWCNTs can enhance both the binding strength and catalytic activity of the supported single Au atom. Fundamental aspects such as adsorption energy and charge transfer are elucidated to analyze the adsorption properties of CO and O 2 and co-adsorption of CO and O 2 molecules. It is found that CO binds stronger than O 2 on Au supported SWCNT. We clearly demonstrate that the defected SWCNT surface promotes electron transfer from the supported single Au atom to O 2 molecules. On the other hand, this effect is weaker for pristine SWCNTs. It is observed that the high density of spin-polarized states are localized in the region of the Fermi level due to the strong interactions between Au (5d orbital) and the adjacent carbon (2p orbital) atoms, which influence the catalytic performance. In addition, we elucidate both the Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms of CO oxidation by O 2 . For the LH pathway, the barriers of the rate-limiting step are calculated to be 0.02 eV and 0.05 eV for Au/m-SWCNT and Au/di-SWCNT, respectively. To regenerate the active sites, an ER-like reaction occurs to form a second CO 2 molecule. The ER pathway is observed on Au/m-SWCNT, Au/SW-SWCNT and Au/SWCNT in which the Au/m-SWCNT has a smaller barrier. The comparison with a previous study (Lu et al., J. Phys. Chem. C, 2009, 113, 20156-20160.) indicates that the curvature effect of SWCNTs is important for the catalytic property of the supported single Au. Overall, Au/m-SWCNT is identified as the most active catalyst for CO oxidation compared to pristine SWCNT, SW-SWCNT and di-SWCNT. Our findings give a clear description on the relationship between the defects in the support and the catalytic properties of Au and open a new avenue to develop carbon nanomaterial-based single atom catalysts for application in environmental and energy related fields.

  8. A further insight into the biosorption mechanism of Au(III) by infrared spectrometry

    PubMed Central

    2011-01-01

    Background The interactions of microbes with metal ions form an important basis for our study of biotechnological applications. Despite the recent progress in studying some properties of Au(III) adsorption and reduction by Bacillus megatherium D01 biomass, there is still a need for additional data on the molecular mechanisms of biosorbents responsible for their interactions with Au(III) to have a further insight and to make a better exposition. Results The biosorption mechanism of Au(III) onto the resting cell of Bacillus megatherium D01 biomass on a molecular level has been further studied here. The infrared (IR) spectroscopy on D01 biomass and that binding Au(III) demonstrates that the molecular recognition of and binding to Au(III) appear to occur mostly with oxygenous- and nitrogenous-active groups of polysaccharides and proteins in cell wall biopolymers, such as hydroxyl of saccharides, carboxylate anion of amino-acid residues (side-chains of polypeptide backbone), peptide bond (amide I and amide II bands), etc.; and that the active groups must serve as nucleation sites for Au(0) nuclei growth. A further investigation on the interactions of each of the soluble hydrolysates of D01, Bacillus licheniformis R08, Lactobacillus sp. strain A09 and waste Saccharomyces cerevisiae biomasses with Au(III) by IR spectrometry clearly reveals an essential biomacromolecule-characteristic that seems the binding of Au(III) to the oxygen of the peptide bond has caused a significant, molecular conformation-rearrangement in polypeptide backbones from β-pleated sheet to α-helices and/or β-turns of protein secondary structure; and that this changing appears to be accompanied by the occurrence, in the peptide bond, of much unbound -C=O and H-N- groups, being freed from the inter-molecular hydrogen-bonding of the β-pleated sheet and carried on the helical forms, as well as by the alternation in side chain steric positions of protein primary structure. This might be reasonably expected to result in higher-affinity interactions of peptide bond and side chains with Au(III). Conclusions The evidence suggests that the polypeptides appear to be activated by the intervention of Au(III) via the molecular reconformation and in turn react upon Au(III) actively and exert profound impacts on the course of Au(0) nucleation and crystal growth. PMID:22032692

  9. Atomic and electronic structures of Si(1 1 1)-\\left(\\sqrt{\\mathbf{3}}\\times\\sqrt{\\mathbf{3}}\\right)\\text{R}\\mathbf{3}{{\\mathbf{0}}^{\\circ}} -Au and (6 × 6)-Au surfaces

    NASA Astrophysics Data System (ADS)

    Patterson, C. H.

    2015-12-01

    Si(1 1 1)-Au surfaces with around one monolayer of Au exhibit many ordered structures and structures containing disordered domain walls. Hybrid density functional theory (DFT) calculations presented here reveal the origin of these complex structures and tendency to form domain walls. The conjugate honeycomb chain trimer (CHCT) structure of the \\sqrt{3} -Au phase contains Si atoms with non-bonding surface states which can bind Au atoms in pairs in interstices of the CHCT structure and make this surface metallic. Si adatoms adsorbed on the \\sqrt{3} -Au surface induce a gapped surface through interaction with the non-bonding states. Adsorption of extra Au atoms in interstitial sites of the \\sqrt{3} -Au surface is stabilized by interaction with the non-bonding orbitals and leads to higher coverage ordered structures including the ≤ft(6× 6\\right) -Au phase. Extra Au atoms bound in interstitial sites of the \\sqrt{3} -Au surface result in top layer Si atoms with an SiAu4 butterfly wing configuration. The structure of a ≤ft(6× 6\\right) -Au phase, whose in-plane top atomic layer positions were previously determined by an electron holography technique (Grozea et al 1998 Surf. Sci. 418 32), is calculated using total energy minimization. The Patterson function for this structure is calculated and is in good agreement with data from an in-plane x-ray diffraction study (Dornisch et al 1991 Phys. Rev. B 44 11221). Filled and empty state scanning tunneling microscopy (STM) images are calculated for domain walls and the ≤ft(6× 6\\right) -Au structure. The ≤ft(6× 6\\right) -Au phase is 2D chiral and this is evident in computed and actual STM images. ≤ft(6× 6\\right) -Au and domain wall structures contain the SiAu4 motif with a butterfly wing shape. Chemical bonding within the Si-Au top layers of the \\sqrt{3} -Au and ≤ft(6× 6\\right) -Au surfaces is analyzed and an explanation for the SiAu4 motif structure is given.

  10. Metal adsorption on monolayer blue phosphorene: A first principles study

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Son, Jicheol; Hong, Jisang

    2018-01-01

    We investigated the electronic structure, adsorption energies, magnetic properties, dipole moment and work function of metal adatoms (Mg, Cr, Mo, Pd, Pt, and Au) adsorption on a blue phosphorene monolayer. For Mg, Pt and Au metals, the most stable state was found in hollow site while for Cr, Mo and Pd metals we found an adsorption in valley site. We suggest that the Pd and Pt atoms prefer 2D growth mode while the Mg, Cr, Mo and Au atoms prefer 3D island growth mode on monolayer phosphorene. The electronic band structures and magnetic properties were dependent on the doping site and dopant materials. For instance, the semiconducting features were preserved in Mg, Pd, Pt, and Au doped systems. However, the Cr and Mo doped systems displayed half-metallic band structures. The total magnetic moment of 4.05, 2.0 and 0.77 μB /impurity atom were obtained in Cr, Mo and Au doped systems whereas the Mg, Pd and Pt doped systems remained nonmagnetic. We also investigated the magnetic interaction between two transition metal impurities. We observed ferromagnetic coupling between two transition metal impurities in Cr and Mo doped systems while the Au doped system displayed almost degenerated magnetic state. For Mg, Cr, and Mo adsorptions, we found relatively large values of dipole moments compared to those in the Pd, Pt and Au adsorptions. This resulted in a significant suppression of the work function in Mg, Cr and Mo adsorptions. Overall, adsorption can tune the physical and magnetic properties of phosphorene monolayer.

  11. Avoiding Thiol Compound Interference: A Nanoplatform Based on High-Fidelity Au-Se Bonds for Biological Applications.

    PubMed

    Hu, Bo; Kong, Fanpeng; Gao, Xiaonan; Jiang, Lulu; Li, Xiaofeng; Gao, Wen; Xu, Kehua; Tang, Bo

    2018-05-04

    Gold nanoparticles (Au NPs) assembled through Au-S covalent bonds have been widely used in biomolecule-sensing technologies. However, during the process, detection distortions caused by high levels of thiol compounds can still significantly influence the result and this problem has not really been solved. Based on the higher stability of Au-Se bonds compared to Au-S bonds, we prepared selenol-modified Au NPs as an Au-Se nanoplatform (NPF). Compared with the Au-S NPF, the Au-Se NPF exhibits excellent anti-interference properties in the presence of millimolar levels of glutathione (GSH). Such an Au-Se NPF that can effectively avoid detection distortions caused by high levels of thiols thus offers a new perspective in future nanomaterial design, as well as a novel platform with higher stability and selectivity for the in vivo application of chemical sensing and clinical therapies. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    NASA Astrophysics Data System (ADS)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  13. Site Preference of Ternary Alloying Additions to AuTi

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Noebe, Ronald D.

    2006-01-01

    Atomistic modeling of the site substitution behavior of several alloying additions, namely. Na, Mg, Al, Si. Sc, V, Cr, Mn. Fe, Co, Ni, Cu, Zn, Y, Zr. Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, and Pt in B2 TiAu is reported. The 30 elements can be grouped according to their absolute preference for a specific site, regardless of concentration, or preference for available sites in the deficient sublattice. Results of large scale simulations are also presented, distinguishing between additions that remain in solution from those that precipitate a second phase.

  14. A convenient method for synthesis of glyconanoparticles for colorimetric measuring carbohydrate-protein interactions

    PubMed Central

    Chuang, Yen-Jun; Zhou, Xichun; Pan, Zhengwei; Turchi, Craig

    2009-01-01

    Carbohydrate functionalized nanoparticles, i.e., the glyconanoparticles, have wide application ranging from studies of carbohydrate-protein interactions, in vivo cell imaging, biolabeling, etc. Currently reported methods for preparation of glyconanoaprticles require multi-step modifications of carbohydrates moieties to conjugate to nanoparticle surface. However, the required synthetic manipulations are difficult and time consuming. We report herewith a simple and versatile method for preparing glyconanoparticles. This method is based on the utilization of clean and convenient microwave irradiation energy for one-step, site-specific conjugation of unmodified carbohydrates onto hydrazide-functionalized Au nanoparticles. A colorimetric assay that utilizes the ensemble of gold glyconanoparticles and Concanavalin A (ConA) was also presented. This feasible assay system was developed to analyze multivalent interactions and to determine the dissociation constant (Kd) for five kind of Au glyconanoparticles with lectin. Surface plasmon changes of the Au glyconanparticles as a function of lectin-carbohydrate interactions were measured and the dissociation constants were determined based on non-linear curve fitting. The strength of the interaction of carbohydrates with ConA was found to be as follows: Maltose > Mannose > Glucose > Lactose > MAN5. PMID:19698698

  15. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens.

    PubMed

    Wang, Chungang; Irudayaraj, Joseph

    2010-01-01

    Multifunctional nanoparticles possessing magnetization and near-infrared (NIR) absorption have warranted interest due to their significant applications in magnetic resonance imaging, diagnosis, bioseparation, target delivery, and NIR photothermal ablation. Herein, the site-selective assembly of magnetic nanoparticles onto the ends or ends and sides of gold nanorods with different aspect ratios (ARs) to create multifunctional nanorods decorated with varying numbers of magnetic particles is described for the first time. The resulting hybrid nanoparticles are designated as Fe(3)O(4)-Au(rod)-Fe(3)O(4) nanodumbbells and Fe(3)O(4)-Au(rod) necklacelike constructs with tunable optical and magnetic properties, respectively. These hybrid nanomaterials can be used for multiplex detection and separation because of their tunable magnetic and plasmonic functionality. More specifically, Fe(3)O(4)-Au(rod) necklacelike probes of different ARs are utilized for simultaneous optical detection based on their plasmon properties, magnetic separation, and photokilling of multiple pathogens from a single sample at one time. The combined functionalities of the synthesized probes will open up many exciting opportunities in dual imaging for targeted delivery and photothermal therapy.

  16. In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study.

    PubMed

    Bukhtiyarov, A V; Prosvirin, I P; Saraev, A A; Klyushin, A Yu; Knop-Gericke, A; Bukhtiyarov, V I

    2018-06-07

    Model bimetallic Pd-Au/HOPG catalysts have been investigated in the CO oxidation reaction using a combination of NAP XPS and MS techniques. The samples have shown catalytic activity at temperatures above 150 °C. The redistribution of Au and Pd on the surface depending on the reaction conditions has been demonstrated using NAP XPS. The Pd enrichment of the bimetallic particles' surface under reaction gas mixture has been shown. Apparently, CO adsorption induces Pd segregation on the surface. Heating the sample under reaction conditions above 150 °C decomposes the Pd-CO state due to CO desorption and reaction and simultaneous Pd-Au alloy formation on the surface takes place. Cooling back down to RT results in reversible Pd segregation due to Pd-CO formation and the sample becomes inactive. It has been shown that in situ studies are necessary for investigation of the active sites in Pd-Au bimetallic systems.

  17. On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites.

    PubMed

    Corma, Avelino; Boronat, Mercedes; González, Silvia; Illas, Francesc

    2007-08-28

    The study of adsorption and dissociation of molecular hydrogen on single crystal Au(111) and Au(001) surfaces, monoatomic rows in an extended line defect and different Au nanoparticles by means of DF calculations allows us to firmly conclude that the necessary and sufficient condition for H2 dissociation is the existence of low coordinated Au atoms, regardless if they are in nanoparticles or at extended line defects.

  18. Ligand-protected gold clusters: the structure, synthesis and applications

    NASA Astrophysics Data System (ADS)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  19. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.

    PubMed

    McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2015-02-11

    Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.

  20. Controlled Vectorial Electron Transfer and Photoelectrochemical Applications of Layered Relay/Photosensitizer-Imprinted Au Nanoparticle Architectures on Electrodes.

    PubMed

    Metzger, Tzuriel S; Tel-Vered, Ran; Willner, Itamar

    2016-03-23

    Two configurations of molecularly imprinted bis-aniline-bridged Au nanoparticles (NPs) for the specific binding of the electron acceptor N,N'-dimethyl-4,4'-bipyridinium (MV(2+) ) and for the photosensitizer Zn(II)-protoporphyrin IX (Zn(II)-PP-IX) are assembled on electrodes, and the photoelectrochemical features of the two configurations are discussed. Configuration I includes the MV(2+) -imprinted Au NPs matrix as a base layer, on which the Zn(II)-PP-IX-imprinted Au NPs layer is deposited, while configuration II consists of a bilayer corresponding to the reversed imprinting order. Irradiation of the two electrodes in the presence of a benzoquinone/benzohydroquinone redox probe yields photocurrents of unique features: (i) Whereas configuration I yields an anodic photocurrent, the photocurrent generated by configuration II is cathodic. (ii) The photocurrents obtained upon irradiation of the imprinted electrodes are substantially higher as compared to the nonimprinted surfaces. The high photocurrents generated by the imprinted Au NPs-modified electrodes are attributed to the effective loading of the imprinted matrices with the MV(2+) and Zn(II)-PP-IX units and to the effective charge separation proceeding in the systems. The directional anodic/cathodic photocurrents are rationalized in terms of vectorial electron transfer processes dictated by the imprinting order and by the redox potentials of the photosensitizer/electron acceptor units associated with the imprinted sites in the two configurations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Controlling the Local Electronic Properties of Si(553)-Au through Hydrogen Doping

    NASA Astrophysics Data System (ADS)

    Hogan, C.; Speiser, E.; Chandola, S.; Suchkova, S.; Aulbach, J.; Schäfer, J.; Meyer, S.; Claessen, R.; Esser, N.

    2018-04-01

    We propose a quantitative and reversible method for tuning the charge localization of Au-stabilized stepped Si surfaces by site-specific hydrogenation. This is demonstrated for Si(553)-Au as a model system by combining density functional theory simulations and reflectance anisotropy spectroscopy experiments. We find that controlled H passivation is a two-step process: step-edge adsorption drives excess charge into the conducting metal chain "reservoir" and renders it insulating, while surplus H recovers metallic behavior. Our approach illustrates a route towards microscopic manipulation of the local surface charge distribution and establishes a reversible switch of site-specific chemical reactivity and magnetic properties on vicinal surfaces.

  2. Attachment dynamics of Photosystem I on nano-tailored surfaces for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Mukherjee, Dibyendu; Bruce, Barry D.; Khomami, Bamin

    2010-03-01

    Photosystem I (PSI), a biological photodiode, is a supra-molecular protein complex that charge separates upon exposure to light. Effective use of photo-electrochemical activities of PSI for hybrid photovoltaic (PV) device fabrications requires optimal encapsulation of these proteins onto organic/ inorganic substrates. Our results indicate that various experimental parameters alter the surface attachment dynamics of PSI deposited from colloidal aqueous buffer suspensions onto OH-terminated alkanethiolate/Au SAM substrates, thereby resulting in complex structural arrangements which affect the electron transfer and capture pathway of PSI. We present surface topographical, specific adsorption and polarization fluorescence characterizations of PSI/Au SAM substrates to elucidate the protein-surface interaction kinetics as well as the directional attachment dynamics of PSI. Our final goal is to enable site-specific homogeneous attachment of directionally aligned PSI onto chemically tailored nano-patterned substrates.

  3. Relativistic Effects and Gold Site Distributions: Synthesis, Structure, and Bonding in a Polar Intermetallic Na6Cd16Au7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Saroj L.; Corbett, John D.

    Na{sub 6}Cd{sub 16}Au{sub 7} has been synthesized via typical high-temperature reactions, and its structure refined by single crystal X-ray diffraction as cubic, Fm{bar 3}m, a = 13.589(1) {angstrom}, Z = 4. The structure consists of Cd{sub 8} tetrahedral star (TS) building blocks that are face capped by six shared gold (Au2) vertexes and further diagonally bridged via Au1 to generate an orthogonal, three-dimensional framework [Cd{sub 8}(Au2){sub 6/2}(Au1){sub 4/8}], an ordered ternary derivative of Mn{sub 6}Th{sub 23}. Linear muffin-tin-orbital (LMTO)-atomic sphere approximation (ASA) electronic structure calculations indicate that Na{sub 6}Cd{sub 16}Au{sub 7} is metallic and that {approx}76% of the total crystalmore » orbital Hamilton populations (-ICOHP) originate from polar Cd-Au bonding with 18% more from fewer Cd-Cd contacts. Na{sub 6}Cd{sub 16}Au{sub 7} (45 valence electron count (vec)) is isotypic with the older electron-richer Mg{sub 6}Cu{sub 16}Si{sub 7} (56 vec) in which the atom types are switched and bonding characteristics among the network elements are altered considerably (Si for Au, Cu for Cd, Mg for Na). The earlier and more electronegative element Au now occupies the Si site, in accord with the larger relativistic bonding contributions from polar Cd-Au versus Cu-Si bonds with the neighboring Cd in the former Cu positions. Substantial electronic differences in partial densities-of-states (PDOS) and COHP data for all atoms emphasize these. Strong contributions of nearby Au 5d{sup 10} to bonding states without altering the formal vec are the likely origin of these effects.« less

  4. DFT study on stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters

    NASA Astrophysics Data System (ADS)

    Liu, Xuejing; Tian, Dongxu; Meng, Changgong

    2013-03-01

    The stability and H2 adsorption activity of bimetallic Au79-nPdn (n = 1-55) clusters were studied by density functional theory with GGA-PW91 functional. The stability order for four Pd substitution types is face > mid-edge > corner > edge, and the stability is improved with increasing Pd content. In contrast with the stability order, H2 adsorption activity is corner ≈ edge > mid-edge > face. The Au36Pd43 (3) with Au:Pd ≈ 1:1 ratio and twenty-four Pd substitutions at (1 1 1) facets and nineteen Pd substitutions at subshell sites shows high stability and H2 non-activated dissociation activity. The partial density of d-states and d band center revealed that the electronic properties are closely associated with the geometric characteristic and adsorption activity. Correlating the d band center ɛd and the adsorption energies, the ɛd order agrees with the adsorption activity that the Pd substitution at edge and corner sites are more active than at face and mid-edge sites.

  5. XANES and EXAFS study of Au-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1990-01-01

    The near-edge structure (XANES) of the Au L3 and Cu K edges of YBa2Au(0.3)Cu(2.7)O(7-delta) was studied. X ray diffraction suggests that Au goes on the Cu(1) site and XANES shows that this has little effect on the oxidation state of the remaining copper. The gold L3 edge develops a white line feature whose position lies between that of trivalent gold oxide (Au2O3) and monovalent potassium gold cyanide (KAu(CN)2) and whose intensity relative to the edge step is smaller than in the two reference compounds. The L3 EXAFS for Au in the superconductor resembles that of Au2O3. However, differences in the envelope of the Fourier filtered component for the first shell suggest that the local structure of the Au in the superconductor is not equivalent to Au2O3.

  6. Higher coordinate gold(I) complexes with the weak Lewis base tri(4-fluorophenyl) phosphine. Synthesis, structural, luminescence, and DFT studies

    NASA Astrophysics Data System (ADS)

    Agbeworvi, George; Assefa, Zerihun; Sykora, Richard E.; Taylor, Jared; Crawford, Carlos

    2016-03-01

    The structures and spectroscopic properties of two high coordinate gold(I) phosphine complexes with the TFFPP=tri(4-fluorophenyl)phosphine ligand are reported. Synthesis in a 1:3 metal to ligand ratio provided the compound [AuCl(TFFPP)3] (2) that crystallize in the P 1 bar space group, where the asymmetric unit consists of three independent molecules. In all three sites, two sets of bond angles display distinctly different ranges. The three P-Au-P angles have average values of 117.92°, 117.57°, and 114.78° for sites A, B, and C, with the corresponding P-Au-Cl angles of 98.31°, 99.05°, and 103.38°, respectively. The chloride ion coordinates as the fourth ligand, at the corresponding Au-Cl distance of 2.7337, 2.6825, and 2.6951 Å for the three sites. This distance is longer by 0.40-0.45 Å than the Au-Cl distance found in the mono TFFPP complex 1 (2.285 Å) indicating a weakening of the Au-Cl interaction as the coordination number increases. In compound 3, [Au(TFFPP)3]Cl·½CH2Cl2·H2O, the structure consists of three phosphine ligands bound to the gold(I) atom, but the Cl- exists as uncoordinated counter anion. The structural differences observed in the two complexes are attributable to crystal-packing effects caused by the introduction of H-bonding as well as enhanced intra and inter-molecular π-interaction in 3. The photoluminescence of the complexes compared with that of the ligand show ligand centered emission perturbed by the metal coordination. Theoretical DFT studies conducted on these complexes supports assignments of the electronic transitions observed in these systems.

  7. Site effects in the city of Port au Prince (Haiti) : A combined use of spectral ratio methods and empirical Greens functions simulations

    NASA Astrophysics Data System (ADS)

    St Fleur, S.; Courboulex, F.; Bertrand, E.; Deschamps, A.; Mercier de Lepinay, B.; Prepetit, C.; Hough, S. E.

    2013-12-01

    Haiti was struck in January 2010 by a strong Mw=7 earthquake that caused extensive damages in the city of Port au Prince. At this time, very few seismological stations were working in Haiti and the only one that recorded the mainshock in Port au Prince was saturated. Thus, there were no direct measurements of the ground motion produced by this large event. Quickly after the 2010 event, several permanent accelerometric stations were installed by the USGS (U.S. Geological Survey) and the BME (Bureau des Mines et de l'Energie d'Haiti) as well as broad-band stations by the GSC (Geological Survey of Canada). Since their installation, these stations recorded several tens of aftershocks. The aim of our work is to take advantage of this new dataset to better understand the ground motions generated by earthquakes in the city of Port au Prince. We have used first spectral ratio methods to obtain the transfer function of each station, and then an empirical Green's Function simulation approach to combine source and site effects. In order to estimate site effects under each station, we have used classical spectral ratio methods. In a first step, the H/V (Horizontal/Vertical) method was used to select a reference station (in Port au Prince) that should be ideally a station without any site effects. We selected two stations, HCEA and PAPH, as reference stations, as even if the shape of their H/V curves is not always equal to 1 in the entire frequency band. In a second step, we computed the transfer function at each station by a ratio between the spectra of each earthquake at each station and the spectra obtained at the reference station (we use successively HCEA, PAPH and a combination of both). The results were kept only for the frequencies where the signal to noise was larger than 3. In the frequency range 1 to 20 Hz, we found site/reference ratios that reach values from 3 to 8 and a large variability from one station to another one. In the low frequency band 0.5 to 1 Hz a peak is present at almost all the stations in Port au Prince, which may indicate an amplification due to a deep interface. However, these values have a large variability from one earthquake recording to the other. This may indicate that the observed amplification depends not only on the effect of local site, but also on the source or the propagation direction. We then used the recordings of two earthquakes (Mw 4.3 and Mw 4.4) that occurred on the Leogane fault as Empirical Green's Functions (EGF) in order to simulate the ground motions generated by a virtual Mw 6.8 earthquake. For this simulation a stochastic EGF summation method was used. The results obtained using the two events are surprisingly very different. Using the first EGF, nearly the same ground motion was obtained at each station in Port-au-Prince, whereas with the second EGF, the results highlight large differences. Finally, the estimated site response (site/reference) was used in combination with a direct estimation of the rock site motion (HCEA simulation) in order to reproduce the ground motions which were compared to the EGF simulation method. The comparison confirms the large variability in the modeled ground shaking which can be due to both site and source effects and the low frequency amplification on the plain of Port-au-Prince.

  8. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; ...

    2015-10-19

    Four complex intermetallic compounds BaAu 6±xGa 6±y (x = 1, y = 0.9) (I), BaAu 6±xAl 6±y (x = 0.9, y = 0.6) (II), EuAu 6.2Ga 5.8 (III), and EuAu 6.1Al 5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn 13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce 2Ni 17Si 9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupationmore » by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu 6Tr 6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu 6Tr 6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu 6.2Ga 5.8 (III) and EuAu 6.1Al 5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T C = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  9. Applications of gold nanoparticles in virus detection

    PubMed Central

    Draz, Mohamed Shehata; Shafiee, Hadi

    2018-01-01

    Viruses are the smallest known microbes, yet they cause the most significant losses in human health. Most of the time, the best-known cure for viruses is the innate immunological defense system of the host; otherwise, the initial prevention of viral infection is the only alternative. Therefore, diagnosis is the primary strategy toward the overarching goal of virus control and elimination. The introduction of a new class of nanoscale materials with multiple unique properties and functions has sparked a series of breakthrough applications. Gold nanoparticles (AuNPs) are widely reported to guide an impressive resurgence in biomedical and diagnostic applications. Here, we review the applications of AuNPs in virus testing and detection. The developed AuNP-based detection techniques are reported for various groups of clinically relevant viruses with a special focus on the applied types of bio-AuNP hybrid structures, virus detection targets, and assay modalities and formats. We pay particular attention to highlighting the functional role and activity of each core Au nanostructure and the resultant detection improvements in terms of sensitivity, detection range, and time. In addition, we provide a general summary of the contributions of AuNPs to the mainstream methods of virus detection, technical measures, and recommendations required in guidance toward commercial in-field applications. PMID:29556369

  10. Complete Au@ZnO core-shell nanoparticles with enhanced plasmonic absorption enabling significantly improved photocatalysis

    NASA Astrophysics Data System (ADS)

    Sun, Yiqiang; Sun, Yugang; Zhang, Tao; Chen, Guozhu; Zhang, Fengshou; Liu, Dilong; Cai, Weiping; Li, Yue; Yang, Xianfeng; Li, Cuncheng

    2016-05-01

    Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants.Nanostructured ZnO exhibits high chemical stability and unique optical properties, representing a promising candidate among photocatalysts in the field of environmental remediation and solar energy conversion. However, ZnO only absorbs the UV light, which accounts for less than 5% of total solar irradiation, significantly limiting its applications. In this article, we report a facile and efficient approach to overcome the poor wettability between ZnO and Au by carefully modulating the surface charge density on Au nanoparticles (NPs), enabling rapid synthesis of Au@ZnO core-shell NPs at room temperature. The resulting Au@ZnO core-shell NPs exhibit a significantly enhanced plasmonic absorption in the visible range due to the Au NP cores. They also show a significantly improved photocatalytic performance in comparison with their single-component counterparts, i.e., the Au NPs and ZnO NPs. Moreover, the high catalytic activity of the as-synthesized Au@ZnO core-shell NPs can be maintained even after many cycles of photocatalytic reaction. Our results shed light on the fact that the Au@ZnO core-shell NPs represent a promising class of candidates for applications in plasmonics, surface-enhanced spectroscopy, light harvest devices, solar energy conversion, and degradation of organic pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00933f

  11. Layered Metal Nanoparticle Structures on Electrodes for Sensing, Switchable Controlled Uptake/Release, and Photo-electrochemical Applications.

    PubMed

    Tel-Vered, Ran; Kahn, Jason S; Willner, Itamar

    2016-01-06

    Layered metal nanoparticle (NP) assemblies provide highly porous and conductive composites of unique electrical and optical (plasmonic) properties. Two methods to construct layered metal NP matrices are described, and these include the layer-by-layer deposition of NPs, or the electropolymerization of monolayer-functionalized NPs, specifically thioaniline-modified metal NPs. The layered NP composites are used as sensing matrices through the use of electrochemistry or surface plasmon resonance (SPR) as transduction signals. The crosslinking of the metal NP composites with molecular receptors, or the imprinting of molecular recognition sites into the electropolymerized NP matrices lead to selective and chiroselective sensing interfaces. Furthermore, the electrosynthesis of redox-active, imprinted, bis-aniline bridged Au NP composites yields electrochemically triggered "sponges" for the switchable uptake and release of electron-acceptor substrates, and results in conductive surfaces of electrochemically controlled wettability. Also, photosensitizer-relay-crosslinked Au NP composites, or electrochemically polymerized layered semiconductor quantum dot/metal NP matrices on electrodes, are demonstrated as functional nanostructures for photoelectrochemical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Bottom-Up Engineered Broadband Optical Nanoabsorber for Radiometry and Energy Harnessing Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.; Megerian, Krikor G.; Eastwood, Michael; Green, Robert O.; Bandaru, Prabhakar R.

    2013-01-01

    Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs), synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to Au-black from wavelength lamba approximately 350 nm - 2.5 micron. A bi-metallic Co/Ti layer was shown to catalyze a high site density of MWCNTs on metallic substrates and the optical properties of the absorbers were engineered by controlling the bottom-up synthesis conditions using dc plasma-enhanced chemical vapor deposition (PECVD). Reflectance measurements on the MWCNT absorbers after heating them in air to 400deg showed negligible changes in reflectance which was still low, approximately 0.022 % at lamba approximately 2 micron. In contrast, the percolated structure of the reference Au-black samples collapsed completely after heating, causing the optical response to degrade at temperatures as low as 200deg. The high optical absorption efficiency of the MWCNT absorbers, synthesized on metallic substrates, over a broad spectral range, coupled with their thermal ruggedness, suggests they have promise in solar energy harnessing applications, as well as thermal detectors for radiometry.

  13. Stabilization of AuNPs by monofunctional triazole linked to ferrocene, ferricenium, or coumarin and applications to synthesis, sensing, and catalysis.

    PubMed

    Li, Na; Zhao, Pengxiang; Igartua, María E; Rapakousiou, Amalia; Salmon, Lionel; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2014-11-03

    Monofunctional triazoles linked to ferrocene, ferricenium, or coumarin (Cou), easily synthesized by copper-catalyzed azide alkyne (CuAAC) "click" reactions between the corresponding functional azides and (trimethylsilyl)acetylene followed by silyl group deprotection, provide a variety of convenient neutral ligands for the stabilization of functional gold nanoparticles (AuNPs) in polar organic solvents. These triazole (trz)-AuNPs are very useful toward a variety of applications to synthesis, sensing, and catalysis. Both ferrocenyl (Fc) and isostructural ferricenium linked triazoles give rise to AuNP stabilization, although by different synthetic routes. Indeed, the first direct synthesis and stabilization of AuNPs by ferricenium are obtained by the reduction of HAuCl4 upon reaction with a ferrocene derivative, AuNP stabilization resulting from a synergy between electrostatic and coordination effects. The ferricenium/ferrocene trz-AuNP redox couple is fully reversible, as shown by cyclic voltammograms that were recorded with both redox forms. These trz-AuNPs are stable for weeks in various polar solvents, but at the same time, the advantage of trz-AuNPs is the easy substitution of neutral trz ligands by thiols and other ligands, giving rise to applications. Indeed, this ligand substitution of trz at the AuNP surface yields a stable Fc-terminated nanogold-cored dendrimer upon reaction with a Fc-terminated thiol dendron, substitution of Cou-linked trz with cysteine, homocysteine, and glutathione provides remarkably efficient biothiol sensing, and a ferricenium-linked trz-AuNP catalyst is effective for NaBH4 reduction of 4-nitrophenol to 4-aminophenol. In this catalytic example, the additional electrostatic AuNP stabilization modulates the reaction rate and induction time.

  14. Catalytic Conversion of Short-Chain Alcohols on Atomically Dispersed Au and Pd Supported on Nanoscale Metal Oxides

    NASA Astrophysics Data System (ADS)

    Wang, Chongyang

    With the development of technologies for cellulosic biomass conversion to fuels and chemicals, bio-alcohols are among the main alternative feedstocks to fossil fuels. The research pursued in my thesis was the investigation of gold and palladium as catalysts for the application of short aliphatic alcohols to hydrogen generation and value-added chemicals production. Specifically, selective methanol steam reforming and non-oxidative ethanol dehydrogenation to hydrogen and acetaldehyde were investigated in this thesis work. A major aim of the thesis was to develop atomically efficient catalysts with tuned surface chemistry for the desired reactions, using suitable synthesis methods. Methanol steam reforming (SRM) for hydrogen production has recently been investigated on gold catalysts to overcome the drawbacks of copper catalysts (deactivation, pyrophoricity). Previous work at Tufts University has shown that both CeO2 and ZnO are suitable supports for gold. In this thesis, nanoscale composite oxides ZnZrOx were prepared by a carbon hard-template method, which resulted in homogeneous distribution of Zn species in the matrix of ZrO2. Tunable surface chemistry of ZnZrO x was demonstrated by varying the Zn/Zr ratio to suppress the strong Lewis acidity of ZrO2, which leads to undesired production of CO through methanol decomposition. With atomic dispersion of gold, Au/ZnZrO x catalyzes the SRM reaction exclusively via the methanol self-coupling pathway up to 375°C. The activity of Au/ZnZrOx catalysts was compared to Au/TiO2, which is another catalyst system demonstrating atomic dispersion of gold. Similarity in the apparent activation energy of SRM on all the supported gold catalysts studied in this thesis and in the literature further confirms the same single-site Au-Ox-MO centers as active sites for SRM with indirect effects of the supports exploited. With this fundamental understanding of gold-catalyzed C1 alcohol reforming, the Au/ZnZrOx catalyst was evaluated for the dehydrogenation of ethanol. Bare ZnZrOx activate ethanol conversion in the range of 280-300°C and produce undesired ethylene as product of ethanol dehydration, whereas, addition of small amount of gold (<1wt.%) was found to significantly change the product distribution in the low-temperature range (200°C-350°C). As gold passivates the strong Bronsted acid sites of ZrO2 and selectively facilitates the dehydrogenation of ethanol at low-temperature, a wide temperature range was found between the production of acetaldehyde (dehydrogenation products) and ethylene (dehydration product), which can be harnessed for the industrial application. Interestingly, the steam reforming of ethanol did not take place in the low-temperature region, thus the selectivity to acetaldehyde and hydrogen was 100% even in the presence of water. In addition to gold, palladium was also studied in this thesis work on the ZnZrOx composite oxides, and its activity and selectivity were compared to Au/ZnZrOx. Monometallic Pd catalyzes the decomposition of methanol and ethanol, resulting in different product distribution for C 1-C2 alcohol reactions. With ZnZrOx employed as the catalyst support in this thesis work, the finely dispersed ZnO species in ZrO2 were found to alloy with the supported palladium under reduction treatment. Alloying with Zn tunes the chemistry of Pd to catalyze the SRM reaction through the methanol coupling mechanism, shutting off the undesired methanol decomposition pathway. A preliminary study of the Pd/ZnZrO x system for ethanol dehydrogenation also demonstrated the modification of Pd when in the PdZn alloy form. Different from the monometallic Pd catalyst, which primarily catalyzes the C-C bond scission of ethanol, high selectivity to ethanol dehydrogenation products was found on PdZn, over the temperature range of 200-400°C. Formation of the PdZn alloy broadens the application of Pd and potentially other Group VIII metals for selective alcohol conversion reactions. In summary, this thesis work has investigated two noble metals Au and Pd from Group IB and Group VIII, respectively, for methanol and ethanol alcohol reforming reactions employing a novel ZnZrOx composite oxide as a platform catalyst support. Comprehensive study of Au catalyst has deepened our understanding of atomically dispersed Au anchored on various supports through oxygen bonds as the active sites for alcohol reforming reactions, and showed the support effect to be indirect, serving as the carrier and stabilizer of the gold species. For Pd, the Zn species of the composite oxide is necessary to modify the Pd catalyst and the PdZn alloy gives it the desired Au-like properties. Full characterization of the catalysts used here by ICP, XPS, XRD, FTIR and STEM imaging was conducted throughout the thesis to identify the stable species and correlate the catalyst performance with its composition and morphology. Surface acidity titration by isopropanol temperature-programmed desorption/mass spectrometry (IPA-TPD/MS) and pyridine-IR adsorption/desorption was conducted in parallel to temperature-programmed surface reaction (TPSR) studies and products from isothermal steady-state reactions were monitored online by mass spectrometry.

  15. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads

    PubMed Central

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-01-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561

  16. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using X-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  17. Near-edge study of gold-substituted YBa2Cu3O(7-delta)

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Hepp, Aloysius F.

    1991-01-01

    The valence of Cu and Au in YBa2Au0.3Cu2.7O7-delta was investigated using x-ray absorption near edge structure (XANES). X-ray and neutron diffraction studies indicate that Au goes on the Cu(1) site and Cu K-edge XANES shows that this has little effect on the oxidation state of the remaining copper. The Au L3 edge develops a white line feature whose position lies between that of trivalent gold oxide and monovalent potassium gold cyanide, and whose height relative to the edge step is smaller than in the two reference compounds. The appearance of the Au L3 edge suggests that fewer Au 3d states are involved in forming the Au-O bond in YBa2Au0.3Cu2.7O7-delta than in trivalent gold oxide.

  18. First principles and metadynamics study of the spin-reorientation transition in Fe/Au(001) films

    NASA Astrophysics Data System (ADS)

    Nagyfalusi, B.; Udvardi, L.; Szunyogh, L.

    2017-10-01

    Based on first principles calculations, we investigate the magnetic anisotropy and spin reorientation transition (SRT) for Fe n /Au(001) (n=2,3) films. The SRT occurs at three atomic layer of Fe in agreement with experiments due to competing on-site and two-site anisotropy. We also study the temperature dependence of the magnetic anisotropy energy (MAE) by means of metadynamics Monte Carlo simulations.

  19. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al{sub 2}Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped (211) surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir–Hinshelwood mechanism with themore » activation energy of 37 kJ/mol or via the CO–OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.« less

  20. Evaluating differences in the active-site electronics of supported Au nanoparticle catalysts using Hammett and DFT studies

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Tibbitts, Luke; Newell, Jaclyn; Panthi, Basu; Mukhopadhyay, Ahana; Rioux, Robert M.; Pursell, Christopher J.; Janik, Michael; Chandler, Bert D.

    2018-03-01

    Supported metal catalysts, which are composed of metal nanoparticles dispersed on metal oxides or other high-surface-area materials, are ubiquitous in industrially catalysed reactions. Identifying and characterizing the catalytic active sites on these materials still remains a substantial challenge, even though it is required to guide rational design of practical heterogeneous catalysts. Metal-support interactions have an enormous impact on the chemistry of the catalytic active site and can determine the optimum support for a reaction; however, few direct probes of these interactions are available. Here we show how benzyl alcohol oxidation Hammett studies can be used to characterize differences in the catalytic activity of Au nanoparticles hosted on various metal-oxide supports. We combine reactivity analysis with density functional theory calculations to demonstrate that the slope of experimental Hammett plots is affected by electron donation from the underlying oxide support to the Au particles.

  1. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate

    PubMed Central

    Suvarna, Saritha; Das, Ujjal; KC, Sunil; Mishra, Snehasis; Sudarshan, Mathummal; Saha, Krishna Das; Dey, Sanjit; Chakraborty, Anindita; Narayana, Y.

    2017-01-01

    Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application. PMID:28582426

  2. The Vital Function of Fe3O4@Au nanocomposites for Hydrolase Biosensor Design and Its Application in Detection of Methyl Parathion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yuting; Zhang, Weiying; Lin, Yuehe

    A nanocomposite of gold nanoparticles (AuNPs) decorating a magnetic Fe3O4 core was synthesized using cysteamine (SH–NH2) as linker, and characterized by TEM, XPS, UV and electrochemistry. Then a hydrolase biosensor, based on self-assembly of methyl parathion hydrolase (MPH) on the Fe3O4@Au nanocomposite, was developed for sensitive and selective detection of the organophosphorus pesticide (OP) methyl parathion. The magnetic nanocomposite provides an easy way to construct the enzyme biosensor by simply exerting an external magnetic field, and also provides a simple way to renew the electrode surface by removing the magnet. Unlike inhibition-based enzyme biosensors, the hydrolase is not poisoned bymore » OPs and thus is reusable for continuous measurement. AuNPs not only provide a large surface area, high loading efficiency and fast electron transfer, but also stabilize the enzyme through electrostatic interactions. The MPH biosensor shows rapid response and high selectivity for detection of methyl parathion, with a linear range from 0.5 to 1000 ng/mL and a detection limit of 0.1 ng/mL. It also shows acceptable reproducibility and stability. The simplicity and ease of operation of the proposed method has great potential for on-site detection of P–S containing pesticides and provides a promising strategy to construct a robust biosensor.« less

  3. An ultrasensitive luminol cathodic electrochemiluminescence immunosensor based on glucose oxidase and nanocomposites: graphene-carbon nanotubes and gold-platinum alloy.

    PubMed

    Jiang, Xinya; Chai, Yaqin; Yuan, Ruo; Cao, Yaling; Chen, Yingfeng; Wang, Haijun; Gan, Xianxue

    2013-06-14

    In the present study, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor based on luminol cathodic ECL was fabricated by using Au nanoparticles and Pt nanoparticles (nano-AuPt) electrodeposited on graphene-carbon nanotubes nanocomposite as platform for the detection of carcinoembryonic antigen (CEA). For this introduced immunosensor, graphene (GR) and single wall carbon nanotubes (CNTs) dispersed in chitosan (Chi-GR-CNTs) were firstly decorated on the bare gold electrode (GE) surface. Then nano-AuPt were electrodeposited (DpAu-Pt) on the Chi-GR-CNTs modified electrode. Subsequently, glucose oxidase (GOD) was employed to block the non-specific sites of electrode surface. When glucose was present in the working buffer solution, GOD immediately catalyzed the oxidation of glucose to in situ generate hydrogen peroxide (H2O2), which could subsequently promote the oxidation of luminol with an amplified cathodic ECL signal. The proposed immunosensor was performed at low potential (-0.1 to 0.4V) and low concentration of luminol. The CEA was determined in the range of 0.1 pg mL(-1) to 40 ng mL(-1) with a limit of detection down to 0.03 pg mL(-1) (SN(-1)=3). Moreover, with excellent sensitivity, selectivity, stability and simplicity, the as-proposed luminol-based ECL immunosensor provided great potential in clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles.

    PubMed

    Hashimoto, Masanori; Kawai, Koji; Kawakami, Hayato; Imazato, Satoshi

    2016-01-01

    Matrix metalloprotease (MMP) inhibitors improve the longevity of dental adhesives/tooth bonds; however, biocompatibility is required for their clinical use. This study evaluated the inhibition of MMPs and toxicity of two gold (AuNPs) and platinum nanoparticles (PtNPs) as possible compounds for use in dental adhesives. The MMP assay for studying the interaction of MMPs and nanoparticles (NPs) was evaluated by an MMP assay kit and gelatin zymography. Cultured L929 fibroblast cells or RAW264 macrophages were exposed to NPs. The cellular responses to NPs were examined using cytotoxic (cell viability) and genotoxic assays (comet assay), and transmission electron microscopic (TEM) analysis. The mechanical properties (elastic modulus) of the experimental resin loaded with NPs were examined using thermomechanical analysis. All NPs inhibited MMP activity at relatively low concentrations. The NPs inhibit MMPs by chelating with the Zn(2+) bound in the active sites of MMPs. No cytotoxic and genotoxic effects were found in AuNPs, whereas the PtNPs possessed both adverse effects. In TEM analysis, the NPs were localized mainly in lysosomes without penetration into nuclei. The mechanical properties of the resins increased when AuNPs were added in resins, but not by PtNPs. AuNPs are attractive candidates to inhibit MMPs and improve the mechanical properties of resins without cytotoxic/genotoxic effects to cells, and therefore should be suitable for applications in adhesive resin systems. © 2015 Wiley Periodicals, Inc.

  5. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates: Effect of Aptamer Length on Response

    DTIC Science & Technology

    2012-11-01

    random bases to its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA...its 5’ end and the response of these Apt-AuNPs was evaluated. These extra bases were designed to avoid interactions with the RBA binding site. We...produces a purple-blue color.4.5 AuNP-based sensing strategies are designed by promoting a change in the AuNPs stability and aggregation state as a result

  6. Propylene epoxidation over biogenic Au/TS-1 catalysts by Cinnamomum camphora extract in the presence of H2 and O2

    NASA Astrophysics Data System (ADS)

    Du, Mingming; Huang, Jiale; Sun, Daohua; Li, Qingbiao

    2016-03-01

    The Au/TS-1 catalysts with different Au nanoparticles (NPs) sizes ranging from 3.1 to 8.4 nm but the same Au loading of 0.5 wt% were prepared by Cinnamomum camphora (CC) extract, and were used for propylene epoxidation. The results showed that the interaction between Au and TS-1 support surface is important for propylene epoxidation and much smaller Au NPs (<3 nm) are the dominant active sites. After reaction of 100 h, there is no decreasing in both the activity and the PO selectivity for the Au/TS-1 catalysts, and only 1.8 wt% of the carbonaceous deposits on the surface of the catalyst after reaction, suggesting that the desorption of the product from the modified catalysts surface by residual biomolecules is much easier.

  7. Optoelectronic properties of Fe impurities in delafossite oxide materials. A high-throughput investigation

    NASA Astrophysics Data System (ADS)

    Haycock, Barry; Lewis, James P.

    2014-03-01

    A group of materials that shows promise in optoelectronic applications is the family of oxide materials (delafossites), of the form ABO2, where the A site is a monovalent cation (e . g . , Cu, Ag, or Au) and the B site is a trivalent cation (e . g ., Ga, Y, Al, or In). The bandgap of some delafossites can be tailored for specific purposes, such as in photocatalysis applications, with B-site doping. We report on our recent investigations of the properties of CuGaO2, CuInO2, CuAlO2 and NaInO2 and predict the relative disorder of Fe impurities by comparing crystallographic metrics resulting from Fe doping. We performed approximately 10K calculations, in parallel on the Titan platform (Oak Ridge Leadership Computing Facility), of possible Fe-impurity permutations to determine the most-likely configurations of Fe impurities relative to each another. Our computational approach allows us to study large supercells, consisting of 432 atoms, which enable us to examine the properties of these materials in increments of 1% for the B-site doping of Fe. We will present results from our energetically-preferred supercells and discuss further applications of our techniques applied for characterization of new reconstructions via derived metrics.

  8. Improving promoter prediction for the NNPP2.2 algorithm: a case study using Escherichia coli DNA sequences.

    PubMed

    Burden, S; Lin, Y-X; Zhang, R

    2005-03-01

    Although a great deal of research has been undertaken in the area of promoter prediction, prediction techniques are still not fully developed. Many algorithms tend to exhibit poor specificity, generating many false positives, or poor sensitivity. The neural network prediction program NNPP2.2 is one such example. To improve the NNPP2.2 prediction technique, the distance between the transcription start site (TSS) associated with the promoter and the translation start site (TLS) of the subsequent gene coding region has been studied for Escherichia coli K12 bacteria. An empirical probability distribution that is consistent for all E.coli promoters has been established. This information is combined with the results from NNPP2.2 to create a new technique called TLS-NNPP, which improves the specificity of promoter prediction. The technique is shown to be effective using E.coli DNA sequences, however, it is applicable to any organism for which a set of promoters has been experimentally defined. The data used in this project and the prediction results for the tested sequences can be obtained from http://www.uow.edu.au/~yanxia/E_Coli_paper/SBurden_Results.xls alh98@uow.edu.au.

  9. Advances in Gold Catalysis and Understanding the Catalytic Mechanism.

    PubMed

    Ishida, Tamao; Koga, Hiroaki; Okumura, Mitsutaka; Haruta, Masatake

    2016-10-01

    When gold is deposited as nanoparticles (NPs) with mean diameters of 2-5 nm or clusters with mean diameters below 2 nm onto a variety of supports such as metal oxides, carbons, polymers, etc., the supported Au NPs exhibit unique catalytic properties, while bulk Au is almost inert as a catalyst. A lot of research works indicate that the key factors of the catalysis by supported Au NPs are the selection of the supports, the control of the Au NP size, the shape of the Au NPs, and the strong junction between Au NPs and the supports, because the perimeter zone around Au NPs acts as the active site for many reactions. In order to elucidate the origin of catalysis by supported Au NPs, the interplay between physicochemical analysis, computational studies, and rational experiments for catalysis by supported Au NPs is becoming more and more important. This article summarizes our experiences and progress in such interplay. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less

  11. Communicable Diseases Report, NSW, July and August 2009.

    PubMed

    2009-01-01

    For updated information, including data and facts on specific diseases, visit www.health.nsw.gov.au and click on Public Health then Infectious Diseases, or access the site directly at: http://www.health.nsw.gov.au/publichealth/infectious/index.asp.

  12. La-doped Al2O3 supported Au nanoparticles: highly active and selective catalysts for PROX under PEMFC operation conditions.

    PubMed

    Lin, Qingquan; Qiao, Botao; Huang, Yanqiang; Li, Lin; Lin, Jian; Liu, Xiao Yan; Wang, Aiqin; Li, Wen-Cui; Zhang, Tao

    2014-03-14

    La-doped γ-Al2O3 supported Au catalysts show high activity and selectivity for the PROX reaction under PEMFC operation conditions. The superior performance is attributed to the formation of LaAlO3, which suppresses H2 oxidation and strengthens CO adsorption on Au sites, thereby improving competitive oxidation of CO at elevated temperature.

  13. Spectrometric characteristics and tumor-affinity of a novel photosensitizer: mono-l-aspartyl aurochlorin e6 (Au-NPe6).

    PubMed

    Ishizumi, Taichiro; Aizawa, Katsuo; Tsuchida, Takaaki; Okunaka, Tetsuya; Kato, Harubumi

    2004-12-01

    Photodiagnosis and photodynamic therapy with photosensitizers can be indicated only for tumors of the superficial type, because these approaches utilizing visible light are limited by said light penetrability. To overcome this disadvantage, we innovated a novel photosensitizer, mono-l-aspartyl aurochlorin e6 (Au-NPe6), by incorporating a gold atom in the center of tetrapyrrole ring of NPe6 with a coordination bond. The gold atom in Au-NPe6 plays a role as an X-ray interceptor to detect deeply sited tumors. In this study, the absorption spectrum of novel Au-NPe6 in the diagnosis of deeply sited tumors was investigated, and the results were compared with the parent photosensitizer NPe6. Furthermore, the tumor-affinity of Au-NPe6 was evaluated using atomic absorption spectrometry. Despite the fact that both photosensitizers display a difference in the absorption spectrum, waveform changes of either photosensitizer with human serum albumin established a saturation point at a molar ratio of 1:1. The results indicate that it is highly possible that Au-NPe6 bound with albumin at a molar ratio (1:1) similar to NPe6. The accumulation rate of gold in tumor tissues was always significantly (p<0.05) higher than that in normal muscle tissues during the observation terms. Moreover, absorption spectra of tumor-tissue homogenates obtained from tumor-bearing mice after Au-NPe6 administration revealed a common peak with a wavelength equivalent to that of albumin-bond Au-NPe. This result suggests that the gold atom and NPe6 probably remained bonded even when Au-NPe6 was incorporated in tumor tissues.

  14. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  15. Reconstituting redox active centers of heme-containing proteins with biomineralized gold toward peroxidase mimics with strong intrinsic catalysis and electrocatalysis for H2O2 detection.

    PubMed

    Zhang, Liyan; Li, Shuai; Dong, Minmin; Jiang, Yao; Li, Ru; Zhang, Shuo; Lv, Xiaoxia; Chen, Lijun; Wang, Hua

    2017-01-15

    A facile and efficient enzymatic reconstitution methodology has been proposed for high-catalysis peroxidase mimics by remolding the redox active centers of heme-containing proteins with the in-site biomineralized gold using hemoglobin (Hb) as a model. Catalytic hemin (Hem) was extracted from the active centers of Hb for the gold biomineralization and then reconstituted into apoHb to yield the Hem-Au@apoHb nanocomposites showing dramatically improved intrinsic catalysis and electrocatalysis over natural Hb and Hem. The biomineralized gold, on the one hand, would act as "nanowires" to promote the electron transferring of the nanocomposites. On the other hand, it would create a reactivity pathway to pre-organize and accumulate more substrates towards the active sites of the peroxidase mimics. Steady-state kinetics studies indicate that Hem-Au@apoHb could present much higher substrate affinity (lower Michaelis constants) and intrinsic catalysis even than some natural peroxidases. Moreover, the application feasibility of the prepared artificial enzymes was demonstrated by colorimetric assays and direct electrocatalysis for H 2 O 2 sensing, showing a detection limitation low as 0.45μM. Importantly, such a catalysis active-center reconstitution protocol may circumvent the substantial improvement of the intrinsic catalysis and electrocatalysis of diverse heme-containing proteins or enyzmes toward the extensive applications in the chemical, enviromental, and biomedical catalysis fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap

    NASA Astrophysics Data System (ADS)

    Lim, Dong-Kwon; Jeon, Ki-Seok; Hwang, Jae-Ho; Kim, Hyoki; Kwon, Sunghoon; Suh, Yung Doug; Nam, Jwa-Min

    2011-07-01

    An ideal surface-enhanced Raman scattering (SERS) nanostructure for sensing and imaging applications should induce a high signal enhancement, generate a reproducible and uniform response, and should be easy to synthesize. Many SERS-active nanostructures have been investigated, but they suffer from poor reproducibility of the SERS-active sites, and the wide distribution of their enhancement factor values results in an unquantifiable SERS signal. Here, we show that DNA on gold nanoparticles facilitates the formation of well-defined gold nanobridged nanogap particles (Au-NNP) that generate a highly stable and reproducible SERS signal. The uniform and hollow gap (~1 nm) between the gold core and gold shell can be precisely loaded with a quantifiable amount of Raman dyes. SERS signals generated by Au-NNPs showed a linear dependence on probe concentration (R2 > 0.98) and were sensitive down to 10 fM concentrations. Single-particle nano-Raman mapping analysis revealed that >90% of Au-NNPs had enhancement factors greater than 1.0 × 108, which is sufficient for single-molecule detection, and the values were narrowly distributed between 1.0 × 108 and 5.0 × 109.

  17. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering.

    PubMed

    Tian, Yuanyuan; Shuai, Zhenhua; Shen, Jingjing; Zhang, Lei; Chen, Shufen; Song, Chunyuan; Zhao, Baomin; Fan, Quli; Wang, Lianhui

    2018-06-01

    A novel plasmonic heterodimer nanostructure with a controllable self-assembled hot spot is fabricated by the conjugation of individual Au@Ag core-shell nanocubes (Au@Ag NCs) and varisized gold nanospheres (GNSs) via the biotin-streptavidin interaction from the ensemble to the single-assembly level. Due to their featured configurations, three types of heterogeneous nanostructures referred to as Vertice, Vicinity, and Middle are proposed and a single hot spot forms between the nanocube and nanosphere, which exhibits distinct diversity in surface plasmon resonance effect. Herein, the calculated surface-enhanced Raman scattering enhancement factors of the three types of heterodimers show a narrow distribution and can be tuned in orders of magnitude by controlling the size of GNSs onto individual Au@Ag NCs. Particularly, the Vertice heterodimer with unique configuration can provide extraordinary enhancement of the electric field for the single hot spot region due to the collaborative interaction of lightning rod effect and interparticle plasmon coupling effect. This established relationship between the architecture and the corresponding optical properties of the heterodimers provides the basis for creating controllable platforms which can be exploited in the applications of plasmonic devices, electronics, and biodetection. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Peptide protected gold clusters: chemical synthesis and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  19. Enhanced electrocatalytic activity of the Au-electrodeposited Pt nanoparticles-coated conducting oxide for the quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Kang, Soon-Hyung; Kim, Hyunsoo; Choi, Chel-Jong; Kim, Kyong-Kook; Ahn, Kwang-Soon

    2014-08-01

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2- + 2e- (CE) → Sn-12- + S2- at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2- + 2e- (TiO2 in the photoanode) → Sn-12- + S2-, and significantly improved overall energy conversion efficiency.

  20. Template growth of Au, Ni and Ni–Au nanoclusters on hexagonal boron nitride/Rh(111): a combined STM, TPD and AES study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fanglue; Huang, Dali; Yue, Yuan

    In this study, the template growth of Au, Ni, and Ni–Au bimetallic nanoclusters on hexagonal boron nitride/Rh(111), i.e. h-BN/Rh(111), was investigated via scanning tunneling microscopy (STM), temperature programmed-desorption (TPD), and Auger electron spectroscopy (AES). STM study shows that template growth of Au clusters on h-BN/Rh(111) forms mainly well-dispersed monolayer clusters. In contrast, Ni forms large multilayer clusters showing a relatively high diffusivity on h-BN/Rh(111) substrate. Ni–Au bimetallic clusters are effectively formed first by Au deposition followed by Ni deposition, with the Au clusters functioning as nucleation sites for the subsequently deposited Ni. Further structural analysis was carried out via TPDmore » and AES. The resulting TPD and AES data show the surface composition and charge transfer between Au and Ni of the bimetallic clusters. These results suggest that the h-BN/Rh(111) substrate represents a unique candidate for supporting Ni–Au bimetallic clusters in further catalytic reactions.« less

  1. Template growth of Au, Ni and Ni–Au nanoclusters on hexagonal boron nitride/Rh(111): a combined STM, TPD and AES study

    DOE PAGES

    Wu, Fanglue; Huang, Dali; Yue, Yuan; ...

    2017-09-12

    In this study, the template growth of Au, Ni, and Ni–Au bimetallic nanoclusters on hexagonal boron nitride/Rh(111), i.e. h-BN/Rh(111), was investigated via scanning tunneling microscopy (STM), temperature programmed-desorption (TPD), and Auger electron spectroscopy (AES). STM study shows that template growth of Au clusters on h-BN/Rh(111) forms mainly well-dispersed monolayer clusters. In contrast, Ni forms large multilayer clusters showing a relatively high diffusivity on h-BN/Rh(111) substrate. Ni–Au bimetallic clusters are effectively formed first by Au deposition followed by Ni deposition, with the Au clusters functioning as nucleation sites for the subsequently deposited Ni. Further structural analysis was carried out via TPDmore » and AES. The resulting TPD and AES data show the surface composition and charge transfer between Au and Ni of the bimetallic clusters. These results suggest that the h-BN/Rh(111) substrate represents a unique candidate for supporting Ni–Au bimetallic clusters in further catalytic reactions.« less

  2. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications.

    PubMed

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in

  3. Near-infrared light-responsive liposomal contrast agent for photoacoustic imaging and drug release applications

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Kathyayini; Mathiyazhakan, Malathi; Wiraja, Christian; Upputuri, Paul Kumar; Xu, Chenjie; Pramanik, Manojit

    2017-04-01

    Photoacoustic imaging has become an emerging tool for theranostic applications. Not only does it help in in vivo, noninvasive imaging of biological structures at depths but it can also be used for drug release and therapeutic applications. We explore near-infrared light-sensitive liposomes coated with gold nanostars (AuNSs) for both imaging and drug release applications using a photoacoustic imaging system. Being amphiphilic, the liposomes lipid bilayer and the aqueous core enable encapsulation of both hydrophobic and hydrophilic drugs. The AuNSs on the surface of the liposomes act as photon absorbers due to their intrinsic surface plasmon resonance. Upon excitation by laser light at specific wavelength, AuNSs facilitate rapid release of the contents encapsulated in the liposomes due to local heating and pressure wave formation (photoacoustic wave). Herein, we describe the design and optimization of the AuNSs-coated liposomes and demonstrate the release of both hydrophobic and hydrophilic model drugs (paclitaxel and calcein, respectively) through laser excitation at near-infrared wavelength. The use of AuNSs-coated liposomes as contrast agents for photoacoustic imaging is also explored with tissue phantom experiments. In comparison to blood, the AuNSs-coated liposomes have better contrast (approximately two times) at 2-cm imaging depth.

  4. Light-controlled synthesis of gold nanoparticles using a rigid, photoresponsive surfactant

    NASA Astrophysics Data System (ADS)

    Huang, Youju; Kim, Dong-Hwan

    2012-09-01

    We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications.We report a new strategy for shape control over the synthesis of gold nanoparticles (AuNPs) by using a photoresponsive surfactant based on a modified seed growth method. Owing to photoresponsive properties of the azo group, the designed surfactant, N1,N3,N5-tris[(4'-azobenzene-4-sulphonic acid)phenyl]benzene-1,3,5-tricarboxamide, exhibits a distinctive molecular configuration under light leading to different growth processes of AuNPs. As a result, the blackberry-like, spherical AuNPs and multilayered Au plates were successfully prepared in high yield under visible and UV light. The size and morphological control of Au nanocrystals are described and the synthesized Au nanocrystals are evaluated for SERS applications. Electronic supplementary information (ESI) available: The UV-vis spectra, representative field-emission scanning electron microscopy (FESEM) images and size distributions of Au seeds (18 nm) and spherical AuNPs (50 nm), photograph images of AuNPs solution and TEM images of blackberry-like AuNPs. See DOI: 10.1039/c2nr31717f

  5. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides.

    PubMed

    Li, Jiuxing; Zhu, Binqing; Yao, Xiujie; Zhang, Yicong; Zhu, Zhi; Tu, Song; Jia, Shasha; Liu, Rudi; Kang, Huaizhi; Yang, Chaoyong James

    2014-10-08

    Attaching thiolated DNA on gold nanoparticles (AuNPs) has been extremely important in nanobiotechnology because DNA-AuNPs combine the programmability and molecular recognition properties of the biopolymers with the optical, thermal, and catalytic properties of the inorganic nanomaterials. However, current standard protocols to attach thiolated DNA on AuNPs involve time-consuming, tedious steps and do not perform well for large AuNPs, thereby greatly restricting applications of DNA-AuNPs. Here we demonstrate a rapid and facile strategy to attach thiolated DNA on AuNPs based on the excellent stabilization effect of mPEG-SH on AuNPs. AuNPs are first protected by mPEG-SH in the presence of Tween 20, which results in excellent stability of AuNPs in high ionic strength environments and extreme pHs. A high concentration of NaCl can be applied to the mixture of DNA and AuNP directly, allowing highly efficient DNA attachment to the AuNP surface by minimizing electrostatic repulsion. The entire DNA loading process can be completed in 1.5 h with only a few simple steps. DNA-loaded AuNPs are stable for more than 2 weeks at room temperature, and they can precisely hybridize with the complementary sequence, which was applied to prepare core-satellite nanostructures. Moreover, cytotoxicity assay confirmed that the DNA-AuNPs synthesized by this method exhibit lower cytotoxicity than those prepared by current standard methods. The proposed method provides a new way to stabilize AuNPs for rapid and facile loading thiolated DNA on AuNPs and will find wide applications in many areas requiring DNA-AuNPs, including diagnosis, therapy, and imaging.

  6. Oxidized Ni/Au Transparent Electrode in Efficient CH3 NH3 PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells.

    PubMed

    Lai, Wei-Chih; Lin, Kun-Wei; Wang, Yuan-Ting; Chiang, Tsung-Yu; Chen, Peter; Guo, Tzung-Fang

    2016-05-01

    The successful application of a Ni/Au transparent electrode for fabricating efficient perovskite-based solar cells is demonstrated. Through interdiffusion of the Ni/Au bilayer, Au forms an interconnected metallic network structure as the transparent electrode. Ni diffuses to the bilayer surface and oxidizes into NiOx becoming an appropriate electrode interlayer. These ITO- and PSS-free devices have potential applications in the design of future cost-effective, low-weight, and stable solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.

  8. Gold nanoparticles cellular toxicity and recovery: adipose Derived Stromal cells.

    PubMed

    Mironava, Tatsiana; Hadjiargyrou, Michael; Simon, Marcia; Rafailovich, Miriam H

    2014-03-01

    Gold nanoparticles (AuNPs) are currently used in numerous medical applications. Herein, we describe their in vitro impact on human adipose-derived stromal cells (ADSCs) using 13 nm and 45 nm citrate-coated AuNPs. In their non-differentiated state, ADSCs were penetrated by the AuNPs and stored in vacuoles. The presence of the AuNPs in ADSCs resulted in increased population doubling times, decreased cell motility and cell-mediated collagen contraction. The degree to which the cells were impacted was a function of particle concentration, where the smaller particles required a sevenfold higher concentration to have the same effect as the larger ones. Furthermore, AuNPs reduced adipogenesis as measured by lipid droplet accumulation and adiponectin secretion. These effects correlated with transient increases in DLK1 and with relative reductions in fibronectin. Upon removal of exogenous AuNPs, cellular NP levels decreased and normal ADSC functions were restored. As adiponectin helps regulate energy metabolism, local fluctuations triggered by AuNPs can lead to systemic changes. Hence, careful choice of size, concentration and clinical application duration of AuNPs is warranted.

  9. Communicable Diseases Report, NSW, September and October 2010.

    PubMed

    2010-01-01

    For updated information, including data and facts on specific diseases, visit www.health.nsw.gov.au and click on Public Health and then Infectious Diseases. The communicable diseases site is available at: http://www.health.nsw.gov.au/publichealth/infectious/index.asp.

  10. Theranostic potential of gold nanoparticle-protein agglomerates

    NASA Astrophysics Data System (ADS)

    Sanpui, Pallab; Paul, Anumita; Chattopadhyay, Arun

    2015-11-01

    Owing to the ever-increasing applications, glittered with astonishing success of gold nanoparticles (Au NPs) in biomedical research as diagnostic and therapeutic agents, the study of Au NP-protein interaction seems critical for maximizing their theranostic efficiency, and thus demands comprehensive understanding. The mutual interaction of Au NPs and proteins at physiological conditions may result in the aggregation of protein, which can ultimately lead to the formation of Au NP-protein agglomerates. In the present article, we try to appreciate the plausible steps involved in the Au NP-induced aggregation of proteins and also the importance of the proteins' three-dimensional structures in the process. The Au NP-protein agglomerates can potentially be exploited for efficient loading and subsequent release of various therapeutically important molecules, including anticancer drugs, with the unique opportunity of incorporating hydrophilic as well as hydrophobic drugs in the same nanocarrier system. Moreover, the Au NP-protein agglomerates can act as `self-diagnostic' systems, allowing investigation of the conformational state of the associated protein(s) as well as the protein-protein or protein-Au NP interaction within the agglomerates. Furthermore, the potential of these Au NP-protein agglomerates as a novel platform for multifunctional theranostic application along with exciting future-possibilities is highlighted here.

  11. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  12. A comparative study of the electrostatic potential of fullerene-like structures of Au 32 and Au 42

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lai; Sun, Xiao-Ping; Shen, Hong-Tao; Hou, Dong-Yan; Zhai, Yu-Chun

    2008-05-01

    By using density functional theory calculations, it is found that the most negative MEP inside the gold cage occurs at the center of the sphere. The largest regions with the most negative MEP outside the sphere are localized in the neighborhood of the bridge sites and the vertex regions of the five-coordinated are more positive. The absolute values of the most negative potentials in both the inner and outer cages as well as the vertex regions of the five-coordinated of Au 32 structure are much larger than those of Au 42, which means Au 32 is preferable for electrophilic attack or nucleophilic processes.

  13. Multifunctional Virus-Nanoshell Assembly for Targeted Hyperthermia and Viral Gene Therapy for Breast Cancer

    DTIC Science & Technology

    2012-06-01

    thin layer of Au. The unique property of Au NS is the tunability of its plasma resonance. Au NS can accumulate heat upon irradiation with NIR light...which is very useful for biomedical applications because tissues are transparent to NIR. Using NIR irradiation , the Au NS can be induced to...and 6161.5 Dalton for the product. Figure 1. (a) UV_VIS spectrum of Au nanoshell. Insect is TEM image of Au Nanoshell, scale bar: 20 nm. (b

  14. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I).

    PubMed

    Salinas, Gustavo; Gao, Wei; Wang, Yang; Bonilla, Mariana; Yu, Long; Novikov, Andrey; Virginio, Veridiana G; Ferreira, Henrique B; Vieites, Marisol; Gladyshev, Vadim N; Gambino, Dinorah; Dai, Shaodong

    2017-12-20

    New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with Au I -MPO, a novel gold inhibitor, together with inhibition assays were performed. Au I -MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer-monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxin (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys 519 and Cys 573 in the Au I -TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys 519 and Cys 573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491-1504.

  15. The Enzymatic and Structural Basis for Inhibition of Echinococcus granulosus Thioredoxin Glutathione Reductase by Gold(I)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas, Gustavo; Gao, Wei; Wang, Yang

    Aims: New drugs are needed to treat flatworm infections that cause severe human diseases such as schistosomiasis. The unique flatworm enzyme thioredoxin glutathione reductase (TGR), structurally different from the human enzyme, is a key drug target. Structural studies of the flatworm Echinococcus granulosus TGR, free and complexed with AuI-MPO, a novel gold inhibitor, together with inhibition assays were performed. Results: AuI-MPO is a potent TGR inhibitor that achieves 75% inhibition at a 1:1 TGR:Au ratio and efficiently kills E. granulosus in vitro. The structures revealed salient insights: (i) unique monomer–monomer interactions, (ii) distinct binding sites for thioredoxin and the glutaredoxinmore » (Grx) domain, (iii) a single glutathione disulfide reduction site in the Grx domain, (iv) rotation of the Grx domain toward the Sec-containing redox active site, and (v) a single gold atom bound to Cys519 and Cys573 in the AuI-TGR complex. Structural modeling suggests that these residues are involved in the stabilization of the Sec-containing C-terminus. Consistently, Cys→Ser mutations in these residues decreased TGR activities. Mass spectroscopy confirmed these cysteines are the primary binding site. Innovation: The identification of a primary site for gold binding and the structural model provide a basis for gold compound optimization through scaffold adjustments. Conclusions: The structural study revealed that TGR functions are achieved not only through a mobile Sec-containing redox center but also by rotation of the Grx domain and distinct binding sites for Grx domain and thioredoxin. The conserved Cys519 and Cys573 residues targeted by gold assist catalysis through stabilization of the Sec-containing redox center. Antioxid. Redox Signal. 27, 1491–1504.« less

  16. Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Good, Brian; Ferrante, John

    1996-01-01

    Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).

  17. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging.

    PubMed

    Li, Jiuxing; Zhu, Zhi; Zhu, Bingqing; Ma, Yanli; Lin, Bingqian; Liu, Rudi; Song, Yanling; Lin, Hui; Tu, Song; Yang, Chaoyong

    2016-08-02

    Due to its large enhancement effect, nanostructure-based surface-enhanced Raman scattering (SERS) technology had been widely applied for bioanalysis and cell imaging. However, most SERS nanostructures suffer from poor signal reproducibility, which hinders the application of SERS nanostructures in quantitative detection. We report an etching-assisted approach to synthesize SERS-active plasmonic nanoparticles with 1 nm interior nanogap for multiplex quantitative detection and cancer cell imaging. Raman dyes and methoxy poly(ethylene glycol) thiol (mPEG-SH) were attached to gold nanoparticles (AuNPs) to prepare gold cores. Next, Ag atoms were deposited on gold cores in the presence of Pluronic F127 to form a Ag shell. HAuCl4 was used to etch the Ag shell and form an interior nanogap in Au@AgAuNPs, leading to increased Raman intensity of dyes. SERS intensity distribution of Au@AgAuNPs was found to be more uniform than that of aggregated AuNPs. Finally, Au@AgAuNPs were used for multiplex quantitative detection and cancer cell imaging. With the advantages of simple and rapid preparation of Au@AgAuNPs with highly uniform, stable, and reproducible Raman intensity, the method reported here will widen the applications of SERS-active nanoparticles in diagnostics and imaging.

  18. Facile formation of dendrimer-stabilized gold nanoparticles modified with diatrizoic acid for enhanced computed tomography imaging applications.

    PubMed

    Peng, Chen; Li, Kangan; Cao, Xueyan; Xiao, Tingting; Hou, Wenxiu; Zheng, Linfeng; Guo, Rui; Shen, Mingwu; Zhang, Guixiang; Shi, Xiangyang

    2012-11-07

    We report a facile approach to forming dendrimer-stabilized gold nanoparticles (Au DSNPs) through the use of amine-terminated fifth-generation poly(amidoamine) (PAMAM) dendrimers modified by diatrizoic acid (G5.NH(2)-DTA) as stabilizers for enhanced computed tomography (CT) imaging applications. In this study, by simply mixing G5.NH(2)-DTA dendrimers with gold salt in aqueous solution at room temperature, dendrimer-entrapped gold nanoparticles (Au DENPs) with a mean core size of 2.5 nm were able to be spontaneously formed. Followed by an acetylation reaction to neutralize the dendrimer remaining terminal amines, Au DSNPs with a mean size of 6 nm were formed. The formed DTA-containing [(Au(0))(50)-G5.NHAc-DTA] DSNPs were characterized via different techniques. We show that the Au DSNPs are colloid stable in aqueous solution under different pH and temperature conditions. In vitro hemolytic assay, cytotoxicity assay, flow cytometry analysis, and cell morphology observation reveal that the formed Au DSNPs have good hemocompatibility and are non-cytotoxic at a concentration up to 3.0 μM. X-ray absorption coefficient measurements show that the DTA-containing Au DSNPs have enhanced attenuation intensity, much higher than that of [(Au(0))(50)-G5.NHAc] DENPs without DTA or Omnipaque at the same molar concentration of the active element (Au or iodine). The formed DTA-containing Au DSNPs can be used for CT imaging of cancer cells in vitro as well as for blood pool CT imaging of mice in vivo with significantly improved signal enhancement. With the two radiodense elements of Au and iodine incorporated within one particle, the formed DTA-containing Au DSNPs may be applicable for CT imaging of various biological systems with enhanced X-ray attenuation property and detection sensitivity.

  19. Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques

    NASA Astrophysics Data System (ADS)

    Wang, F. H.; Kim, D. K.; Yoshitake, T.; Johansson, S. M.; Bjelke, B.; Muhammed, M.; Kehr, J.

    2011-01-01

    The purpose of the present study was to investigate, by MRI and histochemical techniques, the diffusion and clearance abilities of superparamagnetic iron oxide nanoparticles (SPION) coated with dextran (Dextran-SPION) and gold (Au-SPION) following their local infusions into the rat brain. In separate groups of anesthetized rats, the Dextran-SPION and Au-SPION were infused at concentrations of 0.01, 0.1, 1 and 5 µg Fe/0.5 µl and at the flow rate of 0.5 µl min - 1 into the left and right striata, respectively. Repetitive T2-weighted spin-echo MRI scans were performed at time intervals of 1, 6, 12, 24, 48, 72 h, and one, two and eight weeks after inoculation. Following infusion of Dextran-SPION (0.1 µg and 1 µg Fe), the maximal distribution volume was observed at about 12-24 h after inoculation and two weeks later the Fe signals were undetectable for the lower dose. On the other hand, Au-SPION remained tightly localized in the closest vicinity of the infusion site as revealed by unchanged MRI signal intensities and strong histochemical staining of Fe2 + and Fe3 + ions in the corresponding brain slices. Immunohistochemical staining of astrocytic and microglial reactions revealed that there were no marked differences in GFAP, VIM or OX-42 labeling observed between the nanoparticle types, however the astrocytic reaction was more pronounced in rats receiving nanoparticles compared to the control (aCSF-infused) rats. In conclusion, the present data demonstrate that the viral-sized Dextran-SPION were able to diffuse freely through the interstitial space of the brain being progressively cleared out from the infusion site within two weeks. Thus, Dextran-SPION could be beneficially used in MRI-guided diagnostic applications such as in experimental oncology or as labels and carriers for targeted drug delivery, whereas Au-SPION could be used for labeling and tracking the transplanted stem cells in experimental MRI.

  20. Cytotoxicity of various types of gold-mesoporous silica nanoparticles in human breast cancer cells

    PubMed Central

    Liu, Guomu; Li, Qiongshu; Ni, Weihua; Zhang, Nannan; Zheng, Xiao; Wang, Yingshuai; Shao, Dan; Tai, Guixiang

    2015-01-01

    Recently, gold nanoparticles (AuNPs) have shown promising biological applications due to their unique electronic and optical properties. However, the potential toxicity of AuNPs remains a major hurdle that impedes their use in clinical settings. Mesoporous silica is very suitable for the use as a coating material for AuNPs and might not only reduce the cytotoxicity of cetyltrimethylammonium bromide-coated AuNPs but might also facilitate the loading and delivery of drugs. Herein, three types of rod-like gold-mesoporous silica nanoparticles (termed bare AuNPs, core–shell Au@mSiO2NPs, and Janus Au@mSiO2NPs) were specially designed, and the effects of these AuNPs on cellular uptake, toxic behavior, and mechanism were then systematically studied. Our results indicate that bare AuNPs exerted higher toxicity than the Au@mSiO2NPs and that Janus Au@mSiO2NPs exhibited the lowest toxicity in human breast cancer MCF-7 cells, consistent with the endocytosis capacity of the nanoparticles, which followed the order, bare AuNPs > core–shell Au@mSiO2NPs > Janus Au@mSiO2NPs. More importantly, the AuNPs-induced apoptosis of MCF-7 cells exhibited features that were characteristic of intracellular reactive oxygen species (ROS) generation, activation of c-Jun-N-terminal kinase (JNK) phosphorylation, an enhanced Bax-to-Bcl-2 ratio, and loss of the mitochondrial membrane potential. Simultaneously, cytochrome c was released from mitochondria, and the caspase-3/9 cascade was activated. Moreover, both ROS scavenger (N-acetylcysteine) and JNK inhibitor (SP600125) partly blocked the induction of apoptosis in all AuNPs-treated cells. Taken together, these findings suggest that all AuNPs induce apoptosis through the ROS-/JNK-mediated mitochondrial pathway. Thus, Janus Au@mSiO2NPs exhibit the potential for applications in biomedicine, thus aiding the clinical translation of AuNPs. PMID:26491285

  1. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  2. Shape-Controlled Synthesis of Au Nanostructures Using EDTA Tetrasodium Salt and Their Photothermal Therapy Applications

    PubMed Central

    Jang, Youngjin; Lee, Nohyun; Kim, Jeong Hyun; Piao, Yuanzhe

    2018-01-01

    Tuning the optical properties of Au nanostructures is of paramount importance for scientific interest and has a wide variety of applications. Since the surface plasmon resonance properties of Au nanostructures can be readily adjusted by changing their shape, many approaches for preparing Au nanostructures with various shapes have been reported to date. However, complicated steps or the addition of several reagents would be required to achieve shape control of Au nanostructures. The present work describes a facile and effective shape-controlled synthesis of Au nanostructures and their photothermal therapy applications. The preparation procedure involved the reaction of HAuCl4 and ethylenediaminetetraacetic acid (EDTA) tetrasodium salt, which acted as a reducing agent and ligand, at room temperature without the need for any toxic reagent or additives. The morphology control from spheres to branched forms and nanowire networks was easily achieved by varying the EDTA concentration. Detailed investigations revealed that the four carboxylic groups of the EDTA tetrasodium salt are essential for effective growth and stabilization. The produced Au nanowire networks exhibited a broad absorption band in the near-infrared (NIR) region, thereby showing efficient cancer therapeutic performance by inducing the selective photothermal destruction of cancerous glioblastoma cells (U87MG) under NIR irradiation. PMID:29670020

  3. Au/ZnO nanoarchitectures with Au as both supporter and antenna of visible-light

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Chen, Wei; Hua, Yuxiang; Liu, Xiaoheng

    2017-01-01

    In this paper, we fabricate Au/ZnO nanostructure with smaller ZnO nanoparticles loaded onto bigger gold nanoparticles via combining seed-mediated method and sol-gel method. The obtained Au/ZnO nanocomposites exhibit excellent properties in photocatalysis process like methyl orange (MO) degradation and oxidative conversion of methanol into formaldehyde under visible light irradiation. The enhanced properties were ascribed to the surface plasmon resonance (SPR) effect of Au nanoparticles, which could contribute to the separation of photo-excited electrons and holes and facilitate the process of absorbing visible light. This paper contributes to the emergence of multi-functional nanocomposites with possible applications in visible-light driven photocatalysts and makes the Au/ZnO photocatalyst an exceptional choice for practical applications such as environmental purification of organic pollutants in aqueous solution and the synthesis of fine chemicals and intermediates.

  4. Film growth arising from the deposition of Au onto an i-Al Pd Mn quasicrystal: a medium energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Noakes, T. C. Q.; Bailey, P.; Draxler, M.; McConville, C. F.; Ross, A. R.; Lograsso, T. A.; Leung, L.; Smerdon, J. A.; McGrath, R.

    2006-06-01

    The room temperature deposition of 7 ML of Au onto the fivefold symmetric surface of icosahedral Al-Pd-Mn leads to the formation of a several monolayers thick Au-Al alloy film. An AlAu film with 1:1 stoichiometry is formed, which shows no evidence of ordered structure, being either amorphous or polycrystalline. Annealing to 325 °C causes more Al to diffuse into the film, producing Al2Au but still with no indication of structure. Experiments using 0.5 ML of pre-deposited In demonstrated a surfactant effect as the In 'floated' on the surface during growth and produced a reduction in film roughness. However, contrary to previous findings the film was still either amorphous or polycrystalline, with no evidence of quasi-crystalline or aperiodic structure. Experiments were also conducted using smaller doses of Au to look for the formation of an epitaxial layer and, if formed, determine the registry with the substrate. However, no change in the Pd blocking curves for the surface could be seen, suggesting that the Au does not adsorb in well defined sites. This result is not surprising when considering that even for these low doses Al is drawn into the film, changing the composition and probably the structure of the topmost layers of the substrate, so that the potential adsorption sites on the clean surface may no longer exist.

  5. Density Functional Investigation of the Inclusion of Gold Clusters on a CH 3 S Self-Assembled Lattice on Au(111)

    DOE PAGES

    Allen, Darnel J.; Archibald, Wayne E.; Harper, John A.; ...

    2016-01-01

    We employ first-principles density functional theoretical calculations to address the inclusion of gold (Au) clusters in a well-packed CH 3 S self-assembled lattice. We compute CH 3 S adsorption energies to quantify the energetic stability of the self-assembly and gold adsorption and dissolution energies to characterize the structural stability of a series of Au clusters adsorbed at the SAM-Au interface. Our results indicate that the inclusion of Au clusters with less than four Au atoms in the SAM-Au interface enhances the binding of CH 3 S species. In contrast, larger Au clusters destabilize the self-assembly. We attribute this effect tomore » the low-coordinated gold atoms in the cluster. For small clusters, these low-coordinated sites have significantly different electronic properties compared to larger islands, which makes the binding with the self-assembly energetically more favorable. Our results further indicate that Au clusters in the SAM-Au interface are thermodynamically unstable and they will tend to dissolve, producing Au adatoms incorporated in the self-assembly in the form of CH 3 S-Au-SCH 3 species. This is due to the strong S-Au bond which stabilizes single Au adatoms in the self-assembly. Our results provide solid insight into the impact of adatom islands at the CH 3 S-Au interface.« less

  6. The design and construction of an interactive website concerning biomedical photography.

    PubMed

    Williams, Robin; Williams, Gigi

    2003-06-01

    The purpose of this communication is to make readers aware of what the authors believe is an important online resource about medical and scientific photography for doctors, scientists and students. It is a website freely accessible and its URL is http://msp.rmit.edu.au. The site is designed as a resource base: it is not meant to be a 'course' but the reader will find much practical information about technique and applications of scientific imaging methods. The site is currently a comprehensive collection of resources relating to invisible radiation photography but there are plans to expand the site to a range of clinical recording topics, and other potential contributors are asked to join the project. It contains a vast collection of photographs from many photographers as well as graphs, diagrams, tables and references. This paper also discusses some of the important issues surrounding the 'publication' of such a site such as currency and access versus credibility; technological obsolescence, site design and usage.

  7. Haiti: Feasibility of Waste-to-Energy Options at the Trutier Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conrad, M. D.; Hunsberger, R.; Ness, J. E.

    2014-08-01

    This report provides further analysis of the feasibility of a waste-to-energy (WTE) facility in the area near Port-au-Prince, Haiti. NREL's previous analysis and reports identified anaerobic digestion (AD) as the optimal WTE technology at the facility. Building on the prior analyses, this report evaluates the conceptual financial and technical viability of implementing a combined waste management and electrical power production strategy by constructing a WTE facility at the existing Trutier waste site north of Port-au-Prince.

  8. Rapid Processing of Turner Designs Model 10-Au-005 Internally Logged Fluorescence Data

    EPA Science Inventory

    Continuous recording of dye fluorescence using field fluorometers at selected sampling sites facilitates acquisition of real-time dye tracing data. The Turner Designs Model 10-AU-005 field fluorometer allows for frequent fluorescence readings, data logging, and easy downloading t...

  9. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Li, Jingchao; Li, Jia'en Jasmine; Zhang, Jing; Wang, Xinlong; Kawazoe, Naoki; Chen, Guoping

    2016-04-01

    Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications.Gold nanoparticles (AuNPs) have been extensively explored for biomedical applications due to their advantages of facile synthesis and surface functionalization. Previous studies have suggested that AuNPs can induce differentiation of stem cells into osteoblasts. However, how the size and shape of AuNPs affect the differentiation response of stem cells has not been elucidated. In this work, a series of bovine serum albumin (BSA)-coated Au nanospheres, Au nanostars and Au nanorods with different diameters of 40, 70 and 110 nm were synthesized and their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) were investigated. All the AuNPs showed good cytocompatibility and did not influence proliferation of hMSCs at the studied concentrations. Osteogenic differentiation of hMSCs was dependent on the size and shape of AuNPs. Sphere-40, sphere-70 and rod-70 significantly increased the alkaline phosphatase (ALP) activity and calcium deposition of cells while rod-40 reduced the ALP activity and calcium deposition. Gene profiling revealed that the expression of osteogenic marker genes was down-regulated after incubation with rod-40. However, up-regulation of these genes was found in the sphere-40, sphere-70 and rod-70 treatment. Moreover, it was found that the size and shape of AuNPs affected the osteogenic differentiation of hMSCs through regulating the activation of Yes-associated protein (YAP). These results indicate that the size and shape of AuNPs had an influence on the osteogenic differentiation of hMSCs, which should provide useful guidance for the preparation of AuNPs with defined size and shape for their biomedical applications. Electronic supplementary information (ESI) available: Additional experimental results. See DOI: 10.1039/c5nr08808a

  10. Effects of crystalline electronic field and onsite interorbital interaction in Yb-based quasicrystal and approximant crystal.

    PubMed

    Watanabe, Shinji; Miyake, Kazumasa

    2018-05-10

    To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb 15 Al 34 Au 51 and approximant crystal (AC) Yb 14 Al 35 Au 51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb 15 Al 34 Au 51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.

  11. Effects of crystalline electronic field and onsite interorbital interaction in Yb-based quasicrystal and approximant crystal

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinji; Miyake, Kazumasa

    2018-05-01

    To get an insight into a new type of quantum critical phenomena recently discovered in the quasicrystal Yb15Al34Au51 and approximant crystal (AC) Yb14Al35Au51 under pressure, we discuss the property of the crystalline electronic field (CEF) at Yb in the AC and show that uneven CEF levels at each Yb site can appear because of the Al/Au mixed sites. Then we construct the minimal model for the electronic state on the AC by introducing the onsite Coulomb repulsion between the 4f and 5d orbitals at Yb. Numerical calculations for the ground state shows that the lattice constant dependence of the Yb valence well explains the recent measurement done by systematic substitution of elements of Al and Au in the quasicrystal and AC, where the quasicrystal Yb15Al34Au51 is just located at the point from where the Yb-valence starts to change drastically. Our calculation convincingly demonstrates that this is indeed the evidence that this material is just located at the quantum critical point of the Yb-valence transition.

  12. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  13. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  14. One-Step Synthesis of Au-Ag Nanowires through Microorganism-Mediated, CTAB-Directed Approach.

    PubMed

    Xu, Luhang; Huang, Dengpo; Chen, Huimei; Jing, Xiaoling; Huang, Jiale; Odoom-Wubah, Tareque; Li, Qingbiao

    2018-05-28

    Synthesis and applications of one dimensional (1D) metal nanostructures have attracted much attention. However, one-step synthesis of bimetallic nanowires (NWs) has remained challenging. In this work, we developed a microorganism-mediated, hexadecyltrimethylammonium bromide (CTAB)-directed (MCD) approach to synthesize closely packed and long Au-Ag NWs with the assistance of a continuous injection pump. Characterization results confirmed that the branched Au-Ag alloy NWs was polycrystalline. And the Au-Ag NWs exhibited a strong absorbance at around 1950 nm in the near-infrared (NIR) region, which can find potential application in NIR absorption. In addition, the Au-Ag NWs showed excellent surface-enhanced Raman scattering (SERS) enhancement when 4-mercaptobenzoic acid (MBA) and rhodamine 6G (R6G) were used as probe molecules.

  15. Nanoporous Gold: Fabrication, Characterization, and Applications

    PubMed Central

    Seker, Erkin; Reed, Michael L.; Begley, Matthew R.

    2009-01-01

    Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.

  16. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.

    PubMed

    Wei, Haoran; Rodriguez, Katia; Renneckar, Scott; Leng, Weinan; Vikesland, Peter J

    2015-08-21

    Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated in situ reduction of Au(3+) in the presence of a BC hydrogel at 303 K. Both the size and morphology of the AuNPs were functions of the HAuCl4 and citrate concentrations. At high HAuCl4 concentrations, Au nanoplates form within the nanocomposites and are responsible for high SERS enhancements. At lower HAuCl4 concentrations, uniform nanospheres form and the SERS enhancement is dependent on the nanosphere size. The time-resolved increase in the SERS signal was probed as a function of drying time with SERS 'hot-spots' primarily forming in the final minutes of nanocomposite drying. The application of the AuNP/BC nanocomposites for detection of the SERS active dyes MGITC and R6G as well as the environmental contaminant atrazine is illustrated as is its use under low and high pH conditions. The results indicate the broad applicability of this nanocomposite for analyte detection.

  17. Biosynthesis and stabilization of Au and Au Ag alloy nanoparticles by fungus, Fusarium semitectum

    NASA Astrophysics Data System (ADS)

    Dasaratrao Sawle, Balaji; Salimath, Basavaraja; Deshpande, Raghunandan; Dhondojirao Bedre, Mahesh; Krishnamurthy Prabhakar, Belawadi; Venkataraman, Abbaraju

    2008-09-01

    Crystallized and spherical-shaped Au and Au-Ag alloy nanoparticles have been synthesized and stabilized using a fungus, F . semitectum in an aqueous system. Aqueous solutions of chloroaurate ions for Au and chloroaurate and Ag+ ions (1 : 1 ratio) for Au-Ag alloy were treated with an extracellular filtrate of F . semitectum biomass for the formation of Au nanoparticles (AuNP) and Au-Ag alloy nanoparticles (Au-AgNP). Analysis of the feasibility of the biosynthesized nanoparticles and core-shell alloy nanoparticles from fungal strains is particularly significant. The resultant colloidal suspensions are highly stable for many weeks. The obtained Au and Au-Ag alloy nanoparticles were characterized by the surface plasmon resonance (SPR) peaks using a UV-vis spectrophotometer, and the structure, morphology and size were determined by Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and transmission electron microscopy (TEM). Possible optoelectronics and medical applications of these nanoparticles are envisaged.

  18. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K.

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-Nmore » and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.« less

  19. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2+) using DNAzyme modified with Au nanoparticles.

    PubMed

    Zhang, Chen; Lai, Cui; Zeng, Guangming; Huang, Danlian; Tang, Lin; Yang, Chunping; Zhou, Yaoyu; Qin, Lei; Cheng, Min

    2016-07-15

    The authors herein described an amplified detection strategy employing nanoporous Au (NPG) and gold nanoparticles (AuNPs) to detect Pb(2+) ions in aqueous solution. The thiol modified Pb(2+)-specific DNAzyme was self-assembled onto the surface of the NPG modified electrode for hybridizing with the AuNPs labeled oligonucleotide and for forming the DNA double helix structure. Electrochemical signal, redox charge of hexaammineruthenium(III) chloride (RuHex), was measured by chronocoulometry. Taking advantage of amplification effects of the NPG electrode for increasing the reaction sites of capture probe and DNA-AuNPs complexes for bringing about the adsorption of large numbers of RuHex molecules, this electrochemical sensor could detect Pb(2+) quantitatively, in the range of 0.05-100nM, with a limit of detection as low as 0.012nM. Selectivity measurements revealed that the sensor was specific for Pb(2+) even with interference by high concentrations of other metal ions. This sensor was also used to detect Pb(2+) ions from samples of tap water, river water, and landfill leachate samples spiked with Pb(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. This simple aptasensor represented a promising potential for on-site detecting Pb(2+) in drinking water. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca

    The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less

  1. Active site densities, oxygen activation and adsorbed reactive oxygen in alcohol activation on npAu catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu-Cun; Friend, C. M.; Fushimi, Rebecca

    2016-01-01

    The activation of molecular O 2as well as the reactivity of adsorbed oxygen species is of central importance in aerobic selective oxidation chemistry on Au-based catalysts. Herein, we address the issue of O 2activation on unsupported nanoporous gold (npAu) catalysts by applying a transient pressure technique, a temporal analysis of products (TAP) reactor, to measure the saturation coverage of atomic oxygen, its collisional dissociation probability, the activation barrier for O 2dissociation, and the facility with which adsorbed O species activate methanol, the initial step in the catalytic cycle of esterification. The results from these experiments indicate that molecular O 2dissociationmore » is associated with surface silver, that the density of reactive sites is quite low, that adsorbed oxygen atoms do not spill over from the sites of activation onto the surrounding surface, and that methanol reacts quite facilely with the adsorbed oxygen atoms. In addition, the O species from O 2dissociation exhibits reactivity for the selective oxidation of methanol but not for CO. The TAP experiments also revealed that the surface of the npAu catalyst is saturated with adsorbed O under steady state reaction conditions, at least for the pulse reaction.« less

  2. Dextran-encapsulated photoluminescent gold nanoclusters: synthesis and application

    NASA Astrophysics Data System (ADS)

    Chiu, Wei-Ju; Chen, Wei-Yu; Lai, Hong-Zheng; Wu, Ching-Yi; Chiang, Hsiang-Lin; Chen, Yu-Chie

    2014-07-01

    Dextrans are widely used as additives in food, pharmaceutical, and cosmetics because of their hydrophilicity, biocompatibility, and low toxicity. These features allow the use of dextrans to modify the surface of nanoparticles to improve cell compatibility for biomedical applications. Additionally, dextran molecules covalently bound with fluorescent dyes are frequently used as tracers in animal studies. These facts show that dextrans are useful compounds for biomedicine-related applications and research. Our aim was to explore a facile way to generate dextran-derived nanoparticles with photoluminescent property for the use in fluorescence imaging of bacteria and cancer cells. Dextran-encapsulated gold nanoclusters (AuNCs@dextran) were generated through a one-pot reaction by stirring dextrans and aqueous tetrachloroauric acid overnight. The generated AuNCs exhibit bright and green photoluminescence under the illumination of an ultraviolet lamp ( λ max = 365 nm), and high cell biocompatibility was found as well. Therefore, the generated AuNCs can be used as fluorescence tracers and nanoprobes. We explored the suitability of AuNCs@dextran as labeling agents for bacteria, such as Staphylococcus aureus and Escherichia coli. After the bacteria were labeled by AuNCs@dextran, they became quite visible under a fluorescence microscope. Additionally, we demonstrated that nanocomposites composed of AuNCs@dextran and silica beads can be readily internalized by cancer cells. The nanocomposites can be readily detected in the cells through their photoluminescence, suggesting possible applications in drug delivery and fluorescence imaging.

  3. Dewetting process of Au films on SiO2 nanowires: Activation energy evaluation

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2015-05-01

    SiO2 nanowires gain scientific and technological interest in application fields ranging from nano-electronics, optics and photonics to bio-sensing. Furthermore, the SiO2 nanowires chemical and physical properties, and so their performances in devices, can be enhanced if decorated by metal nanoparticles (such Au) due to local plasmonic effects. In the present paper, we propose a simple, low-cost and high-throughput three-steps methodology for the mass-production of Au nanoparticles coated SiO2 nanowires. It is based on (1) production of the SiO2 nanowires on Si surface by solid state reaction of an Au film with the Si substrate at high temperature; (2) sputtering deposition of Au on the SiO2 nanowires to obtain the nanowires coated by an Au film; and (3) furnace annealing processes to induce the Au film dewetting on the SiO2 nanowires surface. Using scanning electron microscopy analyses, we followed the change of the Au nanoparticles mean versus the annealing time extracting values for the characteristic activation energy of the dewetting process of the Au film on the SiO2 nanowires surface. Such a study can allow the tuning of the nanowires/nanoparticles sizes for desired technological applications.

  4. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals

    NASA Astrophysics Data System (ADS)

    Ankudze, Bright; Philip, Anish; Pakkanen, Tuula T.; Matikainen, Antti; Vahimaa, Pasi

    2016-11-01

    SiO2 inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO2 IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO2 IOs. The optical property and the morphology of the Au-SiO2 IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO2 IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO2 IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 107 and 106 for 4-ATP and MB, respectively. A low detection limit of 10-10 M for 4-ATP was also obtained with the Au-SiO2 IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm-1 for 4-ATP shows that the Au-SiO2 IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO2 IO substrates can be used in sensing and SERS applications.

  5. Chemically reduced graphene oxide-P25-Au nanocomposite materials and their photoelectrocatalytic and photocatalytic applications.

    PubMed

    Praveen, Raju; Ramaraj, Ramasamy

    2016-10-05

    Visible light active photocatalysts consisting of gold nanoparticle (Au NP) decorated chemically reduced graphene oxide-P25 nanocomposite materials (CRGO-P25-Au NCMs) were prepared through a one-pot chemical reduction method. The nanocomposite materials were characterized using diffuse reflectance spectroscopy (DRS), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and electrochemical impedance spectroscopy (EIS) analyses. The performances of CRGO-P25-Au NCM modified ITO electrodes were evaluated towards the photoelectrochemical oxidation of methanol. The photoelectrode fabricated using CRGO-P25-Au NCM exhibited a higher photocurrent of 293 μA cm -2 compared to other control electrodes. The CRGO-P25-Au NCMs were also used for the photocatalytic reduction of highly toxic chromium(vi) ions to chromium(iii) ions in the presence of oxalic acid as a sacrificial electron donor. The results showed that around 75% of the Cr(vi) ions were photocatalytically reduced to Cr(iii) ions by the CRGO-P25-Au NCM within the light irradiation time of 1 h. In both applications, the enhanced catalytic activity of the CRGO-P25-Au NCM was attributed to the improved visible light absorption and the reduced charge recombination exerted by the interaction of CRGO and Au NPs with P25 and their synergistic effects.

  6. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  7. Electrogenerated Chemiluminescence Behavior of Au nanoparticles-hybridized Pb (II) metal-organic framework and its application in selective sensing hexavalent chromium.

    PubMed

    Ma, Hongmin; Li, Xiaojian; Yan, Tao; Li, Yan; Liu, Haiyang; Zhang, Yong; Wu, Dan; Du, Bin; Wei, Qin

    2016-02-23

    In this work, a novel electrochemiluminescence (ECL) sensor based on Au nanoparticles-hybridized Pb (II)-β-cyclodextrin (Pb-β-CD) metal-organic framework for detecting hexavalent chromium (Cr(VI)) was developed. Pb-β-CD shows excellent ECL behavior and unexpected reducing ability towards Au ions. Au nanoparticles could massively form on the surface of Pb-β-CD (Au@Pb-β-CD) without use of any additional reducing agent. In the presence of coreactant K2S2O8, the ECL emission of Pb-β-CD was enhanced by the formation of Au nanoparticles. Cr(VI) can collisionally quench the ECL behavior of Au@Pb-β-CD/S2O8(2-) system and the detection mechanism was investigated. This ECL sensor is found to have a linear response in the range of 0.01-100 μM and a low detection limit of 3.43 nM (S/N = 3) under the optimal conditions. These results suggest that metal-organic framework Au@Pb-β-CD has great potential in extending the application in the ECL field as an efficient luminophore.

  8. Evolution of Excited-State Dynamics in Periodic Au 28, Au 36, Au 44, and Au 52 Nanoclusters

    DOE PAGES

    Zhou, Meng; Zeng, Chenjie; Sfeir, Matthew Y.; ...

    2017-08-10

    An understanding of the correlation between the atomic structure and optical properties of gold nanoclusters is essential for exploration of their functionalities and applications involving light harvesting and electron transfer. We report the femto-nanosecond excited state dynamics of a periodic series of face-centered cubic (FCC) gold nanoclusters (including Au 28, Au 36, Au 44, and Au 52), which exhibit a set of unique features compared with other similar sized clusters. Molecular-like ultrafast S n → S 1 internal conversions (i.e., radiationless electronic transitions) are observed in the relaxation dynamics of FCC periodic series. Excited-state dynamics with near-HOMO–LUMO gap excitation lacksmore » ultrafast decay component, and only the structural relaxation dominates in the dynamical process, which proves the absence of core–shell relaxation. Interestingly, both the relaxation of the hot carriers and the band-edge carrier recombination become slower as the size increases. The evolution in excited-state properties of this FCC series offers new insight into the structure-dependent properties of metal nanoclusters, which will benefit their optical energy harvesting and photocatalytic applications.« less

  9. Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells

    PubMed Central

    2015-01-01

    Au nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy. PMID:24889266

  10. A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance Energy transfer (FRET) between CdTe quantum dots and Au nanoparticles.

    PubMed

    Tang, Bo; Cao, Lihua; Xu, Kehua; Zhuo, Linhai; Ge, Jiechao; Li, Qingling; Yu, Lijuan

    2008-01-01

    A novel assembled nanobiosensor QDs-ConA-beta-CDs-AuNPs was designed for the direct determination of glucose in serum with high sensitivity and selectivity. The sensing approach is based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots (QDs) as an energy donor and gold nanoparticles (AuNPs) as an energy acceptor. The specific combination of concanavalin A (ConA)-conjugated QDs and thiolated beta-cyclodextrins (beta-SH-CDs)-modified AuNPs assembles a hyperefficient FRET nanobiosensor. In the presence of glucose, the AuNPs-beta-CDs segment of the nanobiosensor is displaced by glucose which competes with beta-CDs on the binding sites of ConA, resulting in the fluorescence recovery of the quenched QDs. Experimental results show that the increase in fluorescence intensity is proportional to the concentration of glucose within the range of 0.10-50 muM under the optimized experimental conditions. In addition, the nanobiosensor has high sensitivity with a detection limit as low as 50 nM, and has excellent selectivity for glucose over other sugars and most biological species present in serum. The nanobiosensor was applied directly to determine glucose in normal adult human serum, and the recovery and precision of the method were satisfactory. The unique combination of high sensitivity and good selectivity of this biosensor indicates its potential for the clinical determination of glucose directly and simply in serum, and provides the possibility to detect low levels of glucose in single cells or bacterial cultures. Moreover, the designed nanobiosensor achieves direct detection in biological samples, suggesting the use of nanobiotechnology-based assembled sensors for direct analytical applications in vivo or in vitro.

  11. Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4:Tb nanorods.

    PubMed

    Xu, Ai-Zhen; Zhang, Li; Zeng, Hui-Hui; Liang, Ru-Ping; Qiu, Jian-Ding

    2018-05-09

    A fluorometric method is described for the determination of the activity of alkaline phosphatase (ALP). It relies on the competition between gold nanoparticles (AuNPs) and pyrophosphate (PPi) for the coordination sites on the surface of CePO 4 :Tb nanorods. The green fluorescence of the CePO 4 :Tb is reduced in the presence of AuNPs due to fluorescence resonance energy transfer (FRET), but can be restored on addition of PPi due to the stronger affinity of PPi to the CePO 4 :Tb. In the presence of ALP, PPi is hydrolyzed to form phosphate which has much weaker affinity for the CePO 4 :Tb. Hence, the AuNPs will reassemble on the CePO 4 :Tb, and fluorescence is reduced. Fluorescence drops linearly in the 0.2 to 100 U·L -1 activity range, and the detection limit is 60 mU·L -1 (at S/N = 3). The method does not require any modification of the surface of the CePO 4 :Tb and is highly sensitive and selective. The inhibition of ALP activity by Na 3 VO 4 was also studied. In our perception, the method may find application in the diagnosis of ALP-related diseases, in screening for inhibitors, and in studies on ALP-related functions in biological systems. Graphical abstract A assay for the detection of alkaline phosphatase is proposed based on the fluorescence resonance energy transfer between CePO 4 :Tb and AuNPs. It relies on the competitive binding of AuNPs and pyrophosphate (PPi) to CePO 4 :Tb and the hydrolysis of PPi by ALP.

  12. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7.

    PubMed

    Zhang, Lei; Huang, Youju; Wang, Jingyun; Rong, Yun; Lai, Weihua; Zhang, Jiawei; Chen, Tao

    2015-05-19

    Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.

  13. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes.

    PubMed

    Gomes, Rui S; Moreira, Felismina T C; Fernandes, Ruben; Sales, M Goreti F

    2018-01-01

    This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15-3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15-3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes.

  14. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine.

    PubMed

    Li, Ruiyi; Yang, Tingting; Li, Zaijun; Gu, Zhiguo; Wang, Guangli; Liu, Junkang

    2017-02-15

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10 -9  M to 4.0 × 10 -5  M with the detection limit of 3.6 × 10 -10  M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes

    PubMed Central

    Gomes, Rui S.; Moreira, Felismina T. C.; Fernandes, Ruben

    2018-01-01

    This work presents an alternative device for cancer screening in liquid biopsies. It combines a biomimetic film (i) with electrochemical detection (ii). The biomimetic film (i) was obtained by electro-polymerizing amine-substituted benzene rings around a CA 15–3 target. This protein target was previously adsorbed on a gold (Au) support and incubated in charged monomers (4-Styrenesulfonate sodium and 3-Hydroxytyraminium chloride). The protein was further eliminated by enzymatic activity, leaving behind vacant sites for subsequent rebinding. Electrochemical detection (ii) was achieved on an Au working electrode, designed on commercial screen-printed electrodes. Raman spectroscopy, atomic force microscopy and ellipsometric readings were used to follow the chemical modification of the Au surface. The ability of the material to rebind CA15-3 was monitored by electrochemical techniques. The device displayed linear responses to CA15-3 ranging from 0.25 to 10.00 U/mL, with detection limits of 0.05 U/mL. Accurate results were obtained by applying the sensor to the analysis of CA15-3 in PBS buffer and in serum samples. This biosensing device displayed successful features for the detection of CA 15–3 and constitutes a promising tool for breast cancer screening procedures in point-of-care applications. Moreover, its scale-up seems feasible as it contains a plastic antibody assembled in situ, in less than 1 minute, and the analysis of serum takes less than 30 minutes. PMID:29715330

  16. Interaction of Au, Ag, and Bi ions with Ba2YCu3O(7-y) - Implications for superconductor applications

    NASA Technical Reports Server (NTRS)

    Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.

    1988-01-01

    Results are presented on the reactions of Au, Ag, and Bi ions with Ba2YCu3O(7-y) oxides and on the properties of the resultant materials. The results indicate that Au(3+) structural chemistry makes gold an excellent candidate for multiphase structures of the Ba2Y(Cu/1-x/Au/x/)3O(7-y)-type substituted superconductors. Silver is structurally and chemically compatible with the perovskite structure, but when it forms a second phase, it does so without the destruction of the superconducting phase, making silver a useful metal for metal/ceramic applications. On the other hand, bismuth was shown to degrade Tc phase or to form other phases, indicating that it may not be useful in applications with rare-earth-based superconductors.

  17. Non-specific adsorption of complement proteins affects complement activation pathways of gold nanomaterials.

    PubMed

    Quach, Quang Huy; Kah, James Chen Yong

    2017-04-01

    The complement system is a key humoral component of innate immunity, serving as the first line of defense against intruders, including foreign synthetic nanomaterials. Although gold nanomaterials (AuNMs) are widely used in nanomedicine, their immunological response is not well understood. Using AuNMs of three shapes commonly used in biomedical applications: spherical gold nanoparticles, gold nanostars and gold nanorods, we demonstrated that AuNMs activated whole complement system, leading to the formation of SC5b-9 complex. All three complement pathways were simultaneously activated by all the AuNMs. Recognition molecules of the complement system interacted with all AuNMs in vitro, except for l-ficolin, but the correlation between these interactions and corresponding complement pathway activation was only observed in the classical and alternative pathways. We also observed the mediating role of complement activation in cellular uptake of all AuNMs by human U937 promonocytic cells, which expresses complement receptors. Taken together, our results highlighted the potential immunological challenges for clinical applications of AuNMs that were often overlooked.

  18. Electrochemical behavior of gold nanoparticles modified nitrogen incorporated tetrahedral amorphous carbon and its application in glucose sensing.

    PubMed

    Liu, Aiping; Wu, Huaping; Qiu, Xu; Tang, Weihua

    2011-12-01

    Gold nanoparticles (NPs) with 10-50 nm in diameter were synthesized on nitrogen incorporated tetrahedral amorphous carbon (ta-C:N) thin film electrode by electrodeposition. The deposition and nucleation processes of Au on ta-C:N surface were investigated by cyclic voltammetry and chronoamperometry. The morphology of Au NPs was characterized by scanned electron microscopy. The electrochemical properties of Au NPs modified ta-C:N (ta-C:N/Au) electrode and its ability to sense glucose were investigated by voltammetric and amperometric measurements. The potentiostatic current-time transients showed a progressive nucleation process and diffusion growth of Au on the surface of ta-C:N film according to the Scharifker-Hills model. The Au NPs acted as microelectrodes improved the electron transfer and electrocatalytic oxidation of glucose on ta-C:N electrode. The ta-C:N/Au electrode exhibited fast current response, a linear detection range of glucose from 0.5 to 25 mM and a detection limit of 120 microM, which hinted its potential application as a glucose biosensor.

  19. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    PubMed

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.

  20. Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface.

    PubMed

    Chatterjee, Dipanwita; Shetty, Shwetha; Müller-Caspary, Knut; Grieb, Tim; Krause, Florian F; Schowalter, Marco; Rosenauer, Andreas; Ravishankar, Narayanan

    2018-03-14

    Ultrathin bimetallic nanowires are of importance and interest for applications in electronic devices such as sensors and heterogeneous catalysts. In this work, we have designed a new, highly reproducible and generalized wet chemical method to synthesize uniform and monodispersed Au-based alloy (AuCu, AuPd, and AuPt) nanowires with tunable composition using microwave-assisted reduction at the liquid-liquid interface. These ultrathin alloy nanowires are below 4 nm in diameter and about 2 μm long. Detailed microstructural characterization shows that the wires have an face centred cubic (FCC) crystal structure, and they have low-energy twin-boundary and stacking-fault defects along the growth direction. The wires exhibit remarkable thermal and mechanical stability that is critical for important applications. The alloy wires exhibit excellent electrocatalytic activity for methanol oxidation in an alkaline medium.

  1. Gold nanoparticles enlighten the future of cancer theranostics

    PubMed Central

    Guo, Jianfeng; Rahme, Kamil; He, Yan; Li, Lin-Lin; Holmes, Justin D; O’Driscoll, Caitriona M

    2017-01-01

    Development of multifunctional nanomaterials, one of the most interesting and advanced research areas in the field of nanotechnology, is anticipated to revolutionize cancer diagnosis and treatment. Gold nanoparticles (AuNPs) are now being widely utilized in bio-imaging and phototherapy due to their tunable and highly sensitive optical and electronic properties (the surface plasmon resonance). As a new concept, termed “theranostics,” multifunctional AuNPs may contain diagnostic and therapeutic functions that can be integrated into one system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. In this review, the important properties of AuNPs relevant to diagnostic and phototherapeutic applications such as structure, shape, optics, and surface chemistry are described. Barriers for translational development of theranostic AuNPs and recent advances in the application of AuNPs for cancer diagnosis, photothermal, and photodynamic therapy are discussed. PMID:28883725

  2. Meso-Scale Self-Assembly Pilot Study

    DTIC Science & Technology

    2007-04-17

    alloy dewetted Part fabrication: same binding - rol, sites on parts, which are parts’ 0.1 mM released in BOE eat to 215HC Fig. 5: Schematic diagrams...eutectic Bi-Sn solder melting at 138°C, was dewetted onto the metallization features by first evaporating 100 nm of Au, and then dipping the Au-coated...the Au quickly dissolved allowing the alloy to react with the Pt layer. When the substrate was retracted, the alloy dewets from all Si and Cr areas

  3. Mobile Phone Sensing of Cocaine in a Lateral Flow Assay Combined with a Biomimetic Material.

    PubMed

    Guler, Emine; Yilmaz Sengel, Tulay; Gumus, Z Pinar; Arslan, Mustafa; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf

    2017-09-19

    Lateral flow assays (LFAs) are an ideal choice for drug abuse testing favored by their practicability, portability, and rapidity. LFA based on-site rapid screening devices provide positive/negative judgment in a short response time. The conventionally applied competitive assay format used for small molecule analysis such as abused drugs restricts the quantitation ability of LFA strips. We report herein, for the first time, a new strategy using the noncompetitive assay format via a biomimetic material, namely, poly(p-phenylene) β-cyclodextrin poly(ethylene glycol) (PPP-CD-g-PEG) combined with gold nanoparticle (AuNP) conjugates as the labeling agent to recognize the target cocaine molecule in the test zone. The intensities of the visualized red color in the test line indicate that the cocaine concentrations were analyzed via a smartphone application. Significantly, a combination of this platform with a smartphone application provides quantitative data on the cocaine amount, making it a very inventive and attractive approach especially for on-site applications at critical points such as traffic stops and the workplace.

  4. Fabrication of fiber-optic localized surface plasmon resonance sensor and its application to detect antibody-antigen reaction of interferon-gamma

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Erdene, Norov; Lee, Seung-Ki; Jeong, Dae-Hong; Park, Jae-Hyoung

    2011-12-01

    A fiber-optic localized surface plasmon (FO LSPR) sensor was fabricated by gold nanoparticles (Au NPs) immobilized on the end-face of an optical fiber. When Au NPs were formed on the end-face of an optical fiber by chemical reaction, Au NPs aggregation occurred and the Au NPs were immobilized in various forms such as monomers, dimers, trimers, etc. The component ratio of the Au NPs on the end-face of the fabricated FO LSPR sensor was slightly changed whenever the sensors were fabricated in the same condition. Including this phenomenon, the FO LSPR sensor was fabricated with high sensitivity by controlling the density of Au NPs. Also, the fabricated sensors were measured for the resonance intensity for the different optical systems and analyzed for the effect on sensitivity. Finally, for application as a biosensor, the sensor was used for detecting the antibody-antigen reaction of interferon-gamma.

  5. Pt-Au/MOx-CeO₂ (M = Mn, Fe, Ti) Catalysts for the Co-Oxidation of CO and H₂ at Room Temperature.

    PubMed

    Hong, Xiaowei; Sun, Ye; Zhu, Tianle; Liu, Zhiming

    2017-02-27

    A series of nanostructured Pt-Au/MO x -CeO₂ (M = Mn, Fe, Ti) catalysts were prepared and their catalytic performance for the co-oxidation of carbon monoxide (CO) and hydrogen (H₂) were evaluated at room temperature. The results showed that MO x promoted the CO oxidation of Pt-Au/CeO₂, but only the TiO₂ could enhance co-oxidation of CO and H₂ over Pt-Au/CeO₂. Related characterizations were conducted to clarify the promoting effect of MO x . Temperature-programmed reduction of hydrogen (H₂-TPR) and X-ray photoelectron spectroscopy (XPS) results suggested that MO x could improve the charge transfer from Au sites to CeO₂, resulting in a high concentration of Ce 3+ and cationic Au species which benefits for the CO oxidation. In-situ diffuse reflectance infrared Fourier transform spectroscopy (In-situ DRIFTS) results indicated that TiO₂ could facilitate the oxidation of H₂ over the Pt-Au/TiO₂-CeO₂ catalyst.

  6. XPS and Ag L3-edge XANES characterization of silver and silver-gold sulfoselenides

    NASA Astrophysics Data System (ADS)

    Mikhlin, Yuri L.; Pal'yanova, Galina A.; Tomashevich, Yevgeny V.; Vishnyakova, Elena A.; Vorobyev, Sergey A.; Kokh, Konstantin A.

    2018-05-01

    Gold and silver sulfoselenides are of interest as materials with high ionic conductivity and promising magnetoresistive, thermoelectric, optical, and other physico-chemical properties, which are strongly dependent on composition and structure. Here, we applied X-ray photoelectron spectroscopy and Ag L3 X-ray absorption near-edge structure (XANES) to study the electronic structures of low-temperature compounds and solid solutions Ag2SxSe1-x (0 < x < 1), AgAuS, and Ag3AuSxSe2-x (x = 0, 1, 2). Upon substitution of Se with S, a steady increase in the positive charge at Ag(I) sites and only minor changes in the local charge at chalcogen atoms were found from the photoelectron Ag 3d, S 2p, Se 3d, and Ag M4,5VV Auger spectra. The intensity of the Ag L3-edge peak, which is known to correlate with hole counts in the Ag 4d shell having a formal d10 configuration, was enhanced by 20-25% from Ag2Se to Ag2S and from Ag3AuSe2 to Ag3AuS2. The effect of gold is more pronounced, and the number of Ag d holes and the negative charge of S and Se notably decreased for Au-containing compounds; in particular, the Ag L3-edge peak is about 35% lower for AgAuS relative to Ag2S. At the same time, the Au 4f binding energy and, therefore, charge at Au(I) sites increase with increasing S content due to the transfer of electron density from Au to Ag atoms. It was concluded that the effects mainly originate from shortening of the metal-chalcogen and especially the Ausbnd Ag interatomic distances in substances having similar coordination geometry.

  7. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  8. The effects of colorimetric detection of heavy metal ions based on Au nanoparticles (NPs): size and shape—a case of Co2+

    NASA Astrophysics Data System (ADS)

    Leng, Yumin; He, Junbao; Li, Bo; Xing, Xiaojing; Guo, Yongming; Ye, Liqun; Lu, Zhiwen

    2017-09-01

    The different sized and shaped Au NPs have intrigued considerable attention, because they possess different surface plasma resonance (SPR) absorption bands and thus result in many colorimetric Au NP-based detection applications. In this article, four different sized and shaped Au NPs of nanodots/rods were prepared and characterized. The as-prepared Au NPs were modified by the negatively charged anions of [SCH2CO2]2- to investigate both the size and shape effects of modified Au NPs on colorimetric detection of Co2+ and the corresponding SPR absorption properties. The different-shaped Au NPs possess different SPR absorption properties. The Au nanorods appeared to be colorimetric sensitive for Co2+ sensing.

  9. Experimental optimization during SERS application

    NASA Astrophysics Data System (ADS)

    Laha, Ranjit; Das, Gour Mohan; Ranjan, Pranay; Dantham, Venkata Ramanaiah

    2018-05-01

    The well known surface enhanced Raman scattering (SERS) needs a lot of experimental optimization for its proper implementation. In this report, we demonstrate the efficient SERS using gold nanoparticles (AuNPs) on quartz plate. The AuNPs were prepared by depositing direct current sputtered Au thin film followed by suitable annealing. The parameters varied for getting best SERS effect were 1) Numerical Aperture of Raman objective lens and 2) Sputtering duration of Au film. It was found that AuNPs formed from the Au layer deposited for 40s and Raman objective lens of magnification 50X are the best combination for obtaining efficient SERS effect.

  10. Experimental and Computational Evidence of Highly Active Fe Impurity Sites on the Surface of Oxidized Au for the Electrocatalytic Oxidation of Water in Basic Media

    DOE PAGES

    Klaus, Shannon; Trotochaud, Lena; Cheng, Mu-Jeng; ...

    2015-10-22

    Addition of Fe to Ni- and Co-based (oxy)hydroxides has been shown to enhance the activity of these materials for electrochemical oxygen evolution. Here we show that Fe cations bound to the surface of oxidized Au exhibit enhanced oxygen evolution reaction (OER) activity. We find that the OER activity increases with increasing surface concentration of Fe. Density functional theory analysis of the OER energetics reveals that oxygen evolution over Fe cations bound to a hydroxyl-terminated oxidized Au (Fe-Au 2O 3) occurs at an overpotential ~0.3V lower than over hydroxylated Au 2O 3 (0.82V). This finding agrees well with experimental observations andmore » is a consequence of the more optimal binding energetics of OER reaction intermediates at Fe cations bound to the surface of Au 2O 3. These findings suggest that the enhanced OER activity reported recently upon low-potential cycling of Au may be due to surface Fe impurities rather than to "superactive" Au(III) surfaquo species.« less

  11. Mechanical Strength and Stability of DNA-modified Gold Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Lam, Letisha McLaughlin

    Systems in which gold nanoparticles (AuNPs) are functionalized with DNA have the potential for a broad range of applications in gene regulation therapies, drug delivery, sensing, innovative biomaterials and material templates. The use of DNA-modified gold nanoparticle (AuNP-DNA) systems is driven by their ease of assembly with bottom-up methods as well as the tunability of the systems' mechanical, optical, and electronic properties by exploiting AuNP characteristics and behavior in a multi-particle arrangement. Periodic arrangements of AuNPs precisely distributed through ligated DNA linkers may be assembled and used on relatively large length scales, on the order of hundreds of nanometers, for use in potential nanoscale technologies and applications. However, because of the size and heterogeneous composition of AuNP-DNA systems, their stability under mechanical loading is not well understood or quantified on relevant physical scales for these applications. Hence, a large-scale specialized finite-element predictive approach with a dislocation-density based crystalline plasticity has been used to investigate the mechanical stability of AuNP-DNA-ligand systems with AuNPs within the physical dimensions required for plasmon resonance. The crystalline formulation for the AuNPs accounts for multiple crystalline slip, dislocation-density evolution, lattice rotations, and large inelastic strains. A hypoelastic formulation was used for the DNA and the ligands. The nonlinear finite-element scheme is based on accounting for finite elastic and inelastic strains. These approaches were employed to predict and understand the fundamental scale-dependent microstructural behavior, the evolving heterogeneous microstructure, and localized phenomena that can contribute to failure initiation and instability. Each system was loaded using quasi-static plane strain tension and compression to simulate application loading conditions, and the elastic and inelastic evolutions were analyzed for evidence of mechanical strengthening as well as possible failure modes. To establish a foundation for AuNP-DNA stability analysis, several different two-particle conformations were investigated, including systems with pentagonally twinned AuNPs, systems with circular AuNPs, systems with non-textured and textured cuboctahedron AuNPs with 6 nm DNA, 12 nm DNA, and 18 nm DNA. In general, the analyses indicated that the systems' stability are mainly affected by large stress gradients at AuNP-ligand interfaces, as well as large dislocation-density, normal stresses, and inelastic accumulations in the region adjacent to these interfaces between the AuNPs and the DNA. The predictions also indicate that highly faceted f.c.c. AuNPs with DNA lengths of approximately 6 nm in biaxial loading conditions were found to have the highest strength and overall stability. Furthermore, periodic AuNP-DNA superlattice composites, which mimic the crystallography of f.c.c. atomic lattices, were investigated for mechanical effectiveness as both a composite material and thin film. This investigation analyzed the stress behavior and inelastic evolution of f.c.c. AuNP-DNA superlattice systems with different Au volume fractions, matrix strengths, intrinsic nanoparticle crystallographic orientations and sizes. These analyses were also extended to superlattice f.c.c. composites on a silicon substrate. The results indicate that f.c.c. AuNP-DNA superlattices have a combination of high strength and toughness due to the ductile nature of the nanoparticles in conjunction with the physical properties of the DNA and matrix materials. The superlattice films also exhibited high strengths and toughness, with the limiting factor being the interrelated aspects of film thickness and delamination. These predictions can be used as guidelines for using these composites, superlattices, and thin films as candidates for innovative building blocks for new material systems.

  12. Room temperature deposition of gold onto the diffuse and sharp diffraction spot Si(111)-( 3 × 3) R30° Au surfaces

    NASA Astrophysics Data System (ADS)

    Plass, Richard; Marks, Laurence D.

    1996-06-01

    Room temperature gold depositions onto Si(111)-( 3 × 3) R30° Au surfaces with diffuse and sharp diffraction spots [Surf. Sci. 242 (1991) 73] (diffuse and sharp 3 × 3 Au hereafter) under UHV conditions has been monitored using transmission electron diffraction (TED). Both systems display an increase in surface structure diffraction spot intensities up to the completion of 1.0 monolayer (ML) after which the surface beams display an exponential decrease in intensity with coverage. The exponential decay rate decreases after roughly 1.33 ML. These results can be attributed to gold initially diffusing to and filling 3 × 3 Au gold trimer sites in vacancy type surface domain walls [Surf. Sci. 342 (1995) 233], then filling one of three possible sites on the 3 × 3 Au structure with essentially no surface diffusion, disrupting nearby gold trimers. Gold deposition onto the diffuse type structure caused the formation and expansion of satellite arcs around the strongest 3 × 3 beams similar to those seen by others [Surf. Sci. 242 (1991) 73; Jpn. J. Appl. Phys. 16 (1977) 891; J. Vac. Sci. Technol. A 10 (1992) 3486] at elevated temperatures while the sharp structure displayed only a modest shoulder formation near the strongest 3 × 3 beams.

  13. A recyclable Au(I) catalyst for selective homocoupling of arylboronic acids: significant enhancement of nano-surface binding for stability and catalytic activity.

    PubMed

    Zhang, Xin; Zhao, Haitao; Wang, Jianhui

    2010-08-01

    Au nanoparticles stabilized by polystyrene-co-polymethacrylic acid microspheres (PS-co-PMAA) were prepared and characterized via X-ray diffraction (XRD), and transmission electron microscope (TEM). The Au nanoparticles supported on the microspheres showed highly selective catalytic activity for homo-coupling reactions of arylboronic acids in a system of aryl-halides and arylboronic acids. X-ray photoelectron spectroscopy (XPS) spectra of the catalyst shows large amounts of Au(I) complexes band to the surface of the Au nanoparticles, which contributes to the selective homocoupling of the arylboronic acids. More importantly, this supported Au complex is a highly recyclable catalyst. The supported Au catalyst can be recycled and reused at least 6 times for a phenylboronic acid reactant, whereas the parent complex shows very low catalytic activity for this compound. The high catalytic activity of this material is attributed to: (1) the high surface to volume ratio which leads to more active sites being exposed to reactants; (2) the strong surface binding of the Au nanoparticle to the Au(I) complexes, which enhances both the stability and the catalytic activity of these complexes.

  14. A density functional theory study on the acetylene cyclotrimerization on Pd-modified Au(111) surface

    NASA Astrophysics Data System (ADS)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-10-01

    Calculations based on the first-principle density functional theory were carried out to study the possible acetylene cyclotrimerization reactions on Pd-Au(111) surface and to investigate the effect of Au atom alloying with Pd. The adsorption of C2H2, C4H4, C6H6 and the PDOS of 4d orbitals of surface Pd and Au atoms were studied. The comparison of d-band center of Pd and Au atom before and after C2H2 or C4H4 adsorption suggests that these molecules affect the activity of Pd-Au(111) surface to some degree due to the high binding energy of the adsorption. In our study, the second neighboring Pd ensembles on Pd-Au(111) surface can adsorb two acetylene molecules on parallel-bridge site of two Au atoms and one Pd atom, respectively. Csbnd C bonds are parallel to each other and two acetylenes are adsorbed face to face to produce four-membered ring C4H4 firstly. The geometric effect and electronic effect of Pd-Au(111) surface with the second neighboring Pd ensembles both help to reduce this activation barrier.

  15. Realization of improved metallization-Ti/Al/Ti/W/Au ohmic contacts to n-GaN for high temperature application

    NASA Astrophysics Data System (ADS)

    Motayed, A.; Davydov, A. V.; Boettinger, W. J.; Josell, D.; Shapiro, A. J.; Levin, I.; Zheleva, T.; Harris, G. L.

    2005-05-01

    Tungsten metal layer was used for the first time as an effective diffusion barrier for the standard Ti/Al/Ti/Au ohmic metallization scheme to obtain thermally stable ohmic contact suitable for high temperature applications. Comparative studies were performed on three distinct metallization schemes: 1) standard GaN/Ti/Al/Ti/Au, 2) GaN/Ti/Al/W/Au, and 3) GaN/Ti/Al/Ti/W/Au. For the GaN with doping level of 5 × 1017 cm-3, the lowest specific contact resistance for the Ti/Al/Ti/W/Au metallization scheme annealed in argon at 750 °C for 30 sec was 5 × 10-6 .cm2, which is comparable to the standard Ti/Al/Ti/Au scheme. X-ray diffractions (XRD), auger electron spectroscopy (AES) depth profiling, field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM) revealed that the Ti/Al/Ti/W/Au metallization has superior morphology and microstructural properties compared to standard Ti/Al/Ti/Au metallizations. Remarkably, this metallization was able to withstand thermal aging at 500 °C for 50 hrs with only marginal morphological and electrical deterioration. These studies revealed that the utilization of a compound diffusion barrier stack, as in the Ti/Al/Ti/W/Au metallization, yields electrically, structurally, and morphologically superior metallizations with exceptional thermal stability.

  16. Green synthesis of gold nanoparticles using chlorogenic acid and their enhanced performance for inflammation.

    PubMed

    Hwang, Su Jung; Jun, Sang Hui; Park, Yohan; Cha, Song-Hyun; Yoon, Minho; Cho, Seonho; Lee, Hyo-Jong; Park, Youmie

    2015-10-01

    Here we developed a novel green synthesis method for gold nanoparticles (CGA-AuNPs) using chlorogenic acid (CGA) as reductants without the use of other chemicals and validated the anti-inflammatory efficacy of CGA-AuNPs in vitro and in vivo. The resulting CGA-AuNPs appeared predominantly spherical in shape with an average diameter of 22.25±4.78nm. The crystalline nature of the CGA-AuNPs was confirmed by high-resolution X-ray diffraction and by selected-area electron diffraction analyses. High-resolution liquid chromatography/electrospray ionization mass spectrometry revealed that the caffeic acid moiety of CGA forms quinone structure through a two-electron oxidation causing the reduction of Au(3+) to Au(0). When compared to CGA, CGA-AuNPs exhibited enhanced anti-inflammatory effects on NF-κB-mediated inflammatory network, as well as cell adhesion. Collectively, green synthesis of CGA-AuNPs using bioactive reductants and mechanistic studies based on mass spectrometry may open up new directions in nanomedicine and CGA-AuNPs can be an anti-inflammatory nanomedicine for future applications. Gold nanoparticles (Au NPs) have been shown to be very useful in many applications due to their easy functionalization capability. In this article, the authors demonstrated a novel method for the synthesis of gold nanoparticles using chlorogenic acid (CGA) as reductants. In-vitro experiments also confirmed biological activity of the resultant gold nanoparticles. Further in-vivo studies are awaited. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Size-dependent tissue kinetics of PEG-coated gold nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Wan-Seob; Department of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Korea Food and Drug Administration, Seoul 122-704; Cho, Minjung

    2010-05-15

    Gold nanoparticles (AuNPs) can be used in various biomedical applications, however, very little is known about their size-dependent in vivo kinetics. Here, we performed a kinetic study in mice with different sizes of PEG-coated AuNPs. Small AuNPs (4 or 13 nm) showed high levels in blood for 24 h and were cleared by 7 days, whereas large (100 nm) AuNPs were completely cleared by 24 h. All AuNPs in blood re-increased at 3 months, which correlated with organ levels. Levels of small AuNPs were peaked at 7 days in the liver and spleen and at 1 month in the mesentericmore » lymph node, and remained high until 6 months, with slow elimination. In contrast, large AuNPs were taken up rapidly (approx 30 min) into the liver, spleen, and mesenteric lymph nodes with less elimination phase. TEM showed that AuNPs were entrapped in cytoplasmic vesicles and lysosomes of Kupffer cells and macrophages of spleen and mesenteric lymph node. Small AuNPs transiently activated CYP1A1 and 2B, phase I metabolic enzymes, in liver tissues from 24 h to 7 days, which mirrored with elevated gold levels in the liver. Large AuNPs did not affect the metabolic enzymes. Thus, propensity to accumulate in the reticuloendothelial organs and activation of phase I metabolic enzymes, suggest that extensive further studies are needed for practical in vivo applications.« less

  18. Nonenzymatic free-cholesterol detection via a modified highly sensitive macroporous gold electrode with platinum nanoparticles.

    PubMed

    Lee, Yi-Jae; Park, Jae-Yeong

    2010-12-15

    A sensitive macroporous Au electrode with a highly rough surface obtained through the use of with Pt nanoparticles (macroporous Au-/nPts) is reported. It has been designed for nonenzymatic free-cholesterol biosensor applications. A macroporous Au-/nPts electrode was fabricated by electroplating Pt nanoparticles onto a coral-like shaped macroporous Au electrode structure. The macroporous Au-/nPts electrode was physically characterized by field emission scanning electron microscopy (FESEM). It was confirmed that the Pt nanoparticles were well deposited on the surface of the macroporous Au electrode. The porosity and window pore size of the macroporous Au electrode were 50% and 100-300 nm, respectively. The electroplated Pt nanoparticle size was approximately 10-20 nm. Electrochemical experiments showed that the macroporous Au-/nPts exhibited a much larger surface activation area (roughness factor (RF)=2024.7) than the macroporous Au electrode (RF=46.07). The macroporous Au-/nPts also presented a much stronger electrocatalytic activity towards cholesterol oxidation than does the macroporous Au electrode. At 0.2 V, the electrode responded linearly up to a 5 mM cholesterol concentration in a neutral media, with a detection limit of 0.015 mM and detection sensitivity of 226.2 μA mM(-1) cm(-2). Meanwhile, interfering species such as ascorbic acid (AA), acetaminophen (AP), and uric acid (UA), were effectively avoided. This novel nonenzymatic detection electrode has strong applications as an electrochemically based cholesterol biosensor. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: a randomized trial.

    PubMed

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2008-11-01

    The effect of combined cryotherapy/compression versus cryotherapy alone on the Achilles tendon is undetermined. Standardized combined cryotherapy/compression changes in midportion Achilles tendon microcirculation are superior to those with cryotherapy during intermittent application. Controlled laboratory study. Sixty volunteers were randomized for either combined cryotherapy/compression (Cryo/Cuff, DJO Inc, Vista, California: n = 30; 32 +/- 11 years) or cryotherapy alone (KoldBlue, TLP Industries, Kent, United Kingdom: n = 30; 33 +/- 12 years) with intermittent 3 x 10-minute application. Midportion Achilles tendon microcirculation was determined (O2C, LEA Medizintechnik, Giessen, Germany). Both Cryo/Cuff and KoldBlue significantly reduced superficial and deep capillary tendon blood flow within the first minute of application (43 +/- 46 arbitrary units [AU] vs 10 +/- 19 AU and 42 +/- 46 AU vs 12 +/- 10 AU; P = .0001) without a significant difference throughout all 3 applications. However, during recovery, superficial and deep capillary blood flow was reestablished significantly faster using Cryo/Cuff (P = .023). Tendon oxygen saturation was reduced in both groups significantly (3 minutes Cryo/Cuff: 36% +/- 20% vs 16% +/- 15%; KoldBlue: 42% +/- 19% vs 28% +/- 20%; P < .05) with significantly stronger effects using Cryo/Cuff (P = .014). Cryo/Cuff led to significantly higher tendon oxygenation (Cryo/Cuff: 62% +/- 28% vs baseline 36% +/- 20%; P = .0001) in superficial and deep tissue (Cryo/Cuff: 73% +/- 14% vs baseline 65% +/- 17%; P = .0001) compared with KoldBlue during all recoveries. Postcapillary venous filling pressures were significantly reduced in both groups during application; however, Cryo/Cuff led to significantly, but marginally, lower pressures (Cryo/Cuff: 41 +/- 7 AU vs baseline 51 +/- 13 AU; P = .0001 and KoldBlue: 46 +/- 7 AU vs baseline 56 +/- 11 AU; P = .026 for Cryo/Cuff vs KoldBlue). Increased tendon oxygenation is achieved as tendon preconditioning by combined cryotherapy and compression with significantly increased tendon oxygen saturation during recovery in contrast to cryotherapy alone. Both regimens lead to a significant amelioration of tendinous venous outflow. Combined cryotherapy and compression is superior to cryotherapy alone regarding the Achilles tendon microcirculation. Further studies in tendinopathy and tendon rehabilitation are warranted to elucidate its value regarding functional issues.

  20. A combined source and site-effect study of ground motions generated by an earthquake in Port au Prince (Haiti)

    NASA Astrophysics Data System (ADS)

    St Fleur, Sadrac; Courboulex, Francoise; Bertrand, Etienne; Deschamps, Anne; Mercier de Lepinay, Bernard; Prepetit, Claude; Hough, Suzan

    2013-04-01

    We present the preliminary results of a study with the aim of understanding how some combinations of source and site effects can generate extreme ground motions in the city of Port au Prince. For this study, we have used the recordings of several tens of earthquakes with magnitude larger than 3.0 at 3 to 14 stations from three networks: 3 stations of the Canadian Broad-band network (RNCan), 2 stations of the educational French network (SaE) and 9 stations of the accelerometric network (Bureau des Mines et de l'Energie of Port au Prince and US Geological survey). In order to estimate site effects under each station, we have applied classical spectral ratio methods: The H/V (Horizontal/Vertical) method was first used to select a reference station, which was itself used in a site/reference method. Because a true reference station was not available, we have used successively stations HCEA, then station PAPH, then an average value of 3 stations. In the frequency range studied (0.5 - 20 Hz), we found a site-to-reference ratio up to 3 to 8. However, these values present a large variability, depending on the earthquake recordings. This may indicate that the observed amplification from one station to the other depends not only from the local site effect but also from the source. We then used the same earthquake recordings as Empirical Green's Functions (EGF) in order to simulate the ground motions generated by a virtual earthquake. For this simulation, we have used a stochastic EGF summation method. We have worked on the simulation of a magnitude Mw=6.8 using successively 2 smaller events that occurred on the Leogane fault as EGF. The results obtained using the two events are surprisingly very different. Using the first EGF, we obtained almost the same ground motion values at each station in Port au Prince, whereas with the second EGF, the results highlight large differences. The large variability obtained in the results indicates that a particular combination of site and source effects may be responsible of large ground motions, especially at some given sites.

  1. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.

    PubMed

    Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng

    2013-01-01

    Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.

  2. A nanocomposite of Au-AgI core/shell dimer as a dual-modality contrast agent for x-ray computed tomography and photoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orza, Anamaria; Wu, Hui; Li, Yuancheng

    Purpose: To develop a core/shell nanodimer of gold (core) and silver iodine (shell) as a dual-modal contrast-enhancing agent for biomarker targeted x-ray computed tomography (CT) and photoacoustic imaging (PAI) applications. Methods: The gold and silver iodine core/shell nanodimer (Au/AgICSD) was prepared by fusing together components of gold, silver, and iodine. The physicochemical properties of Au/AgICSD were then characterized using different optical and imaging techniques (e.g., HR- transmission electron microscope, scanning transmission electron microscope, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, Z-potential, and UV-vis). The CT and PAI contrast-enhancing effects were tested and then compared with a clinically used CT contrast agentmore » and Au nanoparticles. To confer biocompatibility and the capability for efficient biomarker targeting, the surface of the Au/AgICSD nanodimer was modified with the amphiphilic diblock polymer and then functionalized with transferrin for targeting transferrin receptor that is overexpressed in various cancer cells. Cytotoxicity of the prepared Au/AgICSD nanodimer was also tested with both normal and cancer cell lines. Results: The characterizations of prepared Au/AgI core/shell nanostructure confirmed the formation of Au/AgICSD nanodimers. Au/AgICSD nanodimer is stable in physiological conditions for in vivo applications. Au/AgICSD nanodimer exhibited higher contrast enhancement in both CT and PAI for dual-modality imaging. Moreover, transferrin functionalized Au/AgICSD nanodimer showed specific binding to the tumor cells that have a high level of expression of the transferrin receptor. Conclusions: The developed Au/AgICSD nanodimer can be used as a potential biomarker targeted dual-modal contrast agent for both or combined CT and PAI molecular imaging.« less

  3. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.

    PubMed

    Lachaine, Rémi; Boutopoulos, Christos; Lajoie, Pierre-Yves; Boulais, Étienne; Meunier, Michel

    2016-05-11

    Metallic nanoparticles are routinely used as nanoscale antenna capable of absorbing and converting photon energy with subwavelength resolution. Many applications, notably in nanomedicine and nanobiotechnology, benefit from the enhanced optical properties of these materials, which can be exploited to image, damage, or destroy targeted cells and subcellular structures with unprecedented precision. Modern inorganic chemistry enables the synthesis of a large library of nanoparticles with an increasing variety of shapes, composition, and optical characteristic. However, identifying and tailoring nanoparticles morphology to specific applications remains challenging and limits the development of efficient nanoplasmonic technologies. In this work, we report a strategy for the rational design of gold plasmonic nanoshells (AuNS) for the efficient ultrafast laser-based nanoscale bubble generation and cell membrane perforation, which constitute one of the most crucial challenges toward the development of effective gene therapy treatments. We design an in silico rational design framework that we use to tune AuNS morphology to simultaneously optimize for the reduction of the cavitation threshold while preserving the particle structural integrity. Our optimization procedure yields optimal AuNS that are slightly detuned compared to their plasmonic resonance conditions with an optical breakdown threshold 30% lower than randomly selected AuNS and 13% lower compared to similarly optimized gold nanoparticles (AuNP). This design strategy is validated using time-resolved bubble spectroscopy, shadowgraphy imaging and electron microscopy that confirm the particle structural integrity and a reduction of 51% of the cavitation threshold relative to optimal AuNP. Rationally designed AuNS are finally used to perforate cancer cells with an efficiency of 61%, using 33% less energy compared to AuNP, which demonstrate that our rational design framework is readily transferable to a cell environment. The methodology developed here thus provides a general strategy for the systematic design of nanoparticles for nanomedical applications and should be broadly applicable to bioimaging and cell nanosurgery.

  4. Functional Nanomaterials for Environmental Applications and Bioassemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Michelle Anne

    The rational design of nanomaterials has yielded new technologies that have revolutionized numerous diverse fields. The work detailed herein first describes the application of photocatalytic nanomaterials towards the environmental remediation of harmful toxins. Specifically, a low-temperature solution-phase synthetic route for size-controlled Cu2O octahedra particles was developed, and these materials were evaluated as catalysts for the photocatalytic degradation of aromatic organic compounds. Moreover, cubic Cu2O/Pd composite structures were fabricated and demonstrated to be effective photocatalysts for the generation of H2 and the reductive dehalogenation of polychlorinated biphenyls, well-known carcinogens present at many contaminated sites around the world. This photocatalytic approach to environmental remediation exemplifies the adaptation of light-driven technologies and sustainable practices to energy-intensive catalytic systems. In addition, this work also investigates the organic/inorganic interface of peptide-mediated Au nanoparticles as a means to identify rational design principles for materials binding peptide sequences for the advancement of stimuli-responsive bionanoassemblies. Factors inherent to peptide sequences that can promote strong materials-binding affinity and/or effective nanoparticle stabilization capability were identified in order to progress biomimetic technologies. These findings were elucidated using a combinational approach of peptide binding experiments to Au in partnership with molecular dynamics simulations. Overall, this work demonstrates the growing applications of nanomaterials in remediation technologies and aids in the understanding of the origins of peptide material affinity and nanoparticle stabilization.

  5. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    NASA Astrophysics Data System (ADS)

    Pretzer, Lori A.

    Transition metal nanomaterials are used to catalyze many chemical reactions, including those key to environmental, medicinal, and petrochemical fields. Improving their catalytic properties and lifetime would have significant economic and environmental rewards. Potentially expedient options to make such advancements are to alter the shape, size, or composition of transition metal nanocatalysts. This work investigates the relationships between structure and catalytic properties of synthesized Au, Pd-on-Au, and Au-enzyme model transition metal nanocatalysts. Au and Pd-on-Au nanomaterials were studied due to their wide-spread application and structure-dependent electronic and geometric properties. The goal of this thesis is to contribute design procedures and synthesis methods that enable the preparation of more efficient transition metal nanocatalysts. The influence of the size and composition of Pd-on-Au nanoparticles (NPs) was systematically investigated and each was found to affect the catalyst's surface structure and catalytic properties. The catalytic hydrodechlorination of trichloroethene and reduction of 4-nitrophenol by Pd-on-Au nanoparticles were investigated as these reactions are useful for environmental and pharmaceutical synthesis applications, respectively. Structural characterization revealed that the dispersion and oxidation state of surface Pd atoms are controlled by the Au particle size and concentration of Pd. These structural changes are correlated with observed Pd-on-Au NP activities for both probe reactions, providing new insight into the structure-activity relationships of bimetallic nanocatalysts. Using the structure-dependent electronic properties of Au NPs, a new type of light-triggered biocatalyst was prepared and used to remotely control a model biochemical reaction. This biocatalyst consists of a model thermophilic glucokinase enzyme covalently attached to the surface of Au nanorods. The rod-like shape of the Au nanoparticles made the thermophilic-enzyme complexes responsive to near infrared electromagnetic radiation, which is absorbed minimally by biological tissues. When enzyme-Au nanorod complexes are illuminated with a near-infrared laser, thermal energy is generated which activates the thermophilic enzyme. Enzyme-Au nanorod complexes encapsulated in calcium alginate are reusable and stable for several days, making them viable for industrial applications. Lastly, highly versatile Au nanoparticles with diameters of ~3-12 nm were prepared using carbon monoxide (CO) to reduce a Au salt precursor onto preformed catalytic Au particles. Compared to other reducing agents used to generate metallic NPs, CO can be used at room temperature and its oxidized form does not interfere with the colloidal stability of NPs suspended in water. Controlled synthesis of different sized particles was verified through detailed ultraviolet-visible spectroscopy, small angle X-ray scattering, and transmission electron microscopy measurements. This synthesis method should be extendable to other monometallic and multimetallic compositions and shapes, and can be improved by using preformed particles with a narrower size distribution.

  6. Wide-range tuning of the surface plasmon resonance of silver/gold core shell and alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Hubenthal, Frank; Ziegler, Torsten; Hendrich, Christian; Träger, Frank

    2004-03-01

    For many applications like surface enhanced Raman scattering in which the optical field enhancement associated with surface plasmon excitation is exploited, tunability of this collective resonance over a wide range is required. For this purpose we have prepared Ag/Au core shell and Ag/Au alloyed nanoparticles with different shell thicknesses and different percentages of the two metals. The nanoparticles were made by subsequent deposition of Ag and Au atoms on dielectric substrates followed by diffusion and nucleation or heat treatment. Depending on the Au shell thickness the plasmon frequency can be tuned, e.g. from 2.8 eV (442 nm) to 2.1 eV (590 nm). Annealing of the core-shell nanoparticles causes a shift of the resonance frequency to 2.6 eV. Theoretical modelling allows us to attribute this observation to the production of alloyed nanoparticles. Possible application of the Ag/Au nanoparticles will be discussed.

  7. Gold Aerogels: Three-Dimensional Assembly of Nanoparticles and Their Use as Electrocatalytic Interfaces

    PubMed Central

    2016-01-01

    Three-dimensional (3D) porous metal nanostructures have been a long sought-after class of materials due to their collective properties and widespread applications. In this study, we report on a facile and versatile strategy for the formation of Au hydrogel networks involving the dopamine-induced 3D assembly of Au nanoparticles. Following supercritical drying, the resulting Au aerogels exhibit high surface areas and porosity. They are all composed of porous nanowire networks reflecting in their diameters those of the original particles (5–6 nm) via electron microscopy. Furthermore, electrocatalytic tests were carried out in the oxidation of some small molecules with Au aerogels tailored by different functional groups. The beta-cyclodextrin-modified Au aerogel, with a host–guest effect, represents a unique class of porous metal materials of considerable interest and promising applications for electrocatalysis. PMID:26751502

  8. One-step synthesis of large-scale graphene film doped with gold nanoparticles at liquid-air interface for electrochemistry and Raman detection applications.

    PubMed

    Zhang, Panpan; Huang, Ying; Lu, Xin; Zhang, Siyu; Li, Jingfeng; Wei, Gang; Su, Zhiqiang

    2014-07-29

    We demonstrated a facile one-step synthesis strategy for the preparation of a large-scale reduced graphene oxide multilayered film doped with gold nanoparticles (RGO/AuNP film) and applied this film as functional nanomaterials for electrochemistry and Raman detection applications. The related applications of the fabricated RGO/AuNP film in electrochemical nonenzymatic H2O2 biosensor, electrochemical oxygen reduction reaction (ORR), and surface-enhanced Raman scattering (SERS) detection were investigated. Electrochemical data indicate that the H2O2 biosensor fabricated by RGO/AuNP film shows a wide linear range, low limitation of detection, high selectivity, and long-term stability. In addition, it was proved that the created RGO/AuNP film also exhibits excellent ORR electrochemical catalysis performance. The created RGO/AuNP film, when serving as SERS biodetection platform, presents outstanding performances in detecting 4-aminothiophenol with an enhancement factor of approximately 5.6 × 10(5) as well as 2-thiouracil sensing with a low concentration to 1 μM. It is expected that this facile strategy for fabricating large-scale graphene film doped with metallic nanoparticles will spark inspirations in preparing functional nanomaterials and further extend their applications in drug delivery, wastewater purification, and bioenergy.

  9. Aptamer functionalized noble metal particles for bioanalytical and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yasun, Emir

    Noble metal particles, especially gold (Au) and silver (Ag) have been exploited in a broad range of biological applications due to their unique intrinsic features that depend on their physical appearance or optoelectronic properties, which can be tuned with the change in the size or shape of those particles. Thus, this tunability enables gold nanoparticles (AuNPs) to be used in biomedical diagnostic and therapeutical applications. In photothermal therapy applications, nanomaterials, which can absorb efficiently in NIR region, are utilized since the healthy tissue or cells can't absorb at this spectral region. Among AuNPs, gold nanorods (AuNRs) are one of the best candidates for hyperthermia therapy of cancer cells with their high absorption cross-sections and tunable absorption maxima in NIR region. When this unique optical property is combined with the specificity against cancer cells utilized by aptamer conjugations, AuNRs become to be one of the most important nanoparticles employed in both cancer cell sensing and therapy. However, one drawback of AuNRs is having the surfactant CTAB on their surface, which can cause nonspecificity and cytotoxicity. In this research, the side effects of CTAB are passivated by BSA modification, where the nonspecificity and cytotoxicity are dramatically decreased prior to the NIR treatment. Recognition of changes in the rare cancer protein abundances can lead the early diagnosis of cancer, so capturing these low abundance proteins has a great significance. In this research, firstly, aptamer conjugated AuNRs were used to capture 1ng of a-thrombin effectively from plasma samples as model system. Then both aptamer conjugated AuNRs and silver microspheres (SMSs) are used to capture the biomarker proteins of a colon cancer cell line, DLD-1. Gold and silver surfaces can easily be modified through thiolate chemistry, compared to the tedious modification steps for the magnetic particles, so more aptamer immobilization can be achieved for AuNRs and SMSs, which can increase the possibility of binding to the target protein. Furthermore, SMSs offer a novel separation method, gravitational separation owing to their heavy nature. In this way, there is no need for an external stimuli to separate the captured proteins and protein isolation can take only seconds.

  10. Developing on-site paper colorimetric monitoring technique for quick evaluating copper ion concentration in mineral wastewater

    NASA Astrophysics Data System (ADS)

    Liu, Guokun; Peng, Jingji; Zheng, Hong; Yuan, Dongxing

    2018-05-01

    With the reinforce of the copper mining, the on-site monitoring of the accompanied effluent discharge is highly demanded for the emergency response to minimize the negative effect of the effluent on the surrounding ecosystem. On the basis of the specific interaction between Cu2+ and L-Cysteine (L-Cys), which was modified on gold nanoparticles (Au NPs), and the aggregation dependent surface plasmon resonance (SPR) of Au NPs, we developed an easy-on-going paper colorimetric method for the quick evaluating the copper ion concentration in the waste water excreted from the copper mine. The color change of L-Cys modified Au NPs (L-Cys-Au NPs)immobilized on a filter paper was very sensitive to the Cu2+ concentration and free of interference from other metal ions typically in waste water. The proposed paper colorimetry has the LOD of 0.09 mg/L and the linear range of 0.1-10 mg/L, respectively, with the RSD (n = 5) was 6.6% for 1 mg/L Cu2+ and 3.5% for 5 mg/L Cu2+. The quantitative analysis results for the mineral wastewater is in good agreement the China National Environmental Protection Standards HJ485-2009, which indicates the current method could be developed to the on-site detection technique for the emergency response in monitoring Cu2+ in industrial wastewater or polluted water.

  11. Corrosion resistance evaluation of Pd-free Ag-Au-Pt-Cu dental alloys.

    PubMed

    Fujita, Takeshi; Shiraishi, Takanobu; Takuma, Yasuko; Hisatsune, Kunihiro

    2011-01-01

    The corrosion resistance of nine experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.9% NaCl solution was investigated using cyclic voltammetry (CV), optical microscopy, and scanning electron microscopy (SEM). CV measurements revealed that the breakdown potential (E(bd)) and zero current potential (E(zc)) increased with increasing Au/(Au+Ag) atomic ratio. Thus, the Au/(Au+Ag) atomic ratio, but not the Cu content, influenced the corrosion resistance of Ag-Au-Pt-Cu alloys. After the forward scan of CV, both optical and scanning electron microscope images showed that in all the experimental alloys, the matrix phase was corroded but not the second phase. From corrosion resistance viewpoint, the Ag-Au-Pt-Cu alloys seemed to be suitable for clinical application.

  12. Global transcriptomic analysis of model human cell lines exposed to surface-modified gold nanoparticles: the effect of surface chemistry

    NASA Astrophysics Data System (ADS)

    Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J.

    2015-01-01

    Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected.Gold nanoparticles (Au NPs) are attractive for biomedical applications not only for their remarkable physical properties, but also for the ease of which their surface chemistry can be manipulated. Many applications involve functionalization of the Au NP surface in order to improve biocompatibility, attach targeting ligands or carry drugs. However, changes in cells exposed to Au NPs of different surface chemistries have been observed, and little is known about how Au NPs and their surface coatings may impact cellular gene expression. The gene expression of two model human cell lines, human dermal fibroblasts (HDF) and prostate cancer cells (PC3) was interrogated by microarray analysis of over 14 000 human genes. The cell lines were exposed to four differently functionalized Au NPs: citrate, poly(allylamine hydrochloride) (PAH), and lipid coatings combined with alkanethiols or PAH. Gene functional annotation categories and weighted gene correlation network analysis were used in order to connect gene expression changes to common cellular functions and to elucidate expression patterns between Au NP samples. Coated Au NPs affect genes implicated in proliferation, angiogenesis, and metabolism in HDF cells, and inflammation, angiogenesis, proliferation apoptosis regulation, survival and invasion in PC3 cells. Subtle changes in surface chemistry, such as the initial net charge, lability of the ligand, and underlying layers greatly influence the degree of expression change and the type of cellular pathway affected. Electronic supplementary information (ESI) available: UV-Vis spectra of Au NPs, the most significantly changed genes of HDF cells after Au NP incubation under GO accession number GO:0007049 ``cell cycle'', detailed information about the primer/probe sets used for RT-PCR validation of results. See DOI: 10.1039/c4nr05166a

  13. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition

    NASA Astrophysics Data System (ADS)

    Kim, Sun-I.; Thiyagarajan, Pradheep; Jang, Ji-Hyun

    2014-09-01

    In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g-1 at 1 A g-1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g-1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g-1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data.In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g-1 at 1 A g-1, which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g-1 and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g-1 and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02204a

  14. Structural and theoretical basis for ligand exchange on thiolate monolayer protected gold nanoclusters.

    PubMed

    Heinecke, Christine L; Ni, Thomas W; Malola, Sami; Mäkinen, Ville; Wong, O Andrea; Häkkinen, Hannu; Ackerson, Christopher J

    2012-08-15

    Ligand exchange reactions are widely used for imparting new functionality on or integrating nanoparticles into devices. Thiolate-for-thiolate ligand exchange in monolayer protected gold nanoclusters has been used for over a decade; however, a firm structural basis of this reaction has been lacking. Herein, we present the first single-crystal X-ray structure of a partially exchanged Au(102)(p-MBA)(40)(p-BBT)(4) (p-MBA = para-mercaptobenzoic acid, p-BBT = para-bromobenzene thiol) with p-BBT as the incoming ligand. The crystal structure shows that 2 of the 22 symmetry-unique p-MBA ligand sites are partially exchanged to p-BBT under the initial fast kinetics in a 5 min timescale exchange reaction. Each of these ligand-binding sites is bonded to a different solvent-exposed Au atom, suggesting an associative mechanism for the initial ligand exchange. Density functional theory calculations modeling both thiol and thiolate incoming ligands postulate a mechanistic pathway for thiol-based ligand exchange. The discrete modification of a small set of ligand binding sites suggests Au(102)(p-MBA)(44) as a powerful platform for surface chemical engineering.

  15. Carbon-Coated Gold Nanorods: A Facile Route to Biocompatible Materials for Photothermal Applications.

    PubMed

    Kaneti, Yusuf Valentino; Chen, Chuyang; Liu, Minsu; Wang, Xiaochun; Yang, Jia Lin; Taylor, Robert Allen; Jiang, Xuchuan; Yu, Aibing

    2015-11-25

    Gold nanorods and their core-shell nanocomposites have been widely studied because of their well-defined anisotropy and unique optical properties and applications. This study demonstrates a facile hydrothermal synthesis strategy for generating carbon coating on gold nanorods (AuNRs@C) under mild conditions (<200 °C), where the carbon shell is composed of polymerized sugar molecules (glucose). The structure and composition of the produced core-shell nanocomposites were characterized using advanced microscopic and spectroscopic techniques. The functional properties, particularly the photothermal and biocompatibility properties of the produced AuNRs@C, were quantified to assess their potential in photothermal hyperthermia. These AuNRs@C were tested in vitro (under representative treatment conditions) using near-infrared (NIR) light irradiation. It was found that the AuNRs produced here exhibit exemplary heat generation capability. Temperature changes of 10.5, 9, and 8 °C for AuNRs@C were observed with carbon shell thicknesses of 10, 17, and 25 nm, respectively, at a concentration of 50 μM, after 600 s of irradiation with a laser power of 0.17 W/cm(2). In addition, the synthesized AuNRs@C also exhibit good biocompatibility toward two soft tissue sarcoma cell lines (HT1080, a fibrosarcoma; and GCT, a fibrous histiocytoma). The cell viability study shows that AuNRs@C (at a concentration of <0.1 mg/mL) core-shell particles induce significantly lower cytotoxicity on both HT1080 and GCT cell lines, as compared with cetyltrimethylammonium bromide (CTAB)-capped AuNRs. Furthermore, similar to PEG-modified AuNRs, they are also safe to both HT1080 and GCT cell lines. This biocompatibility results from a surface full of -OH or -COH groups, which are suitable for linking and are nontoxic Therefore, the AuNRs@C represent a viable alternative to PEG-coated AuNRs for facile synthesis and improved photothermal conversion. Overall, these findings open up a new class of carbon-coated nanostructures that are biocompatible and could potentially be employed in a wide range of biomedical applications.

  16. Monolayer coated gold nanoparticles for delivery applications

    PubMed Central

    Rana, Subinoy; Bajaj, Avinash; Mout, Rubul; Rotello, Vincent M.

    2011-01-01

    Gold nanoparticles (AuNPs) provide attractive vehicles for delivery of drugs, genetic materials, proteins, and small molecules. AuNPs feature low core toxicity coupled with the ability to parametrically control particle size and surface properties. In this review, we focus on engineering of the AuNP surface monolayer, highlighting recent advances in tuning monolayer structures for efficient delivery of drugs and biomolecules. This review covers two broad categories of particle functionalization, organic monolayers and biomolecule coatings, and discusses their applications in drug, DNA/RNA, protein and small molecule delivery. PMID:21925556

  17. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat

    PubMed Central

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-01-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. PMID:23855320

  18. Genome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat.

    PubMed

    Ben-David, Smadar; Yaakov, Beery; Kashkush, Khalil

    2013-10-01

    Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, termed Au SINE, combined with computer-assisted analyses of the publicly available 454 pyrosequencing database of T. aestivum. In addition, we utilized site-specific PCR on 57 Au SINE insertions, transposon methylation display and transposon display on newly formed wheat polyploids to assess retrotranspositional activity, epigenetic status and genetic rearrangements in Au SINE, respectively. We retrieved 3706 different insertions of Au SINE from the 454 pyrosequencing database of T. aestivum, and found that most of the elements are inserted in A/T-rich regions, while approximately 38% of the insertions are associated with transcribed regions, including known wheat genes. We observed typical retrotransposition of Au SINE in the second generation of a newly formed wheat allohexaploid, and massive hypermethylation in CCGG sites surrounding Au SINE in the third generation. Finally, we observed huge differences in the copy numbers in diploid Triticum and Aegilops species, and a significant increase in the copy numbers in natural wheat polyploids, but no significant increase in the copy number of Au SINE in the first four generations for two of three newly formed allopolyploid species used in this study. Our data indicate that SINEs may play a prominent role in the genomic evolution of wheat through stress-induced activation. © 2013 Ben-Gurion University The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinhua; Zhou, Huaijuan; Qian, Shi

    Close-packed TiO{sub 2} nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO{sub 2} systems can effectively kill Staphylococcus aureus and Escherichia coli in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO{sub 2}, which makes bacteria steadily lose electrons until death. This work provides insights for the better understandingmore » and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.« less

  1. Cross-linked chitosan aerogel modified with Au: Synthesis, characterization and catalytic application.

    PubMed

    Keshipour, Sajjad; Mirmasoudi, Seyyedeh Sahra

    2018-09-15

    Dimercaprol as the chelating agent of Au(III) was loaded on chitosan aerogel. Dimercaprol supported on chitosan aerogel efficiently was complexed with Au(III). The new organometallic compound showed good catalytic activity in the oxidation reaction of some aliphatic alcohols, benzyl alcohol, and ethylbenzene. High conversions and excellent selectivities were obtained in the solvent-free oxidation reactions under mild reaction conditions. Also, turnover numbers were calculated for the oxidation reactions with 203, 134, 308, 282, 392, and 153 for 1-pentanol, 1-octanol, 2-propanol, 2-butanol, benzyl alcohol, and ethylbenzene, respectively. The organometallic compound is applicable as a heterogeneous Au(III) catalyst with high chemical stabilityand recyclability up to 6 times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Control of average spacing of OMCVD grown gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Rezaee, Asad

    Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by using surface characterization methods such as contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectroscopy (RBS), UV-Visible spectroscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Keywords: Absorption, Array, Average Spacing, Binary Mixture, Density, Deposition, Dose, Fm, Gold Nanoparticle, Growth, Ion Irradiation, LSPR, Nanolithography, Nearest Neighbour Distance, OMCVD, Optical Response, OTS, Polarization, Refilling, Resist, SAM, Self-assembly, SEM Image Analysis, Sensing, Surface, Thin Film, Transparent Substrate.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Yeung-Pil; Kim, Jae-Hong; Ahn, Kwang-Soon, E-mail: kstheory@ynu.ac.kr

    Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO{sub 2} (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Aumore » particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of S{sub n}{sup 2− }+ 2e{sup −} (CE) → S{sub n−1}{sup 2−} + S{sup 2−} at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, S{sub n}{sup 2− }+ 2e{sup −} (TiO{sub 2} in the photoanode) → S{sub n-1}{sup 2−} + S{sup 2−}, and significantly improved overall energy conversion efficiency.« less

  4. Calculations of the thermal and fast neutron fluxes in the Syrian miniature neutron source reactor using the MCNP-4C code.

    PubMed

    Khattab, K; Sulieman, I

    2009-04-01

    The MCNP-4C code, based on the probabilistic approach, was used to model the 3D configuration of the core of the Syrian miniature neutron source reactor (MNSR). The continuous energy neutron cross sections from the ENDF/B-VI library were used to calculate the thermal and fast neutron fluxes in the inner and outer irradiation sites of MNSR. The thermal fluxes in the MNSR inner irradiation sites were also measured experimentally by the multiple foil activation method ((197)Au (n, gamma) (198)Au and (59)Co (n, gamma) (60)Co). The foils were irradiated simultaneously in each of the five MNSR inner irradiation sites to measure the thermal neutron flux and the epithermal index in each site. The calculated and measured results agree well.

  5. Bonding properties of FCC-like Au 44 (SR) 28 clusters from X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Rui; Chevrier, Daniel M.; Zeng, Chenjie

    Thiolate-protected gold clusters with precisely controlled atomic composition have recently emerged as promising candidates for a variety of applications because of their unique optical, electronic, and catalytic properties. The recent discovery of the Au44(SR)28 total structure is considered as an interesting finding in terms of the face-centered cubic (FCC)-like core structure in small gold-thiolate clusters. Herein, the unique bonding properties of Au44(SR)28 is analyzed using temperature-dependent X-ray absorption spectroscopy (XAS) measurements at the Au L3-edge and compared with other FCC-like clusters such as Au36(SR)24 and Au28(SR)20. A negative thermal expansion was detected for the Au–Au bonds of the metal coremore » (the first Au–Au shell) and was interpreted based on the unique Au core structure consisting of the Au4 units. EXAFS fitting results from Au28(SR)20, Au36(SR)24, and Au44(SR)28 show a size-dependent negative thermal expansion behavior in the first Au–Au shell, further highlighting the importance of the Au4 units in determining the Au core bonding properties and shedding light on the growth mechanism of these FCC-like Au clusters.« less

  6. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  7. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.

    PubMed

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-18

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10 -9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  8. Effect of tautomerism on Au-6-mercaptopurine nanocluster stability

    NASA Astrophysics Data System (ADS)

    Rashidpour, Neda; Kashid, Vikas; Shah, Vaishali

    2013-02-01

    We have investigated the stability of conjugated nanoparticles of Au-6-Mercaptopurine (6-MP) using ab initio density functional theory. We have studied the conjugation of the 6 tautomers of 6-MP via the different atomic sites with the gold nanoparticles. Our results show that the least stable tautomer has the strongest adsorption with the Au nanoparticles whereas the most stable tautomer has the weakest adsorption. We will discuss our results to explain the experimentally observed increased plasma half life time of the conjugated drug in vitro.

  9. Atomistic insight into the adsorption site selectivity of stepped Au(111) surfaces

    NASA Astrophysics Data System (ADS)

    Gaspari, Roberto; Pignedoli, Carlo A.; Fasel, Roman; Treier, Matthias; Passerone, Daniele

    2010-07-01

    Using classical and ab initio simulations, we study the interplay between the Au(111) surface reconstruction and monoatomic steps on a vicinal face. The experimentally observed discommensuration line patterns on a specific vicinal are reproduced and explained, and a complete description of the structure is given. An unusual atomic arrangement is shown to be responsible for the lower reactivity of hcp segments of step edges compared to the one of fcc segments. Our results provide an unprecedented understanding of the electronic and geometric properties of the complex Au(111) surface.

  10. Transport characteristics in Au/pentacene/Au diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Toshiaki; Naka, Akiyoshi; Hiroki, Masanobu; Yokota, Tomoyuki; Someya, Takao; Fujiwara, Akira

    2018-03-01

    We have used scanning and transmission electron microscopes (SEM and TEM) to study the structure of a pentacene thin film grown on a Au layer with and shown that it consists of randomly oriented amorphous pentacene clusters. We have also investigated the transport properties of amorphous pentacene in a metal-semiconductor-metal (MSM) diode structure and shown that the current is logarithmically proportional to the square root of the applied voltage, which indicates that transport occurs as the result of hopping between localized sites randomly distributed in space and energy.

  11. One pot environmental friendly synthesis of gold nanoparticles using Punica Granatum Juice: A novel antioxidant agent for future dermatological and cosmetic applications.

    PubMed

    Gubitosa, Jennifer; Rizzi, Vito; Lopedota, Angela; Fini, Paola; Laurenzana, Anna; Fibbi, Gabriella; Fanelli, Fiorenza; Petrella, Andrea; Laquintana, Valentino; Denora, Nunzio; Comparelli, Roberto; Cosma, Pinalysa

    2018-07-01

    The interesting properties of Gold Nanoparticles (AuNPs) make them attractive for different application fields such as cosmetology, medicine and clinical nanotechnologies. In this work a fast, easy and eco-friendly method for the AuNPs synthesis is proposed by using the Punica Granatum Juice (PGJ) with potential dermatological and cosmetic applications. The AuNPs antioxidant activity, due to the presence of phenols from the juice, and their use as booster for improving the Sun Protection Factor (SPF) in commercial sunscreen formulations, are thus expounded. By using appropriate amounts of PGJ and HAuCl 4 , under mild work conditions, AuNPs with a mean size of 100 ± 40 nm are observed and carefully characterized. Solution pH, temperature, and volume were also changed for optimizing the AuNPs formation and features. The antioxidant activity was studied, by evaluating the AuNP ability of scavenging the radical 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH). This finding was confirmed performing special experiments focused on the reaction between AuNPs and H 2 O 2 , by using suitable probes, such as 4-thiothymidine (S 4 TdR) and Cytochrome-c (Cyt-c). The SPF value was also calculated. The synthetized AuNPs showed a surface plasmon in visible range at 577 nm and resulted stable for long time in aqueous medium, also changing the pH values in the range 2-12. The studied antioxidant activity, confirmed also by performing special experiments with suitable probes, demonstrated the high performance of AuNPs. The AuNP photostability under sun irradiation is also shown. The calculated SPF values were in the range 3-18, related to AuNPs concentration in the range 1.80 × 10 -12 -1.00 × 10 -11  M. The same AuNPs concentrations were used for cellular experiments. Indeed, since the AuNPs-PGJ mediated will be potentially introduced by dermal contact, dermal fibroblasts (Human Dermal Fibroblasts, HDF) and Human Microvascular Endothelial Cells (HMVEC) were used to evaluate the possible effects of these nanoparticles as a preliminary step. The results indicated that an AuNP concentrations in the range 1.80 × 10 -12 -3.60 × 10 -12  M could be adopted since they do not appeared cyctotoxic. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  13. Gold Nanocages for Biomedical Applications**

    PubMed Central

    Skrabalak, Sara E.; Chen, Jingyi; Au, Leslie; Lu, Xianmao; Li, Xingde; Xia, Younan

    2008-01-01

    Nanostructured materials provide a promising platform for early cancer detection and treatment. Here we highlight recent advances in the synthesis and use of Au nanocages for such biomedical applications. Gold nanocages represent a novel class of nanostructures, which can be prepared via a remarkably simple route based on the galvanic replacement reaction between Ag nanocubes and HAuCl4. The Au nanocages have a tunable surface plasmon resonance peak that extends into the near-infrared, where the optical attenuation caused by blood and soft tissue is essentially negligible. They are also biocompatible and present a well-established surface for easy functionalization. We have tailored the scattering and absorption cross-sections of Au nanocages for use in optical coherence tomography and photothermal treatment, respectively. Our preliminary studies show greatly improved spectroscopic image contrast for tissue phantoms containing Au nanocages. Our most recent results also demonstrate the photothermal destruction of breast cancer cells in vitro by using immuno-targeted Au nanocages as an effective photo-thermal transducer. These experiments suggest that Au nanocages may be a new class of nanometer-sized agents for cancer diagnosis and therapy. PMID:18648528

  14. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  15. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Detailed analysis of stem I and its 5' and 3' neighbor regions in the trans-acting HDV ribozyme.

    PubMed Central

    Nishikawa, F; Roy, M; Fauzi, H; Nishikawa, S

    1999-01-01

    To determine the stem I structure of the human hepatitis delta virus (HDV) ribozyme, which is related to the substrate sequence in the trans -acting system, we kinetically studied stem I length and sequences. Stem I extension from 7 to 8 or 9 bp caused a loss of activity and a low amount of active complex with 9 bp in the trans -acting system. In a previous report, we presented cleavage in a 6 bp stem I. The observed reaction rates indicate that the original 7 bp stem I is in the most favorable location for catalytic reaction among the possible 6-8 bp stems. To test base specificity, we replaced the original GC-rich sequence in stem I with AU-rich sequences containing six AU or UA base pairs with the natural +1G.U wobble base pair at the cleavage site. The cis -acting AU-rich molecules demonstrated similar catalytic activity to that of the wild-type. In trans -acting molecules, due to stem I instability, reaction efficiency strongly depended on the concentration of the ribozyme-substrate complex and reaction temperature. Multiple turnover was observed at 37 degreesC, strongly suggesting that stem I has no base specificity and more efficient activity can be expected under multiple turnover conditions by substituting several UA or AU base pairs into stem I. We also studied the substrate damaging sequences linked to both ends of stem I for its development in therapeutic applications and confirmed the functions of the unique structure. PMID:9862958

  17. Synthesis of graphenized Au/ZnO plasmonic nanocomposites for simultaneous sunlight mediated photo-catalysis and anti-microbial activity.

    PubMed

    Juneja, Subhavna; Madhavan, Ashwathi Asha; Ghosal, Anujit; Ghosh Moulick, Ranjita; Bhattacharya, Jaydeep

    2018-04-05

    Sunlight mediated photo-degradation and anti-bacterial activity of hetero junctioned plasmonic binary (Au/ZnO, RGO/ZnO) and ternary (RGO/Au/ZnO) nanocomposites (NC) have been reported. Higher photo-charge carrier generation, increased charge separation, improved active sites for catalysis, enhanced LSPR and larger photo-response regions have been achieved. Decoration with Au nanoparticles (ca. 11 ± 3 and 48 ± 5 nm) and RGO of ZnO (3D/1D) microstructures (aspect ratio 15.18) provides ternary NCs an edge over mono/bi component catalysts. The ternary NC have shown improved dye degradation capacity with 100% efficiency (5 μM MB solution) and average adsorption degradation capacity (Q°) of 83.34 mg/g within 30 min of sunlight exposure (900 ± 30 Wm -2 ). Elaborated studies by varying reaction parameters like initial dye concentration, contact time, type of NCs and initial loading of NCs reveals pseudo first order degradation kinetics. 100% microbial killing of Gram positive S.aureus strain with 60 μg/ml of NC using sunlight as activator has proven the simultaneous multiple functionality of the NC. Further, facile green one pot hydrothermal synthesis with water as reaction medium, absence of photo-corrosion of NCs, regeneration ability (ca. 90% for 10 μM solution) of NCs, projects a broader potential application of the synthesized NCs and could reduce the continuous requirement of such material, limiting the environmental toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Multifunctional gold nanoparticles for diagnosis and therapy of disease

    PubMed Central

    Mieszawska, Aneta J.; Mulder, Willem J. M.; Fayad, Zahi A.

    2013-01-01

    Gold nanoparticles (AuNPs) have a number of physical properties that make them appealing for medical applications. For example, the attenuation of X-rays by gold nanoparticles has led to their use in computed tomography imaging and as adjuvants for radiotherapy. AuNPs have numerous other applications in imaging, therapy and diagnostic systems. The advanced state of synthetic chemistry of gold nanoparticles offers precise control over physicochemical and optical properties. Furthermore gold cores are inert and are considered to be biocompatible and non-toxic. The surface of gold nanoparticles can easily be modified for a specific application and ligands for targeting, drugs or biocompatible coatings can be introduced. AuNPs can be incorporated into larger structures such as polymeric nanoparticles or liposomes that deliver large payloads for enhanced diagnostic applications, efficiently encapsulate drugs for concurrent therapy or add additional imaging labels. This array of features has led to the afore-mentioned applications in biomedical fields, but more recently in approaches where multifunctional gold nanoparticles are used for multiple methods, such as concurrent diagnosis and therapy, so called theranostics. The following review covers basic principles and recent findings in gold nanoparticle applications for imaging, therapy and diagnostics, with a focus on reports of multifunctional AuNPs. PMID:23360440

  19. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: an intra-subject, randomized, assessor-blinded study.

    PubMed

    Milani, Massimo; Sparavigna, Adele

    2017-01-01

    Moisturizing products are commonly used to improve hydration in skin dryness conditions. However, some topical hydrating products could have negative effects on skin barrier function. In addition, hydrating effects of moisturizers are not commonly evaluated up to 24 hours after a single application. Hyaluronic acid (HA) and glycerin are very well-known substances able to improve skin hydration. Centella asiatica extract (CAE) could exert lenitive, anti-inflammatory and reepithelialization actions. Furthermore, CAE could inhibit hyaluronidase enzyme activity, therefore prolonging the effect of HA. A fluid containing HA 1%, glycerin 5% and stem cells CAE has been recently developed (Jaluronius CS [JCS] fluid). To evaluate and compare the 24-hour effects of JCS fluid on skin hydration and on transepidermal water loss (TEWL) in healthy subjects in comparison with the control site. Twenty healthy women, mean age 40 years, were enrolled in an intra-subject (right vs left), randomized, assessor-blinded, controlled, 1-day trial. The primary end points were the skin hydration and TEWL, evaluated at the volar surface of the forearm and in standardized conditions (temperature- and humidity-controlled room: 23°C and 30% of humidity) using a corneometer and a vapometer device at baseline, 1, 8 and 24 hours after JCS fluid application. Measurements were performed by an operator blinded for the treatments. Skin hydration after 24 hours was significantly higher ( P =0.001; Mann-Whitney U test) in the JCS-treated area in comparison with the control site. JCS induced a significant ( P =0.0001) increase in skin hydration at each evaluation time (+59% after 1 hour, +48% after 8 hours and +29% after 24 hours) in comparison with both baseline ( P =0.0001) and non-treated control site ( P =0.001). TEWL after 24 hours was significantly lower ( P =0.049; Mann-Whitney U test) in the JCS-treated area in comparison with the control site (13±4 arbitrary units [AU] vs 16±6 AU). JCS fluid significantly reduced post-stripping TEWL in comparison with baseline after 1, 8 and 24 hours (-52%, -32% and -48%, respectively). In the control site, TEWL was not reduced in comparison with baseline values at each time point's evaluation. A single application of JCS significantly improves skin hydration for up to 24 hours at the same time as improving skin barrier function.

  1. Metal-Metal Interactions in Heterobimetallic Complexes with Dinucleating Redox-Active Ligands.

    PubMed

    Broere, Daniël L J; Modder, Dieuwertje K; Blokker, Eva; Siegler, Maxime A; van der Vlugt, Jarl Ivar

    2016-02-12

    The tuning of metal-metal interactions in multinuclear assemblies is a challenge. Selective P coordination of a redox-active PNO ligand to Au(I) followed by homoleptic metalation of the NO pocket with Ni(II) affords a unique trinuclear Au-Ni-Au complex. This species features two antiferromagnetically coupled ligand-centered radicals and a double intramolecular d(8)-d(10) interaction, as supported by spectroscopic, single-crystal X-ray diffraction, and computational data. A corresponding cationic dinuclear Au-Ni analogue with a stronger d(8)-d(10) interaction is also reported. Although both heterobimetallic structures display rich electrochemistry, only the trinuclear Au-Ni-Au complex facilitates electrocatalytic C-X bond activation of alkyl halides in its doubly reduced state. Hence, the presence of a redox-active ligand framework, an available coordination site at gold, and the nature of the nickel-gold interaction appear to be essential for this reactivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polyaniline modified flexible conducting paper for cancer detection

    NASA Astrophysics Data System (ADS)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen; Augustine, Shine; Yadav, Birendra K.; Mishra, Sandeep; Malhotra, Bansi D.

    2016-05-01

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrode has sensitivity of 13.9 μA ng-1 ml cm2, shelf life of 22 days, and can be used to estimate CEA in the range of 2-20 ng ml-1. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.

  3. Role of size, composition and substrate in controlling the reactivity of α(0001)-Al2O3 supported AgnAum (n + m = 2 - 4) alloy clusters for CO-oxidation: A comprehensive density functional study

    NASA Astrophysics Data System (ADS)

    Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2018-03-01

    Catalytic efficiency of gas phase and alumina-supported bimetallic AgnAum (n + m = 2 - 4) alloy clusters is studied using density functional methods As a pre-requite, adsorption of O2 and CO molecules, and co-adsorption of both molecules on these clusters are studied in detail. O2 and CO are co-adsorbed on nearby sites on the gas phase tetramer clusters Ag2Au2 and Ag3Au. But their catalytic efficiency is hindered by large barriers (1.55 eV and 1.44 eV, respectively) to the breaking of Osbnd O bond. Among the deposited clusters, Ag2Au and AgAu2 have O2 and CO co-adsorbed on nearby locations. Of these two, Ag2Au has a lower kinetic barrier for subsequent CO2 formation. Thus Ag2Au looks the most promising candidate.

  4. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles.

    PubMed

    Baetsen-Young, Amy M; Vasher, Matthew; Matta, Leann L; Colgan, Phil; Alocilja, Evangelyn C; Day, Brad

    2018-03-15

    The interaction between gold nanoparticles (AuNPs) and nucleic acids has facilitated a variety of diagnostic applications, with further diversification of synthesis match bio-applications while reducing biotoxicity. However, DNA interactions with unique surface capping agents have not been fully defined. Using dextrin-capped AuNPs (d-AuNPs), we have developed a novel unamplified genomic DNA (gDNA) nanosensor, exploiting dispersion and aggregation characteristics of d-AuNPs, in the presence of gDNA, for sequence-specific detection. We demonstrate that d-AuNPs are stable in a five-fold greater salt concentration than citrate-capped AuNPs and the d-AuNPs were stabilized by single stranded DNA probe (ssDNAp). However, in the elevated salt concentrations of the DNA detection assay, the target reactions were surprisingly further stabilized by the formation of a ssDNAp-target gDNA complex. The results presented herein lead us to propose a mechanism whereby genomic ssDNA secondary structure formation during ssDNAp-to-target gDNA binding enables d-AuNP stabilization in elevated ionic environments. Using the assay described herein, we were successful in detecting as little as 2.94 fM of pathogen DNA, and using crude extractions of a pathogen matrix, as few as 18 spores/µL. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Development and Characterization of Liquid Crystal-Gold Nanoparticle Hybrid Materials for Optical Applications

    NASA Astrophysics Data System (ADS)

    Quint, Makiko T.

    Hybrid material, mixtures of two or more materials with new properties, represents an exciting class of new materials for a variety of potential applications such as displays, optoelectronics, and sensors due to their unique physical and optical properties. The scope of this dissertation is to produce two new plasmonic applications by combining liquid crystals with gold nanoparticles. The first application is gold nanoparticle coated liquid crystal thin film. Most liquid crystal (LC) thin films require external voltage to reorient LC molecules. Recent advances in optical controlling technology of LC molecule behavior, resulting in the reduction of energy consumption, have stimulated research and development of new LC thin films. In order to re-orient LC molecules by just using light, the common approach is to include either a photo-responsive LC host, one that require high power light and severely narrows the range of usable materials, or add photo-active dye or polymer layer, photodegradation over time. Our work designing an all-optical method for LC re-orientation that overcomes all the limitations mentioned above. We have successfully both in- and out-of-plane spatial orientation of nematic liquid crystal (LC) molecules by leveraging the highly localized electric fields produced in the near-field regime of a gold nanoparticle (AuNP) layer. This re-orientation of LC molecules in thin LC-AuNP film is all-optical, driven by a small resonance excitation power with the localized surface plasmon absorption of the AuNPs at room temperature. The second application is LC mediated nano-assembled gold microcapsules. This application has a potential in controlled-release cargo-style delivery system. Targeted delivery systems with controlled release mechanisms have been the subject of extensive research more than fifty years. One is to control the release process remotely by using optical excitation. Optical actuation of delivery capsules, which plasmonic nanoparticle such as gold, allows rapid release at specific locations and uses the photothermal effect to unload contents. Almost all gold-based delivery applications including Au coated nanocrystals or AuNPs with soft materials like gels and polymers are not suitable for control release applications in real life since these applications do not provide robust leakage-free containment lower than the American National Standards Institute (ANSI) maximum permissible light exposure limit. We have successfully managed the difficulties mentioned above and produced a new gold-based delivery application. The application is spherical capsules with a densely packed wall of AuNPs. The rigid capsule wall allows encapsulation of cargo that can be contained, virtually leakage-free, over several months. Further, by leveraging LSPR of AuNPs, we can rupture the microshells using optical excitation with ultralow power (< 2 mW), controllably and rapidly releasing the encapsulated contents in less than 5 seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances are a novel platform that combines controlled-release cargo-style delivery and photothermal therapy in one versatile and multifunctional unit. Both our applications are overcoming current limitations and promising future research directions towards the next generation of LC-AuNPs hybrid material research and developments.

  6. Radiotherapy Improvements by Using Au Nanoparticles.

    PubMed

    Torrisi, Lorenzo

    2015-01-01

    Au nanoparticles can be prepared inside biological solutions and incorporated in special molecules for their transport through blood, drugs and proteins up to the tumour sites or directly injected in their volume when it is possible. The Au nanoparticles are biocompatible and can be accepted locally in the organism also at relatively high concentrations. The use of Au nanoparticles injected in the tumour site enhances significantly the effective atomic number of the medium, depending on the used concentration, and consequently the proton and electron energy loss and the X-ray absorption coefficient determining an increment of the local absorbed dose during radiotherapy. Traditional radiotherapy using electrons, X-rays and gamma rays, and innovative protontherapy can benefit the increment of the effective atomic number of the tissue in the presence of Au-nanoparticles embedded in the tumour volume with an adaptive up-take procedure. This method decreases the dose released to the healthy tissues permitting a better cantering of the irradiated targets and shielding the healthy tissue placed behind the tumour. The presented theoretical study approach permits to evaluate an enhancement of the radiotherapy dose of the order of 1 % using 60 MeV protons, of the order of 10% using 6 MeV electrons and of the order of 100 % using 100 keV X-ray photons. Here, we also disccused for patents relaed to the topic.

  7. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE PAGES

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren; ...

    2016-01-26

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  8. Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Winget, Sarah A.; Wu, Yiren

    In this paper, we report a facile synthesis of Ag@Au concave cuboctahedra by titrating aqueous HAuCl4 into a suspension of Ag cuboctahedra in the presence of ascorbic acid (AA), NaOH, and poly(vinylpyrrolidone) (PVP) at room temperature. Initially, the Au atoms derived from the reduction of Au 3+ by AA are conformally deposited on the entire surface of a Ag cuboctahedron. Upon the formation of a complete Au shell, however, the subsequently formed Au atoms are preferentially deposited onto the Au{100} facets, resulting in the formation of a Ag@Au cuboctahedron with concave structures at the sites of {111} facets. The concavemore » cuboctahedra embrace excellent SERS activity that is more than 70-fold stronger than that of the original Ag cuboctahedra at an excitation wavelength of 785 nm. The concave cuboctahedra also exhibit remarkable stability in the presence of an oxidant such as H 2O 2 because of the protection by a complete Au shell. These two unique attributes enable in-situ SERS monitoring of the reduction of 4-nitrothiophenol (4-NTP) to 4-aminothiophenol (4-ATP) by NaBH4 through a 4,4'-dimercaptoazobenzene ( trans-DMAB) intermediate and the subsequent oxidation of 4-ATP back to trans-DMAB upon the introduction of H 2O 2.« less

  9. Water inhibits CO oxidation on gold cations in the gas phase. Structures and binding energies of the sequential addition of CO, H2O, O2, and N2 onto Au.

    PubMed

    Reveles, J Ulises; Saoud, Khaled M; El-Shall, M Samy

    2016-10-19

    We report a detailed experimental and theoretical study of the gas phase reactivity of Au + with CO, O 2 , N 2 and their mixtures in the presence of a trace amount of water impurity. The gold cation is found to strongly interact with CO and H 2 O molecules via successive addition reactions until reaching saturation. The stoichiometry of the formed complex is determined by the strength of the binding energy of the neutral molecule to the gold cation. CO binds the strongest to Au + , followed by H 2 O, N 2 and then O 2 . We found that the gold cation (Au + ) can activate the O 2 molecule within the Au + (CO) 2 (O 2 ) complex which could react with another CO molecule to form Au + (CO)(CO 2 ) + CO 2 . The product Au + (CO)(CO 2 ) is observed experimentally with a small intensity at room temperature. However, the presence of water leads to the formation of Au + (CO)(H 2 O)(O 2 ) instead of Au + (CO) 2 (O 2 ) due to the strong interaction between Au + and water. The current experiments and calculations might lead to a molecular level understanding of the interactions between the active sites, reactants and impurities which could pave the way for the design of efficient nanocatalysts.

  10. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  11. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    PubMed

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  12. Gold nanoparticles induce transcriptional activity of NF-κB in a B-lymphocyte cell line

    NASA Astrophysics Data System (ADS)

    Sharma, Monita; Salisbury, Richard L.; Maurer, Elizabeth I.; Hussain, Saber M.; Sulentic, Courtney E. W.

    2013-04-01

    Gold nanoparticles (Au-NPs) have been designated as superior tools for biological applications owing to their characteristic surface plasmon absorption/scattering and amperometric (electron transfer) properties, in conjunction with low or no immediate toxicity towards biological systems. Many studies have shown the ease of designing application-based tools using Au-NPs but the interaction of this nanosized material with biomolecules in a physiological environment is an area requiring deeper investigation. Immune cells such as lymphocytes circulate through the blood and lymph and therefore are likely cellular components to come in contact with Au-NPs. The main aim of this study was to mechanistically determine the functional impact of Au-NPs on B-lymphocytes. Using a murine B-lymphocyte cell line (CH12.LX), treatment with citrate-stabilized 10 nm Au-NPs induced activation of an NF-κB-regulated luciferase reporter, which correlated with altered B lymphocyte function (i.e. increased antibody expression). TEM imaging demonstrated that Au-NPs can pass through the cellular membrane and therefore could interact with intracellular components of the NF-κB signaling pathway. Based on the inherent property of Au-NPs to bind to -thiol groups and the presence of cysteine residues on the NF-κB signal transduction proteins IκB kinases (IKK), proteins specifically bound to Au-NPs were extracted from CH12.LX cellular lysate exposed to 10 nm Au-NPs. Electrophoresis identified several bands, of which IKKα and IKKβ were immunoreactive. Further evaluation revealed activation of the canonical NF-κB signaling pathway as evidenced by IκBα phosphorylation at serine residues 32 and 36 followed by IκBα degradation and increased nuclear RelA. Additionally, expression of an IκBα super-repressor (resistant to proteasomal degradation) reversed Au-NP-induced NF-κB activation. Altered NF-κB signaling and cellular function in B-lymphocytes suggests a potential for off-target effects with in vivo applications of gold nanomaterials and underscores the need for more studies evaluating the interactions of nanomaterials with biomolecules and cellular components.

  13. Experimental evidences of a large extrinsic spin Hall effect in AuW alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laczkowski, P.; Rojas-Sánchez, J.-C.; INAC/SP2M, CEA-Université Joseph Fourier, F-38054 Grenoble

    2014-04-07

    We report an experimental study of a gold-tungsten alloy (7 at. % W concentration in Au host) displaying remarkable properties for spintronics applications using both magneto-transport in lateral spin valve devices and spin-pumping with inverse spin Hall effect experiments. A very large spin Hall angle of about 10% is consistently found using both techniques with the reliable spin diffusion length of 2 nm estimated by the spin sink experiments in the lateral spin valves. With its chemical stability, high resistivity, and small induced damping, this AuW alloy may find applications in the nearest future.

  14. Synthesis and in vitro cellular interactions of superparamagnetic iron nanoparticles with a crystalline gold shell

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sulalit; Singh, Gurvinder; Sandvig, Ioanna; Sandvig, Axel; Mathieu, Roland; Anil Kumar, P.; Glomm, Wilhelm Robert

    2014-10-01

    Fe@Au core-shell nanoparticles (NPs) exhibit multiple functionalities enabling their effective use in applications such as medical imaging and drug delivery. In this work, a novel synthetic method was developed and optimized for the synthesis of highly stable, monodisperse Fe@Au NPs of average diameter ∼24 nm exhibiting magneto-plasmonic characteristics. Fe@Au NPs were characterized by a wide range of experimental techniques, including scanning (transmission) electron microscopy (S(T)EM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS) and UV-vis spectroscopy. The formed particles comprise an amorphous iron core with a crystalline Au shell of tunable thickness, and retain the superparamagnetic properties at room temperature after formation of a crystalline Au shell. After surface modification, PEGylated Fe@Au NPs were used for in vitro studies on olfactory ensheathing cells (OECs) and human neural stem cells (hNSCs). No adverse effects of the Fe@Au particles were observed post-labeling, both cell types retaining normal morphology, viability, proliferation, and motility. It can be concluded that no appreciable toxic effects on both cell types, coupled with multifunctionality and chemical stability make them ideal candidates for therapeutic as well as diagnostic applications.

  15. Catalytically active Au-O(OH) x- species stabilized by alkali ions on zeolites and mesoporous oxides

    DOE PAGES

    Yang, Ming; Li, Sha; Wang, Yuan; ...

    2014-11-27

    Here we report that the addition of alkali ions (sodium or potassium) to gold on KLTL-zeolite and mesoporous MCM-41 silica stabilizes mononuclear gold in Au-O(OH) x-(Na or K) ensembles. This single-site gold species is active for the low-temperature (<200°C) water-gas shift (WGS) reaction. Unexpectedly, gold is thus similar to platinum in creating –O linkages with more than eight alkali ions and establishing an active site on various supports. The intrinsic activity of the single-site gold species is the same on irreducible supports as on reducible ceria, iron oxide, and titania supports, apparently all sharing a common, similarly structured gold activemore » site. This finding paves the way for using earth-abundant supports to disperse and stabilize precious metal atoms with alkali additives for the WGS and potentially other fuel-processing reactions.« less

  16. Kinetic Monte Carlo study of vinyl acetate synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100)

    NASA Astrophysics Data System (ADS)

    Huang, Yanping; Dong, Xiuqin; Yu, Yingzhe; Zhang, Minhua

    2017-11-01

    On the basis of the activation barriers and reaction energies from DFT calculations, kinetic Monte Carlo (kMC) simulations of vinyl acetate (VA) synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100) were carried out. Through kMC simulation, it was found that VA synthesis from ethylene acetoxylation proceeds via Moiseev mechanism on both Pd(100) and Pd/Au(100). The addition of Au into Pd can suppress ethylene dehydrogenation while it can promote acetic acid dehydrogenation, which can eventually facilitate VA synthesis as a whole. The addition of Au into Pd can further improve the conversion and selectivity of VA synthesis from ethylene acetoxylation. When the reaction network is analyzed, besides the energetics of each elementary reaction, the surface coverage of each species and the occupancy of the surface sites on the catalyst should also be taken into consideration.

  17. Vitis vinifera peel and seed gold nanoparticles exhibit chemopreventive potential, antioxidant activity and induce apoptosis through mutant p53, Bcl-2 and pan cytokeratin down-regulation in experimental animals.

    PubMed

    Nirmala, J Grace; Narendhirakannan, R T

    2017-05-01

    Several studies suggest surface modifications of gold nanoparticles (AuNPs) by capping agents or surface coatings could play an important role in biological systems, and site directed delivery. The present study was carried out to assess the antioxidant and apoptotic activities of the Vitis vinifera peel and seed gold nanoparticles in experimentally induced cancer in Swiss albino mice. 12-dimethylbenz [a] anthracene (DMBA) (single application) and 12-O-tetradecanoylphorbol 13-acetate (TPA) (thrice a week) were applied on the dorsal area of the skin to induce skin papillomagenesis in Swiss albino mice for 16 weeks. Gold nanoparticles were synthesized using Vitis vinifera peel and seed aqueous extracts and characterized by Transmission electron microscopic (TEM) analyses. On topical application, peel and seed gold nanoparticles demonstrated chemopreventive potential by significantly (p<0.05) reducing the cumulative number of tumors while increasing the antioxidant enzyme activities in the gold nanoparticles treated mice. The down-regulated expression of mutant p53, Bcl-2 and the levels of pan-cytokeratins might have facilitated the process of apoptosis in the chemical carcinogenesis process. The results were supported by the histopathological evaluation which exhibited mild dysplasia and acanthosis in the skin tissues of Vitis vinifera peel and seed AuNPs treated mice. Based on the present study, the chemopreventive action of Vitis vinifera peel and seed AuNPs is probably due to its ability to stimulate the antioxidant enzymes within the cells and suppressed abnormal skin cell proliferation that occurred during DMBA-induced skin papillomagenesis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.

    PubMed

    Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang

    2015-12-21

    Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications.

  19. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhu; Ma, Man; Pang, Xiaojuan; Tan, Fengping; Li, Nan

    2015-09-01

    The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer.The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04353k

  20. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04577k

  1. New hominid fossils from Woranso-Mille (Central Afar, Ethiopia) and taxonomy of early Australopithecus.

    PubMed

    Haile-Selassie, Yohannes; Saylor, Beverly Z; Deino, Alan; Alene, Mulugeta; Latimer, Bruce M

    2010-03-01

    The phylogenetic relationship between Australopithecus anamensis and Australopithecus afarensis has been hypothesized as ancestor-descendant. However, the weakest part of this hypothesis has been the absence of fossil samples between 3.6 and 3.9 million years ago. Here we describe new fossil specimens from the Woranso-Mille site in Ethiopia that are directly relevant to this issue. They derive from sediments chronometrically dated to 3.57-3.8 million years ago. The new fossil specimens are largely isolated teeth, partial mandibles, and maxillae, and some postcranial fragments. However, they shed some light on the relationships between Au. anamensis and Au. afarensis. The dental morphology shows closer affinity with Au. anamensis from Allia Bay/Kanapoi (Kenya) and Asa Issie (Ethiopia) than with Au. afarensis from Hadar (Ethiopia). However, they are intermediate in dental and mandibular morphology between Au. anamensis and the older Au. afarensis material from Laetoli. The new fossils lend strong support to the hypothesized ancestor-descendant relationship between these two early Australopithecus species. The Woranso-Mille hominids cannot be unequivocally assigned to either taxon due to their dental morphological intermediacy. This could be an indication that the Kanapoi, Allia Bay, and Asa Issie Au. anamensis is the primitive form of Au. afarensis at Hadar with the Laetoli and Woranso-Mille populations sampling a mosaic of morphological features from both ends. It is particularly difficult to draw a line between Au. anamensis and Au. afarensis in light of the new discoveries from Woranso-Mille. The morphology provides no evidence that Au. afarensis and Au. anamensis represent distinct taxa.

  2. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    PubMed

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  3. The use of plants in prospecting for gold: A brief overview with a selected bibliography and topic index

    USGS Publications Warehouse

    Erdman, J.A.; Olson, J.C.

    1985-01-01

    The focal point of this report is a bibliography of 133 references and an associated topic index - both of which could be useful to geochemists attempting to locate new Au deposits. Fifty of these references originated in the Soviet Union, where most of the initial work on biogeochemical exploration for Au had been done. The 15 topics in the index range from agriculture (Au in crop plants) to silver. As an introduction to the bibliography, we have briefly described some examples of applications and difficulties in using plants. These examples are drawn from the literature and from field experience. Because of the generally low Au concentrations found in plants, the analysis of plant tissue is critical to the successful application of the biogeochemical method of prospecting. Neuron activation analysis is the most widely used method to detect Au in plants, due largely to its sensitivity; levels in the parts per billion range are easily attained. Two general types of sampling media are used in prospecting for Au: humus and living plants. Humus has been widely used in Canada, but the sampling of plants has increased there and elsewhere in recent years. Our use of douglas-fir (Pseudotsuga menziesii) at a Au-bearing stockwork in Idaho is a prime example. A maximum Au concentration of 14 ??g/g (ppm) was detected in the wood ash of this coniferous tree, well above the normal concentration of ??? 0.15 ??g/g. Among shrubs that might be useful in Au prospecting, we recommend sagebrush or wormwood (genus Artemisia), because it is extremely responsive to concealed mineralization. It has been used extensively in the Soviet Union and could be used in areas of the western United States where disseminated Au occurrences might be located. Among the problems one may encounter in using plants for Au prospecting are: (1) physiological barriers, by which many plant species simply do not absorb Au at detectable levels; (2) misconceptions of soil-plant correlations; (3) localization of Au in plant tissue; and (4) the variation of Au concentrations due to season. Despite these limitations, biogeochemical techniques can complement or replace other geochemical methods currently used. ?? 1985.

  4. Determination of functionalized gold nanoparticles incorporated in hydrophilic and hydrophobic microenvironments by surface modification of quartz crystal microbalance

    NASA Astrophysics Data System (ADS)

    Wu, Tsui-Hsun; Liao, Shu-Chuan; Chen, Ying-Fang; Huang, Yi-You; Wei, Yi-Syuan; Tu, Shu-Ju; Chen, Ko-Shao

    2013-06-01

    In this study, plasma deposition methods were used to immobilize Au electrode of a quartz crystal microbalance (QCM) to create different microenvironments for mass measurement of various modified Au nanoparticles (AuNPs). AuNPs were modified by 11-mercaptoundecanoic acid (MUA) and 1-decanethiol (DCT) for potential applications to drug release, protective coatings, and immunosensors. We aimed to develop a highly sensitive and reliable method to quantify the mass of various modified AuNPs. The surface of AuNPs and Au electrode was coated with polymer films, as determined by Fourier transform infrared spectroscopy and atomic force microscopy. Measurements obtained for various AuNPs and the plasma-treated surface of the Au electrode were compared with those obtained for an untreated Au electrode. According to the resonant frequency shift of QCM, a linear relationship was observed that significantly differed for AuNPs, MUA-AuNPs, and DCT-AuNPs (R2 range, 0.94-0.965, 0.934-0.972, and 0.874-0.9514, respectively). Compared to inductively coupled plasma and micro-computerized tomography, the QCM method with plasma treatment has advantages of real-time monitoring, greater sensitivity, and lower cost. Our results demonstrate that surface modifications measured by a QCM system for various modified AuNPs were reliable.

  5. Architecture effects of glucose oxidase/Au nanoparticle composite Langmuir-Blodgett films on glucose sensing performance

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Hsuan; Wu, Jau-Yann; Chen, Liang-Huei; Lee, Yuh-Lang

    2016-03-01

    The Langmuir-Blodgett (LB) deposition technique is employed to prepare nano-composite films consisting of glucose oxidase (GOx) and gold nanoparticles (AuNPs) for glucose sensing applications. The GOx and AuNPs are co-adsorbed from an aqueous solution onto an air/liquid interface in the presence of an octadecylamine (ODA) template monolayer, forming a mixed (GOx-AuNP) monolayer. Alternatively, a composite film with a cascade architecture (AuNP/GOx) is also prepared by sequentially depositing monolayers of AuNPs and GOx. The architecture effects of the composite LB films on the glucose sensing are studied. The results show that the presence of AuNPs in the co-adsorption system does not affect the adsorption amount and preferred conformation (α-helix) of GOx. Furthermore, the incorporation of AuNPs in both composite films can significantly improve the sensing performance. However, the enhancement effects of the AuNPs in the two architectures are distinct. The major effect of the AuNPs is on the facilitation of charge-transfer in the (GOx-AuNP) film, but on the increase of catalytic activity in the (AuNP/GOx) one. Therefore, the sensing performance can be greatly improved by utilizing a film combining both architectures (AuNP/GOx-AuNP).

  6. Study on plasmon absorption of hybrid Au-GO-GNP films for SPR sensing application

    NASA Astrophysics Data System (ADS)

    Mukhtar, Wan Maisarah; Ahmad, Farah Hayati; Samsuri, Nurul Diyanah; Murat, Noor Faezah

    2018-06-01

    This study proposed the development of hybrid Au-GO-GNP films for the enhancement of plasmon absorption in SPR sensing. Several thicknesses of Au at t=40nm, t=50nm and t=300nm were sputtered on the glass substrate. The hybridization of bilayer and trilayer films were formed by depositing GO-GNP layers and GNP-GO layers on top of various thicknesses of Au coated substrates. UV-Vis spectra analysis was conducted to characterize the plasmon absorption for each configuration. The plasmon absorption was successfully amplified by employing hybrid trilayer Au-GO-GNP with the thickness of Au film was fixed at t=50nm. It is noteworthy to highlight that the employment of bilayer and trilayer configurations are the key success to enhance the SPP excitation. Au-GNP and Au-GNP-GO results no significant outcome in comparison with Au-GO and Au-GO-GNP. A redshift of the absorbance wavelength evinces the presence of GO on Au-GO sample and GNP on Au-GO-GNP sample due to the surface reconstruction. It is important to emphasize that not all bilayer and trilayer configurations able to enhance the plasmon absorption where no significant output was obtained with the hybridization order of Au-GNP and Au-GNP-GO.

  7. Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications.

    PubMed

    Yang, Jiang; Wang, Bo; You, Youngsang; Chang, Woo-Jin; Tang, Ke; Wang, Yi-Cheng; Zhang, Wenzhao; Ding, Feng; Gunasekaran, Sundaram

    2017-11-23

    Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical. In this work, we provide molecular insights and structural characterizations of the bio-nano interface of a popular food-based protein, namely bovine beta-lactoglobulin (β-LG), with gold nanoparticles (AuNPs) and report on our investigations of the formation of corona complexes by combined molecular simulations and complementary experiments. Two major binding sites in β-LG were identified as being driven by citrate-mediated electrostatic interactions, while the associated binding kinetics and conformational changes in the secondary structures were also characterized. More importantly, the superior stability of the corona led us to further explore its biomedical applications, such as in the smartphone-based point-of-care biosensing of Escherichia coli (E. coli) and in the computed tomography (CT) of the gastrointestinal (GI) tract through oral administration to probe GI tolerance and functions. Considering their biocompatibility, edible nature, and efficient excretion through defecation, AuNPs-β-LG corona complexes have shown promising perspectives for future in vitro and in vivo clinical settings.

  8. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    NASA Astrophysics Data System (ADS)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  9. Efficient Photocatalytic H2 Evolution: Controlled Dewetting-Dealloying to Fabricate Site-Selective High-Activity Nanoporous Au Particles on Highly Ordered TiO2 Nanotube Arrays.

    PubMed

    Nguyen, Nhat Truong; Altomare, Marco; Yoo, JeongEun; Schmuki, Patrik

    2015-05-27

    Anodic self-organized TiO2 nanostumps are formed and exploited for self-ordering dewetting of Au-Ag sputtered films. This forms ordered particle configurations at the tube top (crown position) or bottom (ground position). By dealloying from a minimal amount of noble metal, porous Au nanoparticles are then formed, which, when in the crown position, allow for a drastically improved photocatalytic H2 production compared with nanoparticles produced by conventional dewetting processes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Controls on Deglacial Changes in Biogenic Fluxes and Authigenic Uranium in the North Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kohfeld, K. E.; Chase, Z.

    2011-12-01

    The re-organization of high-CO2 deep waters in the North Pacific Ocean may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave an imprint on productivity and on oxygen concentrations. We present 230Th-normalized biogenic fluxes and aU concentrations from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7N, 177.1E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux and aU data from the North Pacific Ocean. We evaluate several mechanisms as possible drivers of deglacial change, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Biogenic fluxes were lowest during the last glacial period (LGM, 19-23 ka). With the exception of a site at 5500 m, all sites including RC10-196, 1007 m, had higher concentrations of aU during the LGM, which implies lower pore water oxygen. Since organic carbon accumulation rates were generally lower during the LGM, these results support the idea that export production and deep-water oxygen were both reduced during the LGM in response to physical changes. Biogenic fluxes increased marginally at some locations in the NW Pacific during Heinrich Event 1 (H1; 15-18 ka) relative to the LGM. This increase may be consistent with an enhancement of ventilation to 2500-3000 m during H1, which may have helped to destratify the glacial ocean and increase nutrient delivery to surface waters. Although consistent with aU data at 2980 m water depth in the far NW Pacific, this interpretation is at odds with the relatively high concentration of aU measured during H1 at RC10-196 in the NW Pacific at 1007 m. High aU concentrations, in the absence of elevated biogenic flux, imply low oxygen bottom waters, which is inconsistent with increased ventilation. Similarly high values of aU are found at sites below 3000 m in the NW Pacific, suggesting that this area remained poorly ventilated below 1007 m during H1. Finally, biogenic fluxes reached maxima across the subarTctic North Pacific during the B/A period (15-12.5 ka). The aU was also high at all sites during the B/A, but in this case elevated organic carbon rain is the likely cause. We argue that paleo-observations are most consistent with ventilation increases in the North Atlantic (during B/A) as a primary driver of increases in biogenic flux during the deglaciation, as they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.

  11. The Pt site reactivity of the molecular graphs of Au6Pt isomers

    NASA Astrophysics Data System (ADS)

    Xu, Tianlv; Jenkins, Samantha; Xiao, Chen-Xia; Maza, Julio R.; Kirk, Steven R.

    2013-12-01

    Within the framework of the theory of atoms in molecules (QTAIM), in an exploratory study we propose a new measure of site reactivity equivalent to the atomic coordination number based purely on the electronic structure. It was found that the number of ring critical points (NNRCPs) positioned on the boundary of the atomic basin of the dopant (Pt) nucleus correlated very well with the relative zero point energy (ZPE) corrected energies. A weaker condition (i.e. than the number of associated bond paths) for the association of the dopant Pt nucleus with the Au6Pt molecular graph is found for NNRCP = 0.

  12. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    PubMed Central

    Rianasari, Ina; de Jong, Michel P.; Huskens, Jurriaan; van der Wiel, Wilfred G.

    2013-01-01

    We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate. PMID:23434666

  13. From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism.

    PubMed

    Reno, Philip L; Lovejoy, C Owen

    2015-01-01

    Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or "Lucy" and A.L. 128/129) and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333). These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Template Method enables simultaneous evaluation of multiple skeletal sites, thereby greatly expanding sample size, and reveals that A. afarensis dimorphism was similar to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or "Kadanuumuu") can now also be used, like Lucy, as a template specimen. In addition, the recently developed Geometric Mean Method has been used to argue that Au. afarensis was equally or even more dimorphic than gorillas. However, in its previous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size. Here we directly compare the two methods and demonstrate that including multiple measurements from the same partial skeleton that falls at the margin of the species size range dramatically inflates dimorphism estimates. Prevention of the dominance of a single specimen's contribution to calculations of multiple dimorphism estimates confirms that Au. afarensis was only moderately dimorphic.

  14. From Lucy to Kadanuumuu: balanced analyses of Australopithecus afarensis assemblages confirm only moderate skeletal dimorphism

    PubMed Central

    Lovejoy, C. Owen

    2015-01-01

    Sexual dimorphism in body size is often used as a correlate of social and reproductive behavior in Australopithecus afarensis. In addition to a number of isolated specimens, the sample for this species includes two small associated skeletons (A.L. 288-1 or “Lucy” and A.L. 128/129) and a geologically contemporaneous death assemblage of several larger individuals (A.L. 333). These have driven both perceptions and quantitative analyses concluding that Au. afarensis was markedly dimorphic. The Template Method enables simultaneous evaluation of multiple skeletal sites, thereby greatly expanding sample size, and reveals that A. afarensis dimorphism was similar to that of modern humans. A new very large partial skeleton (KSD-VP-1/1 or “Kadanuumuu”) can now also be used, like Lucy, as a template specimen. In addition, the recently developed Geometric Mean Method has been used to argue that Au. afarensis was equally or even more dimorphic than gorillas. However, in its previous application Lucy and A.L. 128/129 accounted for 10 of 11 estimates of female size. Here we directly compare the two methods and demonstrate that including multiple measurements from the same partial skeleton that falls at the margin of the species size range dramatically inflates dimorphism estimates. Prevention of the dominance of a single specimen’s contribution to calculations of multiple dimorphism estimates confirms that Au. afarensis was only moderately dimorphic. PMID:25945314

  15. Near sulfur L-edge X-ray absorption spectra of methanethiol in isolation and adsorbed on a Au(111) surface: a theoretical study using the four-component static exchange approximation.

    PubMed

    Villaume, Sebastien; Ekström, Ulf; Ottosson, Henrik; Norman, Patrick

    2010-06-07

    The relativistic four-component static exchange approach for calculation of near-edge X-ray absorption spectra has been reviewed. Application of the method is made to the Au(111) interface and the adsorption of methanethiol by a study of the near sulfur L-edge spectrum. The binding energies of the sulfur 2p(1/2) and 2p(3/2) sublevels in methanethiol are determined to be split by 1.2 eV due to spin-orbit coupling, and the binding energy of the 2p(3/2) shell is lowered from 169.2 eV for the isolated system to 167.4 and 166.7-166.8 eV for methanethiol in mono- and di-coordinated adsorption sites, respectively (with reference to vacuum). In the near L-edge X-ray absorption fine structure spectrum only the sigma*(S-C) peak at 166 eV remains intact by surface adsorption, whereas transitions of predominantly Rydberg character are largely quenched in the surface spectra. The sigma*(S-H) peak of methanethiol is replaced by low-lying, isolated, sigma*(S-Au) peak(s), where the number of peaks in the latter category and their splittings are characteristic of the local bonding situation of the sulfur.

  16. The Preparation of Au@TiO2 Yolk-Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen

    2017-09-01

    This paper reports the synthesis of a new type of Au@TiO2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO2 nanotubes, Au@TiO2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.

  17. The Preparation of Au@TiO2 Yolk-Shell Nanostructure and its Applications for Degradation and Detection of Methylene Blue.

    PubMed

    Wan, Gengping; Peng, Xiange; Zeng, Min; Yu, Lei; Wang, Kan; Li, Xinyue; Wang, Guizhen

    2017-09-18

    This paper reports the synthesis of a new type of Au@TiO 2 yolk-shell nanostructures by integrating ion sputtering method with atomic layer deposition (ALD) technique and its applications as visible light-driven photocatalyst and surface-enhanced Raman spectroscopy (SERS) substrate. Both the size and amount of gold nanoparticles confined in TiO 2 nanotubes could be facilely controlled via properly adjusting the sputtering time. The unique structure and morphology of the resulting Au@TiO 2 samples were investigated by using various spectroscopic and microscopic techniques in detail. It is found that all tested samples can absorb visible light with a maximum absorption at localized surface plasmon resonance (LSPR) wavelengths (550-590 nm) which are determined by the size of gold nanoparticles. The Au@TiO 2 yolk-shell composites were used as the photocatalyst for the degradation of methylene blue (MB). As compared with pure TiO 2 nanotubes, Au@TiO 2 composites exhibit improved photocatalytic properties towards the degradation of MB. The SERS effect of Au@TiO 2 yolk-shell composites was also performed to investigate the detection sensitivity of MB.

  18. Facile synthesis of hierarchical gold nanostructures and their catalytic application

    NASA Astrophysics Data System (ADS)

    Ma, Ying; Siang Yi, Edward Ng

    2016-08-01

    We demonstrate a one-step, surfactant-free method to prepare gold (Au) nanostructures using a synthesized aniline (ANI) derivative N-(3-amidino)-aniline (NAAN) as a reducing agent. By simply mixing NAAN with a Au precursor, raspberry-like Au particles (RSPs) were formed. The presence of Ag+ resulted in the formation of Au nanoflowers (AuNFs). The size and shape of the AuNFs can be tuned by the reaction conditions such as the NAAN/HAuCl4 ratio, the temperature and the solvent composition. Under the same reaction conditions, bowling-pin-like particles (BPLPs) were reported for the first time using commercial ANI as a reducing agent. The AuNFs exhibited good ability to oxidize peroxidase substrate 3, 3‧, 5, 5‧-tetramethylbenzidine (TMB) by H2O2, allowing them as a peroxidase mimetic.

  19. Graphene–Gold Nanoparticles Hybrid—Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor

    PubMed Central

    Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A.; Basirun, Wan Jefrey; Bhargava, Suresh K.

    2016-01-01

    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene–AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene–Au nanocomposites. The paper highlights the graphene–gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer. PMID:28773528

  20. Graphene-Gold Nanoparticles Hybrid-Synthesis, Functionalization, and Application in a Electrochemical and Surface-Enhanced Raman Scattering Biosensor.

    PubMed

    Khalil, Ibrahim; Julkapli, Nurhidayatullaili Muhd; Yehye, Wageeh A; Basirun, Wan Jefrey; Bhargava, Suresh K

    2016-05-24

    Graphene is a single-atom-thick two-dimensional carbon nanosheet with outstanding chemical, electrical, material, optical, and physical properties due to its large surface area, high electron mobility, thermal conductivity, and stability. These extraordinary features of graphene make it a key component for different applications in the biosensing and imaging arena. However, the use of graphene alone is correlated with certain limitations, such as irreversible self-agglomerations, less colloidal stability, poor reliability/repeatability, and non-specificity. The addition of gold nanostructures (AuNS) with graphene produces the graphene-AuNS hybrid nanocomposite which minimizes the limitations as well as providing additional synergistic properties, that is, higher effective surface area, catalytic activity, electrical conductivity, water solubility, and biocompatibility. This review focuses on the fundamental features of graphene, the multidimensional synthesis, and multipurpose applications of graphene-Au nanocomposites. The paper highlights the graphene-gold nanoparticle (AuNP) as the platform substrate for the fabrication of electrochemical and surface-enhanced Raman scattering (SERS)-based biosensors in diverse applications as well as SERS-directed bio-imaging, which is considered as an emerging sector for monitoring stem cell differentiation, and detection and treatment of cancer.

  1. High hardness in the biocompatible intermetallic compound β-Ti3Au

    PubMed Central

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M. Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K.; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M.; Morosan, E.

    2016-01-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti–Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials. PMID:27453942

  2. Hot electron induced NIR detection in CdS films.

    PubMed

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-03-11

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

  3. Gold nanoparticles-decorated fluoroalkylsilane nano-assemblies for electrocatalytic applications

    NASA Astrophysics Data System (ADS)

    Ballarin, Barbara; Barreca, Davide; Cassani, Maria Cristina; Carraro, Giorgio; Maccato, Chiara; Mignani, Adriana; Lazzari, Dario; Bertola, Maurizio

    2016-01-01

    Metal/organosilane/oxide sandwich structures were prepared via a two-step self-assembly method. First, indium tin oxide (ITO) substrates were functionalized with the following fluoroalkylsilanes (FAS): RFC(O)N(H)(CH2)3Si(OMe)3 (1, RF = C5F11), containing an embedded amide between the perfluoroalkyl chain and the syloxanic moiety, and RF(CH2)2Si(OEt)3 (2, RF = C6F13). Subsequently, Au nanoparticles (AuNPs) introduction in the obtained systems was carried out by controlled immersion into a solution of citrate-stabilized AuNPs. The physico-chemical properties of the target materials were thoroughly investigated by using various complementary techniques. Finally, the application of such systems as catalysts for methanol electro-oxidation under alkaline conditions was investigated, revealing the synergistical role played by FAS and AuNPs in promoting a remarkable electrocatalytic activity.

  4. High hardness in the biocompatible intermetallic compound β-Ti3Au.

    PubMed

    Svanidze, Eteri; Besara, Tiglet; Ozaydin, M Fevsi; Tiwary, Chandra Sekhar; Wang, Jiakui K; Radhakrishnan, Sruthi; Mani, Sendurai; Xin, Yan; Han, Ke; Liang, Hong; Siegrist, Theo; Ajayan, Pulickel M; Morosan, E

    2016-07-01

    The search for new hard materials is often challenging, but strongly motivated by the vast application potential such materials hold. Ti3Au exhibits high hardness values (about four times those of pure Ti and most steel alloys), reduced coefficient of friction and wear rates, and biocompatibility, all of which are optimal traits for orthopedic, dental, and prosthetic applications. In addition, the ability of this compound to adhere to ceramic parts can reduce both the weight and the cost of medical components. The fourfold increase in the hardness of Ti3Au compared to other Ti-Au alloys and compounds can be attributed to the elevated valence electron density, the reduced bond length, and the pseudogap formation. Understanding the origin of hardness in this intermetallic compound provides an avenue toward designing superior biocompatible, hard materials.

  5. Green Chemistry Techniques for Gold Nanoparticles Synthesis

    NASA Astrophysics Data System (ADS)

    Cannavino, Sarah A.; King, Christy A.; Ferrara, Davon W.

    Gold nanoparticles (AuNPs) are often utilized in many technological and research applications ranging from the detection of tumors, molecular and biological sensors, and as nanoantennas to probe physical processes. As these applications move from the research laboratory to industrial settings, there is a need to develop efficient and sustainable synthesis techniques. Recent research has shown that several food products and beverages containing polyphenols, a common antioxidant, can be used as reducing agents in the synthesis of AuNPs in solution. In this study, we explore a variety of products to determine which allow for the most reproducible solution of nanoparticles based on the size and shapes of particles present. We analyzed the AuNPs solutions using extinction spectroscopy and atomic force microscopy. We also develop a laboratory activity to introduce introductory chemistry and physics students to AuNP synthesis techniques and analysis.

  6. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms.

    PubMed

    Bhamore, Jigna R; Jha, Sanjay; Basu, Hirakendu; Singhal, Rakesh Kumar; Murthy, Z V P; Kailasa, Suresh Kumar

    2018-04-01

    Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I 0 /I at 648 nm are proportional to the concentrations of Hg 2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg 2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg 2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg 2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.

  7. A membraneless biofuel cell powered by ethanol and alcoholic beverage.

    PubMed

    Deng, Liu; Shang, Li; Wen, Dan; Zhai, Junfeng; Dong, Shaojun

    2010-09-15

    In this study, we reported on the construction of a stable single-chamber ethanol/O(2) biofuel cell harvesting energy from the ethanol and alcoholic beverage. We prepared a composite film which consisted of partially sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) and chitosan (CHI). The combination of ion-exchange capacity sol-gel and biopolymer chitosan not only provided the attached sites for mediator MDB and AuNPs to facilitate the electron transfer along the substrate reaction, but also gave the suitable microenvironment to retain the enzyme activity in long term. The ethanol bioanode was constructed with the film coimmobilized dehydrogenase (ADH), Meldola's blue (MDB) and gold nanoparticles (AuNPs). The MDB/AuNPs/PSSG-CHI-ADH composite modified electrode showed prominent electrocatalytic activity towards the oxidation of ethanol. The oxygen biocathode consisted of laccase and AuNPs immobilized on the PSSG-CHI composite membrane. The AuNPs/PSSG-CHI-laccase modified electrode catalyzed four-electron reduction of O(2) to water, without any mediator. The assembled single-chamber biofuel cell exhibited good stability and power output towards ethanol. The open-circuit voltage of this biofuel cell was 860 mV. The maximum power density of the biofuel cell was 1.56 mWcm(-2) at 550 mV. Most interestingly, this biofuel cell showed the similar performance when the alcoholic beverage acted as the fuel. When this biofuel cell ran with wine as the fuel, the maximum power output density was 3.21 mAcm(-2) and the maximum power density was 1.78 mWcm(-2) at 680 mV of the cell voltage. Our system exhibited stable and high power output in the multi-component substrate condition. This cell has great potential for the development and practical application of bioethanol fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Stratigraphical division of Holocene depositional succession of Ångermanälven River estuary, Bothnian Sea

    NASA Astrophysics Data System (ADS)

    Hyttinen, Outi; Kotilainen, Aarno; Virtasalo, Joonas; Kekäläinen, Pirkko; Snowball, Ian; Obrochta, Stephen; Andrén, Thomas

    2017-04-01

    In this study the Holocene depositional succession at the IODP Expedition 347 Sites M0061 and M0062 in the Ångermanälven River estuary, Bothnian Sea part of the Baltic Sea in northern Scandinavia was explored. Sediment cores and acoustic profiles comprise the dataset. Site M0062 is fully estuarine (69.3 m water depth) whereas Site M0061 is in a coastal offshore setting (87.9 m water depth). Three acoustic units (AUs) were recognized at the studied site. Lowermost AU1 was interpreted as a poorly to discontinuous stratified glaciofluvial deposit, AU2 as a stratified conformable glaciolacustrine drape, and AU3 as a stratified to poorly stratified mud drift. AU2 and AU3 are separated by a strong truncating reflector. From cored sediments, three lithological units (LUs) were defined. Glaciofluvial sand and silt (LU1) gradually change into glaciolacustrine varves (LU2). A sharp contact separates LU2 from the overlying brackish water mud (LU3).This contact is interpreted as a major unconformity, In the basal part of LU3, two debrites (site M0062) or one debrite (site M0061) were recognized. The LU division is supported by information yielded from sediment physical properties, geochemistry and grain size. The depositional succession was subdivided into two alloformations: Utansjö Alloformation and overlying Hemsön Alloformation. The Utansjö Alloformation was subdivided into two lithostratigraphic formations: Storfjärden (sandy outwash) and Åbordsön (glaciolacustrine rhythmite) Formation. Storfjärden and Åbordsön Formations represent a glacial retreat systems tract. Sediment deposition started at ca. 10.6 kyr BP and was mainly controlled by meltwater from the retreating ice-margin, glacio-isostatic land uplift and the regressive (glacial) lake level. Hemsön Alloformation (organic-rich brackish water mud) started to deposit possibly at ca. 9.5 kyr BP, during a period of forced regression. At around 7 kyr BP, brackish water fully reached the study area. The establishment of permanent halocline changed near-bottom currents, and increased organic deposition reduced the sediment consistency. This resulted in a sharp and erosional base of the brackish water mud. This study shows the benefits of the combined allostratigraphic and lithostratigraphic approach compared to the conventional Baltic Sea Stages scheme that is based on presumed synchronous changes in water level and salinity in the basin. This work is a part of the CISU project funded by the Academy of Finland.

  9. Enhanced catalyst activity by decorating of Au on Ag@Cu2O nanoshell

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Liu, Maomao; Zhao, Yue; Kou, Qiangwei; Wang, Yaxin; Liu, Yang; Zhang, Yongjun; Yang, Jinghai; Jung, Young Mee

    2018-03-01

    We successfully synthesized Au-decorated Ag@Cu2O heterostructures via a simple galvanic replacement method. As the Au precursor concentration increased, the density of the Au nanoparticles (NPs) on the Ag@Cu2O surface increased, which changed the catalytic activity of the Ag@Cu2O-Au structure. The combination of Au, Ag, and Cu2O exhibited excellent catalytic properties, which can further effect on the catalyst activity of the Ag@Cu2O-Au structure. In addition, the proposed Ag@Cu2O-Au nanocomposite was used to transform the organic, toxic pollutant, 4-nitrophenol (4-NP), into its nontoxic and medicinally important amino derivative via a catalytic reduction to optimize the material performance. The proposed Au-decorated Ag@Cu2O exhibited excellent catalytic activity, and the catalytic reduction time greatly decreased (5 min). Thus, three novel properties of Ag@Cu2O-Au, i.e., charge redistribution and transfer, adsorption, and catalytic reduction of organic pollutants, were ascertained for water remediation. The proposed catalytic properties have potential applications for photocatalysis and localized surface plasmon resonance (LSPR)- and peroxidase-like catalysis.

  10. Biomass Conversion Strategies and the Renewable Production of Hydrogen using Heterogeneous Metal Catalysts

    NASA Astrophysics Data System (ADS)

    Carrasquillo-Flores, Ronald

    Biomass is a renewable carbon source that can be processed into fuels and chemicals in a biorefinery. However, there are a number of challenges that need to be overcome for biomass utilization to be viable. The work presented herein aims to address two existing challenges in biomass processing schemes, namely the efficient utilization of all fractions of lignocellulosic biomass and the renewable production of the hydrogen necessary to reduce the oxygen functionalities native in biomass. First, lignin was depolymerized to produce a renewable phenolic solvent mixture. Biphasic reactions with this solvent and aqueous solution of glucose or xylose produce 5-hydroxymethylfurfural (HMF) and furfural, respectively, at high yields. HMF and furfuryl alcohol could also be upgraded into levulinic acid at high yields. The yields are due to the capacity of the solvent to partition these molecules and prevent their degradation. Second, propyl guaiacol, a component of the phenolic solvent, was used for biphasic reactions where ball milled biomass substrates were used. These substrates are converted to furfural and HMF at high yields due to the partition of these molecules into the solvent and the on-demand production of glucose and xylose from the substrate, minimizing the formation of humins. A study of the water-gas shift reaction over Pt-based catalysts was conducted. Alloying Pt with Re was found to increase the catalytic activity and microkinetic modeling revealed Pt is a good representation of the active site and Re acts as a promoter slightly destabilizing CO binding. A study on formic acid decomposition over Au catalysts was performed. Experiments, density functional theory and microkinetic modeling results indicate the reaction proceeds completely on highly undercoordinated Au atoms with any high coordination atom being largely inert. Motivated by the results on Au catalysts, the metal-support interaction was investigated for the reverse water-gas shift reaction. Using a combination of infrared spectroscopy, Raman spectroscopy, x-ray absorption spectroscopy, electron microscopy and reaction kinetics measurements it was found that the deposition of an organometallic molybdenum compound occurs at the undercoordinated Au sites to produce interfacial sites that are an order of magnitude more active than Au sites and activate water.

  11. Colorimetric detection with aptamer-gold nanoparticle conjugates coupled to an android-based color analysis application for use in the field.

    PubMed

    Smith, Joshua E; Griffin, Daniel K; Leny, Juliann K; Hagen, Joshua A; Chávez, Jorge L; Kelley-Loughnane, Nancy

    2014-04-01

    The feasibility of using aptamer-gold nanoparticle conjugates (Apt-AuNPs) to design colorimetric assays for in the field detection of small molecules was investigated. An assay to detect cocaine was designed using two clones of a known cocaine-binding aptamer. The assay was based on the AuNPs difference in affinity for single-stranded DNA (non-binding) and double stranded DNA (target bound). In the first assay, a commonly used design was followed, in which the aptamer and target were incubated to allow binding followed by exposure to the AuNPs. Interactions between the non-bound analytes and the AuNPs surface resulted in a number of false positives. The assay was redesigned by incubating the AuNPs and the aptamer prior to target addition to passivate the AuNPs surface. The adsorbed aptamer was able to bind the target while preventing non-specific interactions. The assay was validated with a number of masking and cutting agents and other controlled substances showing minimal false positives. Studies to improve the assay performance in the field were performed, showing that assay activity could be preserved for up to 2 months. To facilitate the assay analysis, an android application for automatic colorimetric characterization was developed. The application was validated by challenging the assay with cocaine standards of different concentrations, and comparing the results to a conventional plate reader, showing outstanding agreement. Finally, the rapid identification of cocaine in mixtures mimicking street samples was demonstrated. This work established that Apt-AuNPs can be used to design robust assays to be used in the field. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A hybrid DNA-templated gold nanocluster for enhanced enzymatic reduction of oxygen

    DOE PAGES

    Chakraborty, Saumen; Babanova, Sofia; Rocha, Reginaldo C.; ...

    2015-08-19

    We report the synthesis and characterization of a new DNA-templated gold nanocluster (AuNC) of ~1 nm in diameter and possessing ~7 Au atoms. When integrated with bilirubin oxidase (BOD) and single walled carbon nanotubes (SWNTs), the AuNC acts as an enhancer of electron transfer (ET) and lowers the overpotential of electrocatalytic oxygen reduction reaction (ORR) by ~15 mV as compared to the enzyme alone. In addition, the presence of AuNC causes significant enhancements in the electrocatalytic current densities at the electrode. Control experiments show that such enhancement of ORR by the AuNC is specific to nanoclusters and not to plasmonicmore » gold particles. Rotating ring disk electrode (RRDE) measurements confirm 4e– reduction of O 2 to H 2O with minimal production of H 2O 2, suggesting that the presence of AuNC does not perturb the mechanism of ORR catalyzed by the enzyme. This unique role of the AuNC as enhancer of ET at the enzyme-electrode interface makes it a potential candidate for the development of cathodes in enzymatic fuel cells, which often suffer from poor electronic communication between the electrode surface and the enzyme active site. In conclusion, the AuNC displays phosphorescence with large Stokes shift and microsecond lifetime.« less

  13. Structure Determination of Au on Pt(111) Surface: LEED, STM and DFT Study

    PubMed Central

    Krupski, Katarzyna; Moors, Marco; Jóźwik, Paweł; Kobiela, Tomasz; Krupski, Aleksander

    2015-01-01

    Low-energy electron diffraction (LEED), scanning tunneling microscopy (STM) and density functional theory (DFT) calculations have been used to investigate the atomic and electronic structure of gold deposited (between 0.8 and 1.0 monolayer) on the Pt(111) face in ultrahigh vacuum at room temperature. The analysis of LEED and STM measurements indicates two-dimensional growth of the first Au monolayer. Change of the measured surface lattice constant equal to 2.80 Å after Au adsorption was not observed. Based on DFT, the distance between the nearest atoms in the case of bare Pt(111) and Au/Pt(111) surface is equal to 2.83 Å, which gives 1% difference in comparison with STM values. The first and second interlayer spacing of the clean Pt(111) surface are expanded by +0.87% and contracted by −0.43%, respectively. The adsorption energy of the Au atom on the Pt(111) surface is dependent on the adsorption position, and there is a preference for a hollow fcc site. For the Au/Pt(111) surface, the top interlayer spacing is expanded by +2.16% with respect to the ideal bulk value. Changes in the electronic properties of the Au/Pt(111) system below the Fermi level connected to the interaction of Au atoms with Pt(111) surface are observed.

  14. Self-healing gold mirrors and filters at liquid-liquid interfaces

    NASA Astrophysics Data System (ADS)

    Smirnov, Evgeny; Peljo, Pekka; Scanlon, Micheál D.; Gumy, Frederic; Girault, Hubert H.

    2016-03-01

    The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance.The optical and morphological properties of lustrous metal self-healing liquid-like nanofilms were systematically studied for different applications (e.g., optical mirrors or filters). These nanofilms were formed by a one-step self-assembly methodology of gold nanoparticles (AuNPs) at immiscible water-oil interfaces, previously reported by our group. We investigated a host of experimental variables and herein report their influence on the optical properties of nanofilms: AuNP mean diameter, interfacial AuNP surface coverage, nature of the organic solvent, and nature of the lipophilic organic molecule that caps the AuNPs in the interfacial nanofilm. To probe the interfacial gold nanofilms we used in situ (UV-vis-NIR spectroscopy and optical microscopy) as well as ex situ (SEM and TEM of interfacial gold nanofilms transferred to silicon substrates) techniques. The interfacial AuNP surface coverage strongly influenced the morphology of the interfacial nanofilms, and in turn their maximum reflectance and absorbance. We observed three distinct morphological regimes; (i) smooth 2D monolayers of ``floating islands'' of AuNPs at low surface coverages, (ii) a mixed 2D/3D regime with the beginnings of 3D nanostructures consisting of small piles of adsorbed AuNPs even under sub-full-monolayer conditions and, finally, (iii) a 3D regime characterised by the 2D full-monolayer being covered in significant piles of adsorbed AuNPs. A maximal value of reflectance reached 58% in comparison with a solid gold mirror, when 38 nm mean diameter AuNPs were used at a water-nitrobenzene interface. Meanwhile, interfacial gold nanofilms prepared with 12 nm mean diameter AuNPs exhibited the highest extinction intensities at ca. 690 nm and absorbance around 90% of the incident light, making them an attractive candidate for filtering applications. Furthermore, the interparticle spacing, and resulting interparticle plasmon coupling derived optical properties, varied significantly on replacing tetrathiafulvalene with neocuproine as the AuNP capping ligand in the nanofilm. These interfacial nanofilms formed with neocuproine and 38 nm mean diameter AuNPs, at monolayer surface coverages and above, were black due to aggregation and broadband absorbance. Electronic supplementary information (ESI) available: Interfacial tension measurements for various water-organic solvent systems, step-by-step optical microscopy and SEM characterization of the obtained film, optical photographs of all tested solvents and molecules, and influence of the interfacial tension on optical responses of AuNPs assemblies. See DOI: 10.1039/c6nr00371k

  15. Prévention de la transmission mère-enfant du VIH/sida au Bénin: le consentement des femmes au dépistage est-il libre et éclairé ?

    PubMed Central

    Kêdoté, N.M.; Brousselle, A.; Champagne, F.; Laudy, D.

    2016-01-01

    Résumé Introduction Dans les politiques internationales et nationales sur le VIH/sida, le consentement libre et éclairé est reconnu comme une composante essentielle des programmes de dépistage. Le consentement libre et éclairé implique pour les femmes enceintes d’obtenir des informations sur le programme de prévention de la transmission du VIH de la mère à l’enfant (PTME), de les comprendre et de faire un choix autonome après avoir évalué les risques et avantages. Cependant, aucune évaluation du programme de PTME ne s’est intéressée au consentement. L’objectif de cet article est d’explorer le caractère libre et éclairé du consentement des femmes enceintes quant au dépistage et à leurs motivations à faire le test. Méthode Nous avons utilisé des données récoltées dans le cadre d’une analyse d’implantation du programme de PTME au Bénin. Cette analyse s’appuie sur un devis d’étude de cas multiples incluant six maternités choisies parmi les 56 sites fonctionnels. Spécifiquement pour l’analyse du consentement, nous avons associé les données provenant d’une enquête à celles d’une recherche qualitative. Résultats Hormis trois cas de dépistage à l’insu, le caractère volontaire du consentement au test est respecté sur les sites de PTME. Vingt-neuf cas de refus ont été identifiés. Les raisons les plus souvent évoquées par les femmes enceintes sont la peur du résultat positif et de ses conséquences sur la vie familiale dans 55,2 % des cas et l’attente de l’accord ou du désaccord du mari dans 27,6 % des cas. Si globalement le consentement a été volontaire sur tous les sites, son caractère éclairé est moins probant. PMID:27840660

  16. Surface-Enhanced Raman Spectroscopy of Carbon Nanomembranes from Aromatic Self-Assembled Monolayers.

    PubMed

    Zhang, Xianghui; Mainka, Marcel; Paneff, Florian; Hachmeister, Henning; Beyer, André; Gölzhäuser, Armin; Huser, Thomas

    2018-02-27

    Surface-enhanced Raman scattering spectroscopy (SERS) was employed to investigate the formation of self-assembled monolayers (SAMs) of biphenylthiol, 4'-nitro-1,1'-biphenyl-4-thiol, and p-terphenylthiol on Au surfaces and their structural transformations into carbon nanomembranes (CNMs) induced by electron irradiation. The high sensitivity of SERS allows us to identify two types of Raman scattering in electron-irradiated SAMs: (1) Raman-active sites exhibit similar bands as those of pristine SAMs in the fingerprint spectral region, but with indications of an amorphization process and (2) Raman-inactive sites show almost no Raman-scattering signals, except a very weak and broad D band, indicating a lack of structural order but for the presence of graphitic domains. Statistical analysis showed that the ratio of the number of Raman-active sites to the total number of measurement sites decreases exponentially with increasing the electron irradiation dose. The maximum degree of cross-linking ranged from 97 to 99% for the three SAMs. Proof-of-concept experiments were conducted to demonstrate potential applications of Raman-inactive CNMs as a supporting membrane for Raman analysis.

  17. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei

    2014-08-01

    Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.Ultra-small metallic nanoparticles, or so-called ``nanoclusters'' (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications. Electronic supplementary information (ESI) available: The feed amount for preparation of Au NCs, photophysical properties of Au NCs, the FL spectra under different pH and reaction time, and XPS results are included. See DOI: 10.1039/c4nr02180k

  18. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.

    PubMed

    Wang, Ai-Qin; Chang, Chun-Ming; Mou, Chung-Yuan

    2005-10-13

    We report a novel Au-Ag alloy catalyst supported on mesoporous aluminosilicate Au-Ag@MCM prepared by a one-pot synthesis procedure, which is very active for low-temperature CO oxidation. The activity was highly dependent on the hydrogen pretreatment conditions. Reduction at 550-650 degrees C led to high activity at room temperature, whereas as-synthesized or calcined samples did not show any activity at the same temperature. Using various characterization techniques, such as XRD, UV-vis, XPS, and EXAFS, we elucidated the structure and surface composition change during calcination and the reduction process. The XRD patterns show that particle size increased only during the calcination process on those Ag-containing samples. XPS and EXAFS data demonstrate that calcination led to complete phase segregation of the Au-Ag alloy and the catalyst surface is greatly enriched with AgBr after the calcination process. However, subsequent reduction treatment removed Br- completely and the Au-Ag alloy was formed again. The surface composition of the reduced Au-Ag@MCM (nominal Au/Ag = 3/1) was more enriched with Ag, with the surface Au/Ag ratio being 0.75. ESR spectra show that superoxides are formed on the surface of the catalyst and its intensity change correlates well with the trend of catalytic activity. A DFT calculation shows that CO and O2 coadsorption on neighboring sites on the Au-Ag alloy was stronger than that on either Au or Ag. The strong synergism in the coadsorption of CO and O2 on the Au-Ag nanoparticle can thus explain the observed synergetic effect in catalysis.

  19. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    PubMed

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  20. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge, this is the first report to describe the synthesis of monodispersed, biocompatible, and soluble AuNPs with an average size of 20 nm using Ganoderma spp. This study opens up new possibilities of using an inexpensive and non-toxic mushroom extract as a reducing and stabilizing agent for the synthesis of size-controlled, large-scale, biocompatible, and monodispersed AuNPs, which may have future diagnostic and therapeutic applications.

  1. Atomic scale origins of sub-band gap optical absorption in gold-hyperdoped silicon

    NASA Astrophysics Data System (ADS)

    Ferdous, Naheed; Ertekin, Elif

    2018-05-01

    Gold hyperdoped silicon exhibits room temperature sub band gap optical absorption, with potential applications as infrared absorbers/detectors and impurity band photovoltaics. We use first-principles density functional theory to establish the origins of the sub band gap response. Substitutional gold AuSi and substitutional dimers AuSi - AuSi are found to be the energetically preferred defect configurations, and AuSi gives rise to partially filled mid-gap defect bands well offset from the band edges. AuSi is predicted to offer substantial sub-band gap absorption, exceeding that measured in prior experiments by two orders of magnitude for similar Au concentration. This suggests that in experimentally realized systems, in addition to AuSi, the implanted gold is accommodated by the lattice in other ways, including other defect complexes and gold precipitates. We further identify that it is energetically favorable for isolated AuSi to form AuSi - AuSi, which by contrast do not exhibit mid-gap states. The formation of dimers and other complexes could serve as nuclei in the earliest stages of Au precipitation, which may be responsible for the observed rapid deactivation of sub-band gap response upon annealing.

  2. New pathway to prepare gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering.

    PubMed

    Chang, Chun-Chao; Yang, Kuang-Hsuan; Liu, Yu-Chuan; Hsu, Ting-Chu

    2012-05-01

    As shown in the literature, additional energies are necessary for the reduction of positively charged noble metal ions to prepare metal nanoparticles (NPs). In this work, we report a new green pathway to prepare Au NPs in neutral 0.1M NaCl aqueous solutions from bulk Au substrates without addition of any stabilizer and reductant just via aid of natural chitosan (Ch) at room temperature. Au- and Ch-containing complexes in aqueous solution were electrochemically prepared. The role of Ch is just an intermediate to perform electron transfer with Au NPs. The stability of these prepared Au NPs is well maintained by Au NPs themselves with slightly positively charged Au remained on the surface of Au NPs. The particle size of prepared spherical Au (111) NPs is ca. 15 nm in diameter. Moreover, increasing the pH of preparation solutions can be contributive to preparing concentrated Au NPs in solutions. The prepared Au NPs are surface-enhanced Raman scattering (SERS)-active for probe molecules of Rhodamine 6G. They also demonstrate significantly catalytic activity for decomposition of acetaldehyde in rice wine. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cances, Benjamin; Benedetti, Marc; Farges, Francois

    2007-02-02

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxy-hydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au LIII-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl)4), with dominantly OH ligands atmore » pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution - MUlti SIte Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.« less

  4. Adsorption Mechanisms of Trivalent Gold onto Iron Oxy-Hydroxides: From the Molecular Scale to the Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cances, Benjamin; /Marne La Vallee U.; Benedetti, Marc

    2006-12-13

    Gold is a highly valuable metal that can concentrate in iron-rich exogenetic horizons such as laterites. An improved knowledge of the retention mechanisms of gold onto highly reactive soil components such as iron oxyhydroxides is therefore needed to better understand and predict the geochemical behavior of this element. In this study, we use EXAFS information and titration experiments to provide a realistic thermochemical description of the sorption of trivalent gold onto iron oxy-hydroxides. Analysis of Au L{sub III}-edge XAFS spectra shows that aqueous Au(III) adsorbs from chloride solutions onto goethite surfaces as inner-sphere square-planar complexes (Au(III)(OH,Cl){sub 4}), with dominantly OHmore » ligands at pH > 6 and mixed OH/Cl ligands at lower pH values. In combination with these spectroscopic results, Reverse Monte Carlo simulations were used to constraint the possible sorption sites on the surface of goethite. Based on this structural information, we calculated sorption isotherms of Au(III) on Fe oxy-hydroxides surfaces, using the CD-MUSIC (Charge Distribution--Multi Site Complexation) model. The various Au(III)-sorbed species were identified as a function of pH, and the results of these EXAFS+CD-MUSIC models are compared with titration experiments. The overall good agreement between the predicted and measured structural models shows the potential of this combined approach to better model sorption processes of transition elements onto highly reactive solid surfaces such as goethite and ferrihydrite.« less

  5. Synthesis of one-dimensional gold nanostructures and the electrochemical application of the nanohybrid containing functionalized graphene oxide for cholesterol biosensing.

    PubMed

    Nandini, Seetharamaiah; Nalini, Seetharamaiah; Reddy, M B Madhusudana; Suresh, Gurukar Shivappa; Melo, Jose Savio; Niranjana, Pathappa; Sanetuntikul, Jakkid; Shanmugam, Sangaraju

    2016-08-01

    This manuscript reports a new approach for the synthesis of one dimensional gold nanostructure (AuNs) and its application in the development of cholesterol biosensor. Au nanostructures have been synthesized by exploiting β-diphenylalanine (β-FF) as an sacrificial template, whereas the Au nanoparticles (AuNPs) were synthesized by ultrasound irradiation. X-ray diffractometer (XRD), scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) have been employed to characterize the morphology and composition of the prepared samples. With the aim to develop a highly sensitive cholesterol biosensor, cholesterol oxidase (ChOx) was immobilized on AuNs which were appended on the graphite (Gr) electrode via chemisorption onto thiol-functionalized graphene oxide (GO-SH). This Gr/GO-SH/AuNs/ChOx biosensor has been characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy and chronoamperometry. CV results indicated a direct electron transfer between the enzyme and the electrode surface. A new potentiostat intermitant titration technique (PITT) has been studied to determine the diffusion coefficient and maxima potential value. The proposed biosensor showed rapid response, high sensitivity, wide linear range and low detection limit. Furthermore, our AuNs modified electrode showed excellent selectivity, repeatability, reproducibility and long term stability. The proposed electrode has also been used successfully to determine cholesterol in serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    PubMed

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  7. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    PubMed Central

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)-capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters. PMID:28208642

  8. Poly(methacrylic acid)-Coated Gold Nanoparticles: Functional Platforms for Theranostic Applications.

    PubMed

    Yilmaz, Gokhan; Demir, Bilal; Timur, Suna; Becer, C Remzi

    2016-09-12

    The integration of drugs with nanomaterials have received significant interest in the efficient drug delivery systems. Conventional treatments with therapeutically active drugs may cause undesired side effects and, thus, novel strategies to perform these treatments with a combinatorial approach of therapeutic modalities are required. In this study, polymethacrylic acid coated gold nanoparticles (AuNP-PMAA), which were synthesized with reversible addition-fragmentation chain transfer (RAFT) polymerization, were combined with doxorubicin (DOX) as a model anticancer drug by creating a pH-sensitive hydrazone linkage in the presence of cysteine (Cys) and a cross-linker. Drug-AuNP conjugates were characterized via spectrofluorimetry, dynamic light scattering and zeta potential measurements as well as X-ray photoelectron spectroscopy. The particle size of AuNP-PMAA and AuNP-PMAA-Cys-DOX conjugate were calculated as found as 104 and 147 nm, respectively. Further experiments with different pH conditions (pH 5.3 and 7.4) also showed that AuNP-PMAA-Cys-DOX conjugate could release the DOX in a pH-sensitive way. Finally, cell culture applications with human cervix adenocarcinoma cell line (HeLa cells) demonstrated effective therapeutic impact of the final conjugate for both chemotherapy and radiation therapy by comparing free DOX and AuNP-PMAA independently. Moreover, cell imaging study was also an evidence that AuNP-PMAA-Cys-DOX could be a beneficial candidate as a diagnostic agent.

  9. Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells.

    PubMed

    Khantamat, Orawan; Li, Chien-Hung; Liu, Si-Ping; Liu, Tingting; Lee, Han Ju; Zenasni, Oussama; Lee, Tai-Chou; Cai, Chengzhi; Lee, T Randall

    2018-03-01

    Titanium dioxide (TiO 2 ) has gained increasing interest in materials research due to its outstanding properties and promising applications in a wide range of fields. From this perspective, we report the synthesis of custom-designed anatase TiO 2 submicrometer particles coated with partial Au shells (ATiO 2 -AuShl). The synthetic strategy used herein yields uniformly shaped monodisperse particles. Amorphous TiO 2 core particles were synthesized using template-free oxidation and hydrolysis of titanium nitride (TiN); subsequent hydrothermal treatment generated anatase TiO 2 (ATiO 2 ) particles. Coating ATiO 2 particles with partial Au shells was accomplished using a simple seeded-growth method. Evaluation of the optical properties of these ATiO 2 -AuShl particles showed that these submicrometer composites exhibited an intense absorption peak for TiO 2 in the UV region (∼326 nm) and a broad extinction band in the visible range (∼650 nm) arising from the incomplete Au shell. These ATiO 2 -AuShl composite particles provide a unique and effective means for broadening the optical response of TiO 2 -based nano- and micron-scale materials. The simplicity of our synthetic method should broaden the application of ATiO 2 -AuShl particles in various visible light-driven technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Feng, Feng; Ma, Zhanfang

    2015-11-01

    Electrochemical redox-active species play crucial role in electrochemically multiplexed immunoassays. A one-pot method for synthesizing four kinds of new electrochemical redox-active species was reported using HAuCl4 and Na2PdCl4 as dual oxidating agents and aniline derivatives as monomers. The synthesized polyaniline derivative-Au/Pd composites, namely poly(N-methyl-o-benzenediamine)-Au/Pd, poly(N-phenyl-o-phenylenediamine)-Au/Pd, poly(N-phenyl-p-phenylenediamine)-Au/Pd and poly(3,3’,5,5’-tetramethylbenzidine)-Au/Pd, exhibited electrochemical redox activity at -0.65 V, -0.3 V, 0.12 V, and 0.5 V, respectively. Meanwhile, these composites showed high H2O2 electrocatalytic activity because of the presence of Au/Pd. The as-prepared composites were used as electrochemical immunoprobes in simultaneous detection of four tumor biomarkers (carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA199), carbohydrate antigen 72-4 (CA724), and alpha fetoprotein (AFP)). This immunoassay shed light on potential applications in simultaneous gastric cancer (related biomarkers: CEA, CA199, CA724) and liver cancer diagnosis (related biomarkers: CEA, CA199, AFP). The present strategy to the synthesize redox species could be easily extended to other polymers such as polypyrrole derivatives and polythiophene derivatives. This would be of great significance in the electrochemical detection of more analytes.

  11. Polyaniline modified flexible conducting paper for cancer detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Saurabh; Sen, Anindita; Kumar, Suveen

    We report results of studies relating to the fabrication of a flexible, disposable, and label free biosensing platform for detection of the cancer biomarker (carcinoembryonic antigen, CEA). Polyaniline (PANI) has been electrochemically deposited over gold sputtered paper (Au@paper) for covalent immobilization of monoclonal carcinoembryonic antibodies (anti-CEA). The bovine serum albumin (BSA) has been used for blocking nonspecific binding sites at the anti-CEA conjugated PANI/Au@Paper. The PANI/Au@Paper, anti-CEA/PANI/Au@Paper, and BSA/anti-CEA/PANI/Au@Paper platforms have been characterized using scanning electron microscopy, X-ray diffraction, Fourier transmission infrared spectroscopy, chronoamperometry, and electrochemical impedance techniques. The results of the electrochemical response studies indicate that this BSA/anti-CEA/PANI/Au@paper electrodemore » has sensitivity of 13.9 μA ng{sup −1} ml cm{sup 2}, shelf life of 22 days, and can be used to estimate CEA in the range of 2–20 ng ml{sup −1}. This paper sensor has been validated by detection of CEA in serum samples of cancer patients via immunoassay technique.« less

  12. Structural and optical properties of the naked and passivated Al{sub 5}Au{sub 5} bimetallic nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grande-Aztatzi, Rafael; Formoso, Elena; Matxain, Jon M.

    The structural and optical properties of both the naked and passivated bimetallic Al{sub 5}Au{sub 5} nanoclusters have been analyzed based on data obtained from ab initio density functional theory and quantum molecular dynamics simulations. It has been found that the Al{sub 5}Au{sub 5} nanocluster possesses a hollow shaped minimum energy structure with segregated Al and Au layered domains, the former representing the electrophilic domain and the latter the nucleophilic domain. In particular, it has been shown that alkali metal cations attach in the nucleophilic domain and hop from one Au site to the next one in the picoseconds time scale,more » while anions are bound tightly to the Al atoms of the electrophilic domain. Simulating annealing studies are very suggestive of the proneness of the nanocluster towards coalescence into large cluster units, when the cluster is left unprotected by appropriate ligands. Further passivation studies with NaF salt suggest, nonetheless, the possibility of the isolation of the Al{sub 5}Au{sub 5} cluster in molten salts or ionic liquids.« less

  13. Improving gold catalysis of nitroarene reduction with surface Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzer, Lori A.; Heck, Kimberly N.; Kim, Sean S.

    2016-04-01

    Nitroarene reduction reactions are commercialized catalytic processes that play a key role in the synthesisof many products including medicines, rubbers, dyes, and herbicides. Whereas bimetallic compositionshave been studied, a better understanding of the bimetallic structure effects may lead to improved indus-trial catalysts. In this work, the influence of surface palladium atoms supported on 3-nm Au nanoparticles(Pd-on-Au NPs) on catalytic activity for 4-nitrophenol reduction is explored. Batch reactor studies indi-cate Pd-on-Au NPs exhibit maximum catalytic activity at a Pd surface coverage of 150 sc%, with aninitial turnover frequency of ~3.7 mol-nitrophenol/mol-metalsurface/s, which was ~5.5× and ~13× moreactive than pure Au NPsmore » and Pd NPs, respectively. Pd NPs, Au NPs, and Pd-on-Au NPs below 175 sc%show compensation behavior. Three-dimensional Pd surface ensembles (with ~4–5 atoms) previouslyidentified through X-ray adsorption spectroscopy provide the active sites responsible for the catalyticmaximum. These results demonstrate the ability to adjust systematically a structural feature (i.e., Pdsurface coverage) to yield a more active material.« less

  14. In Situ Reductive Synthesis of Structural Supported Gold Nanorods in Porous Silicon Particles for Multifunctional Nanovectors.

    PubMed

    Zhu, Guixian; Liu, Jen-Tsai; Wang, Yuzhen; Zhang, Dechen; Guo, Yi; Tasciotti, Ennio; Hu, Zhongbo; Liu, Xuewu

    2016-05-11

    Porous silicon nanodisks (PSD) were fabricated by the combination of photolithography and electrochemical etching of silicon. By using PSD as a reducing agent, gold nanorods (AuNR) were in situ synthesized in the nanopores of PSD, forming PSD-supported-AuNR (PSD/AuNR) hybrid particles. The formation mechanism of AuNR in porous silicon (pSi) was revealed by exploring the role of pSi reducibility and each chemical in the reaction. With the PSD support, AuNR exhibited a stable morphology without toxic surface ligands (CTAB). The PSD/AuNR hybrid particles showed enhanced plasmonic property compared to free AuNR. Because high-density "hot spots" can be generated by controlling the distribution of AuNR supported in PSD, surface-enhanced raman scattering (SERS) using PSD/AuNR as particle substrates was demonstrated. A multifunctional vector, PSD/AuNR/DOX, composed of doxorubicin (DOX)-loaded PSD/AuNR capped with agarose (agar), was developed for highly efficient, combinatorial cancer treatment. Their therapeutic efficacy was examined using two pancreatic cancer cell lines, PANC-1 and MIA PaCa-2. PSD/AuNR/DOX (20 μg Au and 1.25 μg DOX/mL) effectively destroyed these cells under near-IR laser irradiation (810 nm, 15 J·cm(-2) power, 90 s). Overall, we envision that PSD/AuNR may be a promising injectable, multifunctional nanovector for biomedical application.

  15. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion.

    PubMed

    Pulsipher, Katherine W; Villegas, Jose A; Roose, Benjamin W; Hicks, Tacey L; Yoon, Jennifer; Saven, Jeffery G; Dmochowski, Ivan J

    2017-07-18

    Protein cage self-assembly enables encapsulation and sequestration of small molecules, macromolecules, and nanomaterials for many applications in bionanotechnology. Notably, wild-type thermophilic ferritin from Archaeoglobus fulgidus (AfFtn) exists as a stable dimer of four-helix bundle proteins at a low ionic strength, and the protein forms a hollow assembly of 24 protomers at a high ionic strength (∼800 mM NaCl). This assembly process can also be initiated by highly charged gold nanoparticles (AuNPs) in solution, leading to encapsulation. These data suggest that salt solutions or charged AuNPs can shield unfavorable electrostatic interactions at AfFtn dimer-dimer interfaces, but specific "hot-spot" residues controlling assembly have not been identified. To investigate this further, we computationally designed three AfFtn mutants (E65R, D138K, and A127R) that introduce a single positive charge at sites along the dimer-dimer interface. These proteins exhibited different assembly kinetics and thermodynamics, which were ranked in order of increasing 24mer propensity: A127R < wild type < D138K ≪ E65R. E65R assembled into the 24mer across a wide range of ionic strengths (0-800 mM NaCl), and the dissociation temperature for the 24mer was 98 °C. X-ray crystal structure analysis of the E65R mutant identified a more compact, closed-pore cage geometry. A127R and D138K mutants exhibited wild-type ability to encapsulate and stabilize 5 nm AuNPs, whereas E65R did not encapsulate AuNPs at the same high yields. This work illustrates designed protein cages with distinct assembly and encapsulation properties.

  16. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays.

    PubMed

    Brassat, Katharina; Ramakrishnan, Saminathan; Bürger, Julius; Hanke, Marcel; Doostdar, Mahnaz; Lindner, Jörg K N; Grundmeier, Guido; Keller, Adrian

    2018-05-22

    DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO 2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg 2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO 2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.

  17. Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications

    NASA Astrophysics Data System (ADS)

    Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir

    2018-04-01

    We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.

  18. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    PubMed

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  19. Modeling the self-assembly of functionalized fullerenes on solid surfaces using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Bubnis, Gregory J.

    Since their discovery 25 years ago, carbon fullerenes have been widely studied for their unique physicochemical properties and for applications including organic electronics and photovoltaics. For these applications it is highly desirable for crystalline fullerene thin films to spontaneously self-assemble on surfaces. Accordingly, many studies have functionalized fullerenes with the aim of tailoring their intermolecular interactions and controlling interactions with the solid substrate. The success of these rational design approaches hinges on the subtle interplay of intermolecular forces and molecule-substrate interactions. Molecular modeling is well-suited to studying these interactions by directly simulating self-assembly. In this work, we consider three different fullerene functionalization approaches and for each approach we carry out Monte Carlo simulations of the self-assembly process. In all cases, we use a "coarse-grained" molecular representation that preserves the dominant physical interactions between molecules and maximizes computational efficiency. The first approach we consider is the traditional gold-thiolate SAM (self-assembled monolayer) strategy which tethers molecules to a gold substrate via covalent sulfur-gold bonds. For this we study an asymmetric fullerene thiolate bridged by a phenyl group. Clusters of 40 molecules are simulated on the Au(111) substrate at different temperatures and surface coverage densities. Fullerenes and S atoms are found to compete for Au(111) surface sites, and this competition prevents self-assembly of highly ordered monolayers. Next, we investigate self-assembled monolayers formed by fullerenes with hydrogen-bonding carboxylic acid substituents. We consider five molecules with different dimensions and symmetries. Monte Carlo cooling simulations are used to find the most stable solid structures of clusters adsorbed to Au(111). The results show cases where fullerene-Au(111) attraction, fullerene close-packing, and hydrogen-bonding interactions can cooperate to guide self-assembly or compete to hinder it. Finally, we consider three bis-fullerene molecules, each with a different "bridging group" covalently joining two fullerenes. To effectively study the competing "standing-up" and "lying-down" morphologies, we use Monte Carlo simulations in conjunction with replica exchange and force field biasing methods. For clusters adsorbed to smooth model surfaces, we determine free energy landscapes and demonstrate their utility for rationalizing and predicting self-assembly.

  20. Enhanced Delivery of Gold Nanoparticles with Therapeutic Potential for Targeting Human Brain Tumors

    NASA Astrophysics Data System (ADS)

    Etame, Arnold B.

    The blood brain barrier (BBB) remains a major challenge to the advancement and application of systemic anti-cancer therapeutics into the central nervous system. The structural and physiological delivery constraints of the BBB significantly limit the effectiveness of conventional chemotherapy, thereby making systemic administration a non-viable option for the vast majority of chemotherapy agents. Furthermore, the lack of specificity of conventional systemic chemotherapy when applied towards malignant brain tumors remains a major shortcoming. Hence novel therapeutic strategies that focus both on targeted and enhanced delivery across the BBB are warranted. In recent years nanoparticles (NPs) have emerged as attractive vehicles for efficient delivery of targeted anti-cancer therapeutics. In particular, gold nanoparticles (AuNPs) have gained prominence in several targeting applications involving systemic cancers. Their enhanced permeation and retention within permissive tumor microvasculature provide a selective advantage for targeting. Malignant brain tumors also exhibit transport-permissive microvasculature secondary to blood brain barrier disruption. Hence AuNPs may have potential relevance for brain tumor targeting. However, the permeation of AuNPs across the BBB has not been well characterized, and hence is a potential limitation for successful application of AuNP-based therapeutics within the central nervous system (CNS). In this dissertation, we designed and characterized AuNPs and assessed the role of polyethylene glycol (PEG) on the physical and biological properties of AuNPs. We established a size-dependent permeation profile with respect to core size as well as PEG length when AuNPs were assessed through a transport-permissive in-vitro BBB. This study was the first of its kind to systematically examine the influence of design on permeation of AuNPs through transport-permissive BBB. Given the significant delivery limitations through the non-transport permissive and intact BBB, we also assessed the role of magnetic resonance imaging (MRI) guided focused ultrasound (MRgFUS) disruption of the BBB in enhancing permeation of AuNPs across the intact BBB and tumor BBB in vivo. MRgFUS is a novel technique that can transiently increase BBB permeability thereby allowing delivery of therapeutics into the CNS. We demonstrated enhanced delivery of AuNPs with therapeutic potential into the CNS via MRgFUS. Our study was the first to establish a definitive role for MRgFUS in delivering AuNPs into the CNS. In summary, this thesis describes results from a series of research projects that have contributed to our understanding of the influence of design features on AuNP permeation through the BBB and also the potential role of MRgFUS in AuNP permeation across the BBB.

  1. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  2. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    NASA Astrophysics Data System (ADS)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  3. Effects of the physicochemical properties of gold nanostructures on cellular internalization

    PubMed Central

    Zhang, Jinchao; Wang, Paul C.; Liang, Xing-Jie

    2015-01-01

    Unique physicochemical properties of Au nanomaterials make them potential star materials in biomedical applications. However, we still know a little about the basic problem of what really matters in fabrication of Au nanomaterials which can get into biological systems, especially cells, with high efficiency. An understanding of how the physicochemical properties of Au nanomaterials affect their cell internalization is of significant interest. Studies devoted to clarify the functions of various properties of Au nanostructures such as size, shape and kinds of surface characteristics in cell internalization are under way. These fundamental investigations will give us a foundation for constructing Au nanomaterial-based biomedical devices in the future. In this review, we present the current advances and rationales in study of the relationship between the physicochemical properties of Au nanomaterials and cell uptake. We also provide a perspective on the Au nanomaterial-cell interaction research. PMID:26813673

  4. Spectroscopically forbidden infra-red emission in Au-vertical graphene hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Sivadasan, A. K.; Parida, Santanu; Ghosh, Subrata; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Implementation of Au nanoparticles (NPs) is a subject for frontier plasmonic research due to its fascinating optical properties. Herein, the present study deals with plasmonic assisted emission properties of Au NPs-vertical graphene (VG) hybrid nanostructures. The influence of effective polarizability of Au NPs on the surface enhanced Raman scattering and luminescence properties is investigated. In addition, a remarkable infra-red emission in the hybrid nanostructures is observed and interpreted on the basis of intra-band transitions in Au NPs. The flake-like nanoporous VG structure is invoked for the generation of additional confined photons to impart additional momentum and a gradient of confined excitation energy towards initiating the intra-band transitions of Au NPs. Integrating Au plasmonic materials in three-dimensional VG nanostructures enhances the light-matter interactions. The present study provides a new adaptable plasmonic assisted pathway for optoelectronic and sensing applications.

  5. Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing

    NASA Astrophysics Data System (ADS)

    SadAbadi, H.; Packirisamy, M.; Wuthrich, R.

    2015-09-01

    The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.

  6. Estimation of spin contamination error in dissociative adsorption of Au2 onto MgO(0 0 1) surface: First application of approximate spin projection (AP) method to plane wave basis

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Koga, Hiroaki; Okumura, Mitsutaka; Tanaka, Shingo

    2018-06-01

    Spin contamination error in the total energy of the Au2/MgO system was estimated using the density functional theory/plane-wave scheme and approximate spin projection methods. This is the first investigation in which the errors in chemical phenomena on a periodic surface are estimated. The spin contamination error of the system was 0.06 eV. This value is smaller than that of the dissociation of Au2 in the gas phase (0.10 eV). This is because of the destabilization of the singlet spin state due to the weakening of the Au-Au interaction caused by the Au-MgO interaction.

  7. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2013-11-01

    The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the title molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.

  8. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Foo Yiing; Malek, Sri Nurestri Abd; Periasamy, Vengadesh

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorptionmore » band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl{sub 4}.3H{sub 2}O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.« less

  9. Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance.

    PubMed

    Kuttner, Christian; Mayer, Martin; Dulle, Martin; Moscoso, Ana; López-Romero, Juan Manuel; Förster, Stephan; Fery, Andreas; Pérez-Juste, Jorge; Contreras-Cáceres, Rafael

    2018-04-04

    We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV-vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 10 4 and 5.6 × 10 4 and nanomolar limit of detection (10 -8 -10 -9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.

  10. Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent

    NASA Astrophysics Data System (ADS)

    Yee, Foo Yiing; Periasamy, Vengadesh; Malek, Sri Nurestri Abd

    2015-04-01

    Green synthesis of gold nanoparticles (AuNPs) had been developed as an alternative to chemical and physical methods due to its simplicity, cost effectiveness and eco-friendliness. The high biocompatibility and biostability features of AuNPs have found importance in biomedical applications in recent years. In this study, aqueous ethanol extract of Curcuma mangga rhizomes which acts as reducing and stabilizing agent was used to synthesize stable AuNPs by bioreduction of chloroauric acid. The formation of AuNPs was highlighted by the color change of the suspension from light yellow to reddish purple. Time-evolution was monitored by UV-visible spectroscopy, while surface plasmon (SP) absorption band of the AuNPs suspension was observed at a maximum absorption of 540 nm. Hydrodynamic radii and size distribution of the AuNPs in the suspension were evaluated using dynamic light scattering (DLS) and zeta potential measurement demonstrated negative surface charge. The particle size was calculated in the range of 2-30 nm using High Resolution Transmission Electron Microscopy (HRTEM). The morphology and elemental composition were further determined by Field Effect Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray (EDX) spectroscopy. Fourier transform infrared (FTIR) spectroscopy meanwhile was used to confirm the presence of AuNPs and functional groups involved in the gold bio-reduction process. Influence of the volume of extract and concentration of gold (III) chloride trihydrate (HAuCl4.3H2O) on the synthesis of AuNPs were also investigated. The results obtained indicate potential optimization and functionalization of AuNPs for future applications in bionanotechnology especially in the field of medicine.

  11. Evolution of Self-Assembled Au NPs by Controlling Annealing Temperature and Dwelling Time on Sapphire (0001).

    PubMed

    Lee, Jihoon; Pandey, Puran; Sui, Mao; Li, Ming-Yu; Zhang, Quanzhen; Kunwar, Sundar

    2015-12-01

    Au nanoparticles (NPs) have been utilized in a wide range of device applications as well as catalysts for the fabrication of nanopores and nanowires, in which the performance of the associated devices and morphology of nanopores and nanowires are strongly dependent on the size, density, and configuration of the Au NPs. In this paper, the evolution of the self-assembled Au nanostructures and NPs on sapphire (0001) is systematically investigated with the variation of annealing temperature (AT) and dwelling time (DT). At the low-temperature range between 300 and 600 °C, three distinct regimes of the Au nanostructure configuration are observed, i.e., the vermiform-like Au piles, irregular Au nano-mounds, and Au islands. Subsequently, being provided with relatively high thermal energy between 700 and 900 °C, the round dome-shaped Au NPs are fabricated based on the Volmer-Weber growth model. With the increased AT, the size of the Au NPs is gradually increased due to a more favorable surface diffusion while the density is gradually decreased as a compensation. On the other hand, with the increased DT, the size and density of Au NPs decrease due to the evaporation of Au at relatively high annealing temperature at 950 °C.

  12. Facile preparation of surfactant-free Au NPs/RGO/Ni foam for degradation of 4-nitrophenol and detection of hydrogen peroxide.

    PubMed

    Liu, Y Y; Guo, X L; Zhao, L; Zhu, L; Chen, Z T; Chen, J; Zhang, Y; Sun, L T; Zhao, Y H

    2018-06-08

    The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min -1 (0.15 cm 3 catalysis) but also a sensitive and selective detection of H 2 O 2 with a detection limit of ∼1.60 μM.

  13. Stabilizing ultrasmall Au clusters for enhanced photoredox catalysis.

    PubMed

    Weng, Bo; Lu, Kang-Qiang; Tang, Zichao; Chen, Hao Ming; Xu, Yi-Jun

    2018-04-18

    Recently, loading ligand-protected gold (Au) clusters as visible light photosensitizers onto various supports for photoredox catalysis has attracted considerable attention. However, the efficient control of long-term photostability of Au clusters on the metal-support interface remains challenging. Herein, we report a simple and efficient method for enhancing the photostability of glutathione-protected Au clusters (Au GSH clusters) loaded on the surface of SiO 2 sphere by utilizing multifunctional branched poly-ethylenimine (BPEI) as a surface charge modifying, reducing and stabilizing agent. The sequential coating of thickness controlled TiO 2 shells can further significantly improve the photocatalytic efficiency, while such structurally designed core-shell SiO 2 -Au GSH clusters-BPEI@TiO 2 composites maintain high photostability during longtime light illumination conditions. This joint strategy via interfacial modification and composition engineering provides a facile guideline for stabilizing ultrasmall Au clusters and rational design of Au clusters-based composites with improved activity toward targeting applications in photoredox catalysis.

  14. Bio-prospective of Polyscias fruticosa leaf extract as redactor and stabilizer of gold nanoparticles formation

    NASA Astrophysics Data System (ADS)

    Yulizar, Y.; Ayun, Q.

    2017-03-01

    Metal nanoparticle is a great interest to researches due to its applications toward catalysis, sensors, and drug delivery. Biosynthesis of gold nanoparticles (AuNPs) using aqueous leaf extract of Polycias fruticosa (PFE) is reported in this article. PFE plays a role as reductor and stabilizer of AuNPs. The formation of PFE-AuNPs under radiation of natrium lamp for 15 min was monitored by UV - Vis spectrophotometer. The growth process and stability of PFE-AuNPs was observed from the colour and absorbance change in the wavelength range of 529-533 nm. The optimum synthesis condition of PFE-AuNPs was obtained at 0.06% (w/v) of PFE concentration. Size and its distribution of PFE-AuNPs were identified by particle size analyzer (PSA) as 35.02 nm and stable up until 21 days. The stable PFE-AuNPs was further characterized by Fourier transform infrared (FT-IR) spectroscopy to identify the functional group in phenolic compound of PFE interact with AuNps.

  15. Exfoliation restacking route to Au nanoparticle-clay nanohybrids

    NASA Astrophysics Data System (ADS)

    Paek, Seung-Min; Jang, Jae-Up; Hwang, Seong-Ju; Choy, Jin-Ho

    2006-05-01

    A novel gold-pillared aluminosilicate (Au-PILC) were synthesized with positively charged gold nanoparticles capped by mercaptoammonium and exfoliated silicate layers. Gold nanoparticles were synthesized by NaBH4 reduction of AuCl4- in the presence of N,N,N-Trimethyl (11-mercaptoundecyl)ammonium (HS(CH2)11NMe3+) protecting ligand in an aqueous solution, and purified by dialysis. The resulting positively charged and water-soluble gold nanoparticles were hybridized with exfoliated silicate sheets by electrostatic interaction. The formation of Au clay hybrids could be easily confirmed by the powder X-ray diffraction with the increased basal spacing of clay upon insertion of Au nanoparticles. TEM image clearly revealed that the Au particles with an average size of 4 nm maintain their structure even after intercalation. The Au nanoparticles supported by clay matrix were found to be thermally more stable, suggesting that the Au nanoparticles were homogeneously protected with clay nanoplates. The present synthetic route could be further applicable to various hybrid systems between metal nanoparticles and clays.

  16. Facile preparation of surfactant-free Au NPs/RGO/Ni foam for degradation of 4-nitrophenol and detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Guo, X. L.; Zhao, L.; Zhu, L.; Chen, Z. T.; Chen, J.; Zhang, Y.; Sun, L. T.; Zhao, Y. H.

    2018-06-01

    The application of Au nanoparticles (Au NPs) often requires surface modification with chemical surfactants, which dramatically reduce the surface activity and increase the chemical contamination and cost of Au NPs. In this research, we have developed a novel Au NPs/reduced graphene oxide/Ni foam hybrid (Au NPs/RGO/NiF) by in situ reduction through ascorbic acid and replacement reaction. This method is green, facile and efficient. The Au NPs are free of chemical surfactants and are homogeneously distributed on the surface of the RGO/NiF. The as-prepared Au NPs/RGO/NiF hybrid is uniform, stable and exhibits not only a high reduction efficiency for the reduction of 4-nitrophenol with a catalytic kinetic constant of up to 0.46 min‑1 (0.15 cm3 catalysis) but also a sensitive and selective detection of H2O2 with a detection limit of ∼1.60 μM.

  17. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... designed to measure differences in characteristics among applicants against those characteristics... survey of all host family and au pair participants regarding satisfaction with the program, its strengths... the Department of Homeland Security's Student and Exchange Visitor Information System (SEVIS...

  18. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... designed to measure differences in characteristics among applicants against those characteristics... survey of all host family and au pair participants regarding satisfaction with the program, its strengths... the Department of Homeland Security's Student and Exchange Visitor Information System (SEVIS...

  19. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... designed to measure differences in characteristics among applicants against those characteristics... survey of all host family and au pair participants regarding satisfaction with the program, its strengths... the Department of Homeland Security's Student and Exchange Visitor Information System (SEVIS...

  20. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... designed to measure differences in characteristics among applicants against those characteristics... survey of all host family and au pair participants regarding satisfaction with the program, its strengths... the Department of Homeland Security's Student and Exchange Visitor Information System (SEVIS...

  1. 22 CFR 62.31 - Au pairs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... designed to measure differences in characteristics among applicants against those characteristics... survey of all host family and au pair participants regarding satisfaction with the program, its strengths... the Department of Homeland Security's Student and Exchange Visitor Information System (SEVIS...

  2. TiO2-SiO2 Coatings with a Low Content of AuNPs for Producing Self-Cleaning Building Materials

    PubMed Central

    Gil, M. L. Almoraima; Mosquera, María J.

    2018-01-01

    The high pollution levels in our cities are producing a significant increase of dust on buildings. An application of photoactive coatings on building materials can produce buildings with self-cleaning surfaces. In this study, we have developed a simple sol-gel route for producing Au-TiO2/SiO2 photocatalysts with application on buildings. The gold nanoparticles (AuNPs) improved the TiO2 photoactivity under solar radiation because they promoted absorption in the visible range. We varied the content of AuNPs in the sols under study, in order to investigate their effect on self-cleaning properties. The sols obtained were sprayed on a common building stone, producing coatings which adhere firmly to the stone and preserve their aesthetic qualities. We studied the decolourization efficiency of the photocatalysts under study against methylene blue and against soot (a real staining agent for buildings). Finally, we established that the coating with an intermediate Au content presented the best self-cleaning performance, due to the role played by its structure and texture on its photoactivity. PMID:29558437

  3. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging

    PubMed Central

    Cheheltani, Rabee; Ezzibdeh, Rami M.; Chhour, Peter; Pulaparthi, Kumidini; Kim, Johoon; Jurcova, Martina; Hsu, Jessica C.; Blundell, Cassidy; Litt, Harold I.; Ferrari, Victor A.; Allcock, Harry R.; Sehgal, Chandra M.; Cormode, David P.

    2016-01-01

    Gold nanoparticles (AuNP) have been proposed for many applications in medicine. Although large AuNP (>5.5 nm) are desirable for their longer blood circulation and accumulation in diseased tissues, small AuNP (<5.5 nm) are required for excretion via the kidneys. We present a novel platform where small, excretable AuNP are encapsulated into biodegradable poly di(carboxylatophenoxy)phosphazene (PCPP) nanospheres. These larger nanoparticles (Au-PCPP) can perform their function as contrast agents, then subsequently break down into harmless byproducts and release the AuNP for swift excretion. Homogeneous Au-PCPP were synthesized using a microfluidic device. The size of the Au-PCPP can be controlled by the amount of polyethylene glycol-polylysine (PEG-PLL) block co-polymer in the formulation. Synthesis of Au-PCPP nanoparticles and encapsulation of AuNP in PCPP were evaluated using transmission electron microscopy and their biocompatibility and biodegradability confirmed in vitro. The Au-PCPP nanoparticles were found to produce strong computed tomography contrast. The UV-Vis absorption peak of Au-PCPP can be tuned into the near infrared region via inclusion of varying amounts of AuNP and controlling the nanoparticle size. In vitro and in vivo experiments demonstrated the potential of Au-PCPP as contrast agents for photoacoustic imaging. Therefore, Au-PCPP nanoparticles have high potency as contrast agents for two imaging modalities, as well as being biocompatible and biodegradable, and thus represent a platform with potential for translation into the clinic. PMID:27322961

  4. A rapid green strategy for the synthesis of Au "meatball"-like nanoparticles using green tea for SERS applications

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Zhou, Xi; Yang, Xiangrui; Hou, Zhenqing; Shi, Yanfeng; Zhong, Lubin; Jiang, Qian; Zhang, Qiqing

    2014-09-01

    We report a simple and rapid biological approach to synthesize water-soluble and highly roughened "meatball"-like Au nanoparticles using green tea extract under microwave irradiation. The synthesized Au meatball-like nanoparticles possess excellent monodispersity and uniform size (250 nm in diameter). Raman measurements show that these tea-generated meatball-like gold nanostructures with high active surface areas exhibit a high enhancement of surface-enhanced Raman scattering. In addition, the Au meatball-like nanoparticles demonstrate good biocompatibility and remarkable in vitro stability at the biological temperature. Meanwhile, the factors that influence the Au meatball-like nanoparticles morphology are investigated, and the mechanisms behind the nonspherical shape evolution are discussed.

  5. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    PubMed Central

    Liu, Siqi; Xu, Yi-Jun

    2016-01-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters–TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability. PMID:26947754

  6. Photo-induced transformation process at gold clusters-semiconductor interface: Implications for the complexity of gold clusters-based photocatalysis

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Xu, Yi-Jun

    2016-03-01

    The recent thrust in utilizing atomically precise organic ligands protected gold clusters (Au clusters) as photosensitizer coupled with semiconductors for nano-catalysts has led to the claims of improved efficiency in photocatalysis. Nonetheless, the influence of photo-stability of organic ligands protected-Au clusters at the Au/semiconductor interface on the photocatalytic properties remains rather elusive. Taking Au clusters-TiO2 composites as a prototype, we for the first time demonstrate the photo-induced transformation of small molecular-like Au clusters to larger metallic Au nanoparticles under different illumination conditions, which leads to the diverse photocatalytic reaction mechanism. This transformation process undergoes a diffusion/aggregation mechanism accompanied with the onslaught of Au clusters by active oxygen species and holes resulting from photo-excited TiO2 and Au clusters. However, such Au clusters aggregation can be efficiently inhibited by tuning reaction conditions. This work would trigger rational structural design and fine condition control of organic ligands protected-metal clusters-semiconductor composites for diverse photocatalytic applications with long-term photo-stability.

  7. CO adsorption on small Au{sub n} (n = 1–4) structures supported on hematite. II. Adsorption on the O-rich termination of α-Fe{sub 2}O{sub 3}(0001) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.

    2016-01-28

    The adsorption of small Au{sub n} (n = 1–4) nanostructures on oxygen terminated α-Fe{sub 2}O{sub 3}(0001) surface was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties were examined for two classes of the adsorbed Au{sub n} nanostructures with vertical and flattened configurations. Similarly to the Fe-terminated α-Fe{sub 2}O{sub 3}(0001) surface considered in Part I, the flattened configurations were found energetically more favored than vertical ones. The binding of Au{sub n} to the O-terminated surface is much stronger thanmore » to the Fe-termination. The adsorption bonding energy of Au{sub n} and the work function of the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems decrease with the increased number of Au atoms in a structure. All of the adsorbed Au{sub n} structures are positively charged. The bonding of CO molecules to the Au{sub n} structures is distinctly stronger than on the Fe-terminated surface; however, it is weaker than the binding to the bare O-terminated surface. The CO molecule binds to the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) system through a peripheral Au atom partly detached from the Au{sub n} structure. The results of this work indicate that the most energetically favored sites for adsorption of a CO molecule on the Au{sub n}/α-Fe{sub 2}O{sub 3}(0001) systems are atoms in the Au{sup 0.5+} oxidation state.« less

  8. First-principles study of Ti intercalation between graphene and Au surface

    NASA Astrophysics Data System (ADS)

    Kaneko, T.; Imamura, H.

    2011-06-01

    We investigate the effects of Ti intercalation between graphene and Au surface on binding energy and charge doping by using the first-principles calculations. We show that the largest binding energy is realized by the intercalation of single mono-layer of Ti. We also show that electronic structure is very sensitive to the arrangement of metal atoms at the interface. If the composition of the interface layer is Ti0.33Au0.67 and the Ti is located at the top site, the Fermi level lies closely at the Dirac point, i.e., the Dirac cone of the ideal free-standing graphene is recovered.

  9. The AuScope Project and Trans-Tasman VLBI

    NASA Technical Reports Server (NTRS)

    Lovell, Jim; Dickey, John; Gulyaev, Sergei; Natusch, Tim; Titov, Oleg; Tingay, Steven

    2010-01-01

    Three 12-meter radio telescopes are being built in Australia (the AuScope project) and one in New Zealand. These facilities will be fully-equipped for undertaking S and X-band geodetic VLBI observations and correlation will take place on a software correlator (part of the AuScope project). All sites are equipped with permanent GPS receivers to provide co-location of several space geodetic techniques. The following scientific tasks of geodesy and astrometry are considered. 1. Improvement and densification of the International Celestial Reference Frame in the southern hemisphere; 2. Improvement of the International Terrestrial Reference Frame in the region; 3. Measurement of intraplate deformation of the Australian tectonic plate.

  10. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.

    PubMed

    Zhang, Tingting; Zhao, Hongyu; He, Shengnan; Liu, Kai; Liu, Hongyang; Yin, Yadong; Gao, Chuanbo

    2014-07-22

    Ultrasmall gold nanoparticles (us-AuNPs, <3 nm) have been recently recognized as surprisingly active and extraordinarily effective green catalysts. Their stability against sintering during reactions, however, remains a serious issue for practical applications. Encapsulating such small nanoparticles in a layer of porous silica can dramatically enhance the stability, but it has been extremely difficult to achieve using conventional sol-gel coating methods due to the weak metal/oxide affinity. In this work, we address this challenge by developing an effective protocol for the synthesis of us-AuNP@SiO2 single-core/shell nanospheres. More specifically, we take an alternative route by starting with ultrasmall gold hydroxide nanoparticles, which have excellent affinity to silica, then carrying out controllable silica coating in reverse micelles, and finally converting gold hydroxide particles into well-protected us-AuNPs. With a single-core/shell configuration that prevents sintering of nearby us-AuNPs and amino group modification of the Au/SiO2 interface that provides additional coordinating interactions, the resulting us-AuNP@SiO2 nanospheres are highly stable at high temperatures and show high activity in catalytic CO oxidation reactions. A dramatic and continuous increase in the catalytic activity has been observed when the size of the us-AuNPs decreases from 2.3 to 1.5 nm, which reflects the intrinsic size effect of the Au nanoparticles on an inert support. The synthesis scheme described in this work is believed to be extendable to many other ultrasmall metal@oxide nanostructures for much broader catalytic applications.

  11. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition.

    PubMed

    Kim, Sun-I; Thiyagarajan, Pradheep; Jang, Ji-Hyun

    2014-10-21

    In this letter, we report a facile approach to improve the capacitor properties of nickel hydroxide (Ni(OH)2) by simply coating gold nanoparticles (Au NPs) on the surface of Ni(OH)2. Au NP-deposited Ni(OH)2 (Au/Ni(OH)2) has been prepared by application of a conventional colloidal coating of Au NPs on the surface of 3D-Ni(OH)2 synthesized via a hydrothermal method. Compared with pristine Ni(OH)2, Au/Ni(OH)2 shows a 41% enhanced capacitance value, excellent rate capacitance behavior at high current density conditions, and greatly improved cycling stability for supercapacitor applications. The specific capacitance of Au/Ni(OH)2 reached 1927 F g(-1) at 1 A g(-1), which is close to the theoretical capacitance and retained 66% and 80% of the maximum value at a high current density of 20 A g(-1) and 5000 cycles while that of pristine Ni(OH)2 was 1363 F g(-1) and significantly decreased to 48% and 30%, respectively, under the same conditions. The outstanding performance of Au/Ni(OH)2 as a supercapacitor is attributed to the presence of metal Au NPs on the surface of semiconductor Ni(OH)2; this permits the creation of virtual 3D conducting networks via metal/semiconductor contact, which induces fast electron and ion transport by acting as a bridge between Ni(OH)2 nanostructures, thus eventually leading to significantly improved electrochemical capacitive behaviors, as confirmed by the EIS and I-V characteristic data.

  12. Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensing

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. S.; Costa, D.; Domingues, R. P.; Apreutesei, M.; Pedrosa, P.; Martin, N.; Correlo, V. M.; Reis, R. L.; Alves, E.; Barradas, N. P.; Sampaio, P.; Borges, J.; Vaz, F.

    2018-04-01

    Nanomaterials based on Localized Surface Plasmon Resonance (LSPR) phenomena are revealing to be an important solution for several applications, namely those of optical biosensing. The main reasons are mostly related to their high sensitivity, with label-free detection, and to the simplified optical systems that can be implemented. For the present work, the optical sensing capabilities were tailored by optimizing LSPR absorption bands of nanocomposite Au/TiO2 thin films. These were grown by reactive DC magnetron sputtering. The main deposition parameters changed were the number of Au pellets placed in the Ti target, the deposition time, and DC current applied to the Ti-Au target. Furthermore, the Au NPs clustering, a key feature to have biosensing responses, was induced by several post-deposition in-air annealing treatments at different temperatures, and investigated via SEM analysis. Results showed that the Au/TiO2 thin films with a relatively low thickness (∼100 nm), revealing concentrations of Au close to 13 at.%, and annealed at temperatures above 600 °C, had the most well-defined LSPR absorption band and thus, the most promising characteristics to be explored as optical sensors. The NPs formation studies revealed an incomplete aggregation at 300 and 500 ⁰C and well-defined spheroidal NPs for higher temperatures. Plasma treatment with Ar led to a gradual blue-shift of the LSPR absorption band, which demonstrates the sensitivity of the films to changes in the dielectric environment surrounding the NPs (essential for optical sensing applications) and the exposure of the Au nanoparticles (crucial for a higher sensitivity).

  13. Stable Au–C bonds to the substrate for fullerene-based nanostructures

    PubMed Central

    Chutora, Taras; Redondo, Jesús; de la Torre, Bruno; Švec, Martin

    2017-01-01

    We report on the formation of fullerene-derived nanostructures on Au(111) at room temperature and under UHV conditions. After low-energy ion sputtering of fullerene films deposited on Au(111), bright spots appear at the herringbone corner sites when measured using a scanning tunneling microscope. These features are stable at room temperature against diffusion on the surface. We carry out DFT calculations of fullerene molecules having one missing carbon atom to simulate the vacancies in the molecules resulting from the sputtering process. These modified fullerenes have an adsorption energy on the Au(111) surface that is 1.6 eV higher than that of C60 molecules. This increased binding energy arises from the saturation by the Au surface of the bonds around the molecular vacancy defect. We therefore interpret the observed features as adsorbed fullerene-derived molecules with C vacancies. This provides a pathway for the formation of fullerene-based nanostructures on Au at room temperature. PMID:28685108

  14. Molecular Simulations of The Formation of Gold-Molecule-Gold Junctions

    NASA Astrophysics Data System (ADS)

    Wang, Huachuan

    2013-03-01

    We perform classical molecular simulations by combining grand canonical Monte Carlo (GCMC) sampling with molecular dynamics (MD) simulation to explore the dynamic gold nanojunctions in a Alkenedithiol (ADT) solvent. With the aid of a simple driving-spring model, which can reasonably represent the long-range elasticity of the gold electrode, the spring forces are obtained during the dynamic stretching procedure. A specific multi-time-scale double reversible reference system propagator (double-RESPA) algorithm has been designed for the metal-organic complex in MD simulations to identify the detailed metal-molecule bonding geometry at metal-molecule-metal interface. We investigate the variations of bonding sites of ADT molecules on gold nanojunctions at Au (111) surface at a constant chemical potential. Simulation results show that an Au-ADT-Au interface is formed on Au nanojunctions, bond-breaking intersection is at 1-1 bond of the monatomic chain of the cross-section, instead of at the Au-S bond. Breaking force is around 1.5 nN. These are consistent with the experimental measurements.

  15. Controlling Shape and Plasmon Resonance of Pt-Etched Au@Ag Nanorods.

    PubMed

    Ye, Rongkai; Zhang, Yanping; Chen, Yuyu; Tang, Liangfeng; Wang, Qiong; Wang, Qianyu; Li, Bishan; Zhou, Xuan; Liu, Jianyu; Hu, Jianqiang

    2018-05-22

    Pt-based catalysts with novel structure have attracted great attention due to their outstanding performance. In this work, H 2 PtCl 6 was used as both precursor and etching agent to realize the shape-controlled synthesis of Pt-modified Au@Ag nanorods (NRs). During the synthesis, the as-prepared Ag shell played a crucial role in both protecting the Au NRs from being etched away by PtCl 6 2- and leading to an unusual growth mode of Pt component. The site-specified etching and/or growth depended on the concentration of H 2 PtCl 6 , where high-yield core-shell structure or dumbbell-like structure could be obtained. The shape-controlled synthesis also led to a tunable longitudinal surface plasmon resonance from ca. 649 to 900 nm. Meanwhile, the core-shell Pt-modified Au@Ag NRs showed approximately 4-fold enhancement in catalytic reduction reaction of p-nitrophenol than that of the Au NRs, suggesting the great potential for photocatalytic reaction.

  16. Fluorescence and room temperature activity of Y₂O₃:(Eu³⁺,Au³⁺)/palygorskite nanocomposite.

    PubMed

    He, Xi; Yang, Huaming

    2015-01-28

    The fluorescence and room temperature activity of a palygorskite supported Y2O3:(Eu(3+),Au(3+)) nanocomposite were investigated to design a fluorescence-indicated catalyst. The effects of Au(3+) doping on the structure and surface properties of the host material were systematically characterized. The fluorescence intensity of Y2O3:Eu(3+) was affected by Au(3+) doping, which was related to the crystallinity of Y2O3. Excess Au(3+) ions were segregated to the host surface and reduced to metallic Au. The local symmetry of Eu(3+) was reduced by Au(3+) doping, which benefited the energy transfer between Eu(3+) and Au(3+). Energy absorbed by Eu(3+) was transferred from Au(3+) to metallic Au, where electrons were produced. These electrons were absorbed by O2 to change into O2(-), which acted as the oxidant for ortho-dichlorobenzene (o-DCB). The variation of fluorescence intensity during the catalytic reaction was observed. The room temperature catalytic activity of the nanocomposite under UV irradiation was revealed. The as-synthesized nanocomposite might have potential applications in environmental fields.

  17. Nano-bio assemblies for artificial light harvesting systems

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Maity, Subarna; Patra, Amitava

    2018-02-01

    Ultrasmall fluorescent gold nanoclusters (Au NCs) have drawn considerable research interest owing to their molecular like properties such as d-sp and sp-sp transitions, and intense fluorescence. Fluorescent Au NCs have especial attraction in biological system owing to their biocompatibility and high photostability. Recently, several strategies have been adapted to design an artificial light-harvesting system using Au NCs for potential applications. Here, we have designed Au nanoclusters based dsDNA (double stranded deoxyribonucleic acid) nano assemblies where the Au nanocluster is covalently attached with Alexa Fluor 488 (A488) dye tagged dsDNA. Investigation reveals that the incorporation of Ag+ into dsDNA enhances the rate of energy transfer from A488 to Au NCs. In addition cadmium telluride quantum dot (CdTe QDs) based Au NCs hybrid material shows the significant enhancement of energy transfer 35% to 83% with changing the capping ligand of Au NCs from glutathione (GSH) to bovine serum albumin (BSA) protein. Another hybrid system is developed using carbon dots and dye encapsulated BSA-protein capped Au NCs for efficient light harvesting system with 83% energy transfer efficiency. Thus, Au NCs base nano bio assemblies may open up new possibilities for the construction of artificial light harvesting system.

  18. In Situ Synthesis of Gold Nanoparticles on Wool Powder and Their Catalytic Application.

    PubMed

    Tang, Bin; Zhou, Xu; Zeng, Tian; Lin, Xia; Zhou, Ji; Ye, Yong; Wang, Xungai

    2017-03-15

    Gold nanoparticles (AuNPs) were synthesized in situ on wool powder (WP) under heating conditions. Wool powder not only reduced Au ions to AuNPs, but also provided a support for as-synthesized AuNPs. WPs were treated under different concentrations of Au ions, and corresponding optical features and morphologies of the treated WPs were investigated by UV-VIS diffuse reflectance absorption spectroscopy and scanning electron microscopy (SEM). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscope (TEM) were also employed to characterize the WP treated with AuNPs. The results demonstrate that AuNPs were produced in the presence of WP and distributed over the wool particles. The porous structure led to the synthesis of AuNPs in the internal parts of WP. Acid conditions and high temperature facilitated the synthesis of AuNPs by WP in aqueous solution. The reducibility of wool was improved after being converted to powder from fibers, due to exposure of more active groups. Moreover, the obtained AuNP-WP complexes showed significant catalytic activity to accelerate the reduction reaction of 4-nitrophenol (4-NP) by sodium borohydride (NaBH₄).

  19. Gold nanorod-based poly(lactic-co-glycolic acid) with manganese dioxide core-shell structured multifunctional nanoplatform for cancer theranostic applications.

    PubMed

    Wang, Lei; Li, Dong; Hao, Yongwei; Niu, Mengya; Hu, Yujie; Zhao, Hongjuan; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2017-01-01

    Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO 2 ) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO 4 to construct the PLGA/AuNR/DTX@MnO 2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn 2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO 2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO 2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications.

  20. Gold nanorod–based poly(lactic-co-glycolic acid) with manganese dioxide core–shell structured multifunctional nanoplatform for cancer theranostic applications

    PubMed Central

    Wang, Lei; Li, Dong; Hao, Yongwei; Niu, Mengya; Hu, Yujie; Zhao, Hongjuan; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2017-01-01

    Recently, photothermal therapy has become a promising strategy in tumor treatment. However, the therapeutic effect was seriously hampered by the low tissue penetration of laser. Therefore, in this study, radiofrequency (RF) with better tissue penetration was used for tumor hyperthermia. First, one type of gold nanorods (AuNRs) suitable for RF hyperthermia was selected. Then, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) loaded with AuNRs and docetaxel (DTX) (PLGA/AuNR/DTX) NPs were constructed. Finally, manganese dioxide (MnO2) ultrathin nanofilms were coated on the surfaces of PLGA/AuNR/DTX NPs by the reduction of KMnO4 to construct the PLGA/AuNR/DTX@MnO2 drug delivery system. This drug delivery system can not only be used for the combined therapy of chemotherapy and RF hyperthermia but can also produce Mn2+ to enable magnetic resonance imaging. Furthermore, the RF hyperthermia and the degradation of MnO2 can significantly promote the controlled drug release in a tumor region. The in vitro and in vivo results suggested that the PLGA/AuNR/DTX@MnO2 multifunctional drug delivery system is a promising nanoplatform for effective cancer theranostic applications. PMID:28450782

  1. A physical model for the acousto-ultrasonic method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kiernan, Michael T.; Duke, John C., Jr.

    1990-01-01

    A basic physical explanation, a model, and comments on NDE application of the acousto-ultrasonic (AU) method for composite materials are presented. The basis of this work is a set of experiments where a sending and a receiving piezoelectric transducer were both oriented normal to the surface, at different points, on aluminum plates, various composite plates, and a tapered aluminum plate. The purpose and basic idea is introduced. Also, general comments on the AU method are offered. A literature review is offered for areas pertinent, such as composite materials, wave propagation, ultrasonics, and the AU. Special emphasis is given to theory which is used later on and past experimental results that are important to the physical understanding of the AU method. The experimental set-up, procedure, and the ensuing analysis are described. The experimental results are presented in both a quantitative and qualitative manner. A physical understanding of experimental results based on elasticity solution is furnished. Modeling and applications of the AU method is discussed for composite material and general conclusions are stated. The physical model of the AU method for composite materials is offered, something which has been much needed and sorely lacking. This physical understanding is possible due to the extensive set of experimental measurements, also reported.

  2. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  3. Application of ToF-SIMS to the study of surfactant removal from AuNbMCM-41 and AuMCM-41 materials

    NASA Astrophysics Data System (ADS)

    Grams, Jacek; Sobczak, Izabela

    2010-01-01

    This work is focused on the application of time-of-flight secondary ion mass spectrometry (ToF-SIMS) in investigation of the surfactant removal process from AuNbMCM-41 and AuMCM-41 catalysts (MCM-41 "Mobil Composition of Matter", ordered mesoporous materials discovered by Mobil R&D Corporation). The samples investigated were prepared by co-precipitation in the presence of a cationic surfactant (cetyltrimethylammonium chloride--CH3(CH2)15N(Cl)(CH3)3) and the incipient wetness impregnation methods. The results obtained showed that the time-of-flight secondary ion mass spectrometry appears to be a very useful tool for the investigation of the residual organic template on the surface of ordered mesoporous materials of MCM-41 type. It was demonstrated that the calcination of AuNbMCM-41 and AuMCM-41 catalysts at 550 °C caused a complete removal of the surfactant from the surface of the material investigated. Moreover, it was shown that the use of bismuth liquid metal ion gun in ToF-SIMS experiments permitted obtaining higher emission intensity (more than one order of magnitude when compared to the Ga+ primary ion source) of secondary ions originating from the surfactant molecules and may facilitate an interpretation of the results obtained.

  4. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  5. Supramolecular Rotor and Translator at Work: On-Surface Movement of Single Atoms.

    PubMed

    Ohmann, Robin; Meyer, Jörg; Nickel, Anja; Echeverria, Jorge; Grisolia, Maricarmen; Joachim, Christian; Moresco, Francesca; Cuniberti, Gianaurelio

    2015-08-25

    A supramolecular nanostructure composed of four 4-acetylbiphenyl molecules and self-assembled on Au (111) was loaded with single Au adatoms and studied by scanning tunneling microscopy at low temperature. By applying voltage pulses to the supramolecular structure, the loaded Au atoms can be rotated and translated in a controlled manner. The manipulation of the gold adatoms is driven neither by mechanical interaction nor by direct electronic excitation. At the electronic resonance and driven by the tunneling current intensity, the supramolecular nanostructure performs a small amount of work of about 8 × 10(-21) J, while transporting the single Au atom from one adsorption site to the next. Using the measured average excitation time necessary to induce the movement, we determine the mechanical motive power of the device, yielding about 3 × 10(-21) W.

  6. Effect of stretching on the ballistic conductance of Au nanocontacts in presence of CO: A density functional study

    NASA Astrophysics Data System (ADS)

    Sclauzero, Gabriele; Dal Corso, Andrea; Smogunov, Alexander

    2012-04-01

    CO adsorption on an Au monatomic chain is studied within density functional theory in nanocontact geometries as a function of the contact stretching. We compare the bridge and atop adsorption sites of CO, finding that the bridge site is energetically favored at all strains studied here. Atop adsorption gives rise to an almost complete suppression of the ballistic conductance of the nanocontact, while adsorption at the bridge site results in a conductance value close to 0.6G0, in agreement with previous experimental data. We show that only the bridge site can qualitatively account for the evolution of the conductance as a function of the contact stretching observed in the experimental conductance traces. The numerical discrepancy between the theoretical and experimental conductance slopes is rationalized through a simple model for the elastic response of the metallic leads. We also verify that our conductance values are not affected by the specific choice of the nanocontact geometry by comparing two different atomistic models for the tips.

  7. Low-Cost, High Efficiency, Silicon Based Photovoltaic Devices

    DTIC Science & Technology

    2015-08-27

    for photovoltaic applications. Figure 14: (a) Absorption and scattering efficiencies versus sizes of Au nanoparticle at 550 nm, (b) scattering...efficiency as a function of wavelength for different Au nanoparticles sizes . 32 Review of plasmonics light trapping for photovoltaic application...ensure that the irradiation variation was within 3%. The external quantum efficiency (EQE) system used a 300W Xenon light source with a spot size of 1mm

  8. Green synthesis and characterization of novel gold nanocomposites for electrochemical sensing applications.

    PubMed

    Tanwar, Shivani; Ho, Ja-an Annie; Magi, Emanuele

    2013-12-15

    Synthesis, characterization and application of Au-PANI-Calix and Au-PANI-Nap nanocomposites, is reported herein. An easy template free green synthesis is proposed and discussed for easy expediency. A variety of analytical techniques were used to characterize the nanocomposites: UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Dynamic light scattering (DLS), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to characterize the nanocomposites. Surface morphology was studied by transmission electron microscopy (TEM). The nanocomposites were immobilized on screen-printed electrode and showed electroactivity in neutral pH, making them promising candidates for various analytical applications. A sensitive and selective detection of Cu(2+) was perceived on the Au-PANI-Calix modified electrode with no interference from ions K(+), Ni(2+), Co(2+), Pb(2+), Cr(3+) with a detection limit of 10nM. The copper detection is facilitated for accessible ligation with 4-sulfocalix[4]arene, so as the Cu(II)-Calix complex formed. The electrode modified with Au-PANI-Nap showed sensing application towards H2O2 with a detection limit of 1 μM. The modified electrodes were reproducible and stable for 2 months. © 2013 Elsevier B.V. All rights reserved.

  9. Biomimetic Mineralization of Gold Nanoclusters as Multifunctional Thin Films for Glass Nanopore Modification, Characterization, and Sensing.

    PubMed

    Cao, Sumei; Ding, Shushu; Liu, Yingzi; Zhu, Anwei; Shi, Guoyue

    2017-08-01

    Hurdles of nanopore modification and characterization restrain the development of glass capillary-based nanopore sensing platforms. In this article, a simple but effective biomimetic mineralization method was developed to decorate glass nanopore with a thin film of bovine serum albumin-protected Au nanocluster (BSA-Au NC). The BSA-Au NC film emitted a strong red fluorescence whereby nondestructive characterization of Au film decorated at the inner surface of glass nanopore can be facilely achieved by a fluorescence microscopy. Besides, the BSA molecules played dual roles in the fabrication of functionalized Au thin film in glass nanopore: they not only directed the synthesis of fluorescent Au thin film but also provided binding sites for recognition, thus achieving synthesis-modification integration. This occurred due to the ionized carboxyl groups (-COO - ) of a BSA coating layer on Au NCs which can interacted with arginine (Arg) via guanidinium groups. The added Arg selectively led to the change in the charge and ionic current of BSA-Au NC film-decorated glass nanopore. Such ionic current responses can be used for quantifying Arg with a detection limit down to 1 fM, which was more sensitive than that of previous sensing systems. Together, the designed method exhibited great promise in providing a facile and controllable solution for glass nanopore modification, characterization, and sensing.

  10. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  11. Cytotoxicity assay of biosynthesis gold nanoparticles mediated by walnut (Juglans regia) green husk extract

    NASA Astrophysics Data System (ADS)

    Izadiyan, Zahra; Shameli, Kamyar; Hara, Hirofumi; Mohd Taib, Siti Husnaa

    2018-01-01

    The unique properties of gold nanoparticles (Au-NPs) produce in plant extract make them attractive for use in medical and industrial applications, it is necessary to develop environmentally friendly methods for their synthesis. This can be accomplished by replacing the traditional chemical compounds for the reduction of the gold ions to Au-NPs during synthesis with natural plant extracts or with plasmas atmospheric pressure. Here, the biosynthesis of Au-NPs using the Juglans regia (J. regia) green husk extract was investigated as the reducing and stabilizing agent. The formation of Au-NPs was initially monitored by visual observation and then characterized with the help of various characterization techniques. UV-vis spectroscopy results showed that Au-NPs synthesized using moderate temperature have a blue shifting, good distribution and smaller size compare with Au-NPs fabricated in room temperature. X-ray diffraction (XRD) results revealed the distinctive formation of the crystalline structure of Au-NPs with a spherical shape. According to transmission electron microscopy (TEM), the mean diameter and standard deviation of Au-NPs at room and moderate temperatures were 19.19 ± 4.7 and 14.32 ± 3.24 nm, respectively. The result of Field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) are in good agreement with each other and confirm that by using the moderate temperature compare to the room temperature the yield of reaction increased. Based on the zeta potential result, Au-NPs has sufficient value for the stability of the solution. According to FTIR spectrum, the J. regia would be coated on the gold ions surface in a successful manner. The non-toxic effect of Au-NPs concentration below 250 μg/ml was observed in the studies of in vitro cytotoxicity on normal and cancerous cell lines, respectively. The dose-dependent toxicity made it a suitable candidate for various medical applications.

  12. The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments

    PubMed Central

    2015-01-01

    The development of new and improved photothermal contrast agents for the successful treatment of cancer (or other diseases) via plasmonic photothermal therapy (PPTT) is a crucial part of the application of nanotechnology in medicine. Gold nanorods (AuNRs) have been found to be the most effective photothermal contrast agents, both in vitro and in vivo. Therefore, determining the optimum AuNR size needed for applications in PPTT is of great interest. In the present work, we utilized theoretical calculations as well as experimental techniques in vitro to determine this optimum AuNR size by comparing plasmonic properties and the efficacy as photothermal contrast agents of three different sizes of AuNRs. Our theoretical calculations showed that the contribution of absorbance to the total extinction, the electric field, and the distance at which this field extends away from the nanoparticle surface all govern the effectiveness of the amount of heat these particles generate upon NIR laser irradiation. Comparing between three different AuNRs (38 × 11, 28 × 8, and 17 × 5 nm), we determined that the 28 × 8 nm AuNR is the most effective in plasmonic photothermal heat generation. These results encouraged us to carry out in vitro experiments to compare the PPTT efficacy of the different sized AuNRs. The 28 × 8 nm AuNR was found to be the most effective photothermal contrast agent for PPTT of human oral squamous cell carcinoma. This size AuNR has the best compromise between the total amount of light absorbed and the fraction of which is converted to heat. In addition, the distance at which the electric field extends from the particle surface is most ideal for this size AuNR, as it is sufficient to allow for coupling between the fields of adjacent particles in solution (i.e., particle aggregates), resulting in effective heating in solution. PMID:24433049

  13. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles.

    PubMed

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-04-06

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO₃ solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system.

  14. Active sites of ligand-protected Au{sub 25} nanoparticle catalysts for CO{sub 2} electroreduction to CO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, Dominic R., E-mail: alfonso@netl.doe.gov; Kauffman, Douglas; Matranga, Christopher

    2016-05-14

    Recent experimental studies have reported the electrochemical reduction of carbon dioxide (CO{sub 2}) into CO at atomically precise negatively charged Au{sub 25}{sup −} nanoclusters. The studies showed CO{sub 2} conversion at remarkably low overpotentials, but the exact mechanisms and nature of the active sites remain unclear. We used first-principles density functional theory and continuum solvation models to examine the role of the cluster during electrochemical CO{sub 2} reduction and analyze the free energies of proposed intermediate species. Contrary to previous assumptions, our results show that the fully ligand protected cluster is not an active CO{sub 2} reduction catalyst because formationmore » of the crucial carboxyl intermediate required very high electrochemical potentials. Instead, our calculations suggest that the reduction process likely occurs on a dethiolated gold site, and adsorbed carboxyl intermediate formation was significantly stabilized at dethiolated gold sites. These findings point to the crucial role of exposed metal sites during electrochemical CO{sub 2} reduction at gold nanocluster catalysts.« less

  15. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H.

    2014-04-01

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitation and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.

  16. Six-dimensional quantum dynamics study for the dissociative adsorption of DCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina, E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn; Zhang, Dong H., E-mail: bina@dicp.ac.cn, E-mail: zhangdh@dicp.ac.cn

    We carried out six-dimensional quantum dynamics calculations for the dissociative adsorption of deuterium chloride (DCl) on Au(111) surface using the initial state-selected time-dependent wave packet approach. The four-dimensional dissociation probabilities are also obtained with the center of mass of DCl fixed at various sites. These calculations were all performed based on an accurate potential energy surface recently constructed by neural network fitting to density function theory energy points. The origin of the extremely small dissociation probability for DCl/HCl (v = 0, j = 0) fixed at the top site compared to other fixed sites is elucidated in this study. The influence of vibrational excitationmore » and rotational orientation of DCl on the reactivity was investigated by calculating six-dimensional dissociation probabilities. The vibrational excitation of DCl enhances the reactivity substantially and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. The site-averaged dissociation probability over 25 fixed sites obtained from four-dimensional quantum dynamics calculations can accurately reproduce the six-dimensional dissociation probability.« less

  17. Electrochemical synthesis of mesoporous Pt-Au binary alloys with tunable compositions for enhancement of electrochemical performance.

    PubMed

    Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki

    2012-03-21

    Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.

  18. Affinity study on bovine serum albumin's peptides to amphiphilic gold nanoparticles: A test of epitopes and non-epitopes

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Li, Wanrong; Yang, Mingming; Huang, Xiufeng; Bai, Zhijun; Liu, Yushuang; Cai, Weijun; Wang, Yuqin; Zhang, Feng

    2017-09-01

    It is an inevitable event that nanoparticles (NPs) will encounter proteins/peptides in nano-medicine, so it has been significant to know their interaction mechanism before in vivo applications. Previously, a 105-amino-acid sequence had been reported as the binding site between bovine serum albumin (BSA) and amphiphilic polymer coated gold nanoparticles (AP-AuNPs) along with a mortise-tenon joint hypothesis. This article tested the affinity difference between two epitope peptide sequences such as: LGEYGFQNALIVR (S1), DAFLGSFLYEYSR (S2) and one non-epitope peptide sequence as: FDEHVKLVNELTEF (S3). With the photoluminescent amino acid residues, the fluorescence quenching method based on the nanometal surface energy transfer (NSET) principle was able to study the thermodynamics of the current binding system. The binding constants (Ka) were determined and followed the order as: Ka-S1 > Ka-S2 >> Ka-S3. Moreover, Hill constants indicated that cooperativity only presented in the interactions of AP-AuNP with either S1 or S2, but not for S3. Moreover, gel electrophoresis, surface plasmon resonance, atomic force microscopy and three dimensional fluorescence microscopy were all also used to comprehensively analyse the binding interaction mechanism. These results further provided useful information to better understand the mortise-tenon joint, which might find applications to nanofabrication and biomedicine.

  19. Resistive switching behaviors of Au/pentacene/Si-nanowire arrays/heavily doped n-type Si devices for memory applications

    NASA Astrophysics Data System (ADS)

    Tsao, Hou-Yen; Lin, Yow-Jon

    2014-02-01

    The fabrication of memory devices based on the Au/pentacene/heavily doped n-type Si (n+-Si), Au/pentacene/Si nanowires (SiNWs)/n+-Si, and Au/pentacene/H2O2-treated SiNWs/n+-Si structures and their resistive switching characteristics were reported. A pentacene memory structure using SiNW arrays as charge storage nodes was demonstrated. The Au/pentacene/SiNWs/n+-Si devices show hysteresis behavior. H2O2 treatment may lead to the hysteresis degradation. However, no hysteresis-type current-voltage characteristics were observed for Au/pentacene/n+-Si devices, indicating that the resistive switching characteristic is sensitive to SiNWs and the charge trapping effect originates from SiNWs. The concept of nanowires within the organic layer opens a promising direction for organic memory devices.

  20. Insights into the dominant factors of porous gold for CO oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kameoka, Satoshi, E-mail: kameoka@tagen.tohoku.ac.jp; Miyamoto, Kanji; Tanabe, Toyokazu

    2016-01-21

    Three different porous Au catalysts that exhibit high catalytic activity for CO oxidation were prepared by the leaching of Al from an intermetallic compound, Al{sub 2}Au, with 10 wt. %-NaOH, HNO{sub 3}, or HCl aqueous solutions. The catalysts were investigated using Brunauer-Emmett-Teller measurements, synchrotron X-ray powder diffraction, hard X-ray photoelectron spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy (TEM). Broad diffraction peaks generated during the leaching process correlated with high activity for all the porous Au catalysts. CO oxidation catalyzed by porous Au leached with NaOH and HNO{sub 3} is considered to be dominated by different mechanisms atmore » low (< 320 K) and high (> 370 K) temperatures. Activity in the low-temperature region is mainly attributed to the perimeter interface between residual Al species (AlO{sub x}) and porous Au, whereas activity in the high-temperature region results from a high density of lattice defects such as twins and dislocations, which were evident from diffraction peak broadening and were observed with high-resolution TEM in the porous Au leached with NaOH. It is proposed that atoms located at lattice defects on the surfaces of porous Au are the active sites for catalytic reactions.« less

  1. EFFECTS OF Au ON THE GROWTH OF ZnO NANOSTRUCTURES ON Si BY MOCVD

    NASA Astrophysics Data System (ADS)

    Cong, Chen; Fan, Lu Yang; Ping, He Hai; Wei, Wu Ke; Zhen, Ye Zhi

    2013-06-01

    The effects of Au on the growth of ZnO nanostructures on Si by metal organic chemical vapor deposition (MOCVD) at a relatively low temperature (450°C) were investigated. The experimental results showed that Au nanoparticles played a critical role during the growth of the ZnO nanostructures and affected their morphology and optical properties. It was found that Au nanoparticles particularly affected the nucleation of ZnO nanostructures during the growth process and the Au-assisted growth mechanism of ZnO nanostructures should be ascribed to the vapor-solid (VS) mechanism. The formation of a nanoneedle may be attributed to a more reactive interface between Au and ZnO, which leads to more zinc gaseous species absorbed near the interface. Different nucleation sites on ZnO nuclei resulted in the disorder of ZnO nanoneedles. Moreover, the crystalline quality of nano-ZnO was improved due to the presence of Au, according to the smaller full width at half maximum (FWHM) of the low-temperature exciton emission. We confirmed that ZnO nanoneedles showed better crystalline quality than ZnO nanorods through the HRTEM images and the SAED patterns. The reason for the improvement of the crystalline quality of nano-ZnO may be due to the less lattice mismatch.

  2. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts.

    PubMed

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-22

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  3. Tri-metallic PtPdAu mesoporous nanoelectrocatalysts

    NASA Astrophysics Data System (ADS)

    Li, Chunjie; Wang, Hongjing; Li, Yinghao; Yu, Hongjie; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-06-01

    The design of mesoporous materials with multi-metallic compositions is highly important for various electrocatalytic applications. In this paper, we demonstrate an efficient method to directly fabricate tri-metallic PtPdAu mesoporous nanoparticles (PtPdAu MNs) in a high yield, which is simply performed by heating treatment of the reaction mixture aqueous solution at 40 °C for 4 h. Profiting from its mesoporous structure and multi-metallic components, the as-prepared PtPdAu MNs exhibit enhanced electrocatalytic activities toward both methanol oxidation reaction and oxygen reduction reaction in comparison with bi-metallic PtPd MNs and commercial Pt/C catalyst.

  4. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    NASA Astrophysics Data System (ADS)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  5. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  6. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.

    PubMed

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-18

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  7. A general and high-yield galvanic displacement approach to Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells and enhanced electrocatalytic performances.

    PubMed

    Kuai, Long; Geng, Baoyou; Wang, Shaozhen; Sang, Yan

    2012-07-23

    In this work, we utilize the galvanic displacement synthesis and make it a general and efficient method for the preparation of Au-M (M = Au, Pd, and Pt) core-shell nanostructures with porous shells, which consist of multilayer nanoparticles. The method is generally applicable to the preparation of Au-Au, Au-Pd, and Au-Pt core-shell nanostructures with typical porous shells. Moreover, the Au-Au isomeric core-shell nanostructure is reported for the first time. The lower oxidation states of Au(I), Pd(II), and Pt(II) are supposed to contribute to the formation of porous core-shell nanostructures instead of yolk-shell nanostructures. The electrocatalytic ethanol oxidation and oxygen reduction reaction (ORR) performance of porous Au-Pd core-shell nanostructures are assessed as a typical example for the investigation of the advantages of the obtained core-shell nanostructures. As expected, the Au-Pd core-shell nanostructure indeed exhibits a significantly reduced overpotential (the peak potential is shifted in the positive direction by 44 mV and 32 mV), a much improved CO tolerance (I(f)/I(b) is 3.6 and 1.63 times higher), and an enhanced catalytic stability in comparison with Pd nanoparticles and Pt/C catalysts. Thus, porous Au-M (M = Au, Pd, and Pt) core-shell nanostructures may provide many opportunities in the fields of organic catalysis, direct alcohol fuel cells, surface-enhanced Raman scattering, and so forth. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Review of samples of tailings, soils and stream sediment adjacent to and downstream from the Ruth Mine, Inyo County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Ruth Mine and mill are located in the western Mojave Desert in Inyo County, California (fig. 1). The mill processed gold-silver (Au-Ag) ores mined from the Ruth Au-Ag deposit, which is adjacent to the mill site. The Ruth Au-Ag deposit is hosted in Mesozoic intrusive rocks and is similar to other Au-Ag deposits in the western Mojave Desert that are associated with Miocene volcanic centers that formed on a basement of Mesozoic granitic rocks (Bateman, 1907; Gardner, 1954; Rytuba, 1996). The volcanic rocks consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions (fig. 2) that were emplaced into Mesozoic silicic intrusive rocks (Troxel and Morton, 1962). The Ruth Mine is on Federal land managed by the U.S. Bureau of Land Management (BLM). Tailings from the mine have been eroded and transported downstream into Homewood Canyon and then into Searles Valley (figs. 3, 4, 5, and 6). The BLM provided recreational facilities at the mine site for day-use hikers and restored and maintained the original mine buildings in collaboration with local citizen groups for use by visitors (fig. 7). The BLM requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure arsenic (As) and other geochemical constituents in soils and tailings at the mine site and in stream sediments downstream from the mine in Homewood Canyon and in Searles Valley (fig. 3). The request was made because initial sampling of the site by BLM staff indicated high concentrations of As in tailings and soils adjacent to the Ruth Mine. This report summarizes data obtained from field sampling of mine tailings and soils adjacent to the Ruth Mine and stream sediments downstream from the mine on June 7, 2009. Our results permit a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  9. Six-dimensional quantum dynamics study for the dissociative adsorption of HCl on Au(111) surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tianhui; Fu, Bina; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn

    The six-dimensional quantum dynamics calculations for the dissociative chemisorption of HCl on Au(111) are carried out using the time-dependent wave-packet approach, based on an accurate PES which was recently developed by neural network fitting to density functional theory energy points. The influence of vibrational excitation and rotational orientation of HCl on the reactivity is investigated by calculating the exact six-dimensional dissociation probabilities, as well as the four-dimensional fixed-site dissociation probabilities. The vibrational excitation of HCl enhances the reactivity and the helicopter orientation yields higher dissociation probability than the cartwheel orientation. A new interesting site-averaged effect is found for the titlemore » molecule-surface system that one can essentially reproduce the six-dimensional dissociation probability by averaging the four-dimensional dissociation probabilities over 25 fixed sites.« less

  10. Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhao, Yang; Chen, Lei; Wang, Xuchun; Sun, Jianxia; Wu, Haihua; Bao, Feng; Fan, Jian; Zhang, Qiao

    2015-04-01

    In this work, we demonstrate that monodispersed gold nanorods (AuNRs) can be obtained in a large-scale and cost-effective way. By using an industrial grade gemini surfactant (P16-8-16), the cost of the synthesis of high-quality AuNRs can be significantly reduced by 90%. The synthesis can be scaled up to over 4 L. The aspect ratio of AuNRs can be well tuned from ~2.4 to ~6.3, resulting in a wide tunability of the SPR properties. Systematic studies reveal that P16-8-16 could have a dual function: it can not only act as a capping ligand to stabilize AuNRs but also it can pre-reduce Au3+ to Au+ by the unsaturated C&z.dbd;C bond. Furthermore, the shape of AuNRs can be tailored from straight nanorods to ``dog-bones'' by simply varying the concentration of the surfactant. A mechanistic study shows that the shape change can be attributed to the presence of excess bromide ions because of the complex effect between bromide ions and gold ions. This work will not only help to achieve the industrial production of AuNRs, but also promote research into practical applications of various nanomaterials.In this work, we demonstrate that monodispersed gold nanorods (AuNRs) can be obtained in a large-scale and cost-effective way. By using an industrial grade gemini surfactant (P16-8-16), the cost of the synthesis of high-quality AuNRs can be significantly reduced by 90%. The synthesis can be scaled up to over 4 L. The aspect ratio of AuNRs can be well tuned from ~2.4 to ~6.3, resulting in a wide tunability of the SPR properties. Systematic studies reveal that P16-8-16 could have a dual function: it can not only act as a capping ligand to stabilize AuNRs but also it can pre-reduce Au3+ to Au+ by the unsaturated C&z.dbd;C bond. Furthermore, the shape of AuNRs can be tailored from straight nanorods to ``dog-bones'' by simply varying the concentration of the surfactant. A mechanistic study shows that the shape change can be attributed to the presence of excess bromide ions because of the complex effect between bromide ions and gold ions. This work will not only help to achieve the industrial production of AuNRs, but also promote research into practical applications of various nanomaterials. Electronic supplementary information (ESI) available: Digital pictures during the growth process of AuNRs, TEM images of nanoparticles obtained without P16-8-16 or silver, and HRTEM image and SAED patterns of quadrupeds. See DOI: 10.1039/c5nr00343a

  11. Application of neural networks in the acousto-ultrasonic evaluation of metal-matrix composite specimens

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Tjia, Robert E.; Vary, Alex; Kautz, Harold E.

    1992-01-01

    Acousto-ultrasonics (AU) is a nondestructive evaluation (NDE) technique that was devised for the testing of various types of composite materials. A study has been done to determine how effectively the AU technique may be applied to metal-matrix composites (MMCs). The authors use the results and data obtained from that study and apply neural networks to them, particularly in the assessment of mechanical property variations of a specimen from AU measurements. It is assumed that there is no information concerning the important features of the AU signal which relate to the mechanical properties of the specimen. Minimally processed AU measurements are used while relying on the network's ability to extract the significant features of the signal.

  12. Fabrication of Te and Te-Au Nanowires-Based Carbon Fiber Fabrics for Antibacterial Applications

    PubMed Central

    Chou, Ting-Mao; Ke, Yi-Yun; Tsao, Yu-Hsiang; Li, Ying-Chun; Lin, Zong-Hong

    2016-01-01

    Pathogenic bacteria that give rise to diseases every year remain a major health concern. In recent years, tellurium-based nanomaterials have been approved as new and efficient antibacterial agents. In this paper, we developed the approach to directly grow tellurium nanowires (Te NWs) onto commercial carbon fiber fabrics and demonstrated their antibacterial activity. Those Te NWs can serve as templates and reducing agents for gold nanoparticles (Au NPs) to deposit. Three different Te-Au NWs with varied concentration of Au NPs were synthesized and showed superior antibacterial activity and biocompability. These results indicate that the as-prepared carbon fiber fabrics with Te and Te-Au NWs can become antimicrobial clothing products in the near future. PMID:26861380

  13. BSA Au clusters as a probe for enhanced fluorescence detection using multipulse excitation scheme.

    PubMed

    Raut, Sangram L; Rich, Ryan; Fudala, Rafal; Kokate, R; Kimball, J D; Borejdo, Julian; Vishwanatha, Jamboor K; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2014-01-01

    Although BSA Au clusters fluoresce in red region (λmax: 650 nm), they are of limited use due to low fluorescence quantum yield (~6%). Here we report an enhanced fluorescence imaging application of fluorescent bio-nano probe BSA Au clusters using multipulse excitation scheme. Multipulse excitation takes advantage of long fluorescence lifetime (> 1 µs) of BSA Au clusters and enhances its fluorescence intensity 15 times over short lived cellular auto-fluorescence. Moreover we have also shown that by using time gated detection strategy signal (fluorescence of BSA Au clusters) to noise (auto-fluorescence) ratio can be increased by 30 fold. Thereby with multipulse excitation long lifetime probes can be used to develop biochemical assays and perform optical imaging with zero background.

  14. NUTS and BOLTS: Applications of Fluorescence Detected Sedimentation

    PubMed Central

    Kroe, Rachel R.; Laue, Thomas M.

    2008-01-01

    Analytical ultracentrifugation is a widely used method for characterizing the solution behavior of macromolecules. However, the two commonly used detectors (absorbance and interference) impose some fundamental restrictions on the concentrations and complexity of the solutions that can be analyzed. The recent addition of a fluorescence detector for the XL-I analytical ultracentrifuge (AU-FDS) enables two different types of sedimentation experiments. First, the AU-FDS can detect picomolar concentrations of labeled solutes allowing the characterization of very dilute solutions of macromolecules, applications we call Normal Use Tracer Sedimentation (NUTS). The great sensitivity of NUTS analysis allows the characterization of small quantities of materials and high affinity interactions. Second, AU-FDS allows characterization of trace quantities of labeled molecules in solutions containing high concentrations and complex mixtures of unlabeled molecules, applications we call Biological On Line Tracer Sedimentation (BOLTS). The discrimination of BOLTS enables the size distribution of a labeled macromolecule to be determined in biological milieu such as cell lysates and serum. Examples are presented that embody features of both NUTS and BOLTS applications, along with our observations on these applications. PMID:19103145

  15. Dual-energy micro-CT imaging for differentiation of iodine- and gold-based nanoparticles

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Johnston, S. M.; Qi, Y.; Ghaghada, K.; Johnson, G. A.

    2011-03-01

    Spectral CT imaging is expected to play a major role in the diagnostic arena as it provides material decomposition on an elemental basis. One fascinating possibility is the ability to discriminate multiple contrast agents targeting different biological sites. We investigate the feasibility of dual energy micro-CT for discrimination of iodine (I) and gold (Au) contrast agents when simultaneously present in the body. Simulations and experiments were performed to measure the CT enhancement for I and Au over a range of voltages from 40-to-150 kVp using a dual source micro-CT system. The selected voltages for dual energy micro-CT imaging of Au and I were 40 kVp and 80 kVp. On a massconcentration basis, the relative average enhancement of Au to I was 2.75 at 40 kVp and 1.58 at 80 kVp. We have demonstrated the method in a preclinical model of colon cancer to differentiate vascular architecture and extravasation. The concentration maps of Au and I allow quantitative measure of the bio-distribution of both agents. In conclusion, dual energy micro-CT can be used to discriminate probes containing I and Au with immediate impact in pre-clinical research.

  16. Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.

    PubMed

    Hanson, Jack; Yang, Yuedong; Paliwal, Kuldip; Zhou, Yaoqi

    2017-03-01

    Capturing long-range interactions between structural but not sequence neighbors of proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term memory (LSTM) networks have significantly improved the accuracy of speech and image classification problems by remembering useful past information in long sequential events. Here, we have implemented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic disorder prediction. The new method, named SPOT-Disorder, has steadily improved over a similar method using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate training on short and long disordered regions. Independent tests on four other datasets including the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 annotated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder prediction. Moreover, initial studies indicate that the method is more accurate in predicting functional sites in disordered regions. These results highlight the usefulness combining LSTM with deep bidirectional recurrent neural networks in capturing non-local, long-range interactions for bioinformatics applications. SPOT-disorder is available as a web server and as a standalone program at: http://sparks-lab.org/server/SPOT-disorder/index.php . j.hanson@griffith.edu.au or yuedong.yang@griffith.edu.au or yaoqi.zhou@griffith.edu.au. Supplementary data is available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. A facile construction of Au nanoparticles stabilized by thermo-responsive polymer-tethered carbon dots for enhanced catalytic performance

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Tianyi; Lü, Jianhua; Lü, Changli

    2018-10-01

    Carbon dots (CDs), the youngest member in the carbon nanomaterial family, have drawn considerable attention due to their interesting optical, physicochemical and electronic properties as well as broad promising applications. Here, we developed a facile and effective strategy for the preparation of Au nanoparticles stabilized by thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) functionalized carbon dots (Au@CD@P) under the gentle water media. The as-designed dopamine(DA)-terminated PNIPAM can be easily anchored to CDs via mussel-inspired chemistry route. Both CD@P and CDs could well stabilize the Au nanoparticles with interesting assembled structure. The as-prepared Au@CD and Au@CD@P nanohybrids with good dispersibility and stability exhibited the intriguing catalytic activity for reduction of p-nitrophenol (p-NP). Especially, Au@CD@P as catalyst also played a switching role in regulating the catalytic rate by temperature. In addition, Au@CD@P exhibited excellent recyclability which may have potential in green chemical industry for developing high-activity catalysts and easy production methods.

  18. Au/Si nanorod-based biosensor for food pathogen detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and quality measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by gla...

  19. Au/Si Hetero-Nanorod-based Biosensor for Salmonella Detection

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Among several potentials of nanotechnology applications for food industry, development of nanoscale sensors for food safety and biosecurity measurement are emerging. A novel biosensor for Salmonella detection was developed using Au/Si nanorods. The Si nanorods were fabricated by...

  20. GMR sensors with linear and unhysteretic R(H) dependences

    NASA Astrophysics Data System (ADS)

    Stobiecki, F.; Szymański, B.; Luciński, T.; Dubowik, J.; Urbaniak, M.; Schmidt, M.; Röll, K.

    2004-05-01

    Magnetoresistance effect of Ni-Fe/Au/Co/Au sputtered multilayers was investigated. These new GMR structures, consisting of ferromagnetic layers with alternating in-plane (Ni-Fe) and out-of-plane (Co) magnetization configurations at remanence show magnetoresistive behavior attractive for some applications.

  1. Efficient adsorption of Au(CN)2- from gold cyanidation with graphene oxide-polyethylenimine hydrogel as adsorbent

    NASA Astrophysics Data System (ADS)

    Yang, Lang; Jia, Feifei; Yang, Bingqiao; Song, Shaoxian

    The adsorption of gold cyanide complex ion (Au(CN)2-) on graphene oxide-polyethylenimine hydrogel (GO/PEI hydrogel) from gold cyanidation has been studied to explore the possibility of the application of GO/PEI hydrogel in gold cyanidation process for extracting gold from ores. The adsorption was carried out in artificial Au(CN)2- aqueous solution with GO/PEI hydrogel as adsorbent. The experimental results, as well as IR, XPS and SEM-EDS, have shown that GO/PEI hydrogel exhibited a high adsorption capacity and a fast adsorption rate of Au(CN)2-, suggesting that GO/PEI hydrogel might be a good adsorbent for the recovery of Au(CN)2-. The adsorption of Au(CN)2- on GO/PEI hydrogel obeyed the Langmuir isotherm model and fitted well with the pseudo second order model. The good recovery of Au(CN)2- was largely related to the porous structure, large specific surface area, as well as the oxygenous functional groups on the surface of GO/PEI hydrogel.

  2. In vitro studies on radiosensitization effect of glucose capped gold nanoparticles in photon and ion irradiation of HeLa cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Pujari, Geetanjali; Semwal, Manoj K.; Sarma, Asitikantha; Avasthi, Devesh Kumar

    2013-04-01

    Noble metal nanoparticles are of great interest due to their potential applications in diagnostics and therapeutics. In the present work, we synthesized glucose capped gold nanoparticle (Glu-AuNP) for internalization in the HeLa cell line (human cervix cancer cells). The capping of glucose on Au nanoparticle was confirmed by Raman spectroscopy. The Glu-AuNP did not show any toxicity to the HeLa cell. The γ-radiation and carbon ion irradiation of HeLa cell with and without Glu-AuNP were performed to evaluate radiosensitization effects. The study revealed a significant reduction in radiation dose for killing the HeLa cells with internalized Glu-AuNPs as compared to the HeLa cells without Glu-AuNP. The Glu-AuNP treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness (RBE) values for carbon ion irradiated HeLa cells.

  3. Catalysis of aptamer-modified AuPd nanoalloy probe and its application to resonance scattering detection of trace UO(2)2+.

    PubMed

    Liang, Aihui; Zhang, Yi; Fan, Yanyan; Chen, Chunqiang; Wen, Guiqing; Liu, Qingye; Kang, Caiyan; Jiang, Zhiliang

    2011-08-01

    AuPd nanoalloy and nanopalladium with a diameter of 5 nm were prepared, using sodium citrate as the stabilizing agent and NaBH(4) as the reductant. The nanocatalyst containing palladium on the surface exhibited a strong catalytic effect on the slow NiP particle reaction between NiCl(2) and NaH(2)PO(2), and the NiP particle system showed a resonance scattering (RS) peak at 508 nm. The RS results showed that the Pd atom on AuPd nanoalloy surface is the catalytic center. Combining the aptamer cracking reaction of double-stranded DNA (dsDNA)-UO(2)(2+), AuPd nanoalloy aggregation, and AuPd nanoalloy catalysis, both AuPd nanoalloy RS probe and AuPd nanoalloy catalytic RS assays were developed for the determination of 40-250 pmol L(-1) UO(2)(2+) and 5.0-50 pmol L(-1) UO(2)(2+), respectively. This journal is © The Royal Society of Chemistry 2011

  4. Techniques for Accurate Sizing of Gold Nanoparticles Using Dynamic Light Scattering with Particular Application to Chemical and Biological Sensing Based on Aggregate Formation.

    PubMed

    Zheng, Tianyu; Bott, Steven; Huo, Qun

    2016-08-24

    Gold nanoparticles (AuNPs) have found broad applications in chemical and biological sensing, catalysis, biomolecular imaging, in vitro diagnostics, cancer therapy, and many other areas. Dynamic light scattering (DLS) is an analytical tool used routinely for nanoparticle size measurement and analysis. Due to its relatively low cost and ease of operation in comparison to other more sophisticated techniques, DLS is the primary choice of instrumentation for analyzing the size and size distribution of nanoparticle suspensions. However, many DLS users are unfamiliar with the principles behind the DLS measurement and are unware of some of the intrinsic limitations as well as the unique capabilities of this technique. The lack of sufficient understanding of DLS often leads to inappropriate experimental design and misinterpretation of the data. In this study, we performed DLS analyses on a series of citrate-stabilized AuNPs with diameters ranging from 10 to 100 nm. Our study shows that the measured hydrodynamic diameters of the AuNPs can vary significantly with concentration and incident laser power. The scattered light intensity of the AuNPs has a nearly sixth order power law increase with diameter, and the enormous scattered light intensity of AuNPs with diameters around or exceeding 80 nm causes a substantial multiple scattering effect in conventional DLS instruments. The effect leads to significant errors in the reported average hydrodynamic diameter of the AuNPs when the measurements are analyzed in the conventional way, without accounting for the multiple scattering. We present here some useful methods to obtain the accurate hydrodynamic size of the AuNPs using DLS. We also demonstrate and explain an extremely powerful aspect of DLS-its exceptional sensitivity in detecting gold nanoparticle aggregate formation, and the use of this unique capability for chemical and biological sensing applications.

  5. Atomic structure of a peptide coated gold nanocluster identified using theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Xu; Gao, Liang; Zhai, Jiao; Liu, Ru; Gao, Xueyun; Wang, Dongqi; Zhao, Lina

    2016-06-01

    Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms.Peptide coated gold nanoclusters (AuNCs) have a precise molecular formula and atomic structure, which are critical for their unique applications in targeting specific proteins either for protein analysis or drug design. To date, a study of the crystal structure of peptide coated AuNCs is absent primarily due to the difficulty of obtaining their crystalline phases in an experiment. Here we study a typical peptide coated AuNC (Au24Peptide8, Peptide = H2N-CCYKKKKQAGDV-COOH, Anal. Chem., 2015, 87, 2546) to figure out its atomic structure and electronic structure using a theoretical method for the first time. In this work, we identify the explicit configuration of the essential structure of Au24Peptide8, Au24(Cys-Cys)8, using density functional theory (DFT) computations and optical spectroscopic experiments, where Cys denotes cysteine without H bonded to S. As the first multidentate ligand binding AuNC, Au24(Cys-Cys)8 is characterized as a distorted Au13 core with Oh symmetry covered by two Au(Cys-Cys) and three Au3(Cys-Cys)2 staple motifs in its atomic structure. The most stable configuration of Au24(Cys-Cys)8 is confirmed by comparing its UV-vis absorption spectrum from time-dependent density-functional theory (TDDFT) calculations with optical absorption measurements, and these results are consistent with each other. Furthermore, we carry out frontier molecular orbital (FMO) calculations to elucidate that the electronic structure of Au24(Cys-Cys)8 is different from that of Au24(SR)20 as they have a different Au/S ratio, where SR represents alkylthiolate. Importantly, the different ligand coatings, Cys-Cys and SR, in Au24(Cys-Cys)8 and Au24(SR)20 cause the different Au/S ratios in the coated Au24. The reason is that the Au/S ratio is crucial in determining the size of the Au core of the ligand protected AuNC, and the size of the Au core corresponds to a specific electronic structure. By the adjustment of ligand coatings from alkylthiolate to peptide, the Au/S ratio could be controlled to generate different AuNCs with versatile electronic structures, optical properties and reaction stabilities. Therefore, we propose a universal approach to obtain a specific Au/S ratio of ligand coated AuNCs by adjusting the ligand composition, thus controlling the chemicophysical properties of AuNCs with ultimately the same number of Au atoms. Electronic supplementary information (ESI) available: The MALDI-TOF-MS identification of Au24Peptide8, the structural divisions of Au24(Cys-Cys)8 obtained based on the ``divide and protect'' approach, the structure of level-1 and -3 staple motifs, the relative energies of all stable configurations of Au24(Cys-Cys)8, orbital components of Iso1 of Au24(Cys-Cys)8, electronic structure comparison between Au24(Cys-Cys)8 and Au24(SR)20, and the coordination of Iso1. See DOI: 10.1039/c5nr08727a

  6. An albumin-based gold nanocomposites as potential dual mode CT/MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjing; Chen, Lina; Wang, Zhiming; Huang, Yuankui; Jia, Nengqin

    2018-02-01

    In pursuit of the biological detection applications, recent years have witnessed the prosperity of novel multi-modal nanoprobes. In this study, biocompatible bovine serum albumin (BSA)-coated gold nanoparticles (Au NPs) containing Gd (III) as the contrast agent for both X-ray CT and T1-weighted MR imaging is reported. Firstly, the Au NPs with BSA coating (Au@BSA) was prepared through a moderate one-pot reduction route in the presence of hydrazine hydrate as reducer. Sequentially, the BSA coating enables modification of diethylenetriaminepentaacetic acid (DTPA) as well as targeting reagent hyaluronic acid (HA), and further chelation of Gd (III) ions led to the formation of biomimetic nanoagent HA-targeted Gd-Au NPs (HA-targeted Au@BSA-Gd-DTPA). Several techniques were used to thoroughly characterize the formed HA-targeted Gd-Au NPs. As expected, the as-prepared nanoagent with mean diameter of 13.82 nm exhibits not only good colloid stablility and water dispersibility, but also satisfying low cytotoxicity and hemocompatibility in the tested concentration range. Additionally, for the CT phantoms, the obtained nanocomplex shows an improved contrast in CT scanning than that of Au@BSA as well as small molecule iodine-based CT contrast agents such as iopromide. Meanwhile, for the T1-weighted MRI images, there is a linear increase of contrast with concentration of Gd for the two cases of HA-targeted Gd-Au NPs and Magnevist. Strikingly, the nanoagent we explored displays a relatively higher r1 relaxivity than that of commercial MR contrast agents. Therefore, this newly constructed nanoagent could be used as contrast agents for synergistically enhanced X-ray CT and MR phantoms, holding promising potential for future biomedical applications.

  7. Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy

    NASA Astrophysics Data System (ADS)

    Wang, Jiasi; Wu, Li; Ren, Jinsong; Qu, Xiaogang

    2014-01-01

    We developed a novel telomere complementary (TC) oligonucleotide modified AuNP probe (TC-AuNPs) for colorimetric analysis of telomerase activity. The mechanism of this method is that the telomerase reaction products (TRP), which can hybridize with the TC-AuNPs, are able to protect the AuNPs from the aggregation induced by salt. It is demonstrated that the colorimetric method enabled the analysis of the telomerase activity in 1000 HeLa cells with the naked eye, and down to 100 HeLa cells with the aid of UV-Vis spectroscopy. This strategy is not only convenient and sensitive, but also has a tunable dynamic range. The platform is also applicable for the initial screening of a telomerase inhibitor to discover new anticancer drugs.We developed a novel telomere complementary (TC) oligonucleotide modified AuNP probe (TC-AuNPs) for colorimetric analysis of telomerase activity. The mechanism of this method is that the telomerase reaction products (TRP), which can hybridize with the TC-AuNPs, are able to protect the AuNPs from the aggregation induced by salt. It is demonstrated that the colorimetric method enabled the analysis of the telomerase activity in 1000 HeLa cells with the naked eye, and down to 100 HeLa cells with the aid of UV-Vis spectroscopy. This strategy is not only convenient and sensitive, but also has a tunable dynamic range. The platform is also applicable for the initial screening of a telomerase inhibitor to discover new anticancer drugs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05185d

  8. Atomically precise metal nanoclusters: stable sizes and optical properties

    NASA Astrophysics Data System (ADS)

    Jin, Rongchao

    2015-01-01

    Controlling nanoparticles with atomic precision has long been a major dream of nanochemists. Breakthroughs have been made in the case of gold nanoparticles, at least for nanoparticles smaller than ~3 nm in diameter. Such ultrasmall gold nanoparticles indeed exhibit fundamentally different properties from those of the plasmonic counterparts owing to the quantum size effects as well as the extremely high surface-to-volume ratio. These unique nanoparticles are often called nanoclusters to distinguish them from conventional plasmonic nanoparticles. Intense work carried out in the last few years has generated a library of stable sizes (or stable stoichiometries) of atomically precise gold nanoclusters, which are opening up new exciting opportunities for both fundamental research and technological applications. In this review, we have summarized the recent progress in the research of thiolate (SR)-protected gold nanoclusters with a focus on the reported stable sizes and their optical absorption spectra. The crystallization of nanoclusters still remains challenging; nevertheless, a few more structures have been achieved since the earlier successes in Au102(SR)44, Au25(SR)18 and Au38(SR)24 nanoclusters, and the newly reported structures include Au20(SR)16, Au24(SR)20, Au28(SR)20, Au30S(SR)18, and Au36(SR)24. Phosphine-protected gold and thiolate-protected silver nanoclusters are also briefly discussed in this review. The reported gold nanocluster sizes serve as the basis for investigating their size dependent properties as well as the development of applications in catalysis, sensing, biological labelling, optics, etc. Future efforts will continue to address what stable sizes are existent, and more importantly, what factors determine their stability. Structural determination and theoretical simulations will help to gain deep insight into the structure-property relationships.

  9. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  10. Gold nanoparticle should understand protein corona for being a clinical nanomaterial.

    PubMed

    Charbgoo, Fahimeh; Nejabat, Mojgan; Abnous, Khalil; Soltani, Fatemeh; Taghdisi, Seyed Mohammad; Alibolandi, Mona; Thomas Shier, W; Steele, Terry W J; Ramezani, Mohammad

    2018-02-28

    Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as "bio-identity". These proteins attach onto the AuNPs surface forming protein corona that makes the first step of nano-bio interface and dictates the subsequent AuNPs fate. Protein corona formation even stealth active targeting effect of AuNPs. Manipulating the protein corona identity based on the researcher goal is the way to employ corona to achieve maximum effect in therapy or other applications. In this review, we provide details on the biological identity of AuNPs under various environmental- and/or physiological conditions. We also highlight how the particular corona can direct the biodistribution of AuNPs. We further discuss the strategies available for controlling or reducing corona formation on AuNPs surface and achieving desired effects using AuNPs in vivo by engineering protein corona on their surface. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Fabrication and characterization of optical sensors using metallic core-shell thin film nanoislands for ozone detection

    NASA Astrophysics Data System (ADS)

    Addanki, Satish; Nedumaran, D.

    2017-07-01

    Core-Shell nanostructures play a vital role in the sensor field owing to their performance improvements in sensing characteristics and well-established synthesis procedures. These nanostructures can be ingeniously tuned to achieve tailored properties for a particular application of interest. In this work, an Ag-Au core-shell thin film nanoislands with APTMS (3-Aminopropyl trimethoxysilane) and PVA (Polyvinyl alcohol) binding agents was modeled, synthesized and characterized. The simulation results were used to fabricate the sensor through chemical route. The results of this study confirmed that the APTMS based Ag-Au core-shell thin film nanoislands offered a better performance over the PVA based Ag-Au core-shell thin film nanoislands. Also, the APTMS based Ag-Au core-shell thin film nanoislands exhibited better sensitivity towards ozone sensing over the other types, viz., APTMS/PVA based Au-Ag core-shell and standalone Au/Ag thin film nanoislands.

  12. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  13. Physiological stability and renal clearance of ultrasmall zwitterionic gold nanoparticles: Ligand length matters

    NASA Astrophysics Data System (ADS)

    Ning, Xuhui; Peng, Chuanqi; Li, Eric S.; Xu, Jing; Vinluan, Rodrigo D.; Yu, Mengxiao; Zheng, Jie

    2017-05-01

    Efficient renal clearance has been observed from ultrasmall zwitterionic glutathione-coated gold nanoparticles (GS-AuNPs), which have broad preclinical applications in cancer diagnosis and kidney functional imaging. However, origin of such efficient renal clearance is still not clear. Herein, we conducted head-to-head comparison on physiological stability and renal clearance of two zwitterionic luminescent AuNPs coated with cysteine and glycine-cysteine (Cys-AuNPs and Gly-Cys-AuNPs), respectively. While both of them exhibited similar surface charges and the same core sizes, additional glycine slightly increased the hydrodynamic diameter of the AuNPs by 0.4 nm but significantly enhanced physiological stability of the AuNPs as well as altered their clearance pathways. These studies indicate that the ligand length, in addition to surface charges and size, also plays a key role in the physiological stability and renal clearance of ultrasmall zwitterionic inorganic NPs.

  14. Single cytidine units-templated syntheses of multi-colored water-soluble Au nanoclusters.

    PubMed

    Jiang, Hui; Zhang, Yuanyuan; Wang, Xuemei

    2014-09-07

    Ultra-small metallic nanoparticles, or so-called "nanoclusters" (NCs), have attracted considerable interest due to their unique optical properties that are different from both larger nanoparticles and single atoms. To prepare high-quality NCs, the stabilizing agent plays an essential role. In this work, we have revealed and validated that cytidine and its nucleotides (cytidine 5'-monophosphate or cytidine 5'-triphosphate) can act as efficient stabilizers for syntheses of multicolored Au NCs. Interestingly, Au NCs with blue, green and yellow fluorescence emissions are simultaneously obtained using various pH environments or reaction times. The transmission electron microscopy verifies that the size of Au NCs ranges from 1.5 to 3 nm. The X-ray photoelectron spectroscopy confirms that only Au (0) species are present in NCs. Generally, the facile preparation of multicolored Au NCs that are stabilized by cytidine units provides access to promising candidates for multiple biolabeling applications.

  15. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  16. Application of Direct Current Atmospheric Pressure Glow Microdischarge Generated in Contact with a Flowing Liquid Solution for Synthesis of Au-Ag Core-Shell Nanoparticles

    PubMed Central

    Dzimitrowicz, Anna; Jamroz, Piotr; Nyk, Marcin; Pohl, Pawel

    2016-01-01

    A direct current atmospheric pressure glow microdischarge (dc-μAPGD) generated between an Ar nozzle microjet and a flowing liquid was applied to produce Au-Ag core-shell nanoparticles (Au@AgCSNPs) in a continuous flow system. Firstly, operating dc-μAPGD with the flowing solution of the Au(III) ions as the cathode, the Au nanoparticles (AuNPs) core was produced. Next, to produce the core-shell nanostructures, the collected AuNPs solution was immediately mixed with an AgNO3 solution and passed through the system with the reversed polarity to fabricate the Ag nanoshell on the AuNPs core. The formation of Au@AgCSNPs was confirmed using ultraviolet-visible (UV-Vis) absorbance spectrophotometry, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Three localized surface plasmon resonance absorption bands with wavelengths centered at 372, 546, and 675 nm were observed in the UV-Vis spectrum of Au@AgCSNPs, confirming the reduction of both the Au(III) and Ag(I) ions. The right configuration of metals in Au@AgCSNPs was evidenced by TEM. The Au core diameter was 10.2 ± 2.0 nm, while the thickness of the Ag nanoshell was 5.8 ± 1.8 nm. The elemental composition of the bimetallic nanoparticles was also confirmed by EDS. It is possible to obtain 90 mL of a solution containing Au@AgCSNPs per hour using the applied microdischarge system. PMID:28773393

  17. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens

    PubMed Central

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP–GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core–shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP–GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP–GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP–GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP–GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP–GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP–GA has potential for further application in biomedical sciences. PMID:27555764

  18. Gallic acid conjugated with gold nanoparticles: antibacterial activity and mechanism of action on foodborne pathogens.

    PubMed

    Rattanata, Narintorn; Klaynongsruang, Sompong; Leelayuwat, Chanvit; Limpaiboon, Temduang; Lulitanond, Aroonlug; Boonsiri, Patcharee; Chio-Srichan, Sirinart; Soontaranon, Siriwat; Rugmai, Supagorn; Daduang, Jureerut

    2016-01-01

    Foodborne pathogens, including Plesiomonas shigelloides and Shigella flexneri B, are the major cause of diarrheal endemics worldwide. Antibiotic drug resistance is increasing. Therefore, bioactive compounds with antibacterial activity, such as gallic acid (GA), are needed. Gold nanoparticles (AuNPs) are used as drug delivery agents. This study aimed to conjugate and characterize AuNP-GA and to evaluate the antibacterial activity. AuNP was conjugated with GA, and the core-shell structures were characterized by small-angle X-ray scattering and transmission electron microscopy. Antibacterial activity of AuNP-GA against P. shigelloides and S. flexneri B was evaluated by well diffusion method. AuNP-GA bactericidal mechanism was elucidated by Fourier transform infrared microspectroscopic analysis. The results of small-angle X-ray scattering showed that AuNP-GA conjugation was successful. Antibacterial activity of GA against both bacteria was improved by conjugation with AuNP because the minimum inhibitory concentration value of AuNP-GA was significantly decreased (P<0.0001) compared to that of GA. Fourier transform infrared analysis revealed that AuNP-GA resulted in alterations of lipids, proteins, and nucleic acids at the bacterial cell membrane. Our findings show that AuNP-GA has potential for further application in biomedical sciences.

  19. Atomic and molecular adsorption on Au(111)

    DOE PAGES

    Santiago-Rodriguez, Yohaselly; Herron, Jeffrey A.; Curet-Arana, Maria C.; ...

    2014-05-02

    Periodic self-consistent density functional theory (DFT-GGA) calculations were used to study the adsorption of several atomic species, molecular species and molecular fragments on the Au(111) surface with a coverage of 1/4 monolayer (ML). Binding geometries, binding energies, and diffusion barriers were calculated for 27 species. Furthermore, we calculated the surface deformation energy associated with the binding events. The binding strength for all the analyzed species can be ordered as follows: NH 3 < NO < CO < CH 3 < HCO < NH 2 < COOH < OH < HCOO < CNH 2 < H < N < NH

  20. Study of p-diaminobenzene Adsorption on Au(111) by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Hui; Hu, Zonghai; Eom, Daejin; Rim, Kwang; Liu, Li; Flynn, George; Venkataraman, Latha; Morgante, Alberto; Heinz, Tony

    2008-03-01

    From the well-defined conductivity obtained for various individual diamino-substituted molecules spanning two gold contacts, as well as from theoretical analysis [1], researchers have suggested that amines adsorb preferentially to coordinatively unsaturated surface Au atoms through the N lone pair. To understand the nature of the amine binding, we have applied ultrahigh vacuum scanning tunneling microscope (STM) to investigate the adsorption of p-diaminobenzene molecules on the reconstructed Au(111) surface. The STM topography images (taken at 4 K) show that the molecules adsorb preferentially to step edges, corresponding to sites of reduced Au atom coordination. The adsorbed molecules are found to display a distinctive orientation along the step edges. The two-lobe topographic structure of each molecule seen by STM is compatible with the previously calculated charge density of the HOMO level. [1] L. Venkataraman at el., Nano Lett. 7, 502 (2007).

  1. Quantitative Transmission Electron Microscopy of Nanoparticles and Thin-Film Formation in Electroless Metallization of Polymeric Surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Heinrich, Helge; Kuebler, Stephen; Grabill, Chris; Bhattacharya, Aniket

    2011-03-01

    Gold nanoparticles(Au-NPs) act as nucleation sites for electroless deposition of silver on functionalized SU8 polymeric surfaces. Here we report the nanoscale morphology of Au and Ag nanoparticles as studied by Transmission Electron Microscopy (TEM). Scanning TEM with a high-angle annular dark-field detector is used to obtain atomic number contrast. From the intensity-calibrated plan-view scanning TEM images we determine the mean thickness and the volume distribution of the Au-NPs on the surface of the functionalized polymer. We also report the height and the radius distribution of the gold nanoparticles obtained from STEM images taking into consideration the experimental errors. The cross sectional TEM images yield the density and the average distance of the Au and Ag nanoparticles on the surface of the polymer. Supported by grant NSF, Chemistry Division.

  2. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    PubMed

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. An Icosahedral Quasicrystal and Its 1/0 Crystalline Approximant in the Ca–Au–Al System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Joyce; Kreyssig, Andreas; Goldman, Alan I.

    2016-10-17

    A new icosahedral quasicrystalline phase, CaAu4.5–xAl1.5+x [0.11 ≤ x ≤ 0.40(6); CaAu4.4Al1.6, aQC = 5.383(4) Å, and Pm35], and its lowest-order 1/0 cubic crystalline approximant phase, CaAu3+xAl1–x [0 ≤ x ≤ 0.31(1); a = 9.0766(5)–9.1261(8) Å, Pa3(No. 205), and Pearson symbol cP40], have been discovered in the Ca-poor region of the Ca–Au–Al system. In the crystalline approximant, eight [Au3–xAl1+x] tetrahedra fill the unit cell, and each tetrahedron is surrounded by four Ca atoms, thus forming a three-dimensional network of {Ca4/4[Au3–xAl1+x]} tetrahedral stars. A computational study of Au and Al site preferences concurs with the experimental results, which indicate a preferencemore » for near-neighbor Au–Al interactions over Au–Au and Al–Al interactions. Analysis of the electronic density of states and the associated crystal orbital Hamilton population curves was used to rationalize the descriptions of CaAu4.5–xAl1.5+x [0.11 ≤ x ≤ 0.46(6)] and CaAu3+xAl1–x [0 ≤ x ≤ 0.31(1)] as polar intermetallic species, whereby Ca atoms engage in polar covalent bonding with the electronegative, electron-deficient [Au3–xAl1+x] tetrahedral clusters and the observed phase width of the crystalline approximant.« less

  5. Structural properties and diffusion processes of the Cu 3Au (0 0 1) surface

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Zhang, Jian-Min; Zhang, Yan; Ji, Vincent

    2010-09-01

    The surface relaxation and surface energy of both the mixed AuCu and pure Cu terminated Cu 3Au (0 0 1) surfaces are simulated and calculated by using the modified analytical embedded-atom method. We find that the mixed AuCu termination is energetically preferred over the pure Cu termination thereby the mono-vacancy diffusion is also investigated in the topmost few layers of the mixed AuCu terminated Cu 3Au (0 0 1) surface. In the mixed AuCu terminated surface the relaxed Au atoms are raised above Cu atoms for 0.13 Å in the topmost layer. All the surface atoms displace outwards, this effect occurs in the first three layers and changes the first two inter-layer spacing. For mono-vacancy migration in the first layer, the migration energies of Au and Cu mono-vacancy via two-type in-plane displace: the nearest neighbor jump (NNJ) and the second nearest neighbor jump (2NNJ), are calculated and the results show that the NNJ requires a much lower energy than 2NNJ. For the evolution of the energy requirements for successive nearest neighbor jumps (SNNJ) along three different paths: circularity, zigzag and beeline, we find that the circularity path is preferred over the other two paths due to its minimum energy barriers and final energies. In the second layer, the NN jumps in intra- and inter-layer of the Cu mono-vacancy are investigated. The calculated energy barriers and final energies show that the vacancy prefer jump up to a proximate Cu site. This replacement between the Cu vacancy in the second layer and Cu atom in the first layer is remunerative for the Au atoms enrichment in the topmost layer.

  6. A Nanostructured Bifunctional platform for Sensing of Glucose Biomarker in Artificial Saliva: Synergy in hybrid Pt/Au surfaces.

    PubMed

    Raymundo-Pereira, Paulo A; Shimizu, Flávio M; Coelho, Dyovani; Piazzeta, Maria H O; Gobbi, Angelo L; Machado, Sergio A S; Oliveira, Osvaldo N

    2016-12-15

    We report on a bimetallic, bifunctional electrode where a platinum (Pt) surface was patterned with nanostructured gold (Au) fingers with different film thicknesses, which was functionalized with glucose oxidase (GOx) to yield a highly sensitive glucose biosensor. This was achieved by using selective adsorption of a self-assembled monolayer (SAM) onto Au fingers, which allowed GOx immobilization only onto the Au-SAM surface. This modified electrode was termed bifunctional because it allowed to simultaneously immobilize the biomolecule (GOx) on gold to catalyze glucose, and detect hydrogen peroxide on Pt sites. Optimized electrocatalytic activity was reached for the architecture Pt/Au-SAM/GOx with 50nm thickness of Au, where synergy between Pt and Au allowed for detection of hydrogen peroxide (H2O2) at a low applied potential (0V vs. Ag/AgCl). Detection was performed for H2O2 in the range between 4.7 and 102.7 nmol L(-1), with detection limit of 3.4×10(-9) mol L(-1) (3.4 nmol L(-1)) and an apparent Michaelis-Menten rate constant of 3.2×10(-6)molL(-1), which is considerably smaller than similar devices with monometallic electrodes. The methodology was validated by measuring glucose in artificial saliva, including in the presence of interferents. The synergy between Pt and Au was confirmed in electrochemical impedance spectroscopy measurements with an increased electron transfer, compared to bare Pt and Au electrodes. The approach for fabricating the reproducible bimetallic Pt/Au electrodes is entirely generic and may be explored for other types of biosensors and biodevices where advantage can be taken of the combination of the two metals. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling.

    PubMed

    Teper, Doron; Girija, Anil Madhusoodana; Bosis, Eran; Popov, Georgy; Savidor, Alon; Sessa, Guido

    2018-01-01

    The Gram-negative bacterium Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial spot disease of pepper and tomato. Xe delivers effector proteins into host cells through the type III secretion system to promote disease. Here, we show that the Xe effector XopAU, which is conserved in numerous Xanthomonas species, is a catalytically active protein kinase and contributes to the development of disease symptoms in pepper plants. Agrobacterium-mediated expression of XopAU in host and non-host plants activated typical defense responses, including MAP kinase phosphorylation, accumulation of pathogenesis-related (PR) proteins and elicitation of cell death, that were dependent on the kinase activity of the effector. XopAU-mediated cell death was not dependent on early signaling components of effector-triggered immunity and was also observed when the effector was delivered into pepper leaves by Xanthomonas campestris pv. campestris, but not by Xe. Protein-protein interaction studies in yeast and in planta revealed that XopAU physically interacts with components of plant immunity-associated MAP kinase cascades. Remarkably, XopAU directly phosphorylated MKK2 in vitro and enhanced its phosphorylation at multiple sites in planta. Consistent with the notion that MKK2 is a target of XopAU, silencing of the MKK2 homolog or overexpression of the catalytically inactive mutant MKK2K99R in N. benthamiana plants reduced XopAU-mediated cell death and MAPK phosphorylation. Furthermore, yeast co-expressing XopAU and MKK2 displayed reduced growth and this phenotype was dependent on the kinase activity of both proteins. Together, our results support the conclusion that XopAU contributes to Xe disease symptoms in pepper plants and manipulates host MAPK signaling through phosphorylation and activation of MKK2.

  8. N-Heterocyclic-Carbene-Treated Gold Surfaces in Pentacene Organic Field-Effect Transistors: Improved Stability and Contact at the Interface.

    PubMed

    Lv, Aifeng; Freitag, Matthias; Chepiga, Kathryn M; Schäfer, Andreas H; Glorius, Frank; Chi, Lifeng

    2018-04-16

    N-Heterocyclic carbenes (NHCs), which react with the surface of Au electrodes, have been successfully applied in pentacene transistors. With the application of NHCs, the charge-carrier mobility of pentacene transistors increased by five times, while the contact resistance at the pentacene-Au interface was reduced by 85 %. Even after annealing the NHC-Au electrodes at 200 °C for 2 h before pentacene deposition, the charge-carrier mobility of the pentacene transistors did not decrease. The distinguished performance makes NHCs as excellent alternatives to thiols as metal modifiers for the application in organic field-effect transistors (OFETs). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications.

    PubMed

    Zinchenko, Anatoly; Miwa, Yasuyuki; Lopatina, Larisa I; Sergeyev, Vladimir G; Murata, Shizuaki

    2014-03-12

    DNA cross-linked hydrogel was used as a matrix for synthesis of gold nanoparticles. DNA possesses a strong affinity to transition metals such as gold, which allows for the concentration of Au precursor inside a hydrogel. Further reduction of HAuCl4 inside DNA hydrogel yields well dispersed, non-aggregated spherical Au nanoparticles of 2-3 nm size. The average size of these Au nanoparticles synthesized in DNA hydrogel is the smallest reported so far for in-gel metal nanoparticles synthesis. DNA hybrid hydrogel containing gold nanoparticles showed high catalytic activity in the hydrogenation reaction of nitrophenol to aminophenol. The proposed soft hybrid material is promising as environmentally friendly and sustainable material for catalytic applications.

  10. Self-catalytic growth of unmodified gold nanoparticles as conductive bridges mediated gap-electrical signal transduction for DNA hybridization detection.

    PubMed

    Zhang, Jing; Nie, Huagui; Wu, Zhan; Yang, Zhi; Zhang, Lijie; Xu, Xiangju; Huang, Shaoming

    2014-01-21

    A simple and sensitive gap-electrical biosensor based on self-catalytic growth of unmodified gold nanoparticles (AuNPs) as conductive bridges has been developed for amplifying DNA hybridization events. In this strategy, the signal amplification degree of such conductive bridges is closely related to the variation of the glucose oxidase (GOx)-like catalytic activity of AuNPs upon interaction with single- and double-stranded DNA (ssDNA and dsDNA), respectively. In the presence of target DNA, the obtained dsDNA product cannot adsorb onto the surface of AuNPs due to electrostatic interaction, which makes the unmodified AuNPs exhibit excellent GOx-like catalytic activity. Such catalytic activity can enlarge the diameters of AuNPs in the glucose and HAuCl4 solution and result in a connection between most of the AuNPs and a conductive gold film formation with a dramatically increased conductance. For the control sample, the catalytic activity sites of AuNPs are fully blocked by ssDNA due to the noncovalent interaction between nucleotide bases and AuNPs. Thus, the growth of the assembled AuNPs will not happen and the conductance between microelectrodes will be not changed. Under the optimal experimental conditions, the developed strategy exhibited a sensitive response to target DNA with a high signal-to-noise ratio. Moreover, this strategy was also demonstrated to provide excellent differentiation ability for single-nucleotide polymorphism. Such performances indicated the great potential of this label-free electrical strategy for clinical diagnostics and genetic analysis under real biological sample separation.

  11. Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering.

    PubMed

    Hartl, Caroline; Frank, Kilian; Amenitsch, Heinz; Fischer, Stefan; Liedl, Tim; Nickel, Bert

    2018-04-11

    DNA origami objects allow for accurate positioning of guest molecules in three dimensions. Validation and understanding of design strategies for particle attachment as well as analysis of specific particle arrangements are desirable. Small-angle X-ray scattering (SAXS) is suited to probe distances of nano-objects with subnanometer resolution at physiologically relevant conditions including pH and salt and at varying temperatures. Here, we show that the pair density distribution function (PDDF) obtained from an indirect Fourier transform of SAXS intensities in a model-free way allows to investigate prototypical DNA origami-mediated gold nanoparticle (AuNP) assemblies. We analyze the structure of three AuNP-dimers on a DNA origami block, an AuNP trimer constituted by those dimers, and a helical arrangement of nine AuNPs on a DNA origami cylinder. For the dimers, we compare the model-free PDDF and explicit modeling of the SAXS intensity data by superposition of scattering intensities of the scattering objects. The PDDF of the trimer is verified to be a superposition of its dimeric contributions, that is, here AuNP-DNA origami assemblies were used as test boards underlining the validity of the PDDF analysis beyond pairs of AuNPs. We obtain information about AuNP distances with an uncertainty margin of 1.2 nm. This readout accuracy in turn can be used for high precision placement of AuNP by careful design of the AuNP attachment sites on the DNA-structure and by fine-tuning of the connector types.

  12. The Role of Mg(OH)2 in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts.

    PubMed

    Fu, Jile; He, Qian; Miedziak, Peter J; Brett, Gemma L; Huang, Xiaoyang; Pattisson, Samuel; Douthwaite, Mark; Hutchings, Graham J

    2018-02-16

    Mg(OH) 2 - and Mg(OH) 2 -containing materials can provide excellent performance as supports for AuPd nanoparticles for the oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the surface of the support. However, its influence on the reaction solution is not generally discussed. In this paper, we examine the relationship between the basic Mg(OH) 2 support and AuPd nanoparticles in detail using four types of catalyst. For these reactions, the physical interaction between Mg(OH) 2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH) 2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH) 2 affected the glycerol oxidation, detailed information about the performance of AuPd/Mg(OH) 2 , physically mixed (AuPd/C+Mg(OH) 2 ) and (AuPd/C+NaHCO 3 ) was obtained and compared. Furthermore, NaOH and Mg(OH) 2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH) 2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol, which is considered to be the rate determining step in the reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) Towards Molecular Oxygen Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.A.; Feria, L.; Jirsak, T.

    2010-03-10

    High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociationmore » is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.« less

  14. Role of Au-C Interactions on the Catalytic Activity of Au Nanoparticles Supported on TiC(001) toward Molecular Oxygen Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; Feria, L; Jirsak, T

    2010-01-01

    High-resolution photoemission and density functional calculations on realistic slab surface models were used to study the interaction and subsequent dissociation of O{sub 2} with Au nanoparticles supported on TiC(001). The photoemission results indicate that at 150 K O{sub 2} adsorbs molecularly on the supported gold nanoparticles, and upon heating to temperatures above 200 K the O{sub 2} {yields} 2O reaction takes place with migration of atomic oxygen to the TiC(001) substrate. The addition of Au to TiC(001) substantially enhances the rate of O{sub 2} dissociation at room temperature. The reactivity of Au nanoparticles supported on TiC(001) toward O{sub 2} dissociationmore » is much larger than that of similar nanoparticles supported either on TiO{sub 2}(110) or MgO(001) surfaces, where the cleavage of O-O bonds is very difficult. Density functional calculations carried out on large supercells show that the contact of Au with TiC(001) is essential for charge polarization and an enhancement in the chemical activity of Au. Small two-dimensional particles which expose Au atoms in contact with TiC(001) are the most reactive. While O{sub 2} prefers binding to Au sites, the O atoms interact more strongly with the TiC(001) surface. The oxygen species active during the low-temperature (<200 K) oxidation of carbon monoxide on Au/TiC(001) is chemisorbed O{sub 2}. Once atomic O binds to TiC(001), the chemisorption bond is so strong that temperatures well above 400 K are necessary to remove the O adatoms from the TiC(001) substrate by direct reaction with CO. The high reactivity of Au/TiC(001) toward O{sub 2} at low-temperature opens the route for the transformation of alcohols and amines on the supported Au nanoparticles.« less

  15. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand

    PubMed Central

    Park, Jeung Hun; Steingart, Daniel A.; Kodambaka, Suneel; Ross, Frances M.

    2017-01-01

    We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam–induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be “erased” by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications. PMID:28706992

  16. Substrate dependent structure of adsorbed aryl isocyanides studied by sum frequency generation (SFG) spectroscopy.

    PubMed

    Ito, Mikio; Noguchi, Hidenori; Ikeda, Katsuyoshi; Uosaki, Kohei

    2010-04-07

    Effects of metal substrate on the bonding nature of isocyanide group of two aryl isocyanides, 1,4-phenylene diisocyanide (PDI) and 4-methylphenyl isocyanide (MPI), and tilt angle of MPI were examined by measuring sum frequency generation (SFG) spectra of the self-assembled monolayers (SAMs) of these molecules on Au, Pt, Ag, and Pd surfaces. The SFG peaks due to "metal bonded" and "free"-NC groups were resolved by comparing the SFG spectra of PDI with IR spectra obtained by DFT calculations and previous results of vibrational spectroscopy. Based on the peak positions of the "metal bonded"-NC, it is clarified that while PDI and MPI were adsorbed at top sites on Au, Ag, and Pt surfaces, they adsorbed at bridge sites on the Pd surface. The tilt angles of MPI were determined from the intensity ratio between the SFG peaks of C-H symmetric and asymmetric stretching vibrational modes of the CH(3) group. The tilt angles of the MPI SAMs were in the order of Pt < Pd < Ag < Au, reflecting the bonding nature between the -NC group and the substrate atoms.

  17. Synthesis of Gold Mediated Biocompatible Nanocomposite of Lactone Enriched Fraction from Sahadevi (Vernonia cinerea Lees): An Assessment of Antimalarial Potential.

    PubMed

    Jyotshna; Shanker, Karuna; Khare, Puja; Tiwari, Nimisha; Mohanty, Shilpa; Bawankule, Dnyaneshwar U; Pal, Anirban

    2016-01-01

    Metals reduction into submicro/nano size through bhasma preparations for therapeutic use is well established in ancient traditional system of Indian medicines i.e. Ayurveda. Recently, nanotechnology has drawn the attention of researchers to develeope various size and shape nanoparicles / composite for number of applications.In this article, we report the enrichment of lactone enriched fraction (LEF) by liquid-liquid portioning of Vernonia cinerea metabolic extract and sysnthesis of mediated nano-gold composite (LEF-AuNPs) in single step process. The morphological characteristic based on transmission electron microscope (TEM) image analysis showed that LEF-AuNPs were predominantly nanopolygons and nanobots in shapes ranging from 50-200 nm in size. Abundance of phytochemicals in both LEF and LEF-AuNPs was dissimilar. In LEF, montanol- a diterpenoid, while in LEF-AuNPs, neophytadiene- a phytanes was the major compound. HPLC profile of relatively polar compounds also varied drastically. In-vitro biocompatibility, cytotoxicity [MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) based assay] and storage stabilitiy of LEF-AuNPs were evaluated. The moderate ability of LEF-AuNPs to restrict parasitaemia, extended mean survival time of mice infected with Plasmodium berghei and lack of any evident toxicity provides new opportunities for the safe delivery and applications of such nanocomposites in malaria therapy.

  18. Bio-synthesis of triangular and hexagonal gold nanoparticles using palm oil fronds’ extracts at room temperature

    NASA Astrophysics Data System (ADS)

    Usman, Adamu Ibrahim; Aziz, Azlan Abdul; Abu Noqta, Osama

    2018-01-01

    Development of bio-reduction techniques for nanoparticles (NPs) synthesis in medical application remains a challenge to numerous researchers. This work reports a novel technique for the synthesis of triangular and hexagonal gold nanoparticles (AuNP) using palm oil fronds’ (POFs) extracts. The functional groups in the POFs’ extracts operate as a persuasive capping and reducing agent to growth AuNPs. The prepared AuNPs were characterized using UV-vis spectrophotometry, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering, energy filtered transmission electron microscopy (EFTEM), and x-ray diffraction (XRD). The analysis of FTIR validates the coating of alkynes and phenolic composites on the AuNPs. This shows a feasible function of biomolecules for efficient stabilization of the AuNPs. EFTEM clearly show the triangular and hexagonal shapes of the prepared AuNPs. The XRD patterns display the peaks of fcc crystal structures at (111), (200), (220), (311) and (222), with average particle sizes of 66.7 and 79.02 nm for 1% and 5% POFs extracts concentrations respectively at room temperature. While at 120 °C the average particles size recorded for 1% and 5% of POFs extract concentrations were 32.17 nm and 45.66 nm respectively, and the reaction completed in less than 2 min. The prepared NPs could be potentially applied in biomedical application, due to their excellent stability and refine morphology without agglomeration.

  19. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    PubMed Central

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-01-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films. PMID:27090570

  20. Ordered Monolayer Gold Nano-urchin Structures and Their Size Induced Control for High Gas Sensing Performance

    NASA Astrophysics Data System (ADS)

    Sabri, Ylias M.; Kandjani, Ahmad Esmaielzadeh; Ippolito, Samuel J.; Bhargava, Suresh K.

    2016-04-01

    The synthesis of ordered monolayers of gold nano-urchin (Au-NU) nanostructures with controlled size, directly on thin films using a simple electrochemical method is reported in this study. In order to demonstrate one of the vast potential applications, the developed Au-NUs were formed on the electrodes of transducers (QCM) to selectively detect low concentrations of elemental mercury (Hg0) vapor. It was found that the sensitivity and selectivity of the sensor device is enhanced by increasing the size of the nanospikes on the Au-NUs. The Au-NU-12 min QCM (Au-NUs with nanospikes grown on it for a period of 12 min) had the best performance in terms of transducer based Hg0 vapor detection. The sensor had 98% accuracy, 92% recovery, 96% precision (repeatability) and significantly, showed the highest sensitivity reported to date, resulting in a limit of detection (LoD) of only 32 μg/m3 at 75 °C. When compared to the control counterpart, the accuracy and sensitivity of the Au-NU-12 min was enhanced by ~2 and ~5 times, respectively. The results demonstrate the excellent activity of the developed materials which can be applied to a range of applications due to their long range order, tunable size and ability to form directly on thin-films.

Top