Science.gov

Sample records for application des isotopes

  1. Nonactinide Isotopes and Sealed Sources Web Application

    SciTech Connect

    FERNANDEZ, JAMES P.; JONES, MICHAEL L.; OTTINGER, CATHY A.; WALDRON, CAROL A.

    2002-01-01

    The Nonactinide Isotopes and Sealed Sources (NISS) Web Application is a web-based database query and data management tool designed to facilitate the identification and reapplication of radioactive sources throughout the Department of Energy (DOE) complex. It provides search capability to the general Internet community and detailed data management functions to contributing site administrators.

  2. Selected scientific topics of the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds.

    PubMed

    Atzrodt, Jens; Derdau, Volker

    2013-01-01

    This micro-review describes hot topics and new trends in isotope science discussed at the 11th International Isotope Symposium on the Synthesis and Applications of Isotopes and Isotopically Labeled Compounds from a personal perspective.

  3. Oxygen and strontium isotope tracing of human migration at the Bell Beaker site Le Tumulus des Sables, France.

    NASA Astrophysics Data System (ADS)

    Willmes, Malte; James, Hannah; Boel, Ceridwen; Courtaud, Patrice; Chancerel, Antoine; McMorrow, Linda; Armstrong, Richard; Kinsley, Les; Aubert, Maxime; Eggins, Stephen; Moffat, Ian; Grün, Rainer

    2014-05-01

    Oxygen (δ18O) and strontium (87Sr/86Sr) isotopes were used as tools to investigate human migration at the early Bell Beaker site (2500-2000 BC) Le Tumulus des Sables, Saint-Laurent-Médoc, south-west France. The O and Sr isotope ratios measured in tooth enamel record the average dietary isotope signature ingested by that individual during their childhood. When this data is compared to the isotope signature of the burial site it can be used to indicate if the individual migrated into this area during their lifetime. The O isotopic composition of meteoric water changes depending on climate, temperature and quantity of precipitation. O isotope ratios in skeletal and dental remains are related to body water, which in turn is influenced by diet, physiology and climate. Most of the water consumed by large mammals comes from drinking water, typically sourced locally. Sr isotope ratios on the other hand vary between different geologic regions, depending on their age and composition. Sr is released through weathering and transported into the soil, ground and surface water, where it becomes available for uptake by plants, enters the food cycle and eventually ends up in skeletal and dental tissue where it substitutes for calcium. We analysed the teeth of 18 adult and 8 juvenile disarticulated skeletons from Le Tumulus des Sables. O isotopes were analysed in-situ by Sensitive High Resolution Ion Micro Probe (SHRIMP).The Sr isotope analysis involved drilling a 0.2-0.5 mg sample of enamel from the tooth. The Sr was then chemically separated and analysed by Thermal Ionization Mass Spectrometry (TIMS). These results were then compared to the O isoscape of Europe and bioavailable Sr isotope data (fauna, plants, soils) from the IRHUM database. We found that most of the individuals at Le Tumulus des Sables show O and Sr isotope ratios corresponding to the local environmental signal and we interpret these as part of the local population. 3 adults however show slightly higher 87Sr/86

  4. Short course on St-02 applications of isotope dilutions and isotopic measurements

    SciTech Connect

    Miller, P.

    1998-01-05

    This short course includes information on these topics and subtopics: (I) Nuclear Properties: (A) Historic roots; (B) Nomenclature; (C) Nuclear Stability and abundance; (D) Uses of isotopic techniques; (II) Instrumentation: (A) Sources; (B) Mass resolving elements; (C) Detectors; (III) Making Isotopic Measurements by ICP-MS: (A) Deadtime Correction; (B) Mass Discrimination; (C) Signal /Noise considerations; (IV) Applications and examples: (A) Isotope dilution; (B) Double Spike; (C) Biological Application; (D) Environmental Application; (E) Geological.

  5. Special Application Thermoelectric Micro Isotope Power Sources

    SciTech Connect

    Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted

    2008-01-21

    Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources.

  6. Triple Oxygen Isotopes: Fundamental Relationships and Applications

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.

    2016-06-01

    The element oxygen has three stable isotopes: 16O, 17O, and 18O. For a defined process, a change in 18O/16O scales with the corresponding change in 17O/16O, or the fractionation factors 18α and 17α have a relationship of θ = ln17α/ln18α, in which the triple oxygen isotope exponent θ is relatively fixed but does vary with reaction path, temperature, and species involved. When the small variation is of interest, the distinction of three concepts—θ, S (a slope through data points in δ17O-δ18O space), and C (an arbitrary referencing number for the degree of 17O deviation)—becomes important. Triple oxygen isotope variations can be measured by modern instruments and thus offer an additional line of information on the underlying reaction processes and conditions. Analytical methods and Earth science applications have recently been developed for air oxygen, carbon dioxide, water, silicates, oxides, sulfates, carbonates, and phosphates.

  7. Triple Oxygen Isotopes: Fundamental Relationships and Applications

    NASA Astrophysics Data System (ADS)

    Bao, Huiming; Cao, Xiaobin; Hayles, Justin A.

    2016-06-01

    The element oxygen has three stable isotopes: 16O, 17O, and 18O. For a defined process, a change in 18O/16O scales with the corresponding change in 17O/16O, or the fractionation factors 18α and 17α have a relationship of θ = ln17α/ln18α, in which the triple oxygen isotope exponent θ is relatively fixed but does vary with reaction path, temperature, and species involved. When the small variation is of interest, the distinction of three concepts—θ, S (a slope through data points in δ17O–δ18O space), and C (an arbitrary referencing number for the degree of 17O deviation)—becomes important. Triple oxygen isotope variations can be measured by modern instruments and thus offer an additional line of information on the underlying reaction processes and conditions. Analytical methods and Earth science applications have recently been developed for air oxygen, carbon dioxide, water, silicates, oxides, sulfates, carbonates, and phosphates.

  8. Realization of a double quantum dot in an isotopically purified ^28Si 2DES

    NASA Astrophysics Data System (ADS)

    Wild, Andreas; Sailer, Juergen; Abstreiter, Gerhard; Ager, J. W.; Haller, E. E.; Ludwig, Stefan; Kierig, Johannes; Bougeard, Dominique

    2012-02-01

    The Si/SiGe material system shows great promise for the realization of electron spin qubits due to the weak hyperfine interaction in natural silicon [2]. The electron spin coherence time is expected to further increase for spins embedded in a nuclear spin-refined ^28Si host crystal. In this contribution, we report on the realization and characterization of a 2DES in a MBE grown hybrid ^28Si/SiGe heterostructure with a record mobility of 5.5.10^4 cm^2/Vs at an electron density of 3.10^11/cm^2 in which the electron-nuclear spin overlap is greatly suppressed [1]. Based on this heterostructure, we present the first double quantum dot device in isotopically purified silicon. Our device can be operated down to the few electron regime and by using an additional global topgate above the quantum dot gates, the overall charge noise performance can be optimized significantly. This recent progress is fundamental for further experiments towards e.g. measurements of spin relaxation times in ^28Si. [4pt] [1] J. Sailer et al., Phys. status solidi RRL 3, 61 (2009)[0pt] [2] A. Wild et al., New J. Phys. 12, 113019 (2010)

  9. Laser Isotope Enrichment for Medical and Industrial Applications

    SciTech Connect

    Leonard Bond

    2006-07-01

    Laser Isotope Enrichment for Medical and Industrial Applications by Jeff Eerkens (University of Missouri), Jay Kunze (Idaho State University), and Leonard Bond (Idaho National Laboratory) The principal isotope enrichment business in the world is the enrichment of uranium for commercial power reactor fuels. However, there are a number of other needs for separated isotopes. Some examples are: 1) Pure isotopic targets for irradiation to produce medical radioisotopes. 2) Pure isotopes for semiconductors. 3) Low neutron capture isotopes for various uses in nuclear reactors. 4) Isotopes for industrial tracer/identification applications. Examples of interest to medicine are targets to produce radio-isotopes such as S-33, Mo-98, Mo-100, W-186, Sn-112; while for MRI diagnostics, the non-radioactive Xe-129 isotope is wanted. For super-semiconductor applications some desired industrial isotopes are Si-28, Ga-69, Ge-74, Se-80, Te-128, etc. An example of a low cross section isotope for use in reactors is Zn-68 as a corrosion inhibitor material in nuclear reactor primary systems. Neutron activation of Ar isotopes is of interest in industrial tracer and diagnostic applications (e.g. oil-logging). . In the past few years there has been a sufficient supply of isotopes in common demand, because of huge Russian stockpiles produced with old electromagnetic and centrifuge separators previously used for uranium enrichment. Production of specialized isotopes in the USA has been largely accomplished using old ”calutrons” (electromagnetic separators) at Oak Ridge National Laboratory. These methods of separating isotopes are rather energy inefficient. Use of lasers for isotope separation has been considered for many decades. None of the proposed methods have attained sufficient proof of principal status to be economically attractive to pursue commercially. Some of the authors have succeeded in separating sulfur isotopes using a rather new and different method, known as condensation

  10. APPLICATIONS OF ENVIRONMENTAL ISOTOPES FOR WATERSHED INVESTIGATIONS

    EPA Science Inventory

    Environmental isotopes include naturally-occurring nuclides that can be applied as tracers within watersheds (Sidle, 1998). Recent advances in mass spectroscopy may supplant many traditional and costly hydrometric techniques. It is now possible, for example, to utilize isotopes a...

  11. Stable Isotope Applications in Hydrologic Studies

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Doctor, D. H.

    2003-12-01

    The topic of stream flow generation has received considerable attention over the last two decades, first in response to concern about "acid rain" and more recently in response to the increasingly serious contamination of surface and shallow groundwaters by anthropogenic contaminants. Many sensitive, low-alkalinity streams in North America and Europe are already acidified (see Chapter 9.10). Still more streams that are not yet chronically acidic may undergo acidic episodes in response to large rainstorms and/or spring snowmelt. These acidic events can seriously damage local ecosystems. Future climate changes may exacerbate the situation by affecting biogeochemical controls on the transport of water, nutrients, and other materials from land to freshwater ecosystems.New awareness of the potential danger to water supplies posed by the use of agricultural chemicals and urban industrial development has also focused attention on the nature of rainfall-runoff and recharge processes and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. Dumping and spills of other potentially toxic materials are also of concern because these chemicals may eventually reach streams and other public water supplies. A better understanding of hydrologic flow paths and solute sources is required to determine the potential impact of contaminants on water supplies, develop management practices to preserve water quality, and devise remediation plans for sites that are already polluted.Isotope tracers have been extremely useful in providing new insights into hydrologic processes, because they integrate small-scale variability to give an effective indication of catchment-scale processes. The main purpose of this chapter is to provide an overview of recent research into the use of naturally occurring stable isotopes to track the movement of water and solutes in hydrological systems where the waters are relatively fresh: soils, surface waters, and shallow

  12. Applications of stable isotope analysis in mammalian ecology.

    PubMed

    Walter, W David; Kurle, Carolyn M; Hopkins, John B

    2014-01-01

    In this editorial, we provide a brief introduction and summarize the 10 research articles included in this Special Issue on Applications of stable isotope analysis in mammalian ecology. The first three articles report correction and discrimination factors that can be used to more accurately estimate the diets of extinct and extant mammals using stable isotope analysis. The remaining seven applied research articles use stable isotope analysis to address a variety of wildlife conservation and management questions from the oceans to the mountains.

  13. Methodes iteratives paralleles: Applications en neutronique et en mecanique des fluides

    NASA Astrophysics Data System (ADS)

    Qaddouri, Abdessamad

    Dans cette these, le calcul parallele est applique successivement a la neutronique et a la mecanique des fluides. Dans chacune de ces deux applications, des methodes iteratives sont utilisees pour resoudre le systeme d'equations algebriques resultant de la discretisation des equations du probleme physique. Dans le probleme de neutronique, le calcul des matrices des probabilites de collision (PC) ainsi qu'un schema iteratif multigroupe utilisant une methode inverse de puissance sont parallelises. Dans le probleme de mecanique des fluides, un code d'elements finis utilisant un algorithme iteratif du type GMRES preconditionne est parallelise. Cette these est presentee sous forme de six articles suivis d'une conclusion. Les cinq premiers articles traitent des applications en neutronique, articles qui representent l'evolution de notre travail dans ce domaine. Cette evolution passe par un calcul parallele des matrices des PC et un algorithme multigroupe parallele teste sur un probleme unidimensionnel (article 1), puis par deux algorithmes paralleles l'un mutiregion l'autre multigroupe, testes sur des problemes bidimensionnels (articles 2--3). Ces deux premieres etapes sont suivies par l'application de deux techniques d'acceleration, le rebalancement neutronique et la minimisation du residu aux deux algorithmes paralleles (article 4). Finalement, on a mis en oeuvre l'algorithme multigroupe et le calcul parallele des matrices des PC sur un code de production DRAGON ou les tests sont plus realistes et peuvent etre tridimensionnels (article 5). Le sixieme article (article 6), consacre a l'application a la mecanique des fluides, traite la parallelisation d'un code d'elements finis FES ou le partitionneur de graphe METIS et la librairie PSPARSLIB sont utilises.

  14. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.

  15. Application of sulphur isotopes for stratigraphic correlation.

    PubMed

    Paytan, Adina; Gray, Ellen T; Ma, Zhongwu; Erhardt, Andrea; Faul, Kristina

    2012-01-01

    The sulphur isotopic composition of dissolved sulphate in seawater has varied considerably through time. Certain time intervals are characterised by distinct variations and a relatively high rate of change. These relatively rapid fluctuations allow for correlation of sediment sections using sulphur isotopes. Sulphur isotope reconstructions based on the analysis of carbonate associated sulphate or marine barite result in sulphur isotope records with an age resolution of 1-5 million years (Ma), and for some age intervals the resolution is<0.25 Ma. At these specific time intervals, where higher resolution records exist and excursions in the record are identified, the trends could be used for stratigraphic correlations. Such records are particularly useful in sections from deep marine sites that lack biostratigraphic controls or where biozones do not provide sufficient resolution.

  16. Possible application of laser isotope separation

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1975-01-01

    The laser isotope separation process is described and its special economic features discussed. These features are its low cost electric power operation, capital investment costs, and the costs of process materials.

  17. Optimisation des proprietes fonctionnelles des alliages a memoire de forme suite a l'application de traitements thermomecaniques

    NASA Astrophysics Data System (ADS)

    Demers, Vincent

    L'objectif de ce projet est de determiner les conditions de laminage et la temperature de traitement thermique maximisant les proprietes fonctionnelles de l'alliage a memoire de forme Ti-Ni. Les specimens sont caracterises par des mesures de calorimetrie, de microscopie optique, de gene ration de contrainte, de deformation recuperable et des essais mecaniques. Pour un cycle unique, l'utilisation d'un taux d'ecrouissage e=1.5 obtenu avec l'application d'une force de tension FT = 0.1sigma y et d'une huile minerale resulte en un echantillon droit, sans microfissure et qui apres un recuit a 400°C, produit un materiau nanostructure manifestant des proprietes fonctionnelles deux fois plus grandes que le meme materiau ayant une structure polygonisee. Pour des cycles repetes, les memes conditions de laminage sont valables mais le niveau de deformation optimal est situe entre e=0.75-2, et depend particulierement du mode de sollicitation, du niveau de stabilisation et du nombre de cycles a la rupture requis par l'application.

  18. Advances in laser-based isotope ratio measurements: selected applications

    NASA Astrophysics Data System (ADS)

    Kerstel, E.; Gianfrani, L.

    2008-09-01

    Small molecules exhibit characteristic ro-vibrational transitions in the near- and mid-infrared spectral regions, which are strongly influenced by isotopic substitution. This gift of nature has made it possible to use laser spectroscopy for the accurate analysis of the isotopic composition of gaseous samples. Nowadays, laser spectroscopy is clearly recognized as a valid alternative to isotope ratio mass spectrometry. Laser-based instruments are leaving the research laboratory stage and are being used by a growing number of isotope researchers for significant advances in their own field of research. In this review article, we discuss the current status and new frontiers of research on high-sensitivity and high-precision laser spectroscopy for isotope ratio analyses. Although many of our comments will be generally applicable to laser isotope ratio analyses in molecules of environmental importance, this paper concerns itself primarily with water and carbon dioxide, two molecules that were studied extensively in our respective laboratories. A complete coverage of the field is practically not feasible in the space constraints of this issue, and in any case doomed to fail, considering the large body of work that has appeared ever since the review by Kerstel in 2004 ( Handbook of Stable Isotope Analytical Techniques, Chapt. 34, pp. 759-787).

  19. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  20. Heavy element stable isotope ratios: analytical approaches and applications.

    PubMed

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-03-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies. PMID:23397089

  1. APPLICATION OF STABLE ISOTOPE TECHNIQUES TO AIR POLLUTION RESEARCH

    EPA Science Inventory

    Stable isotope techniques provide a robust, yet under-utilized tool for examining pollutant effects on plant growth and ecosystem function. Here, we survey a range of mixing model, physiological and system level applications for documenting pollutant effects. Mixing model examp...

  2. 77 FR 38086 - Manufacturer of Controlled Substances, Notice of Application, Cambridge Isotope Lab

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances, Notice of Application, Cambridge Isotope Lab... 7, 2012, Cambridge Isotope Lab, 50 Frontage Road, Andover, Massachusetts 01810, made application...

  3. 78 FR 52802 - Manufacturer of Controlled Substances; Notice of Application; Cambridge Isotope Lab

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF JUSTICE Drug Enforcement Administration Manufacturer of Controlled Substances; Notice of Application; Cambridge Isotope Lab... 01, 2013, Cambridge Isotope Lab, 50 Frontage Road, Andover, Massachusetts 01810, made application...

  4. De l'importance des orbites periodiques: Detection et applications

    NASA Astrophysics Data System (ADS)

    Doyon, Bernard

    L'ensemble des Orbites Periodiques Instables (OPIs) d'un systeme chaotique est intimement relie a ses proprietes dynamiques. A partir de l'ensemble (en principe infini) d'OPIs cachees dans l'espace des phases, on peut obtenir des quantites dynamiques importantes telles les exposants de Lyapunov, la mesure invariante, l'entropie topologique et la dimension fractale. En chaos quantique (i.e. l'etude de systemes quantiques qui ont un equivalent chaotique dans la limite classique), ces memes OPIs permettent de faire le pont entre le comportement classique et quantique de systemes non-integrables. La localisation de ces cycles fondamentaux est un probleme complexe. Cette these aborde dans un premier temps le probleme de la detection des OPIs dans les systemes chaotiques. Une etude comparative de deux algorithmes recents est presentee. Nous approfondissons ces deux methodes afin de les utiliser sur differents systemes dont des flots continus dissipatifs et conservatifs. Une analyse du taux de convergence des algorithmes est aussi realisee afin de degager les forces et les limites de ces schemes numeriques. Les methodes de detection que nous utilisons reposent sur une transformation particuliere de la dynamique initiale. Cette astuce nous a inspire une methode alternative pour cibler et stabiliser une orbite periodique quelconque dans un systeme chaotique. Le ciblage est en general combine aux methodes de controle pour stabiliser rapidement un cycle donne. En general, il faut connaitre la position et la stabilite du cycle en question. La nouvelle methode de ciblage que nous presentons ne demande pas de connaitre a priori la position et la stabilite des orbites periodiques. Elle pourrait etre un outil complementaire aux methodes de ciblage et de controle actuelles.

  5. Applications of Isotopes in Advancing Structural & Functional Heparanomics

    PubMed Central

    Tran, Vy M.; Nu Nguyen, Thao Kim; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and the study of heparanomics. There are several factors that exacerbate challenges involved in the structural elucidation of heparin and heparan sulfate. Therefore, there is a great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review article focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy and mass spectrometry. This review article also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides. PMID:20838780

  6. Applications of isotopes in advancing structural and functional heparanomics.

    PubMed

    Tran, Vy M; Nguyen, Thao K N; Raman, Karthik; Kuberan, Balagurunathan

    2011-01-01

    Heparanomics is the study of all the biologically active oligosaccharide domain structures in the entire heparanome and the nature of the interactions among these domains and their protein ligands. Structural elucidation of heparan sulfate and heparin oligosaccharides is a major obstacle in advancing structure-function relationships and heparanomics. There are several factors that exacerbate the challenges involved in the structural elucidation of heparin and heparan sulfate; therefore, there is great interest in developing novel strategies and analytical tools to overcome the barriers in decoding the enigmatic heparanome. This review focuses on the applications of isotopes, both radioisotopes and stable isotopes, in the structural elucidation of the complex heparanome at the disaccharide or oligosaccharide level using liquid chromatography, nuclear magnetic resonance spectroscopy, and mass spectrometry. This review also outlines the utility of isotopes in determining the substrate specificity of biosynthetic enzymes that eventually dictate the emergence of biologically active oligosaccharides.

  7. An Isotope-Powered Thermal Storage unit for space applications

    NASA Astrophysics Data System (ADS)

    Lisano, Michael E.; Rose, M. F.

    An Isotope-Powered Thermal Storage Unit (ITSU), that would store and utilize heat energy in a 'pulsed' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is discussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal management.

  8. An isotope-powered thermal storage unit for space applications

    NASA Astrophysics Data System (ADS)

    Lisano, Michael E.; Rose, M. Frank

    1991-01-01

    An Isotope-Powered Thermal Storage Unite (ITSU), that would store and utilize heat energy in a ``pulsed'' fashion in space operations, is described. Properties of various radioisotopes are considered in conjunction with characteristics of thermal energy storage materials, to evaluate possible implementation of such a device. The utility of the unit is dicussed in light of various space applications, including rocket propulsion, power generation, and spacecraft thermal magnagement.

  9. 60-watt isotopic heat source for terrestrial applications

    NASA Astrophysics Data System (ADS)

    Brittain, Wayne M.

    1995-01-01

    A sealed isotopic heat source (IHS) with a nominal thermal inventory of 60 watts is being developed by the U.S. Department of Energy (DOE) for use in remote terrestrial applications that require isotopic power for electrical power generation. Emphasis is on use in radioisotope thermoelectric generators (RTGs) and dynamic cycle power units. The selected IHS design incorporates technologies developed for prior space and terrestrial IHSs to minimize development cost and span time. A General Purpose Heat Source (GPHS) Fueled Clad (FC), comprised of a plutonium-238 enriched pressed-plutonia pellet contained within a vented iridium clad, is the source for thermal energy. The GPHS FC technology was developed by DOE for use in space RTGs. The GPHS FC is, in turn, enclosed within a three-layer cladding system similar to that developed by DOE for earlier terrestrial heat sources. The cladding system provides for retention of the helium gas generated by the decay of the isotopic fuel and containment of the isotopic fuel under normal operating and accident conditions. Test hardware is currently being fabricated and safety demonstration testing is scheduled to be completed in early 1995.

  10. Applications of nuclear and isotopic techniques in Indonesia

    SciTech Connect

    Hilmy, N.; Hendranto, K.

    1994-12-31

    Applications of Nuclear and Isotopic Techniques have been developed by the National Atomic Energy Agency (BATAN) since early 1970 in Indonesia. The scope of these applications covers various fields such as agriculture, hydrology, sedimentology and industry. Some applications of tracer techniques in industry which have been done such as measurement of homogeneity of mixing process in fertiliser and paper factory, residence time distribution in gold processing plant, mercury inventory in caustic soda plant, enhanced oil recovery in oil production wells, leakage investigation in dust chamber of fertiliser plant and blockage of pipeline, are presented in this paper. In the field of NDT by radiographic technique, BATAN regularly conducts training courses and also issues licences for Level I and II. Some applications of nuclear techniques in agriculture such as mutation breeding, animal production and animal health have shown the potential of radiation in creating variability as a basis for varietal improvements in several food crop species, the potential of using isotopes as tracers in the studies on metabolism, particularly in relation to the efficiency of rumen fermentative digestion and biological evaluation of locally available feedstuffs from agricultural and agro-industrial byproducts. So far, four varieties of nice, two varieties of soybean, and one variety of mungbean have been officially approved for release, and one formulation of feed supplement utilizing locally available agricultural and agro-industrial byproducts has been established and used for cattle and goats. In animal health, a radiovaccine against coccidiosis in poultry has been produced and used routinely.

  11. Oxygen isotopes reveal crustal contamination and a large, still partially molten magma chamber in Chaîne des Puys (French Massif Central)

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Demacon, Mickael; Gurenko, Andrey A.; Briot, Danielle

    2016-09-01

    The two main magmatic properties associated with explosive eruptions are high viscosity of silica-rich magmas and/or high volatile contents. Magmatic processes responsible for the genesis of such magmas are differentiation through crystallization, and crustal contamination (or assimilation) as this process has the potential to enhance crystallization and add volatiles to the initial budget. In the Chaîne des Puy series (French Massif Central), silica- and H2O-rich magmas were only emitted during the most recent eruptions (ca. 6-15 ka). Here, we use in situ measurements of oxygen isotopes in zircons from two of the main trachytic eruptions from the Chaîne des Puys to track the crustal contamination component in a sequence that was previously presented as an archetypal fractional crystallization series. Zircons from Sarcoui volcano and Puy de Dôme display homogeneous oxygen isotope compositions with δ18O = 5.6 ± 0.25‰ and 5.6 ± 0.3‰, respectively, and have therefore crystallized from homogeneous melts with δ18Omelt = 7.1 ± 0.3‰. Compared to mantle derived melts resulting from pure fractional crystallization (δ18Odif.mant. = 6.4 ± 0.4‰), those δ18Omelt values are enriched in 18O and support a significant role of crustal contamination in the genesis of silica-rich melts in the Chaîne des Puys. Assimilation-fractional-crystallization models highlight that the degree of contamination was probably restricted to 5.5-9.5% with Rcrystallization/Rassimilation varying between 8 and 14. The very strong intra-site homogeneity of the isotopic data highlights that magmas were well homogenized before eruption, and consequently that crustal contamination was not the trigger of silica-rich eruptions in the Chaîne des Puys. The exceptionally strong inter-site homogeneity of the isotopic data brings to light that Sarcoui volcano and Puy de Dôme were fed by a single large magma chamber. Our results, together with recent thermo-kinetic models and an experimental

  12. Stable isotopes and elasmobranchs: tissue types, methods, applications and assumptions.

    PubMed

    Hussey, N E; MacNeil, M A; Olin, J A; McMeans, B C; Kinney, M J; Chapman, D D; Fisk, A T

    2012-04-01

    Stable-isotope analysis (SIA) can act as a powerful ecological tracer with which to examine diet, trophic position and movement, as well as more complex questions pertaining to community dynamics and feeding strategies or behaviour among aquatic organisms. With major advances in the understanding of the methodological approaches and assumptions of SIA through dedicated experimental work in the broader literature coupled with the inherent difficulty of studying typically large, highly mobile marine predators, SIA is increasingly being used to investigate the ecology of elasmobranchs (sharks, skates and rays). Here, the current state of SIA in elasmobranchs is reviewed, focusing on available tissues for analysis, methodological issues relating to the effects of lipid extraction and urea, the experimental dynamics of isotopic incorporation, diet-tissue discrimination factors, estimating trophic position, diet and mixing models and individual specialization and niche-width analyses. These areas are discussed in terms of assumptions made when applying SIA to the study of elasmobranch ecology and the requirement that investigators standardize analytical approaches. Recommendations are made for future SIA experimental work that would improve understanding of stable-isotope dynamics and advance their application in the study of sharks, skates and rays. PMID:22497393

  13. Stable isotope-resolved metabolomics and applications for drug development

    PubMed Central

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  14. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystems.

    PubMed

    Lepoint, Gilles; Dauby, Patrick; Gobert, Sylvie

    2004-12-01

    Stable isotopes of carbon and nitrogen are increasingly used in marine ecosystems, for ecological and environmental studies. Here, we examine some applications of stable isotopes as ecological integrators or tracers in seagrass ecosystem studies. We focus on both the use of natural isotope abundance as food web integrators or environmental tracers and on the use of stable isotopes as experimental tools. As ecosystem integrators, stable isotopes have helped to elucidate the general structure of trophic webs in temperate, Mediterranean and tropical seagrass ecosystems. As environmental tracers, stable isotopes have proven their utility in sewage impact measuring and mapping. However, to make such environmental studies more comprehensible, future works on understanding of basic reasons for variations of N and C stable isotopes in seagrasses should be encouraged. At least, as experimental tracers, stable isotopes allow the study of many aspects of N and C cycles at the scale of a plant or at the scale of the seagrass ecosystem. PMID:15556172

  15. Application des methodes electromagnetiques transitoires a la prospection des aquiferes profonds

    NASA Astrophysics Data System (ADS)

    Krivochieva, Stefka

    This work is aimed by the application of transient electromagnetic methods (TDEM) to the prospection of deep aquifers. The objectives of the present study are: (1) to develop a technique of TDEM data processing to improve the quality of interpretation; (2) to evaluate the TDEM response in stratified media, when both the transmitter and the receiver are in mine galleries; and (3) to establish the simultaneous application of TDEM and magnetotelluric (MT) methods as essential tools for groundwater prospection. Two techniques are addressed here. The first technique concerns simultaneous inversion performed on data from central loop and offset receiver TDEM soundings. Simultaneous inversion of central loop and different offset data sets are performed over a series of layered earth models, over a layered earth with a polarizable surface layer, and over a 3D conductive body embedded in layered host. It is demonstrated that central loop and offset soundings complement each other and that the simultaneous 1D inversion of both data sets yields rapid convergence and better resolution of the model parameters, reduces the importance of distortion caused by induced polarization on interpretation, and provides a good indication of the subsurface geometry in the measurement zone. MT and TDEM surveys were undertaken in the Chalco Sub-Basin (Mexico) and a hydrogeological model is proposed. It allows to constrain the geometry of the fresh water aquifer, and to confirm the continuity of the basaltic flows between the volcano and the sedimentary basin. The second technique concerns the underground applications of TDEM method. In-mine time-domain electromagnetic survey responses are affected by simultaneous induction caused by conductive zones located either in the sequence above the mine drift, in the sequence below or in both. The proposed technique allows to distinguish the effects of the upper and/or lower conductors depending on the anomalies in the recorded response. A computer

  16. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  17. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  18. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  19. Isotopically Modified Molybdenum: Production for Application in Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu.; Bonarev, A. K.; Sulaberidze, G. A.; Borisevich, V. D.; Kulikov, G. G.; Shmelev, A. N.

    The possibility to use the isotopically modified molybdenum as a constructive material for the fuel rods of light water and fast reactors is discussed. The calculations demonstrate that the isotopically modified molybdenum with an average neutron absorption cross-section comparable to that of zirconium can be obtained with the reasonable for practice cost by a cascade of gas centrifuges, specially designed for separation of non-uranium isotopes.

  20. Comparison des donnees simulees des capteurs de SPOT et landsat-D: Application a une region agricole

    NASA Astrophysics Data System (ADS)

    Saint, Gilbert; Podaire, Alain

    La modélisation de la luminance spectrale des objets observés en télédétection permet d'effectuer des simulations de différents capteurs à partir de données obtenues au moyen d'un scanneur DAEDALUS aéroporté : les qualités radiométrique et géométrique ont pu être évaluées par une comparaison avec des données Landsat réelles. L'analyse sur une zone agricole met surtout en évidence le rôle important de l'accroissement de la résolution.

  1. Stable isotopic variation in tropical forest plants for applications in primatology.

    PubMed

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc.

  2. The potential for application of ink stable isotope analysis in questioned document examination.

    PubMed

    Chesson, Lesley A; Tipple, Brett J; Barnette, Janet E; Cerling, Thure E; Ehleringer, James R

    2015-01-01

    We investigated a novel application of stable isotope abundance analysis of nitrogen (15N), carbon (13C), hydrogen (2H), and oxygen (18O) to characterize pen ink. We focused on both ballpoint and gel pen inks. We found that the isotope ratios of ink from pens purchased together in a package were similar and within-package stable isotope ratio variability was not significantly larger than the variability of isotope reference materials used during analysis. In contrast, the isotope ratios of ink from pens of the same brand purchased in three states of the continental USA were significantly different from each other and there was isotope ratio variation among pens of the same brand but different, unknown production periods. The stable isotope ratios of inked paper were statistically distinguishable using measured δ15N values. Paper inked with different gel pens was statistically distinguishable using measured δ2H values. The capacity of stable isotope ratios to differentiate among ballpoint inks as well as gel inks shows that stable isotope analysis may be a useful and quantifiable investigative technique for questioned document examination, although current sample size requirements limit its utility. Application of the technique in casework will require the development of micro-scale sampling and analysis methods.

  3. The potential for application of ink stable isotope analysis in questioned document examination.

    PubMed

    Chesson, Lesley A; Tipple, Brett J; Barnette, Janet E; Cerling, Thure E; Ehleringer, James R

    2015-01-01

    We investigated a novel application of stable isotope abundance analysis of nitrogen (15N), carbon (13C), hydrogen (2H), and oxygen (18O) to characterize pen ink. We focused on both ballpoint and gel pen inks. We found that the isotope ratios of ink from pens purchased together in a package were similar and within-package stable isotope ratio variability was not significantly larger than the variability of isotope reference materials used during analysis. In contrast, the isotope ratios of ink from pens of the same brand purchased in three states of the continental USA were significantly different from each other and there was isotope ratio variation among pens of the same brand but different, unknown production periods. The stable isotope ratios of inked paper were statistically distinguishable using measured δ15N values. Paper inked with different gel pens was statistically distinguishable using measured δ2H values. The capacity of stable isotope ratios to differentiate among ballpoint inks as well as gel inks shows that stable isotope analysis may be a useful and quantifiable investigative technique for questioned document examination, although current sample size requirements limit its utility. Application of the technique in casework will require the development of micro-scale sampling and analysis methods. PMID:25577004

  4. Environmental and biomedical applications of natural metal stable isotope variations

    USGS Publications Warehouse

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  5. Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology.

    PubMed

    Jardine, Timothy D; Kidd, Karen A; Fisk, Aaron T

    2006-12-15

    Stable isotope analysis (SIA) has become a powerful tool for ecotoxicologists to study dietary exposure and biomagnification of contaminants in wild animal populations. The use of SIA in ecotoxicology continues to expand and, while much more is known about the mechanisms driving patterns of isotopic ratios in consumers, there remain several considerations or sources of uncertainty that can influence interpretation of data from field studies. We outline current uses of SIA in ecotoxicology, including estimating the importance of dietary sources of carbon and their application in biomagnification studies, and we present six main considerations or sources of uncertainty associated with the approach: (1) unequal diet-tissue stable isotope fractionation among species, (2) variable diet-tissue stable isotope fractionation within a given species, (3) different stable isotope ratios in different tissues of the animal, (4) fluctuating baseline stable isotope ratios across systems, (5) the presence of true omnivores, and (6) movement of animals and nutrients between food webs. Since these considerations or sources of uncertainty are difficult to assess in field studies, we advocate that researchers consider the following in designing ecotoxicological research and interpreting results: assess and utilize variation in stable isotope diet-tissue fractionation among animal groups available in the literature; determine stable isotope ratios in multiple tissues to provide a temporal assessment of feeding; adequately characterize baseline isotope ratios; utilize stomach contents when possible; and assess and integrate life history of study animals in a system.

  6. Very high temperature measurements: Applications to nuclear reactor safety tests; Mesures des tres hautes temperatures: Applications a des essais de surete des reacteurs nucleaires

    SciTech Connect

    Parga, Clemente-Jose

    2013-09-27

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  7. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies

    USGS Publications Warehouse

    Böhlke, J.K.; Smith, R.L.; Miller, D.N.

    2006-01-01

    Ammonium (NH4+) is a major constituent of many contaminated groundwaters, but its movement through aquifers is complex and poorly documented. In this study, processes affecting NH4+ movement in a treated wastewater plume were studied by a combination of techniques including large-scale monitoring of NH4+ distribution; isotopic analyses of coexisting aqueous NH4+, NO3-, N2, and sorbed NH 4+; and in situ natural gradient 15NH 4+ tracer tests with numerical simulations of 15NH4+, 15NO3-, and 15N2 breakthrough data. Combined results indicate that the main mass of NH4+ was moving downgradient at a rate about 0.25 times the groundwater velocity. Retardation factors and groundwater ages indicate that much of the NH4+ in the plume was recharged early in the history of the wastewater disposal. NO3- and excess N2 gas, which were related to each other by denitrification near the plume source, were moving downgradient more rapidly and were largely unrelated to coexisting NH 4+. The ??15N data indicate areas of the plume affected by nitrification (substantial isotope fractionation) and sorption (no isotope fractionation). There was no conclusive evidence for NH 4+-consuming reactions (nitrification or anammox) in the anoxic core of the plume. Nitrification occurred along the upper boundary of the plume but was limited by a low rate of transverse dispersive mixing of wastewater NH4+ and O2 from overlying uncontaminated groundwater. Without induced vertical mixing or displacement of plume water with oxic groundwater from upgradient sources, the main mass of NH4+ could reach a discharge area without substantial reaction long after the more mobile wastewater constituents are gone. Multiple approaches including in situ isotopic tracers and fractionation studies provided critical information about processes affecting NH4+ movement and N speciation.

  8. Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.

    2016-10-01

    Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.

  9. Diffraction des neutrons : principe, dispositifs expérimentaux et applications

    NASA Astrophysics Data System (ADS)

    Muller, C.

    2003-02-01

    La diffraction de neutrons, sur monocristal ou sur échantillon polycristallin (ou poudre), est une technique très largement utilisée, en science des matériaux comme en biologie, lorsque l'on souhaite déterminer la structure cristalline d'un composé ou d'une molécule. Toutefois, le degré de précision de la détermination structurale est très corrélé au choix de l'instrument utilisé. Il s'en suit que la question “comment choisir l'instrument le mieux adapté au composé et à la problématique ?" apparaît comme fondamentale. L'objectif de ce cours est de tenter de répondre à cette question en décrivant brièvement les caractéristiques instrumentales de différents diffractomètres, en exposant les avantages spécifiques des expériences de diffraction de neutrons et en donnant quelques exemples d'application.

  10. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review.

    PubMed

    Cheng, Hefa; Hu, Yuanan

    2010-05-01

    As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation.

  11. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    SciTech Connect

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.

  12. High-precision gamma-ray spectroscopy for enhancing production and application of medical isotopes

    NASA Astrophysics Data System (ADS)

    McCutchan, E. A.; Sonzogni, A. A.; Smith, S. V.; Muench, L.; Nino, M.; Greene, J. P.; Carpenter, M. P.; Zhu, S.; Chillery, T.; Chowdhury, P.; Harding, R.; Lister, C. J.

    2015-10-01

    Nuclear medicine is a field which requires precise decay data for use in planning radionuclide production and in imaging and therapeutic applications. To address deficiencies in decay data, sources of medical isotopes were produced and purified at the Brookhaven Linear Isotope Producer (BLIP) then shipped to Argonne National Laboratory where high-precision, gamma-ray measurements were performed using Gammasphere. New decay schemes for a number of PET isotopes and the impact on dose calculations will be presented. To investigate the production of next-generation theranostic or radiotherapeutic isotopes, cross section measurements with high energy protons have also been explored at BLIP. The 100-200 MeV proton energy regime is relatively unexplored for isotope production, thus offering high discovery potential but at the same time a challenging analysis due to the large number of open channels at these energies. Results of cross sections deduced from Compton-suppressed, coincidence gamma-ray spectroscopy performed at Lowell will be presented, focusing on the production of platinum isotopes by irradiating natural platinum foils with 100 to 200 MeV protons. DOE Isotope Program is acknowledged for funding ST5001030. Work supported by the US DOE under Grant DE-FG02-94ER40848 and Contracts DE-AC02-98CH10946 and DE-AC02-06CH11357.

  13. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA).

    PubMed

    Kozell, Anna; Yecheskel, Yinon; Balaban, Noa; Dror, Ishai; Halicz, Ludwik; Ronen, Zeev; Gelman, Faina

    2015-04-01

    Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.

  14. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  15. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  16. Application of isotope dilution ICP-MS techniques to quantitative proteomics.

    PubMed

    Bettmer, Jörg

    2010-08-01

    ICP-MS techniques based on isotope dilution analysis can be regarded as an emerging tool in quantitative protein analysis. Well-known concepts, for example species-specific and unspecific isotope dilution analysis, which promoted accurate and precise quantification in elemental speciation studies, have nowadays been transferred to the analysis of large biomolecules, e.g. proteins. Besides detection of heteroatom-containing proteins, the artificial introduction of metal-containing labels has attracted much attention and, as a consequence, ICP-MS-based isotope dilution techniques can serve as a valuable quantification tool. In particular, because isotope dilution ICP-MS techniques can enable absolute protein quantification, they can be regarded as an attractive technique in current and prospective proteomics. In this review, recent developments and applications will be highlighted and critically assessed.

  17. Application des codes de Monte Carlo à la radiothérapie par rayonnement à faible TEL

    NASA Astrophysics Data System (ADS)

    Marcié, S.

    1998-04-01

    In radiation therapy, there is low LET rays: photons of 60Co, photons and electrons to 4 at 25 MV created in a linac, photons 137Cs, of 192Ir and of 125I. To know the most exactly possible the dose to the tissu by this rays, software and measurements are used. With the development of the power and the capacity of computers, the application of Monte Carlo codes expand to the radiation therapy which have permitted to better determine effects of rays and spectra, to explicit parameters used in dosimetric calculation, to verify algorithms , to study measuremtents systems and phantoms, to calculate the dose in inaccessible points and to consider the utilization of new radionuclides. En Radiothérapie, il existe une variété, de rayonnements ? faible TLE : photons du cobalt 60, photons et ,électron de 4 à? 25 MV générés dans des accélérateurs linéaires, photons du césium 137, de l'iridium 192 et de l'iode 125. Pour connatre le plus exactement possible la dose délivrée aux tissus par ces rayonnements, des logiciels sont utilisés ainsi que des instruments de mesures. Avec le développement de la puissance et de la capacité, des calculateurs, l'application des codes de Monte Carlo s'est ,étendue ? la Radiothérapie ce qui a permis de mieux cerner les effets des rayonnements, déterminer les spectres, préciser les valeurs des paramètres utilisés dans les calculs dosimétriques, vérifier les algorithmes, ,étudier les systèmes de mesures et les fantomes utilisés, calculer la dose en des points inaccessibles ?à la mesure et envisager l'utilisation de nouveaux radio,éléments.

  18. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    NASA Astrophysics Data System (ADS)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  19. Oxygen Isotope in Phosphate an Indicator of Phosphorous Cycling in the Ocean - Controls, and Applications

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Roberts, K.; Defforey, D.; McLaughlin, K.; Lomas, M. W.; Church, M. J.; Mackey, K. R.

    2012-12-01

    In order to better constrain the parameters affecting oxygen isotope exchange between water and phosphate via biochemical reactions a set of culture experiments were conducted. Different species of phytoplankton were grown in seawater at various temperatures, light levels, and phosphate concentrations. The oxygen isotopic composition in the phosphate source, algal cells, and the isotopic composition oxygen in the dissolved inorganic phosphate (DIP) were measured. Results showing the effect of species, temperature, light and P availability on intracellular oxygen isotope exchange between phosphorus compounds and water will be presented. The effect of these parameters on the utility of the oxygen isotopic composition of phosphate as a tracer of phosphate utilization rate in the ocean will be discussed. This information is fundamental to any application of isotopic composition of oxygen of dissolved inorganic or organic phosphate to quantify the dynamics of phosphorus cycling in aquatic systems. The data will be utilized to investigate seasonal changes in phosphate sources and cycling in the open ocean and how these relate to phytoplankton abundance, hydrography, and nutrient concentrations.

  20. Application of non-traditional stable isotopes in analytical ecogeochemistry assessed by MC ICP-MS--A critical review.

    PubMed

    Irrgeher, Johanna; Prohaska, Thomas

    2016-01-01

    Analytical ecogeochemistry is an evolving scientific field dedicated to the development of analytical methods and tools and their application to ecological questions. Traditional stable isotopic systems have been widely explored and have undergone continuous development during the last century. The variations of the isotopic composition of light elements (H, O, N, C, and S) have provided the foundation of stable isotope analysis followed by the analysis of traditional geochemical isotope tracers (e.g., Pb, Sr, Nd, Hf). Questions in a considerable diversity of scientific fields have been addressed, many of which can be assigned to the field of ecogeochemistry. Over the past 15 years, other stable isotopes (e.g., Li, Zn, Cu, Cl) have emerged gradually as novel tools for the investigation of scientific topics that arise in ecosystem research and have enabled novel discoveries and explorations. These systems are often referred to as non-traditional isotopes. The small isotopic differences of interest that are increasingly being addressed for a growing number of isotopic systems represent a challenge to the analytical scientist and push the limits of today's instruments constantly. This underlines the importance of a metrologically sound concept of analytical protocols and procedures and a solid foundation of data processing strategies and uncertainty considerations before these small isotopic variations can be interpreted in the context of applied ecosystem research. This review focuses on the development of isotope research in ecogeochemistry, the requirements for successful detection of small isotopic shifts, and highlights the most recent and innovative applications in the field.

  1. Application of stable isotope-labeled compounds in metabolism and in metabolism-mediated toxicity studies.

    PubMed

    Mutlib, Abdul E

    2008-09-01

    Stable isotope-labeled compounds have been synthesized and utilized by scientists from various areas of biomedical research during the last several decades. Compounds labeled with stable isotopes, such as deuterium and carbon-13, have been used effectively by drug metabolism scientists and toxicologists to gain better understanding of drugs' disposition and their potential role in target organ toxicities. The combination of stable isotope-labeling techniques with mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy, which allows rapid acquisition and interpretation of data, has promoted greater use of these stable isotope-labeled compounds in absorption, distribution, metabolism, and excretion (ADME) studies. Examples of the use of stable isotope-labeled compounds in elucidating structures of metabolites and delineating complex metabolic pathways are presented in this review. The application of labeled compounds in mechanistic toxicity studies will be discussed by providing an example of how strategic placement of a deuterium atom in a drug molecule mitigated specific-specific renal toxicity. Other examples from the literature demonstrating the application of stable isotope-labeled compounds in understanding metabolism-mediated toxicities are presented. Furthermore, an example of how a stable isotope-labeled compound was utilized to better understand some of the gene changes in toxicogenomic studies is discussed. The interpretation of large sets of data produced from toxicogenomics studies can be a challenge. One approach that could be used to simplify interpretation of the data, especially from studies designed to link gene changes with the formation of reactive metabolites thought to be responsible for toxicities, is through the use of stable isotope-labeled compounds. This is a relatively unexplored territory and needs to be further investigated. The employment of analytical techniques, especially mass spectrometry and NMR, used in conjunction

  2. Multi-factorial in vivo stable isotope fractionation: causes, correlations, consequences and applications.

    PubMed

    Schmidt, Hanns-Ludwig; Robins, Richard J; Werner, Roland A

    2015-01-01

    Many physical and chemical processes in living systems are accompanied by isotope fractionation on H, C, N, O and S. Although kinetic or thermodynamic isotope effects are always the basis, their in vivo manifestation is often modulated by secondary influences. These include metabolic branching events or metabolite channeling, metabolite pool sizes, reaction mechanisms, anatomical properties and compartmentation of plants and animals, and climatological or environmental conditions. In the present contribution, the fundamentals of isotope effects and their manifestation under in vivo conditions are outlined. The knowledge about and the understanding of these interferences provide a potent tool for the reconstruction of physiological events in plants and animals, their geographical origin, the history of bulk biomass and the biosynthesis of defined representatives. It allows the use of isotope characteristics of biomass for the elucidation of biochemical pathways and reaction mechanisms and for the reconstruction of climatic, physiological, ecological and environmental conditions during biosynthesis. Thus, it can be used for the origin and authenticity control of food, the study of ecosystems and animal physiology, the reconstruction of present and prehistoric nutrition chains and paleaoclimatological conditions. This is demonstrated by the outline of fundamental and application-orientated examples for all bio-elements. The aim of the review is to inform (advanced) students from various disciplines about the whole potential and the scope of stable isotope characteristics and fractionations and to provide them with a comprehensive introduction to the literature on fundamental aspects and applications.

  3. Strategies for Application of Isotopic Uncertainties in Burnup Credit

    SciTech Connect

    Gauld, I.C.

    2002-12-23

    Uncertainties in the predicted isotopic concentrations in spent nuclear fuel represent one of the largest sources of overall uncertainty in criticality calculations that use burnup credit. The methods used to propagate the uncertainties in the calculated nuclide concentrations to the uncertainty in the predicted neutron multiplication factor (k{sub eff}) of the system can have a significant effect on the uncertainty in the safety margin in criticality calculations and ultimately affect the potential capacity of spent fuel transport and storage casks employing burnup credit. Methods that can provide a more accurate and realistic estimate of the uncertainty may enable increased spent fuel cask capacity and fewer casks needing to be transported, thereby reducing regulatory burden on licensee while maintaining safety for transporting spent fuel. This report surveys several different best-estimate strategies for considering the effects of nuclide uncertainties in burnup-credit analyses. The potential benefits of these strategies are illustrated for a prototypical burnup-credit cask design. The subcritical margin estimated using best-estimate methods is discussed in comparison to the margin estimated using conventional bounding methods of uncertainty propagation. To quantify the comparison, each of the strategies for estimating uncertainty has been performed using a common database of spent fuel isotopic assay measurements for pressurized-light-water reactor fuels and predicted nuclide concentrations obtained using the current version of the SCALE code system. The experimental database applied in this study has been significantly expanded to include new high-enrichment and high-burnup spent fuel assay data recently published for a wide range of important burnup-credit actinides and fission products. Expanded rare earth fission-product measurements performed at the Khlopin Radium Institute in Russia that contain the only known publicly-available measurement for {sup 103

  4. Application of diode lasers to the isotopically selective determination of uranium in oxides by optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Barshick, C. M.; Shaw, R. W.; Ramsey, J. M.

    1995-04-01

    We have observed isotopically selective diode laser-excited optogalvanic effects in uranium at 778.42 and 776.10 nm. The samples were natural abundance uranium oxide, as well as depleted (0.3% 235U), natural (0.7% 235U) and enriched (9.75% 235U) uranium metal or powders. The measurements were carried out in a demountable-cathode glow discharge cell. Preliminary evaluations of precision for uranium isotopic ratios measured using this technique suggest that it should have broad analytical applications for uranium and other amenable actinides or lanthanides.

  5. Application of diode lasers to the isotopically selective determination of uranium in oxides by optogalvanic spectroscopy

    NASA Astrophysics Data System (ADS)

    Young, J. P.; Barshick, C. M.; Shaw, R. W.; Ramsey, J. M.

    We have observed isotopically selective diode laser-excited optogalvanic effects in uranium at 778.42 and 776.19 nm. The samples were natural abundance uranium oxide, as well as depleted (0.3% U-235), natural (0.7% U-235) and enriched (9.75% U-235) uranium metal or powders. The measurements were carried out in a demountable-cathode glow discharge cell. Preliminary evaluations of precision for uranium isotopic ratios measured using this technique suggest that it should have broad analytical applications for uranium and other amenable actinides or lanthanides.

  6. Geochemistry of beryllium isotopes: Applications in geochronometry. Doctoral thesis

    SciTech Connect

    Brown, E.T.

    1990-01-01

    The cosmogenic radioisotope beryllium-10 (half-life= 1.5 Myr) has been determined in suites of samples from tropical river systems and from areas of the oceans influenced by input from the continents, and also within the mineral lattices of quartz grains from Antarctic moraines. These data have been used to investigate the geochemistry of 10Be and apply that knowledge to development of geochronometric techniques. Beryllium-10 is primarily produced by neutron-induced spallation of 14N and 16O in the atmosphere; its flux to the Earth's surface at low latitude was examined through measurements in tropical rainfall. Distributions of 10Be and 9Be (the stable isotope) in dissolved and particulate phases in tropical rivers were used, in conjunction with major ion data, to delineate the geochemical cycle of Be in these river systems. The present work applies in situ cosmogenic production to the examination of the deposition history of moraines of varying ages in Antarctica. It also yields estimates of 10Be and 26Al production rates: 6.4(+5.9-1.5) at/g yr and 42(+20-6) at/g yr at sea level and high geomagnetic latitude.

  7. Application of Uranium Isotope Dilution Mass Spectrometry in the preparation of New Certified Reference Materials

    NASA Astrophysics Data System (ADS)

    Hasözbek, A.; Mathew, K. J.; Orlowicz, G.; Srinivasan, B.; Narayanan, U.

    2012-04-01

    Proven measurement techniques play a critical role in the preparation of Certified Reference Materials (CRMs) - those requiring high accuracy and precision in the measurement results. Isotope Dilution Mass Spectrometry (IDMS) is one such measurement method commonly used in the quantitative analysis of uranium in nuclear safeguards and isotope geology applications. In this project, we evaluated the possibility of using some of the uranium isotopic and assay CRMs made earlier by the New Brunswick laboratory as IDMS spikes to define the uranium mass fraction in future preparations of CRMs. Uranium solutions prepared from CRM 112-A (a highly pure uranium metal assay standard) and CRM 115 (a highly pure uranium oxide isotopic and assay standard) were used as spikes in the determination of uranium. Two different thermal ionization mass spectrometer instruments (MAT 261 and TRITON) were used for the isotopic measurements. Standard IDMS equation was used for data reduction to yield results for uranium mass fraction along with uncertainties, the latter calculated according to GUM. The results show that uranium mass fraction measurements can be made with the required accuracy and precision for defining the uranium concentration in new CRMs as well as in routine samples analyses.

  8. Stable isotope applications in biomolecular structure and mechanisms. A meeting to bring together producers and users of stable-isotope-labeled compounds to assess current and future needs

    SciTech Connect

    Trewhella, J.; Cross, T.A.; Unkefer, C.J.

    1994-12-01

    Knowledge of biomolecular structure is a prerequisite for understanding biomolecular function, and stable isotopes play an increasingly important role in structure determination of biological molecules. The first Conference on Stable Isotope Applications in Biomolecular Structure and Mechanisms was held in Santa Fe, New Mexico, March 27--31, 1994. More than 120 participants from 8 countries and 44 institutions reviewed significant developments, discussed the most promising applications for stable isotopes, and addressed future needs and challenges. Participants focused on applications of stable isotopes for studies of the structure and function of proteins, peptides, RNA, and DNA. Recent advances in NMR techniques neutron scattering, EPR, and vibrational spectroscopy were highlighted in addition to the production and synthesis of labeled compounds. This volume includes invited speaker and poster presentations as well as a set of reports from discussion panels that focused on the needs of the scientific community and the potential roles of private industry, the National Stable Isotope Resource, and the National High Magnetic Field Laboratory in serving those needs. This is the leading abstract. Individual papers are processed separately for the database.

  9. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore.

  10. Stirling Isotope Power Systems for Stationary and Mobile Lunar Applications

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2007-01-01

    The NASA Exploration Systems Architecture Study (ESAS) places a significant emphasis on the development of a wide range of capabilities on the lunar surface as a stepping-stone to further space exploration. An important aspect of developing these capabilities will be the availability of reliable, efficient, and low-mass power systems to support both stationary and mobile applications. One candidate system to provide electrical power is made by coupling the General Purpose Heat Source (GPHS) with a high-performance Stirling convertor. In this paper we explore the practical power range of GPHS/Stirling convertor systems all with conductively coupled hot-end designs for use on the lunar surface. Design and off-design operations during the life of the convertor are studied in addition to considering these varying conditions on system. Unique issues concerning Stirling convertor configurations, integration of the GPHS with the Stirling convertor, controller operation, waste heat rejection, and thermal protection are explored. Of particular importance in the evaluation process is a thorough understanding of the interactions between the wide range of unique lunar environments and the selection of key systems operating characteristics and the power systems design. Additionally, as power levels rise the interface between the GPHS and Stirling and the Stirling and the radiator begins to dominate system mass and material selection becomes more important.

  11. [Applications of stable isotope analysis in the trophic ecology studies of cephalopods].

    PubMed

    Li, Yun-Kai; Gong, Yi; Chen, Xin-Jun

    2014-05-01

    Cephalopods play an important role in marine food webs, however, knowledge about their complex life history, especially their feeding ecology, remains limited. With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement of traditional methods for investigating the trophic ecology and migration patterns of invertebrates. Here, after summarizing the current methods for trophic ecology investigation of cephalopods, applications of SIA in studying the trophic ecology of cephalopods were reviewed, including the key issues such as standardization of available tissues for SIA analyzing, diet shift and migration patterns of cephalopods, with the aim of advancing its application in the biology of cephalopods in the future.

  12. Effects of Brine Salinity on Clumped Isotopes and Implications for Applications to Carbonate Diagenesis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.

    2012-12-01

    Carbonate clumped isotope thermometry relies on the overabundance of 13C-18O bonds in the crystal lattice compared to a stochastic distribution and was calibrated in laboratory experiments using carbonates precipitated from (mainly) de-ionized water that was supersaturated with calcium carbonate (Ghosh et al., 2006). However, the clumped isotope method has also been applied to carbonates that precipitated in the marine and subsurface environments from fluids with significant salt concentrations. These saline fluids differ markedly from the solution used for laboratory calibration. Variations in the electro-chemical potential due to changes in the ion composition and concentration of the solution could influence the physical properties of the clumped isotope bonding and lead to deviations from the commonly used temperature calibration. Consequently, calibrations at high salinities and high temperatures are needed to confidently extend the application of clumped isotopes to diagenetic processes. We investigated the effect of salinity on clumping by precipitating carbonates (mainly calcite) in the laboratory between 23 and 90 °C using a setup analogous to the experiments of Ghosh et al. (2006). A first subset of experiments was performed at low salinities, while during a second subset of experiments we saturated the solution with NaCl (about 35 g/100 ml) in order to mimic a highly saline brine. Since the same experimental procedures were used for both sub-sets (same temperatures of precipitation and rates of nitrogen gas bubbling), we can directly compare clumped isotope values in highly saline versus low-salinity solutions. The initial clumped isotope results obtained from the brine solution agree within uncertainty with results from carbonates precipitated from a NaCl-free solution at the same temperatures. This suggests that clumped isotopes can be applied to carbonates precipitated under highly saline conditions. We acknowledge the financial support of QCCSRC

  13. Application de la methode des sous-groupes au calcul Monte-Carlo multigroupe

    NASA Astrophysics Data System (ADS)

    Martin, Nicolas

    This thesis is dedicated to the development of a Monte Carlo neutron transport solver based on the subgroup (or multiband) method. In this formalism, cross sections for resonant isotopes are represented in the form of probability tables on the whole energy spectrum. This study is intended in order to test and validate this approach in lattice physics and criticality-safety applications. The probability table method seems promising since it introduces an alternative computational way between the legacy continuous-energy representation and the multigroup method. In the first case, the amount of data invoked in continuous-energy Monte Carlo calculations can be very important and tend to slow down the overall computational time. In addition, this model preserves the quality of the physical laws present in the ENDF format. Due to its cheap computational cost, the multigroup Monte Carlo way is usually at the basis of production codes in criticality-safety studies. However, the use of a multigroup representation of the cross sections implies a preliminary calculation to take into account self-shielding effects for resonant isotopes. This is generally performed by deterministic lattice codes relying on the collision probability method. Using cross-section probability tables on the whole energy range permits to directly take into account self-shielding effects and can be employed in both lattice physics and criticality-safety calculations. Several aspects have been thoroughly studied: (1) The consistent computation of probability tables with a energy grid comprising only 295 or 361 groups. The CALENDF moment approach conducted to probability tables suitable for a Monte Carlo code. (2) The combination of the probability table sampling for the energy variable with the delta-tracking rejection technique for the space variable, and its impact on the overall efficiency of the proposed Monte Carlo algorithm. (3) The derivation of a model for taking into account anisotropic

  14. Forensic applications of nitrogen and oxygen isotopes in tracing nitrate sources in urban environments

    USGS Publications Warehouse

    Silva, S.R.; Ging, P.B.; Lee, R.W.; Ebbert, J.C.; Tesoriero, A.J.; Inkpen, E.L.

    2002-01-01

    Ground and surface waters in urban areas are susceptible to nitrate contamination from septic systems, leaking sewer lines, and fertilizer applications. Source identification is a primary step toward a successful remediation plan in affected areas. In this respect, nitrogen and oxygen isotope ratios of nitrate, in conjunction with hydrologic data and water chemistry, have proven valuable in urban studies from Austin, Texas, and Tacoma, Washington. In Austin, stream water was sampled during stremflow and baseflow conditions to assess surface and subsurface sources of nitrate, respectively. In Tacoma, well waters were sampled in adjacent sewered and un-sewered areas to determine if locally high nitrate concentrations were caused by septic systems in the un-sewered areas. In both studies, sewage was identified as a nitrate source and mixing between sewage and other sources of nitrate was apparent. In addition to source identification, combined nitrogen and oxygen isotopes were important in determining the significance of denitrification, which can complicate source assessment by reducing nitrate concentrations and increasing ??15N values. The two studies illustrate the value of nitrogen and oxygen isotopes of nitrate for forensic applications in urban areas. ?? Published by Elsevier Science Ltd. on behalf of AEHS.

  15. High-Temperature Equilibrium Isotope Fractionation of Non-Traditional Stable Isotopes: Experiments, Theory, and Applications (Invited)

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Lazar, G. C.; Macris, C. A.; Manning, C. E.; Schauble, E. A.; Shahar, A.

    2013-12-01

    Experiments are crucial for validating our understanding of stable isotope fractionation at high temperatures. The three-isotope method has been applied with success in the Si, Mg, Fe, and Ni isotope systems to date. The results of these experiments can be compared with expectations from theory and measurements of natural samples. Qualitative insights into the partitioning of heavy and light isotopes between mineral phases are gained by treating the force constant for relevant bonds, Kf j, as electrostatic in origin. The ionic model, based on the mean bond strength as defined by Pauling, has obvious limitations but is useful for rationalizing structures and site occupancies in silicates and oxide minerals and is equally useful in formulating expectations for isotope fractionation between phases. In some cases, as in Fe isotopes in spinels, the expectations are contrary to predictions based on modeling but similar to observations in natural samples. Experimental verification is required. The force constant for a bond between cation i (Mg, Fe, etc.) and anion j (e.g., O) can be written in terms of mean bond strengths si and sj (as defined by Pauling) as Kf,ij = sisj e2 (1-n)/(4 π ɛο r3ij ) where ɛo is the electric constant (vacuum permittivity for simplicity), e is the charge of an electron, n is the exponent in the Born-Mayer formulation for ion repulsion (Born and Mayer 1932), and rij is the interatomic spacing. This equation shows explicitly that larger values for the force constant Kf correspond to smaller coordination numbers (via si and sj). We therefore expect an inverse relationship between isotope ratios (heavy/light) and coordination of its oxygen bond partners in silicate and oxides minerals and this is verified in mantle minerals. Our work with Fe isotope partitioning in mantle spinels suggests that coordination may be equally important as oxidation state, recognizing that these distinctions are not orthogonal. Recent work on the Mg isotopic

  16. The Modern Marine Ca-isotope Budget and its Application to the Phanerozoic Ca-isotope Record

    NASA Astrophysics Data System (ADS)

    Blattler, C. L.; Jenkyns, H. C.; Henderson, G. M.

    2011-12-01

    Variations in the calcium-isotope ratio (δ44/40Ca) of ancient seawater have been recorded in several studies using marine carbonate, barite, or apatite, but the causes of these variations have not been explored quantitatively. Seawater Ca-isotope ratios are affected by the average fractionation factor between seawater and the carbonate that precipitates from it, which is defined by the composition of the marine carbonate sink. To investigate possible changes in the fractionation factor of marine carbonate over the Phanerozoic, a Ca-isotope budget has been constructed for the modern oceans. Over 250 Ca-isotope measurements have been compiled from a wide variety of carbonate sources to describe the modern marine Ca-isotope budget. This dataset includes over 50 new measurements to characterize several components of the carbonate system, such as coral reefs, which are quantitatively important but have been undersampled, for example, relative to planktic foraminifera. δ44/40Ca values have been temperature-normalized using the relationship of +0.02% per °C, which permits observations and comparisons based on mineralogy, taxonomy, and locus of carbonate precipitation. A general offset of ~0.25%, increasing up to ~0.8% for certain taxa, is observed between subsets of aragonite and calcite samples; no statistical difference is observed between high-Mg calcite and low-Mg calcite. Additionally, within the data for calcite skeletons, two broad groups appear based on taxonomic patterns. Taxa with generally weak control over their biomineralization, such as sclerosponges, brachiopods, and calcareous red algae, are 0.4-0.5% heavier than organisms with more controlled calcification mechanisms, such as coccolithophores and planktic foraminifera. The patterns that emerge from this dataset for different clades demonstrate the usefulness of fossil carbonate for reconstructing the Ca-isotope ratio of ancient seawater. The composition of the modern Ca-isotope budget provides a basis

  17. Water Stable Isotopes: Atmospheric Composition and Applications in Polar Ice Core Studies

    NASA Astrophysics Data System (ADS)

    Jouzel, J.

    2003-12-01

    Natural waters formed of ˜99.7% of H216O are also constituted of other stable isotopic molecules, mainly H218O (˜2‰), H217O (˜0.5‰), and HD16O (˜0.3‰), where H and D (deuterium) correspond to 1H and 2H, respectively. Owing to slight differences in physical properties of these molecules, essentially their saturation vapor pressure, and their molecular diffusivity in air, fractionation processes occur at each phase change of the water except sublimation and melting of compact ice. As a result, the distribution of these water isotopes varies both spatially and temporally in the atmosphere, in the precipitation, and, in turn, in the various reservoirs of the hydrosphere and of the cryosphere. These isotopic variations have applications in such fields as climatology and cloud physics. More importantly, they are at the origin of two now well-established disciplines: isotope hydrology and isotope paleoclimatology. The various aspects dealing with isotope hydrology are reviewed by Kendall (see Chapter 5.11). In this chapter, we focus on this field known as "isotope paleoclimatology." As the behavior of H217O in the atmospheric water is very similar to that of H218O (more abundant and easier to precisely determine), isotope paleoclimatology is only based on the changes in concentrations of HDO and H218O. These concentrations are given with respect to a standard as δ=(Rsample-RSMOW)/RSMOW and expressed in per mil δ units (δD and δ18O, respectively). In this definition, Rsample and RSMOW are the isotopic ratios of the sample and of the Vienna Standard Mean Ocean Water (V-SMOW) with D/H and 18O/16O atomic ratios of 155.76×10-6 and 2005.2×10-6, respectively (Hageman et al., 1970; Baerstchi, 1976; Gonfiantini, 1978).The use of water stable isotopes in paleoclimatology is based on the fact that their present-day distribution in precipitation is strongly related to climatological parameters. Of primary interest is the linear relationship between annual values of

  18. Application des ondelettes à l'analyse de texture et à l'inspection de surface industrielle

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Husson, R.

    1993-11-01

    This paper presents a method of texture analysis based on multiresolution wavelets analysis. We discuss the problem of theoretical and experimental choice of the wavelet. Statistical modelling of wavelet images is treated and it results in considering statistical distribution to be a generalized Gaussian law. An algorithm for texture classification is developed with respect of the variances of different wavelet images. An industrial application of this algorithm illustrates its quality and proves its aptitude for automation of certain tasks in industrial control. Nous présentons une méthode d'analyse de texture fondée sur l'analyse multirésolution par ondelettes. Nous discutons du problème du choix théorique et expérimental de l'ondelette. Le problème de la modélisation statistique des images d'ondelettes est traité et aboutit à considérer la distribution statistique comme une loi de Gauss généralisée. Un algorithme de classification de texture est construit à l'aide de la variance des différentes images d'ondelettes. Enfin, une application industrielle de cet algorithme illustre ses qualités et démontre son aptitude à l'automatisation de certaines tâches de contrôle industriel.

  19. Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers.

    PubMed

    Braeckevelt, M; Fischer, A; Kästner, M

    2012-06-01

    Microbial processes govern the fate of organic contaminants in aquifers to a major extent. Therefore, the evaluation of in situ biodegradation is essential for the implementation of Natural Attenuation (NA) concepts in groundwater management. Laboratory degradation experiments and biogeochemical approaches are often biased and provide only indirect evidence of in situ degradation potential. Compound-Specific Isotope Analysis (CSIA) is at present among the most promising tools for assessment of the in situ contaminant degradation within aquifers. One- and two-dimensional (2D) CSIA provides qualitative and quantitative information on in situ contaminant transformation; it is applicable for proving in situ degradation and characterizing degradation conditions and reaction mechanisms. However, field application of CSIA is challenging due to a number of influencing factors, namely those affecting the observed isotope fractionation during biodegradation (e.g., non-isotope-fractionating rate-limiting steps, limited bioavailability), potential isotope effects caused by processes other than biodegradation (e.g., sorption, volatilization, diffusion), as well as non-isotope-fractionating physical processes such as dispersion and dilution. This mini-review aims at guiding practical users towards the sound interpretation of CSIA field data for the characterization of in situ contaminant degradation. It focuses on the relevance of various constraints and influencing factors in CSIA field applications and provides advice on when and how to account for these constraints. We first evaluate factors that can influence isotope fractionation during biodegradation, as well as potential isotope-fractionating and non-isotope-fractionating physical processes governing observed isotope fractionation in the field. Finally, the potentials of the CSIA approach for site characterization and the proper ways to account for various constraints are illustrated by means of a comprehensive CSIA field

  20. Sr - an element shows the way - Applications of Sr isotopes for provenance, tracing and migration (Invited)

    NASA Astrophysics Data System (ADS)

    Prohaska, T.; Irrgeher, J.; Zitek, A.; Teschler Nicola, M.

    2010-12-01

    Strontium - named after the small Scottish town Strontian - as such is an element with little popularity. Firstly described by Martin Heinrich Klaproth in 1798, the metal is used in metallurgy to some extent whereas its compounds are interesting in glass industries, electronics and pyrotechnics. The element has chemical similarity to Ca and makes up 1/60 of the earth’s amount of the latter. Nonetheless, it is its isotopic composition which makes Sr so interesting for a large number of scientists. The natural composition of the four naturally occurring isotopes (84Sr, 86Sr 87Sr and 88Sr) varies in nature due to the radioactive decay of 87Rb to 87Sr. Thus, it was early recognized as geochronometer especially in Ca rich matrices. With increasing precision of applied methodology, the natural variation of the 87Sr/86Sr isotope ratio (analyzed at first mainly by thermal ionization mass spectrometry (TIMS)) became more and more popular in provenance studies. The natural variation of the ratio is mainly determined by the geological age and the original composition of the rock and can be used therefore as fingerprint of the local geology. The ratio is transferred with no significant fractionation via the water into plants and finally via the food chain into animal and human tissues (especially bones and teeth). As the element is chemically similar to Ca, it appears in most matrices. The use for provenance studies is supported by the fact that the long half life (4.8 x 1010 years) does not lead to an alteration during the time scales which are investigated (from recent samples to human or animal skeletal remains which date back up to 30.000 BC). The uniqueness of the system besides the natural variation is defined by the ubiquity in nature and the relatively high (and thus measurable) elemental concentration in most tissues. It was finally the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) which augmented the number of applications

  1. RFNC-VNIIEF Capabilities to Production High Pure Isotopes for Scientific and Medical Applications

    SciTech Connect

    Vesnovskii, S. P.

    2002-02-26

    In the technical paper there is presented the information on the basic equipment and more than thirty-year experience of RFNC-VNIIEF activities in the sphere of producing highly enriched isotopes of actinide elements--thorium, uranium, neptunium, plutonium, americium and curium--for scientific researches and practical applications. Electromagnetic separator and radiochemical methods provide obtaining of superpure isotope samples for nuclear-physical radiometric and mass-spectrometric equipment, and also as tracers when analyzing environmental contamination. There are presented the structure of the laboratory occupied with these isotopes electromagnetic separation as well as the nomenclature and characteristics of the specimens supplied. There are stated science and engineering elaborations of technologies aimed at producing alpha-ray radiating radionuclides--thorium-229, thorium-228, actinium-225, radium-224--for the purpose of anti-cancer therapy using bismuth-212 and bismuth-213 produced by the specially developed generators. There are presented the basic directions of cooperation with other Russian Institutes in developing this promising line of conversion.

  2. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  3. Application of alkali metal-doped carbons for hydrogen recovery and isotope separation.

    PubMed

    Akuzawa, N; Okano, Y; Iwashita, T; Matsumoto, R; Soneda, Y

    2011-10-01

    Hydrogen-sorption isotherms of alkali metal-doped carbons at 77 K were determined for promoting application of these materials as hydrogen-recovery and isotope-separation agent. The hydrogen-sorption behavior of rubidium-doped Grafoil, with composition of RbC24, showed high sorption ability against hydrogen at low pressure. Taking into account the fact that sorption-desorption was fast and reversible, and the equilibrium pressure at half coverage was very low, i.e., 40 Pa, RbC24 prepared from Grafoil is promising as a recovery agent for hydrogen gas at low pressure. The hydrogen (H2)/deuterium(D2)-sorption isotherms of potassium-doped carbons with composition of KC10, prepared from multi wall carbon nanotube (MWCNT) and carbons derived from petroleum cokes with heat-treatment temperatures of 1000 and 1500 degrees C, were also determined. Isotope separation coefficient was estimated from those isotherms. A very large isotope effect was found for KC10 prepared from MWCNT, comparable to those prepared from carbons with heat-treatment temperatures of 1000 or 1500 degrees C. However, a severe problem was found for KC10 (MWCNT) that repetition of the sorption-desorption cycles resulted in the decrease of the sorbed amount of H2 and D2.

  4. Diagnostic applications of simultaneously acquired dual-isotope single-photon emission CT scans

    SciTech Connect

    Mathews, D.; Walker, B.S.; Allen, B.C.; Batjer, H.; Purdy, P.D. )

    1994-01-01

    To report the development and validation of a technique of dual tracer single-photon emission CT brain imaging using technetium-99m hexamethyl-propyleneamine oxime and iodine-123 iodoamphetamine agents and the application of this technique in patients with a variety of diagnoses. Contamination between the two isotopes' energy windows was calculated by opening both energy windows while scanning a group of patients using a single isotope. To compare uniformity of I-123 down-scatter. Tc-99m studies were performed both before and after the administration of I-123 in five of 24 dual studies. The 24 patients studied with the dual-isotope technique were evaluated during acetazolamide testing, trial balloon occlusion, or embolization of an arteriovenous malformation. In a dual acquisition, average count contamination of an I-123 study by Tc-99m was less than 1% of the total I-123 counts, and contamination of a Tc-99m study by I-123 was approximately 12% of the total Tc-99m counts. Tc-99m studies performed both before and after the administration of I-123 demonstrated that contaminating counts do not adversely affect scan interpretation. Dual-tracer scans were completed in all 24 patients, 10 of whom showed changes after intervention. Dual-tracer single-photon emission CT brain scans of adequate diagnostic quality are possible using Tc-99m and I-123. 18 refs., 5 figs., 3 tabs.

  5. An application of nitrogen microwave-induced plasma mass spectrometry to isotope dilution analysis of selenium in marine organisms.

    PubMed

    Shirasaki, T; Yoshinaga, J; Morita, M; Okumoto, T; Oishi, K

    1996-01-01

    Nitrogen microwave-induced plasma mass spectrometry was studied for its applicability to the isotope dilution analysis of selenium in biological samples. Spectroscopic interference by calcium, which is present in high concentrations in biological samples, was investigated. No detectable background spectrum was observed for the major selenium isotopes of 78Se and 80Se. No detectable interferences by sodium, potassium, calcium and phosphorus on the isotope ratio 80Se/78Se were observed up to concentration of 200 mg/ml. The method was applied to the analysis of selenium in biological reference materials of marine organisms. The results showed good agreement between the certified and found values. PMID:8848792

  6. Application de l’analyse des séries chronologiques à la projection d’effectifs de population scolaire par la méthode des composantes

    PubMed Central

    Smith, Herbert L.

    2016-01-01

    Cet article veut montrer qu’on peut réécrire des modèles démographiques en vue de réaliser des projections par cohorte, en les transposant dans un modèle économétrique vecteur autoré-gressif (VAR). De cette façon, la méthode des composantes se dote d’un cadre stochastique qui étend son envergure. Le potentiel de cette perspective est illustré à travers l’exemple d’une projection d’effectifs de population scolaire. Il met en valeur une série d’équations qui permet de vérifier la validité de plusieurs choix de modélisations habituellement utilisées dans le domaine de la prévision. PMID:27346921

  7. "Application of Tunable Diode Laser Spectrometry to Isotopic Studies for Exobiology"

    NASA Technical Reports Server (NTRS)

    Sauke, Todd B.

    1999-01-01

    Computer-controlled electrically-activated valves for rapid gas-handling have been incorporated into the Stable Isotope Laser Spectrometer (SILS) which now permits rapid filling and evacuating of the sample and reference gas cells, Experimental protocols have been developed to take advantage of the fast gas handling capabilities of the instrument and to achieve increased accuracy which results from reduced instrumental drift during rapid isotopic ratio measurements. Using these protocols' accuracies of 0.5 del (0.05%) have been achieved in measurements of 13C/12C in carbon dioxide. Using the small stable isotope laser spectrometer developed in a related PIDDP project of the Co-I, protocols for acquisition of rapid sequential calibration spectra were developed which resulted in 0.5 del accuracy also being achieved in this less complex instrument. An initial version of software for automatic characterization of tunable diode lasers has been developed and diodes have been characterized in order to establish their spectral output properties. A new state-of-the-art high operating temperature (200 K) mid infrared diode laser was purchased (through NASA procurement) and characterized. A thermo-electrically cooled mid infrared tunable diode laser system for use with high temperature operation lasers was developed. In addition to isotopic ratio measurements of carbon and oxygen, measurements of a third biologically important element (15N/14N in N2O gas) have been achieved to a preliminary accuracy of about 0.2%. Transfer of the basic SILS technology to the commercial sector is proceeding under an unfunded Space Act Agreement between NASA and SpiraMed, a medical diagnostic instrument company. Two patents have been issued. Foreign patents based on these two US patents have been applied for and are expected to be issued. A preliminary design was developed for a thermo-electrically cooled SILS instruments for application to planetary space flight exploration missions.

  8. Solubility of krypton, xenon and radon in polycarbonates. Application for measurement of their radioactive isotopes

    NASA Astrophysics Data System (ADS)

    Pressyanov, D.; Mitev, K.; Dimitrova, I.; Georgiev, S.

    2011-02-01

    Bisphenol-A polycarbonates have a high absorption ability for noble gases that can be employed for sampling and measurement of radioactive isotopes of these gases. In this report the solubility of krypton, xenon and radon in the specified polycarbonates is determined by measurement of 85Kr, 133Xe and 222Rn absorbed in polycarbonate specimens. The found solubility is used to develop a general methodology for measurement of radioactive noble gases in air and water. The methodology is tested in pilot measurements of 133Xe in air under real conditions. The results demonstrate sufficient potential for practical applications.

  9. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    NASA Astrophysics Data System (ADS)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern

  10. Injectabilite des coulis de ciment dans des milieux fissures

    NASA Astrophysics Data System (ADS)

    Mnif, Thameur

    Le travail presente ici est un bilan du travaux de recherche effectues sur l'injectabilite des coulis de ciment dans lu milieux fissures. Un certain nombre de coulis a base de ciment Portland et microfin ont ete selectionnes afin de caracteriser leur capacite a penetrer des milieux fissures. Une partie des essais a ete menee en laboratoire. L'etude rheologique des differents melanges a permis de tester l'influence de l'ajout de superplastifiant et/ou de fumee de silice sur la distribution granulometrique des coulis et par consequent sur leur capacite a injecter des colonnes de sable simulant un milieu fissure donne. La classe granulometrique d'un coulis, sa stabilite et sa fluidite sont apparus comme les trois facteurs principaux pour la reussite d'une injection. Un facteur de finesse a ete defini au cours de cette etude: base sur la classe granulometrique du ciment et sa stabilite, il peut entrer dans la formulation theorique du debit d'injection avant application sur chantier. La deuxieme et derniere partie de l'etude presente les resultats de deux projets de recherche sur l'injection realises sur chantier. L'injection de dalles de beton fissurees a permis le suivi de l'evolution des pressions avec la distance au point d'injection. L'injection de murs de maconnerie a caractere historique a montre l'importance de la definition de criteres de performance des coulis a utiliser pour traiter un milieu donne et pour un objectif donne. Plusieurs melanges peuvent ainsi etre predefinis et mis a disposition sur le chantier. La complementarite des ciments traditionnels et des ciments microfins devient alors un atout important. Le choix d'utilisation de ces melanges est fonction du terrain rencontre. En conclusion, cette recherche etablit une methodologie pour la selection des coulis a base de ciment et des pressions d'injection en fonction de l'ouverture des fissures ou joints de construction.

  11. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    NASA Astrophysics Data System (ADS)

    Weber, Peter K.; Bacon, Charles R.; Hutcheon, Ian D.; Ingram, B. Lynn; Wooden, Joseph L.

    2005-03-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/ 86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ˜2‰ external precision (2σ) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ˜25 μm laterally and 2 μm deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations.

  12. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  13. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  14. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  15. Stable isotopes in modern ostrich eggshell: a calibration for paleoenvironmental applications in semi-arid regions of southern Africa

    NASA Astrophysics Data System (ADS)

    Johnson, Beverly J.; Fogel, Marilyn L.; Miller, Gifford H.

    1998-07-01

    An isotopic study of modern ostrich eggshell (OES) is presented as a calibration for terrestrial paleoenvironmental applications. The stable carbon and nitrogen isotope fractionations of OES were determined for various organic fractions of eggshell by measuring the isotopic ratios of modern OES samples collected from controlled settings (i.e., zoos and farms) and corresponding ostrich diet. These fractionations were used to evaluate the relationship between the isotope composition of OES laid by free-range birds living in South Africa and their environment. The carbon isotope composition of the total organic and inorganic fractions of OES were enriched by 2 and 16‰, respectively, relative to the diet. In natural settings, the δ 13C values of both the organic and inorganic fractions of OES reflected that of ambient vegetation, with a noted dietary preference for C 3 plants. The nitrogen isotope composition of the total organic fraction of OES was 3‰ enriched relative to the diet, and varied inversely with mean annual precipitation (MAP) in natural settings. A decrease in MAP of 100 mm was accompanied by an increase in δ 15N values of approximately 1‰. The oxygen isotope composition of the inorganic fraction of the OES varied linearly with that of the drinking water in controlled settings. However, in natural settings, the δ 18O of OES values were highly variable and are thought to be controlled primarily by the δ 18O of ingested plant leaf-water. The stability of the isotopic signal in the organic fraction of OES through geologic time was evaluated through a series of heating experiments. The δ 13C and δ 15N values of the total organic fraction of heated OES increased by less than 0.6 and 0.2‰ for carbon and nitrogen, respectively, in spite of extensive diagenetic alteration and changes in the amino acid composition of the samples. The results of this study indicate that the stable carbon and nitrogen isotope composition of OES is relatively stable

  16. Forensic applications of light-element stable isotope ratios of Ricinus communis seeds and ricin preparations.

    PubMed

    Kreuzer, Helen W; West, Jason B; Ehleringer, James R

    2013-01-01

    Seeds of the castor plant Ricinus communis are of forensic interest because they are the source of the poison ricin. We tested whether stable isotope ratios of castor seeds and ricin preparations can be used as a forensic signature. We collected over 300 castor seed samples worldwide and measured the C, N, O, and H isotope ratios of the whole seeds and oil. We prepared ricin by three different procedures, acetone extraction, salt precipitation, and affinity chromatography, and compared their isotope ratios to those of the source seeds. The N isotope ratios of the ricin samples and source seeds were virtually identical. Therefore, N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pairwise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  17. Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom.

    PubMed

    Barker, J; Garner, R C

    1999-01-01

    Accelerator mass spectrometry (AMS) is a nuclear physics technique developed about twenty years ago, that uses the high energy (several MeV) of a tandem Van de Graaff accelerator to measure very small quantities of rare and long-lived isotopes. Elements that are of interest in biomedicine and environmental sciences can be measured, often to parts per quadrillion sensitivity, i.e. zeptomole to attomole levels (10(-21)-10(-18) mole) from milligram samples. This is several orders of magnitude lower than that achievable by conventional decay counting techniques, such as liquid scintillation counting (LSC). AMS was first applied to geochemical, climatological and archaeological areas, such as for radiocarbon dating (Shroud of Turin), but more recently this technology has been used for bioanalytical applications. In this sphere, most work has been conducted using aluminium, calcium and carbon isotopes. The latter is of special interest in drug metabolism studies, where a Phase 1 adsorption, distribution, metabolism and excretion (ADME) study can be conducted using only 10 nanoCurie (37 Bq or ca. 0.9 microSv) amounts or less of 14C-labelled drugs. In the UK, these amounts of radioactivity are below those necessary to request specific regulatory approval from the Department of Health's Administration of Radioactive Substances Advisory Committee (ARSAC), thus saving on valuable development time and resources. In addition, the disposal of these amounts is much less an environmental issue than that associated with microCurie quantities, which are currently used. Also, AMS should bring an opportunity to conduct "first into man" studies without the need for widespread use of animals. Centre for Biomedical Accelerator Mass Spectrometry (CBAMS) Ltd. is the first fully commercial company in the world to offer analytical services using AMS. With its high throughput and relatively low costs per sample analysis, AMS should be of great benefit to the pharmaceutical and biotechnology

  18. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology.

    PubMed

    Jackson, Michelle C; Donohue, Ian; Jackson, Andrew L; Britton, J Robert; Harper, David M; Grey, Jonathan

    2012-01-01

    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications.

  19. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments.

  20. A stable isotope approach and its application for identifying nitrate source and transformation process in water.

    PubMed

    Xu, Shiguo; Kang, Pingping; Sun, Ya

    2016-01-01

    Nitrate contamination of water is a worldwide environmental problem. Recent studies have demonstrated that the nitrogen (N) and oxygen (O) isotopes of nitrate (NO3(-)) can be used to trace nitrogen dynamics including identifying nitrate sources and nitrogen transformation processes. This paper analyzes the current state of identifying nitrate sources and nitrogen transformation processes using N and O isotopes of nitrate. With regard to nitrate sources, δ(15)N-NO3(-) and δ(18)O-NO3(-) values typically vary between sources, allowing the sources to be isotopically fingerprinted. δ(15)N-NO3(-) is often effective at tracing NO(-)3 sources from areas with different land use. δ(18)O-NO3(-) is more useful to identify NO3(-) from atmospheric sources. Isotopic data can be combined with statistical mixing models to quantify the relative contributions of NO3(-) from multiple delineated sources. With regard to N transformation processes, N and O isotopes of nitrate can be used to decipher the degree of nitrogen transformation by such processes as nitrification, assimilation, and denitrification. In some cases, however, isotopic fractionation may alter the isotopic fingerprint associated with the delineated NO3(-) source(s). This problem may be addressed by combining the N and O isotopic data with other types of, including the concentration of selected conservative elements, e.g., chloride (Cl(-)), boron isotope (δ(11)B), and sulfur isotope (δ(35)S) data. Future studies should focus on improving stable isotope mixing models and furthering our understanding of isotopic fractionation by conducting laboratory and field experiments in different environments. PMID:26541149

  1. Development and Applications of Thallium isotopes: a new proxy tracking the extent of manganese oxide burial

    NASA Astrophysics Data System (ADS)

    Owens, J. D.; Nielsen, S.; Ostrander, C.; Peterson, L. C.; Anbar, A. D.

    2015-12-01

    Thallium (Tl) isotopes are a new and potential powerful paleoredox proxy with the possibility to track bottom water oxygen conditions based on the burial flux of manganese oxides. Thallium has a residence time of ~20 thousand years, which is long enough to render modern oxic seawater conservative with respect to concentration and isotopes. The isotopic signature of Tl in the global ocean is driven mainly by two outputs (1) adsorption onto manganese oxides and (2) low temperature oceanic crust alteration. Importantly, the isotopic inputs of Tl are all nearly the same value; thus, the isotopic composition and flux of the outputs almost exclusively set the seawater signature. For relatively short term redox events it is reasonable to assume that the dominant isotope fractionation process is associated with manganese oxide precipitation because low temperature alteration is controlled by long-term average ocean crust production rates. We present a broad range of modern samples that span several open ocean profiles combined with water column and sediment profiles from the permanently anoxic basins of the Black Sea and Cariaco Basins. The open ocean shows no variation in depth profiles that encompass most of the major water masses in the Atlantic and Southern Oceans. The anoxic basins, however, reveal Tl isotope signatures closer to their inputs, which is likely due to basinal restriction. The authigenic fraction of organic-rich sediments from the Black Sea and Cariaco Basin capture the Tl isotope value of the overlying water column, which shows that Tl isotopes could be applied as a faithful deep time redox proxy. For the first time, we will present new data showing that Tl isotopes is tracking bottom water ocean oxygenation. We are applying this isotope system to ancient samples, testing the spatial and temporal variability of ocean oxygenation coinciding with major biogeochemical events.

  2. Heterogeneous distribution of Zn stable isotopes in mice and applications to medical sciences

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Fujii, T.; Shaw, A.; Le Borgne, M.

    2013-12-01

    Zinc is required for the function of more than 300 enzymes involved in many metabolic pathways, and is a vital micronutrient for living organisms. To investigate if Zn isotopes could be used to better understand metal homeostasis, as well as a biomarker for diseases, we assessed the distribution of natural Zn isotopes in various mouse tissues. We found that, with respect to Zn isotopes, most mouse organs are isotopically distinct and that the total range of variation within one mouse encompasses the variations observed in the Earth's crust. Therefore, biological activity must have a major impact on the distribution of Zn isotopes in inorganic materials. The most striking aspect of the data is that red blood cells and bones are enriched by ~0.5 per mil in 66Zn relative to 64Zn when compared to serum, and up to ~1 per mil when compared to the brain and liver. This fractionation is well explained by the equilibrium distribution of isotopes between different bonding environments of Zn in different organs. Differences in gender and genetic background did not appear to affect the isotopic distribution of Zn. Together, these results suggest that potential use of Zn isotopes as a tracer for dietary Zn, and for detecting disturbances in Zn metabolism due to pathological conditions.

  3. Application Of Stable Isotope Analysis To Study Temporal Changes In Foraging Ecology In A Highly Endangered Amphibian

    PubMed Central

    Gillespie, J. Hayley

    2013-01-01

    Background Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This

  4. Calcium isotopes in caves as a proxy for aridity: Modern calibration and application to the 8.2 kyr event

    NASA Astrophysics Data System (ADS)

    Owen, R. A.; Day, C. C.; Hu, C.-Y.; Liu, Y.-H.; Pointing, M. D.; Blättler, C. L.; Henderson, G. M.

    2016-06-01

    We present the first study of Ca isotope cycling in a natural cave system, with measurements of bedrock, dripwater and recently formed carbonate, coupled to a first stalagmite time-series spanning the 8.2 kyr event. Dripwaters at Heshang Cave (Central China; 30°27‧N, 110°25‧E) are isotopically heavy relative to the dolomite bedrock, the result of prior calcite precipitation (PCP) occurring earlier in the drip flow path. A simple Rayleigh fractionation model quantifies the extent of PCP in the modern environment at 36% Ca removal. The observed in situ calcium isotope fractionation factor between dripwater and carbonate is Δ 44 / 42 Ca = - 0.63 ± 0.03 ‰ and does not vary during the annual cycle. Measurements of speleothem carbonate spanning the 8.2 kyr event show the response of Ca isotopes to changing climate. δ44/42Ca increases by 0.35‰ at the onset of the event, coeval with changes in δ18O and Mg/Ca, and remains high for 80 yr. This change is explained by decreased rainfall leading to increased PCP; an interpretation supported by established PCP proxies (Mg/Ca, Sr/Ca and Ba/Ca). Ca isotopes indicate that PCP increased to 60% Ca removal during the event, which, from application of a simple box model, suggests mean annual rainfall decreased by approximately a third in Central China during the 8.2 kyr event. The response of Ca isotopes across this event demonstrates their potential for the assessment of past conditions, including past dripwater flow rates and rainfall.

  5. Application of stable isotope ratio analysis for biodegradation monitoring in groundwater.

    PubMed

    Hatzinger, Paul B; Böhlke, J K; Sturchio, Neil C

    2013-06-01

    Stable isotope ratio analysis is increasingly being applied as a tool to detect, understand, and quantify biodegradation of organic and inorganic contaminants in groundwater. An important feature of this approach is that it allows degradative losses of contaminants to be distinguished from those caused by non-destructive processes such as dilution, dispersion, and sorption. Recent advances in analytical techniques, and new approaches for interpreting stable isotope data, have expanded the utility of this method while also exposing complications and ambiguities that must be considered in data interpretations. Isotopic analyses of multiple elements in a compound, and multiple compounds in the environment, are being used to distinguish biodegradative pathways by their characteristic isotope effects. Numerical models of contaminant transport, degradation pathways, and isotopic composition are improving quantitative estimates of in situ contaminant degradation rates under realistic environmental conditions. PMID:23279929

  6. Forensic Applications of Light-Element Stable Isotope Ratios of Ricinus communis Seeds and Ricin Preparations

    SciTech Connect

    Kreuzer, Helen W.; West, Jason B.; Ehleringer, James

    2013-01-01

    Seeds of the castor plant Ricinus communis, also known as castor beans, are of forensic interest because they are the source of the poison ricin. We have tested whether stable isotope ratios of castor seeds and ricin prepared by various methods can be used as a forensic signature. We collected over 300 castor seed samples from locations around the world and measured the C, N, O, and H stable isotope ratios of the whole seeds, oil, and three types of ricin preparations. Our results demonstrate that N isotope ratios can be used to correlate ricin prepared by any of these methods to source seeds. Further, stable isotope ratios distinguished >99% of crude and purified ricin protein samples in pair-wise comparison tests. Stable isotope ratios therefore constitute a valuable forensic signature for ricin preparations.

  7. Oxygen isotopic transport and exchange during fluid flow: One-dimensional models and applications

    SciTech Connect

    Bowman, J.R. ); Willett, S.D. ); Cook, S.J. Environ Corp., Houston, TX )

    1994-01-01

    In this work the authors investigate the consequences of fluid flow and fluid-rock interaction to the isotopic evolution of fluids and rock with one-dimensional transport models of fluid flow and oxygen isotope exchange. Transport models dealing with stable isotopes are well established in recent geochemical literature. The authors extend previous treatments by presenting the derivation of both analytical and numerical solutions to the transport equations incorporating simultaneously advection, diffusion and hydrodynamic dispersion, and kinetics of isotopic exchange. The increased generality of numerical solutions allows the incorporation of other effects which control the spatial patterns of [delta][sup 18]O values developed in rocks and fluids including multiple reactive species and temperature gradients. The authors discuss the effects of flow parameters, conditions of isotopic exchange, and temperature gradients on the spatial patterns of isotopic shifts produced in rock sequences subjected to fluid flow, and on conventionally calculated W/R ratios for these rock sequences. Finally, the authors examine the implications of oxygen isotope transport for two natural systems where isotopic shifts or gradients could be interpreted in terms of unidirectional fluid infiltration. Solutions of one-dimensional transport equations including the mechanisms of advection, diffusion, hydrodynamic dispersion, and non-equilibrium exchange between water and rock indicate that the time-space evolution of oxygen isotopic compositions of rock and infiltrating fluid is dependent on (1) the rate of fluid infiltration, (2) the diffusive and dispersive properties of the rock matrix, (3) the rate of isotopic exchange, and (4) the rock-water mass oxygen ratio in a unit volume of water-saturated, porous rock. 56 refs., 18 figs., 2 tabs.

  8. HIBAL: A hydrologic-isotopic-balance model for application to paleolake systems

    USGS Publications Warehouse

    Benson, L.; Paillet, F.

    2002-01-01

    A simple hydrologic-isotopic-balance (HIBAL) model for application to paleolake ??18O records is presented. Inputs to the model include discharge, on-lake precipitation, evaporation, and the ??18O values of these fluid fluxes. Monthly values of climatic parameters that govern the fractionation of 18O and 16O during evaporation have been extracted from historical data sets and held constant in the model. The ability of the model to simulate changes in the hydrologic balance and the ??18O evolution of the mixed layer has been demonstrated using measured data from Pyramid Lake, Nevada. Simulations of the response in ??18O to step- and periodic-function changes in fluid inputs indicate that the hydrologic balance and ??18O values lag climate change. Input of reconstructed river discharges and their ??18O values to Pyramid and Walker lakes indicates that minima and maxima in simulated ??18O records correspond to minima and maxima in the reconstructed volume records and that the overall shape of the volume and ??18O records is similar. The model was also used in a simulation of abrupt oscillations in the ??18O values of paleo-Owens Lake, California.

  9. Interpretation and application of carbon isotope ratios in freshwater diatom silica

    PubMed Central

    Webb, Megan; Wynn, Peter M.; Heiri, Oliver; van Hardenbroek, Maarten; Pick, Frances; Russell, James M.; Stott, Andy W.; Leng, Melanie J.

    2016-01-01

    ABSTRACT Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well‐constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co‐varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales. PMID:27656013

  10. Interpretation and application of carbon isotope ratios in freshwater diatom silica

    PubMed Central

    Webb, Megan; Wynn, Peter M.; Heiri, Oliver; van Hardenbroek, Maarten; Pick, Frances; Russell, James M.; Stott, Andy W.; Leng, Melanie J.

    2016-01-01

    ABSTRACT Carbon incorporated into diatom frustule walls is protected from degradation enabling analysis for carbon isotope composition (δ13Cdiatom). This presents potential for tracing carbon cycles via a single photosynthetic host with well‐constrained ecophysiology. Improved understanding of environmental processes controlling carbon delivery and assimilation is essential to interpret changes in freshwater δ13Cdiatom. Here relationships between water chemistry and δ13Cdiatom from contemporary regional data sets are investigated. Modern diatom and water samples were collected from river catchments within England and lake sediments from across Europe. The data suggest dissolved, biogenically produced carbon supplied proportionately to catchment productivity was critical in the rivers and soft water lakes. However, dissolved carbon from calcareous geology overwhelmed the carbon signature in hard water catchments. Both results demonstrate carbon source characteristics were the most important control on δ13Cdiatom, with a greater impact than productivity. Application of these principles was made to a sediment record from Lake Tanganyika. δ13Cdiatom co‐varied with δ13Cbulk through the last glacial and Holocene. This suggests carbon supply was again dominant and exceeded authigenic demand. This first systematic evaluation of contemporary δ13Cdiatom controls demonstrates that diatoms have the potential to supply a record of carbon cycling through lake catchments from sediment records over millennial timescales.

  11. Quantification of protein posttranslational modifications using stable isotope and mass spectrometry I: principles and applications.

    PubMed

    Jiang, Xinzhao Grace; Apostol, Izydor; Luo, Quanzhou; Lewis, Jeffrey; Keener, Ronald; Luo, Shun; Jerums, Matthew; Zhang, Xin; Wypych, Jette; Huang, Gang

    2012-02-15

    With the increased attention to quality by design (QbD) for biopharmaceutical products, there is a demand for accurate and precise quantification methods to monitor critical quality attributes (CQAs). To address this need we have developed a mass spectrometry (MS) based method to quantify a wide range of posttranslational modifications (PTMs) in recombinant proteins using stable isotope-labeled internal standard (SILIS). The SILIS was produced through metabolic labeling where ¹⁵N was uniformly introduced at every nitrogen atom in the studied proteins. To enhance the accuracy of the method, the levels of PTMs in SILIS were quantified using orthogonal analytical techniques. Digestion of an unknown sample mixed with SILIS generates a labeled and a nonlabeled version of each peptide. The nonlabeled and labeled counterparts coelute during RP-HPLC separation but exhibit a sufficient mass difference to be distinguished by MS detection. With the application of SILIS, numerous PTMs can be quantified in a single analysis based on the measured MS signal ratios of ¹⁵N-labeled versus the nonlabeled pairs. Several examples using microbial and mammalian-expressed recombinant proteins demonstrated the principle and utility of this method. The results indicate that SILIS is a valuable methodology in addressing CQAs for the QbD paradigm.

  12. Etude des Abondances de MG et de fe dans la Composante Stellaire des Disques des Galaxies Spirales

    NASA Astrophysics Data System (ADS)

    Beauchamp, Dominique

    Je presente ici une technique d'observation par imagerie des disques stellaires des galaxies spirales. Je tente, a l'aide d'un modele evolutif multiphase, de determiner les abondances de fer et de magnesium dans les disques. Dans ce but, je mesure les indices Mg2 et Fe5270 du systeme de Lick. Ces elements representent un choix judicieux d'indicateurs car ils sont formes par des supernovae de deux types differents ayant des durees de vie differentes. Le rapport d'abondances de ces deux elements est un indicateur du taux de formation des populations stellaires. Je decris, en premier lieu, les observations, la technique de mesure, ainsi que son application. J'analyse ensuite les indices mesures. A partir du modele multiphase, j'explore differents parametres physiques des spirales comme le taux de formation stellaire, l'evolution des abondances, les effets possibles de la presence de la barre, etc.

  13. Application of a Stable Isotope Approach to Evaluate Impact of Changes in Manufacturing Parameters for an Immediate-Release Tablet.

    PubMed

    Parr, Alan; Badman, Geoff; Bowen, Chester L; Coffin, Mark; Gupta, Manish; Jones, Lori; Kurtinecz, Milena; Naderer, Odin; Travis, Eric; Zhu, John; Patel, Parul

    2016-07-01

    There is continued emphasis from the various worldwide regulatory agencies to ensure that the pharmaceutical industry fully understands the products they are developing. This emphasis is seen via development of quality-by-design (QbD) publications and guidelines generated by the International Committee on Harmonization. The challenge to meet these expectations is primarily associated with the generation of in vivo data (eg, pharmacokinetic data) that is resource intensive. A technique reducing the resources needed to generate this in vivo data permits a more extensive application of QbD principles. This paper presents the application of stable isotopes in pharmacokinetic studies. The data show that the use of stable isotopes can significantly reduce the number of subjects required for a study. This reduction in subjects thus translates into a significant reduction in resources and time needed to generate the required in vivo data to support QbD. PMID:26479497

  14. Radium isotopes in groundwater around Fuji Volcano, Japan -application for groundwater dating on volcanic area-

    NASA Astrophysics Data System (ADS)

    Ohta, T.; Mahara, Y.

    2010-12-01

    Young groundwater dating less than 100 years is possible to be obtained from environmental radioactivity with short half life, 3H+3He, 85Kr, or chemical material, CFC-12. The 3H+3He dating method is excellent method to estimate the residence time of shallow groundwater. The one of advantage of the method is small sample volume. The 3He in groundwater is originated by 3 sources, tritiogenic He, mantle He, radiogenic He produced in rock. Especially, as the contribution of the mantle He is greater than the radiogenic and triogenic, when 3H+3He dating apply for groundwater dating on volcanic area, we have to determine ratio of 3 sources. On the other hand, as 85Kr is only originated from atmosphere, it is excellent groundwater dating tracer on volcanic area. However, as 85Kr is ultra low concentration in groundwater, 85Kr is needed to separate from large amount of ground water about 10^5 L. Young groundwater dating by these methods has both advantages and disadvantages, but the disadvantages of the individual methods can be offset by using multiple tracers. Development of a lot of groundwater dating techniques is desired. Therefore, an application of radium isotopes which is simple origin to groundwater dating on volcanic area was tried. Ra-228 and Ra-226 are progenies of Th and U, respectively. The 228Ra/226Ra in ground waters depends on the Th/U in the relevant rocks. As the 228Ra and 226Ra in shallow groundwater on volcanic area are originated from only rock, and the collection of radium isotopes from groundwater is easier than that of 85Kr, implying that it is possible to be good tracer for volcanic area. We aim that groundwater age obtain from 228Ra/226Ra in groundwater and relevant rock on volcanic area. We determined that 228Ra/226Ra observed with river waters and the relevant rocks. The method applied for Kakitagawa around Fuji Volcano, Japan. The relevant rock of Kakitagawa is Mishima lava flow. Our method compared with 3H+3He dating. The residence time of

  15. Application of isotopes to estimate water ages in variable time scales in surface and groundwaters

    NASA Astrophysics Data System (ADS)

    Kralik, Martin

    2014-05-01

    Water-Isotopes (2H, 3H, 18O) are ideal tracers not only to determine the origin of waters in precipitation, surface water (river + lakes) as well as in groundwater close to the surface and in deep groundwater but also the mean residence time (MRT) in many applied projects as drinking water supply, hydroelectric power plants, road tunnels etc. . Their application has a long history, but must be always evaluated by a feasible hydrogeological concept and/or other isotope and geochemical tracers. In Alpine areas the retention of precipitation in form of snow and ice in the winter half year is indicated by the lowest 18O-values. The snow melt of the highest part of the recharge area is marked by the lowest 18O-values in the river water, but may not coincide with the maximum flow. Time-series of precipitation station in the mountain and on river station indicate the arrival of the peak snow-melt water in the river and in Low-land areas 4-7 month later. Tritium series indicate that MRTs of several Austrian rivers are in the range of 4 - 6 years. The seasonal input variation of in 18O in precipitation and/or river waters can be used to calculate by lumped parameter models MRT of groundwater at a certain well and compare it with lysimeter measurements and transient model simulations. The MRT of the dispersion model is in good agreement with the estimated time calculated by the numerical transport model and the vertical lysimeter measurements. The MRT of spring water was studied by several methods (3H/3He, SF6 and 85Kr) and a long time series of 3H-measurements. The gas tracers are in good agreement in the range of 6-10 year whereas the 3H-series model (dispersion model) indicate ages in the range of 18-23 years. The hydrogeological concept indicate that the precipitation infiltrates in a mountainous karst area, but the transfer into the porous aquifer in the Vienna Basin occurs either through rivers draining away in the basin or through the lateral transport from the karst

  16. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE.

    PubMed

    Zwank, Luc; Berg, Michael; Elsner, Martin; Schmidt, Torsten C; Schwarzenbach, René P; Haderlein, Stefan B

    2005-02-15

    Compound-specific analysis of stable carbon and hydrogen isotopes was used to assess the fate of the gasoline additive methyl tert-butyl ether (MTBE) and its major degradation product tert-butyl alcohol (TBA) in a groundwater plume at an industrial disposal site. We present a novel approach to evaluate two-dimensional compound-specific isotope data with the potential to identify reaction mechanisms and to quantify the extent of biodegradation at complex field sites. Due to the widespread contaminant plume, multiple MTBE sources, the presence of numerous other organic pollutants, and the complex biogeochemical and hydrological regime atthe site, a traditional mass balance approach was not applicable. The isotopic composition of MTBE steadily changed from the source regions along the major contaminant plume (-26.4% to +40.0% (carbon); -73.1% to +60.3% (hydrogen)) indicating substantial biodegradation. Constant carbon isotopic signatures of TBA suggest the absence of TBA degradation at the site. Published carbon and hydrogen isotope fractionation data for biodegradation of MTBE under oxic and anoxic conditions, respectively, were examined and used to determine both the nature and the extent of in-situ biodegradation along the plume(s). The coupled evaluation of two-dimensional compound-specific isotope data explained both carbon and hydrogen fractionation data in a consistent way and indicate anaerobic biodegradation of MTBE along the entire plume. A novel scheme to reevaluate empiric isotopic enrichment factors (epsilon) in terms of theoretically based intrinsic carbon (12k/13k) and hydrogen (1k/2k) kinetic isotope effects (KIE) is presented. Carbon and hydrogen KIE values, calculated for different potential reaction mechanisms, imply that anaerobic biodegradation of MTBE follows a SN2-type reaction mechanism. Furthermore, our data suggest that additional removal process(es) such as evaporation contributed to the overall MTBE removal along the plume, a phenomenon

  17. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    SciTech Connect

    Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle

    2012-01-15

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: Black-Right-Pointing-Triangle Lead carbonate concentrate. Black-Right-Pointing-Triangle Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. Black-Right-Pointing-Triangle Use of Pb isotopes in legal proceedings and their use in cleanup of residences. Black

  18. A simplified mathematical model of the cryogenic distillation with application to the (13C) isotope separation column

    NASA Astrophysics Data System (ADS)

    Neaga, A. O.; Festila, C.; Dulf, E. H.; Both, R.; Szelitzky, T.; Gligan, M.

    2012-02-01

    The isotope (13C) has a widespread application in many fields such as chemistry, physics, medicine, etc. To obtain a high concentration in isotope of interest, in our case (13C), it is used the method of cryogenic distillation of carbon monoxide (CO) which is based on the difference between the vapor pressure of (12C16O) and (13C16O) at the temperature of liquid nitrogen. Isotopic separation plant, used to obtain the isotope (13C), is a complex installation, with many inputs and outputs, rather difficult to control. Due to this reason, from the point of view of automation, it is needed a simplified mathematical model. This model can be determined only with some presumption and simplification assumptions. Using the physical laws, the hydrodynamic part of the process and the mass balance will be described by partial differential equations. In order to design a controller for the column, it is needed a transfer function or a statespace realization of the plant, which is the main contribution of the present work. Implementing this mathematical model will be the key element for describing and understanding the operation of the plant and for future development of process control strategies.

  19. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    PubMed

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found. PMID:18438979

  20. Laser Ablation Analyses of Pb Isotopes in Ancient Feldspars: Application to a Polymetamorphic Terrane, West Greenland

    NASA Astrophysics Data System (ADS)

    Krogstad, E. J.; Baker, J. A.; Waight, T. E.

    2001-12-01

    Laser ablation was used to sample the Pb isotopic compositions of various feldspars, as well as isotopic standards. The ablated material was analyzed by MC-ICP-MS. The resulting accuracy and external precision are comparable to conventional (i.e., not double or triple-spiked) feldspar Pb isotope analyses done by TIMS. However, the data can be acquired with no chemical separation and require only a few minutes per sample. A pilot study was made of the feldspars from a polymetamorphic terrane in West Greenland, in which Late Archean gneisses were deformed and metamorphosed during the Early Proterozoic. In this terrane, isotopic contrasts have long been sought to delineate any suture between discrete Archean continental blocks that might mark the site of ocean closure. Previous whole rock Nd and Pb isotopic studies had yielded equivocal results on the presence of such an isotopic discontinuity. The laser ablation feldspar data presented here, combined with existing whole rock Pb data, point to real differences in the sources of gneisses from various parts of the orogen. This indicates that the laser ablation method of sampling feldspar Pb holds real potential for future reconnaissance studies of old continental crust in a manner similar to that of zircon U-Pb geochronology studies.

  1. Application Prospect of Environmental Isotopes and Tracing Techniques for Earthquake Prediction

    NASA Astrophysics Data System (ADS)

    LIU, Yaowei; REN, Hongwei; WANG, Bo

    In recent years, with the progress of new observation techniques and related theories, the tracing technique of environmental isotopes has been widely applied to investigate the groundwater dynamic process. It's expected that the tracing technique of environmental isotopes will contribute to identifying the dynamic information of groundwater, which is associated with the earthquake gestation and occurrence. In this study, along with the characteristics of stable isotopes including 2H and 18O, as well as radioactive isotopes such as 3H and 14C, the tracing techniques are investigated. Especially, with the environmental isotopes, the activity rules of groundwater including the groundwater recharge, circulation depth of geothermal water, water-rock interaction, and groundwater age are deeply discussed. The study was carried out to analyze effects of the groundwater on its response to the stress-strain changes and to the tectonic activities. It's worthy to mention that the tracing technique of environmental isotopes can be applied to identify the information of seismic subsurface fluid, determine the intensity of seismicity, discuss the role of fluid in earthquake gestation, and estimate the earthquake-reflecting effectiveness of borehole.

  2. The application of isotope ratio mass spectrometry for discrimination and comparison of adhesive tapes.

    PubMed

    Horacek, Micha; Min, Ji-Sook; Heo, Sangcheol; Park, Jongseo; Papesch, Wolfgang

    2008-06-01

    Forensic scientists are frequently requested to differentiate between, or compare, adhesive tapes from a suspect or a crime scene. The most common polymers used to back packaging tape are polypropylene and polyvinyl chloride. Much of the oriented polypropylene (OPP) needed to produce packaging tapes, regardless of the tape brand, is supplied by just a few polymer manufacturers. Consequently, the composition of the backing material varies little. Therefore, the discriminating power of classical methods (physical fit, tape dimensions, colour, morphology, FTIR, PyGC/MS, etc.) is limited. Analysis of stable isotopes using isotope ratio mass spectrometry (IRMS) has been applied in the broad area of forensics and it has been reported that isotope analysis is a valuable tool for the identification of adhesive tapes. We have tested the usefulness of this method by distinguishing different South Korean adhesive tapes produced by just a few manufacturers in the small South Korean market. Korean adhesive tapes were collected and analysed for their isotope signatures. The glue of the tapes was separated from the backing material and these sub-samples were analysed for their H- and C-isotope composition. The result shows the possibility for discriminating most tape samples, even from the same brand. Variations within single rolls have also been investigated, where no variations in H- and C-isotope composition significantly exceeding the standard deviation were found.

  3. Application of Ca stable isotopes to long-term changes in the Ca cycle of a Northern Hardwood forest

    NASA Astrophysics Data System (ADS)

    Kurtz, A. C.; Takagi, K.; Bailey, S. W.; Bullen, T. D.

    2015-12-01

    The Hubbard Brook Ecosystem Study (New Hampshire, USA) presents an unusual opportunity for the application of innovative isotope methods in forest biogeochemistry. Changes in biogeochemical cycling resulting from decades of acid deposition, subsequent reductions in acid deposition, and a series of experimental treatments (harvesting, Ca amendment) have been studied continuously for 60 years at this site. Importantly, researchers have archived soil, water, and vegetation samples for much of the site's history. Our work seeks to complement earlier mass balance studies of Ca cycling by measuring Ca isotope ratios on archived samples. In the first component of our study, we examined the Ca isotopic response to an experimental clearcut in the early 1980's. Earlier work showed that the clearcut promoted dramatic loss of Ca from the watershed, indicated by a 5-fold increase in streamwater Ca concentrations. The mechanism for this loss was unclear as no resolvable changes in soil Ca pools were observed. Our work shows that streamwater dissolved Ca becomes isotopically lighter as Ca concentrations increase. These data are best accounted for by an increase in Ca loss from the soil cation exchange complex. Soil exchangeable δ44Ca itself evolves towards lighter values in the years following the experimental harvest. We interpret this as replenishment of the soil exchange complex by release of isotopically light Ca from root biomass. In the second component of our study, we examine decadal-scale changes in streamwater and soil Ca in an un-manipulated biogeochemical reference watershed. Historical data from Hubbard Brook show that streamwater Ca concentrations began decreasing sharply in the early 1970's, attributed to decreased deposition of both acidity and Ca with the passage of the Clean Air Act. Preliminary data indicate no resolvable change in the average δ44Ca of streamwater, with variability mostly attributable to discharge (flowpath control). Preliminary data

  4. Isotopic measurement of speleothem inclusion water in nano-liter quantities: application to stalagmites from Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Uemura, Ryu; Nakamoto, Masashi; Asami, Ryuji; Mishima, Satoru; Gibo, Masakazu; Masaka, Kosuke; Jin-Ping, Chen; Wu, Chung-Che; Chang, Yu-Wei; Shen, Chuan-Chou

    2015-04-01

    Speleothem inclusion water isotopic compositions are promising new climatic proxies. The applicability, however, is limited by low water content and challenging analytical difficulties. We have developed a precise and accurate isotopic technique based on cavity ring-down spectroscopy with a low sample-amount requirement of 20-260 nL of inclusion water from only 77-286 mg of stalagmite deposits in Gyokusen Cave, Okinawa Island, Japan. The 1σ reproducibility is ±0.24permil for δ18O and ±1.8permil for δD. The small sample size requirement demonstrates that our analytical technique can offer high-resolution inclusion water-based paleoclimate reconstructions. The δ18O and δD values of inclusion water samples from the two most recently layers are within the expected range of isotopic monitoring data for drip water and rainwater at the island. Data inferred from coupled stalagmite δ18O records of coeval inclusion water and carbonate indicate that a cave temperature over the past few decades agrees with instrumental observations. Inferred temperatures at 9-10 thousand years ago (ka) and 26 ka are consistent with previous marine sediment records. Our results support the application fidelity of the proposed technique for speleothem formation deposited under oxygen isotopic equilibrium conditions. However, we observed two biased temperature at the last glacial period: an enrichment of 0.5-1permil in δ13C and δ18O on the fringe carbonate deposition can bias the derived temperature by up to -4 °C. This kinetic fractionation should be carefully evaluated to avoid misleading interpretations.

  5. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    NASA Astrophysics Data System (ADS)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  6. Recepteur SBAS-GNSS logiciel pour des applications temps-reel

    NASA Astrophysics Data System (ADS)

    Guay, Jean-Christophe

    Satellite positioning is at a critical point of its existence. The modernization of Global Positioning System (GPS) and GLObal Navigation Satellite System (GLONASS) and the arrival of European and Chinese systems will allow a multitude of new applications. This combination of global positioning system satellites and the GPS augmentation system will improve the integrity, availability, accuracy and electromagnetic vulnerability. To takes full advantage of these new signals, the GNSS receiver will be rethought. The objective of this thesis is to develop SBAS-GNSS receiver software for real-time applications to take advantage of these new GNSS signals. To achieve this goal, a channel architecture BPSK (Binary Phase Shift Keying) has been implemented in order to profit from the similarities between different GNSS signals considered in this work. These signals are: GPS L1 CIA, GPS L2C, SBAS L1, L5 SBAS, GLONASS L1 and L2 GLONASS. In addition, this thesis also focuses on implementing a full SBAS solution to improve the accuracy of the navigation solution. BPSK channel tracks GPS L1 CIA, SBAS L1, L5 SBAS, GLONASS L1, L2 GLONASS, COMPASS and COMPASS B1 B2 covering all the band GNSS 1176 MHz to 1602 MHz This channel does not degrade any receiver performance. In fact, the horizontal accuracy is increased from 2.3 m at 1 sigma to 1.1 m at 1 sigma with some minor adjustments. In addition, the implementation of a smoothing algorithm using the carrier improves accuracy up to 0.96 mat 1 cr. The circle of 50% probability (CEP) for the smoothed solution is 0.62 m and for 95% (R95) is 2.21 m. Finally, the implementation of the SBAS solution improves the performance to 0.73 m at 1 sigma, to a CEP of 0.44 m and to a R95 of 1.4 m. Moreover, an improvement of 70% can be observed between the previous works and the actual one when we compare the 1 sigma performance. In addition, new channels and algorithms are also tested dynamically. An improvement of 5% can be observed on the standard

  7. Des Moines.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1988-01-01

    This document, intended for elementary students, contains articles and activities designed to acquaint young people with the history of Des Moines, Iowa. The articles are short, and new or difficult words are highlighted and defined for young readers. "The Raccoon River Indian Agency" discusses the archeological exploration of the indian…

  8. Recent developments in application of stable isotope analysis on agro-product authenticity and traceability.

    PubMed

    Zhao, Yan; Zhang, Bin; Chen, Gang; Chen, Ailiang; Yang, Shuming; Ye, Zhihua

    2014-02-15

    With the globalisation of agro-product markets and convenient transportation of food across countries and continents, the potential for distribution of mis-labelled products increases accordingly, highlighting the need for measures to identify the origin of food. High quality food with identified geographic origin is a concern not only for consumers, but also for agriculture farmers, retailers and administrative authorities. Currently, stable isotope ratio analysis in combination with other chemical methods gradually becomes a promising approach for agro-product authenticity and traceability. In the last five years, a growing number of research papers have been published on tracing agro-products by stable isotope ratio analysis and techniques combining with other instruments. In these reports, the global variety of stable isotope compositions has been investigated, including light elements such as C, N, H, O and S, and heavy isotopes variation such as Sr and B. Several factors also have been considered, including the latitude, altitude, evaporation and climate conditions. In the present paper, an overview is provided on the authenticity and traceability of the agro-products from both animal and plant sources by stable isotope ratio analysis.

  9. Spinel-olivine-pryoxene equilibrium iron isotopic fractionation and applications to natural peridotites

    SciTech Connect

    Roskosz, Mathieu; Sio, Corliss K. I.; Dauphas, Nicolas; Bi, Wenli; Tissot, Francois L. H.; Hu, Michael Y.; Zhao, Jiyong; Alp, Esen E.

    2015-11-15

    Eight spinel-group minerals were synthesized by a flux-growth method producing spinels with varying composition and Fe3+/Fe-tot ratios. The mean force constants of iron bonds in these minerals were determined by synchrotron nuclear resonant inelastic X-ray scattering (NRIXS) in order to determine the reduced isotopic partition function ratios (beta-factors) of these spinels. The mean force constants are strongly dependent on the Fe3+/Fe-tot of the spinel but are independent, or weakly dependent on other structural and compositional parameters. From our spectroscopic data, it is found that a single redox-dependent calibration line accounts for the effects of Fe3+/Fe-tot on the beta-factors of spinels. This calibration successfully describes the equilibrium Fe isotopes fractionation factors between spinels and silicates (olivine and pyroxenes). Our predictions are in excellent agreement with independent determinations for the equilibrium Fe isotopic fractionations for the magnetite- fayalite and the magnetite-hedenbergite couples. Our calibration applies to the entire range of Fe3+/Fe-tot ratios found in natural spinels and provides a basis for interpreting iron isotopic variations documented in mantle peridotites. Except for a few exceptions, most of the samples measured so far are in isotopic disequilibrium, reflecting metasomatism and partial melting processes.

  10. High-Precision Selenium Isotope Analysis by Hydride Generation MC-ICP-MS: Environmental Applications

    NASA Astrophysics Data System (ADS)

    Schmidberger, S.; Simonetti, A.; Gariépy, C.

    2003-04-01

    The global cycle and the natural isotopic variation of Se in the lithosphere, biosphere, hydrosphere and atmosphere are currently little constrained. The study of Se isotope systematics by negative thermal ionization mass spectrometry (NTIMS) has documented large Se isotope variations up to 15 ppm in various natural samples (δ80Se/76Se; Johnson et al., 1999), indicating its important potential as a tracer in geological and biological processes. Recently, Se isotope measurements on sulfide deposits from hydrothermal systems were obtained using a Micromass IsoProbe multicollector inductively coupled plasma mass spectrometer coupled to a hydride generator (Rouxel et al. 2002). This technique allows for high-precision Se isotope analysis on small sample sizes (<= 100 ng), and thus is a prerequisite for precise Se isotope measurements in low abundance samples such as precipitations, freshwaters and atmospheric aerosols (1 ppb or less). We have developed a 74-82Se double spike technique, which corrects for instrumental mass fractionation during both isotopic analysis and chemical processing. During double spike calibration, mass discrimination was monitored using a Germanium Specpuretextregistered standard (25 ppb). The isotopic composition of the Ge standard was accurately determined using a 10 ppb solution of the isotopic Gallium standard SRM 994. Repeated measurements (n=8) of the Ge standard yielded an external reproducibility of 0.13 ppm and a 74Ge/72Ge ratio of 1.32987. Instrumental mass bias evaluated with the Ge standard was essentially invariant over a three-month period. Our results yield an external reproducibility of 0.4 ppm (80Se/76Se) for a 100 ppb solution of the Se standard SRM 3149 (˜100 ng of total Se consumed). This ongoing study focuses on determining the Se isotopic compositions of precipitations and aerosol samples from remote and urban areas in northeastern North America. The preliminary results for precipitation samples (˜100 to 300 ml of rain

  11. Applications of isotopes to tracing sources of solutes and water in shallow systems

    USGS Publications Warehouse

    Kendall, Carol; Krabbenhoft, David P.

    1995-01-01

    New awareness of the potential danger to water supplies posed by the use of agricultural chemicals has focused attention on the nature of groundwater recharge and the mobility of various solutes, especially nitrate and pesticides, in shallow systems. A better understanding of hydrologic flowpaths and solute sources is required to determine the potential impact of sources of contamination on water supplies, to develop management practices for preserving water quality, and to develop remediation plans for sites that are already contaminated. In many cases, environmental isotopes can be employed as 'surgical tools' for answering very specific questions about water and solute sources. Isotopic data can often provide more accurate information about the system than hydrologic measurements or complicated hydrologic models. This note focuses on practical and cost-effective examples of how naturally-occurring isotopes can be used to track water and solutes as they move through shallow systems.

  12. Application of Fe Isotopes to the Search for Life and Habitable Planets

    NASA Technical Reports Server (NTRS)

    Johnson, Clark M.; Beard, Brian L.; Nealson, Kenneth L.

    2001-01-01

    The relatively new field of Fe isotope geochemistry can make important contributions to tracing the geochemical cycling of Fe, which bears on issues such as metabolic processing of Fe, surface redox conditions, and development of planetary atmospheres and biospheres. It appears that Fe isotope fractionation in nature and the lab spans about 4 per mil (%) in Fe-56/Fe-54, and although this range is small, our new analytical methods produce a precision of +/- 0.05% on sample sizes as small as 100 ng (10(exp -7) g); this now provides us with a sufficient "signal-to-noise" ratio to make this isotope system useful. We review our work in three areas: 1) the terrestrial and lunar rock record, 2) experiments on inorganic fractionation, and 3) experiments involving biological processing of Fe. Additional information is contained in the original extended abstract.

  13. Application of strontium isotopes for tracing landfill leachate plumes in groundwater.

    PubMed

    Vilomet, J D; Angeletti, B; Moustier, S; Ambrosi, J P; Wiesner, M; Bottero, J Y; Chatelet-Snidaro, L

    2001-12-01

    We are evaluating strontium isotopes as alternative tracers of landfill leachate in groundwater. The municipal landfill studied here is located in southeastern France. This landfill has no bottom liner, and wastes are placed directly on the ground. Based on the evaluation of chloride concentration, the plume extends a maximum of 4,600 m. Strontium isotopic composition characterizes two sources: natural groundwater (87Sr/86Sr = 0.708175) and landfill leachate contamination (87Sr/86Sr = 0.708457). The evolution of mixing ratios obtained with strontium reveals a second source of groundwater contamination: fertilizers (87Sr/ 86Sr = 0.707859). These results suggestthat isotopic signatures can be used to provide useful information on sources of groundwater contamination where conventional water quality parameters may yield ambiguous results.

  14. Application of stable isotopes and hydrochemical analysis in groundwater aquifers of Argolis Peninsula (Greece).

    PubMed

    Matiatos, Ioannis; Alexopoulos, Apostolos

    2011-12-01

    The present study examines the isotopic and hydrochemical composition of 18 inland spring waters and 3 coastal karstic spring waters, covering the period between October 2005 and March 2008. The stable isotopes ((18)O, (2)H) processing has revealed the absence of significant evaporation phenomena and that the origin of fresh water samples is meteoric. Using (18)O values in rainfall waters, an average line of isotopic depletion with altitude has been constructed, extracting a rate of-0.45‰/100 m as typical for the study area. Furthermore, the mean altitude of recharge of the springs has been estimated by plotting the groundwater sampling points on a δ(18)O versus altitude diagram. Hydrochemistry results have shown that the dissolution of carbonate, flysch and ophiolitic formations defines the hydrochemical characteristics of groundwater. Moreover, seawater intrusion in the coastal area is significantly high, causing the water in the three karstic springs to be brackish.

  15. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    NASA Astrophysics Data System (ADS)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon (δ13CDIC) dissolved organic carbon (δ13CDOC) and particulate carbon (δ13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  16. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring.

    PubMed

    Gulson, Brian; Korsch, Michael; Winchester, Wayne; Devenish, Matthew; Hobbs, Thad; Main, Cleve; Smith, Gerard; Rosman, Kevin; Howearth, Lynette; Burn-Nunes, Laurie; Seow, Jimmy; Oxford, Cameron; Yun, Gracie; Gillam, Lindsay; Crisp, Michelle

    2012-01-01

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty.

  17. Polymerisation par plasma a pression atmospherique: Caracterisation des depots et leurs applications en biotechnologies

    NASA Astrophysics Data System (ADS)

    Girard-Lauriault, Pierre-Luc

    Nitrogen (N)-containing polymer surfaces are attractive in numerous technological contexts, for example in biomedical applications. Here, we have used an atmospheric-pressure dielectric barrier discharge (DBD) apparatus to deposit novel families of N-rich plasma polymers, designated PP:N, using mixtures of three different hydrocarbon precursors (methane, ethylene, and acetylene) in nitrogen at varying respective gas flow ratios, typically parts per thousand. In preparation for subsequent cell-surface interaction studies, the first part of this research focuses on the chemical mapping of those materials, with specific attention to (semi)- quantitative analyses of functional groups. Well-established and some lesser-known analytical techniques have been combined to provide the best possible chemical and structural characterisations of these three families of PP:N thin films; namely, X-ray photoelectron spectroscopy (XPS), Near-edge X-ray absorption fine structure (NEXAFS), Fourier transform infrared spectroscopy (FTIR), contact angle goniometry (CAG), and elemental analysis (EA). High, "tunable" total nitrogen content was measured by both XPS and EA (between 6% and 25% by EA, or between 10% and 40% by XPS, which cannot detect hydrogen). Chemical derivatisation with 4-trifluoromethylbenzaldehyde (TFBA) enabled measurements of primary amine concentrations, the functionality of greatest bio-technological interest, which were found to account for 5 % to 20 % of the total bound nitrogen. By combining the above-mentioned complementary methods, we were further able to determine the complete chemical formulae, the degrees of unsaturation, and other major chemical functionalities in PP:N film structures. Several of these features are believed to be without precedents in the literature on hydrocarbon plasma polymers, for example measurements of absolute compositions (including hydrogen), and of unsaturation. It was shown that besides amines, nitriles, isonitriles and imines are

  18. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    SciTech Connect

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  19. Advancement and application of gas chromatography isotope ratio mass spectrometry techniques for atmospheric trace gas analysis

    NASA Astrophysics Data System (ADS)

    Giebel, Brian M.

    2011-12-01

    The use of gas chromatography isotope ratio mass spectrometry (GC-IRMS) for compound specific stable isotope analysis is an underutilized technique because of the complexity of the instrumentation and high analytical costs. However stable isotopic data, when coupled with concentration measurements, can provide additional information on a compounds production, transformation, loss, and cycling within the biosphere and atmosphere. A GC-IRMS system was developed to accurately and precisely measure delta13C values for numerous oxygenated volatile organic compounds having natural and anthropogenic sources. The OVOCs include methanol, ethanol, acetone, methyl ethyl ketone, 2-pentanone, and 3-pentanone. Guided by the requirements for analysis of trace components in air, the GC-IRMS system was developed with the goals of increasing sensitivity, reducing dead-volume and peak band broadening, optimizing combustion and water removal, and decreasing the split ratio to the IRMS. The technique relied on a two-stage preconcentration system, a low-volume capillary reactor and water trap, and a balanced reference gas delivery system. Measurements were performed on samples collected from two distinct sources (i.e. biogenic and vehicle emissions) and ambient air collected from downtown Miami and Everglades National Park. However, the instrumentation and the method have the capability to analyze a variety of source and ambient samples. The measured isotopic signatures that were obtained from source and ambient samples provide a new isotopic constraint for atmospheric chemists and can serve as a new way to evaluate their models and budgets for many OVOCs. In almost all cases, OVOCs emitted from fuel combustion were enriched in 13C when compared to the natural emissions of plants. This was particularly true for ethanol gas emitted in vehicle exhaust, which was observed to have a uniquely enriched isotopic signature that was attributed to ethanol's corn origin and use as an alternative

  20. Transmission Sur Fibres Optiques Dans Un Systeme D'Archivage Et De Communication D'Images Pour Des Applications Medicales

    NASA Astrophysics Data System (ADS)

    Aaron, Gilles; Bonnard, Rene

    1984-03-01

    Dans l'hOpital, le besoin d'un reseau de communication electronique ne cesse de crottre au fur et a mesure de la numerisation des images. Ce reseau local a pour but de relier quelques sources d'images telles la radiologie numerique, la tomodensitometrie, la resonance magnetique nucleaire, l'echographie ultraso-nore etc..., a un systme d'archivage. Des consoles de visualisation interacti-ves peuvent etre utilisees dans les salles d'examens, les bureaux des medecins et les services de soins. Dans un tel systme, trois caracteristiques princi-pales doivent etre prises en compte le debit, la longueur du cable et le nombre de connexions. - Le debit est tr?)s important, en effet, un temps de reponse maxima de quel-ques secondes doit etre garanti pour des images de plusieurs millions d'ele-ments binaires. - La distance entre connexions peut etre de quelques km dans certains grands hopitaux. - Le nombre de connexions au reseau ne depasse jamais quelques dizaines car les sources d'images et les unites de traitement representent des materiels importants, par ailleurs les consoles de visualisation simples peuvent etre groupees en grappe. Toutes ces conditions sont remplies par les transmissions sur fibres optiques. Selon la topologie et la methode d'accNs, deux solutions peuvent etre envisa-gees : - Anneau actif - Etoile active ou passive Enfin, les developpements de Thomson-CSF en composants pour transmissions optiques pour les grands reseaux de tel4distribution nous apportent un support technologique et une production de masse qui diminuera les collts du materiel.

  1. Future trends in transport and fate of diffuse contaminants in catchments, with special emphasis on stable isotope applications

    USGS Publications Warehouse

    Turner, J.; Albrechtsen, H.-J.; Bonell, M.; Duguet, J.-P.; Harris, B.; Meckenstock, R.; McGuire, K.; Moussa, R.; Peters, N.; Richnow, H.H.; Sherwood-Lollar, B.; Uhlenbrook, S.; van, Lanen H.

    2006-01-01

    A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound-specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright ?? 2006 John Wiley & Sons, Ltd.

  2. High precision delta(17)O isotope measurements of oxygen from silicates and other oxides: method and applications.

    PubMed

    Miller; Franchi; Sexton; Pillinger

    1999-07-01

    The use of infrared laser-assisted fluorination to release oxygen from milligram quantities of silicates or other oxide mineral grains is a well-established technique. However, relatively few studies have reported the optimisation of this procedure for oxygen-17 isotope measurements. We describe here details of an analytical system using infrared (10 µm) laser-assisted fluorination, in conjunction with a dual inlet mass spectrometer of high resolving power ( approximately 250) to provide (17)O and (18)O oxygen isotope measurements from 0.5-2 mg of silicates or other oxide mineral grains. Respective precisions (1) of typically 0.08 and 0.04 per thousand are obtained for the complete analytical procedure. Departures from the mass-dependent oxygen isotope fractionation line are quantified by Delta(17)O; our precision (1) of such measurements on individual samples is shown to be +/-0.024 per thousand. In turn, this permits the offset between parallel, mass-dependent fractionation lines to be characterised to substantially greater precision than has been possible hitherto. Application of this system to investigate the (17)O versus (18)O relationship for numerous terrestrial whole-rock and mineral samples, of diverse geological origins and age, indicates that the complete data set may be described by a single, mass-dependent fractionation line of slope 0.5244+/- 0.00038 (standard error). Copyright 1999 John Wiley & Sons, Ltd.

  3. Sulfur isotopic analysis of carbonyl sulfide and its application for biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Hattori, Shohei; Kamezaki, Kazuki; Ogawa, Takahiro; Toyoda, Sakae; Katayama, Yoko; Yoshida, Naohiro

    2016-04-01

    Carbonyl sulfide (OCS or COS) is the most abundant gas containing sulfur in the atmosphere, with an average mixing ratio of 500 p.p.t.v. in the troposphere. OCS is suggested as a sulfur source of the stratospheric sulfate aerosols (SSA) which plays an important role in Earth's radiation budget and ozone depletion. Therefore, OCS budget should be validated for prediction of climate change, but the global OCS budget is imbalance. Recently we developed a promising new analytical method for measuring the stable sulfur isotopic compositions of OCS using nanomole level samples: the direct isotopic analytical technique of on-line gas chromatography-isotope ratio mass spectrometry (GC-IRMS) using fragmentation ions S+ (Hattori et al., 2015). The first measurement of the δ34S value for atmospheric OCS coupled with isotopic fractionation for OCS sink reactions in the stratosphere (Hattori et al., 2011; Schmidt et al., 2012; Hattori et al., 2012) explains the reported δ34S value for background stratospheric sulfate, suggesting that OCS is a potentially important source for background (nonepisodic or nonvolcanic) stratospheric sulfate aerosols. This new method measuring δ34S values of OCS can be used to investigate OCS sources and sinks in the troposphere to better understand its cycle. It is known that some microorganisms in soil can degrade OCS, but the mechanism and the contribution to the OCS in the air are still uncertain. In order to determine sulfur isotopic enrichment factor of OCS during degradation via microorganisms, incubation experiments were conducted using strains belonging to the genera Mycobacterium, Williamsia and Cupriavidus, isolated from natural soil environments (Kato et al., 2008). As a result, sulfur isotope ratios of OCS were increased during degradation of OCS, indicating that reaction for OC32S is faster than that for OC33S and OC34S. OCS degradation via microorganisms is not mass-independent fractionation (MIF) process, suggesting that this

  4. ENVIRONMENTAL ISOTOPES FOR RESOLUTION OF HYDROLOGY PROBLEMS

    EPA Science Inventory

    The use of environmental isotopes as tracers in the hydrosphere is increasing as analytical instrumentation improves and more applications are discovered. There exists still misconceptions on the role of isotopes in resolving hydrology problems. Naturally occurring isotopes in th...

  5. A neutron booster for spallation sources—application to accelerator driven systems and isotope production

    NASA Astrophysics Data System (ADS)

    Galy, J.; Magill, J.; Van Dam, H.; Valko, J.

    2002-06-01

    One can design a critical system with fissile material in the form of a thin layer on the inner surface of a cylindrical neutron moderator such as graphite or beryllium. Recently, we have investigated the properties of critical and near critical systems based on the use of thin actinide layers of uranium, plutonium and americium. The thickness of the required fissile layer depends on the type of fissile material, its concentration in the layer and on the geometrical arrangement, but is typically in the μm-mm range. The resulting total mass of fissile material can be as low as 100 g. Thin fissile layers have a variety of applications in nuclear technology—for example in the design neutron amplifiers for medical applications and "fast" islands in thermal reactors for waste incineration. In the present paper, we investigate the properties of a neutron booster unit for spallation sources and isotope production. In those applications a layer of fissile material surrounds the spallation source. Such a module could be developed for spallation targets foreseen in the MYRRHA (L. Van Den Durpel, H. Aı̈t Abderrahim, P. D'hondt, G. Minsart, J.L. Bellefontaine, S. Bodart, B. Ponsard, F. Vermeersch, W. Wacquier. A prototype accelerator driven system in Belgium: the Myrrha project, Technical Committee Meeting on Feasibility and Motivation for Hybrid concepts for Nuclear Energy generation and Transmutation, Madrid, Spain, September 17-19, 1997 [1]). or MEGAPIE (M. Salvatores, G.S. Bauer, G. Heusener. The MEGAPIE initiative: executive outline and status as per November 1999, MPO-1-GB-6/0_GB, 1999 [2]) projects. With a neutron multiplication factor of the booster unit in the range 10-20 (i.e. with a keff of 0.9-0.95), considerably less powerful accelerators would be required to obtain the desired neutron flux. Instead of the powerful accelerators with proton energies of 1 GeV and currents of 10 mA foreseen for accelerator driven systems, similar neutron fluxes can be obtained

  6. Application of sulphur isotope ratios to examine weaning patterns and freshwater fish consumption in Roman Oxfordshire, UK

    NASA Astrophysics Data System (ADS)

    Nehlich, Olaf; Fuller, Benjamin T.; Jay, Mandy; Mora, Alice; Nicholson, Rebecca A.; Smith, Colin I.; Richards, Michael P.

    2011-09-01

    This study investigates the application of sulphur isotope ratios (δ 34S) in combination with carbon (δ 13C) and nitrogen (δ 15N) ratios to understand the influence of environmental sulphur on the isotopic composition of archaeological human and faunal remains from Roman era sites in Oxfordshire, UK. Humans ( n = 83), terrestrial animals ( n = 11), and freshwater fish ( n = 5) were analysed for their isotope values from four locations in the Thames River Valley, and a broad range of δ 34S values were found. The δ 34S values from the terrestrial animals were highly variable (-13.6‰ to +0.5‰), but the δ 34S values of the fish were clustered and 34S-depleted (-20.9‰ to -17.3‰). The results of the faunal remains suggest that riverine sulphur influenced the terrestrial sulphur isotopic signatures. Terrestrial animals were possibly raised on the floodplains of the River Thames, where highly 34S-depleted sulphur influenced the soil. The humans show the largest range of δ 34S values (-18.8‰ to +9.6‰) from any archaeological context to date. No differences in δ 34S values were found between the males (-7.8 ± 6.0‰) and females (-5.3 ± 6.8‰), but the females had a linear correlation ( R2 = 0.71; p < 0.0001) between their δ 15N and δ 34S compositions. These δ 34S results suggest a greater dietary variability for the inhabitants of Roman Oxfordshire than previously thought, with some individuals eating solely terrestrial protein resources and others showing a diet almost exclusively based on freshwater protein such as fish. Such large dietary variability was not visible by analysing only the carbon and nitrogen isotope ratios, and this research represents the largest and most detailed application of δ 34S analysis to examine dietary practices (including breastfeeding and weaning patterns) during the Romano-British Period.

  7. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research

    PubMed Central

    Kim, Il-Young; Suh, Sang-Hoon; Lee, In-Kyu; Wolfe, Robert R

    2016-01-01

    The human body is in a constant state of turnover, that is, being synthesized, broken down and/or converted to different compounds. The dynamic nature of in vivo kinetics of human metabolism at rest and in stressed conditions such as exercise and pathophysiological conditions such as diabetes and cancer can be quantitatively assessed with stable, nonradioactive isotope tracers in conjunction with gas or liquid chromatography mass spectrometry and modeling. Although measurements of metabolite concentrations have been useful as general indicators of one's health status, critical information on in vivo kinetics of metabolites such as rates of production, appearance or disappearance of metabolites are not provided. Over the past decades, stable, nonradioactive isotope tracers have been used to provide information on dynamics of specific metabolites. Stable isotope tracers can be used in conjunction with molecular and cellular biology tools, thereby providing an in-depth dynamic assessment of metabolic changes, as well as simultaneous investigation of the molecular basis for the observed kinetic responses. In this review, we will introduce basic principles of stable isotope methodology for tracing in vivo kinetics of human or animal metabolism with examples of quantifying certain aspects of in vivo kinetics of carbohydrate, lipid and protein metabolism. PMID:26795236

  8. Applications of stable, nonradioactive isotope tracers in in vivo human metabolic research.

    PubMed

    Kim, Il-Young; Suh, Sang-Hoon; Lee, In-Kyu; Wolfe, Robert R

    2016-01-15

    The human body is in a constant state of turnover, that is, being synthesized, broken down and/or converted to different compounds. The dynamic nature of in vivo kinetics of human metabolism at rest and in stressed conditions such as exercise and pathophysiological conditions such as diabetes and cancer can be quantitatively assessed with stable, nonradioactive isotope tracers in conjunction with gas or liquid chromatography mass spectrometry and modeling. Although measurements of metabolite concentrations have been useful as general indicators of one's health status, critical information on in vivo kinetics of metabolites such as rates of production, appearance or disappearance of metabolites are not provided. Over the past decades, stable, nonradioactive isotope tracers have been used to provide information on dynamics of specific metabolites. Stable isotope tracers can be used in conjunction with molecular and cellular biology tools, thereby providing an in-depth dynamic assessment of metabolic changes, as well as simultaneous investigation of the molecular basis for the observed kinetic responses. In this review, we will introduce basic principles of stable isotope methodology for tracing in vivo kinetics of human or animal metabolism with examples of quantifying certain aspects of in vivo kinetics of carbohydrate, lipid and protein metabolism.

  9. ISOTOPIC BIOGEOCHEMISTRY OF DISSOLVED ORGANIC NITROGEN: A NEW TECHNIQUE AND APPLICATION. (R825151)

    EPA Science Inventory

    We present a new technique for isolating and isotopically characterizing dissolved organic nitrogen (DON) for non-marine waters, 15N values for DON from lacustrine samples and data suggesting that this technique will be a...

  10. Application of Hydrogen Isotope Geochemistry to Volcanology: Recent Perspective on Eruption Dynamics

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Kasai, Y.; Sato, N.; Yoshimura, S.

    2008-02-01

    Degassing of magma is central to understand the dynamics of volcanic eruption. Hydrogen isotopic composition of volcanic rocks reflects degassing processes. The natural obsidian samples in some eruptions typically show a gently and then rapidly decreasing δD trends with decreasing water content; this led to the two-stage degassing model, with closed-system volatile exsolution (batch fractionation of hydrogen isotope) during the explosive phase followed by open-system degassing (Rayleigh fractionation) to produce the low δD value of the dome and flow lavas[1,2]. However, the relationship between pattern of degassing (and fractionation) and mode of eruption is controversial[3]. Based on the CO2/H2O ratio of the obsidians, Rust et al.[4] suggested that the analyzed samples with relatively constant δD value and high water content were buffered (re-equilibrated) with vapor of relatively constant isotopic composition, assuming that silicic magma along conduit wall is fragmented and highly permeable. However, the timing and mechanism of the shift to open system degassing (Rayleigh fractionation) has not been clarified. To further constrain the eruption dynamics, experimental study on the hydrogen isotope fractionation during degassing would be helpful, although common noble metals used as sample capsules, including Au, are permeable to hydrogen at magmatic temperature, and even to water molecule in the prolonged run, probably due to the change of grain boundary properties such as thermal grooving.

  11. Module 5: Applications of Stable Isotope Analyses: Data Interpretation and Data Quality Issues

    EPA Science Inventory

    When organic contaminants such as benzene, TCE or MTBE are degraded, the ratio of the stable isotopes of carbon in the organic contaminants will often change in a predictable fashion. In the last ten years, advances in analytical chemistry have made it possible to measure these ...

  12. APPLICATION OF STABLE CARBON AND HYDROGEN ISOTOPIC TECHNIQUES FOR MONITORING BIODEGRADATION OF MTBE IN THE FIELD

    EPA Science Inventory


    A significant challenge in environmental studies is to determine the onset and extent of MTBE bioremediation at an affected site, which may involve indirect approaches such as microcosm verification of microbial activities at a given site. Stable isotopic fractionation is cha...

  13. Application of Hydrogen Isotope Geochemistry to Volcanology: Recent Perspective on Eruption Dynamics

    SciTech Connect

    Nakamura, M.; Kasai, Y.; Sato, N.; Yoshimura, S.

    2008-02-25

    Degassing of magma is central to understand the dynamics of volcanic eruption. Hydrogen isotopic composition of volcanic rocks reflects degassing processes. The natural obsidian samples in some eruptions typically show a gently and then rapidly decreasing {delta}D trends with decreasing water content; this led to the two-stage degassing model, with closed-system volatile exsolution (batch fractionation of hydrogen isotope) during the explosive phase followed by open-system degassing (Rayleigh fractionation) to produce the low {delta}D value of the dome and flow lavas. However, the relationship between pattern of degassing (and fractionation) and mode of eruption is controversial. Based on the CO{sub 2}/H{sub 2}O ratio of the obsidians, Rust et al. suggested that the analyzed samples with relatively constant {delta}D value and high water content were buffered (re-equilibrated) with vapor of relatively constant isotopic composition, assuming that silicic magma along conduit wall is fragmented and highly permeable. However, the timing and mechanism of the shift to open system degassing (Rayleigh fractionation) has not been clarified. To further constrain the eruption dynamics, experimental study on the hydrogen isotope fractionation during degassing would be helpful, although common noble metals used as sample capsules, including Au, are permeable to hydrogen at magmatic temperature, and even to water molecule in the prolonged run, probably due to the change of grain boundary properties such as thermal grooving.

  14. The Fe-Isotope System and Its Applicability as a Biosignature

    NASA Technical Reports Server (NTRS)

    Beard, Brian L.; Johnson, Clark M.; Skulan, Joseph; Taylor, Lawerence A.; Sun, Henry; Cox, Lea; Nealson, Kenneth H.; Sinha, Mahadeva P.; Gerdenich, Michael J.

    2001-01-01

    High precision (0.05) Fe isotope analyses show that igneous rocks and loess are invariant but chemical sediments have variable compositions. The relative roles of abiologic and biologic fractionations that produced this range are discussed. Additional information is contained in the original extended abstract.

  15. [Principle and application of DNA-based stable isotope probing---a review].

    PubMed

    Jia, Zhongjun

    2011-12-01

    Microbial communities are the engines that drive the global biogeochemical cycle of carbon and nitrogen essential for life on Earth. However, microorganisms have evolved as a result of complex interactions with other organisms and environments. Deciphering the metabolism of microorganisms at the community level in nature will be crucial for a better understanding of the mechanisms that lead to the enormous divergence of microbial ecophysiology. Due to the immense number of uncultivated microbial species and the complexity of microbial communities, delineating community metabolism proves a virtually insurmountable hurdle. By tracing the heavy isotope flow of key elements such as carbon and nitrogen, DNA-based stable isotope probing (DNA-SIP) can provide unequivocal evidence for substrate assimilation by microorganisms in complex environments. The essential prerequisite for a successful DNA-SIP is the identification, with confidence, of isotopically enriched 13C-DNA, of which the amount is generally too low to allow the direct measurement of 13C atom percent of nucleic acid. The methodological considerations for obtaining unambiguous DNA highly enriched in heavy isotope are presented with emphasis on next-generation sequencing technology and metagenomics.

  16. Developpement et application d'un systeme mobile de laser terrestre pour quantifier le bilan sedimentaire des plages

    NASA Astrophysics Data System (ADS)

    Van-Wierts, Stefanie

    Au Québec maritime, l'érosion côtière est une problématique d'envergure, notamment sur les côtes de formations meubles. Les plages ont un rôle de zone tampon ayant comme fonction naturelle d'absorber l'énergie des vagues et donc d'assurer l'équilibre de certains écosystèmes et le maintien de l'écoumène en réduisant l'érosion de la côte. Les méthodes d'acquisition conventionnelles ne permettent pas de quantifier convenablement les changements morphosédimentaires d'une plage à l'échelle des cellules hydrosédimentaires. Le manque de méthode d'acquisition fiable et de données quantitatives mène à une surestimation ou à une sous-estimation de la disponibilité sédimentaire d'un système côtier. Pour contrer ces lacunes et afin de minimiser les coûts d'acquisition, un nouveau système mobile de LiDAR terrestre a été mis en place, permettant d'acquérir des données topographiques de l'estran, de la haute plage et des falaises. Le système multicapteurs comprend un LiDAR, un système de navigation à haute précision (IMU et D-GPS) et une caméra. L'ensemble des instruments et capteurs sont montés sur un véhicule de type tout-terrain. Le système a été évalué sur la zone côtière de la péninsule de Manicouagan. La comparaison des données LiDAR avec 1 050 points de référence géopositionnés au D-GPS montre une erreur verticale moyenne de 0,1 m sur les secteurs de plage. Les résultats montrent que le volume sédimentaire moyen des plages devant les zones où la ligne de rivage présente un ouvrage de protection en enrochement (12 m 3/m) est plus de trois fois plus faible que devant les secteurs à l'état naturel (35,5 m3/m). La moyenne des secteurs en transition, constituant les segments où une zone artificielle et une zone naturelle se chevauchent présentent un volume moyen de 28 m3/m. Aussi, les plages devant les secteurs anthropisés sont en moyenne près de 2 fois plus étroites (12,7 m) que devant les secteurs naturels (25

  17. Barium and Neodymium Isotope Heterogeneities in Early Solar System Materials: Applications to Planetary Reservoir Models

    NASA Astrophysics Data System (ADS)

    Ranen, M. C.; Jacobsen, S. B.

    2005-12-01

    Heavy element isotopic heterogeneities in early Solar System materials may exist as a result of both incomplete mixing of pre-solar nucleosynthetic components in the Solar Nebula leading to different ratios of p-, r- and s-process isotopes in bulk planetary materials as well as heterogeneities caused by the decay of now extinct nuclides. Boyet and Carlson (2005) reported a difference in 142Nd/144Nd between Earths mantle and chondrites of about 20-30 ppm. Assuming that this difference was due to decay of 146Sm and that the Earth and chondrites formed with identical 146Sm/144Sm they inferred the formation of a deep enriched silicate layer (D'' ?) in the Earth that formed within the first 30 Myr of Solar System history. We have obtained a similar difference in 142Nd/144Nd between Earth and chondrites. However, we are now testing their interpretation with Ba isotope measurements of various chondrites. Barium is an ideal element for testing the origin of small isotopic anomalies because it has two isotopes (134 and 136) derived only from the s-process as well as three isotopes (135,137 and 138) derived from both the r- and s-process with 135Ba possibly having a contribution from the decay of now extinct 135Cs. Six chondrites: Allende (CV3), Peace River (L6), Murchison (CM2), Grady (H3.7), Guarena (H6), and Bruderheim (L6) were measured for Ba isotopic composition with a new generation TIMS instrument (a GV ISOPROBE-T). A terrestrial andesite, AGV-1, was also processed for use as our reference standard. Preliminary results indicate widespread heterogeneity in the fractionation corrected 137Ba/136Ba ratio between different meteorites and our terrestrial standard, as high as 25 ppm. Smaller anomalies are also seen in 134Ba/136Ba. These anomalies are likely caused by slight differences in the mixing proportions of r- and s-process Ba in Earth and chondrites. This calls into question whether or not the differences seen in 142Nd/144Nd are truly caused by early differentiation

  18. Microbial activities and phosphorus cycling: An application of oxygen isotope ratios in phosphate

    NASA Astrophysics Data System (ADS)

    Stout, Lisa M.; Joshi, Sunendra R.; Kana, Todd M.; Jaisi, Deb P.

    2014-08-01

    Microorganisms carry out biochemical transformations of nutrients that make up their cells. Therefore, understanding how these nutrients are transformed or cycled in natural environments requires knowledge of microbial activity. Commonly used indicators for microbial activity typically include determining microbial respiration by O2/CO2 measurements, cell counts, and measurement of enzyme activities. However, coupled studies on nutrient cycling and microbial activity are not given enough emphasis. Here we apply phosphate oxygen isotope ratios (δ18OP) as a tool for measurement of microbial activity and compare the rate of isotope exchange with methods of measuring microbial activities that are more commonly applied in environmental studies including respiration, dehydrogenase activity, alkaline phosphatase activity, and cell counts. Our results show that different bacteria may have different strategies for P uptake, storage and release, their respiration and consequently expression of DHA and APase activities, but in general the trend of their enzyme activities are comparable. Phosphate δ18OP values correlated well with these other parameters used to measure microbial activity with the strongest linear relationships between δ18OP and CO2 evolution (r = -0.99). Even though the rate of isotope exchange for each microorganism used in this study is different, the rate per unit CO2 respiration showed one general trend, where δ18OP values move towards equilibrium while CO2 is generated. While this suggests that P cycling among microorganisms used in this study can be generalized, further research is needed to determine whether the microorganism-specific isotope exchange trend may occur in natural environments. In summary, phosphate oxygen isotope measurements may offer an alternative for use as a tracer to measure microbial activity in soils, sediments, and many other natural environments.

  19. Application of nitrate and water isotopes to assessment of groundwater quality beneath dairy farms in California

    NASA Astrophysics Data System (ADS)

    Young, M. B.; Harter, T.; Kendall, C.; Silva, S. R.

    2009-12-01

    In California’s Central Valley, nitrate contamination of drinking water wells is a significant concern, and there are multiple potential sources of nitrate in this area including septic discharge, synthetic and manure fertilizers, and concentrated animal feeding operations. Dairies represent the majority of animal feeding operations in California, and have been shown to be potential sources of nitrate, salinity, dissolved organic carbon, and pathogens to groundwater. Within individual dairies, different land use areas including barns and freestalls, corrals, liquid waste lagoons, and fields for forage crops (often fertilized with animal waste, synthetic fertilizer, or both), each of which may have different impacts on the groundwater. In this study, groundwater samples were collected from two dairies in the San Joaquin Valley, where the water table is fairly shallow, and from five dairies in the Tulare Lake Basin, where the water table is much deeper. In each dairy, nitrate isotopes, water isotopes, nutrient concentrations, and other chemical and physical parameters were measured in monitoring wells located within different land use areas of the dairies. Across all sampled dairy wells, δ15N-NO3 ranged from +3.2 to +49.4‰, and δ18O-NO3 ranged from -3.1 to +19.2‰. Mean nitrate concentrations, δ15N-NO3, and δ18O-NO3 were significantly higher in the northern (San Joaquin Valley) dairy wells in comparison to the southern (Tulare Lake Basin) dairy wells. No consistent differences in nitrate isotopic compositions were found between the different land use areas, and large spatial variability in both nitrate concentrations and nitrate isotopic composition was observed within most of the individual dairies. These results emphasize the challenges associated with monitoring groundwater beneath dairies due to high spatial heterogeneity in the aquifer and groundwater constituents. At four of the seven dairies, δ18O and δ2H of the ground water in wells located

  20. A new method and application for determining the nitrogen isotopic composition of NOx

    NASA Astrophysics Data System (ADS)

    Hastings, M. G.; Miller, D. J.; Wojtal, P.; O'Connor, M.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry, air quality, and radiative forcing, and contribute to nitric acid deposition. Sources of NOx include both natural and anthropogenic emissions, which vary significantly in space and time. NOx isotopic signatures offer a potentially valuable tool to trace source impacts on atmospheric chemistry and regional acid deposition. Previous work on NOx isotopic signatures suggests large ranges in values, even from the same emission source, as well as overlapping ranges amongst different sources, making it difficult to use the isotopic composition as a quantitative tracer of source influences. These prior measurements have utilized a variety of methods for collecting the NOx as nitrate or nitrite for isotopic analysis, and testing of some of these methods (including active and passive collections) reveal inconsistencies in efficiency of collection, as well as issues related to changes in conditions such as humidity, temperature, and NOx fluxes. A recently developed method allows for accurately measuring the nitrogen isotopic composition of NOx (NOx = NO + NO2) after capturing the NOx in a potassium permanganate/sodium hydroxide solution as nitrate (Fibiger et al., Anal. Chem., 2014). The method has been thoroughly tested in the laboratory and field, and efficiently collects NO and NO2 under a variety of conditions. There are several advantages to collecting NOx actively, including the ability to collect over minutes to hourly time scales, and the ability to collect in environments with highly variable NOx sources and concentrations. Challenges include a nitrate background present in potassium permanganate (solid and liquid forms), accurately deriving ambient NOx concentrations based upon flow rate and solution concentrations above this variable background, and potential interferences from other nitrogen species. This method was designed to collect NOx in environments with very different

  1. Recent applications on isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles

    NASA Astrophysics Data System (ADS)

    Becker, J. Sabine; Sela, Hagit; Dobrowolska, Justina; Zoriy, Miroslav; Becker, J. Susanne

    2008-02-01

    Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have proved themselves to be powerful and sensitive inorganic mass spectrometric techniques for analysing stable and radioactive isotopes in different application fields because of their high sensitivity, low detection limits, good accuracy and precision. New applications of ICP-MS focus on tracer experiments and the development of isotope dilution techniques together with nanoflow injections for the analysis of small volumes of biological samples. Today, LA-ICP-MS is the method of choice for direct determination of metals, e.g., on protein bands in gels after the gel electrophoresis of protein mixtures. Tracer experiments using highly enriched 65Cu were utilized in order to study the formation of metal-binding bovine serum proteins. A challenging task for LA-ICP-MS is its application as an imaging mass spectrometric technique for the production of isotope images (e.gE, from thin sections of brain tissues stained with neodymium). In this paper, we demonstrate the application of imaging mass spectrometry on single particles (zircon and uranium oxide). Single Precambrian zircon crystals from the Baltic Shield were investigated with respect to isotope ratios using LA-ICP-MS for age dating. The U-Pb age was determined from the isochrone with (1.48 ± 0.14) × 109 a. Using isotope ratio measurements on 10 nuclear uranium oxide single particles the 235U/238U isotope ratio was determined to be 0.032 ± 0.004. This paper describes recent developments and applications of isotope ratio measurements by ICP-MS and LA-ICP-MS on biological samples and single particles.

  2. Second national topical meeting on tritium technology in fission, fusion and isotopic applications

    SciTech Connect

    Anderson, J.L.; Barlit, J.R.

    1985-09-01

    This conference presented information on the following topics: the development of a tritium dispersion code; global environmental transport models for tritium; HT/HTO conversion in mammals; tritium production, releases and population doses at nuclear power reactors; design of tritium processing facilities and equipment for aqueous and gaseous streams; tritium removal from circulating helium by hydriding of rare earth metals; the determination of deuterium and tritium in effluent wastewater by pulsed nuclear magnetic resonance spectroscopy; tritium surface contamination: process calculations for a moderator detritiation plant; recent developments in magnetically coupled vane pumps for tritium service; recovery and storage of tritium by Zr-V-Fe getter; gas handling systems using titanium-sponge and uranium bulk getters; isotope effects and helium retention behavior in vanadium tritide; interaction of hydrogen isotopes with stainless steel 316 L; and the interaction of polyethylene and tritium gas as monitored by Raman spectroscopy.

  3. Application of atomic vapor laser isotope separation to the enrichment of mercury

    SciTech Connect

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the /sup 196/Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of approx. 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry.

  4. Augmenting real data with synthetic data: an application in assessing radio-isotope identification algorithms

    SciTech Connect

    Burr, Tom L; Hamada, Michael; Graves, Todd; Myers, Steve

    2008-01-01

    The performance of Radio-Isotope Identification (RIID) algorithms using gamma spectroscopy is increasingly important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeats per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeats with realistic synthetic repeats is also considered. Our results suggest that for the scenarios and algorithms considered, approximately 10 real repeats augmented with simulated repeats will result in an estimate having comparable uncertainty to the estimate based on using 60 real repeats.

  5. Application of an orthogonally polarized laser scheme for selective photoionization of palladium isotopes

    NASA Astrophysics Data System (ADS)

    Locke, Clayton R.; Kobayashi, Tohru; Nakajima, Takashi; Midorikawa, Katsumi

    2016-09-01

    We present a technique using two orthogonal linearly polarized lasers to improve practical implementation of the separation of odd- and even-mass-number palladium isotopes. Dye lasers are used for a three-step photoionization of vaporized palladium, where due to the transition selection rules only odd-mass-number isotopes are ionized and removed from the palladium beam via an electric field. Schemes presented in the literature use two counter-propagating circularly polarized beams, which are in practice difficult to implement perfectly. In contrast, two counter-propagating orthogonally polarized beams are technically less demanding to implement, yet the scheme retains the same high selectivity demonstrated in this work of >1200 (or 99.7 ± 0.3 %).

  6. Annual rainfall and nitrogen-isotope correlation in macropod collagen: application as a palaeoprecipitation indicator

    NASA Astrophysics Data System (ADS)

    Gröcke, Darren R.; Bocherens, Hervé; Mariotti, André

    1997-12-01

    Collagen has been extracted and analysed for δ 15N from modern kangaroos, macropods ( Macropus eugenii, M. antilopinus, M. fuliginosus, M. rufus, M. robustus), in Western Australia and South Australia. Comparison of nitrogen-isotope ratios with annual rainfall for the respective areas produced a good negative correlation for macropods, but not for other marsupials. This may be related to metabolic adaptations in macropods to compete against water loss. Hence, the correlation between δ 15N and annual rainfall may be species-specific. Nitrogen-isotope analyses on collagenic material extracted from fossil macropods ( Macropus spp.) have been determined from two Late Pleistocene deposits in South Australia. Corroboration with spore-pollen and sedimentological data confirm that δ 15N of collagenic material can be used as a proxy for palaeoprecipitation levels in Australia. This has great potential for understanding palaeoclimatic changes, especially drought periods, in Australia during the Pleistocene.

  7. The application of transient-state kinetic isotope effects to the resolution of mechanisms of enzyme-catalyzed reactions.

    PubMed

    Fisher, Harvey F

    2013-01-01

    Much of our understanding of the mechanisms of enzyme-catalyzed reactions is based on steady-state kinetic studies. Experimentally, this approach depends solely on the measurement of rates of free product appearance (d[P]/dt), a mechanistically and mathematically complex entity. Despite the ambiguity of this observed parameter, the method's success is due in part to the elaborate rigorously derived algebraic theory on which it is based. Transient-state kinetics, on the other hand, despite its ability to observe the formation of intermediate steps in real time, has contributed relatively little to the subject due in, some measure, to the lack of such a solid mathematical basis. Here we discuss the current state of existing transient-state theory and the difficulties in its realistic application to experimental data. We describe a basic analytic theory of transient-state kinetic isotope effects in the form of three novel fundamental rules. These rules are adequate to define an extended mechanism, locating the isotope-sensitive step and identifying missing steps from experimental data. We demonstrate the application of these rules to resolved component time courses of the phenylalanine dehydrogenase reaction, extending the previously known reaction by one new prehydride transfer step and two new post hydride transfer steps. We conclude with an assessment of future directions in this area. PMID:23857126

  8. Radium isotopes assess water mixing processes and its application in the Zhujiang River estuary

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyi; Xu, Bochao; Yu, Zhigang; Li, Xiuqin; Nan, Haiming; Jian, Huimin; Jiang, Xueyan; Diao, Shaobo; Gao, Maosheng

    2016-10-01

    Radium (Ra) isotopes are useful for tracing water mass transport and examining estuarine hydrological dynamics. In this study, several hydrological parameters, nutrients, chlorophyll-a (chl-a), suspended particulate matter (SPM) and Ra isotopes (223Ra, 224Ra and 226Ra) of surface waters of the Zhujiang (Pearl) River estuary (ZRE) were measured. This was done for both winter (December) and summer (July) seasons, to quantitatively understand the seasonal characteristics of river plume flow rate and trajectories, as well as the ecological response. The results show that Ra concentrations in summer were higher than in winter, especially 224Ra (about 2-5 times higher). The spatial distribution of three Ra isotopes and relative Ra water ages indicated that river water mainly flushed out of ZRE through the western side in winter, where the water transport was about 5 days faster than in the eastern zone. In summer, diluted river water expended to the east side, resulting in fairly similar water ages for both sides of the river mouth. Although nutrients were higher during the summer season, lower chl-a concentrations indicated that reduced primary production might be caused by high SPM (low light penetration). The results obtained from this study will provide knowledge needed for effectively developing and managing the ZRE.

  9. Application of stable isotope tracers in the study of exercise metabolism in children: a primer.

    PubMed

    Mahon, Anthony D; Timmons, Brian W

    2014-02-01

    Exercise metabolism in children has traditionally been assessed using the respiratory exchange ratio (RER) to determine the contributions of fat and carbohydrate to the exercise energy demands. Although easily measured, RER measurements have limitations. Other methods to assess metabolism such as the obtainment of a muscle biopsy and the use of nuclear magnetic resonance spectroscopy carry ethical and feasibility concerns, respectively, which limit their use in studies involving children. Stable isotopes, used routinely in studies involving adults, can also be applied in studies involving children in an ethical and feasible manner. Two common stable isotopes used in metabolic studies involving children include carbon-13 (¹³C) and nitrogen-15 (¹⁵N). ¹³C-glucose can be used to study carbohydrate metabolism and ¹⁵N-glycine can be used to assess protein metabolism. This article reviews the use of ¹³C-glucose and ¹⁵N-glycine to study exercise metabolism in children, considers some of the associated ethical aspects, explains the general methodology involved in administering these isotopes and the resources required, and describes studies involving children utilizing these methods. Finally, suggestions for future research are provided to encourage further use of these techniques.

  10. Isotopes and analogs of hydrogen--from fundamental investigations to practical applications.

    PubMed

    Macrae, Roderick M

    2013-01-01

    Hydrogen has a central role in the story of the universe itself and also in the story of our efforts to understand it. This paper retells the story of the part played by hydrogen and its stable isotope deuterium in the primordial synthesis of the elements, then goes on to describe how the spectrum of atomic hydrogen led to insights into the laws governing matter at the most fundamental level, from the quantum mechanics of Schrödinger and Heisenberg, through quantum electrodynamics, to the most recent work investigating the underlying structure of the proton itself. Atomic hydrogen is unique among the elements in that the concept of isotopy--atoms having the same nuclear charge but different masses--is stretched to its limit in the isotopes of hydrogen, ranging from the well-known isotopes deuterium and tritium to exotic species such as muonium, muonic helium, and positronium. These atoms, or atom-like objects, have much to tell us about fundamental aspects of the universe. In recent years the idea of utilizing hydrogen either as an energy source (through nuclear fusion) or as an energy storage medium (bound in hydrides or other materials) has attracted much attention as a possible avenue to a post-oil energy future. Some of the more interesting recent developments are described here. Dedicated to the memory of Brian C. Webster (1939-2008).

  11. Stable-isotope-labeled carbohydrates and nucleosides: Synthesis and applications in chemistry and biology

    SciTech Connect

    Serianni, A.S.

    1994-12-01

    Carbohydrates play important roles in many key biochemical processes in living cells. For example, they are metabolized to produce energy, mediate cell-cell recognition, and play an indirect role (as constituents of DNA and RNA) in DNA replication, RNA transcription, and protein synthesis. These roles, and others of comparable biochemical significance, have been studied to varying extends with the use of stable isotopically labeled molecules, usually in conjunction with NMR spectroscopy and/or mass spectrometry. For example, carbohydrate metabolism has been monitored in vitro and in vivo with the use of isotopically labeled compounds. Molecular aspects of cell-cell recognition, mediated by cell-surface glycoproteins and glycolipids, have been probed through NMR studies of isotopically labeled oligosaccharides. More recently, the solution behavior of DNA and RNA has been examined through the use of labeled oligonucleotides. In all of these pursuits, the effort and expense to prepare labeled molecules, both of which can be substantial, are more than offset by the wealth of information derived from these studies. This information often cannot be accessed, or can be accessed only with great difficulty, using natural (unlabeled) compounds.

  12. The application of Mg isotopes in carbonate rocks to reconstruct environmental records

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, C.

    2014-12-01

    Previous studies showed that Mg isotope fractionation between carbonate and solution depends on several parameters including 1) temperature (with a sensitivity of ~0.01‰/oC); 2) precipitation rate; 3) aqueous Mg concentration and pH; 4) mineralogy: All else being equal, the enrichment of 26Mg in carbonate precipitated from solutions with the same δ26Mg values follow the sequence: aragonite > dolomite > magnesite > calcite; and 5) biogenic effect [1]. Despite the complexity, the weak temperature sensitivity and strong mineralogical control offer Mg isotope compositions of carbonate rocks as a paleoproxy to provide constraints on environmental records, and an index for diagenesis and low degree metamorphism. Here, we present four cases describing 1) how Mg isotope varied during the mineralogical transition from aragonite (corals) to calcite; 2) how δ26Mg, 87Sr/86Sr ratios of a Cambrian limestone changed due to the formation of secondary high-Mg calcite; 3) how δ26Mg and trace metal compositions of limestones can be used to reconstruct ocean chemistry, and 4) how δ26Mg, 87Sr/86Sr ratios of dolomite can be used to infer ocean chemistry in the deep time.

  13. Validation of reactive model assumptions with isotope data: application to the Dover case.

    PubMed

    Atteia, O; Franceschi, M; Dupuy, A

    2008-05-01

    This paper presents a new approach to compare simulations from reactive transport models. We show that where several compounds follow a reaction chain and can be degraded under different redox conditions, two models with significantly different parameters can lead to similar species distributions. The studied case is the aquifer contamination at Dover, DE U.S., where well characterized plumes of PCE, TCE, cDCE, and VC have been simulated both with RT3D and by a semianalytical procedure proposed here. In order to validate the models, we use isotope data of PCE and TCE that where also measured on that site. A simple calculation, validated against a geochemical model, allows us to simulate the spatial distribution of the isotopic ratio. Despite the similar spatial distribution of contaminant concentrations, simulated isotopic ratios are completely different. Field data correspond to a very localized degradation of PCE and TCE compounds. The presence of a small degradation zone has important consequences on the future evolution of the plume and on the potential remediation techniques.

  14. Contribution a la caracterisation des betons endommages par des methodes de l'acoustique non lineaire. Application a la reaction alcalis-silice

    NASA Astrophysics Data System (ADS)

    Kodjo, Apedovi

    The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a

  15. Impact of vinasse application in the C and N in the soils cultivaded with sugarcane in South Brasil, using Isotopic Technique

    NASA Astrophysics Data System (ADS)

    Rossete, A. M.; Medeiros, G. G.; Adorno, F. C.; Possignolo, N. V.; Moreira, M. Z.; Camargo, P. B.

    2013-12-01

    The main anthropogenic sources in the environment are fertilizers, pesticides, biomass burning, vehicle emissions, and disposal of urban and industrial waste. Vinasse is characterized as a residual of sugarcane distillery effluent with high concentrations of potassium and organic matter. The environmental impact caused by its use in the vinasse is modification chemical and physical properties in the soil and water. For this, the isotopic technique can be a powerful tool to understand the biogeochemical cycling of light elements (C and N). Some environmental studies have been conducted involving isotopic characterization of Carbon and Nitrogen in soil. Several soils cultivated with sugarcane of different regions of São Paulo state, Brazil, were analyzed to perform the isotopic characterization. The study area was selected where soil management is by mechanical harvesting of sugarcane and vinasse application. The area was divided into three parts: control (without cultivation); after mechanical harvesting of sugarcane; after mechanical harvesting of sugarcane and vinasse application. Three days after the harvest of sugarcane the vinasse was applied and sampling of soil surface was carried out in two periods of 7 and 30 days after application of vinasse. The isotopic determination in the sample soil and concentration of C and N was by IRMS, Thermo Delta Plus, allowing simultaneous determination of 13C/12C isotope ratios (δ13C) and 15N/14N (δ15N). The results of the C and N concentration in the vinasse applied were average values 2.52% and 0.02% and isotopic values of 13C and 15N were -14.1‰ and 5.2‰. The results for the C concentration of the three areas in two periods showed values around 0.86 to 1.01%. The 13C isotopic values were -16.8 to -15.0‰, demonstrating the predominant cultivation in the region in relation to δ13C values of C4 plant (sugarcane). The results of N analysis were 0.08 to 0.10% and 15N isotope analysis, showing values ranging from 7

  16. Determination and application of the equilibrium oxygen isotope effect between water and sulfite

    NASA Astrophysics Data System (ADS)

    Wankel, Scott D.; Bradley, Alexander S.; Eldridge, Daniel L.; Johnston, David T.

    2014-01-01

    The information encoded by the two stable isotope systems in sulfate (δ34SSO4 and δ18OSO4) has been widely applied to aid reconstructions of both modern and ancient environments. Interpretation of δ18OSO4 records has been complicated by rapid oxygen isotope equilibration between sulfoxyanions and water. Specifically, the apparent relationship that develops between δ18OSO4 and δ18Owater during microbial sulfate reduction is thought to result from rapid oxygen isotope equilibrium between intracellular water and aqueous sulfite - a reactive intermediate of the sulfate reduction network that can back-react to produce sulfate. Here, we describe the oxygen equilibrium isotope effect between water and sulfite (referring to all the sum of all S(IV)-oxyanions including sulfite and both isomers and the dimer of bisulfite). Based on experiments conducted over a range of pH (4.5-9.8) and temperature (2-95 °C), where ε = 1000 * (α - 1), we find εSO3-H2O=13.61-0.299∗pH-0.081∗T °C. Thus, at a pH (7.0) and temperature (25 °C) typifying commonly used experimental conditions for sulfate reducing bacterial cultures, sulfite is enriched in 18O by 9.5‰ (±0.8‰) relative to ambient water. We examine the implication of these results in a sulfate reduction network that has been revised to reflect our understanding of the reactions involving oxygen. By evaluating previously published data within this new architecture, our results are consistent with previous suggestions of high reversibility of the sulfate reduction biochemical network. We also demonstrate that intracellular exchange rates between SO32- and water must be on average 1-3 orders of magnitude more rapid than intracellular fluxes of sulfate reduction intermediates and that kinetic isotope effects upstream of SO32- are required to explain previous laboratory and environmental studies of δ18OSO4 resulting as a consequence of sulfate reduction.

  17. Compound Specific Isotope Analysis (CSIA) for chlorine and bromine: a review of techniques and applications to elucidate environmental sources and processes.

    PubMed

    Cincinelli, Alessandra; Pieri, Francesca; Zhang, Yuan; Seed, Mike; Jones, Kevin C

    2012-10-01

    Chlorinated and brominated compounds belong to the class of organohalogen compounds that have received attention because of their widespread occurrence, use and applications. Understanding the sources and transformation processes of these contaminants in the environment enables assessment of their possible impact on humans and ecosystems. Recently new and innovative methods of Compound Specific Isotope Analysis have started to be applied to characterize the origin and fate of compounds, their breakdown products and degradation rates in different environmental compartments. Almost all studies have focussed on determination of isotopes of C and H, only recently new methodologies have been developed to measure isotopes of Cl and Br. This review firstly gives a brief description of chemistry properties and geochemical cycle of chlorine and bromine followed by a summary of their uses and applications. In the second section, an overview of CSIA techniques and new challenges and successful applications are also presented.

  18. Oxygen isotopes of phosphatic compounds - Application for marine particulate matter, sediments and soils

    USGS Publications Warehouse

    McLaughlin, K.; Paytan, A.; Kendall, C.; Silva, S.

    2006-01-01

    The phosphate oxygen isotopic composition in naturally occurring particulate phosphatic compounds (??18Op) can be used as a tracer for phosphate sources and to evaluate the cycling of phosphorus (P) in the environment. However, phosphatic compounds must be converted to silver phosphate prior to isotopic analysis, a process that involves digestion of particulate matter in acid. This digestion will hydrolyze some of the phosphatic compounds such that oxygen from the acid solution will be incorporated into the sample as these phosphatic compounds are converted to orthophosphate (PO 43-). To determine the extent of incorporation of reagent oxygen into the sample, we digested various phosphatic compounds in both acid amended with H218O (spiked) and unspiked acid and then converted the samples to silver phosphate for ??18Op analysis. Our results indicate that there is no isotopic fractionation associated with acid digestion at 50??C. Furthermore, we found that reagent oxygen incorporation is a function of the oxygen to phosphorus ratio (O:P) of the digested compound whereby the percentage of reagent oxygen incorporated into the sample is the same as that which is required to convert all of the P-compounds into orthophosphate. Based on these results, we developed a correction for reagent oxygen incorporation using simple mass balance, a procedure that allows for the determination of the ??18O p of samples containing a mixture of phosphatic compounds. We analyzed a variety of environmental samples for ??18O p to demonstrate the utility of this approach for understanding sources and cycling of P. ?? 2005 Elsevier B.V. All rights reserved.

  19. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    USGS Publications Warehouse

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  20. Applications of Structural Mass Spectrometry to Metabolomics: Clarifying Bond Specific Spectral Signatures with Isotope Edited Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorlova, Olga; Wolke, Conrad T.; Fournier, Joseph; Colvin, Sean; Johnson, Mark; Miller, Scott

    2015-06-01

    Comprehensive FTIR, MS/MS and NMR of pharmaceuticals are generally readily available but characterization of their metabolites has been an obstacle. Atorvastatin is a statin drug responsible for the maintenance of cholesterol in the body. Diovan is an angiostensin receptor antagonist used to treat high blood pressure and congestive heart failure. The field of metabolomics, however, is struggling to obtain the identity of their structures. We implement mass spectrometry with cryogenic ion spectroscopy to study gaseous ions of the desired metabolites which, in combination, not only identify the mass of the metabolite but also elucidate their structures through isotope-specific infrared spectroscopy.

  1. Processes controlling the Si-isotopic composition in the Southern Ocean and application for paleoceanography

    NASA Astrophysics Data System (ADS)

    Fripiat, F.; Cavagna, A.-J.; Dehairs, F.; de Brauwere, A.; André, L.; Cardinal, D.

    2012-07-01

    Southern Ocean biogeochemical processes have an impact on global marine primary production and global elemental cycling, e.g. by likely controlling glacial-interglacial pCO2 variation. In this context, the natural silicon isotopic composition (δ30Si) of sedimentary biogenic silica has been used to reconstruct past Si-consumption:supply ratios in the surface waters. We present a new dataset in the Southern Ocean from a IPY-GEOTRACES transect (Bonus-GoodHope) which includes for the first time summer δ30Si signatures of suspended biogenic silica (i) for the whole water column at three stations and (ii) in the mixed layer at seven stations from the subtropical zone up to the Weddell Gyre. In general, the isotopic composition of biogenic opal exported to depth was comparable to the opal leaving the mixed layer and did not seem to be affected by any diagenetic processes during settling, even if an effect of biogenic silica dissolution cannot be ruled out in the northern part of the Weddell Gyre. We develop a mechanistic understanding of the processes involved in the modern Si-isotopic balance, by implementing a mixed layer model. We observe that the accumulated biogenic silica (sensu Rayleigh distillation) should satisfactorily describe the δ30Si composition of biogenic silica exported out of the mixed layer, within the limit of the current analytical precision on the δ30Si. The failures of previous models (Rayleigh and steady state) become apparent especially at the end of the productive period in the mixed layer, when biogenic silica production and export are low. This results from (1) a higher biogenic silica dissolution:production ratio imposing a lower net fractionation factor and (2) a higher Si-supply:Si-uptake ratio supplying light Si-isotopes into the mixed layer. The latter effect is especially expressed when the summer mixed layer becomes strongly Si-depleted, together with a large vertical silicic acid gradient, e.g. in the Polar Front Zone and at the

  2. Comparison of dynamic isotope power systems for distributed planetary surface applications

    NASA Astrophysics Data System (ADS)

    Bents, David J.; McKissock, Barbara I.; Withrow, Colleen A.; Hanlon, James C.; Schmitz, Paul C.

    Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.

  3. Comparison of dynamic isotope power systems for distributed planet surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mckissock, Barbara I.; Hanlon, James C.; Schmitz, Paul C.; Rodriguez, Carlos D.; Withrow, Colleen A.

    1991-01-01

    Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.

  4. Comparison of dynamic isotope power systems for distributed planetary surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Mckissock, Barbara I.; Withrow, Colleen A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    Dynamic isotope power system (DIPS) alternatives were investigated and characterized for the surface mission elements associated with a lunar base and subsequent manned Mars expedition. System designs based on two convertor types were studied. These systems were characterized parametrically and compared over the steady-state electrical output power range 0.2 to 20 kWe. Three methods of thermally integrating the heat source and the Stirling heater head were considered, depending on unit size. Figures of merit were derived from the characterizations and compared over the parametric range. Design impacts of mission environmental factors are discussed and quantitatively assessed.

  5. Nanomatériaux : Une revue des définitions, des applications et des effets sur la santé. Comment implémenter un développement sûr

    NASA Astrophysics Data System (ADS)

    Gaffet, Eric

    2011-09-01

    Nanomaterials are an active area of research but also an economic sector in full expansion which addresses many application domains. For instance, French production for the most common nanomaterials (such as silica, titanium dioxide, carbon black) is in the hundreds of thousands of tons. As for any innovation, one must consider the risks and, if necessary, establish rules to protect consumer health and that of the worker. This article addresses in particular difficulties in defining these materials, the state of knowledge on human or environmental toxicity and requirements and agencies in charge of safety.

  6. Application of Screening Experimental Designs to Assess Chromatographic Isotope Effect upon Isotope-Coded Derivatization for Quantitative Liquid Chromatography–Mass Spectrometry

    PubMed Central

    2015-01-01

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography–mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, 13C6-, 15N2-, or 15N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett–Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of 15N or 13C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus 15N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with 15N- or 13C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  7. Application of screening experimental designs to assess chromatographic isotope effect upon isotope-coded derivatization for quantitative liquid chromatography-mass spectrometry.

    PubMed

    Szarka, Szabolcs; Prokai-Tatrai, Katalin; Prokai, Laszlo

    2014-07-15

    Isotope effect may cause partial chromatographic separation of labeled (heavy) and unlabeled (light) isotopologue pairs. Together with a simultaneous matrix effect, this could lead to unacceptable accuracy in quantitative liquid chromatography-mass spectrometry assays, especially when electrospray ionization is used. Four biologically relevant reactive aldehydes (acrolein, malondialdehyde, 4-hydroxy-2-nonenal, and 4-oxo-2-nonenal) were derivatized with light or heavy (d3-, (13)C6-, (15)N2-, or (15)N4-labeled) 2,4-dinitrophenylhydrazine and used as model compounds to evaluate chromatographic isotope effects. For comprehensive assessment of retention time differences between light/heavy pairs under various gradient reversed-phase liquid chromatography conditions, major chromatographic parameters (stationary phase, mobile phase pH, temperature, organic solvent, and gradient slope) and different isotope labelings were addressed by multiple-factor screening using experimental designs that included both asymmetrical (Addelman) and Plackett-Burman schemes followed by statistical evaluations. Results confirmed that the most effective approach to avoid chromatographic isotope effect is the use of (15)N or (13)C labeling instead of deuterium labeling, while chromatographic parameters had no general influence. Comparison of the alternate isotope-coded derivatization assay (AIDA) using deuterium versus (15)N labeling gave unacceptable differences (>15%) upon quantifying some of the model aldehydes from biological matrixes. On the basis of our results, we recommend the modification of the AIDA protocol by replacing d3-2,4-dinitrophenylhydrazine with (15)N- or (13)C-labeled derivatizing reagent to avoid possible unfavorable consequences of chromatographic isotope effects. PMID:24922593

  8. Applications of stable isotopes in hydrological studies of Mt. Apo geothermal field, Philippines

    SciTech Connect

    Salonga, N.D.; Aragon, G.M.; Nogara, J.B.; Sambrano, B.G.

    1996-12-31

    The local precipitation in Mt. Apo is depleted of heavy isotopes owing to high elevation and landward location of the field. Rainwaters infiltrate the shallow grounds, circulate in short distances with almost no interaction with the host bed rocks, and effuse in the surface as cold springs. Lakes and rivers are affected by surface evaporation while the acid SO{sub 4} springs are affected by both evaporation and steam-heating. Only the neutral-pH Cl springs have the signature of the deep thermal fluids. The parent fluids of the deep thermal brine contain Cl of 4,800 to 5,000 mg/kg, {delta}{sup 18}O of -4.62 to -4.13 {per_thousand} and {delta}{sup 2}H of -60.0 to -57.8 {per_thousand}. Inside the Sandawa Collapse, boiling of the parent fluids resulted in a two-phase reservoir with lighter isotope contents. The thermal fluids laterally flow towards the west where they are affected by cooling and mixing of cold waters. Deep water recharge has {delta}{sup 18}O of -10.00 {per_thousand} and {delta}{sup 2}H = -61.20 {per_thousand} which come from the upper slopes of Sandawa Collapse (1580-1700 mASL).

  9. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes.

    PubMed

    Hassan, Chopie; Kester, Michel G D; Oudgenoeg, Gideon; de Ru, Arnoud H; Janssen, George M C; Drijfhout, Jan W; Spaapen, Robbert M; Jiménez, Connie R; Heemskerk, Mirjam H M; Falkenburg, J H Frederik; van Veelen, Peter A

    2014-09-23

    Knowledge of the accurate copy number of HLA class I presented ligands is important in fundamental and clinical immunology. Currently, the best copy number determinations are based on mass spectrometry, employing single reaction monitoring (SRM) in combination with a known amount of isotopically labeled peptide. The major drawback of this approach is that the losses during sample pretreatment, i.e. immunopurification and filtration steps, are not well defined and must, therefore, be estimated. In addition, such losses can vary for individual peptides. Therefore, we developed a new approach in which isotopically labeled peptide-MHC monomers (hpMHC) are prepared and added directly after cell lysis, i.e. before the usual sample processing. Using this approach, all losses during sample processing can be accounted for and allows accurate determination of specific MHC class I-presented ligands. Our study pinpoints the immunopurification step as the origin of the rather extreme losses during sample pretreatment and offers a solution to account for these losses. Obviously, this has important implications for accurate HLA-ligand quantitation. The strategy presented here can be used to obtain a reliable view of epitope copy number and thus allows improvement of vaccine design and strategies for immunotherapy.

  10. Hydrogen-isotope transport in an ELBRODUR G CuCrZr alloy for nuclear applications in heat sinks

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Byeon, W. J.; Shin, H. W.; Kim, H. S.; Kim, Jaeyong; Lee, S. K.; Kim, Jaewoo

    2016-05-01

    We present the first complete data set of the transport parameters (permeability, diffusivity, and solubility) of hydrogen and deuterium in an ELBRODUR G precipitation hardened CuCrZr alloy experimentally measured by using the time-dependent gas-phase technique in an elevated temperature range of 300-600 °C for nuclear applications in heat sinks. Using the measured values for hydrogen and deuterium and a quantum mechanical model based on a harmonic approximation, an extrapolation for tritium is also presented. The isotope effect ratios for the transport parameters were also estimated. Furthermore, our hydrogen results for ELBRODUR G were compared with the results for other copper alloys previously reported by other authors.

  11. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  12. Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio Analysis

    PubMed Central

    Sephton, Mark A.; Meredith, Will; Sun, Cheng-Gong; Snape, Colin E.

    2007-01-01

    Studies of biological molecules such as fatty acids and the steroid hormones have the potential to benefit enormously from stable carbon isotope ratio measurements of individual molecules. In their natural form, however, the body’s molecules interact too readily with laboratory equipment designed to separate them for accurate measurements to be made. Some methods overcome this problem by adding carbon to the target molecule, but this can irreversibly overprint the carbon source ‘signal’. Hydropyrolysis is a newly-applied catalytic technique that delicately strips molecules of their functional groups but retains their carbon skeletons and stereochemistries intact, allowing precise determination of the carbon source. By solving analytical problems, the new technique is increasing the ability of scientists to pinpoint molecular indicators of disease, elucidate metabolic pathways and recognise administered substances in forensic investigations. PMID:19662175

  13. Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry

    USGS Publications Warehouse

    Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.

    1991-01-01

    Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.

  14. Statutes of limitations: the special problem of DES suits.

    PubMed

    Feigin, C A

    1981-01-01

    In 1971, medical studies determined that DES causes a rare type of vaginal cancer in a small number of daughters of mothers who took DES during pregnancy. Subsequently, medical studies determined that exposure to DES can cause other vaginal abnormalities in the daughters, some of which may be precancerous. As a result of these discoveries, many lawsuits have been filed by these daughters against DES manufacturers. Many DES suits may be barred by statutes of limitations, both because the number of years between the daughters' exposure to DES in utero and the discovery that DES can cause injuries exceeds the statutory period, and because the cancer or other injuries caused by DES may not develop for many additional years. This Note discusses two methods that DES plaintiffs may be able to use to overcome the potential statutes of limitations bar: the discovery rule, and state provisions which toll the statute of limitations for minors. The Note contends that courts should apply an expanded discovery rule to DES suits to avoid the unfair result of barring a claim before the plaintiff could have known that she had a cause of action. In addition, the Note argues that the injury which causes the statute of limitations to begin to run in DES suits should not be rigidly defined. Finally, the Note urges that courts allow eligible DES plaintiffs to take advantage of applicable state provisions that toll the statute of limitations for minors.

  15. The production of peste des petits ruminants hyperimmune sera in rabbits and their application in virus diagnosis.

    PubMed

    Obi, T U; McCullough, K C; Taylor, W P

    1990-07-01

    Hyperimmune sera were produced by serial inoculation of rabbits with Vero cell-adapted, sucrose gradient-purified Nigerian peste des petits ruminants virus (PPRV) isolate. Two antisera produced, neutralized the homologous PPRV but not the heterologous rinderpest Kabette "O" virus. The antisera gave strong precipitin lines with purified PPRV antigens and were used to detect PPRV and rinderpest virus antigens from ante-mortem secretions and post-mortem tissue homogenates from PPR and rinderpest virus infected goats and cattle by the agar gel precipitation tests (AGPT). The hyperimmune sera gave good titration curves with both purified Nigerian goat and the United Arab Emirate wildlife PPRV isolates in the indirect enzyme linked immunosorbent assay (ELISA). Results of indirect ELISA showed that although there were some cross reactions with the rinderpest, canine-distemper and measles viruses, at 1:100 dilution, the antisera would give a positive signal with only the homologous PPR virus.

  16. Applications of UThPb isotope systematics to the problems of radioactive waste disposal

    USGS Publications Warehouse

    Stuckless, J.S.

    1986-01-01

    Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb

  17. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  18. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  19. Triple Oxygen Isotopic Variation in Continental Waters and Potential Applications to Paleoclimate Research

    NASA Astrophysics Data System (ADS)

    Levin, N. E.; Li, S.

    2014-12-01

    18O/16O ratios are widely used in paleoclimate studies as proxies for temperature, precipitation amount and hydrologic change, but interpretations of these records are often challenged by the multiple factors that can influence them. Variation in 17O/16O ratios of Earth materials have long been assumed to covary with 18O/16O ratios in predictable and uniform ways such that they were not considered useful in studies of Phanerozoic climate. However, recent advances in the ability to measure small differences in 17O-excess, the deviation from an expected relationship between 18O/16O and 17O/16O ratios, in both waters and low-temperature minerals and rocks (e.g., carbonates, bioapatites, silicates, oxides) present the opportunity to use triple oxygen isotope measurements in hydrological and paleoclimate studies. In particular, the sensitivity of 17O-excess to kinetic fractionation means that it can be used to constrain the influence of kinetic effects on variations in δ18O. Here we review recently generated datasets on the triple oxygen isotope composition of the hydrosphere and show that there is considerably more variation in 17O-excess of continental waters than initially proposed. A compilation of 17O-excess data from precipitation, which includes snow from polar regions, tropical storms and weekly precipitation collections from mid-latitudes, shows that the 17O-excess of precipitation can range from -0.06 to +0.07‰. A continent-wide survey of tap waters from the U.S. mirrors the variation observed in precipitation. Among leaf waters, 17O-excess values range from -0.28 to +0.04‰ and can vary by as much as 0.16‰ in a plant within a single day. The mass-dependent effects associated with kinetic fractionation are likely responsible for the majority of the observed variation in waters, either during re-evaporation of rainfall at warmer temperatures, snow formation at very cold temperatures, or evapotranspiration within leaf waters. In summary, the combination of

  20. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study.

    PubMed

    Tam, J; Pantazopoulos, P; Scott, P M; Moisey, J; Dabeka, R W; Richard, I D K

    2011-06-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products 'as consumed', pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[(13)C(20)]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply.

  1. Remote Sensing of the isotopic composition of water vapor: Application to hydrology and climate

    NASA Astrophysics Data System (ADS)

    Worden, J.

    2015-12-01

    Remotely sensed measurements of water vapor and its isotopologues are inferred by how these molecules spectrally affect light as it is transferred from some source (e.g., the sun, the earth, or a laser), through the atmosphere, to a detector. Consequently, the use of satellite or ground based remotely sensed measurements of the isotopic composition of water vapor to investigate the global water cycle depends on the viewing geometry, photon source, and instrument characteristics which in turn affects the vertical resolution of the measurement and choice of regularization used to infer these quantities from a spectral radiance. Users of these data must therefore take these aspects formally into account when comparing these remotely sensed data to models or independent measurements. In this presentation I will summarize how profiles of the HDO/H2O ratio are inferred from Aura Tropospheric Emission Spectrometer thermal IR radiances and then how to account for the vertical resolution and regularization used in this "retrieval" when comparing to other models and data. In particular I will show comparisons of these satellite data to aircraft and model profiles of HDO and H2O as well as discuss previous and ongoing research into the global water cycle, climate, and paleo-climate that use these data.

  2. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. PMID:23603473

  3. Application of Control charts and isotope correlations to spent fuel measurements at FCF.

    SciTech Connect

    McKnight, R. D.; Soltys, I.; Yacout, A. M.

    1999-07-26

    The material control and accountancy system for the Fuel Conditioning Facility (FCF) initially uses calculated values for the mass flows of irradiated EBR-II driver fuel to be processed in the electrorefiner. These calculated values are continually verified by measurements performed by the Analytical Laboratory (AL) on samples from the fuel element chopper retained for each chopper batch. Measured values include U and Pu masses, U and Pu isotopic fractions, and burnup (via La and Tc). When the measured data become available, it is necessary to determine if the measured and calculated data are consistent. This verification involves accessing two databases and performing standard statistical analyses to produce control charts for these measurements. These procedures can now be invoked via a Web interface providing: a timely and efficient control of these measurements, a user-friendly interface, off-site remote access to the data, and a convenient means of studying correlations among the data. This paper will present the architecture of the interface and a description of the control procedures, as well as examples of the control charts and correlations.

  4. Application of isotope dilution mass spectrometry: determination of ochratoxin A in the Canadian Total Diet Study

    PubMed Central

    Tam, J.; Pantazopoulos, P.; Scott, P.M.; Moisey, J.; Dabeka, R.W.; Richard, I.D.K.

    2011-01-01

    Analytical methods are generally developed and optimized for specific commodities. Total Diet Studies, representing typical food products ‘as consumed’, pose an analytical challenge since every food product is different. In order to address this technical challenge, a selective and sensitive analytical method was developed suitable for the quantitation of ochratoxin A (OTA) in Canadian Total Diet Study composites. The method uses an acidified solvent extraction, an immunoaffinity column (IAC) for clean-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS) for identification and quantification, and a uniformly stable isotope-labelled OTA (U-[13C20]-OTA) as an internal recovery standard. Results are corrected for this standard. The method is accurate (101% average recovery) and precise (5.5% relative standard deviation (RSD)) based on 17 duplicate analysis of various food products over 2 years. A total of 140 diet composites were analysed for OTA as part of the Canadian Total Diet Study. Samples were collected at retail level from two Canadian cities, Quebec City and Calgary, in 2008 and 2009, respectively. The results indicate that 73% (102/140) of the samples had detectable levels of OTA, with some of the highest levels of OTA contamination found in the Canadian bread supply. PMID:21623499

  5. Application of Carbon Isotope Fractionation during the Reduction Process from CO 2 to CH 4

    NASA Astrophysics Data System (ADS)

    Li, Jin; Hu, Guoyi; Zhang, Ying; Yang, Guifang; Cui, Huiying; Cao, Hongming; Hu, Xülong

    The CO 2 reduced to CH 4 pathway is important for the generation of biogas in the geological history. The Quaternary biogenic gas fields in Qaidam Basin of China belong to the CO 2/H 2 reduction biogenic gas. According to the theory of H 2/CO 2 reduction, we have carried out the biosimulation experiments with different occurrences and different initial carbon isotope values of carbon sources. The experimental results indicate that there is a positive correlation between the δ 13C methane values and the δ 13C values of the substrate in products; In response to the existence of excessive substrate, the occurrence of substrate has its effect on the δ 13C methane values. The δ 13C methane values from free CO 2 reduced to CH 4 is relatively lower than those coming from HCO 3- and CO 32- ions. By applying to the Quaternary biogenic gas filed in the east of Qaidam Basin, the source and occurrences of the main substrate CO 2 are discussed, and these have import reference significance for evaluating the biogas resources and searching for favorable exploration areas.

  6. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology.

    PubMed

    Uno, Kevin T; Quade, Jay; Fisher, Daniel C; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E

    2013-07-16

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon ((14)C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric (14)C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. (14)C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. (14)C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve (14)C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts. PMID:23818577

  7. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    NASA Astrophysics Data System (ADS)

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-07-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts.

  8. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology

    PubMed Central

    Uno, Kevin T.; Quade, Jay; Fisher, Daniel C.; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E.

    2013-01-01

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon (14C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric 14C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3–1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. 14C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. 14C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve 14C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts. PMID:23818577

  9. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology.

    PubMed

    Uno, Kevin T; Quade, Jay; Fisher, Daniel C; Wittemyer, George; Douglas-Hamilton, Iain; Andanje, Samuel; Omondi, Patrick; Litoroh, Moses; Cerling, Thure E

    2013-07-16

    Above-ground thermonuclear weapons testing from 1952 through 1962 nearly doubled the concentration of radiocarbon ((14)C) in the atmosphere. As a result, organic material formed during or after this period may be radiocarbon-dated using the abrupt rise and steady fall of the atmospheric (14)C concentration known as the bomb-curve. We test the accuracy of accelerator mass spectrometry radiocarbon dating of 29 herbivore and plant tissues collected on known dates between 1905 and 2008 in East Africa. Herbivore samples include teeth, tusks, soft tissue, hair, and horn. Tissues formed after 1955 are dated to within 0.3-1.3 y of formation, depending on the tissue type, whereas tissues older than ca. 1955 have high age uncertainties (>17 y) due to the Suess effect. (14)C dating of tissues has applications to stable isotope (paleo)ecology and wildlife forensics. We use data from 41 additional samples to determine growth rates of tusks, molars, and hair, which improve interpretations of serial stable isotope data for (paleo)ecological studies. (14)C dating can also be used to calculate the time interval represented in periodic histological structures in dental tissues (i.e., perikymata), which in turn may be used as chronometers in fossil teeth. Bomb-curve (14)C dating of confiscated animal tissues (e.g., ivory statues) can be used to determine whether trade of the item is legal, because many Convention of International Trade of Endangered Species restrictions are based on the age of the tissue, and thus can serve as a powerful forensic tool to combat illegal trade in animal parts.

  10. Application of the second rule of transient-state kinetic isotope effects to an enzymatic mechanism.

    PubMed

    Fisher, Harvey F; Maniscalco, Steven J; Tally, Jon; Tabanor, Kayann

    2009-12-29

    The transient-state kinetic approach reveals the formation and subsequent interconversions of intermediates in real time. Its potential for the mechanistic resolution of enzymatic and other complex chemical mechanisms has been severely limited however by the lack of a rigorous and applicable theoretical basis in contrast to that of the less direct but soundly based algebraic algorithms of the steady-state approach. Having recently established three rigorously derived fundamental "rules" of transient-state kinetics applicable to realistic multiple step reactions, we present here the successful application of the very counterintuitive "second rule" to the resolution of the mechanism of the l-phenylalanine dehydrogenase catalyzed reaction. PMID:19924903

  11. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  12. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry for Applications in Stable Isotope Probing.

    PubMed

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L; Mohn, William W

    2014-12-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating (13)C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography-tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% (13)C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation.

  13. Application of three-class ROC analysis to task-based image quality assessment of simultaneous dual-isotope myocardial perfusion SPECT (MPS).

    PubMed

    He, Xin; Song, Xiyun; Frey, Eric C

    2008-11-01

    The diagnosis of cardiac disease using dual-isotope myocardial perfusion SPECT (MPS) is based on the defect status in both stress and rest images, and can be modeled as a three-class task of classifying patients as having no, reversible, or fixed perfusion defects. Simultaneous acquisition protocols for dual-isotope MPS imaging have gained much interest due to their advantages including perfect registration of the (201)Tl and (99m)Tc images in space and time, increased patient comfort, and higher clinical throughput. As a result of simultaneous acquisition, however, crosstalk contamination, where photons emitted by one isotope contribute to the image of the other isotope, degrades image quality. Minimizing the crosstalk is important in obtaining the best possible image quality. One way to minimize the crosstalk is to optimize the injected activity of the two isotopes by considering the three-class nature of the diagnostic problem. To effectively do so, we have previously developed a three-class receiver operating characteristic (ROC) analysis methodology that extends and unifies the decision theoretic, linear discriminant analysis, and psychophysical foundations of binary ROC analysis in a three-class paradigm. In this work, we applied the proposed three-class ROC methodology to the assessment of the image quality of simultaneous dual-isotope MPS imaging techniques and the determination of the optimal injected activity combination. In addition to this application, the rapid development of diagnostic imaging techniques has produced an increasing number of clinical diagnostic tasks that involve not only disease detection, but also disease characterization and are thus multiclass tasks. This paper provides a practical example of the application of the proposed three-class ROC analysis methodology to medical problems.

  14. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  15. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  16. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  17. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  18. Applications of the 190Pt-186Os isotope system to geochemistry and cosmochemistry

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Beary, E.S.; Smoliar, M.I.; Czamanske, G.K.; Horan, M.F.

    1997-01-01

    Platinum is fractionated from osmium primarily as a consequence of processes involving sulfide and metal crystallization. Consequently, the 190Pt-186Os isotope system (190Pt ??? 186Os + ??) shows promise for dating some types of magmatic sulfide ores and evolved iron meteorites. The first 190Pt-186Os isochrons are presented here for ores from the ca. 251 Ma Noril'sk, Siberia plume, and for group IIAB magmatic iron meteorites. Given the known age of the Noril'sk system, a decay constant for 190Pt is determined to be 1.542 ?? 10-12a-1, with ??1% uncertainty. The isochron generated for the IIAB irons is consistent with this decay constant and the known age of the group. The 186Os/188Os ratios of presumably young, mantle-derived osmiridiums and also the carbonaceous chondrite Allende were measured to high-precision to constrain the composition of the modern upper mantle. These compositions overlap, indicating that the upper mantle is chondritic within the level of resolution now available. Our best estimate for this 186Os/188Os ratio is 0.119834 ?? 2 (2??M). The 190Pt/186Os ratios determined for six enstatite chondrites average 0.001659 ?? 75, which is very similar to published values for carbonaceous chondrites. Using this ratio and the presumed composition of the modern upper mantle and chondrites, a solar system initial 186Os/188Os ratio of 0.119820 is calculated. In comparison to the modern upper mantle composition, the 186Os/188Os ratio of the Noril'sk plume was approximately 0.012% enriched in 186Os. Possible reasons for this heterogeneity include the recycling of Pt-rich crust into the mantle source of the plume and derivation of the osmium from the outer core. Derivation of the osmium from the outer core is our favored model. Copyright ?? 1997 Elsevier Science Ltd.

  19. Isotopic analysis of methane by Cavity Ringdown Spectroscopy (CRDS) Application to the deep-sea Congolobe fan

    NASA Astrophysics Data System (ADS)

    Caprais, J.; Cathalot, C.; de Prunelé, A.; Ruffine, L.; Cassarino, L.; Le Bruchec, J.; Olu, K.; Rabouille, C.

    2013-12-01

    Channeling all the continental material exported from the Congo River to the terminal lobes, the Congo deep-sea fan constitutes an unrecognized hotspot for biology and biogeochemistry in the Atlantic Ocean. Assemblages of benthic ecosystems in this peculiar environment mimic the ones observed only in active cold-seep regions. Massive organic matter inputs from the Congo canyon likely induce a sedimentary production of reduced fluids bearing sulphide and methane. These reduced compounds may support the development of bacterial mats based on chemo-autotrophy and the presence of biological communities feeding on these mats, as already observed in sediment from the lobe zone. Yet, the processes and driving forces controlling the structure of benthic communities in the lobe of the Congo submarine canyon are still poorly understood. Isotopic fractionations occurring during methanogenesis (depletion), thermic alteration of organic matter (enrichment), and microbial anaerobic oxidation (enrichment) lead to distinct δ13CH4 signatures 1,2. Hence, stable methane isotopes are increasingly being used to determine methane source in the surrounding sediments and infer the gas provenance 3. In the frame of the Congolobe project, this study investigates the functioning of benthic communities in relation with the main environmental conditions. Specifically, it focuses on the applicability of the stable methane isotopes (δ13CH4) in understanding the sediment processes involved and the metabolism of the benthic ecosystems (chemo-autotrophy vs heterotrophy). A total of 5 sites (A, B, C, E, F) were investigated, at a water depth of approximately 5000 m. Three sites (A,F,C) were located along the main axis of the currently active lobe. Site B was located on a lobe which has been disconnected from the active canyon for several decades. Site E corresponds to a fossil lobe, and is taken as a reference station for hemipelagic deposition. At site C, sediment cores of ~20 cm length were

  20. Application of copper vapour lasers for controlling activity of uranium isotopes

    SciTech Connect

    Barmina, E V; Sukhov, I A; Lepekhin, N M; Priseko, Yu S; Filippov, V G; Simakin, Aleksandr V; Shafeev, Georgii A

    2013-06-30

    Beryllium nanoparticles are generated upon ablation of a beryllium target in water by a copper vapour laser. The average size of single crystalline nanoparticles is 12 nm. Ablation of a beryllium target in aqueous solutions of uranyl chloride leads to a significant (up to 50 %) decrease in the gamma activity of radionuclides of the uranium-238 and uranium-235 series. Data on the recovery of the gamma activity of these nuclides to new steady-state values after laser irradiation are obtained. The possibility of application of copper vapour lasers for radioactive waste deactivation is discussed. (laser applications and other topics in quantum electronics)

  1. Stable carbon and hydrogen isotope analysis of methyl tert-butyl ether and tert-amyl methyl ether by purge and trap-gas chromatography-isotope ratio mass spectrometry: method evaluation and application.

    PubMed

    Kujawinski, Dorothea M; Stephan, Manuel; Jochmann, Maik A; Krajenke, Karen; Haas, Joe; Schmidt, Torsten C

    2010-01-01

    In order to monitor the behaviour of contaminants in the aqueous environment effective enrichment techniques often have to be employed due to their low concentrations. In this work a robust and sensitive purge and trap-gas chromatography-isotope ratio mass spectrometry method for carbon and hydrogen isotope analysis of fuel oxygenates in water is presented. The method evaluation included the determination of method detection limits, accuracy and reproducibility of deltaD and delta(13)C values. Lowest concentrations at which reliable delta(13)C values could be determined were 5 microg L(-1) and 28 microg L(-1) for TAME and MTBE, respectively. Stable deltaD values for MTBE and TAME could be achieved for concentrations as low as 25 and 50 microg L(-1). Good long-term reproducibility of delta(13)C and deltaD values was obtained for all target compounds. But deltaD values varying more than 5 per thousand were observed using different thermal conversion tubes. Thus, a correction of deltaD values in the analysis of groundwater samples was necessary to guarantee comparability of the results. The applicability of this method was shown by the analysis of groundwater samples from a gasoline contaminated site. By two dimensional isotope analysis two locations within this site were identified at which anaerobic and aerobic degradation of methyl tert-butyl ether occurred.

  2. Design and Application of a Sr-84/Sr-87-Double Spike to Determine Natural Strontium Isotope Fractionation in Carbonates and Silicates

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Eisenhauer, A.; Liebetrau, V.; Fietzke, J.; Boehm, F.

    2008-12-01

    In order to precisely determine 88Sr/86Sr- and 87Sr/86Sr-isotope variations in natural samples using TIMS-technique we developed a mixed 87Sr/84Sr-double spike from two solutions enriched in 84Sr and 87Sr, respectively. After mixing the two solutions the Sr-spike ratios have precisely been determined by calibration to the NBS 987 standard. For the determination of natural 88Sr/86Sr- and 87Sr/86Sr-isotope variations in carbonates and silicates two TIMS measurements are required: an unspiked and a spiked run where the Sr-isotope ratios are arbitrarily normalized to a fixed Sr isotope ratio (e.g. mean of the first block). For denormalization and data reduction we adopted the algorithm for Ca isotope measurements (1) presented earlier by Heuser et al.(2003) modified for Sr-isotope measurements. It was found that best results can be achieved if the 84Srspike/84Srsample ratio is higher than about 12. The algorithm allows the simultaneous calculation of 87Sr/86Sr and 88Sr/86Sr ratios. Standard measurements showed a δ88/86Sr-value (δ88/86Sr=((88Sr/86Sr)Sample/(88Sr/86Sr)NBS 987)-1)*1000) of 0.39 for the IAPSO seawater standard corresponding to an external reproducibility of ±0.02 (n=12). The IAPSO δ88/86Sr-value corresponds to a 87Sr/86Sr-ratio of 0.709285(6). Both values are in accordance with earlier publications (2) and theoretical predictions based on the δ88/86Sr ratio of seawater and assuming mass-dependent isotope fractionation. Preliminary application of the Sr- double spike to carbonate samples of the Phanerocoic indicate unexpected δ88/86Sr variations in the order of about 0.2 to 0.3 ‰ which indicate varying supply of Sr from isotopically distinctively different sources. Furthermore a direct comparison of double spike TIMS, bracketing standard and laser- ablation MC-ICP-MS (3) results are in agreement and can be used to discuss limitation and perspectives of future Sr isotope measurements. References: 1 Heuser A., Eisenhauer A., Gussone N., Bock B

  3. Application of non-lethal stable isotope analysis to assess feeding patterns of juvenile pallid sturgeon Scaphirhynchus albus: a comparison of tissue types and sample preservation methods

    USGS Publications Warehouse

    Andvik, R.T.; VanDeHey, J.A.; Fincel, M.J.; French, William E.; Bertrand, K.N.; Chipps, Steven R.; Klumb, R.A.; Graeb, B.D.S.

    2010-01-01

    Traditional techniques for stable isotope analysis (SIA) generally require sacrificing animals to collect tissue samples; this can be problematic when studying diets of endangered species such as the pallid sturgeon Scaphirhynchus albus. Our objectives were to (i) determine if pectoral fin tissue (non-lethal) could be a substitute for muscle tissue (lethal) in SIA of juvenile pallid sturgeon, and (ii) evaluate the influence of preservation techniques on stable isotope values. In the laboratory, individual juvenile pallid sturgeon were held for up to 186 day and fed chironomids, fish, or a commercially available pellet diet. Significant, positive relationships (r² ≥ 0.8) were observed between fin and muscle tissues for both δ15N and δ13C; in all samples isotopes were enriched in fins compared to muscle tissue. Chironomid and fish based diets of juvenile pallid sturgeon were distinguishable for fast growing fish (0.3 mm day−1) using stable δ15N and δ13C isotopes. Frozen and preserved fin tissue δ15N isotopes were strongly related (r2 = 0.89) but δ13C isotopes were weakly related (r2 = 0.16). Therefore, freezing is recommended for preservation of fin clips to avoid the confounding effect of enrichment by ethanol. This study demonstrates the utility of a non-lethal technique to assess time integrated food habits of juvenile pallid sturgeon and should be applicable to other threatened or endangered species.

  4. Stable Carbon Isotopes (δ 13C) in Coral Skeletons: Experimental Approach and Applications for Paleoceanography

    NASA Astrophysics Data System (ADS)

    Grottoli, A. G.

    2004-12-01

    natural field conditions corals feed on zooplankton below this `nutrient threshold' and that increases in heterotrophy should result in decreases skeletal δ 13C values. Overall, changes in photosynthesis and heterotrophy have significant effects on coral skeletal δ 13C. In shallower corals, photosynthesis drives the bulk of the variation in δ 13C. In addition, boron isotope data indicate that pH levels do not vary with changes in photosynthesis or heterotrophy suggesting that metabolically driven δ 13C fractionation during skeletogenesis is not pH driven. Thus the skeletal δ 13C records from shallow corals in non-upwelling regions where zooplankton concentrations are relatively constant should represent a reliable proxy of light variability. Due to the complexity associated with nutrients and heterotrophy, δ 13C records from upwelling regions or deep corals are still difficult to resolve.

  5. Silicon isotopic abundance toward evolved stars and its application for presolar grains

    NASA Astrophysics Data System (ADS)

    Peng, T.-C.; Humphreys, E. M. L.; Testi, L.; Baudry, A.; Wittkowski, M.; Rawlings, M. G.; de Gregorio-Monsalvo, I.; Vlemmings, W.; Nyman, L.-A.; Gray, M. D.; de Breuck, C.

    2013-11-01

    Aims: Galactic chemical evolution (GCE) is important for understanding the composition of the present-day interstellar medium (ISM) and of our solar system. In this paper, we aim to track the GCE by using the 29Si/30Si ratios in evolved stars and tentatively relate this to presolar grain composition. Methods: We used the APEX telescope to detect thermal SiO isotopologue emission toward four oxygen-rich M-type stars. Together with the data retrieved from the Herschel science archive and from the literature, we were able to obtain the 29Si/30Si ratios for a total of 15 evolved stars inferred from their optically thin 29SiO and 30SiO emission. These stars cover a range of masses and ages, and because they do not significantly alter 29Si/30Si during their lifetimes, they provide excellent probes of the ISM metallicity (or 29Si/30Si ratio) as a function of time. Results: The 29Si/30Si ratios inferred from the thermal SiO emission tend to be lower toward low-mass oxygen-rich stars (e.g., down to about unity for W Hya), and close to an interstellar or solar value of 1.5 for the higher-mass carbon star IRC+10216 and two red supergiants. There is a tentative correlation between the 29Si/30Si ratios and the mass-loss rates of evolved stars, where we take the mass-loss rate as a proxy for the initial stellar mass or current stellar age. This is consistent with the different abundance ratios found in presolar grains. Before the formation of the Sun, the presolar grains indicate that the bulk of presolar grains already had 29Si/30Si ratios of about 1.5, which is also the ratio we found for the objects younger than the Sun, such as VY CMa and IRC+10216. However, we found that older objects (up to possibly 10 Gyr old) in our sample trace a previous, lower 29Si/30Si value of about 1. Material with this isotopic ratio is present in two subclasses of presolar grains, providing independent evidence of the lower ratio. Therefore, the 29Si/30Si ratio derived from the SiO emission of

  6. Fluctuations Magnetiques des Gaz D'electrons Bidimensionnels: Application AU Compose Supraconducteur LANTHANE(2-X) Strontium(x) Cuivre OXYGENE(4)

    NASA Astrophysics Data System (ADS)

    Benard, Pierre

    Nous presentons une etude des fluctuations magnetiques de la phase normale de l'oxyde de cuivre supraconducteur La_{2-x}Sr _{x}CuO_4 . Le compose est modelise par le Hamiltonien de Hubbard bidimensionnel avec un terme de saut vers les deuxiemes voisins (modele tt'U). Le modele est etudie en utilisant l'approximation de la GRPA (Generalized Random Phase Approximation) et en incluant les effets de la renormalisation de l'interaction de Hubbard par les diagrammes de Brueckner-Kanamori. Dans l'approche presentee dans ce travail, les maximums du facteur de structure magnetique observes par les experiences de diffusion de neutrons sont associes aux anomalies 2k _{F} de reseau du facteur de structure des gaz d'electrons bidimensionnels sans interaction. Ces anomalies proviennent de la diffusion entre particules situees a des points de la surface de Fermi ou les vitesses de Fermi sont tangentes, et conduisent a des divergences dont la nature depend de la geometrie de la surface de Fermi au voisinage de ces points. Ces resultats sont ensuite appliques au modele tt'U, dont le modele de Hubbard usuel tU est un cas particulier. Dans la majorite des cas, les interactions ne determinent pas la position des maximums du facteur de structure. Le role de l'interaction est d'augmenter l'intensite des structures du facteur de structure magnetique associees a l'instabilite magnetique du systeme. Ces structures sont souvent deja presentes dans la partie imaginaire de la susceptibilite sans interaction. Le rapport d'intensite entre les maximums absolus et les autres structures du facteur de structure magnetique permet de determiner le rapport U_ {rn}/U_{c} qui mesure la proximite d'une instabilite magnetique. Le diagramme de phase est ensuite etudie afin de delimiter la plage de validite de l'approximation. Apres avoir discute des modes collectifs et de l'effet d'une partie imaginaire non-nulle de la self-energie, l'origine de l'echelle d'energie des fluctuations magnetiques est examinee

  7. NEUTRON ACTIVATION ANALYSIS APPLICATIONS AT THE SAVANNAH RIVER SITE USING AN ISOTOPIC NEUTRON SOURCE

    SciTech Connect

    Diprete, D; C Diprete, C; Raymond Sigg, R

    2006-08-14

    NAA using {sup 252}Cf is used to address important areas of applied interest at SRS. Sensitivity needs for many of the applications are not severe; analyses are accomplished using a 21 mg {sup 252}Cf NAA facility. Because NAA allows analysis of bulk samples, it offers strong advantages for samples in difficult-to-digest matrices when its sensitivity is sufficient. Following radiochemical separation with stable carrier addition, chemical yields for a number methods are determined by neutron activation of the stable carrier. In some of the cases where no suitable stable carriers exist, the source has been used to generate radioactive tracers to yield separations.

  8. Using Radium Isotopes to Evaluate Cross-shelf Dispersion in the Coastal Ocean: Application to San Pedro Bay, CA

    NASA Astrophysics Data System (ADS)

    Colbert, S. L.; Hammond, D. E.

    2004-12-01

    The short-lived radium isotopes Ra-223 (11 day half life) and Ra-224 (3.6 day half-life) are potentially useful for evaluating cross-shelf dispersion rates in the coastal ocean. A requirement for this application is that their source function and its variability in time and space must be defined. The primary mechanisms for introducing radium into coastal surface waters include: (1) wave and tide-driven circulation of water through permeable beach sands, (2) input from the seafloor due to molecular diffusion and circulation of bottom water through surficial sands, (3) flow of water rich in Ra from marshes and estuaries, and (4) net advection of groundwater. The importance of these inputs to San Pedro Bay was determined from concentrations in waters collected from each of these potential sources. In most of the region, mechanism (2) supplies 90% of the input, although mechanisms (1) and (2) may become dominant locally as the coastal morphology varies in the longshore direction. Longshore variations in the composition of beach sand and the presence of persistent coastal eddies create longshore gradients in Ra concentration that are significant in this region. Temporal variations in shoreline concentrations on time scales 6-8 hours reflect variations in mechanism (1) as tides rise and fall, with drainage of water from the beach face creating higher concentrations during the falling tide. Despite these complications in characterizing the source function, the distribution of short-lived Ra isotopes is useful in constraining the rate of horizontal mixing. A two-dimensional advection-diffusion model was best fit with an eddy diffusivity of 1.3+/-0.2 m2/s over length scales of several km offshore, with a value about 50% smaller in the littoral zone. The scale dependence of eddy diffusivity is also apparent in the distribution of Ra-228, which requires lower eddy diffusivities in the nearshore than in the offshore region. A budget for Ra-226 indicates that little groundwater

  9. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    PubMed

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. PMID:21290447

  10. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  11. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  12. Une porte optique intensificatrice picoseconde a gain eleve: Caracterisation et application potentielle en imagerie de petits objets places dans des milieux diffusants

    NASA Astrophysics Data System (ADS)

    Marengo, Stephanie

    Dans cette etude, nous avons developpe un amplificateur a colorant possedant ces deux caracteristiques. Le colorant choisi, l'iodure de 3,3'-dimethyloxatricarbocyanine (methyl-DOTCI), possede un epaulement dans la bande d'absorption a 620 nm ce qui convient bien a notre pompe femtoseconde. De plus, son maximum de fluorescence est a 720 nm ce qui est particulierement interessant dans le cas des etudes avec des tissus biologiques humains. En effet, la fenetre dite "therapeutique" se situe dans les longueurs d'onde rouge et proche infrarouge. Le phenomene d'amplification, qui se produit dans des conditions experimentales precises, est en fait une emission stimulee du colorant qui est largement favorisee par rapport a sa fluorescence naturelle (emission spontanee). L'arrivee du signal incident, dont la longueur d'onde correspond au saut energetique entre l'etat fondamental et l'etat excite ou se trouvent les molecules, provoque une avalanche coherente de celles-ci vers l'etat fondamental generant ainsi l'emission stimulee. Une des conditions necessaires pour l'obtention d'un gain eleve est que la duree de l'impulsion de pompe soit inferieure au temps de relaxation des molecules ainsi qu'inferieure au temps requis pour effectuer un trajet dans la cellule de colorant. Ceci nous a permis d'amplifier un signal incident par un facteur entre 103 et 104. De plus, ce gain eleve n'est observe qu'a l'interieur d'une fenetre temporelle d'environ 10 picosecondes. Nous avons integre cet amplificateur a notre montage de transillumination afin d'acquerir des images d'un patron de lignes opaques immerge dans un milieu diffusant liquide. Des images de lignes ayant une resolution spatiale de 200 mum ont ete obtenues. La cible etait placee au centre d'un melange contenant des proportions variables de lait et d'eau. Deux longueurs de trajet optique dans la solution ont ete utilisees: 30 et 50 mm. Pour determiner les proprietes optiques de notre milieu diffusant, nous avons mis au point

  13. La microscopie ionique analytique des tissus biologiques

    NASA Astrophysics Data System (ADS)

    Galle, P.

    Proposed in 1960 by R. Castaing and G. Slodzian, secondary ion emission microanalysis is a microanalytical method which is now largely used for the study of inert material. The instrument called the analytical ion microscope can also be used for the study of biological spécimens ; images representing the distribution of a given stable or radioactive isotope in a tissue section are obtained with a resolution of 0.5 μm. Among the characteristics of this method, two are of particular interest in biological research : its capacity for isotopic analysis and its very high sensitivity which makes possible for the first time a chemical analysis of element at a very low or even at a trace concentration in a microvolume. Proposé en 1960 par R. Castaing et G. Slodzian, la microanalyse par émission ionique secondaire est une méthode qui permet, entre autre, d'obtenir des images représentant la distribution des isotopes présents à la surface d'un échantillon solide avec une résolution de 0,5 μm. D'intérêt très général, cette méthode a été d'abord largement utilisée pour l'étude des matériaux inertes. Elle offre en outre des possibilités entièrement nouvelles dans le domaine de la recherche biomédicale. L'instrument réalisé, le microscope ionique analytique présente deux caractéristiques particulièrement intéressantes pour la biologie : la possibilité d'analyse isotopique, et l'extrême sensibilité permettant de détecter et de localiser dans une coupe histologique des éléments à des concentrations très faibles voire à l'état de trace.

  14. A compact 14C Isotope Ratio Mass Spectrometer for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mous, D. J. W.; Purser, K. H.; Fokker, W.; van den Broek, R.; Koopmans, R. B.

    1997-03-01

    During the last two decades the unparalleled sensitivity of accelerator mass spectrometry (AMS) has allowed major developments in many areas of geoscience and archeology. It is projected that in the near future a similar potential for AMS expansion is likely in the field of biomedical research leading, ultimately, to clinical applications. As an example of the growth of this new field, at the Lawrence Livermore National Laboratory Center for AMS the number of biomedical 14C measurements already represents a significant fraction of the total for all 14C. Widespread adoption of AMS in the biomedical field does require, however, the availability of instruments that are small in comparison with existing AMS systems and that will operate in a manner that is simple and user-friendly. To meet this demand, High Voltage Engineering Europa (HVEE) has developed a miniature, high-efficiency AMS instrument designed to provide for biomedical samples {14C}/{12C} ratios with an accuracy better than 2% and with backgrounds limitations below 0.1 Modern. The current status of this program will be presented in the present paper.

  15. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  16. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  17. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement withmore » values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.« less

  18. (135)Cs/(137)Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications.

    PubMed

    Snow, Mathew S; Snyder, Darin C

    2016-01-01

    (135)Cs/(137)Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the (135)Cs/(137)Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product (135)Cs/(137)Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated (135)Cs/(137)Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show (135)Cs/(137)Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. The differences in (135)Cs/(137)Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that (135)Cs/(137)Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.

  19. (135)Cs/(137)Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications.

    PubMed

    Snow, Mathew S; Snyder, Darin C

    2016-01-01

    (135)Cs/(137)Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the (135)Cs/(137)Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product (135)Cs/(137)Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated (135)Cs/(137)Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show (135)Cs/(137)Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. The differences in (135)Cs/(137)Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that (135)Cs/(137)Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe. PMID:26540258

  20. Isotopic fractionation by diffusion in groundwater

    NASA Astrophysics Data System (ADS)

    Labolle, Eric M.; Fogg, Graham E.; Eweis, Juana B.; Gravner, Janko; Leaist, Derek G.

    2008-07-01

    During the last decade, isotopic fractionation has gained acceptance as an indicator of microbiological and chemical transformations of contaminants in groundwater. These transformation processes typically favor isotopically light, compared to isotopically heavy, contaminants, resulting in enrichment of the latter in the residual aqueous phase. In these isotope applications, it has been generally presumed that physical transport processes in groundwater have a negligible effect on isotopic enrichment. It is well known, however, that aqueous phase diffusion generally proceeds faster for isotopically light, compared to isotopically heavy, solute molecules, often resulting in isotopic fractionation in groundwater. This paper considers the potential for isotopic fractionation during transport in groundwater resulting from minute isotopic effects on aqueous diffusion coefficients. Analyses of transport in heterogeneous systems delimit the viable range of isotopic fractionation by diffusion in groundwater. Results show that diffusion can result in similar degrees of depletion and enrichment of isotopically heavy solutes during transport in heterogeneous systems with significant diffusion rate-limited mass transfer between fast- and slow-flow zones. Additional analyses and examples explore conditions that attenuate the development of significant fractionation. Examples are presented for 13C methyl tertiary butyl ether and deuterated and nondeuterated isopropanol and tertiary butyl alcohol using aqueous diffusion coefficients measured by the Taylor dispersion method with refractive index profiling as a part of this study. Examples elucidate the potential for diffusive fractionation as a confounder in isotope applications and emphasize the importance of hydrogeologic analysis for assessing the role of diffusive fractionation in isotope applications at contaminant field sites.

  1. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  2. Isotope Inversion Experiment evaluating the suitability of calibration in surrogate matrix for quantification via LC-MS/MS-Exemplary application for a steroid multi-method.

    PubMed

    Suhr, Anna Catharina; Vogeser, Michael; Grimm, Stefanie H

    2016-05-30

    For quotable quantitative analysis of endogenous analytes in complex biological samples by isotope dilution LC-MS/MS, the creation of appropriate calibrators is a challenge, since analyte-free authentic material is in general not available. Thus, surrogate matrices are often used to prepare calibrators and controls. However, currently employed validation protocols do not include specific experiments to verify the suitability of a surrogate matrix calibration for quantification of authentic matrix samples. The aim of the study was the development of a novel validation experiment to test whether surrogate matrix based calibrators enable correct quantification of authentic matrix samples. The key element of the novel validation experiment is the inversion of nonlabelled analytes and their stable isotope labelled (SIL) counterparts in respect to their functions, i.e. SIL compound is the analyte and nonlabelled substance is employed as internal standard. As a consequence, both surrogate and authentic matrix are analyte-free regarding SIL analytes, which allows a comparison of both matrices. We called this approach Isotope Inversion Experiment. As figure of merit we defined the accuracy of inverse quality controls in authentic matrix quantified by means of a surrogate matrix calibration curve. As a proof-of-concept application a LC-MS/MS assay addressing six corticosteroids (cortisol, cortisone, corticosterone, 11-deoxycortisol, 11-deoxycorticosterone, and 17-OH-progesterone) was chosen. The integration of the Isotope Inversion Experiment in the validation protocol for the steroid assay was successfully realized. The accuracy results of the inverse quality controls were all in all very satisfying. As a consequence the suitability of a surrogate matrix calibration for quantification of the targeted steroids in human serum as authentic matrix could be successfully demonstrated. The Isotope Inversion Experiment fills a gap in the validation process for LC-MS/MS assays

  3. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  4. PC/FRAM: A code for the nondestructive measurement of the isotopic composition of actinides for safeguards applications

    SciTech Connect

    Sampson, T.E.; Kelley, T.A.

    1996-12-01

    The Nuclear Safeguards Program at the Los Alamos National Laboratory has developed and fielded techniques for the gamma-ray spectrometry measurement of the isotopic composition of plutonium and other actinides for over 20 years, ever since Parker and Reilly first proposed a practical method for the measurement of the arbitrary sample. Their procedures, incorporating internal (to the measured gamma-ray spectrum) or {open_quotes}intrinsic{close_quotes} self-determination of the relative efficiency function of the sample-detector measurement system, are widely applied today. The PC/FRAM code is the most recent and most highly-developed Los Alamos code developed specifically for the nuclear safeguards applications of this technique. We will describe the measurement principles that allow accurate measurements to be taken on samples of arbitrary size, shape, and measurement geometry- and of arbitrary physical and chemical composition-through the use of known nuclear decay data (half-lives and branching intensities). Subsequently, we will describe the analysis methodology, which is driven by an easily edited parameter file that frees the user from dependence on a dedicated programmer for analyses of special cases. This methodology relies on internal gamma-ray peaks from the spectrum under analysis to self-calibrate the unknown spectrum for energy and peak shape (energy dependence of full width at half maximum (FWHM) and tailing parameters). The program uses these parameters to calculate response functions that are fit to the analysis peaks requested in the parameter file. The structure of the code and its Windows 3.1 user interface allows use with equal ease by the experienced spectroscopist or operator-level personnel in a working facility.

  5. New untargeted metabolic profiling combining mass spectrometry and isotopic labeling: application on Aspergillus fumigatus grown on wheat.

    PubMed

    Cano, Patricia M; Jamin, Emilien L; Tadrist, Souria; Bourdaud'hui, Pascal; Péan, Michel; Debrauwer, Laurent; Oswald, Isabelle P; Delaforge, Marcel; Puel, Olivier

    2013-09-01

    Characterization of fungal secondary metabolomes has become a challenge due to the industrial applications of many of these molecules, and also due to the emergence of fungal threats to public health and natural ecosystems. Given that, the aim of the present study was to develop an untargeted method to analyze fungal secondary metabolomes by combining high-accuracy mass spectrometry and double isotopic labeling of fungal metabolomes. The strain NRRL 35693 of Aspergillus fumigatus , an important fungal pathogen, was grown on three wheat grain substrates: (1) naturally enriched grains (99% (12)C), (2) grains enriched 96.8% with (13)C, (3) grains enriched with 53.4% with (13)C and 96.8% with (15)N. Twenty-one secondary metabolites were unambiguously identified by high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) analysis. AntiBase 2012 was used to confirm the identity of these metabolites. Additionally, on the basis of tandem mass spectrometry (MS(n)) experiments, it was possible to identify for the first time the formula and the structure of fumigaclavine D, a new member of the fumigaclavines family. Post biosynthesis degradation of tryptoquivaline F by methanol was also identified during HPLC-HRMS analysis by the detection of a carbon atom of nonfungal origin. The interest of this method lies not only on the unambiguous determination of the exact chemical formulas of fungal secondary metabolites but also on the easy discrimination of nonfungal products. Validation of the method was thus successfully achieved in this study, and it can now be applied to other fungal metabolomes, offering great possibilities for the discovery of new drugs or toxins. PMID:23901908

  6. Quantifying sediment-associated metal dispersal using Pb isotopes: application of binary and multivariate mixing models at the catchment-scale.

    PubMed

    Bird, Graham; Brewer, Paul A; Macklin, Mark G; Nikolova, Mariyana; Kotsev, Tsvetan; Mollov, Mihail; Swain, Catherine

    2010-06-01

    In this study Pb isotope signatures were used to identify the provenance of contaminant metals and establish patterns of downstream sediment dispersal within the River Maritsa catchment, which is impacted by the mining of polymetallic ores. A two-fold modelling approach was undertaken to quantify sediment-associated metal delivery to the Maritsa catchment; employing binary mixing models in tributary systems and a composite fingerprinting and mixing model approach in the wider Maritsa catchment. Composite fingerprints were determined using Pb isotopic and multi-element geochemical data to characterize sediments delivered from tributary catchments. Application of a mixing model allowed a quantification of the percentage contribution of tributary catchments to the sediment load of the River Maritsa. Sediment delivery from tributaries directly affected by mining activity contributes 42-63% to the sediment load of the River Maritsa, with best-fit regression relationships indicating that sediments originating from mining-affected tributaries are being dispersed over 200 km downstream.

  7. Application of MC-ICPMS to the precise determination of tellurium isotope compositions in chondrites, iron meteorites and sulfides

    NASA Astrophysics Data System (ADS)

    Fehr, Manuela A.; Rehkämper, Mark; Halliday, Alex N.

    2004-03-01

    New mass spectrometric techniques have been developed for the precise and accurate determination of Te isotope compositions. The methods are suitable for the analysis of stony and iron meteorites as well as sulfide mineral separates, such that they can be applied to search for Te isotope anomalies in various solar system materials. Tellurium is first separated from its matrix with a two-stage liquid chromatographic procedure. For iron meteorites, solvent-extraction is used to isolate Te from Fe prior to the column separation. The isotope composition of Te is then determined by multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS). Tellurium has a very high first ionization potential and thus MC-ICPMS is much more suitable for the isotopic analyses than positive ion thermal ionization mass spectrometry (TIMS). Only about 100 ng Te are required for a single high precision measurement. Analyses of two terrestrial sulfides, the carbonaceous chondrite Allende and the iron meteorite Canyon Diablo reveal that these have Te isotope compositions that are identical to the terrestrial standard within uncertainty. The Te isotope data acquired for standard solutions as well as meteorites and sulfides display reproducibilities (2[sigma]) of approximately +/-4500 ppm for 120Te/128Te, +/-140 ppm for 122Te/128Te, +/-100 ppm for 124Te/128Te, +/-30 ppm for 126Te/128Te, and +/-60 ppm for 130Te/128Te. Compared to published results for meteorite samples obtained by TIMS, this represents an improvement in precision of about one to two orders of magnitude for 122-130Te/128Te and by a factor of 4 for 120Te/128Te. A number of experiments furthermore demonstrate that the isotope data acquired by MC-ICPMS are accurate, even for complex geological samples.

  8. Strontium Isotope Fractionation in the marine Realm: first application of a 87Sr/84Sr-Double Spike

    NASA Astrophysics Data System (ADS)

    Eisenhauer, A.; Krabbenhöft, A.; Böhm, F.; Liebetrau, V.; Fietzke, J.; Augustin, N.; Peucker-Ehrenbrink, B.; Vollstaedt, H.

    2009-04-01

    In order to precisely determine 88Sr/86Sr- and 87Sr/86Sr-isotope variations in natural samples using TIMS-technique we developed a mixed 87Sr/84Sr-double spike from two solutions enriched in 84Sr and 87Sr, respectively. After mixing the two solutions the Sr-spike ratios have precisely been determined by calibration to the NBS 987 standard. For the determination of natural 88Sr/86Sr- and 87Sr/86Sr-isotope variations in carbonates and silicates two TIMS measurements are required: an unspiked and a spiked run where the Sr-isotope ratios are arbitrarily normalized to a fixed Sr isotope ratio (e.g. mean of the first block). For denormalization and data reduction we adopted the algorithm for Ca isotope measurements (1) presented earlier by Heuser et al.(2003) modified for Sr-isotope measurements. It was found that best results can be achieved if the 84Srspike/84Srsample ratio is higher than about 12. The algorithm allows the simultaneous calculation of 87Sr/86Sr and 88Sr/86Sr ratios. Standard measurements showed a ^88•86Sr-value (^88•86Sr=((88Sr/86Sr)Sample/(88Sr/86Sr)SRM987)-1)*1000) of 0.39 for the IAPSO seawater standard corresponding to an external reproducibility of ±0.012 (n=19). The IAPSO ^88•86Sr-value corresponds to a 87Sr/86Sr-ratio of 0.709317(9). Both values are in accordance with earlier publications (2) and theoretical predictions based on the ^88•86Sr ratio of seawater and assuming mass-dependent isotope fractionation. This technique allows us to correct the 88Sr/86Sr- and 87Sr/86Sr-isotope-ratios for mass dependent fractionation during both column chemistry and TIMS measurement procedure. Furthermore a direct comparison of double spike TIMS, bracketing standard and laser-ablation MC-ICP-MS (3) results are in agreement and can be used to discuss limitation and perspectives of future Sr isotope measurements. References: 1 Heuser A., Eisenhauer A., Gussone N., Bock B., Hansen B.T. and Nägler Th.F. (2003) Measurement of Calcium Isotopes (^44Ca) Using a

  9. Optimization and application of ICPMS with dynamic reaction cell for precise determination of 44Ca/40Ca isotope ratios.

    PubMed

    Boulyga, Sergei F; Klötzli, Urs; Stingeder, Gerhard; Prohaska, Thomas

    2007-10-15

    An inductively coupled plasma mass spectrometer with dynamic reaction cell (ICP-DRC-MS) was optimized for determining (44)Ca/(40)Ca isotope ratios in aqueous solutions with respect to (i) repeatability, (ii) robustness, and (iii) stability. Ammonia as reaction gas allowed both the removal of (40)Ar+ interference on (40)Ca+ and collisional damping of ion density fluctuations of an ion beam extracted from an ICP. The effect of laboratory conditions as well as ICP-DRC-MS parameters such a nebulizer gas flow rate, rf power, lens potential, dwell time, or DRC parameters on precision and mass bias was studied. Precision (calculated using the "unbiased" or "n - 1" method) of a single isotope ratio measurement of a 60 ng g(-1) calcium solution (analysis time of 6 min) is routinely achievable in the range of 0.03-0.05%, which corresponded to the standard error of the mean value (n = 6) of 0.012-0.020%. These experimentally observed RSDs were close to theoretical precision values given by counting statistics. Accuracy of measured isotope ratios was assessed by comparative measurements of the same samples by ICP-DRC-MS and thermal ionization mass spectrometry (TIMS) by using isotope dilution with a (43)Ca-(48)Ca double spike. The analysis time in both cases was 1 h per analysis (10 blocks, each 6 min). The delta(44)Ca values measured by TIMS and ICP-DRC-MS with double-spike calibration in two samples (Ca ICP standard solution and digested NIST 1486 bone meal) coincided within the obtained precision. Although the applied isotope dilution with (43)Ca-(48)Ca double-spike compensates for time-dependent deviations of mass bias and allows achieving accurate results, this approach makes it necessary to measure an additional isotope pair, reducing the overall analysis time per isotope or increasing the total analysis time. Further development of external calibration by using a bracketing method would allow a wider use of ICP-DRC-MS for routine calcium isotopic measurements, but it

  10. Application of Inductively Coupled Plasma Mass Spectrometry to the determination of uranium isotope ratios in individual particles for nuclear safeguards

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Zhi; Esaka, Fumitaka; Esaka, Konomi T.; Magara, Masaaki; Sakurai, Satoshi; Usuda, Shigekazu; Watanabe, Kazuo

    2007-10-01

    The capability of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of uranium isotope ratios in individual particles was determined. For this purpose, we developed an experimental procedure including single particle transfer with a manipulator, chemical dissolution and isotope ratio analysis, and applied to the analysis of individual uranium particles in certified reference materials (NBL CRM U050 and U350). As the result, the 235U/ 238U isotope ratio for the particle with the diameter between 0.5 and 3.9 μm was successfully determined with the deviation from the certified ratio within 1.8%. The relative standard deviation (R.S.D.) of the 235U/ 238U isotope ratio was within 4.2%. Although the analysis of 234U/ 238U and 236U/ 238U isotope ratios gave the results with inferior precision, the R.S.D. within 20% was possible for the measurement of the particle with the diameter more than 2.1 μm. The developed procedure was successfully applied to the analysis of a simulated environmental sample prepared from a mixture of indoor dust (NIST SRM 2583) and uranium particles (NBL CRM U050, U350 and U950a). From the results, the proposed procedure was found to be an alternative analytical tool for nuclear safeguards.

  11. Analyzing Nuclear Fuel Cycles from Isotopic Ratios of Waste Products Applicable to Measurement by Accelerator Mass Spectrometry

    SciTech Connect

    Biegalski, S R; Whitney, S M; Buchholz, B

    2005-08-24

    An extensive study was conducted to determine isotopic ratios of nuclides in spent fuel that may be utilized to reveal historical characteristics of a nuclear reactor cycle. This forensic information is important to determine the origin of unknown nuclear waste. The distribution of isotopes in waste products provides information about a nuclear fuel cycle, even when the isotopes of uranium and plutonium are removed through chemical processing. Several different reactor cycles of the PWR, BWR, CANDU, and LMFBR were simulated for this work with the ORIGEN-ARP and ORIGEN 2.2 codes. The spent fuel nuclide concentrations of these reactors were analyzed to find the most informative isotopic ratios indicative of irradiation cycle length and reactor design. Special focus was given to long-lived and stable fission products that would be present many years after their creation. For such nuclides, mass spectrometry analysis methods often have better detection limits than classic gamma-ray spectroscopy. The isotopic ratios {sup 151}Sm/{sup 146}Sm, {sup 149}Sm/{sup 146}Sm, and {sup 244}Cm/{sup 246}Cm were found to be good indicators of fuel cycle length and are well suited for analysis by accelerator mass spectroscopy.

  12. Source apportionment of methane using a triple isotope approach - Method development and application in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Steinbach, Julia; Holmstrand, Henry; Semiletov, Igor; Shakhova, Natalia; Shcherbakova, Kseniia; Kosmach, Denis; Sapart, Célia J.; Gustafsson, Örjan

    2015-04-01

    We present a method for measurements of the stable and radiocarbon isotope systems of methane in seawater and sediments. The triple isotope characterization of methane is useful in distinguishing different sources and for improving our understanding of biogeochemical processes affecting methane in the water column. D14C-CH4 is an especially powerful addition to stable isotope analyses in distinguishing between thermogenic and biogenic origins of the methane. Such measurements require large sample sizes, due to low natural abundance of the radiocarbon in CH4. Our system for sample collection, methane extraction and purification builds on the approach by Kessler and Reeburgh (Limn. & Ocean. Meth., 2005). An in-field system extracts methane from 30 -120 l water or 1-2 l sediment (depending on the in-situ methane concentration) by purging the samples with Helium to transfer the dissolved methane to the headspace and circulating it through cryogenically cooled absorbent traps where methane is collected. The in-field preparation eliminates the risks of storage and transport of large seawater quantities and subsequent leakage of sample gas as well as ongoing microbial processes and chemical reactions that may alter the sample composition. In the subsequent shore-based treatment, a laboratory system is used to purify and combust the collected CH4 to AMS-amenable CO2. Subsamples from the methane traps are analyzed for stable isotopes and compared to stable isotope measurements directly measured from small water samples taken in parallel, to correct for any potential fractionation occurring during this process. The system has been successfully tested and used on several shorter shipboard expeditions in the Baltic Sea and on a long summer expedition across the Arctic Ocean. Here we present the details of the method and testing, as well as first triple isotope field data from two cruises to the Landsort Deep area in the Central Baltic Sea.

  13. The combined application of organic sulphur and isotope geochemistry to assess multiple sources of palaeobiochemicals with identical carbon skeletons

    NASA Technical Reports Server (NTRS)

    Kohnen, M. E.; Schouten, S.; Sinninghe Damste, J. S.; de Leeuw, J. W.; Merrit, D.; Hayes, J. M.

    1992-01-01

    Five immature sediments from a Messinian evaporitic basin, representing one evaporitic cycle, were studied using molecular organic sulphur and isotope geochemistry. It is shown that a specific carbon skeleton which is present in different "modes of occurrence" ("free" hydrocarbon, alkylthiophene, alkylthiolane, alkyldithiane, alkylthiane, and sulphur-bound in macromolecules) may have different biosynthetic precursors which are possibly derived from different biota. It is demonstrated that the mode of occurrence and the carbon isotopic composition of a sedimentary lipid can be used to "reconstruct" its biochemical precursor. This novel approach of recognition of the suite of palaeobiochemicals present during the time of deposition allows for identification of the biological sources with an unprecedented specificity.

  14. Les métamatériaux, des micro-ondes à l'optique : théorie et applications

    NASA Astrophysics Data System (ADS)

    Kante, B.

    2010-04-01

    Cet article constitue une contribution originale et importante à la compréhension à la fois théorique et expérimentale des métamatériaux en micro-ondes et en infrarouge. Nous avons réalisé et caractérisé sur silicium des nano-structures metallo-diélectriques, briques de base des métamatériaux infrarouge et optique. Des caractérisations optiques exhaustives ont été réalisées pour la première fois sur ces structures en amplitude et en phase par interférométrie. Des topologies plus simples de métamatériaux d’un point de vue technologique et des performances optiques ont été introduites, et leur potentiel démontré dans la réalisation de fonctions aussi complexes que la réfraction négative, le couplage de mode plasmoniques, les nano senseurs pour la biologie et l’invisibilité électromagnétique en infrarouge. Les transformations d’espace, et le nouveau paradigme qu’elles offrent à l’optique, rendant possible une ingénierie de l’espace pour les photons ainsi que leur implémentation par métamatériaux ont été présentés par la première démonstration expérimentale d’une cape d’invisibilité non magnétique.

  15. Transport aérien longue distance des brûlés graves: revue de la littérature et application pratique

    PubMed Central

    Leclerc, T.; Hoffmann, C.; Forsans, E.; Cirodde, A.; Boutonnet, M.; Jault, P.; Tourtier, J.-P.; Bargues, L.; Donat, N.

    2015-01-01

    Summary Les brûlés graves nécessitent une prise en charge multidisciplinaire dans des centres hautement spécialisés. La rareté de ces centres impose souvent le transport aérien médicalisé longue distance. Cependant, il y a peu de données publiées sur ces transferts. Dans cette mise au point, pour optimiser la prise en charge des brûlés dès qu’un transport aérien est décidé ou même seulement envisagé, nous proposons d’extraire de cette littérature limitée des principes simples s’appuyant aussi sur l’expérience pratique du Service de Santé des Armées françaises. Nous décrivons d’abord comment les contraintes aéronautiques peuvent affecter le transport de brûlés graves à bord d’aéronefs. Nous abordons ensuite la régulation de ces missions, en analysant les risques associés au transport aérien des brûlés graves et leurs implications sur les indications, la chronologie et les modalités du transport. Enfin, nous développons la conduite de la mission, comprenant la préparation du matériel et des consommables avant le vol, l’évaluation et la mise en condition du patient avant l’embarquement, et la poursuite de la prise en charge en vol. PMID:26668564

  16. An Improved Method for TIMS High Precision Nd Isotopic Analysis of Very Small Aliquots (1- 10ng) With Example Application in Garnet Sm/Nd Geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Harvey, J.; Mehl, L. Y.; Peterman, E. M.

    2007-12-01

    Technological and scientific developments have demonstrated both the attainability and the utility of very high precision (i.e. 5-20ppm 2 σ) Nd isotopic measurements with TIMS. However such high precision has been limited to relatively large aliquots of Nd, on the order of several hundred nanograms. Several potential applications of precise Nd isotopic measurements, including garnet Sm/Nd geochronology, do not always permit such large samples, instead yielding only a few nanograms of Nd. We have explored and tested an improved method for Nd isotopic analysis of such small (1-10ng) aliquots of Nd using the NdO+ method with a Triton TIMS at Boston University. Analyzing Nd isotopes as the oxide is a well known technique, frequently involving an oxygen bleed valve. Instead, we forego the bleed valve and load samples with a TaO slurry which provides the oxygen source. Using an in-house Nd isotopic standard solution, 4ng loads easily yield stable 2.0-2.5 volt beams resulting in internal precisions of 10ppm 2 σ RSE. Within barrel external precision of 4ng loads of the Nd standard is 13ppm 2 σ RSD (n=20). Long term (6 months, six analysts) external precision of 4ng loads of the standard is currently 23ppm 2 σ RSD (n=55) suggesting that further improvements are possible. As a further test of this method, we dissolved a natural rock sample (a metapelite), separated the Nd using TRU- spec and MLA column chemistry, and loaded nineteen 4ng loads in one barrel. Within barrel external precision was 21ppm 2 σ RSD (n=18). This precision represents a significant advance over previous NdO+ analyses of small samples using an oxygen bleed valve. The TaO loading method for small Nd aliquots is useful in Sm/Nd garnet geochronology as exemplified by two case studies. Garnets from eclogite facies gneisses from Norway ran very well with 2.4-18ng loads and yielded age precision as good as 0.8 million years 2 σ. Conversely, garnets from blueschist facies rocks from Sifnos, Greece, ran

  17. Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene

    NASA Astrophysics Data System (ADS)

    Mak, K. S.; Griebler, C.; Meckenstock, R. U.; Liedl, R.; Peter, A.

    2006-12-01

    In recent years, compound specific isotope analyses (CSIA) have developed into one of the most powerful tools for the quantification of in situ biodegradation of organic contaminants. In this approach, the calculation of the extent of biodegradation of organic contaminants in aquifers is usually based on the Rayleigh equation, and thus neglects physical transport processes such as dispersion that contribute to contaminant dilution in aquifers. Here we combine compound specific isotope analyses with a conservative transport model to study the attenuation of aromatic hydrocarbons at a former gasworks site. The conservative transport model was first used to simulate concentration reductions caused by dilution at wells downgradient of a BTEX source. In a second step, the diluted concentrations, together with the available stable carbon isotope ratios and carbon fractionation factors for benzene, toluene and o-xylene were applied in the Rayleigh equation to quantify the degree of biodegradation at each of those wells. At the investigated site, where other attenuation processes such as sorption and volatilisation were proven to be negligible, the combined approach is recommended for benzene, which represents a compound for which the effect of biodegradation is comparable to or less than the effect of dilution. As demonstrated for toluene and o-xylene, the application of the Rayleigh equation alone is sufficient if dilution can be proved to be insignificant in comparison to biodegradation. The analysis also suggests that the source width and the position of the observation wells relative to the plume center line are significantly related to the degree of dilution.

  18. Application of Stable Isotope in Hydrologic Analysis of a Rainfall-Runoff Event in the Xin'an Jiang River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yi, P.; Chen, L.; Aldahan, A.

    2015-12-01

    Stable isotopes abundance of hydrogen (δ2H) and oxygen (δ18O) are very sensitive to environmental changes and can help understand the complex recharges between surface water and groundwater. However, details of variability in the different components of water supply to watersheds are generally missing. We present here evaluation of isotopic changes in small watershed (0.19 km2) in the upstream of Xin'an River, Anhui province, China based on daily sampling of rainfall events and runoff (river and soil water). The δ2H and δ18O of different water sources in the watershed were aimed in order explore interactions between different parts of the hydrological processes. The collected water samples were analyzed for δ2H and δ18O using Picarro L-2120i analyzer at a precision of 1.0 and 0.1 ‰, respectively. The results indicated higher abundance of 2H and 18O in precipitation than those in river. Additionally, the content of the heavy isotopes also decreases in soil water with depth, while surface soil water was enriched because of evaporation. The response of the watershed to the changes in δ2H and δ18O varied, where water in upstream gained more heavy isotopes rapidly, while in the downstream part the enrichment happened after a few days. This feature suggests a different but still strong hydraulic connection between surface water and groundwater in the small watershed tested here. Accordingly, variability of δ2H and δ18O should be carefully evaluated on a local scale before application in transport system of large rivers and exchange with groundwater.

  19. Provenancing of unidentified World War II casualties: Application of strontium and oxygen isotope analysis in tooth enamel.

    PubMed

    Font, Laura; Jonker, Geert; van Aalderen, Patric A; Schiltmans, Els F; Davies, Gareth R

    2015-01-01

    In 2010 and 2012 two sets of unidentified human remains of two World War II soldiers were recovered in the area where the 1944-1945 Kapelsche Veer bridgehead battle took place in The Netherlands. Soldiers of four Allied nations: British Royal Marine Commandos, Free Norwegian Commandos, Free Poles and Canadians, fought against the German Army in this battle. The identification of these two casualties could not be achieved using dental record information of DNA analysis. The dental records of Missing in Action soldiers of the Allied nations did not match with the dental records of the two casualties. A DNA profile was determined for the casualty found in 2010, but no match was found. Due to the lack of information on the identification of the casualties provided by routine methods, an isotope study was conducted in teeth from the soldiers to constrain their provenance. The isotope study concluded that the tooth enamel isotope composition for both casualties matched with an origin from the United Kingdom. For one of the casualties a probable origin from the United Kingdom was confirmed, after the isotope study was conducted, by the recognition of a characteristic belt buckle derived from a Royal Marine money belt, only issued to British Royal Marines, found with the remains of the soldier. PMID:25577002

  20. Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry.

    PubMed

    Pourmand, Ali; Dauphas, Nicolas

    2010-05-15

    Batch equilibration experiments are conducted to measure the distribution coefficients (K(d)) of a large number of elements in nitric, nitric plus hydrofluoric, and hydrochloric acids on Eichrom TODGA extraction chromatography resin. The K(d)s are used to devise a multi-element extraction scheme for high-precision elemental and isotopic analyses of Ca, Hf, Lu, Th and U in geological materials, using high-purity lithium metaborate (LiBO(2)) flux fusion that allows rapid digestion of even the most refractory materials. The fusion melt, dissolved in nitric acid, is directly loaded to a TODGA cartridge on a vacuum chamber for elemental separation. An Ln-Spec cartridge is used in tandem with TODGA for Lu purification. The entire procedure, from flux digestion to preparation for isotopic analysis, can be completed in a day. The accuracy of the proposed technique is tested by measuring the concentrations of Ca (standard bracketing), Hf, Lu, Th and U (isotope dilution), and the isotopic composition of Hf in geostandards (USNM3529, BCR-2, BHVO-1, AGV-1 and AGV-2). All measurements are in excellent agreement with recommended literature values, demonstrating the effectiveness of the proposed analytical procedure and the versatility of TODGA resin. PMID:20298848

  1. Application of mercury isotopes for tracing trophic transfer and internal distribution of mercury in marine fish feeding experiments.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Chirby, Michelle A; Chesney, Edward J

    2013-10-01

    Feeding experiments were performed to investigate mercury (Hg) isotope fractionation during trophic transfer and internal distribution of total Hg (THg) in marine fish on exposure to natural seafood. Young-of-the-year amberjack (Seriola dumerili) were fed with either blackfin tuna (Thunnus atlanticus; 2647 ng/g THg) or brown shrimp (Farfantepenaeus aztecus; 25.1 ng/g THg) for 80 d or 50 d, respectively, and dissected for muscle, liver, kidney, brain, and blood. After 30 d of tuna consumption, Hg isotopes (δ(202) Hg and Δ(199)Hg) of the amberjack organs shifted to the tuna value (δ(202)Hg = 0.55‰, Δ(199)Hg = 1.54‰,), demonstrating the absence of Hg isotope fractionation. When amberjack were fed a shrimp diet, there was an initial mixing of the amberjack organs toward the shrimp value (δ(202)Hg = -0.48‰, Δ(199)Hg = 0.32‰), followed by a cessation of further shifts in Δ(199)Hg and a small shift in δ(202)Hg. The failure of Δ(199)Hg to reach the shrimp value can be attributed to a reduction in Hg bioaccumulation from shrimp resulting from feeding inhibition and the δ(202)Hg shift can be attributed to a small internal fractionation during excretion. Given that the feeding rate and Hg concentration of the diet can influence internal Hg isotope distribution, these parameters must be considered in biosentinel fish studies. PMID:23787815

  2. Provenancing of unidentified World War II casualties: Application of strontium and oxygen isotope analysis in tooth enamel.

    PubMed

    Font, Laura; Jonker, Geert; van Aalderen, Patric A; Schiltmans, Els F; Davies, Gareth R

    2015-01-01

    In 2010 and 2012 two sets of unidentified human remains of two World War II soldiers were recovered in the area where the 1944-1945 Kapelsche Veer bridgehead battle took place in The Netherlands. Soldiers of four Allied nations: British Royal Marine Commandos, Free Norwegian Commandos, Free Poles and Canadians, fought against the German Army in this battle. The identification of these two casualties could not be achieved using dental record information of DNA analysis. The dental records of Missing in Action soldiers of the Allied nations did not match with the dental records of the two casualties. A DNA profile was determined for the casualty found in 2010, but no match was found. Due to the lack of information on the identification of the casualties provided by routine methods, an isotope study was conducted in teeth from the soldiers to constrain their provenance. The isotope study concluded that the tooth enamel isotope composition for both casualties matched with an origin from the United Kingdom. For one of the casualties a probable origin from the United Kingdom was confirmed, after the isotope study was conducted, by the recognition of a characteristic belt buckle derived from a Royal Marine money belt, only issued to British Royal Marines, found with the remains of the soldier.

  3. The application of lead isotope ratios in the Antarctic macroalga Iridaea cordata as a contaminant monitoring tool.

    PubMed

    Runcie, John W; Townsend, Ashley T; Seen, Andrew J

    2009-07-01

    Lead (Pb) isotope ratios were measured in the marine macroalga Iridaea cordata collected from four locations in the Windmill Islands, East Antarctica. Based on the masses of thalli collected, samples analysed in this study were likely to be a mixture of one and two year old thalli. For a sample of thalli of various ages (<12 months to 2 years old) from the same site there was no apparent variation in Pb concentration or Pb isotope ratio with thallus mass/age, indicating that contaminant sources had been constant over the lifetime of the thalli sampled. I.cordata samples close to the Thala Valley waste disposal site (Brown Bay Inner) near the Australian Station, Casey, displayed isotopic signatures ((208)Pb/(204)Pb 35.99; (206)Pb/(207)Pb 1.066; n=3; average values shown) trending towards that possessed by major Australian Pb sources (Broken Hill and Mt Isa, (208)Pb/(204)Pb 35.60; (206)Pb/(207)Pb 1.041) suggesting that these samples had been exposed to anthropogenic Pb originating from the Thala Valley waste disposal site. Material collected hundreds of metres from the tip location at Brown Bay Outer had isotopic values ((208)Pb/(204)Pb 36.32; (206)Pb/(207)Pb 1.088; n=10) intermediate between Brown Bay Inner and sites further from the contaminant source at Sparkes Bay and Wilkes ((208)Pb/(204)Pb 36.46; (206)Pb/(207)Pb 1.094; n=4) showing that contaminant transport was predominantly restricted to Brown Bay Inner. This study demonstrates that the isotope ratios of Pb in marine macroalgae can provide valuable information as to the origin and extent of heavy metal flux in a marine environment.

  4. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  5. Isotopic Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  6. Des ballons pour demain

    NASA Astrophysics Data System (ADS)

    Régipa, R.

    A partir d'une théorie sur la détermination des formes et des contraintes globales d'un ballon de révolution, ou s'en rapprochant, une nouvelle famille de ballons a été définie. Les ballons actuels, dits de ``forme naturelle'', sont calculés en général pour une tension circonférencielle nulle. Ainsi, pour une mission donnée, la tension longitudinale et la forme de l'enveloppe sont strictement imposées. Les ballons de la nouvelle génération sont globalement cylindriques et leurs pôles sont réunis par un câble axial, chargé de transmettre une partie des efforts depuis le crochet (pôle inférieur), directement au pôle supérieur. De plus, la zone latérale cylindrique est soumise à un faible champ de tensions circonférencielles. Ainsi, deux paramètres permettent de faire évoluer la distribution des tensions et la forme de l'enveloppe: - la tension du câble de liaison entre pôles (ou la longueur de ce câble) - la tension circonférencielle moyenne désirée (ou le rayon du ballon). On peut donc calculer et réaliser: - soit des ballons de forme adaptée, comme les ballons à fond plat pour le bon fonctionnement des montgolfières infrarouge (projet MIR); - soit des ballons optimisés pour une bonne répartition des contraintes et une meilleure utilisation des matériaux d'enveloppe, pour l'ensemble des programmes stratosphériques. Il s'ensuit une économie sensible des coûts de fabrication, une fiabilité accrue du fonctionnement de ces ballons et une rendement opérationnel bien supérieur, permettant entre autres, d'envisager des vols à très haute altitude en matériaux très légers.

  7. Terpane biomarkers and carbon isotopes in environmental geochemistry-application of a case study from Prince William Sound, Alaska

    SciTech Connect

    Kvenvolden, K.A.; Hostettler, F.D.; Rosenbauer, R.J.; Hostetter, D.E.; Castle, W.T.

    1996-12-31

    Geochemical studies in Prince William Sound, Alaska, following the 1989 Exxon Valdez oil spill have provided information that is being used to interpret preliminary environmental geochemical observations made in coastal California. Although the shorelines of Prince William Sound still retain traces of the 1989 oil spill, most of the flattened tar balls that can be found today on these shorelines are not residues of Exxon Valdez oil. Rather, the hydrocarbon-biomarker and carbon-isotopic signatures of these tar balls have remarkably similar characteristics that are consistent with those of oil products that originated from Monterey Formation source rocks of California. Some of these products were spilled into the sound during the 1964 Alaskan earthquake. Selected terpane biomarker ratios and carbon isotope composition of whole oil samples can geochemically distinguish Exxon Valdez residues from the tar balls. Results are discussed.

  8. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ18Ocalc and δ13Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ18Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in 18O relative to 16O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ18Ocalc value of eggshell calcite to the δ18Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ13Ccalc and δ18Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ13Ccalc and high δ18Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  9. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    PubMed

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions.

  10. Oxygen isotope fractionation between bird eggshell calcite and body water: application to fossil eggs from Lanzarote (Canary Islands).

    PubMed

    Lazzerini, Nicolas; Lécuyer, Christophe; Amiot, Romain; Angst, Delphine; Buffetaut, Eric; Fourel, François; Daux, Valérie; Betancort, Juan Francisco; Flandrois, Jean-Pierre; Marco, Antonio Sánchez; Lomoschitz, Alejandro

    2016-10-01

    Oxygen and carbon isotope compositions of fossil bird eggshell calcite (δ(18)Ocalc and δ(13)Ccalc) are regularly used to reconstruct paleoenvironmental conditions. However, the interpretation of δ(18)Ocalc values of fossil eggshells has been limited to qualitative variations in local climatic conditions as oxygen isotope fractionations between calcite, body fluids, and drinking water have not been determined yet. For this purpose, eggshell, albumen water, and drinking water of extant birds have been analyzed for their oxygen and carbon isotope compositions. Relative enrichments in (18)O relative to (16)O between body fluids and drinking water of +1.6 ± 0.9 ‰ for semi-aquatic birds and of +4.4 ± 1.9 ‰ for terrestrial birds are observed. Surprisingly, no significant dependence to body temperature on the oxygen isotope fractionation between eggshell calcite and body fluids is observed, suggesting that bird eggshells precipitate out of equilibrium. Two empirical equations relating the δ(18)Ocalc value of eggshell calcite to the δ(18)Ow value of ingested water have been established for terrestrial and semi-aquatic birds. These equations have been applied to fossil eggshells from Lanzarote in order to infer the ecologies of the Pleistocene marine bird Puffinus sp. and of the enigmatic giant birds from the Pliocene. Both δ(13)Ccalc and δ(18)Ocalc values of Puffinus eggshells point to a semi-aquatic marine bird ingesting mostly seawater, whereas low δ(13)Ccalc and high δ(18)Ocalc values of eggshells from the Pliocene giant bird suggest a terrestrial lifestyle. This set of equations can help to quantitatively estimate the origin of waters ingested by extinct birds as well as to infer either local environmental or climatic conditions. PMID:27639729

  11. Straight line regression through data with correlated uncertainties in two or more dimensions, with an application to kinetic isotope fractionation

    NASA Astrophysics Data System (ADS)

    McLean, Noah M.

    2014-01-01

    Straight line regression algorithms are used frequently for measured data that contain non-negligible uncertainties in each variable. For the general case of correlated measurement uncertainties between two variables that differ from one analysis to the next, the popular algorithm of York, 1968 calculates the maximum likelihood estimate for the line parameters and their uncertainties. However, it considers only two-dimensional data and omits the uncertainty correlation between the slope and y-intercept, an important term for evaluating confidence intervals away from the origin. This contribution applies the maximum likelihood method to straight line regression through data in any number of dimensions to calculate a vector-valued slope and intercept as well as the covariance matrix that describes their uncertainties and uncertainty correlations. The algorithm is applied to Pb data measured by TIMS with a silica gel activator that define a fractionation line in a three dimensional log-ratio space. While the log-ratios of even mass number Pb isotopes follow the slope predicted by mass-dependent fractionation with a Rayleigh or exponential law within calculated uncertainties, the log-ratio containing the odd mass number isotope 207Pb diverges significantly, exhibiting mass-independent fractionation. The straight line regression algorithm is appropriate for fractionation lines that form linear trends in log-ratio space, but not for isochrons or mixing lines, which are predicted to be linear only when plotted as isotope or compositional ratios.

  12. Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays.

    PubMed

    Habler, Katharina; Frank, Oliver; Rychlik, Michael

    2016-01-01

    Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers. PMID:27355938

  13. Application of radium isotopes to determine crustal residence times of hydrothermal fluids from two sites on the Reykjanes Peninsula, Iceland

    NASA Astrophysics Data System (ADS)

    Kadko, David; Gronvold, Karl; Butterfield, David

    2007-12-01

    Radium isotopes were used to determine the crustal residence times of hydrothermal fluids from two geothermal wells (Svartsengi and Reykjanes) from the Reykjanes Peninsula, Iceland. The availability of rock samples from the subsurface (to depths of 2400 m) allowed direct comparison of the radium isotopic characteristics of the fluids with those of the rocks within the high temperature and pressure reaction zone. The 226Ra activity of the Svartsengi fluid was ˜one-fourth of the Reykjanes fluid and the 228Ra/ 226Ra ratio of the Svartsengi fluid was ˜twice that of Reykjanes. The fluid isotopic characteristics were relatively stable for both sites over the 6 years (2000-2006) of the study. It was determined, using a model that predicts the evolution of the fluid 228Ra/ 226Ra ratio with time, that both sites had fluid residence times, from the onset of high temperature water-rock reaction, of less than 5 years. Measurement of the short-lived 224Ra and 223Ra allowed estimation of the recoil input parameter used in the model. The derived timescale is consistent with results from similar studies of fluids from submarine systems, and has implications for the use of terrestrial systems in Iceland as an exploited energy resource.

  14. Combining Hydrophilic Interaction Chromatography (HILIC) and Isotope Tagging for Off-Line LC-NMR Applications in Metabolite Analysis

    PubMed Central

    Appiah-Amponsah, Emmanuel; Owusu-Sarfo, Kwadwo; Gowda, G.A. Nagana; Ye, Tao; Raftery, Daniel

    2013-01-01

    The complementary use of liquid chromatography (LC) and nuclear magnetic resonance (NMR) has shown high utility in a variety of fields. While the significant benefit of spectral simplification can be achieved for the analysis of complex samples, other limitations remain. For example, 1H LC-NMR suffers from pH dependent chemical shift variations, especially during urine analysis, owing to the high physiological variation of urine pH. Additionally, large solvent signals from the mobile phase in LC can obscure lower intensity signals and severely limit the number of metabolites detected. These limitations, along with sample dilution, hinder the ability to make reliable chemical shift assignments. Recently, stable isotopic labeling has been used to detect quantitatively specific classes of metabolites of interest in biofluids. Here we present a strategy that explores the combined use of two-dimensional hydrophilic interaction chromatography (HILIC) and isotope tagged NMR for the unambiguous identification of carboxyl containing metabolites present in human urine. The ability to separate structurally related compounds chromatographically, in off-line mode, followed by detection using 1H-15N 2D HSQC (two-dimensional heteronuclear single quantum coherence) spectroscopy, resulted in the assignment of low concentration carboxyl-containing metabolites from a library of isotope labeled compounds. The quantitative nature of this strategy is also demonstrated. PMID:24860727

  15. Chemical Synthesis of Deoxynivalenol-3-β-d-[(13)C₆]-glucoside and Application in Stable Isotope Dilution Assays.

    PubMed

    Habler, Katharina; Frank, Oliver; Rychlik, Michael

    2016-06-27

    Modified mycotoxins have been gaining importance in recent years and present a certain challenge in LC-MS/MS analysis. Due to the previous lack of a labeled isotopologue of the modified mycotoxin deoxynivalenol-3-glucoside, in our study we synthesized the first (13)C-labeled internal standard. Therefore, we used the Königs-Knorr method to synthesize deoxynivalenol-3-β-d-[(13)C₆]-glucoside originated from unlabeled deoxynivalenol and [(13)C₆]-labeled glucose. Using the synthesized isotopically-labeled standard deoxynivalenol-3-β-d-[(13)C₆]-glucoside and the purchased labeled standard [(13)C15]-deoxynivalenol, a stable isotope dilution LC-MS/MS method was firstly developed for deoxynivalenol-3-glucoside and deoxynivalenol in beer. The preparation and purification of beer samples was based on a solid phase extraction. The validation data of the newly developed method gave satisfying results. Intra- and interday precision studies revealed relative standard deviations below 0.5% and 7%, respectively. The recoveries ranged for both analytes between 97% and 112%. The stable isotope dilution assay was applied to various beer samples from four different countries. In summary, deoxynivalenol-3-glucoside and deoxynivalenol mostly appeared together in varying molar ratios but were quantified in rather low contents in the investigated beers.

  16. Phosphoprotein Isotope-coded Affinity Tags: Application to the Enrichment and Identification of Low-Abundance Phosphoproteins

    SciTech Connect

    Goshe, Michael; Veenstra, Timothy D. ); Panisko, Ellen A.; Conrads, Thomas P. ); Angell, Nicolas H.; Smith, Richard D. )

    2002-02-01

    A novel approach using different isotopic labeling and biotinylation has been developed for the enrichment and quantitation of phosphoseryl and phosphothreonyl-peptides. The phosphoprotein isotope-coded affinity tag (PhIAT) exploits the high affinity biotin-avidin interaction to isolate modified phosphopeptides from a complex mixture of peptides. The PhIAT strategy for quantifying and enriching mixtures for phosphopeptides was demonstrated using a commercially available sample of the phosphoprotein B-casein. A denatured solution of B-casein was labeled using the PhIAT method and after proteolytic digestion, the labeled peptides were isolated using immobilize avidin. The recovered peptides were separated by capillary reversed-phase liquid chromatography and identified by tandem mass spectrometry. PhIAT-labeled peptides corresponding to known O-phosphorylated peptides from B-casein were identified as were phosphorylated peptides from as1-casein and ase-casein, known low-level (< 5%) contaminants of commercially available B-casein. All of the identified phosphopeptides from these caseins have been previously documented to be phosphorylated at the sites elucidated by the PhIAT approach. The results illustrate the efficancy of the PhIAT-labeling strategy to enrich mixtures for phosphopeptides and permit the detection and identification of low abundance phosphopeptides. In addition, experiments using light and heavy isotopic version of the PhIAT reagents demonstrated that a 10% difference in phosphorylation state could be determined between phosphopeptides in comparative samples.

  17. Applications of isotope geochemistry to the reconstruction of Yucca Mountain, Nevada, paleohydrology -- Status of investigations: June 1996

    SciTech Connect

    Whelan, J.F.; Moscati, R.J.; Allerton, S.B.M.; Marshall, B.D.

    1998-11-01

    Tunneling of the Exploratory Studies Facility has offered the opportunity to sample and examine occurrences of secondary mineralization found in the unsaturated-zone tuffs of Yucca Mountain, nevada. Petrographic and paragenetic analyses, calcite and silica-phase stable isotopic analyses, and preliminary strontium tracer isotope and radiocarbon age analyses of these samples indicate that (1) an early stage of secondary mineralization consisting largely of chalcedony and quartz, but possibly with or slightly preceded by calcite, probably formed at warmer than ambient temperatures; (2) later secondary mineralization consisting of calcite and opal appears completely consistent with formation from percolation of surface infiltration whose solute load and carbon isotopic compositions reflect passage through the overlying soils; (3) based on textural studies, all unsaturated-zone secondary mineral occurrences exposed within the Exploratory Studies Facility tunnel, with the exception of the vapor-phase assemblages that formed at high temperatures during cooling of the tuffs, probably formed in unsaturated settings; and (4) calcite radiocarbon ages, based on preliminary results, have not been compromised by post-depositional exchange with carbon-bearing water and gases in the unsaturated zone.

  18. Isotopic Reconstruction of the Past Continental Environments

    NASA Astrophysics Data System (ADS)

    Koch, Paul L.

    Vertebrate fossils and continental sediments provide a rich record of variations in the isotopic composition of surface environments. To interpret these records, a greater understanding of isotopic sources, as well as fractionations associated with animal physiology, soil geochemistry, and diagenesis, has been essential. Tooth enamel and fish otoliths yield subannual records of surface environments, whereas soil minerals may integrate signals over many thousands of years. Carbon isotope variations in fossil vertebrates and soils record changes in the structure of vegetation and the isotope composition and concentration of atmospheric CO2. Oxygen isotope variations may be indirectly related to climate, through reconstruction of the oxygen isotope composition of meteoric water, or directly related to temperature, through application of oxygen isotope paleothermometry to soil minerals or otoliths. In Africa, nitrogen isotope variations show promise as a proxy for rainfall abundance, though the generality of this association elsewhere has not been demonstrated.

  19. Isotope separation by laser means

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1982-06-15

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  20. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    al., 1997). The observed oxygen isotopic compositions of presolar corundum grains show clear evidence of nuclear processes in red-giant stars, and have had significant impact on the theory of these stars ( Boothroyd and Sackmann, 1999).There are several possible reasons for the failure to recognize and analyze large populations of oxygen-rich presolar grains:(i) they may not exist: oxygen ejected in supernova explosions may not condense into mineral grains on the short timescale available;(ii) they may be smaller in size than can be detected by applicable techniques (˜0.1 μm); and(iii) they may be destroyed in the laboratory procedures used to isolate other types of presolar grains.

  1. Compound-specific stable carbon isotope composition as a fingerprint for sediment transport: Reproducibility, homogeneity and application in a catchment of the Swiss plateau.

    NASA Astrophysics Data System (ADS)

    Birkholz, Axel; Niemann, Helge; Alewell, Christine

    2014-05-01

    A new field for the applications of compound-specific isotope analyses (CSIA) has opened in the recent years. The isotopic signature in fatty acids (FA) can be used to track sediment transport pathways from erosional areas to river systems. In this approach distinct FA d13C values of even numbered saturated and/or unsaturated FAs from soils are traced in suspended river sediments, ie. the place of deposition. CSIA has been shown to be particularly useful in catchment areas with C4 plant crops because, compared to the regularly occurring C3-plants, they are (naturally) depleted in 13C. However, in theory, all plant species even among C3 plants should inherit significant differences in their d13C of FAs. Thus, we tried to differentiate between source areas for suspended sediments from three different land use types: forest (C3 plants), grassland (C3 plants) and arable land (mixture of C3 and C4 plants). Statistical geo software (eg. Isosource) can be used to additionally model the spatial and temporal variability of erosion. We present d13C values of FAs from 8 erosion areas from the Enziwigger catchment of the Swiss plateau (Canton of Lucerne). Each area was assessed through randomised triplicate sampling to test the spatial homogeneity of each one. The homogeneity of a single sample, as well as the reproducibility of our measurements was tested by extracting and analysing the same sample bag in triplicates. We compare compound-specific stable isotope (CSSI) fingerprints of source areas to d13C-values of FAs from suspended sediments of two high-flow events and one base flow period at 3 different sites of the Enziwiger river (upstream, midstream, downstream).

  2. Combined application of conservative transport modelling and compound-specific carbon isotope analyses to assess in situ attenuation of benzene, toluene, and o-xylene.

    PubMed

    Mak, K S; Griebler, C; Meckenstock, R U; Liedl, R; Peter, A

    2006-12-15

    In recent years, compound specific isotope analyses (CSIA) have developed into one of the most powerful tools for the quantification of in situ biodegradation of organic contaminants. In this approach, the calculation of the extent of biodegradation of organic contaminants in aquifers is usually based on the Rayleigh equation, and thus neglects physical transport processes such as dispersion that contribute to contaminant dilution in aquifers. Here we combine compound specific isotope analyses with a conservative transport model to study the attenuation of aromatic hydrocarbons at a former gasworks site. The conservative transport model was first used to simulate concentration reductions caused by dilution at wells downgradient of a BTEX source. In a second step, the diluted concentrations, together with the available stable carbon isotope ratios and carbon fractionation factors for benzene, toluene and o-xylene were applied in the Rayleigh equation to quantify the degree of biodegradation at each of those wells. At the investigated site, where other attenuation processes such as sorption and volatilisation were proven to be negligible, the combined approach is recommended for benzene, which represents a compound for which the effect of biodegradation is comparable to or less than the effect of dilution. As demonstrated for toluene and o-xylene, the application of the Rayleigh equation alone is sufficient if dilution can be proved to be insignificant in comparison to biodegradation. The analysis also suggests that the source width and the position of the observation wells relative to the plume center line are significantly related to the degree of dilution. PMID:17011071

  3. Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer.

    PubMed

    Griebler, Christian; Safinowski, Michael; Vieth, Andrea; Richnow, Hans H; Meckenstock, Rainer U

    2004-01-15

    To evaluate the intrinsic bioremediation potential in an anoxic tar oil-contaminated aquifer at a former gasworks site, groundwater samples were qualitatively and quantitatively analyzed by compound-specific isotope analysis (CSIA) and signature metabolites analysis (SMA). 13C/12C fractionation data revealed conclusive evidence for in situ biodegradation of benzene, toluene, o-xylene, m/p-xylene, naphthalene, and 1-methylnaphthalene. In laboratory growth studies, 13C/12C isotope enrichment factors for anaerobic degradation of naphthalene (epsilon = -1.1 +/- 0.4) and 2-methylnaphthalene (epsilon = -0.9 +/- 0.1) were determined with the sulfate-reducing enrichment culture N47, which was isolated from the investigated test site. On the basis of these and other laboratory-derived enrichment factors from the literature, in situ biodegradation could be quantified for toluene, o-xylene, m/p-xylene, and naphthalene. Stable carbon isotope fractionation in the field was also observed for ethylbenzene, 2-methylnaphthalene, and benzothiophene but without providing conclusive results. Further evidence for the in situ turnover of individual BTEX compounds was provided by the presence of acetophenone, o-toluic acid, and p-toluic acid, three intermediates in the anaerobic degradation of ethylbenzene, o-xylene, and p-xylene, respectively. A number of groundwater samples also contained naphthyl-2-methylsuccinic acid, a metabolite that is highly specific for the anaerobic degradation of 2-methylnaphthalene. Additional metabolites that provided evidence on the anaerobic in situ degradation of naphthalenes were 1-naphthoic acid, 2-naphthoic acid, 1,2,3,4-tetrahydronaphthoic acid, and 5,6,7,8-tetrahydronaphthoic acid. 2-Carboxybenzothiophene, 5-carboxybenzothiophene, a putative further carboxybenzothiophene isomer, and the reduced derivative dihydrocarboxybenzothiophene indicated the anaerobic conversion of the heterocyclic aromatic hydrocarbon benzothiophene. The combined application

  4. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  5. Application of stable isotopes to identify problems in large-scale water transfer in Grand Canyon National Park.

    PubMed

    Ingraham, N L; Zukosky, K; Kreamer, D K

    2001-04-01

    Waters on, and below, the South Rim of the Grand Canyon were sampled for stable isotopic analysis to determine the hydrologic effects of the transcanyon pipeline. The transcanyon pipeline transports North Rim water discharging at Roaring Spring across the Grand Canyon to South Rim. Ultimately this water is discharged through the sewage treatment plant at the Clearwell Overflow wash on the surface expression of the Bright Angel Fault. The North Rim water is some 8 per mil more depleted in deltaD than most of the water issuing from springs on the South Rim except for that from Indian Garden Spring which lies below the Clearwell Overflow wash. Such a composition of Indian Garden Spring must come from discharged wastewater onthe rim, percolating downward approximately 1,000 m vertically through the Bright Angel Fault. The difference in stable isotopic composition of the North Rim water renders it not only traceable in Indian Garden Spring water, but the proportions may be determined as well which result in projecting an admixture of up to half the total discharge. Curiously however, Indian Garden Spring contains no appreciable amounts of the anions associated with wastewater. More recently, a leak in the transcanyon pipeline was discovered above Indian Garden Spring, suggesting that a portion of that spring's discharge may have its origin in water directly from the pipeline. Nevertheless, these data provide information relevant to the National Park Service policy of precluding anthropomorphic forces impacting national parks. In addition, the stable isotopic ratios of park water provide a mechanism to assess the potential for future degradation, as well as the origin of any future degradation, of the water quality of Indian Garden Spring.

  6. A review of applications of U-Th-Pb isotope systematics to investigations of uranium source rocks.

    USGS Publications Warehouse

    Stuckless, J.S.

    1987-01-01

    U, Th and Pb concentrations and the isotopic composition of Pb can be used to evaluate crystalline rocks as a source for U in sedimentary deposits. Under favourable geologic circumstances, the technique can yield information on both the timing and the amount of U released to the sedimentary environment. The technique is best suited to the study of Archean rocks that have high U/Pb, a known common Pb composition, and a simple two-stage history. Less ideal rock units can also be evaluated, but conclusions reached for rocks of Phanerozoic age or younger will generally be qualitative at best.-Author

  7. The application of stable isotope tracers to evaluate the extent of sulfate reduction in a BTEX-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Knoeller, K.; Weise, S. M.; Goedeke, S.; Weiss, H.; Schirmer, M.

    2003-04-01

    Due to its contribution to the mineralization of organic contaminants to carbon dioxide and water, bacterial sulphate reduction may be an important process for long-term natural attenuation of contaminated aquifers. A Quaternary aquifer, partly contaminated with various BTEX-species, has been investigated by high-resolution groundwater sampling to evaluate the potential and extent of bacterial sulphate reduction. The aquifer, located on the site of a former hydrogenation plant near the town of Zeitz (Saxonia-Anhalt, Germany), mainly consists of sandy and clayey deposits from the Pleistocene Elster-glacial and has a thickness of 5--10 m. More than 100 groundwater samples have been analyzed for both δ34S-SO_4 and δ18O-SO_4. The isotopic composition of the dissolved groundwater sulphate showed a very heterogeneous regional distribution that cannot be explained by a simple mixing pattern. Generally, δ34S-sulphate values ranged from -1 to +48 ppm (VCDT). Smaller variations (+1 ...+16 ppm VSMOW) were observed for δ18O-sulphate. Sulphur from historic atmospheric deposition appears to be the predominant sulphate source for the regional groundwater in the aquifer. Relatively low δ18O-sulphate values in some samples suggest that part of the sulphate may be derived from the oxidation of sedimentary pyrite. Increasing δ34S values and simultaneously decreasing sulphate concentrations along the groundwater flow path in the northern outflow of the contaminant plume indicate the occurrence of bacterial sulphate reduction. While sulphate concentration drop from over 300 to less than 20 mg/L, δ34S values increase up to +45 ppm (VCDT). Using a Rayleigh model for the reduction process, an isotope enrichment factor (ɛ) of ca. -12 ppm was obtained. In contrast, no enrichment of 18O was observed. This is due to the specific reaction conditions that inhibit the oxygen isotope exchange between sulphate and water during the reduction process and hence disable the 18O enrichment in

  8. [On-line method for measurement of the carbon isotope ratio of atmospheric methane and its application to atmosphere of Yakela condensed gas field].

    PubMed

    Tang, Jun-Hong; Bao, Zheng-Yu; Xiang, Wu; Qiao, Sheng-Ying; Li, Bing

    2006-01-01

    An on-line method for measurement of the 13C/12C ratio of methane by a gas chromatography/high-temperature conversion/ isotope ratio mass spectrometry (GC/C/MS) technique was developed. This method is less laborious, more rapid (45 min), of high precision (+/- 0.4 x 10(-3)) and by using a small amount of sample (about 200 mL of atmosphere). Its application to isotopic characterization, and hence methane source identification, was demonstrated by examination of atmosphere sample collected in Yakela condensed gas field, China. The average 13C/12C ratio of atmospheric methane in Yakela field was -45.0 x 10(-3) heavier by 1.2 x 10(-3) -2.0 x 10(-3) than the global average. This is caused by seepage and diffusing of methane from Yakela condensed gas reservoir. The concentrations of atmospheric methane in daytimes are found to be lower than those in nighttimes, and the corresponding 13C/12C ratios in daytimes are lighter compared to those in nighttimes, a phenomena probably caused by the fact that a small part of methane from Yakela condensate reservoir is consumed in soil's surface under sunlight.

  9. C and N Isotopes in Ostrich Eggshell as Proxies of Paleovegetation and Paleoprecipitation: Extraction, Preservation, and Application to Pleistocene Archaeological Samples

    NASA Astrophysics Data System (ADS)

    Niespolo, E. M.; Sharp, W. D.; Tryon, C. A.; Faith, J. T.; Miller, M.; Dawson, T. E.

    2015-12-01

    Paleoenvironmental change is commonly invoked as a factor in the development of modern human behaviors and the successful expansion of H. sapiens out of Africa, and paleoenvironmental information from archaeological sequences is central to addressing such questions. Ostrich eggshell (OES) are common in many African archaeological sequences and may be dated by 14C and U-series methods. In modern ratite eggshells (large flightless birds including the ostrich and emu), the δ13C in eggshell calcite and the δ13C and δ15N in eggshell organic fractions have been shown to vary systematically across climate gradients in South Africa and Australia with δ15N varying inversely with mean annual precipitation, and δ13C varying with the C isotopes of vegetation (1,2). Thus, if primary C and N isotopic signatures are preserved, assemblages of OES can provide dated records of paleovegetation and paleoprecipitation at archaeological sites. Since the C isotopic fractionation between calcite and eggshell organics is constant in modern OES (Δ13Ccalcite-organic = 14.7 ± 1.3‰) (3), evaluating that offset in ancient OES provides a test for preservation of primary isotopic signatures. Johnson et al. (3) showed that OES from Equus Cave (South Africa) retained the expected fractionation for up to 17 ka. We present a new protocol to extract C and N of OES organics for online analysis that preserves pristine δ13C and δ15N values and C and N contents. We find that using sodium hydroxide (NaOH), common to many bone collagen extraction procedures, destroys and degrades the organic component of OES, resulting in low C and N and altered δ13C and δ15N values. Analysis of a series of OES samples directly dated by 14C and U-series from the GvJm-22 rockshelter (Lukenya Hill, Kenya) (4,5) will demonstrate the first application of this protocol to OES from the last ~50,000 yr. 1. Johnson, B.J. et al. (1998) Geochim. Cosmochim. Acta 62, 2451-2461. 2. Newsome, S.D. et al. (2011) Oecologia 167

  10. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Gibbons, J. A.; Maltsev, O.; Atudorei, V.; Pack, A.; Sengupta, S.; Shock, E. L.; Knauth, L. P.

    2016-08-01

    It is now recognized that variations in the Δ17O of terrestrial materials resulting from purely mass dependent fractionations, though small, have geological significance. In this study, the δ18O and δ17O values of selected low temperature quartz and silica samples were measured in order to derive the quartz-water fractionation-temperature relationship for the three oxygen isotope system. A 18O/16O quartz-water fractionation equation valid for all temperatures was generated from published high temperature exchange experiments and low temperature empirical estimates and is given by 1000ln αqz-H2O 18O /16O =4.20 (0.11) ×106/T2 - 3.3 (0.2) × 1000/T (T in Kelvins). The equilibrium δ17O-δ18O relationship is given by the equation lnα17O/16O = θlnα18O/16O . The variation of θ with temperature for the quartz-water system was determined empirically using low temperature marine diatoms, microcrystalline quartz and a modern sinter sample. A best fit to the data give the equation θSiO2-H2O = -(1.85 ± 0.04)/T + 0.5305 , indistinguishable from an earlier theoretical estimate. Application of the quartz-water triple isotope system to low temperature samples provides constraints on both temperature and composition of the water with which the silica last equilibrated. Authigenic quartz crystallization temperatures cluster around 50 °C, which are lower than many previous estimates. The combined δ18O and δ17O values of samples considered to be in equilibrium with ocean or meteoric waters can be used to estimate both formation temperatures and the δ18O value of the meteoric water. Unlike other multiple isotopes systems, such as combined H and O isotopes in cherts, the oxygen source and diagenetic potential for both 17O/16O and 18O/16O ratios are identical, simplifying interpretations from ancient samples.

  11. A calibration of the triple oxygen isotope fractionation in the SiO2-H2O system and applications to natural samples

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Gibbons, J. A.; Maltsev, O.; Atudorei, V.; Pack, A.; Sengupta, S.; Shock, E. L.; Knauth, L. P.

    2016-08-01

    It is now recognized that variations in the Δ17O of terrestrial materials resulting from purely mass dependent fractionations, though small, have geological significance. In this study, the δ18O and δ17O values of selected low temperature quartz and silica samples were measured in order to derive the quartz-water fractionation-temperature relationship for the three oxygen isotope system. A 18O/16O quartz-water fractionation equation valid for all temperatures was generated from published high temperature exchange experiments and low temperature empirical estimates and is given by 1000ln αqz-H2O18O /16O = 4.20 (0.11) ×106/T2 - 3.3 (0.2) × 1000/T (T in Kelvins). The equilibrium δ17O-δ18O relationship is given by the equation lnα17O/16O = θlnα18O/16O . The variation of θ with temperature for the quartz-water system was determined empirically using low temperature marine diatoms, microcrystalline quartz and a modern sinter sample. A best fit to the data give the equation θSiO2 - H2O = -(1.85 ± 0.04)/T + 0.5305 , indistinguishable from an earlier theoretical estimate. Application of the quartz-water triple isotope system to low temperature samples provides constraints on both temperature and composition of the water with which the silica last equilibrated. Authigenic quartz crystallization temperatures cluster around 50 °C, which are lower than many previous estimates. The combined δ18O and δ17O values of samples considered to be in equilibrium with ocean or meteoric waters can be used to estimate both formation temperatures and the δ18O value of the meteoric water. Unlike other multiple isotopes systems, such as combined H and O isotopes in cherts, the oxygen source and diagenetic potential for both 17O/16O and 18O/16O ratios are identical, simplifying interpretations from ancient samples.

  12. Stable isotopes in obesity research.

    PubMed

    Dolnikowski, Gregory G; Marsh, Julian B; Das, Sai Krupa; Welty, Francine K

    2005-01-01

    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules.

  13. Application of secondary ion mass spectrometry to the identification of single particles of uranium and their isotopic measurement

    NASA Astrophysics Data System (ADS)

    Tamborini, Gabriele; Betti, Maria; Forcina, Vittorio; Hiernaut, Tania; Giovannone, Bruno; Koch, Lothar

    1998-08-01

    An instrumental method based on the use of secondary ion mass spectrometry (SIMS) is presented for the identification of uranium particles, and the determination of their isotopic composition. The particles collected on swipe samples were transferred to a special adhesive support for analysis by SIMS. Charging effects during analysis were avoided by a coating with 20 nm carbon. For the measurements of the isotope ratios a mass resolution of 1000 was sufficient. At this resolution, flat-top peaks were obtained which greatly improve the accuracy of the measurement. A detection limit in the ng/g—pg/g range was obtained by optimizing different instrumental parameters, such as the acquisition time. Blank samples, consisting only of the adhesive support and of swipes collected in an environment where uranium was absent, were employed for the evaluation of the background signals in the mass range 233-240. The level of background was eliminated by applying a voltage offset. From the results obtained on simulated swipe samples containing certified enriched uranium, the approach used was found to be very promising and after further improvements has been applied for the routine analysis of uranium particles in swipe samples.

  14. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  15. Application of strontium isotope measurements to trace sediment sources in an upstream agricultural catchment (Loire River basin, France)

    NASA Astrophysics Data System (ADS)

    Le Gall, Marion; Evrard, Olivier; Thil, François; Foucher, Anthony; Salvador-Blanes, Sébastien; Cerdan, Olivier; Ayrault, Sophie

    2015-04-01

    Soil erosion is recognized as one of the main processes of land degradation in agricultural areas. It accelerates the supply of sediment to the rivers and degrades water quality. To limit those impacts and optimize management programs in such areas, sources of sediment need to be identified and sediment transport to be controlled. Here, we determined the sources of suspended sediment in the Louroux (24 km², French Loire River basin), a small catchment representative of lowland cultivated environments of Northwestern Europe. In this catchment, channels have been reshaped and 220 tile drain outlets have been installed over the last several decades. As a result, soil erosion and sediment fluxes have increased drastically. The variation of 87Sr/86Sr ratios, driven by the weathering of rocks with different ages and chemical composition, may reflect the mixing of different sediment sources. Strontium isotopic ratios (87Sr/86Sr) were therefore determined in potential soil sources, suspended particulate matter (SPM) and a sediment core sampled in the Louroux Pond at the catchment outlet. Soil, SPM and core samples displayed significantly different isotopic signatures. 87Sr/86Sr ratios in soil samples varied from 0.712763 to 0.724631 ± 0.000017 (2σ, n=20). Highest values were observed in silicic parts of the catchment whereas the lower values were identified in a calcareous area close to the Louroux Pond. 87Sr/86Sr ratios in SPM (0.713660 to 0.725749 ± 0.000017, 2σ, n=20) plotted between the soil and sediment core (0.712255 to 0.716415 ± 0.000017, 2σ, n=12), suggesting the presence of particles originating from at least two different lithological sources, i.e. silicic rocks and carbonate material. Variations in 87Sr/86Sr ratios in the outlet core sample were used to reconstruct the sedimentary dynamics in the catchment during the last decades. These results will guide the future implementation of appropriate management practices aiming to reduce erosion in upstream

  16. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  17. Compelling Research Opportunities using Isotopes

    SciTech Connect

    2009-04-23

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies and diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine

  18. Application of the SILAC (stable isotope labelling with amino acids in cell culture) technique in quantitative comparisons for tissue proteome expression.

    PubMed

    Xu, Yuhuan; Liang, Shufang; Shen, Guobo; Xu, Xuejiao; Liu, Qingping; Xu, Zhizhong; Gong, Fengming; Tang, Minghai; Wei, Yuquan

    2009-07-06

    Stable isotope labelling has recently become a popular tool for the quantitative profiling of the proteome, especially the emergence and development of the SILAC (stable isotope labelling with amino acids in cell culture) technique. Here we have expanded the application of SILAC to comparison of the relative protein expression levels between two different states of tissues based on cultured cells with [2H]leucine labelling as an internal standard in mass spectra. The SILAC ratio of tissue proteins versus labelled cells was determined by the calculation of peak intensity of the pair of labelled and unlabelled peptide fragment ions from the mass spectra, and the relative expression level of proteins in two groups of tissues was estimated by calculating the ratio of their SILAC ratio. To validate our [2H]leucine-based differential proteome analysis for tissues, we successfully compared two known proteins, one up-regulated vimentin and one down-regulated enoyl-CoA hydratase in human renal cancerous tissues versus human normal kidney tissues, which was previously confirmed by other groups using conventional two-dimensional PAGE analysis. Furthermore, we identified a previously unknown down-regulated protein, COX4I1 (cytochrome c oxidase subunit 4 isoform 1), in renal carcinoma tissues by this [2H]leucine-based quantitative proteomics method, which was also validated by immunohistochemistry and Western-blot analysis. In conclusion, the application of the [2H]leucine-based quantitative technique can be effectively expanded to comparison of the expression levels for the tissue proteome at different states, which would help us to identify new candidate biomarkers for tumours.

  19. Application of speciated isotope dilution mass spectrometry to evaluate extraction methods for determining mercury speciation in soils and sediments.

    PubMed

    Rahman, G M Mizanur; Kingston, H M Skip

    2004-07-01

    Extraction techniques commonly used to extract methylmercury or mercury species from various matrixes have been evaluated regarding their potential to transform inorganic mercury to methylmercury, or vice versa, during sample preparation steps by applying speciated isotope dilution mass spectrometry. Two of the five tested methods were highly prone to form inorganic mercury from methylmercury. Some published methods converted methylmercury to inorganic mercury approximately 100% (including the spiked CH(3)(201)Hg(+)). In other methods, as much as 45% of methylmercury was converted to inorganic mercury during extraction. The methods evaluated included cold acid extraction and sonication. Other methods, such as the proposed EPA RCRA Draft Method 3200, microwave-assisted extraction, and another sonication-based methods induced very little or no methylmercury transformation to inorganic mercury. Among these three methods, the proposed Draft EPA Method 3200 was found to be the most efficient.

  20. On-line sulfur isotope analysis of organic material by direct combustion: Preliminary results and potential applications

    USGS Publications Warehouse

    Kester, C.L.; Rye, R.O.; Johnson, C.A.; Schwartz, C.H.; Holmes, C.H.

    2001-01-01

    Sulfur isotopes have received little attention in ecology studies because plant and animal materials typically have low sulfur concentrations (< 1 wt.%) necessitating labor-intensive chemical extraction prior to analysis. To address the potential of direct combustion of organic material in an elemental analyzer coupled with a mass spectrometer, we compared results obtained by direct combustion to results obtained by sulfur extraction with Eschka's mixture. Direct combustion of peat and animal tissue gave reproducibility of better than 0.5??? and on average, values are 0.8??? higher than values obtained by Eschka extraction. Successful direct combustion of organic material appears to be a function of sample matrix and sulfur concentration. Initial results indicate that direct combustion provides fast, reliable results with minimal preparation. Pilot studies underway include defining bear diets and examining fluctuations between freshwater and brackish water in coastal environments.

  1. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    EPA Science Inventory

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  2. Heavy atom isotope effects on enzymatic reactions

    NASA Astrophysics Data System (ADS)

    Paneth, Piotr

    1994-05-01

    The theory of isotope effects, which has proved to be extremely useful in providing geometrical details of transition states in a variety of chemical reactions, has recently found an application in studies of enzyme-catalyzed reactions. These reactions are multistep in nature with few steps being partially rate-limiting, thus interpretation of these isotope effects is more complex. The theoretical framework of heavy-atom isotope effects on enzymatic reactions is critically analyzed on the basis of recent results of: carbon kinetic isotope effects on carbonic anhydrase and catalytic antibodies; multiple carbon, deuterium isotope effects on reactions catalyzed by formate decarboxylase; oxygen isotope effects on binding processes in reactions catalyzed by pyruvate kinase; and equilibrium oxygen isotope effect on binding an inhibitor to lactate dehydrogenase. The advantages and disadvantages of reaction complexity in learning details of formal and molecular mechanisms are discussed in the examples of reactions catalyzed by phosphoenolpyruvate carboxylase, orotidine decarboxylase and glutamine synthetase.

  3. Reduction of measurement uncertainty by experimental design in high-order (double, triple, and quadruple) isotope dilution mass spectrometry: application to GC-MS measurement of bromide.

    PubMed

    Pagliano, Enea; Mester, Zoltán; Meija, Juris

    2013-03-01

    Since its introduction a century ago, isotope dilution analysis has played a central role in developments of analytical chemistry. This method has witnessed many elaborations and developments over the years. To date, we have single, double, and even triple isotope dilution methods. In this manuscript, we summarize the conceptual aspects of isotope dilution methods and introduce the quadruple dilution and the concept of exact matching triple and quadruple dilutions. The comparison of isotope dilution methods is performed by determination of bromide ions in groundwater using novel ethyl-derivatization chemistry in conjunction with GC/MS. We show that the benefits of higher-order isotope dilution methods are countered with a greater need for careful experimental design of the isotopic blends. Just as for ID(2)MS, ID(3)MS and ID(4)MS perform best when the isotope ratio of one sample/spike blend is matched with that of a standard/spike blend (exact matching).

  4. Reduction of measurement uncertainty by experimental design in high-order (double, triple, and quadruple) isotope dilution mass spectrometry: application to GC-MS measurement of bromide.

    PubMed

    Pagliano, Enea; Mester, Zoltán; Meija, Juris

    2013-03-01

    Since its introduction a century ago, isotope dilution analysis has played a central role in developments of analytical chemistry. This method has witnessed many elaborations and developments over the years. To date, we have single, double, and even triple isotope dilution methods. In this manuscript, we summarize the conceptual aspects of isotope dilution methods and introduce the quadruple dilution and the concept of exact matching triple and quadruple dilutions. The comparison of isotope dilution methods is performed by determination of bromide ions in groundwater using novel ethyl-derivatization chemistry in conjunction with GC/MS. We show that the benefits of higher-order isotope dilution methods are countered with a greater need for careful experimental design of the isotopic blends. Just as for ID(2)MS, ID(3)MS and ID(4)MS perform best when the isotope ratio of one sample/spike blend is matched with that of a standard/spike blend (exact matching). PMID:23371530

  5. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include food sources for animals, water sources for plants, pollution sources...

  6. Des Vents et des Jets Astrophysiques

    NASA Astrophysics Data System (ADS)

    Sauty, C.

    well expected result from the theory. Although, collimation may be conical, paraboloidal or cylindrical (Part 4), cylindrical collimation is the more likely to occur. The shape of outflows may then be used as a tool to predict physical conditions on the flows or on their source. L'éjection continue de plasma autour d'objets massifs est un phénomène largement répandu en astrophysique, que ce soit sous la forme du vent solaire, de vents stellaires, de jets d'étoiles en formation, de jets stellaires autour d'objets compacts ou de jets extra-galactiques. Cette zoologie diversifiée fait pourtant l'objet d'un commun effort de modélisation. Le but de cette revue est d'abord de présenter qualitativement le développement, depuis leur origine, des diverses théories de vents (Partie 1) et l'inter disciplinarité dans ce domaine. Il s'agit d'une énumération, plus ou moins exhaustive, des idées proposées pour expliquer l'accélération et la morphologie des vents et des jets, accompagnée d'une présentation sommaire des aspects observationnels. Cette partie s'abstient de tout aspect faisant appel au formalisme mathématique. Ces écoulements peuvent être décrits, au moins partiellement, en résolvant les équations magnétohydrodynamiques, axisymétriques et stationnaires. Ce formalisme, à la base de la plupart des théories, est exposé dans la Partie 2. Il permet d'introduire quantitativement les intégrales premières qu'un tel système possède. Ces dernières sont amenées à jouer un rôle important dans la compréhension des phénomènes d'accélération ou de collimation, en particulier le taux de perte de masse, le taux de perte de moment angulaire ou l'énergie du rotateur magnétique. La difficulté de modélisation réside dans l'existence de points critiques, propres aux équations non linéaires, qu'il faut franchir. La nature physique et la localisation de ces points critiques fait l'objet d'un débat important car ils sont la clef de voute de la r

  7. Water - Isotope - Map (δ 18O, δ 2H, 3H) of Austria: Applications, Extremes and Trends

    NASA Astrophysics Data System (ADS)

    Wyhlidal, Stefan; Kralik, Martin; Benischke, Ralf; Leis, Albrecht; Philippitsch, Rudolf

    2016-04-01

    The isotopic ratios of oxygen and hydrogen in water (2H/1H and 18O/16O) are important tools to characterise waters and their cycles. This starts in the atmosphere as rain or snow and continues in surface water and ends in shallow groundwater as well as in deep groundwater. Tritium formed by natural cosmic radiation in the upper atmosphere and in the last century by tests of thermonuclear bombs in the atmosphere, is characterised by its radioactive decay with a half-life of 12.32 years and is an ideal age-marker during the last 60 years. To determine the origin and mean age of waters in many projects concerning water supply, engineering and scientific projects in the last 45 years on more than 1,350 sites, more than 40,000 isotope measurements were performed in Austria. The median value of all sites of oxygen-18 is δ 18O -10.7 ‰ and for hydrogen-2 δ 2H -75 ‰. As the fractionation is mainly temperature dependent the lowest negative values are observed in winter precipitation (oxygen-18 as low as δ 18O -23 ‰) and in springs in the mountain regions (δ 18O -15.1 ‰). In contrast the highest values were observed in summer precipitation (up to δ 18O - 0.5 ‰) and in shallow lakes in the Seewinkel (up to δ 18O + 5 ‰). The isotopic ratios of the Austrian waters are also influenced by the origin of the evaporated water masses. Therefore the precipitation in the region south of the main Alpine crest (East-Tyrol, Carinthia and South-East Styria) is approximately 1 ‰ higher in δ 18O-values than sites at the same altitude in the northern part. This is most probably caused by the stronger influence of precipitation from the mediterranean area. The median value of all 1,120 sampling sites of decay corrected (2015) tritium measurements is 6.2 tritium units (TU). This is somewhat smaller than the median value of all precipitation stations with 7.2 TU. This can be explained by the fact that in most cases in groundwater the median value has been reduced by decay

  8. Selective photoionisation of lutetium isotopes

    SciTech Connect

    D'yachkov, Aleksei B; Kovalevich, S K; Labozin, Valerii P; Mironov, Sergei M; Panchenko, Vladislav Ya; Firsov, Valerii A; Tsvetkov, G O; Shatalova, G G

    2012-10-31

    A three-stage laser photoionisation scheme intended for enriching the {sup 176}Lu isotope from natural lutetium was considered. An investigation was made of the hyperfine structure of the second excited state 5d6s7s {yields} {sup 4}D{sub 3/2} with an energy of 37194 cm{sup -1} and the autoionisation state with an energy of 53375 cm{sup -1} of the {sup 176}Lu and {sup 175}Lu isotopes. The total electron momentum of the autoionisation level and the constant A of hyperfine magnetic interaction were determined. Due to a small value of the isotopic shift between {sup 176}Lu and {sup 175}Lu, appreciable selectivity of their separation may be achieved with individual hyperfine structure components. The first tentative enrichment of the 176Lu isotope was performed to a concentration of 60 % - 70 %. (laser applications and other topics in quantum electronics)

  9. Application of stable isotopic techniques in the prevention of degenerative diseases like obesity and NIDDM in developing societies.

    PubMed

    Shetty, Prakash; Iyengar, Venkatesh; Sawaya, Ana; Diaz, Erik; Ma, Guansheng; Hernandez-Triana, Manuel; Yajnik, Chittaranjan; Forrester, Terrence; Valencia, Mauro; Rush, Elaine; Adeyemo, Adebowale; Jahoor, Farook; Roberts, Susan

    2002-09-01

    Economic development in developing societies characterized by industrialization, urbanization, and globalization has seen the emergence of an epidemic of diet- and life-style-related chronic degenerative diseases. A research project was initiated under the aegis of the International Atomic Energy Agency (IAEA), Vienna, Austria under its Coordinated Research Programme (CRP) to promote the use of stable isotopic techniques to document the extent of the problem and to understand the determinants of this epidemic. The principal objectives of this CRP involving countries both in the North and the South are to define the magnitude of the problem of obesity and non-insulin dependent diabetes mellitus (NIDDM) in developing countries, to identify the vulnerable groups at increased risk, and to attempt to describe the metabolic and physiological mechanisms underlying this phenomenon. These comparative international studies of obesity and NIDDM are looking at the effects of childhood malnutrition (Brazil) and socioeconomic differentials (Mexico) on adult risk factors; the composition of the daily diet on obesity (Chile); levels of patterns of physical activity of older adults (China) as well as their influence on weight gain and obesity (Cuba, Nigeria); the impact of body composition and energy expenditure on the evolution frank diabetes from impaired glucose tolerance (Jamaica), and of body compositional changes and the role of inflammatory cytokines on impaired glucose tolerance (India). The last study conducted in New Zealand was aimed at comparing the energy expenditures of Maori (Pacific Island) with New Zealanders of European descent.

  10. The Relationship Between Climate and Vegetation During Oxygen Isotope Stage 3: Application of a High Resolution Climate Model

    NASA Astrophysics Data System (ADS)

    Barron, E. J.; Pollard, D.; Alphano, M.; van Andel, T.

    2001-05-01

    A series of experiments using a high-resolution regional climate model embedded in a General Circulation Model have been employed to explore the climate of Europe during Oxygen Isotope Stage 3. A key aspect of the model validation is a comparison of model simulated climate and vegetation, based on modern vegetation-climate relationships, with the distribution of pollen records. High resolution provides the opportunity to incorporate complex shorelines and topography and to perform careful model-data comparisons. In particular, the high resolution captures considerable complexity in the distribution of predicted vegetation. The experiments are based on 30ka boundary conditions for the Earth's orbit and CO2, sensitivity experiments for ice cap size and for sea surface temperatures. The 30ka simulations are substantially cooler than the present day control with much of northern Europe having 15 to 25oC cooler temperatures in winter and 10 to 15 oC lower in summer. A sensitivity experiment with different assumptions for North Atlantic sea surface temperatures did not produce significant changes in winter and summer temperatures. Reasonable variations in Fennoscandian ice cap size were of little significance for European climates. Each of the experiments exhibits a decrease in summer precipitation along western Europe and a strong precipitation decrease in southern European in winter. These changes are associated with cooler temperatures, but also some changes in circulation patterns. Despite the significant climate change simulated in the models, differences are found in comparison with key observations (e.g. tundra biome distribution determined by pollen). Additional data sets (permafrost indicators, and ice sheet mass balance) are used to support the model-observed vegetation comparison. This suggests directions for future research, involving better understanding of the controls on the distribution of the tundra biome, the importance of climate variability in

  11. Application of lead isotopic methods to the study of the anthropogenic lead provenance in Spanish overbank floodplain deposits.

    PubMed

    Adánez Sanjuán, Paula; Flem, Belinda; Llamas Borrajo, Juan F; Locutura Rupérez, Juan; Garcia Cortés, Angel

    2016-04-01

    Changes in the principal sources of Pb in overbank sediment profiles have been documented for two Spanish areas by using Pb isotopes and Pb concentrations. These locations (Madrid and Tinto-Odiel basin) represent two of the most contaminated regions in Spain. The Community of Madrid is characterized by heavy industrial and urban activity, focused mainly in Madrid City. The Tinto-Odiel basin drains the Iberian Pyrite Belt, which hosts many polymetallic massive sulphides and is heavily affected by mining activities in their headwaters. It has been proven that the influence of anthropogenic activity is reflected in these overbank deposits by variations in Pb concentrations that, in general, correlate with shifts in the (206)Pb/(207)Pb ratio. Rivas profile (downstream of Madrid) was found to be the most anthropogenically influenced site. The sediments within this profile which were recently deposited (170 ± 40 years BP) have the least radiogenic signatures. (206)Pb/(207)Pb ratios ranged between 1.1763 and 1.1876 indicating significant contributions of anthropogenic Pb. In contrast, profiles upstream of Madrid possess an average (206)Pb/(207)Pb ratio of 1.2272. It is difficult to clearly identify the most prominent source as the sediments appear to be characterized by an input from several sources. The floodplain profiles in the Tinto-Odiel basin exhibit uniform (206)Pb/(207)Pb ratios ranging from 1.1627 (Odiel river) to 1.1665 (Tinto river). These ratios are similar to the ones possessed by sulphide ores in the area and differ from the ratios of other nonmineralized formations in the basin, indicating that mining activities are the primary, if not sole, source of Pb to the sediments. PMID:26100323

  12. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    DOE PAGES

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  13. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  14. Polyatomic interferences on high precision uranium isotope ratio measurements by MC-ICP-MS: Applications to environmental sampling for nuclear safeguards

    SciTech Connect

    Pollington, Anthony D.; Kinman, William S.; Hanson, Susan K.; Steiner, Robert E.

    2015-09-04

    Modern mass spectrometry and separation techniques have made measurement of major uranium isotope ratios a routine task; however accurate and precise measurement of the minor uranium isotopes remains a challenge as sample size decreases. One particular challenge is the presence of isobaric interferences and their impact on the accuracy of minor isotope 234U and 236U measurements. Furthermore, we present techniques used for routine U isotopic analysis of environmental nuclear safeguards samples and evaluate polyatomic interferences that negatively impact accuracy as well as methods to mitigate their impacts.

  15. Stable isotope labeling methods for DNA.

    PubMed

    Nelissen, Frank H T; Tessari, Marco; Wijmenga, Sybren S; Heus, Hans A

    2016-08-01

    NMR is a powerful method for studying proteins and nucleic acids in solution. The study of nucleic acids by NMR is far more challenging than for proteins, which is mainly due to the limited number of building blocks and unfavorable spectral properties. For NMR studies of DNA molecules, (site specific) isotope enrichment is required to facilitate specific NMR experiments and applications. Here, we provide a comprehensive review of isotope-labeling strategies for obtaining stable isotope labeled DNA as well as specifically stable isotope labeled building blocks required for enzymatic DNA synthesis. PMID:27573183

  16. Correction of MS data for naturally occurring isotopes in isotope labelling experiments.

    PubMed

    Millard, Pierre; Letisse, Fabien; Sokol, Serguei; Portais, Jean-Charles

    2014-01-01

    Mass spectrometry (MS) in combination with isotope labelling experiments is widely used for investigations of metabolism and other biological processes. Quantitative applications-e.g., (13)C metabolic flux analysis-require correction of raw MS data (isotopic clusters) for the contribution of all naturally abundant isotopes. This chapter describes how to perform such correction using the software IsoCor. This flexible, user-friendly software can be used to exploit any isotopic tracer, from well-known ((13)C, (15)N, (18)O, etc.) to unusual ((57)Fe, (77)Se, etc.) isotopes. It also provides options-e.g., correction for the isotopic purity of the tracer-to improve the accuracy of quantitative isotopic studies, and allows automated correction of large datasets that can be collected with modern MS methods.

  17. Grundlagen des Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Mayer, Jörg; Blum, Janaki; Wintermantel, Erich

    Die Organtransplantation stellt eine verbreitete Therapie dar, um bei krankheitsoder unfallbedingter Schädigung eines Organs die Gesamtheit seiner Funktionen wieder herzustellen, indem es durch ein Spenderorgan ersetzt wird. Organtransplantationen werden für die Leber, die Niere, die Lunge, das Herz oder bei schweren grossflächigen Verbrennungen der Haut vorgenommen. Der grosse apparative, personelle und logistische Aufwand und die Risiken der Transplantationschirurgie (Abstossungsreaktionen) sowie die mangelnde Verfügbarkeit von immunologisch kompatiblen Spenderorganen führen jedoch dazu, dass der Bedarf an Organtransplantaten nur zu einem sehr geringen Teil gedeckt werden kann. Sind Spenderorgane nicht verfügbar, können in einzelnen Fällen lebenswichtige Teilfunktionen, wie beispielsweise die Filtrationsfunktion der Niere durch die Blutreinigung mittels Dialyse ersetzt oder, bei mangelnder Funktion der Bauchspeicheldrüse (Diabetes), durch die Verabreichung von Insulin ein normaler Zustand des Gesamtorganismus auch über Jahre hinweg erhalten werden. Bei der notwendigen lebenslangen Anwendung apparativer oder medikamentöser Therapie können für den Patienten jedoch häufig schwerwiegende, möglicherweise lebensverkürzende Nebenwirkungen entstehen. Daher werden in der Forschung Alternativen gesucht, um die Funktionen des ausgefallenen Organs durch die Implantation von Zellen oder in vitro gezüchteten Geweben möglichst umfassend wieder herzustellen. Dies erfordert biologisch aktive Implantate, welche die für den Stoffwechsel des Organs wichtigen Zellen enthalten und einen organtypischen Stoffwechsel entfalten.

  18. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  19. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    NASA Astrophysics Data System (ADS)

    Socki, R. A.; Fu, Q.; Niles, P. B.; Gibson, E. K.

    2012-03-01

    We report results of experiments to measure the H-isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high-temperature extraction furnace to make quantitative H-isotope measurements.

  20. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite

    USGS Publications Warehouse

    Revesz, Kinga M.; Landwehr, Jurate M.

    2002-01-01

    A new method was developed to analyze the stable carbon and oxygen isotope ratios of small samples (400 ± 20 µg) of calcium carbonate. This new method streamlines the classical phosphoric acid/calcium carbonate (H3PO4/CaCO3) reaction method by making use of a recently available Thermoquest-Finnigan GasBench II preparation device and a Delta Plus XL continuous flow isotope ratio mass spectrometer. Conditions for which the H3PO4/CaCO3 reaction produced reproducible and accurate results with minimal error had to be determined. When the acid/carbonate reaction temperature was kept at 26 °C and the reaction time was between 24 and 54 h, the precision of the carbon and oxygen isotope ratios for pooled samples from three reference standard materials was ≤0.1 and ≤0.2 per mill or ‰, respectively, although later analysis showed that materials from one specific standard required reaction time between 34 and 54 h for δ18O to achieve this level of precision. Aliquot screening methods were shown to further minimize the total error. The accuracy and precision of the new method were analyzed and confirmed by statistical analysis. The utility of the method was verified by analyzing calcite from Devils Hole, Nevada, for which isotope-ratio values had previously been obtained by the classical method. Devils Hole core DH-11 recently had been re-cut and re-sampled, and isotope-ratio values were obtained using the new method. The results were comparable with those obtained by the classical method with correlation = +0.96 for both isotope ratios. The consistency of the isotopic results is such that an alignment offset could be identified in the re-sampled core material, and two cutting errors that occurred during re-sampling then were confirmed independently. This result indicates that the new method is a viable alternative to the classical reaction method. In particular, the new method requires less sample material permitting finer resolution and allows

  1. LANL-IPF responses to isotopes workshop background information survey

    SciTech Connect

    Nortier, Francois Meiring

    2008-01-01

    Responses to the following are provided: (A) Which isotopes do you (company, agency, university, community) currently use in your activities or distribute (repackage) to end-users? (B) Describe generally what these isotopes are used for, i.e. the science or application. (C) Which isotope(s) do you anticipate may have significant future increase in demand. Identify the isotope(s), its priority, possible chemical form and for what purpose it would be used. (D) Are there other isotopes that you might use but are currently unavilable or not available in difficient quantities? If so, please identify this isotope, from whom have you tired to obtain it and for what prupose would it be used. (E) Do you have any specific issues with respect to the purity, availability, reliability of supply, etc. of isotopes at present?

  2. Etude des phenomenes dynamiques ultrarapides et des caracteristiques impulsionnelles d'emission terahertz du supraconducteur YBCO

    NASA Astrophysics Data System (ADS)

    Savard, Stephane

    choisi, nous avons mesure les proprietes intrinseques du meme echantillon de YBa2Cu3O7- delta avec la technique pompe-visible et sonde-terahertz donnant, elle aussi, acces aux temps caracteristiques regissant l'evolution hors-equilibre de ce materiau. Dans le meilleur scenario, ces temps caracteristiques devraient correspondre a ceux evalues grace a la modelisation des antennes. Un bon controle des parametres de croissance des couches minces supraconductrices et de fabrication du dispositif nous a permis de realiser des antennes d'emission terahertz possedant d'excellentes caracteristiques en terme de largeur de bande d'emission (typiquement 3 THz) exploitables pour des applications de spectroscopie resolue dans le domaine temporel. Le modele developpe et retenu pour le lissage du spectre terahertz decrit bien les caracteristiques de l'antenne supraconductrice pour tous les parametres d'operation. Toutefois, le lien avec la technique pompe-sonde lors de la comparaison des proprietes intrinseques n'est pas direct malgre que les deux techniques montrent que le temps de relaxation des porteurs augmente pres de la temperature critique. Les donnees en pompe-sonde indiquent que la mesure du temps de relaxation depend de la frequence de la sonde, ce qui complique la correspondance des proprietes intrinseques entre les deux techniques. De meme, le temps de relaxation extrait a partir du spectre de l'antenne terahertz augmente en s'approchant de la temperature critique (T c) de YBa2Cu 3O7-delta. Le comportement en temperature du temps de relaxation correspond a une loi de puissance qui est fonction de l'inverse du gap supraconducteur avec un exposant 5 soit 1/Delta 5(T). Le travail presente dans cette these permet de mieux decrire les caracteristiques des antennes supraconductrices a haute temperature critique et de les relier aux proprietes intrinseques du materiau qui les compose. De plus, cette these presente les parametres a ajuster comme le courant applique, la puissance de

  3. Reticulation des fibres lignocellulosiques

    NASA Astrophysics Data System (ADS)

    Landrevy, Christel

    Pour faire face à la crise économique la conception de papier à valeur ajoutée est développée par les industries papetières. Le but de se projet est l'amélioration des techniques actuelles de réticulation des fibres lignocellulosiques de la pâte à papier visant à produire un papier plus résistant. En effet, lors des réactions de réticulation traditionnelles, de nombreuses liaisons intra-fibres se forment ce qui affecte négativement l'amélioration anticipée des propriétés physiques du papier ou du matériau produit. Pour éviter la formation de ces liaisons intra-fibres, un greffage sur les fibres de groupements ne pouvant pas réagir entre eux est nécessaire. La réticulation des fibres par une réaction de « click chemistry » appelée cycloaddition de Huisgen entre un azide et un alcyne vrai, catalysée par du cuivre (CuAAC) a été l'une des solutions trouvée pour remédier à ce problème. De plus, une adaptation de cette réaction en milieux aqueux pourrait favoriser son utilisation en milieu industriel. L'étude que nous désirons entreprendre lors de ce projet vise à optimiser la réaction de CuAAC et les réactions intermédiaires (propargylation, tosylation et azidation) sur la pâte kraft, en milieu aqueux. Pour cela, les réactions ont été adaptées en milieu aqueux sur la cellulose microcristalline afin de vérifier sa faisabilité, puis transférée à la pâte kraft et l'influence de différents paramètres comme le temps de réaction ou la quantité de réactifs utilisée a été étudiée. Dans un second temps, une étude des différentes propriétés conférées au papier par les réactions a été réalisée à partir d'une série de tests papetiers optiques et physiques. Mots Clés Click chemistry, Huisgen, CuAAC, propargylation, tosylation, azidation, cellulose, pâte kraft, milieu aqueux, papier.

  4. Les infections à Pseudomonas aeruginosa au service des maladies infectieuses du CHU YO, Burkina Faso: à propos deux cas

    PubMed Central

    Mamoudou, Savadogo; Lassina, Dao; Fla, Koueta

    2015-01-01

    Nous rapportons deux cas d'infection à Pseudomonas aeruginosa: un cas de méningite et un cas d'infection urinaire. Les auteurs rappellent qu’à côté des étiologies classiques des méningites et des infections urinaires, des germes résistants comme Pseudomonas aeruginosa peuvent être responsables d'infections à localisation méningées et urinaires et dont il faut connaître pour une bonne prise en charge. Le traitement de ces infections requiert un antibiogramme au regard de la grande capacité de résistance de Pseudomonas aeruginosa en milieu hospitalier. La limitation des gestes invasifs et l'application rigoureuse des mesures de prévention des infections en milieu hospitalier contribueront à lutter efficacement contre ces infections en milieu de soins. PMID:26491521

  5. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  6. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  7. Comparaison des effets des irradiations γ, X et UV dans les fibres optiques

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Baggio, J.; Boukenter, A.; Meunier, J.-P.; Leray, J.-L.

    2005-06-01

    Les fibres optiques présentent de nombreux avantages incitant à les intégrer dans des applications devant résister aux environnements radiatifs associés aux domaines civil, spatial ou militaire. Cependant, leur exposition à un rayonnement entraîne la création de défauts ponctuels dans la silice amorphe pure ou dopée qui constitue les différentes parties de la fibre optique. Ces défauts causent, en particulier, une augmentation transitoire de l'atténuation linéique des fibres optiques responsable de la dégradation voire de la perte du signal propagé dans celles-ci. Dans cet article, nous comparons les effets de deux types d'irradiation: une impulsion X et une dose γ cumulée. Les effets de ces irradiations sont ensuite comparés avec ceux induits par une insolation ultraviolette (244 nm) sur les propriétés d'absorption des fibres optiques. Nous montrons qu'il existe des similitudes entre ces différentes excitations et qu'il est possible, sous certaines conditions, d'utiliser celles-ci afin d'évaluer la capacité de certaines fibres optiques à fonctionner dans un environnement nucléaire donné.

  8. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  9. The climate of the Late Cretaceous: New insights from the application of the carbonate clumped isotope thermometer to Western Interior Seaway macrofossil

    NASA Astrophysics Data System (ADS)

    Dennis, K. J.; Cochran, J. K.; Landman, N. H.; Schrag, D. P.

    2013-01-01

    We apply the carbonate clumped isotope thermometer (Δ47) to macrofossils from the Baculites compressus (˜73.5 Ma) and the Hoploscaphites nebrascensis (˜67 Ma) ammonite zones of the Western Interior Seaway (WIS) of North America, and nearby coeval terrestrial and open marine environments. The carbonate clumped isotope thermometer is based on a single-phase isotope exchange equilibrium that promotes the 'clumping' of two heavy isotopes together within a single carbonate molecule as temperature decreases. Due to the thermometer's isotopic independence from water, coupled measurements of Δ47 and the bulk oxygen isotopic composition of a carbonate (δ18Oc) enable the reconstruction of both paleotemperature and the isotopic composition of the water in which the organisms grew. Before applying the technique to the aragonite shells of fossil marine organisms (mostly ammonites, but also some gastropods, bivalves, and one belemnite), we measure the clumped isotopic composition of modern nautilus and cuttlefish, two of the nearest living relatives to the Cretaceous ammonites. Modern cephalopods exhibit disequilibrium isotope effects with respect to Δ47, but not δ18Oc, therefore a simple correctional scheme is applied to the Late Cretaceous macrofossil data before reconstructing paleotemperatures. Diagenesis is also assessed by visual preservation and previously measured Sr concentrations (Cochran et al., 2003). Temperatures reconstructed for the Late Cretaceous Western Interior Seaway range from 16.4±3.5 °C for an offshore Interior Seaway environment from the H. nebrascensis zone to 24.2±0.4 °C for the B. compressus ammonite zone. The seaway itself has an isotopic composition of approximately -1‰ (relative to VSMOW), the expectation for an ice-free global ocean average, while a nearby freshwater environment has an isotopic composition approaching -20‰. We compare the attributes of the reconstructed climate to predictions based on Late Cretaceous climate models

  10. A novel methodology to investigate isotopic biosignatures

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    . coli (e.g. membranes, cytosol, etc.), including the catalytic metal atoms within CdCA. These experiments allow isotopic exchange reactions to be observed in biological systems at an unparalleled resolution, demonstrating that isotopic fractionation can occur, in vivo, on length scales as small as a few Å. We will explore future applications of this technique using the marine geochemistry of Cd as a case study. This experimental approach has great promise for studying the individual isotopic biosignatures of other biochemical reactions, in particular those which may have been active during early Earth History.

  11. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    potential to solve this problem for a given set of samples and thus to model the ocean system more accurately in different scales. Besides all complications some important applications of heavy stable isotopes as paleoproxies already emerge. Pilot studies indicate that Mo isotopes may present a proxy for the extend of anoxic condition in past oceans. On a finer scale the same system appears to provide a measure of (bio)-chemical redox-changes related to diagenesis. The Ca isotope system may complement more classical sea surface temperature proxies in particular environments. Promising results exist for polar waters (N. pachy left), as well as indications on the seasonality under global greenhouse conditions ~110-50 Ma ago. However, the heavily species dependent Ca isotope fractionation can not be interpreted by just adopting concepts and findings from the oxygen system. While a complication to the ease of use as SST proxy, this species dependence offers pathways to unravel different modes of bio-calcifications. Given the complexity of the matter, collaboration of specialists of different fields will be needed to develop successful process-related hypotheses and diagnostic tools.

  12. Multiple linear regression for isotopic measurements

    NASA Astrophysics Data System (ADS)

    Garcia Alonso, J. I.

    2012-04-01

    There are two typical applications of isotopic measurements: the detection of natural variations in isotopic systems and the detection man-made variations using enriched isotopes as indicators. For both type of measurements accurate and precise isotope ratio measurements are required. For the so-called non-traditional stable isotopes, multicollector ICP-MS instruments are usually applied. In many cases, chemical separation procedures are required before accurate isotope measurements can be performed. The off-line separation of Rb and Sr or Nd and Sm is the classical procedure employed to eliminate isobaric interferences before multicollector ICP-MS measurement of Sr and Nd isotope ratios. Also, this procedure allows matrix separation for precise and accurate Sr and Nd isotope ratios to be obtained. In our laboratory we have evaluated the separation of Rb-Sr and Nd-Sm isobars by liquid chromatography and on-line multicollector ICP-MS detection. The combination of this chromatographic procedure with multiple linear regression of the raw chromatographic data resulted in Sr and Nd isotope ratios with precisions and accuracies typical of off-line sample preparation procedures. On the other hand, methods for the labelling of individual organisms (such as a given plant, fish or animal) are required for population studies. We have developed a dual isotope labelling procedure which can be unique for a given individual, can be inherited in living organisms and it is stable. The detection of the isotopic signature is based also on multiple linear regression. The labelling of fish and its detection in otoliths by Laser Ablation ICP-MS will be discussed using trout and salmon as examples. As a conclusion, isotope measurement procedures based on multiple linear regression can be a viable alternative in multicollector ICP-MS measurements.

  13. [Ziedses des Plantes: inventor of planigraphy and subtraction].

    PubMed

    van Gijn, Jan; Gijselhart, Joost P

    2011-01-01

    Bernard George Ziedses des Plantes (1902-1993) trained in Utrecht, the Netherlands, as specialist in nervous diseases, but his lifelong passion was to improve X-ray imaging of living tissues. In the 1930s he not only built the first machine for planigraphy, in which the X-ray tube and the film moved together around the plane of interest, but he also designed the subtraction method to improve images after injection of contrast agents. Eventually a full-time radiologist, he also developed the 'somersault' technique of ventriculography and pioneered isotope scintigraphy.

  14. Relation entre les caractéristiques des table-bancs et les mesures anthropométriques des écoliers au Benin

    PubMed Central

    Falola, Stève Marjelin; Gouthon, Polycarpe; Falola, Jean-Marie; Fiogbe, Michel Armand; Nigan, Issiako Bio

    2014-01-01

    Introduction Le mobilier scolaire et la posture assise en classe sont souvent impliqués dans l'apparition des douleurs rachidiennes, influant de fait sur la qualité des tâches réalisées par les apprenants. Aucune étude n'a encore vérifié le degré d'adéquation entre les caractéristiques du mobilier et celles des écoliers au Bénin. L'objectif de cette étude transversale est donc de déterminer la relation entre les dimensions des table-bancs utilisées en classe et les mesures anthropométriques des écoliers au Bénin. Methods Elle a été réalisée avec un échantillon probabiliste de 678 écoliers, âgés de 4 à 17 ans. Les mesures anthropométriques des écoliers et les mensurations relatives aux longueurs, largeurs et hauteurs des table-bancs ont été mesurées, puis intégrées aux équations proposées dans la littérature. Les pourcentages des valeurs situées hors des limitesacceptables, dérivées de l'application des équations ont été calculés. Results La largeur et la hauteur des table-bancs utilisées par les écoliers étaient plus élevées (p < 0,05) que les valeurs de référence recommandées par les structures officielles de contrôle et de production des mobiliers scolaires au Bénin. Quel que soit le sexe, il y avait une inadéquation entre la largeur du banc et la longueur fesse-poplité, puis entre la hauteur de la table et la distance coude-bancdes écoliers. Conclusion Les résultats suggèrent de prendre en compte l’évolution des mesures anthropométriques des écoliers dans la confection des table-bancs, afin de promouvoir de bonnes postures assises en classe et de réduire le risque de troubles du rachis. PMID:25317232

  15. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock).

    PubMed

    Kim, Heejoong; Suresh Kumar, K; Shin, Kyung-Hoon

    2015-04-01

    Globalisation of seafood and aquaculture products and their convenient marketing worldwide, increases the possibility for the distribution of mislabelled products; thereby, underlining the need to identify their origin. Stable isotope analysis is a promising approach to identify the authenticity and traceability of seafood and aquaculture products. In this investigation, we measured carbon and nitrogen stable isotope ratios (δ(13)C and δ(15)N) of three commercial fish, viz. Mackerel, Yellow Croaker and Pollock, originating from various countries. Apart from the species-dependent variation in the isotopic values, marked differences in the δ(13)C and δ(15)N ratios were also observed with respect to the country of origin. This suggests that C and N isotopic signatures could be reliable tools to identify and trace the origin of commercial fish.

  16. Applicability of stable C and N isotope analysis in inferring the geographical origin and authentication of commercial fish (Mackerel, Yellow Croaker and Pollock).

    PubMed

    Kim, Heejoong; Suresh Kumar, K; Shin, Kyung-Hoon

    2015-04-01

    Globalisation of seafood and aquaculture products and their convenient marketing worldwide, increases the possibility for the distribution of mislabelled products; thereby, underlining the need to identify their origin. Stable isotope analysis is a promising approach to identify the authenticity and traceability of seafood and aquaculture products. In this investigation, we measured carbon and nitrogen stable isotope ratios (δ(13)C and δ(15)N) of three commercial fish, viz. Mackerel, Yellow Croaker and Pollock, originating from various countries. Apart from the species-dependent variation in the isotopic values, marked differences in the δ(13)C and δ(15)N ratios were also observed with respect to the country of origin. This suggests that C and N isotopic signatures could be reliable tools to identify and trace the origin of commercial fish. PMID:25442587

  17. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS: Application to Analysis of Experimentally Derived Hydrothermal Mineral-Catalyzed Organic Products

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.; Gibson, Everett K., Jr.

    2012-01-01

    We report results of experiments to measure the H isotope composition of organic acids and alcohols. These experiments make use of a pyroprobe interfaced with a GC and high temperature extraction furnace to make quantitative H isotope measurements. This work compliments our previous work that focused on the extraction and analysis of C isotopes from the same compounds [1]. Together with our carbon isotope analyses our experiments serve as a "proof of concept" for making C and H isotope measurements on more complex mixtures of organic compounds on mineral surfaces in abiotic hydrocarbon formation processes at elevated temperatures and pressures. Our motivation for undertaking this work stems from observations of methane detected within the Martian atmosphere [2-5], coupled with evidence showing extensive water-rock interaction during Mars history [6-8]. Methane production on Mars could be the result of synthesis by mineral surface-catalyzed reduction of CO2 and/or CO by Fischer-Tropsch Type (FTT) reactions during serpentization [9,10]. Others have conducted experimental studies to show that FTT reactions are plausible mechanisms for low-molecular weight hydrocarbon formation in hydrothermal systems at mid-ocean ridges [11-13]. Our H isotope measurements utilize an analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). This technique is designed to carry a split of the pyrolyzed GC-separated product to a Thermo DSQII quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  18. An improved methodology to predict the stable carbon isotopic composition of terrestrial vegetation using remote sensing derived datasets and a novel application to wildlife tracing

    NASA Astrophysics Data System (ADS)

    Powell, R. L.; Still, C. J.

    2006-12-01

    The C3:C4 composition of vegetation is required for a diverse set of carbon cycle research, including studies that use global atmospheric CO2 and carbon isotope composition (δ13C) data, as well as for ecological applications like tracing animal movements over large scales. Here, we present the results of an improved methodology to predict δ13C values of terrestrial vegetation on a continental scale using a combination of remote sensing and other spatially explicit datasets. The approach is based on two characteristics of C4 photosynthesis: (1) the near-universal restriction of C4 photosynthesis to an herbaceous growth form, and (2) the different performance of C3 and C4 plants in various temperature and radiation regimes. MODIS-derived data, in combination with a 1-km resolution land-cover map, provide detailed information on growth-form composition (percent herbaceous and percent woody) for each grid cell. Precipitation and temperature variations are derived from station data climatologies to determine which grid cells favor C4 over C3 photosynthesis. The distribution of herbaceous crops is generated for each photosynthetic pathway from a global dataset of 18 major crops. Integrating these datasets produces a continuous map of the percentage cover of C3 and C4 vegetation, and these values are used to estimate the δ13C of vegetation. We present the δ13C "isoscape" for the continent of Africa; δ13C vegetation values vary significantly with latitude, altitude, and dominant vegetation type. As a novel case study, we apply the Africa δ13C isoscape to constrain the movement and migration of several African bird species whose feather δ13C is known. Our results suggest that continental-scale isoscapes have the potential to improve our understanding of bird migration.

  19. Radium, Thorium and Radioactive Lead Isotopes in Groundwaters: Application to the in Situ Determination of Adsorption-Desorption Rate Constants and Retardation Factors

    NASA Astrophysics Data System (ADS)

    Krishnaswami, S.; Graustein, William C.; Turekian, Karl K.; Dowd, John F.

    1982-12-01

    Five groundwater samples taken from different Hydrogeologie settings in Connecticut were analyzed for major cation chemistry and the concentration of U and Th decay series nuclides 238U, 234Th, 226Ra, 222Rn, 210Pb, 210Po, 232Th, 228Ra, 228Th, and 224Ra. The concentration of 222Rn in the waters ranged between 103 and 104 dpm l-1 and was three to four orders of magnitude greater than that of the short-lived alpha daughters 224Ra, 228Ra, and 234Th, even though the rates of supply of these four nuclides to solution are expected to be similar. We infer that sorption removes radium and thorium from these groundwaters on a time scale of 3 minutes or less. The (224Ra/228Ra) and (234Th/228Th) activity ratios in these waters indicate that desorption of these nuclides occurs on a time scale of a week or less and that equilibrium between solution and surface phases is established. In situ retardation factors for radium, thorium, and lead may therefore be calculated directly from the isotopic data; values range from 4,500 to 200,000. Neither sorption time scales nor retardation factors are strongly dependent on the nuclide or on hydrogeology of the aquifer. Since our study includes nuclides with diverse chemical properties, we suggest that other uncomplexed heavy metals and transuranic elements will also behave in a manner similar to those measured here. The approach presented here should therefore find application in developing site-specific models of the transport of radioactive or stable elemental waste through water-saturated media.

  20. Method for production of an isotopically enriched compound

    SciTech Connect

    Watrous, Matthew G.

    2012-12-11

    A method is presented for producing and isolating an isotopically enriched compound of a desired isotope from a parent radionuclide. The method includes forming, or placing, a precipitate containing a parent radionuclide of the desired daughter isotope in a first reaction zone and allowing sufficient time for the parent to decay into the desired gaseous daughter radioisotope. The method further contemplates collecting the desired daughter isotope as a solid in a second reaction zone through the application of temperatures below the freezing point of the desired isotope to a second reaction zone that is connected to the first reaction zone. Specifically, a method is presented for producing isotopically enriched compounds of xenon, including the radioactive isotope Xe-131m and the stable isotope Xe-131.

  1. Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Völkening, Joachim; Köppe, Manfred; Heumann, Klaus G.

    1991-07-01

    A precise determination of the isotopic abundances of tungsten with natural isotopic composition is presented. WO-3 ions are generated by negative thermal ionization (NTI) in a double-filament ion source. La2O3 is used as a chemical substance to reduce the electron work function of the rhenium filament material. An ionization efficiency of 1% is obtained for sample loadings of 100 ng. The isotopic abundances are measured with relative standard deviations of 0.2% for the least abundant 180W isotope and 0.02-0.004% for the other tungsten isotopes. These improved isotopic data are used to recalculate the atomic weight of tungsten as 183.8417 ± 0.0001. The new NTI technique is an ideal tool for the application of isotope dilution mass spectrometry to analyse tungsten traces and for the measurement of isotopic shifts of this element in meteorites produced by the decay of 182Hf.

  2. Advanced isotope separation

    SciTech Connect

    Not Available

    1982-05-04

    The Study Group briefly reviewed the technical status of the three Advanced Isotope Separation (AIS) processes. It also reviewed the evaluation work that has been carried out by DOE's Process Evaluation Board (PEB) and the Union Carbide Corporation-Nuclear Division (UCCND). The Study Group briefly reviewed a recent draft assessment made for DOE staff of the nonproliferation implications of the AIS technologies. The staff also very briefly summarized the status of GCEP and Advanced Centrifuge development. The Study Group concluded that: (1) there has not been sufficient progress to provide a firm scientific, technical or economic basis on which to select one of the three competing AIS processes for full-scale engineering development at this time; and (2) however, should budgetary restraints or other factors force such a selection, we believe that the evaluation process that is being carried out by the PEB provides the best basis available for making a decision. The Study Group recommended that: (1) any decisions on AIS processes should include a comparison with gas centrifuge processes, and should not be made independently from the plutonium isotope program; (2) in evaluating the various enrichment processes, all applicable costs (including R and D and sales overhead) and an appropriate discounting approach should be included in order to make comparisons on a private industry basis; (3) if the three AIS programs continue with limited resources, the work should be reoriented to focus only on the most pressing technical problems; and (4) if a decision is made to develop the Atomic Vapor Laser Isotope Separation process, the solid collector option should be pursued in parallel to alleviate the potential program impact of liquid collector thermal control problems.

  3. FRIB - Facility for Rare Isotope Beams

    SciTech Connect

    Bollen, G.

    2010-04-30

    FRIB, the US's 'Facility for Rare Isotope Beams' to be built at Michigan State University (MSU), will be based on a 400 kW, 200 MeV/u heavy ion driver linac. Once completed, FRIB will offer world-unique opportunities for rare isotope science. It will provide a wide variety of high-quality beams of unstable isotopes at unprecedented intensities, opening exciting research perspectives with fast, stopped, and reaccelerated beams. New experiments will become possible to explore nuclear structure very far from stability and to provide information critical for the explanation of the element abundances observed in the universe. Special isotopes that are important for the study of fundamental symmetries and to allow for new applications of isotopes to meet societal needs will at become available at high intensities.

  4. Selected Isotopes for Optimized Fuel Assembly Tags

    SciTech Connect

    Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

    2008-10-01

    In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

  5. Médecine des voyages

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Résumé Objectif Définir la pratique de la médecine des voyages, présenter les éléments fondamentaux d’une consultation complète préalable aux voyages à des voyageurs internationaux et aider à identifier les patients qu’il vaudrait mieux envoyer en consultation auprès de professionnels de la médecine des voyages. Sources des données Les lignes directrices et les recommandations sur la médecine des voyages et les maladies liées aux voyages publiées par les autorités sanitaires nationales et internationales ont fait l’objet d’un examen. Une recension des ouvrages connexes dans MEDLINE et EMBASE a aussi été effectuée. Message principal La médecine des voyages est une spécialité très dynamique qui se concentre sur les soins préventifs avant un voyage. Une évaluation exhaustive du risque pour chaque voyageur est essentielle pour mesurer avec exactitude les risques particuliers au voyageur, à son itinéraire et à sa destination et pour offrir des conseils sur les interventions les plus appropriées en gestion du risque afin de promouvoir la santé et prévenir les problèmes médicaux indésirables durant le voyage. Des vaccins peuvent aussi être nécessaires et doivent être personnalisés en fonction des antécédents d’immunisation du voyageur, de son itinéraire et du temps qu’il reste avant son départ. Conclusion La santé et la sécurité d’un voyageur dépendent du degré d’expertise du médecin qui offre le counseling préalable à son voyage et les vaccins, au besoin. On recommande à ceux qui donnent des conseils aux voyageurs d’être conscients de l’ampleur de cette responsabilité et de demander si possible une consultation auprès de professionnels de la médecine des voyages pour tous les voyageurs à risque élevé.

  6. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification. PMID:20552700

  7. Application of laser ablation multicollector inductively coupled plasma mass spectrometry for the measurement of calcium and lead isotope ratios in packaging for discriminatory purposes.

    PubMed

    Santamaria-Fernandez, Rebeca; Wolff, Jean-Claude

    2010-07-30

    The potential of high-precision calcium and lead isotope ratio measurements using laser ablation coupled to multicollector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) to aid distinction between four genuine and five counterfeit pharmaceutical packaging samples and further classification of counterfeit packaging samples has been evaluated. We highlight the lack of reference materials for LA-MC-ICP-MS isotope ratio measurements in solids. In this case the problem is minimised by using National Institute of Standards and Technology Standard Reference Material (NIST SRM) 915a calcium carbonate (as solid pellets) and NIST SRM610 glass disc for sample bracketing external standardisation. In addition, a new reference material, NIST SRM915b calcium carbonate, has been characterised in-house for Ca isotope ratios and is used as a reference sample. Significant differences have been found between genuine and counterfeit samples; the method allows detection of counterfeits and aids further classification of packaging samples. Typical expanded uncertainties for measured-corrected Ca isotope ratio values ((43)Ca/(44)Ca and (42)Ca/(44)Ca) were found to be below 0.06% (k = 2, 95% confidence) and below 0.2% for measured-corrected Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb). This is the first time that Ca isotope ratios have been measured in packaging materials using LA coupled to a multicollector (MC)-ICP-MS instrument. The use of LA-MC-ICP-MS for direct measurement of Ca and Pb isotopic variations in cardboard/ink in packaging has definitive potential to aid counterfeit detection and classification.

  8. Compound-specific nitrogen isotope analysis of D-alanine, L-alanine, and valine: application of diastereomer separation to delta15N and microbial peptidoglycan studies.

    PubMed

    Takano, Yoshinori; Chikaraishi, Yoshito; Ogawa, Nanako O; Kitazato, Hiroshi; Ohkouchi, Naohiko

    2009-01-01

    We have developed an analytical method to determine the compound-specific nitrogen isotope compositions of individual amino acid enantiomers using gas chromatography/combustion/isotope ratio mass spectrometry. A novel derivatization of amino acid diastereomers by optically active (R)-(-)-2-butanol or (S)-(+)-2-butanol offers two advantages for nitrogen isotope analysis. First, chromatographic chiral separation can be achieved without the use of chiral stationary-phase columns. Second, the elution order of these compounds on the chromatogram can be switched by a designated esterification reaction. We applied the method to the compound-specific nitrogen isotope analysis of D- and L-alanine in a peptidoglycan derived from the cell walls of cultured bacteria (Firmicutes and Actinobacteria; Enterococcus faecalis, Staphylococcus aureus, Staphylococcus staphylolyticus, Lactobacillus acidophilus, Bacillus subtilis, Micrococcus luteus, and Streptomyces sp.), natural whole bacterial cells (Bacillus subtilis var. natto), (pseudo)-peptidoglycan from archaea (Methanobacterium sp.), and cell wall from eukaryota (Saccharomyces cerevisiae). We observed statistically significant differences in nitrogen isotopic compositions; e.g., delta15N ( per thousand vs air) in Staphylococcus staphylolyticus for d-alanine (19.2 +/- 0.5 per thousand, n = 4) and L-alanine (21.3 +/- 0.8 per thousand, n = 4) and in Bacillus subtilis for D-alanine (6.2 +/- 0.2 per thousand, n = 3) and L-alanine (8.2 +/- 0.4 per thousand, n = 3). These results suggest that enzymatic reaction pathways, including the alanine racemase reaction, produce a nitrogen isotopic difference in amino acid enantiomers, resulting in 15N-depleted D-alanine. This method is expected to facilitate compound-specific nitrogen isotope studies of amino acid stereoisomers.

  9. Catalog Production for the DES Blind Cosmology Challenge

    NASA Astrophysics Data System (ADS)

    Busha, Michael T.; Wechsler, R. H.; Becker, M. R.; Erickson, B.; Evrard, A. E.

    2013-01-01

    The Blind Cosmology Challenge (BCC) is an effort by the Dark Energy Survey (DES) to test analysis tools for extracting cosmological information using a set of detailed synthetic galaxy catalogs. Here, we describe the creation of these synthetic sky catalogs based on requirements of the optical (DES) and the near-IR VISTA Hemisphere Survey, producing catalogs covering a quarter of the sky to z ˜ 2, with sources complete to r ˜ 25. Starting with a nested set of lightcone outputs of large, N-body simulation, galaxies are assigned to the dark matter distribution using an empirical algorithm that is tunable to match observed evolution of low-order galaxy population properties (counts and spatial clustering) in luminosity-color-density space. Galaxies are lensed by matter along the line of sight (including magnification, shape distortion, and multiple images), using a new algorithm that calculates shear with 3.22 arcsec resolution at galaxy positions in the full catalog. The catalog is well suited to support DES+VISTA joint studies of galaxy clustering, groups and clusters of galaxies, and gravitational lensing, and we highlight their application to the ongoing DES BBCC. Catalogs include ˜320 million galaxies and ˜150 million stars, with realistic colors, shapes and photometric errors. Using the expected DES photometric errors, three independent photometric redshift codes are run on the catalog, two of which produce full probability distributions. The synthetic observable catalog includes object position, magnitudes in the DES and VISTA bands, photometric errors, photometric redshifts, size, ellipticity, for each of ˜ 500 million objects. The galaxy distribution is additionally masked appropriately for the 5000 square degree DES footprint, including the impact of bright stars. In addition, we offer separate catalogs with magnitudes for additional existing and planned surveys, including SDSS, CFHTLS, HSC, LSST, and Euclid.

  10. Isotope pattern deconvolution as rising tool for isotope tracer studies in environmental research

    NASA Astrophysics Data System (ADS)

    Irrgeher, Johanna; Zitek, Andreas; Prohaska, Thomas

    2014-05-01

    During the last decade stable isotope tracers have emerged as versatile tool in ecological research. Besides 'intrinsic' isotope tracers caused by the natural variation of isotopes, the intentional introduction of 'extrinsic' enriched stable isotope tracers into biological systems has gained significant interest. Hereby the induced change in the natural isotopic composition of an element allows amongst others for studying the fate and fluxes of metals, trace elements and species in organisms or provides an intrinsic marker or tag of particular biological samples. Due to the shoreless potential of this methodology, the number of publications dealing with applications of isotope (double) spikes as tracers to address research questions in 'real world systems' is constantly increasing. However, some isotope systems like the natural Sr isotopic system, although potentially very powerful for this type of application, are still rarely used, mainly because their adequate measurement/determination poses major analytical challenges; as e.g. Sr is available in significant amounts in natural samples. In addition, biological systems underlie complex processes such as metabolism, adsorption/desorption or oxidation/reduction. As a consequence, classic evaluation approaches such as the isotope dilution mass spectrometry equation are often not applicable because of the unknown amount of tracer finally present in the sample. Isotope pattern deconvolution (IPD), based on multiple linear regression, serves as simplified alternative data processing strategy to double spike isotope dilution calculations. The outstanding advantage of this mathematical tool lies in the possibility of deconvolving the isotope pattern in a spiked sample without knowing the quantities of enriched isotope tracer being incorporated into the natural sample matrix as well as the degree of impurities and species-interconversion (e.g. from sample preparation). Here, the potential of IPD for environmental tracer

  11. Atomic balm: Finding hope in isotopes

    SciTech Connect

    Carlson, K.

    1996-12-31

    This article provides a glimpse of the research program at ORNL carried out as part of the nuclear medicine group, aimed at the application of radioisotopes for medical applications. These can be either diagnostic or treatment based applications. Faced with shrinking research budgets, the department focuses primarily on applications of reactor produced isotopes because of the continued availability of a reactor for producing such isotopes. This paper describes collaborative work to use rhenium-188 and iodine-123 for cancer and pain treatments, and for diagnosing Alzheimer`s disease.

  12. High Precision Isotopic Reference Material Program

    NASA Astrophysics Data System (ADS)

    Mann, J. L.; Vocke, R. D.

    2007-12-01

    Recent developments in thermal ionization and inductively coupled plasma multicollector mass spectrometers have lead to "high precision" isotope ratio measurements with uncertainties approaching a few parts in 106. These new measurement capabilities have revolutionized the study of isotopic variations in nature by increasing the number of elements showing natural variations by almost a factor of two, and new research areas are actively opening up in climate change, health, ecology, geology and forensic studies. Because the isotopic applications are impacting very diverse fields, there is at present little effective coordination between research laboratories over reference materials and the values to apply to those materials. NIST had originally developed the techniques for producing accurate isotopic characterizations, culminating in the NIST Isotopic SRM series. The values on existing materials however are insufficiently precise and, in some cases, may be isotopically heterogeneous. A new generation of isotopic standards is urgently needed and will directly affect the quality and scope of emergent applications and ensure that the results being derived from these diverse fields are comparable. A series of new isotopic reference materials similar to the NIST 3100 single element solution series is being designed for this purpose and twelve elements have been selected as having the most pressing need. In conjunction with other expert users and National Metrology Institutes, an isotopic characterization of the respective 12 selected ampoules from the NIST single element solution series is currently underway. In this presentation the preliminary results of this screening will be discussed as well as the suitability of these materials in terms of homogeneity and purity, long term stability and availability, and isotopic relevance. Approaches to value assignment will also be discussed.

  13. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  14. Electrochemical isotope effect and lithium isotope separation.

    PubMed

    Black, Jay R; Umeda, Grant; Dunn, Bruce; McDonough, William F; Kavner, Abby

    2009-07-29

    A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.

  15. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  16. Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of poultry manure (PM) to cropland as fertilizer is a common practice in artificially drained regions of the Upper Midwest. To assess the potential for PM to contribute pathogenic bacteria to downstream waters, information is needed on the impacts of manure management and tillage practi...

  17. 135Cs/137Cs isotopic composition of environmental samples across Europe: Environmental transport and source term emission applications

    SciTech Connect

    Snow, Mathew S.; Snyder, Darin C.

    2015-11-02

    135Cs/137Cs isotopic analyses represent an important tool for studying the fate and transport of radiocesium in the environment; in this work the 135Cs/137Cs isotopic composition in environmental samples taken from across Europe is reported. Surface soil and vegetation samples from western Russia, Ukraine, Austria, and Hungary show consistent aged thermal fission product 135Cs/137Cs isotope ratios of 0.58 ± 0.01 (age corrected to 1/1/15), with the exception of one sample of soil-moss from Hungary which shows an elevated 135Cs/137Cs ratio of 1.78 ± 0.12. With the exception of the outlier sample from Hungary, surface soil/vegetation data are in quantitative agreement with values previously reported for soils within the Chernobyl exclusion zone, suggesting that radiocesium at these locations is primarily composed of homogenous airborne deposition from Chernobyl. Seawater samples taken from the Irish Sea show 135Cs/137Cs isotope ratios of 1.22 ± 0.11 (age corrected to 1/1/15), suggesting aged thermal fission product Cs discharged from Sellafield. Furthermore, the differences in 135Cs/137Cs isotope ratios between Sellafield, Chernobyl, and global nuclear weapons testing fallout indicate that 135Cs/137Cs isotope ratios can be utilized to discriminate between and track radiocesium transport from different nuclear production source terms, including major emission sources in Europe.

  18. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  19. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  20. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  1. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  2. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  3. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  4. The Facility for Rare Isotope Beams

    NASA Astrophysics Data System (ADS)

    Wrede, C.

    2015-05-01

    The Facility for Rare Isotope Beams (FRIB) is a United States Department of Energy user facility currently under construction on the campus of Michigan State University. Based on a 400 kW, 200 MeV/u heavy-ion driver linac, FRIB will deliver high-quality fast, thermalized, and re-accelerated beams of rare isotopes with unprecedented intensities to a variety of experimental areas and equipment. New science opportunities at the frontiers of nuclear structure, nuclear astrophysics, fundamental symmetries, and societal applications will be enabled by this future world-leading rare-isotope beam facility.

  5. Étude de la contribution de la diffusion simple et multiple à l'amplitude des atomes voisins du silicium dans SiO{2} : application à un granulat soumis à la réaction alcali-silice

    NASA Astrophysics Data System (ADS)

    Boinski, F.; Khouchaf, L.; Verstraete, J.; Tuilier, M. H.

    2004-11-01

    Les amplitudes des différentes distributions lointaines de la transformée de Fourier d'un spectre EXAFS contiennent des informations précieuses pour la caractérisation de l'ordre local autour d'un atome donné. Ces informations sont souvent nécessaires pour la proposition de modèles. Or souvent dans cette zone, les distances inter atomiques correspondent à des libres parcours moyens du photoélectron assez importants. La contribution due à la diffusion multiple perturbe le signal propre de la diffusion simple des atomes diffuseurs. Afin de mieux évaluer l'influence de la diffusion multiple dans nos échantillons constitués de granulats à base de SiO{2} attaqués par la réaction alcali-silice, nous avons calculé les différents parcours de diffusion simple et multiple dans ce composé. Les calculs montrent que lorsque la contribution de la diffusion multiple n'est pas atténuée, l'exploitation des voisins lointains est difficile voir impossible. La modélisation des spectres TF expérimentaux a pu être réalisée uniquement en négligeant la contribution de la diffusion multiple. Ce résultat va nous permettre l'exploitation des voisins lointains en particulier les atomes silicium dans le granulat brut et après dégradation en se basant sur le formalisme de la diffusion simple.

  6. Advances in Isotope Ratio Mass Spectrometry and Required Isotope Reference Materials

    PubMed Central

    Vogl, Jochen

    2013-01-01

    The article gives a condensed version of the keynote lecture held at the International Mass Spectrometry Conference 2012 in Kyoto. Starting with some examples for isotope research the key requirements for metrologically valid procedures enabling traceable and comparable isotope data are discussed. Of course multi-collector mass spectrometers are required which offer sufficiently high isotope ratio precision for the intended research work. Following this, corrections for mass fractionation/discrimination, validation of the analytical procedure including chemical sample preparation and complete uncertainty budgets are the most important issues for obtaining a metrologically valid procedure for isotope ratio determination. Only the application of such metrologically valid procedures enables the generation of traceable and comparable isotope data. To realize this suitable isotope and/or δ-reference materials are required, which currently are not sufficiently available for most isotope systems. Boron is given as an example, for which the situation regarding isotope and δ-reference materials is excellent. Boron may therefore serve as prototype for other isotope systems. PMID:24349939

  7. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  8. Stable isotope deltas: Tiny, yet robust signatures in nature

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.

    2012-01-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including 14C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. 13C, 2H, and 18O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as−25 per mil can be written as−25 mUr (or−2.5 cUr or−0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg ‘units’ are easily included (e.g. either+0.015 ‰ or+15 per meg

  9. Stable isotope deltas: tiny, yet robust signatures in nature.

    PubMed

    Brand, Willi A; Coplen, Tyler B

    2012-09-01

    Although most of them are relatively small, stable isotope deltas of naturally occurring substances are robust and enable workers in anthropology, atmospheric sciences, biology, chemistry, environmental sciences, food and drug authentication, forensic science, geochemistry, geology, oceanography, and paleoclimatology to study a variety of topics. Two fundamental processes explain the stable isotope deltas measured in most terrestrial systems: isotopic fractionation and isotope mixing. Isotopic fractionation is the result of equilibrium or kinetic physicochemical processes that fractionate isotopes because of small differences in physical or chemical properties of molecular species having different isotopes. It is shown that the mixing of radioactive and stable isotope end members can be modelled to provide information on many natural processes, including (14)C abundances in the modern atmosphere and the stable hydrogen and oxygen isotopic compositions of the oceans during glacial and interglacial times. The calculation of mixing fractions using isotope balance equations with isotope deltas can be substantially in error when substances with high concentrations of heavy isotopes (e.g. (13)C, (2)H, and (18)O ) are mixed. In such cases, calculations using mole fractions are preferred as they produce accurate mixing fractions. Isotope deltas are dimensionless quantities. In the International System of Units (SI), these quantities have the unit 1 and the usual list of prefixes is not applicable. To overcome traditional limitations with expressing orders of magnitude differences in isotope deltas, we propose the term urey (symbol Ur), after Harold C. Urey, for the unit 1. In such a manner, an isotope delta value expressed traditionally as-25 per mil can be written as-25 mUr (or-2.5 cUr or-0.25 dUr; the use of any SI prefix is possible). Likewise, very small isotopic differences often expressed in per meg 'units' are easily included (e.g. either+0.015 ‰ or+15 per meg

  10. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  11. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  12. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    DOE PAGES

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; Georg, R. Bastian; Spicuzza, Michael J.; Valley, John W.

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up tomore » 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.« less

  13. A new approach to the solution of the linear mixing model for a single isotope: application to the case of an opportunistic predator.

    PubMed

    Hall-Aspland, S A; Hall, A P; Rogers, T L

    2005-03-01

    Mixing models are used to determine diets where the number of prey items are greater than one, however, the limitation of the linear mixing method is the lack of a unique solution when the number of potential sources is greater than the number (n) of isotopic signatures +1. Using the IsoSource program all possible combinations of each source contribution (0-100%) in preselected small increments can be examined and a range of values produced for each sample analysed. We propose the use of a Moore Penrose (M-P) pseudoinverse, which involves the inverse of a 2x2 matrix. This is easily generalized to the case of a single isotope with (p) prey sources and produces a specific solution. The Antarctic leopard seal (Hydrurga leptonyx) was used as a model species to test this method. This seal is an opportunistic predator, which preys on a wide range of species including seals, penguins, fish and krill. The M-P method was used to determine the contribution to diet from each of the four prey types based on blood and fur samples collected over three consecutive austral summers. The advantage of the M-P method was the production of a vector of fractions f for each predator isotopic value, allowing us to identify the relative variation in dietary proportions. Comparison of the calculated fractions from this method with 'means' from IsoSource allowed confidence in the new approach for the case of a single isotope, N.

  14. New Applications of the Re-187 - Os-187 and Pt-190 - Os-186 Isotope Systems to the Study of Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Cook, D. L.; Walker, R. J.; Horan, M. F.

    2000-01-01

    Re-187 - Os-187 and Pt-190 - Os-186 isotope systems are applied to dating evolved iron meteorites. The Re-Os systematics of some evolved irons may indicate late stage system closure. This conclusion appears to be supported by a "young" Pt-Os isochron age.

  15. Trial application of oxygen and carbon isotope analysis in tooth enamel for identification of past-war victims for discriminating between Japanese and US soldiers.

    PubMed

    Someda, Hidetoshi; Gakuhari, Takashi; Akai, Junko; Araki, Yoshiyuki; Kodera, Tsutomu; Tsumatori, Gentaro; Kobayashi, Yasushi; Matsunaga, Satoru; Abe, Shinichi; Hashimoto, Masatsugu; Saito, Megumi; Yoneda, Minoru; Ishida, Hajime

    2016-04-01

    Stable isotope analysis has undergone rapid development in recent years and yielded significant results in the field of forensic sciences. In particular, carbon and oxygen isotopic ratios in tooth enamel obtained from human remains can provide useful information for the crosschecking of morphological and DNA analyses and facilitate rapid on-site prescreening for the identification of remains. This study analyzes carbon and oxygen isotopic ratios in the tooth enamel of Japanese people born between 1878 and 1930, in order to obtain data for methodological differentiation of Japanese and American remains from the Second World War. The carbon and oxygen isotopic ratios in the tooth enamel of the examined Japanese individuals are compared to previously reported data for American individuals (born post WWII), and statistical analysis is conducted using a discrimination method based on a logistic regression analysis. The discrimination between the Japanese and US populations, including Alaska and Hawaii, is found to be highly accurate. Thus, the present method has potential as a discrimination technique for both populations for use in the examination of mixed remains comprising Japanese and American fallen soldiers.

  16. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles.

    PubMed

    Claverie, Fanny; Hubert, Amélie; Berail, Sylvain; Donard, Ariane; Pointurier, Fabien; Pécheyran, Christophe

    2016-04-19

    The isotope drift encountered on short transient signals measured by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) is related to differences in detector time responses. Faraday to Faraday and Faraday to ion counter time lags were determined and corrected using VBA data processing based on the synchronization of the isotope signals. The coefficient of determination of the linear fit between the two isotopes was selected as the best criterion to obtain accurate detector time lag. The procedure was applied to the analysis by laser ablation-MC-ICPMS of micrometer sized uranium particles (1-3.5 μm). Linear regression slope (LRS) (one isotope plotted over the other), point-by-point, and integration methods were tested to calculate the (235)U/(238)U and (234)U/(238)U ratios. Relative internal precisions of 0.86 to 1.7% and 1.2 to 2.4% were obtained for (235)U/(238)U and (234)U/(238)U, respectively, using LRS calculation, time lag, and mass bias corrections. A relative external precision of 2.1% was obtained for (235)U/(238)U ratios with good accuracy (relative difference with respect to the reference value below 1%). PMID:27031645

  17. 77 FR 30273 - DES Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission DES Wholesale, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of DES Wholesale, LLC's application for market-based rate authority, with...

  18. Experimental determination of the diffusion rate of deuterated water vapor in ice and application to the stable isotopes smoothing of ice cores

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, P.; Jouzel, J.; Stievenard, M.; Ciais, P.

    1998-05-01

    The stable isotope records of δD and δ18O in ice cores show that the isotopic gradients are smoothed out with time by diffusion. Transport of hydrogen and oxygen atoms through solid ice is slow, whereas water vapor diffusion through the interconnected porosity is much faster. Smoothing occurs preferentially in the upper layers of firn, where the density is lowest, and is responsible for the gradual alteration of the isotopic stratigraphy. Results for the diffusion of water vapor in ice are presented. They were obtained from laboratory experiments with diffusion couples prepared using artificial snow with different D/H values. The samples were allowed to diffuse for about one year at a controlled temperature before being cut into thin sections and analyzed with a mass spectrometer. The effects of both temperature and density were investigated. The measured diffusion coefficients are fully consistent with water vapor diffusion through the ice porosity. The computed values are less than the diffusion coefficient of HDO in free-air and imply a tortuosity factor in the range 3.2-6.5 depending on the sample density. The influence of the grain sizes on the timescale of the isotopic homogenization between the vapor phase and the ice matrix was studied. We show that for grain sizes up to 1 mm in diameter, solid diffusion within the grains is not a limiting factor and therefore, the isotopic equilibrium between the vapor and the solid phases can be considered as immediate. The diffusion model developed to compute the diffusion coefficients was further applied to investigate the real case of isotope smoothing in ice cores. The smoothing rate is highly dependent on the wavelength of the isotopic signal, linked to the accumulation rate, and on temperature. Finally, the model was applied to tritium deposition in Antarctica, from a continuous record of artificial fallout at the South Pole (1954-1978). The result shows that in spite of large gradients, the initial distribution

  19. Kinetics of Sr and Nd exchange in silicate liquids: Theory, experiments, and applications to uphill diffusion, isotopic equilibration, and irreversible mixing of magmas

    SciTech Connect

    Lesher, C.E.

    1994-05-10

    Diffusion coefficients that govern chemical and isotopic exchange of Sr and Nd were determined from compositional profiles developed between juxtaposed anhydrous basaltic and rhyolitic liquids. Analysis of simple diffusion couples involving isotopically enriched and normal tholeiitic basalt and metaluminous rhyolite recover Sr and Nd self-diffusion coefficients (D{sup *}) in the end-member compositions of contrasting polymerization. Self-diffusion of Sr is 7 times faster in basaltic melt than rhyolitic melt at 1255{degrees}C and 1 GPa, while self-diffusion of Nd is more than 1 order of magnitude greater in basalt than rhyolite. Also, at these conditions, D{sub Sr}{sup *} is a factor of 3 greater than D{sub Nd}{sup *} in basalt and an order of magnitude greater than D{sub Nd}{sup *} in rhyolite. The results of a Botlzmann-Matano analysis of {sup 87}Sr/{Sigma}Sr and {sup 144}Nd/{Sigma}Nd profiles of complex diffusion couples composed of isotopically normal basalt and enriched rhyolite yield diffusion coefficients for intermediate bulk compositions in agreement with interpolated values given by the relationships above. An important feature of the interdiffusion of basaltic and rhyolitic liquids is the equilibration of isotopic composition in advance of chemical homogenization. This behavior is best displayed by Sr in the present experiments and predicted for Nd. These results are considered in a magmatic context, where intimate blending of magmas during mixing is frustrated by large rheological contrasts and/or insufficient exposure time. Time-dependent diffusional exchange between mingling magmas leads to covariations in chemical and isotopic compositions that differ markedly from the expectations of bulk mixing. Examples presented offer alternative interpretations for the compositional relationships found among magmatic rocks of hybrid origin. 63 refs., 14 figs., 4 tabs.

  20. Application of Sr and O isotope relations to the petrogenesis of the alkaline rocks of the Red Hill complex, New Hampshire, USA

    USGS Publications Warehouse

    Foland, K.A.; Friedman, I.

    1977-01-01

    The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198??3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330??0.00016 (??2 sigma; ??=1.42?? 10-11y-1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give ??18O values which range from+6.2 to+9.3??? Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series. ?? 1977 Springer-Verlag.

  1. A Comparison of Groundwater Fluxes Computed with MODFLOW and a Stable Isotope Mixing Model: Application to the Eastern Nevada Test Site and Vicinity

    NASA Astrophysics Data System (ADS)

    Carroll, R. W.; Pohll, G. M.; Earman, S.; Hershey, R. L.

    2007-12-01

    The primary objective of this study was to compare groundwater flows in the vicinity of the eastern Nevada Test Site (NTS) computed with a hydraulically defined groundwater flow model against those predicted with an isotopically based mixing model. The US Geological Survey (USGS) Death Valley Regional Flow Model (DVRFM) is a transient, three-dimensional, groundwater model that uses the public domain, finite difference code MODFLOW. The second model (Discrete-State Compartment Model-Shuffled Complex Evolution; DSCM-SCE) is a recently developed code that auto-calibrates groundwater flows (both magnitude and direction) using a steady- state mixing algorithm to best match observed conservative tracer concentrations in groundwater. The model can be calibrated based on data for multiple tracers with tracer concentrations considered either independent or fully covariant. To compare modeling approaches, DVRFM boundary conditions and cell-to-cell interactions were used in the DSCM-SCE's 15-cell eastern NTS model. Analysis of δD and δ18O data conducted throughout the model domain suggests recharge and mixing may be the dominant mechanisms for groundwater isotopic enrichment in the down gradient direction. Model results show that DVRFM boundary fluxes and cell outflows match representative groundwater isotopic values relatively well. However, optimization on data for an individual isotope lowered the objective function, while combining δD and δ18O independently produced the least error. Large uncertainty in the estimated covariant relationships between δD and δ18O prohibited development of a unique DSCM-SCE solution. Results suggest error exists in estimated DVRFM boundary conditions associated with three of the fifteen modeled basins, while the lack of isotopic data in several basins defining the eastern edge of the model prevents certitude of results pertaining to fluxes in this portion of the model. Future work will look at the uncertainty associated with boundary

  2. New on-line method for water isotope analysis of fluid inclusions in speleothems using laser absorption spectroscopy: Application to stalagmites from Borneo and Switzerland

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Fleitmann, Dominik; Nele Meckler, Anna; Leuenberger, Markus

    2014-05-01

    Speleothems are recognised as key continental archives for paleoclimate reconstructions. They contain fluid inclusions representing past drip water trapped in the calcite structure. Speleothem can be precisely dated and therefore the oxygen (δ18O) and hydrogen (δD) isotopes of fluid inclusions constitute powerful proxies for paleotemperature or to investigate changes in the moisture source over several interglacial-glacial cycles. To liberate fluid inclusion water and to analyse its isotopic composition, a new online extraction method developed at Bern is used. The principle can be summarised as follows: Prior to crushing, the sample is placed into a copper tube, fixed to the line previously heated to 140° C and flushed with a nitrogen and standard water mixture. Thereafter, the speleothem sample is crushed using a simple hydraulic crushing device and the released water from fluid inclusions is transferred by the nitrogen-standard water mixture flow to a Picarro L1102-i isotopic liquid water and water vapor analyser. The measuring principle is based on wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology that allows us to simultaneously monitor hydrogen and oxygen isotopes. Reproducibility of standard water measurements is typically better than 1.5 o for δD and 0.4 o for δ18O. With this method, we successfully analysed δD and δ18O isotopic composition of a stalagmite from Northern Borneo (tropical West Pacific) covering almost two glacial-interglacial cycles from MIS 12 to early MIS 9 (460-330 ka) as well as recent samples from Switzerland and Borneo. These results are used in combination with calcite δ18O to reconstruct paleotemperature. Currently, we are measuring a stalagmite from Milandre cave (Jura, Switzerland) covering the Bølling-Allerød, Younger Dryas cold phase and the Holocene.

  3. Large deuterium isotope effects and their use: a historical review.

    PubMed

    Krumbiegel, Peter

    2011-03-01

    Isotope effects are differences in the properties of the isotopes of an element resulting in different reaction rates of a corresponding compound, in equilibrium constants and in the spectra. Shortly after the discovery of stable isotopes of hydrogen, oxygen, and carbon, Jacob Bigeleisen formulated a theory of isotope effects and calculated possible maximum values. Large isotope effects of (2)H (deuterium) against (1)H (protium) were seen to possibly influence interpretations of reaction mechanisms if corresponding labelling is used. Much work was invested to ensure the safety of deuterium use in men in spite of the large isotope effect. On the other hand, large deuterium isotope effects gave rise to several practical applications. Examples are the enhancement of the stability of some technical products against oxidative and against hydrolytic degradation (oils, pharmaceuticals) as well as alterations of the detoxification metabolism of pharmaceuticals in vivo. PMID:21390986

  4. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.

  5. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  6. Peste des petits ruminants

    PubMed Central

    Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C.

    2015-01-01

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  7. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (URUGUAY)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  8. COMPOUND-SPECIFIC STABLE ISOTOPE ANALYSIS TO DEMONSTRATE IN-SITU MTBE BIOTRANSFORMATION

    EPA Science Inventory

    Change of stable isotope composition of organic contaminants (isotopic fractionation) is a useful indicator of biotransformation. Most of applications to date are in the area of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (biotic- and abiotic transfor...

  9. STABLE ISOTOPES IN ECOLOGICAL STUDIES: NEW DEVELOPMENTS IN MIXING MODELS (BRAZIL)

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in ecological studies. One application uses isotopic ratios to quantify the proportional contributions of multiple sources to a mixture. Examples include pollution sources for air or water bodies, food sources for animals, ...

  10. Compound specific isotope analysis of organophosphorus pesticides.

    PubMed

    Wu, Langping; Yao, Jun; Trebse, Polonca; Zhang, Ning; Richnow, Hans H

    2014-09-01

    Compound-specific isotope analysis (CSIA) has been established as a tool to study the environmental fate of a wide range of contaminants. In this study, CSIA was developed to analyse the stable carbon isotope signatures of the widely used organophosphorus pesticides: dichlorvos, omethoate and dimethoate. The linearity of the GC-C-IRMS system was tested for target pesticides and led to an acceptable isotope composition within the uncertainty of the instrument. In order to assess the accuracy of the developed method, the effect of the evaporation procedure on measured carbon isotope composition (δ(13)C) values was studied and showed that concentration by evaporation of solvents had no significant isotope effect. The CSIA was then applied to investigate isotope fractionation of the hydrolysis and photolysis of selected pesticides. The carbon isotope fractionation of tested pesticides was quantified by the Rayleigh model, which revealed a bulk enrichment factor (ε) of -0.2±0.1‰ for hydrolysis of dichlorvos, -1.0±0.1‰ and -3.7±1.1‰ for hydrolysis and photolysis of dimethoate respectively. This study is a first step towards the application of CSIA to trace the transport and degradation of organophosphorus pesticides in the environment.

  11. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss Massa aquifer, southwest of Morocco

    NASA Astrophysics Data System (ADS)

    Bouchaou, L.; Michelot, J. L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C. B.; Bullen, T. D.; Zuppi, G. M.

    2008-05-01

    SummaryGroundwater and surface water in Souss-Massa basin in the west-southern part of Morocco is characterized by a large variation in salinity, up to levels of 37 g L-1. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation using several chemical and isotopic tracers such as Br/Cl, δ18O, δ2H, 3H, 87Sr/86Sr, δ11B, and 14C was carried out in order to determine the sources of water recharge to the aquifer, the origin of salinity, and the residence time of water. Stable isotope, 3H and 14C data indicate that the high Atlas mountains in the northern margin of the Souss-Massa basin with high rainfall and low δ18O and δ2H values (-6 to -8‰ and -36 to -50‰) is currently constitute the major source of recharge to the Souss-Massa shallow aquifer, particularly along the eastern part of the basin. Localized stable isotope enrichments offset meteoric isotopic signature and are associated with high nitrate concentrations, which infer water recycling via water agricultural return flows. The 3H and 14C data suggest that the residence time of water in the western part of the basin is in the order of several thousands of years; hence old water is mined, particularly in the coastal areas. The multiple isotope analyses and chemical tracing of groundwater from the basin reveal that seawater intrusion is just one of multiple salinity sources that affect the quality of groundwater in the Souss-Massa aquifer. We differentiate between modern seawater intrusion, salinization by remnants of seawater entrapped in the middle Souss plains, recharge of nitrate-rich agricultural return flow, and dissolution of evaporate rocks (gypsum and halite minerals) along the outcrops of the high Atlas mountains. The data generated in this study provide the framework for a comprehensive management plan in which water exploitation should

  12. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss-Massa aquifer, southwest of Morocco

    USGS Publications Warehouse

    Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M.

    2008-01-01

    Groundwater and surface water in Souss-Massa basin in the west-southern part of Morocco is characterized by a large variation in salinity, up to levels of 37 g L-1. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation using several chemical and isotopic tracers such as Br/Cl, ??18O, ??2H, 3H, 87Sr/86Sr, ??11B, and 14C was carried out in order to determine the sources of water recharge to the aquifer, the origin of salinity, and the residence time of water. Stable isotope, 3H and 14C data indicate that the high Atlas mountains in the northern margin of the Souss-Massa basin with high rainfall and low ??18O and ??2H values (-6 to -8??? and -36 to -50???) is currently constitute the major source of recharge to the Souss-Massa shallow aquifer, particularly along the eastern part of the basin. Localized stable isotope enrichments offset meteoric isotopic signature and are associated with high nitrate concentrations, which infer water recycling via water agricultural return flows. The 3H and 14C data suggest that the residence time of water in the western part of the basin is in the order of several thousands of years; hence old water is mined, particularly in the coastal areas. The multiple isotope analyses and chemical tracing of groundwater from the basin reveal that seawater intrusion is just one of multiple salinity sources that affect the quality of groundwater in the Souss-Massa aquifer. We differentiate between modern seawater intrusion, salinization by remnants of seawater entrapped in the middle Souss plains, recharge of nitrate-rich agricultural return flow, and dissolution of evaporate rocks (gypsum and halite minerals) along the outcrops of the high Atlas mountains. The data generated in this study provide the framework for a comprehensive management plan in which water exploitation should shift

  13. Atomic vapor laser isotope separation

    NASA Astrophysics Data System (ADS)

    Paisner, J. A.

    1988-07-01

    Atomic Vapor Laser Isotope Separation (AVLIS) is a general and powerful technique applicable to many elements. A major present application to the enrichement of uranium for lightwater power reactor fuel has been under development at the Lawrence Livermore National Laboratory since 1973. In June 1985, the Department of Energy announced the selection of AVLIS as the technology to meet future U.S. needs for the internationally competitive production of uranium separative work. Major features of the AVLIS process will be discussed with consideration of the process figures of merit.

  14. Isotope and Nuclear Chemistry Division annual report, FY 1983

    SciTech Connect

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  15. Etude des parametres physiques en vue d'applications medicales de l'actionnement magnetique de dispositifs medicaux par un systeme d'imagerie par resonance magnetique

    NASA Astrophysics Data System (ADS)

    Mathieu, Jean-Baptiste

    An actuation and control method for medical devices based on the magnetic gradient coils of a Magnetic Resonance Imaging (MRI) was proposed for the first time in 2002 by NanoRobotics Laboratory [1]. The work undertaken in the present thesis began in the context of demonstrating the concept of automatic navigation of a magnetic bead in vivo. From the point of view of actuation, models and experimental data correlate. A maximum velocity of 13cm/s was measured for a 1.5mm diameter chrome steel bead in the carotid artery of a living swine. The bead was under the influence of magnetic gradients applied by a clinical MRI system without any hardware modification. In light of these results, the aim of this thesis is the study of the physical parameters involved in the development of a first medical application: the steering of magnetic particles in MRI in the context of drug targeting. It was demonstrated that an MRI system equipped with a set of magnetic gradient coils with enhanced amplitude was able to apply a high enough actuation force to act upon magnetic microparticles suspended in a liquid. General rules for MRI actuation were identified. First of all, increasing the amplitude of the main magnetic field of the MRI leads to the increase of the actuation force amplitude only until the ferromagnetic body reaches its saturation magnetization. Moreover, soft ferromagnetic bodies appear to be better candidates for MRI based magnetic actuation because they can reach high saturation magnetizations. Magnetic gradient amplitude appears as a foremost factor to increase the amplitude of the magnetic force. Clinical MRI systems do not provide gradients with high enough amplitude for the applications studied here. Theoretical models developed in this thesis predict that a one order of magnitude increase in gradient amplitude would be required. Implementing actuation dedicated gradient coils is therefore suggested. Finally, a larger ferromagnetic body will lead to higher

  16. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates

    NASA Astrophysics Data System (ADS)

    Huang, Kang-Jun; Shen, Bing; Lang, Xian-Guo; Tang, Wen-Bo; Peng, Yang; Ke, Shan; Kaufman, Alan J.; Ma, Hao-Ran; Li, Fang-Bing

    2015-09-01

    formed in deeper sediments, suggesting the potential application of Mg isotope as a proxy for constraining dolostone formation.

  17. Efficient Estimators for Quantum Instanton Evaluation of theKinetic Isotope Effects: Application to the Intramolecular HydrogenTransfer in Pentadiene

    SciTech Connect

    Vanicek, Jiri; Miller, William H.

    2007-06-13

    The quantum instanton approximation is used to compute kinetic isotope effects for intramolecular hydrogen transfer in cis-1,3-pentadiene. Due to the importance of skeleton motions, this system with 13 atoms is a simple prototype for hydrogen transfer in enzymatic reactions. The calculation is carried out using thermodynamic integration with respect to the mass of the isotopes and a path integral Monte Carlo evaluation of relevant thermodynamic quantities. Efficient 'virial' estimators are derived for the logarithmic derivatives of the partition function and the delta-delta correlation functions. These estimators require significantly fewer Monte Carlo samples since their statistical error does not increase with the number of discrete time slices in the path integral. The calculation treats all 39 degrees of freedom quantum-mechanically and uses an empirical valence bond potential based on a modified general AMBER force field.

  18. Can We Determine Temperatures Associated with Critical Transitions During the Evolution of Metazoan life? Application of 'Clumped' Isotope Thermometry to the Neoproterozoic and Paleozoic

    NASA Astrophysics Data System (ADS)

    Defliese, W.; Gutierrez, M.; Flores, S.; Retallack, G.; Tripati, A.

    2015-12-01

    The evolution and development of metazoan life during the Neoproterozoic and Paleozoic was one of the largest and monumental events in Earth history. Conditions surrounding these events are uncertain, as there remain many questions about the types of environment transitions such as the development of multicellular life, evolution of hard shells, and the transitions of life to land took place in. While mass-47 clumped isotope signatures are prone to thermal resetting and diagenesis, it remains the best tool for reconstructing temperatures in uncertain regimes, and can be integrated along with traditional tools such as textural petrography and cathodoluminescence to screen for diagenetic alteration. In this context, we analyze suites of Neoproterozoic and Paleozoic sediments and brachiopods for clumped isotope temperatures, and combine with microscopy and stratigraphic data to infer diagenetic and burial histories of these rocks. Samples judged to be unaltered will be further analyzed for the conditions prevalent during critical transitions during the evolution of metazoan life.

  19. Application of a new model for groundwater age distributions: Modeling and isotopic analysis of artificial recharge in the Rialto-Colton basin, California

    USGS Publications Warehouse

    Ginn, T.R.; Woolfenden, L.

    2002-01-01

    A project for modeling and isotopic analysis of artificial recharge in the Rialto-Colton basin aquifer in California, is discussed. The Rialto-Colton aquifer has been divided into four primary and significant flowpaths following the general direction of groundwater flow from NW to SE. The introductory investigation include sophisticated chemical reaction modeling, with highly simplified flow path simulation. A comprehensive reactive transport model with the established set of geochemical reactions over the whole aquifer will also be developed for treating both reactions and transport realistically. This will be completed by making use of HBGC123D implemented with isotopic calculation step to compute Carbon-14 (C14) and stable Carbon-13 (C13) contents of the water. Computed carbon contents will also be calibrated with the measured carbon contents for assessment of the amount of imported recharge into the Linden pond.

  20. An efficient and compact difference-frequency-generation spectrometer and its application to (12)CH(3)D/(12)CH(4) isotope ratio measurements.

    PubMed

    Tsuji, Kiyoshi; Teshima, Hiroaki; Sasada, Hiroyuki; Yoshida, Naohiro

    2010-01-01

    We have developed an efficient and compact 3.4 μm difference-frequency-generation spectrometer using a 1.55 μm distributed feedback (DFB) laser diode, a 1.06 μm DFB laser diode, and a ridge-waveguide periodically poled lithium niobate. It is continuously tunable in the 30 cm(-1) span and is applied to (12)CH(3)D/(12)CH(4) isotope ratio measurements. The suitable pair of (12)CH(3)D ν(4) (p)P(7,6) and (12)CH(4) ν(2)+ν(4) R(6) F(1)((1)) lines enabled us to determine their isotope ratio with a precision repeatability of 0.8‰ using a sample and a working standard of pure methane with an effective signal averaging time of 100 ms.

  1. U.S. Department of Energy Isotope Program

    SciTech Connect

    2015-06-23

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. PNNL’s Isotope Program operates in a multi-program category-2 nuclear facility, the Radiochemical Processing Laboratory (RPL), that contains 16 hot cells and 20 gloveboxes. As part of the DOE Isotope Program, the Pacific Northwest National Laboratory dispenses strontium-90, neptunium-237, radium-223, and thorium-227. PNNL’s Isotope Program uses a dedicated hot-cell for strontium-90 dispensing and a dedicated glovebox for radium-223 and thorium-227 dispensing. PNNL’s Isotope Program has access to state of the art analytical equipment in the RPL to support their research and production activities. DOE Isotope Program funded research at PNNL has advanced the application of automated radiochemistry for isotope such as zirconium-89 and astatine-211 in partnership with the University of Washington.

  2. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    PubMed Central

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  3. Changes in precipitation isotope-climate relationships from temporal grouping and aggregation of weekly-resolved USNIP data: impacts on paleoclimate and environmental applications

    NASA Astrophysics Data System (ADS)

    Akers, P. D.; Welker, J. M.

    2015-12-01

    Spatial variations in precipitation isotopes have been the focus of much recent research, but relatively less work has explored changes at various temporal scales. This is partly because most spatially-diverse and long-term isotope databases are offered at a monthly resolution, while daily or event-level records are spatially and temporally limited by cost and logistics. A subset of 25 United States Network for Isotopes in Precipitation (USNIP) sites with weekly-resolution in the east-central United States was analyzed for site-specific relationships between δ18O and δD (the local meteoric water line/LMWL), δ18O and surface temperature, and δ18O and precipitation amount. Weekly data were then aggregated into monthly and seasonal data to examine the effect of aggregation on correlation and slope values for each of the relationships. Generally, increasing aggregation improved correlations (>25% for some sites) due to a reduced effect of extreme values, but estimates on regression variable error increased (>100%) because of reduced sample sizes. Aggregation resulted in small, but significant drops (5-25%) in relationship slope values for some sites. Weekly data were also grouped by month and season to explore changes in relationships throughout the year. Significant subannual variability exists in slope values and correlations even for sites with very strong overall correlations. LMWL slopes are highest in winter and lowest in summer, while the δ18O-surface temperature relationship is strongest in spring. Despite these overall trends, a high level of month-to-month and season-to-season variability is the norm for these sites. Researchers blindly applying overall relationships drawn from monthly-resolved databases to paleoclimate or environmental research risk assuming these relationships apply at all temporal resolutions. When possible, researchers should match the temporal resolution used to calculate an isotopic relationship with the temporal resolution of

  4. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    PubMed

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  5. A new approach for studying prehistoric herd management in arid areas: intra-tooth isotopic analyses of archaeological caprine from IranUne nouvelle approche pour l'étude de la gestion préhistorique des troupeaux en zones arides: analyses isotopiques intra-dentaires de caprinés archéologiques d'Iran

    NASA Astrophysics Data System (ADS)

    Bocherens, Hervé; Mashkour, Marjan; Billiou, Daniel; Pellé, Eric; Mariotti, André

    2001-01-01

    Carbon and oxygen isotopic variations in archaeological tooth enamel from Iran have been used to investigate prehistoric herd management. Oxygen isotopic variations in domestic caprines are more important than in wild equids, indicating a seasonal consumption of 18O-depleted drinking water. Since the plants consumed at the same time were partly C 4, it is presumed that the access to this 18O-depleted water was controlled by humans, and that the water came from wells or underground canalisations. This methodology is expected to provide valuable information on herd management in the past in arid areas.

  6. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    USGS Publications Warehouse

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  7. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  8. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  9. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  10. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  11. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  12. Calcium isotope analytical technique for mafic rocks and its applications on constraining the source of Cenozoic ultra-potassic rocks in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, Z.; Xu, J.

    2013-12-01

    Ca isotope analytical technique for mafic rocks has been recently developed and set up at our lab. About mg level of a mafic rock sample was digested, and then a sub portion of the solution contains about 100ug Ca was spiked with a 42Ca-43Ca double spike and went through the column chemistry. Generally the Ca recovery is almost 100% and the procedure blank is about 50-150ng. Finally, about 5-10ug of the collected Ca cut was measured on our Triton TIMS. The precision of the data was around 0.1 per mil and the data we collected for standards are consistent with those reported by previous studies. There are two groups of Cenozoic ultra-potassic rocks that are widespread in Tibetan Plateau: a northern group in Songpan-Ganzi and Qiangtang Terranes and a southern group in Lhasa Terrane. Previous petrology evidence, such as a relative enrichment in large ion lithophile element (LILE); negative Ta,Nb and Ti anomalies and high LREE/HREE ratio, support that those rocks are both derived from sub-continental lithospheric mantle (SCLM). However, differences between these two groups of rocks do exist: the southern group has higher K2O, Rb, Zr, Th, contents and a higher Rb/Ba, coupled with lower Al2O3, CaO, Na2O, Sr; the southern 87Sr/86Sr ratios are higher while the 143Nd/144Nd ratios are lower, etc. These suggest that the rocks could be derived from different mantle sources or produced by different geological processes. Ca isotope is chosen in this study to better understand the source of the ultra-potassic rocks because Ca isotope has been a great tracer of different geological reservoirs and the isotopic compositions of Ca may represent different genesic processes. We propose that the ultra-potassic rocks in the Tibet should have significant 40Ca enrichments due to the decay from 40K to 40Ca, therefore the variation of Ca isotopic compositions among these ultra-potassic rocks could be obvious. We believe that based on our calcium data together with earlier Sr, Nd, Pb data

  13. High precision Mg and Cr isotope measurements by MC-ICP-MS and their applications to date the first stage of planet formation in the early solar nebula.

    NASA Astrophysics Data System (ADS)

    Yin, Q.; Jacobsen, B.; Moynier, F.

    2008-05-01

    We developed high precision Mg and Cr isotope measurement techniques by MC-ICP-MS at UC Davis to probe physicochemical conditions in the early solar nebula and establish high-resolution chronology from dust to the earliest planet building processes. (1) We obtained stable isotopic composition of Mg (δ25Mg) together with δ26Mg*, the radiogenic in growth from the decay of the short-lived, now extinct 26Al (T1/2 ~0.7 Myr) in whole rock fragments and mineral separates from high temperature refractory Ca-Al-rich inclusions (CAIs) in primitive meteorite Allende, the oldest known (first) solid objects in our solar system. Enrichment of heavy Mg isotopes (up to +6 permil) in d25Mg suggest that the igneous Type B CAIs have lost 14-47 percent of original Mg by evaporation in the early solar nebular during high temperature. Compact and fluffy Type A CAIs, on the other hand, shows light isotope enrichment with d25Mg as low as -4 permil), suggesting condensation from a nebular gas already depleted in heavy Mg isotopes. All of these objects plot on a well-defined 26Al-26Mg isochron with 26Al/27Al=(5.17+/-0.10)x10-5, suggesting the total duration of CAI formation event is less than 20,000 years. U-Pb dating in the same material anchors the event at 4567.4+/-0.3 Myr ago [1]. (2) We have applied 53Mn-53Cr chronometer to date chondrule obtained from primitive chondrite, and establish that chondrules in ordinary chondrite postdate the CAI by ~2 Myr [2]. (3) We further apply 53Mn-53Cr chronometer to a suite of carbonaceous chondrites whole rock samples, which are "cosmic sediments" made of CAIs and chondrules that are "cemented" together by fine grained matrices rich in organics and presolar grains. All carbonaceous chondrites exhibit 53Cr* anomalies that are correlated with 55Mn/52Cr ratio, which in turn is governed by proportion of matrix/refractory components. Thus 53Mn-53Cr chronometer dates the accretion timescale ("sedimentation" or "compaction" time) of undifferentiated

  14. Isotope hydrology of catchment basins: lithogenic and cosmogenic isotopic systems

    SciTech Connect

    Nimz, G. J., LLNL

    1998-06-01

    also be treated as a mostly closed system for mass balance considerations. It is the near closure of the system that permits well- constrained chemical mass balance calculations to be made. These calculations generally focus of lithogenic solutes, and therefore in our discussions of lithogenic nuclides in the paper, the concept of chemical mass balance in a nearly dosed system will play an important role. Examination of the isotopic compositions of solutes provides a better understanding of the variety of processes controlling mass balance. It is with this approach that we examined the variety of processes occurring within the catchment system, such as weathering and soil production, generation of stormflow and streamflow (hydrograph separation), movement of soil pore water, groundwater flow, and the overall processes involved with basinal water balance. In this paper, the term `nuclide` will be used when referring to a nuclear species that contains a particular number of protons and neutrons. The term is not specific to any element. The term `isotope` will be used to distinguish nuclear species of a given element (atoms with the same number of protons). That is to say, there are many nuclides in nature - for example, {sup 36}Cl, {sup 87}Sr, {sup 238}U; the element has four naturally-occurring isotopes - {sup 87}Sr, and {sup 88}Sr. This paper will first discuss the general principles that underlie the study of lithogenic and cosmogenic nuclides in hydrology, and provide references to some of the more important studies applying these principles and nuclides. We then turn in the second section to a discussion of their specific applications in catchment- scale systems. The final section of this paper discusses new directions in the application of lithogenic and cosmogenic nuclides to catchment hydrology, with some thoughts concerning possible applications that still remain unexplored.

  15. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  16. Vers une méthode de réglage expérimentale des commandes PID floues : application aux systèmes électromécaniques

    NASA Astrophysics Data System (ADS)

    Maussion, P.; Hissel, D.

    1998-08-01

    Electrical and electromechanical systems have to satisfy to more and more constrained specifications. Therefore, non-linear control structures must be spread out. Among them, fuzzy logic control can be one interessant and performant alternative. The main handicap of this kind of stucture resides in the fact that the tuning parameters are very numerous. In this paper, we first propose an on-site tuning strategy of this set of parameters in the case of a fuzzy proportionnal-integrative controller based on the experimental designs methodology and on a limited number of pre-defined closed-loop experiments. Then, a complete set of predetermined parameters for a fuzzy proportionnal-integrative-derivative controller will be given. These parameters have been optimized on a specified benchmark according to an IAE criterion. They are calculated like the Ziegler-Nichols or Broïda methodology on conventional controllers; that is, using a single open-loop step response to obtain a model of a first-order plus delay transfert function. Validity limits for this method are provided. Les systèmes électriques ou électromécaniques doivent satisfaire à des spécifications de plus en plus contraignantes qui nécessitent la mise au point de structures de commande non linéaires. Parmi celles-ci, la commande par logique floue constitue une alternative intéressante et performante. Son principal handicap réside dans le nombre très important de paramètres à régler. Dans cet article, nous nous proposons de systématiser ces réglages dans deux cas de figure. Tout d'abord nous utiliserons la méthodologie des plans d'expérimentations pour effectuer un réglage sur site d'un contrôleur flou de type proportionnel-intégral. Ce réglage sera obtenu en ne réalisant qu'un nombre limité d'essais expérimentaux en boucle fermée avec des combinaisons prédéfinies des paramètres à régler. La combinaison optimale de ces paramètres au sens d'un critère de type IAE (Intégrale de la

  17. Classification of 20 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Kim, A. G.; Macualay, E.; Lidman, C.; Sharp, R.; Tucker, B. E.; Yuan, F.; Zhang, B.; Lewis, G. F.; Sommer, N. E.; Martini, P.; Mould, J.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.

    2015-12-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  18. Classification of 8 DES Supernova with OzDES

    NASA Astrophysics Data System (ADS)

    King, A.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; OâNeill, C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  19. Classification of 13 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    Sommer, N.; Tucker, B. E.; Moller, A.; Zhang, B.; Macualay, E.; Lidman, C.; Gshwend, J.; Martini, P.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.

    2016-09-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  20. Classification of 3 DES Supernovae with OzDES

    NASA Astrophysics Data System (ADS)

    Moller, A.; Tucker, B. E.; Yuan, F.; Lewis, G.; Lidman, C.; Macaulay, E.; Nichol, R.; Papadopoulos, A.; Childress, M.; D'Andrea, C.; Smith, M.; Sullivan, M.; Maartens, R.; Gupta, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; Gladney, L.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.

    2016-02-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  1. Classification of 2 DES supernova with OzDES

    NASA Astrophysics Data System (ADS)

    O'Neill, C. R.; Moller, A.; Sommer, N. E.; Tucker, B. E.; Childress, M. J.; Lewis, G. F.; Lidman, C.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Prajs, S.; Smith, M.; Sullivan, M.; Maartens, R.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Gupta, R.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.; Papadopoulos, A.; Morganson, E.

    2016-10-01

    We report new spectroscopic classifications by OzDES of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  2. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  3. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  4. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  5. Reactive transport modeling of Li isotope fractionation

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Sonnenthal, E. L.

    2013-12-01

    The fractionation of Li isotopes has been used as a proxy for interaction processes between silicate rocks and any kind of fluids. In particular, Li isotope measurements are powerful because Li is almost exclusively found in silicate minerals. Moreover, the two stable Li isotopes, 6Li and 7Li, differ by 17% in mass introducing a large mass dependent isotope fractionation even at high temperature. Typical applications include Li isotope measurements along soil profiles and of river waters to track silicate weathering patterns and Li isotope measurements of geothermal wells and springs to assess water-rock interaction processes in geothermal systems. For this contribution we present a novel reactive transport modeling approach for the simulation of Li isotope fractionation using the code TOUGHREACT [1]. It is based on a 6Li-7Li solid solution approach similar to the one recently described for simulating Cr isotope fractionation [2]. Model applications include the simulation of granite weathering along a 1D flow path as well as the simulation of a column experiment related to an enhanced geothermal system. Results show that measured δ7Li values are mainly controlled by (i) the degree of interaction between Li bearing primary silicate mineral phases (e.g., micas, feldspars) and the corresponding fluid, (ii) the Li isotope fractionation factor during precipitation of secondary mineral phases (e.g., clays), (iii) the Li concentration in primary and secondary Li bearing mineral phases and (iv) the proportion of dissolved Li that adsorbs to negatively charged surfaces (e.g., clays, Fe/Al-hydroxides). To date, most of these parameters are not very well constrained. Reactive transport modeling thus currently has to rely on many assumptions. Nevertheless, such models are powerful because they are the only viable option if individual contributions of all potential processes on the resulting (i.e., measured) Li isotopic ratio have to be quantitatively assessed. Accordingly, we

  6. Stable Isotope Tracers in Large Scale Hydrological Models

    NASA Astrophysics Data System (ADS)

    Fekete, B. M.; Aggarwal, P.

    2004-05-01

    Stable isotopes of oxygen and hydrogen (deuterium and oxygen-18) have been shown to be effective tracers for characterizing hydrological processes in small river basins. Their application in large river basins has lagged behind due to the lack of sufficient isotope data. Recent availability of isotope data from most US rivers and subsequent efforts by the International Atomic Energy Agency (IAEA) to collect comprehensive global information on isotope compositions of river runoff is changing this situation. These data sets offer new opportunities to utilize stable isotopes in studies of large river basins. Recent work carried out jointly by the Water Systems Analysis Group of the University of New Hampshire and the Isotope Hydrology Section of the IAEA applied isotope-enabled global water balance and transport models to assess the feasibility of using isotope data for improving water balance estimations at large scales. The model implemented simple mixing in the various storage pools (e.g. snow pack, soil moisture, groundwater, and river channel) and fractionation during evapotranspiration. Sensitivity tests show that spatial and temporal distributions of isotopes in precipitation and their mixing in the various storage pools are the most important factors affecting the isotopic composition of river discharge. The groundwater storage pool plays a key role in the seasonal dynamics of stable isotope composition of river discharge. Fractionation during phase changes appears to have a less pronounced impact. These findings are consistent with those in small scale catchments where ``old water'' and ``new water'' (i.e. pre-event water and storm runoff) can be easily separated by using isotopes. Model validation using available data from the US rivers showed remarkable performance considering the inconsistencies in the temporal sampling of precipitation and runoff isotope composition records. The good model performance suggests that seasonal variations of the isotopic

  7. Contrôler la douleur et réduire l’usage abusif d’opioïdes

    PubMed Central

    Kotalik, Jaro

    2012-01-01

    Résumé Objectif Aider les médecins de famille à faire un juste équilibre sur le plan de l’éthique dans leurs pratiques de prescription d’opioïdes. Source des données Une recension des articles en anglais publiés entre 1985 et 2011 a été effectuée dans MEDLINE. La majorité des données probantes étaient de niveau III. Message principal Il est essentiel de suivre les guides de pratique clinique quand on prescrit des opioïdes, sauf s’il est démontré qu’une autre option est justifiée. De plus, quand on réfléchit à la pertinence de prescrire des opioïdes et aux nombreuses implications sur le plan de l’éthique, il est utile de fonder sa décision sur l’application des principes éthiques de la bienfaisance, de la non-malfaisance, du respect de l’autonomie et de la justice. En outre, il est essentiel de se tenir au fait des changements dans les lois et la règlementation, ainsi qu’à propos des registres électroniques provinciaux des ordonnances d’opioïdes. Conclusion Les médecins doivent s’assurer que la douleur de leurs patients est bien évaluée et prise en charge. Le contrôle optimal de la douleur peut exiger la prescription d’opioïdes. Cependant, l’obligation de soulager la douleur doit être exercée en juste équilibre avec l’acquittement de la responsabilité tout aussi importante de ne pas exposer les patients au risque de dépendance et de ne pas créer de possibilités de détournement de drogues, de trafic et de dépendance chez d’autres personnes. Les principes éthiques fondamentaux offrent un cadre de réflexion qui peut aider les médecins à prendre des décisions appropriées sur le plan de l’éthique au sujet de la prescription d’opioïdes.

  8. The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am).

    PubMed

    Yücel, Haluk

    2007-11-01

    The multi-group analysis (MGA) method for the determination of uranium isotopic abundances in depleted uranium (DU) and natural uranium (NU) samples is applied in this study. A set of non-destructive gamma-ray measurements of DU and NU samples were performed using a planar Ge detector. The relative abundances of 235U and 238U isotopes were compared with the declared values of the standards. The relative abundance for 235U obtained by MGA for a "clean" DU or NU sample with a content of uranium>1wt% is determined with an accuracy of about +/-5%. However, when several actinides such as 232Th, 237Np, 233Pa and 241Am are present along with uranium isotopes simulating "dirty" DU or NU, it has been observed that MGA method gives erroneous results. The 235U abundance results for the samples were 6-25 times higher than the declared values in the presence of above-mentioned actinides, since MGA is utilized the X-ray and gamma-ray peaks in the 80-130 keV energy region, covering XKalpha and XKbeta regions. After the least-squares fitting of the spectra, it is found that the increases in the intensities of the X-ray and gamma-ray peaks of uranium are remarkably larger in the complex 80-130 keV region. On the other hand, it is observed that the interferences of the actinide peaks are relatively less dominant in the higher gamma-ray region of 130-300 keV. The results imply the need for dirty DU and NU samples that the MGA method should utilize the higher energy gamma-rays (up to 1001 keV of (234m)Pa) combined with lower energies of the spectra, which may be collected in a two detector mode (a planar Ge and a high efficient coaxial Ge).

  9. The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides (232Th, 237Np, 233Pa and 241Am).

    PubMed

    Yücel, Haluk

    2007-11-01

    The multi-group analysis (MGA) method for the determination of uranium isotopic abundances in depleted uranium (DU) and natural uranium (NU) samples is applied in this study. A set of non-destructive gamma-ray measurements of DU and NU samples were performed using a planar Ge detector. The relative abundances of 235U and 238U isotopes were compared with the declared values of the standards. The relative abundance for 235U obtained by MGA for a "clean" DU or NU sample with a content of uranium>1wt% is determined with an accuracy of about +/-5%. However, when several actinides such as 232Th, 237Np, 233Pa and 241Am are present along with uranium isotopes simulating "dirty" DU or NU, it has been observed that MGA method gives erroneous results. The 235U abundance results for the samples were 6-25 times higher than the declared values in the presence of above-mentioned actinides, since MGA is utilized the X-ray and gamma-ray peaks in the 80-130 keV energy region, covering XKalpha and XKbeta regions. After the least-squares fitting of the spectra, it is found that the increases in the intensities of the X-ray and gamma-ray peaks of uranium are remarkably larger in the complex 80-130 keV region. On the other hand, it is observed that the interferences of the actinide peaks are relatively less dominant in the higher gamma-ray region of 130-300 keV. The results imply the need for dirty DU and NU samples that the MGA method should utilize the higher energy gamma-rays (up to 1001 keV of (234m)Pa) combined with lower energies of the spectra, which may be collected in a two detector mode (a planar Ge and a high efficient coaxial Ge). PMID:17606378

  10. Application of ultrafiltration and stable isotopic amendments to field studies of mercury partitioning to filterable carbon in lake water and overland runoff

    USGS Publications Warehouse

    Babiarz, C.L.; Hurley, J.P.; Krabbenhoft, D.P.; Gilmour, C.; Branfireun, B.A.

    2003-01-01

    Results from pilot studies on colloidal phase transport of newly deposited mercury in lake water and overland runoff demonstrate that the combination of ultrafiltration, and stable isotope amendment techniques is a viable tool for the study of mercury partitioning to filterable carbon. Ultrafiltration mass balance calculations were generally excellent, averaging 97.3, 96.1 and 99.8% for dissolved organic carbon (DOC), total mercury (HgT), and methylmercury (MeHg), respectively. Sub nanogram per liter quantities of isotope were measurable, and the observed phase distribution from replicate ultrafiltration separations on lake water agreed within 20%. We believe the data presented here are the first published colloidal phase mercury data on lake water and overland runoff from uncontaminated sites. Initial results from pilot-scale lake amendment experiments indicate that the choice of matrix used to dissolve the isotope did not affect the initial phase distribution of the added mercury in the lake. In addition there was anecdotal evidence that native MeHg was either recently produced in the system, or at a minimum, that this 'old' MeHg partitions to the same subset of DOC that binds the amended mercury. Initial results from pilot-scale overland runoff experiments indicate that less than 20% of newly deposited mercury was transported in the filterable fraction (<0.7 ??m). There is some indication of colloidal phase enrichment of mercury in runoff compared to the phase distribution of organic carbon, but the mechanism of this enrichment is unclear. The phase distribution of newly deposited mercury can differ from that of organic carbon and native mercury, suggesting that the quality of the carbon (available ligands), not the quantity of carbon, regulates partitioning. Further characterization of DOC is needed to clarify the underlying mechanisms. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Application of nanosecond-UV laser ablation-inductively coupled plasma mass spectrometry for the isotopic analysis of single submicrometer-size uranium particles.

    PubMed

    Pointurier, Fabien; Pottin, Anne-Claire; Hubert, Amélie

    2011-10-15

    For the first time, laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) was used to carry out isotopic measurement on single submicrometer-size uranium particles. The analytical procedure was applied on two particle-containing samples already analyzed in the same laboratory by established techniques for particle analysis: combination of the fission track technique with thermo-ionization mass spectrometry (FT-TIMS) and secondary ion mass spectrometry (SIMS). Particles were extracted from their initial matrix with ethanol and deposited on a polycarbonate disk where they were fixed in a layer of an organic compound (collodion). Prior to the isotopic analysis, particles were precisely located on the disk's surface by scanning electron microscopy (SEM) for one sample and using the fission track technique for the other sample. Most of the particles were smaller than 1 μm, and their (235)U content was in the femtogram range. (235)U/(238)U ratios were successfully analyzed for all located particles using a nanosecond-UV laser (Cetac LSX 213 nm) coupled to a quadrupole-based ICPMS (Thermo "X-Series II"). LA-ICPMS results, although less precise and accurate (typically 10%) than the ones obtained by FT-TIMS and SIMS due to short (20-40 s), transient, and noisy signals, are in good agreement with the certified values or with the results obtained with other techniques. Thanks to good measurement efficiency (~6 × 10(-4)) and high signal/noise ratio during the analysis, LA-ICPMS can be considered a very promising technique for fast particle analysis, provided that uranium-bearing particles are fixed on the sample holder and located prior to isotope measurement. PMID:21875035

  12. Application of (15)N- (18)O double stable isotope tracer technique in an agricultural nonpoint polluted river of the Yangtze Delta Region.

    PubMed

    Liang, X Q; Nie, Z Y; He, M M; Guo, R; Zhu, C Y; Chen, Y X; Stephan, Küppers

    2013-10-01

    One strategy to combat nitrate (NO3-N) contamination in rivers is to understand its sources. NO3-N sources in the East Tiaoxi River of the Yangtze Delta Region were investigated by applying a (15)N-(18)O dual isotope approach. Water samples were collected from the main channel and from the tributaries. Results show that high total N and NO3-N are present in both the main channel and the major tributaries, and NO3-N was one of the most important N forms in water. Analysis of isotopic compositions (δ (18)O, δD) of water suggests that the river water mainly originated from three tributaries during the sampling period. There was a wide range of δ (15)N-NO3 (-1.4 to 12.4 ‰) and a narrow range of δ (18)O-NO3 (3.7 to 9.0 ‰) in the main channel waters. The δ (15)N and δ (18)O-NO3 values in the upper, middle, and lower channels along the river were shifted as 8.2, 3.5, and 9.5 ‰, and 9.0, 4.2, and 6.0 ‰, respectively. In the tributary South Tiao, the δ (15)N and δ (18)O-NO3 values were as high as 9.5 and 7.0 ‰, while in the tributaries Mid Tiao and North Tiao, NO3-N in most of the samples had relatively low δ (15)N and δ (18)O-NO3 values from 2.3 to 7.5 ‰ and 4.7 to 7.0 ‰, separately. Our results also suggest that the dual isotope approach can help us develop the best management practice for relieving NO3-N pollution in the rivers at the tributary scale.

  13. USE OF STABLE ISOTOPES IN ENVIRONMENTAL AND FORENSIC GEOCHEMISTRY STUDIES

    EPA Science Inventory

    Stable carbon and hydrogen isotopes have been used for many decades in the petroleum industry, but the development of combined gas chromatography-isotope ratio mass spectrometry (GCIRMS) has led to a virtual explosion in application of this technique not only in petroleum explora...

  14. SOURCE PARTITIONING USING STABLE ISOTOPES: COPING WITH TOO MANY SOURCES

    EPA Science Inventory

    Stable isotopes are increasingly being used as tracers in environmental studies. One application is to use isotopic ratios to quantitatively determine the proportional contribution of several sources to a mixture, such as the proportion of various pollution sources in a waste st...

  15. Technical Note: Constraining stable carbon isotope values of microphytobenthos (C3 photosynthesis) in the Arctic for application to food web studies

    NASA Astrophysics Data System (ADS)

    Oxtoby, L. E.; Mathis, J. T.; Juranek, L. W.; Wooller, M. J.

    2013-11-01

    Microphytobenthos (MPB) tends to be omitted as a possible carbon source to higher trophic level consumers in high latitude marine food web models that use stable isotopes. Here, we used previously published relationships relating the concentration of aqueous carbon dioxide ([CO2]aq), the stable carbon isotopic composition of dissolved inorganic carbon (DIC) (δ13CDIC), and algal growth rates (μ) to estimate the stable carbon isotope composition of MPB-derived total organic carbon (TOC) (δ13Cp) and fatty acid (FA) biomarkers (δ13CFA). We measured [CO2]aq and δ13CDIC values from bottom water at sampling locations in the Beaufort and Chukchi Seas (n = 18), which ranged from 17 to 72 mmol kg-1 and -0.1 to 1.4 ‰ (0.8 ± 0.4‰, mean ±1 s.d.), respectively. We combined these field measurements with a set of stable carbon isotopic fractionation factors reflecting differences in algal taxonomy and physiology to determine δ13Cp and δ13CFA values. Theδ13Cp and δ13CFA values for a mixed eukaryotic algal community were estimated to be -23.6 ± 0.4‰ and -30.6 ± 0.4‰, respectively. These values were similar to our estimates for Phaeodactylum tricornutum (δ13Cp = -23.9 ± 0.4‰, δ13CFA = -30.9 ± 0.4‰), a pennate diatom likely to be a dominant MPB taxon. Taxon-specific differences were observed between a centric diatom (Porosira glacialis, δ13Cp = -20.0 ± 1.6‰), a marine haptophyte (Emiliana huxleyi, δ13Cp = -22.7 ± 0.5‰), and a cyanobacterium (Synechococcus sp., δ13Cp = -16.2 ± 0.4‰) at μ = 0.1 d-1. δ13Cp and δ13CFA values increased by ≃ 2.5‰ for the mixed algal consortium and for P. tricornutum when growth rates were increased from 0.1 to 1.4 d-1. We compared our estimates of δ13Cp and δ13CFA values for MPB with previous measurements of δ13CTOC and δ13CFA values for other carbon sources in the Arctic, including ice-derived, terrestrial, and pelagic organic matter. We found that MPB values were significantly distinct from

  16. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  17. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  18. A new method for carbon isotopic analysis of protein

    SciTech Connect

    Nelson, D.E. )

    1991-02-01

    The reaction of ninhydrin with amino acids can be used in carbon isotopic studies of protein. The reaction can be applied to extract as carbon dioxide only peptide-bonded carbon in proteinaceous material, thus avoiding most, if not all, contaminants. Test radiocarbon dates on ancient bone indicate that the method provides reliable ages, and stable carbon isotopic data suggest that our understanding of isotopic dietary reconstruction needs detailed examination. The technique should also be useful in biochemical tracing experiments and in global carbon budget studies, and the underlying principle may be applicable to other isotopes and molecules. 28 refs., 1 fig., 1 tab.

  19. Metal stable isotopes in low-temperature systems: A primer

    USGS Publications Warehouse

    Bullen, T.D.; Eisenhauer, A.

    2009-01-01

    Recent advances in mass spectrometry have allowed isotope scientists to precisely determine stable isotope variations in the metallic elements. Biologically infl uenced and truly inorganic isotope fractionation processes have been demonstrated over the mass range of metals. This Elements issue provides an overview of the application of metal stable isotopes to low-temperature systems, which extend across the borders of several science disciplines: geology, hydrology, biology, environmental science, and biomedicine. Information on instrumentation, fractionation processes, data-reporting terminology, and reference materials presented here will help the reader to better understand this rapidly evolving field.

  20. Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover.

    PubMed

    Hertz, Eric; Trudel, Marc; El-Sabaawi, Rana; Tucker, Strahan; Dower, John F; Beacham, Terry D; Edwards, Andrew M; Mazumder, Asit

    2016-05-01

    Ontogenetic niche shifts are widely prevalent in nature and are important in shaping the structure and dynamics of ecosystems. Stable isotope analysis is a powerful tool to assess these shifts, with δ(15) N providing a measure of trophic level and δ(13) C a measure of energy source. Previous applications of stable isotopes to study ontogenetic niche shifts have not considered the appreciable time lag between diet and consumer tissue associated with isotopic turnover. These time lags introduce significant complexity into field studies of ontogenetic niche shifts. Juvenile Chinook salmon (Oncorhynchus tshawytscha) migrate from freshwater to marine ecosystems and shift their diet from feeding primarily on invertebrates to feeding primarily on fish. This dual ontogenetic habitat and diet shift, in addition to the long time lag associated with isotopic turnover, suggests that there is potential for a disconnect between the prey sources that juvenile salmon are consuming, and the inferred prey sources from stable isotopes. We developed a model that considered ontogenetic niche shifts and time lags associated with isotopic turnover, and compared this 'ontogeny' model to one that considered only isotopic turnover. We used a Bayesian framework to explicitly account for parameter uncertainty. Data showed overwhelming support for the ontogeny model relative to the isotopic turnover model. Estimated variables from best model fits indicate that the ontogeny model predicts a much greater reliance on fish prey than does the stomach content data. Overall, we found that this method of quantifying ontogenetic niche shifts effectively accounted for both isotopic turnover and ontogenetic diet shifts; a finding that could be widely applicable to a variety of systems. PMID:26880007

  1. Hitting the moving target: modelling ontogenetic shifts with stable isotopes reveals the importance of isotopic turnover.

    PubMed

    Hertz, Eric; Trudel, Marc; El-Sabaawi, Rana; Tucker, Strahan; Dower, John F; Beacham, Terry D; Edwards, Andrew M; Mazumder, Asit

    2016-05-01

    Ontogenetic niche shifts are widely prevalent in nature and are important in shaping the structure and dynamics of ecosystems. Stable isotope analysis is a powerful tool to assess these shifts, with δ(15) N providing a measure of trophic level and δ(13) C a measure of energy source. Previous applications of stable isotopes to study ontogenetic niche shifts have not considered the appreciable time lag between diet and consumer tissue associated with isotopic turnover. These time lags introduce significant complexity into field studies of ontogenetic niche shifts. Juvenile Chinook salmon (Oncorhynchus tshawytscha) migrate from freshwater to marine ecosystems and shift their diet from feeding primarily on invertebrates to feeding primarily on fish. This dual ontogenetic habitat and diet shift, in addition to the long time lag associated with isotopic turnover, suggests that there is potential for a disconnect between the prey sources that juvenile salmon are consuming, and the inferred prey sources from stable isotopes. We developed a model that considered ontogenetic niche shifts and time lags associated with isotopic turnover, and compared this 'ontogeny' model to one that considered only isotopic turnover. We used a Bayesian framework to explicitly account for parameter uncertainty. Data showed overwhelming support for the ontogeny model relative to the isotopic turnover model. Estimated variables from best model fits indicate that the ontogeny model predicts a much greater reliance on fish prey than does the stomach content data. Overall, we found that this method of quantifying ontogenetic niche shifts effectively accounted for both isotopic turnover and ontogenetic diet shifts; a finding that could be widely applicable to a variety of systems.

  2. L'astronomie des Anciens

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël

    2009-04-01

    Quelle que soit la civilisation à laquelle il appartient, l'être humain cherche dans le ciel des réponses aux questions qu'il se pose sur son origine, son avenir et sa finalité. Le premier mérite de ce livre est de nous rappeler que l'astronomie a commencé ainsi à travers les mythes célestes imaginés par les Anciens pour expliquer l'ordre du monde et la place qu'ils y occupaient. Mais les savoirs astronomiques passés étaient loin d'être négligeables et certainement pas limités aux seuls travaux des Grecs : c'est ce que l'auteur montre à travers une passionnante enquête, de Stonehenge à Gizeh en passant par Pékin et Mexico, fondée sur l'étude des monuments anciens et des sources écrites encore accessibles. Les tablettes mésopotamiennes, les annales chinoises, les chroniques médiévales, etc. sont en outre d'une singulière utilité pour les astronomes modernes : comment sinon remonter aux variations de la durée du jour au cours des siècles, ou percer la nature de l'explosion qui a frappé tant d'observateurs en 1054 ? Ce livre offre un voyage magnifiquement illustré à travers les âges, entre astronomie et archéologie.

  3. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  4. Isotopic tracing of perchlorate in the environment

    SciTech Connect

    Sturchio, N. C.; Bohlke, J. K.; Gu, Baohua; Hatzinger, Paul B.; Jackson, Andrew

    2011-01-01

    Isotopic data can be used for tracing the origin and behavior of ClO4- in the environment. Four independently varying parameters have been measured on individual ClO4- samples for this purpose: delta 37Cl, 18O, 17O, and 36Cl/Cl. At least three distinct types of ClO4- have been identified isotopically, and these distinctions have proven to be useful in forensic applications. Additional data for natural ClO4- are urgently needed, however, to obtain a global picture of its isotopic variations. Improved methods for sample preparation and isotopic analysis with much better sensitivity would be helpful for measuring ClO4- isotopic variations in some sample types such as aerosols and precipitation as well as foodstuffs and bodily fluids, which have been precluded by the impracticality of obtaining the currently-required milligram amounts of ClO4-.. Further experimental and theoretical investigations of atmospheric ClO4- production mechanisms may lead to improved explanations of observed isotopic variations in natural samples.

  5. Application of Natural Isotopic Abundance ¹H-¹³C- and ¹H-¹⁵N-Correlated Two-Dimensional NMR for Evaluation of the Structure of Protein Therapeutics.

    PubMed

    Arbogast, Luke W; Brinson, Robert G; Marino, John P

    2016-01-01

    Methods for characterizing the higher-order structure of protein therapeutics are in great demand for establishing consistency in drug manufacturing, for detecting drug product variations resulting from modifications in the manufacturing process, and for comparing a biosimilar to an innovator reference product. In principle, solution NMR can provide a robust approach for characterization of the conformation(s) of protein therapeutics in formulation at atomic resolution. However, molecular weight limitations and the perceived need for stable isotope labeling have to date limited its practical applications in the biopharmaceutical industry. Advances in NMR magnet and console technologies, cryogenically cooled probes, and new rapid acquisition methodologies, particularly selective optimized flip-angle short transient pulse schemes and nonuniform sampling, have greatly ameliorated these limitations. Here, we describe experimental methods for the collection and analysis of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra applied to protein drug products at natural isotopic abundance, including representatives from the rapidly growing class of monoclonal antibody (mAb) therapeutics. Practical aspects of experimental setup and data acquisition for both standard and rapid acquisition NMR techniques are described. Furthermore, strategies for the statistical comparison of 2D (1)H(N)-(15)N-amide- and (1)H-(13)C-methyl-correlated spectra are detailed.

  6. Climate change deduced from isotopes in tree rings

    SciTech Connect

    Pendall, E.G.; Leavitt, S.W.

    1997-11-01

    This paper describes the theory of carbon, hydrogen, and oxygen isotopic signatures in cellulose for the purpose of paleoclimatic reconstruction. Mechanisms governing tree ring cellulose isotopic variability are investigated, and applications to the southwestern United States are delineated. A monitoring program of pinyon trees and comparison to climatic parameters is briefly described. Variables measured included deviations in hydrogen and oxygen-18 isotopic composition in precipitation, soil water, stem and leaf water, and atmospheric vapor. Water from phloem tissue was found to be isotopically identical to the xylem sap, suggesting that cellulose precursors can exchange isotopically with source water before cellulose is made in the trunk, thus removing most of the isotopic signal from the leaves. Overall results suggest that, on arid sites in the southwestern US receiving adequate summer rain, a precipitation seasonality signal may be recorded. 21 refs., 2 figs.

  7. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.

  8. Experimental calibration of silicon and oxygen isotope fractionations between quartz and water at 250°C by in situ microanalysis of experimental products and application to zoned low δ30Si quartz overgrowths

    SciTech Connect

    Pollington, Anthony D.; Kozdon, Reinhard; Anovitz, Lawrence M.; Georg, R. Bastian; Spicuzza, Michael J.; Valley, John W.

    2015-12-01

    The interpretation of silicon isotope data for quartz is hampered by the lack of experimentally determined fractionation factors between quartz and fluid. Further, there is a large spread in published oxygen isotope fractionation factors at low temperatures, primarily due to extrapolation from experimental calibrations at high temperature. We report the first measurements of silicon isotope ratios from experimentally precipitated quartz and estimate the equilibrium fractionation vs. dissolved silica using a novel in situ analysis technique applying secondary ion mass spectrometry to directly analyze experimental products. These experiments also yield a new value for oxygen isotope fractionation. Quartz overgrowths up to 235 μm thick were precipitated in silica–H2O–NaOH–NaCl fluids, at pH 12–13 and 250 °C. At this temperature, 1000lnα30Si(Qtz–fluid) = 0.55 ± 0.10‰ and 1000lnα18O(Qtz–fluid) = 10.62 ± 0.13‰, yielding the relations 1000lnα30Si(Qtz–fluid) = (0.15 ± 0.03) * 106/T2 and 1000lnα18O(Qtz–fluid) = (2.91 ± 0.04) * 106/T2 when extended to zero fractionation at infinite temperature. Values of δ30Si(Qtz) from diagenetic cement in sandstones from the basal Cambrian Mt. Simon Formation in central North America range from 0 to ₋5.4‰. Paired δ18O and δ30Si values from individual overgrowths preserve a record of Precambrian weathering and fluid transport. In conclusion, the application of the experimental quartz growth results to observations from natural sandstone samples suggests that precipitation of quartz at low temperatures in nature is dominated by kinetic, rather than equilibrium, processes.

  9. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach. PMID:27032706

  10. Application of Microwave-Induced Combustion and Isotope Dilution Strategies for Quantification of Sulfur in Coals via Sector-Field Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Christopher, Steven J; Vetter, Thomas W

    2016-05-01

    In recent years, microwave-induced combustion (MIC) has proved to be a robust sample preparation technique for difficult-to-digest samples containing high carbon content, especially for determination of halogens and sulfur. National Institute of Standards and Technology (NIST) has applied the MIC methodology in combination with isotope dilution analysis for sulfur determinations, representing the first-reported combination of this robust sample preparation methodology and high-accuracy quantification approach. Medium-resolution mode sector-field inductively coupled plasma mass spectrometry was invoked to avoid spectral interferences on the sulfur isotopes. The sample preparation and instrumental analysis scheme was used for the value assignment of total sulfur in Standard Reference Material (SRM) 2682c Subbituminous Coal (nominal mass fraction 0.5% sulfur). A description of the analytical procedures required is provided, along with metrological results, including an estimation of the overall method uncertainty (<1.5% relative expanded uncertainty) calculated using the IDMS measurement function and a Kragten spreadsheet approach.

  11. Validation and application of cavity-enhanced, near-infrared tunable diode laser absorption spectrometry for measurements of methane carbon isotopes at ambient concentrations.

    PubMed

    Mortazavi, Behzad; Wilson, Benjamin J; Dong, Feng; Gupta, Manish; Baer, Doug

    2013-10-15

    Methane is an effective greenhouse gas but has a short residence time in the atmosphere, and therefore, reductions in emissions can alleviate its greenhouse gas warming effect within a decadal time frame. Continuous and high temporal resolution measurements of methane concentrations and carbon isotopic ratios (δ(13)CH4) can inform on mechanisms of formation, provide constraints on emissions sources, and guide future mitigation efforts. We describe the development, validation, and deployment of a cavity-enhanced, near-infrared tunable diode laser absorption spectrometry system capable of quantifying δ(13)CH4 at ambient methane concentrations. Laboratory validation and testing show that the instrument is capable of operating over a wide dynamic range of methane concentration and provides a measurement precision for δ(13)CH4 of better than ± 0.5 ‰ (1σ) over 1000 s of data averaging at ambient methane concentrations. The analyzer is accurate to better than ± 0.5 ‰, as demonstrated by measurements of characterized methane/air samples with minimal dependence (<1 ‰) of measured carbon isotope ratio on methane concentration. Deployment of the instrument at a marsh over multiple days demonstrated how methane fluxes varied by an order of magnitude over 2 day deployment periods, and showed a 17 ‰ variability in δ(13)CH4 of the emitted methane during the growing season. PMID:24025121

  12. Design, synthesis, and application of a hydrazide-functionalized isotope-coded affinity tag for the quantification of oxylipid-protein conjugates.

    PubMed

    Han, Bingnan; Stevens, Jan F; Maier, Claudia S

    2007-05-01

    An isotopically coded affinity probe was developed and evaluated for the characterization and quantification of proteins adducted by 2-alkenals derived from lipid peroxidation (LPO) processes. Lipid-derived 2-alkenals, such as acrolein and 4-hydroxy-2-nonenal (HNE), have the ability to react with cysteine, histidine, and lysine residues in proteins, thus causing protein damage and loss of protein function. Such modifications of proteins are difficult to characterize in biological samples by mass spectrometry due to the complexity of protein extracts and the low abundance of adducted proteins. The novel aldehyde-reactive, hydrazide-functionalized, isotope-coded affinity tag (HICAT) described in this study was found effective for the selective isolation, detection, and quantification of Michael-type adducts of 2-alkenals with proteins using a combination of affinity isolation, nanoLC, and matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-MS/MS). The chemical and mass spectrometric properties of the new probe are demonstrated on a model protein treated with HNE. The efficacy of HICAT for the analysis of complex samples was tested using preparations of mitochondrial proteins that were modified in vitro with HNE. The potential of the HICAT strategy for the identification, characterization, and quantification of in vivo oxylipid-protein conjugates is demonstrated on cardiac mitochondrial protein preparations, in which, for example, the ADP/ATP translocase 1 was found adducted to the 2-alkenals, acrolein and 4-hydroxy-2-hexenal, at Cys-256.

  13. In situ sulfur isotope analysis of sulfide minerals by SIMS: Precision and accuracy, with application to thermometry of ~3.5Ga Pilbara cherts

    USGS Publications Warehouse

    Kozdon, R.; Kita, N.T.; Huberty, J.M.; Fournelle, J.H.; Johnson, C.A.; Valley, J.W.

    2010-01-01

    Secondary ion mass spectrometry (SIMS) measurement of sulfur isotope ratios is a potentially powerful technique for in situ studies in many areas of Earth and planetary science. Tests were performed to evaluate the accuracy and precision of sulfur isotope analysis by SIMS in a set of seven well-characterized, isotopically homogeneous natural sulfide standards. The spot-to-spot and grain-to-grain precision for δ34S is ± 0.3‰ for chalcopyrite and pyrrhotite, and ± 0.2‰ for pyrite (2SD) using a 1.6 nA primary beam that was focused to 10 µm diameter with a Gaussian-beam density distribution. Likewise, multiple δ34S measurements within single grains of sphalerite are within ± 0.3‰. However, between individual sphalerite grains, δ34S varies by up to 3.4‰ and the grain-to-grain precision is poor (± 1.7‰, n = 20). Measured values of δ34S correspond with analysis pit microstructures, ranging from smooth surfaces for grains with high δ34S values, to pronounced ripples and terraces in analysis pits from grains featuring low δ34S values. Electron backscatter diffraction (EBSD) shows that individual sphalerite grains are single crystals, whereas crystal orientation varies from grain-to-grain. The 3.4‰ variation in measured δ34S between individual grains of sphalerite is attributed to changes in instrumental bias caused by different crystal orientations with respect to the incident primary Cs+ beam. High δ34S values in sphalerite correlate to when the Cs+ beam is parallel to the set of directions , from [111] to [110], which are preferred directions for channeling and focusing in diamond-centered cubic crystals. Crystal orientation effects on instrumental bias were further detected in galena. However, as a result of the perfect cleavage along {100} crushed chips of galena are typically cube-shaped and likely to be preferentially oriented, thus crystal orientation effects on instrumental bias may be obscured. Test were made to improve the analytical

  14. A Modified Method for Saline Lake Calcite Isotope Analysis: Application to a Study of Climate Change over 200,000 Years in Death Valley, California.

    NASA Astrophysics Data System (ADS)

    Yang, W.; Lowenstein, T. K.; Krouse, R. H.; Spencer, R. J.; Ku, T.

    2004-12-01

    The standard method of oxygen and carbon isotope analyses for carbonate minerals was first reported by McCrea (1950). Carbonates are converted to CO2 by the reaction of carbonates with 100% phosphoric acid at temperatures between 25 and 95° C for C- and O-isotope analyses: 3CaCO3 + 2H3PO4 = 3CO2 + 3H2O + Ca3(PO4)2 The reaction time for this method can vary depending on different minerals and temperature. For example, at room temperature, the reaction time could be an hour or less for calcite and aragonite, three days for dolomite, two weeks for magnesite, and several months for siderite. This method is very reliable for almost every carbonate-dominated sample or even trace carbonates in silicate rocks. However, Death Valley saline core sediments showed that this standard method could be problematic for chloride-rich or soluble sulfate-rich carbonate samples because of the production of SO2 and/or HCl gas by partial reaction of the chloride or sulfate minerals with 100% H3PO4. The SO2 and HCl gases can affect the δ -values significantly in two ways: (1) The contaminating gases may react with the CO2 in the mass spectrometer source region, isotopically fractionating the CO2 and/or generating background peaks in the CO2 + spectrum; and (2) The SO2 and HCl may react with interior parts of the mass spectrometer reducing its stability and/or sensitivity. In this study, we choose 85% H3PO4 to react with the lacustrine calcite at room temperature by off-line "Y" tube preparation for 2 to 3 minutes. This modification to the traditional method has resulted in negligible SO2 and HCl production. The CO2 gas generated from each bulk lacustrine sediment sample was manually introduced into a VG 609 mass spectrometer for C and O isotope analyses. The analytical precision is better than ±0.2‰ for both δ 13C and δ 18O. This modification of the method of McCrea (1950) was applied to determining carbon and oxygen isotopic compositions of lacustrine calcite in bulk saline lake

  15. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research

    NASA Astrophysics Data System (ADS)

    Halder, J.; Terzer, S.; Wassenaar, L. I.; Araguas-Araguas, L. J.; Aggarwal, P. K.

    2015-08-01

    We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers, GNIR) and evaluate its longer-term data holdings. Overall, 218 GNIR river stations were clustered into three different groups based on the seasonal variation in their isotopic composition, which was closely coupled to precipitation and snowmelt water runoff regimes. Sinusoidal fit functions revealed phases within each grouping and deviations from the sinusoidal functions revealed important river alterations or hydrological processes in these watersheds. The seasonal isotopic amplitude of δ18O in rivers averaged 2.5 ‰, and did not increase as a function of latitude, like it does for global precipitation. Low seasonal isotopic amplitudes in rivers suggest the prevalence of mixing and storage such as occurs via lakes, reservoirs, and groundwater. The application of a catchment-constrained regionalized cluster-based water isotope prediction model (CC-RCWIP) allowed for direct comparison between the expected isotopic compositions for the upstream catchment precipitation with the measured isotopic composition of river discharge at observation stations. The catchment-constrained model revealed a strong global isotopic correlation between average rainfall and river discharge (R2 = 0.88) and the study demonstrated that the seasonal isotopic composition and variation of river water can be predicted. Deviations in data from model-predicted values suggest there are important natural or anthropogenic catchment processes like evaporation, damming, and water storage in the upstream catchment.

  16. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research

    NASA Astrophysics Data System (ADS)

    Halder, J.; Terzer, S.; Wassenaar, L. I.; Araguás-Araguás, L. J.; Aggarwal, P. K.

    2015-04-01

    We introduce a new online global database of riverine water stable isotopes (Global Network of Isotopes in Rivers) and evaluate its longer-term data holdings. Overall, 218 GNIR river stations were clustered into 3 different groups based on the seasonal variation in their isotopic composition, which was closely coupled to precipitation and snow-melt water run-off regimes. Sinusoidal fit functions revealed periodic phases within each grouping and deviations from the sinusoidal functions revealed important river alterations or hydrological processes in these watersheds. The seasonal isotopic amplitude of δ18O in rivers averaged 2.5 ‰, and did not increase as a function of latitude, as it does for global precipitation. Low seasonal isotopic amplitudes in rivers suggest the prevalence of mixing and storage such as occurs via lakes, reservoirs, and groundwater. The application of a catchment-constrained regionalized cluster-based water isotope prediction model (CC-RCWIP) allowed direct comparison between the expected isotopic composition for the upstream catchment precipitation with the measured isotopic composition of river discharge at observation stations. The catchment-constrained model revealed a strong global isotopic correlation between average rainfall and river discharge (R2 = 0.88) and the study demonstrated that the seasonal isotopic composition and variation of river water can be predicted. Deviations in data from model predicted values suggest there are important natural or anthropogenic catchment processes, like evaporation, damming, and water storage in the upstream catchment.

  17. Metallophore mapping in complex matrices by metal isotope coded profiling of organic ligands.

    PubMed

    Deicke, Michael; Mohr, Jan Frieder; Bellenger, Jean-Philippe; Wichard, Thomas

    2014-12-01

    Metal isotope coded profiling (MICP) introduces a universal discovery platform for metal chelating natural products that act as metallophores, ion buffers or sequestering agents. The detection of cation and oxoanion complexing ligands is facilitated by the identification of unique isotopic signatures created by the application of isotopically pure metals.

  18. Prospects of lithium enrichment on 7Li isotope by method of controlled ions electro-migration

    NASA Astrophysics Data System (ADS)

    Martoyan, G. A.; Kalugin, M. M.; Gabrielyan, A. V.; Martoyan, A. G.

    2016-01-01

    This paper deals with a new electro-membrane method of enrichment of 7Li isotope. The data are presented on the importance and application fields regarding the use of 7Li isotopes. Existing methods and criteria of separation of lithium isotopes are discussed. The principle of new technology, regimes of enrichment experiments, and analysis details of obtained products are briefly described.

  19. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.

    PubMed

    Fitzpatrick, Paul F

    2015-11-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin- and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment.

  20. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  1. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  2. Determination of Sr isotopes in calcium phosphates using laser ablation inductively coupled plasma mass spectrometry and their application to archaeological tooth enamel

    NASA Astrophysics Data System (ADS)

    Horstwood, M. S. A.; Evans, J. A.; Montgomery, J.

    2008-12-01

    The determination of accurate Sr isotope ratios in calcium phosphate matrices by laser ablation multi-collector ICP-MS is demonstrated as possible even with low Sr concentration archaeological material. Multiple on-line interference correction routines for doubly-charged REE, Ca dimers and Rb with additional calibration against TIMS-characterised materials are required to achieve this. The calibration strategy proposed uses both inorganic and biogenic apatite matrices to monitor and correct for a 40Ca- 31P- 16O polyatomic present at levels of 0.3-1% of the non-oxide peak, which interferes on 87Sr causing inaccuracies of 0.03-0.4% in the 87Sr/ 86Sr isotope ratio. The possibility also exists for synthetic materials to be used in this calibration. After correction for interferences total combined uncertainties of 0.04-0.15% (2SD) are achieved for analyses of 13-24 μg of archaeological tooth enamel with Sr concentrations of ca. 100-500 ppm using MC-ICP-MS. In particular, for samples containing >300 ppm Sr, total uncertainties of ˜0.05% are possible utilising 7-12 ng Sr. Data quality is monitored by determination of 84Sr/ 86Sr ratios. When applied to an archaeological cattle tooth this approach shows Sr-isotope variations along the length of the tooth in agreement with independent TIMS data. The 40Ca- 31P- 16O polyatomic interference is the root cause of the bias at mass 87 during laser ablation ICP-MS analysis of inorganic and biogenic calcium phosphate (apatite) matrices. This results in inaccurate 87Sr/ 86Sr ratios even after correction of Ca dimers and doubly charged rare earth elements. This interference is essentially constant at specific ablation conditions and therefore the effect on 87Sr/ 86Sr data varies in proportion to changes in the Sr concentration of the ablated material. Complete elimination of this interference is unlikely through normal analytical mechanisms and therefore represents a limitation on the achievable accuracy of LA-(MC-)ICP-MS 87Sr/ 86Sr

  3. Application of Chromium Stable Isotopes to the Evaluation of Cr(VI) Contamination in Groundwater and Rock Leachates from Central Euboea, the Assopos Basin and Thebes Valley (Greece)

    NASA Astrophysics Data System (ADS)

    Frei, R.; Frei, K. M.; Economou-Eliopoulos, M.; Atsarou, C.; Koilakos, D.

    2014-12-01

    In order to identify the source(s) of toxic Cr(VI) prevalent in drinking and irrigation waters of Central Euboea (CE), the Assopos Basin (AB) and the Thebes Valley (TV;Greece), we have analyzed stable Cr isotopes, together with major and trace elements in porous, karstic and ultramafic mélange-hosted aquifers and groundwaters, ultramafic rocks from the hinterlands and soil samples from cultivated sites of this region. In addition we complemented our data with experimentally produced water leachates of rocks and soils. Mg/Ca ratios >1 in much of the water samples indicate the influence of ultramafic rocks which dominate the geology on the geochemical composition of the groundwaters. Elevated Cr(VI) concentrations in experimental soil leachates, compared to those in rock pulp leachates, can be potentially explained by the presence of larger amounts of Fe(II) and lower amounts of Mn(IV) in the country rocks. Factor analysis on the 17 water samples from TV indicates a strong relationship between Na, Cl-, and Cr(VI), and also points to an aversion of Cr(VI) to nitrates (fertilizer-sewage sourced) and its independency from Mg and SiO2. Assuming that redox processes produce significant Cr isotope fractionation (groundwater δ53Cr values range between +0.62 and +1.99‰), the compilation of the analytical data suggests that the dominant cause of Cr isotope fractionation is post-mobilization reduction of Cr(VI). However, the lack of a clear negative relationship between Cr(VI) concentrations and δ53Cr values may reflect that other processes complicate this interpretation. The variation in δ53Cr values, together with the results from the experimentally produced ultramafic rock pulp leachates, imply initial oxidative mobilization of Cr(VI) from the ultramafic host rocks, followed by reductive processes, as the main reason for the toxicity of the groundwaters. Using a Rayleigh distillation model and different fractionation factors of Cr(VI) reduction valid for aqueous Fe

  4. A proposed standard on medical isotope production in fission reactors

    SciTech Connect

    Schenter, R. E.; Brown, G. J.; Holden, C. S.

    2006-07-01

    Authors Robert E. Sehenter, Garry Brown and Charles S. Holden argue that a Standard for 'Medical Isotope Production' is needed. Medical isotopes are becoming major components of application for the diagnosis and treatment of all the major diseases including all forms of cancer, heart disease, arthritis, Alzheimer's, among others. Current nuclear data to perform calculations is incomplete, dated or imprecise or otherwise flawed for many isotopes that could have significant applications in medicine. Improved data files will assist computational analyses to design means and methods for improved isotope production techniques in the fission reactor systems. Initial focus of the Standard is expected to be on neutron cross section and branching data for both fast and thermal reactor systems. Evaluated and reviewed tables giving thermal capture cross sections and resonance integrals for the major target and product medical isotopes would be the expected 'first start' for the 'Standard Working Group'. (authors)

  5. Isotope ratio determination in boron analysis.

    PubMed

    Sah, R N; Brown, P H

    1998-01-01

    Traditionally, boron (B) isotope ratios have been determined using thermal ionization mass spectrometry (TIMS) and, to some extent, secondary ion mass spectrometry (SIMS). Both TIMS and SIMS use a high-resolution mass analyzer, but differ in analyte ionization methods. TIMS uses electrons from a hot filament, whereas SIMS employs an energetic primary ion beam of Ga+, Cs+, or O- for analyte ionization. TIMS can be used in negative or positive ion modes with high sensitivity and precision of B isotope ratio determination. However, isobaric interferences may be a problem, if the sample is not well purified and/or memory of the previous sample is not removed. Time-consuming sample preparation, analyte (B) purification, and sample determination processes limit the applications of TIMS for routine analyses. SIMS can determine B and its isotope ratio in intact solid samples without destroying them, but has poorer resolution and sensitivity than TIMS, and is difficult to standardize for biological samples. Development of plasma-source mass spectrometry (MS) enabled the determination of B concentration and isotope ratio without requiring sample purification. Commonly used plasma-source MS uses an Ar inductively coupled plasma (ICP) as an ionization device interfaced to a low-resolution quadrupole mass analyzer. The quadrupole ICP-MS is less precise than TIMS and SIMS, but is a popular method for B isotope ratio determination because of its speed and convenience. B determination by ICP-MS suffers no spectroscopic interferences. However, sample matrices, memory effects, and some instrument parameters may affect the accuracy and precision of B isotope ratio determination if adequate precautions are not taken. New generations of plasma-source MS instruments using high-resolution mass analyzers provide better sensitivity and precision than the currently used quadrupole ICP-MS. Because of the convenience and high sample throughput, the high-resolution ICP-MS is expected to be the

  6. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  7. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  8. Isotope-detected 1H NMR studies of proteins: a general strategy for editing interproton nuclear Overhauser effects by heteronuclear decoupling, with application to phage lambda repressor.

    PubMed Central

    Weiss, M A; Redfield, A G; Griffey, R H

    1986-01-01

    A strategy for editing interproton nuclear Overhauser effects (NOEs) in proteins is proposed and illustrated. Selective incorporation of 13C- (or 15N)-labeled amino acids into a protein permits NOEs involving the labeled residues to be identified by heteronuclear difference decoupling. Such heteronuclear editing simplifies the NOE difference spectrum and avoids ambiguities due to spin diffusion. Isotope-detected 1H NMR thus opens to study proteins too large for conventional one- and two-dimensional NMR methods (20-75 kDa). We have applied this strategy to the N-terminal domain of phage lambda repressor, a protein of dimer molecular mass 23 kDa. A tertiary NOE from an internal aromatic ring (Phe-51) to a beta-13C-labeled alanine residue (Ala-62) is demonstrated. PMID:3006046

  9. Biosynthesis of seven carbon-13 labeled Alternaria toxins including altertoxins, alternariol, and alternariol methyl ether, and their application to a multiple stable isotope dilution assay.

    PubMed

    Liu, Yang; Rychlik, Michael

    2015-02-01

    An unprecedented stable isotope dilution assay for the genotoxic altertoxins along with exposure data of consumers is presented to enable a first risk assessment of these Alternaria toxins in foods. Altertoxins were produced as the most abundant Alternaria toxins in a modified Czapek-Dox medium with a low level of glucose as the carbon source and ammonium sulfate as the sole nitrogen source. Labeled altertoxins were synthesized in the same way using [(13)C6]glucose. Moreover, labeled alternariol, alternariol methyl ether, altenuene, and alternuisol were biosynthesized in another modified medium containing [(13)C6]glucose and sodium [(13)C2]acetate. A stable isotope dilution LC-MS/MS method was developed and used for food analysis. For altertoxin I, altertoxin II, alterperylenol, alternariol, and alternariol methyl ether, the limits of detection ranged from 0.09 to 0.53 μg kg(-1). The inter-/intra-day (n = 3 × 6) relative standard deviations of the method were below 13%, and the recoveries ranged between 96 and 109%. Among the various commercial food samples, some of the organic whole grains revealed low-level contamination with altertoxin I and alterperylenol, and paprika powder, which was heavily loaded with alternariol, alternariol methyl ether, and tentoxin, showed higher contamination level of altertoxin I and alterperylenol. Altertoxin II and III and stemphyltoxin III were not detectable. In addition, if the food was contaminated with altertoxins, it was likely to be co-contaminated with the other Alternaria toxins, but not necessarily vice versa. Maximum concentrations of altertoxin I and alterperylenol were detected in sorghum feed samples containing 43 and 58 μg kg(-1), respectively. This was significantly higher than that in the measured food samples.

  10. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    NASA Astrophysics Data System (ADS)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  11. [Laser-induced isotopic discrimination effect in laser resonance ionization process of lead atom].

    PubMed

    Wang, Xin-Shun; Li, Ying; Dai, Lin; Zheng, Rong-Er

    2008-07-01

    Isotope ratio measurements have been increasingly used in geochemistry, geochronology, cosmos chemistry and environmental science. Precise and accurate isotope ratio measurements are an important task in many applications such as the determination of isotope variations in geological and cosmic samples. Due to its high sensitivity, high ionization efficiency and high element selectivity, laser resonance ionization spectroscopy has nowadays become one of the key techniques, including isotope ratio measurements and trace amount analyses. Because of the isotope shifts and hyperfine structure, there is laser-induced isotopic discrimination effect in the process of laser resonance ionization. The different isotope ionization efficiency can affect precise and accurate measurement of isotope ratios. In the present paper, the dependences of the laser-induced isotopic discrimination effect on some of the laser parameters were studied by theoretical methods. Based on the numerical simulation of the population rate equations, laser-induced isotopic discrimination effect of lead isotopes was studied, by calculating laser resonance ionization transition "6s2 6p23 P0-6s2 6p7 s3 P1(0) --> ionization". The population rate equations was approximated considering some factors which affect the probability of laser resonance transition such as spectral lines width of laser and atom, isotope shifts and hyperfine structure. According to the approximated population rate equations, "1+1" laser resonant ionization process was employed to calculate the ionization probability of lead isotopes by means of computer simulation. The dependences of laser-induced isotopic discrimination effect on the laser parameters, such as laser central wavelength, bandwidth and intensity were investigated. The calculated results show that the laser-induced isotopic discrimination effect of lead isotopes could be almost eliminated by operating at optimized wavelength and could be lessened by using wide band laser

  12. Computer Analysis of Isotope Clusters in Mass Spectrometry

    ERIC Educational Resources Information Center

    Bell, Harold M.

    1974-01-01

    Describes the application of a computer program designed to produce a formula determination simultaneously accounting for both elemental composition and probable isotopic species for a measured ion mass. (SLH)

  13. Isotopic Analysis of OS and RE with Negative Thermal Ion Mass Spectrometry and Application to the Age and Evolution of Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1992-07-01

    The ^187Re-^187Os isotope system has long been recognized as a method by which the age of iron meteorites can be directly determined (Herr et al., 1961). Pioneering work by Luck and Allegre (1983) established a whole-rock isochron for iron meteorites and the results, were used to determine indirectly the half-life of ^187Re. We have developed: a) high ionization efficiency mass spectrometry techniques for platinum group elements, including both Re and Os separated from iron meteorites (Creaser et al., 1991, 1992); b) low filament loading blanks for both Re and Os (<0.1 picogram, each); c) high yield and low blanks for the chemical separation techniques (yields 70-80%; blanks 1 pg for Os, <10 pg for Re). We have developed a new method for the rapid, clean and efficient separation of Os and Re from 10^-2 g samples of iron meteorites. This will permit taking advantage of variations of Re/Os on a small scale. The chemical separation scheme involves acid dissolution, preconcentration of Os and Re from Fe-Ni, oxidative solvent extraction of Os and ion exchange chromatography to recover Re. We have established that Os and Re thus chemically separated from iron meteorites show the same ionization efficiency as Os and Re from standard solutions, namely ~20% for each element. Of primary importance is the degree of isotope exchange and equilibration between sample and spike for Os. By analyzing the isotopic composition of Os at different stages of the chemical separation we are able to demonstrate that isotopic equilibration can be achieved to the level of +-1o/oo. However, this is not yet a routinely resolved issue. We believe, based on experience during the development of this technique, that isotope equilibration for Os prior to chemical separation is a critical issue that needs further attention. The results we have obtained so far from iron meteorites are given in Table 1. We have started analyses of the large magmatic group of IIA irons, which are little shocked and

  14. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  15. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  16. Perchlorate isotope forensics.

    PubMed

    Böhlke, John Karl; Sturchio, Neil C; Gu, Baohua; Horita, Juske; Brown, Gilbert M; Jackson, W Andrew; Batista, Jacimaria; Hatzinger, Paul B

    2005-12-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses (37Cl/35Cl and 18O/17O/16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. PMID:16316196

  17. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  18. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  19. Isotope separation and advanced manufacturing technology

    NASA Astrophysics Data System (ADS)

    Carpenter, J.; Kan, T.

    This is the fourth issue of a semiannual report for the Isotope Separation and Advanced Materials Manufacturing (ISAM) Technology Program at Lawrence Livermore National Laboratory. Primary objectives include: (1) the Uranium Atomic Vapor Laser Isotope Separation (UAVLIS) process, which is being developed and prepared for deployment as an advanced uranium enrichment capability; (2) Advanced manufacturing technologies, which include industrial laser and E-beam material processing and new manufacturing technologies for uranium, plutonium, and other strategically important materials in support of DOE and other national applications. This report features progress in the ISAM Program from October 1993 through March 1994.

  20. The DES Science Verification weak lensing shear catalogues

    NASA Astrophysics Data System (ADS)

    Jarvis, M.; Sheldon, E.; Zuntz, J.; Kacprzak, T.; Bridle, S. L.; Amara, A.; Armstrong, R.; Becker, M. R.; Bernstein, G. M.; Bonnett, C.; Chang, C.; Das, R.; Dietrich, J. P.; Drlica-Wagner, A.; Eifler