Sample records for application framework based

  1. XAL Application Framework and Bricks GUI Builder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelaia II, Tom

    2007-01-01

    The XAL [1] Application Framework is a framework for rapidly developing document based Java applications with a common look and feel along with many built-in user interface behaviors. The Bricks GUI builder consists of a modern application and framework for rapidly building user interfaces in support of true Model-View-Controller (MVC) compliant Java applications. Bricks and the XAL Application Framework allow developers to rapidly create quality applications.

  2. Enterprise application architecture development based on DoDAF and TOGAF

    NASA Astrophysics Data System (ADS)

    Tao, Zhi-Gang; Luo, Yun-Feng; Chen, Chang-Xin; Wang, Ming-Zhe; Ni, Feng

    2017-05-01

    For the purpose of supporting the design and analysis of enterprise application architecture, here, we report a tailored enterprise application architecture description framework and its corresponding design method. The presented framework can effectively support service-oriented architecting and cloud computing by creating the metadata model based on architecture content framework (ACF), DoDAF metamodel (DM2) and Cloud Computing Modelling Notation (CCMN). The framework also makes an effort to extend and improve the mapping between The Open Group Architecture Framework (TOGAF) application architectural inputs/outputs, deliverables and Department of Defence Architecture Framework (DoDAF)-described models. The roadmap of 52 DoDAF-described models is constructed by creating the metamodels of these described models and analysing the constraint relationship among metamodels. By combining the tailored framework and the roadmap, this article proposes a service-oriented enterprise application architecture development process. Finally, a case study is presented to illustrate the results of implementing the tailored framework in the Southern Base Management Support and Information Platform construction project using the development process proposed by the paper.

  3. Teaching and Learning Numerical Analysis and Optimization: A Didactic Framework and Applications of Inquiry-Based Learning

    ERIC Educational Resources Information Center

    Lappas, Pantelis Z.; Kritikos, Manolis N.

    2018-01-01

    The main objective of this paper is to propose a didactic framework for teaching Applied Mathematics in higher education. After describing the structure of the framework, several applications of inquiry-based learning in teaching numerical analysis and optimization are provided to illustrate the potential of the proposed framework. The framework…

  4. A Rich Client-Server Based Framework for Convenient Security and Management of Mobile Applications

    NASA Astrophysics Data System (ADS)

    Badan, Stephen; Probst, Julien; Jaton, Markus; Vionnet, Damien; Wagen, Jean-Frédéric; Litzistorf, Gérald

    Contact lists, Emails, SMS or custom applications on a professional smartphone could hold very confidential or sensitive information. What could happen in case of theft or accidental loss of such devices? Such events could be detected by the separation between the smartphone and a Bluetooth companion device. This event should typically block the applications and delete personal and sensitive data. Here, a solution is proposed based on a secured framework application running on the mobile phone as a rich client connected to a security server. The framework offers strong and customizable authentication and secured connectivity. A security server manages all security issues. User applications are then loaded via the framework. User data can be secured, synchronized, pushed or pulled via the framework. This contribution proposes a convenient although secured environment based on a client-server architecture using external authentications. Several features of the proposed system are exposed and a practical demonstrator is described.

  5. New framework of NGN web-based management system

    NASA Astrophysics Data System (ADS)

    Nian, Zhou; Jie, Yin; Qian, Mao

    2007-11-01

    This paper introduces the basic conceptions and key technology of the Ajax and some popular frameworks in the J2EE architecture, try to integrate all the frameworks into a new framework. The developers can develop web applications much more convenient by using this framework and the web application can provide a more friendly and interactive platform to the end users. At last an example is given to explain how to use the new framework to build a web-based management system of the softswitch network.

  6. Models and Frameworks: A Synergistic Association for Developing Component-Based Applications

    PubMed Central

    Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A.; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development. PMID:25147858

  7. Models and frameworks: a synergistic association for developing component-based applications.

    PubMed

    Alonso, Diego; Sánchez-Ledesma, Francisco; Sánchez, Pedro; Pastor, Juan A; Álvarez, Bárbara

    2014-01-01

    The use of frameworks and components has been shown to be effective in improving software productivity and quality. However, the results in terms of reuse and standardization show a dearth of portability either of designs or of component-based implementations. This paper, which is based on the model driven software development paradigm, presents an approach that separates the description of component-based applications from their possible implementations for different platforms. This separation is supported by automatic integration of the code obtained from the input models into frameworks implemented using object-oriented technology. Thus, the approach combines the benefits of modeling applications from a higher level of abstraction than objects, with the higher levels of code reuse provided by frameworks. In order to illustrate the benefits of the proposed approach, two representative case studies that use both an existing framework and an ad hoc framework, are described. Finally, our approach is compared with other alternatives in terms of the cost of software development.

  8. Framework for Supporting Web-Based Collaborative Applications

    NASA Astrophysics Data System (ADS)

    Dai, Wei

    The article proposes an intelligent framework for supporting Web-based applications. The framework focuses on innovative use of existing resources and technologies in the form of services and takes the leverage of theoretical foundation of services science and the research from services computing. The main focus of the framework is to deliver benefits to users with various roles such as service requesters, service providers, and business owners to maximize their productivity when engaging with each other via the Web. The article opens up with research motivations and questions, analyses the existing state of research in the field, and describes the approach in implementing the proposed framework. Finally, an e-health application is discussed to evaluate the effectiveness of the framework where participants such as general practitioners (GPs), patients, and health-care workers collaborate via the Web.

  9. The Genome-based Knowledge Management in Cycles model: a complex adaptive systems framework for implementation of genomic applications.

    PubMed

    Arar, Nedal; Knight, Sara J; Modell, Stephen M; Issa, Amalia M

    2011-03-01

    The main mission of the Genomic Applications in Practice and Prevention Network™ is to advance collaborative efforts involving partners from across the public health sector to realize the promise of genomics in healthcare and disease prevention. We introduce a new framework that supports the Genomic Applications in Practice and Prevention Network mission and leverages the characteristics of the complex adaptive systems approach. We call this framework the Genome-based Knowledge Management in Cycles model (G-KNOMIC). G-KNOMIC proposes that the collaborative work of multidisciplinary teams utilizing genome-based applications will enhance translating evidence-based genomic findings by creating ongoing knowledge management cycles. Each cycle consists of knowledge synthesis, knowledge evaluation, knowledge implementation and knowledge utilization. Our framework acknowledges that all the elements in the knowledge translation process are interconnected and continuously changing. It also recognizes the importance of feedback loops, and the ability of teams to self-organize within a dynamic system. We demonstrate how this framework can be used to improve the adoption of genomic technologies into practice using two case studies of genomic uptake.

  10. Framework Requirements for MDO Application Development

    NASA Technical Reports Server (NTRS)

    Salas, A. O.; Townsend, J. C.

    1999-01-01

    Frameworks or problem solving environments that support application development form an active area of research. The Multidisciplinary Optimization Branch at NASA Langley Research Center is investigating frameworks for supporting multidisciplinary analysis and optimization research. The Branch has generated a list of framework requirements, based on the experience gained from the Framework for Interdisciplinary Design Optimization project and the information acquired during a framework evaluation process. In this study, four existing frameworks are examined against these requirements. The results of this examination suggest several topics for further framework research.

  11. Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resseguie, David R

    There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less

  12. Towards a Cloud Based Smart Traffic Management Framework

    NASA Astrophysics Data System (ADS)

    Rahimi, M. M.; Hakimpour, F.

    2017-09-01

    Traffic big data has brought many opportunities for traffic management applications. However several challenges like heterogeneity, storage, management, processing and analysis of traffic big data may hinder their efficient and real-time applications. All these challenges call for well-adapted distributed framework for smart traffic management that can efficiently handle big traffic data integration, indexing, query processing, mining and analysis. In this paper, we present a novel, distributed, scalable and efficient framework for traffic management applications. The proposed cloud computing based framework can answer technical challenges for efficient and real-time storage, management, process and analyse of traffic big data. For evaluation of the framework, we have used OpenStreetMap (OSM) real trajectories and road network on a distributed environment. Our evaluation results indicate that speed of data importing to this framework exceeds 8000 records per second when the size of datasets is near to 5 million. We also evaluate performance of data retrieval in our proposed framework. The data retrieval speed exceeds 15000 records per second when the size of datasets is near to 5 million. We have also evaluated scalability and performance of our proposed framework using parallelisation of a critical pre-analysis in transportation applications. The results show that proposed framework achieves considerable performance and efficiency in traffic management applications.

  13. Virtual reality for spherical images

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Rafal; Skarbek, Władysław

    2017-08-01

    Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.

  14. A Framework to Develop Persuasive Smart Environments

    NASA Astrophysics Data System (ADS)

    Lobo, Pedro; Romão, Teresa; Dias, A. Eduardo; Danado, José Carlos

    This paper presents a framework for the creation of context-sensitive persuasive applications. The framework allows the authoring of new persuasive smart environments producing the appropriate feedback to the users based on different sensors spread throughout the environment to capture contextual information. Using this framework, we created an application, Smart Bins, aimed at promoting users' behavioural changes regarding the recycling of waste materials. Furthermore, to evaluate the usability of our authoring tool, we performed user tests to analyze if developers could successfully create the Smart Bins application using the framework. A description of the Smart Bins application, as well as the results of the user tests, are also presented in this paper.

  15. A Framework for Performing Verification and Validation in Reuse Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    Verification and Validation (V&V) is currently performed during application development for many systems, especially safety-critical and mission- critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  16. Business model framework applications in health care: A systematic review.

    PubMed

    Fredriksson, Jens Jacob; Mazzocato, Pamela; Muhammed, Rafiq; Savage, Carl

    2017-11-01

    It has proven to be a challenge for health care organizations to achieve the Triple Aim. In the business literature, business model frameworks have been used to understand how organizations are aligned to achieve their goals. We conducted a systematic literature review with an explanatory synthesis approach to understand how business model frameworks have been applied in health care. We found a large increase in applications of business model frameworks during the last decade. E-health was the most common context of application. We identified six applications of business model frameworks: business model description, financial assessment, classification based on pre-defined typologies, business model analysis, development, and evaluation. Our synthesis suggests that the choice of business model framework and constituent elements should be informed by the intent and context of application. We see a need for harmonization in the choice of elements in order to increase generalizability, simplify application, and help organizations realize the Triple Aim.

  17. Audio-based queries for video retrieval over Java enabled mobile devices

    NASA Astrophysics Data System (ADS)

    Ahmad, Iftikhar; Cheikh, Faouzi Alaya; Kiranyaz, Serkan; Gabbouj, Moncef

    2006-02-01

    In this paper we propose a generic framework for efficient retrieval of audiovisual media based on its audio content. This framework is implemented in a client-server architecture where the client application is developed in Java to be platform independent whereas the server application is implemented for the PC platform. The client application adapts to the characteristics of the mobile device where it runs such as screen size and commands. The entire framework is designed to take advantage of the high-level segmentation and classification of audio content to improve speed and accuracy of audio-based media retrieval. Therefore, the primary objective of this framework is to provide an adaptive basis for performing efficient video retrieval operations based on the audio content and types (i.e. speech, music, fuzzy and silence). Experimental results approve that such an audio based video retrieval scheme can be used from mobile devices to search and retrieve video clips efficiently over wireless networks.

  18. A Framework and Toolkit for the Construction of Multimodal Learning Interfaces

    DTIC Science & Technology

    1998-04-29

    human communication modalities in the context of a broad class of applications, specifically those that support state manipulation via parameterized actions. The multimodal semantic model is also the basis for a flexible, domain independent, incrementally trainable multimodal interpretation algorithm based on a connectionist network. The second major contribution is an application framework consisting of reusable components and a modular, distributed system architecture. Multimodal application developers can assemble the components in the framework into a new application,

  19. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  20. An Efficient and Adaptive Mutual Authentication Framework for Heterogeneous Wireless Sensor Network-Based Applications

    PubMed Central

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-01-01

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942

  1. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor network-based applications.

    PubMed

    Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae

    2014-02-11

    Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.

  2. Distributed Computing Framework for Synthetic Radar Application

    NASA Technical Reports Server (NTRS)

    Gurrola, Eric M.; Rosen, Paul A.; Aivazis, Michael

    2006-01-01

    We are developing an extensible software framework, in response to Air Force and NASA needs for distributed computing facilities for a variety of radar applications. The objective of this work is to develop a Python based software framework, that is the framework elements of the middleware that allows developers to control processing flow on a grid in a distributed computing environment. Framework architectures to date allow developers to connect processing functions together as interchangeable objects, thereby allowing a data flow graph to be devised for a specific problem to be solved. The Pyre framework, developed at the California Institute of Technology (Caltech), and now being used as the basis for next-generation radar processing at JPL, is a Python-based software framework. We have extended the Pyre framework to include new facilities to deploy processing components as services, including components that monitor and assess the state of the distributed network for eventual real-time control of grid resources.

  3. An application framework of three-dimensional reconstruction and measurement for endodontic research.

    PubMed

    Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong

    2009-02-01

    The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.

  4. Layout Study and Application of Mobile App Recommendation Approach Based On Spark Streaming Framework

    NASA Astrophysics Data System (ADS)

    Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.

    2018-05-01

    For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.

  5. ICW eHealth Framework.

    PubMed

    Klein, Karsten; Wolff, Astrid C; Ziebold, Oliver; Liebscher, Thomas

    2008-01-01

    The ICW eHealth Framework (eHF) is a powerful infrastructure and platform for the development of service-oriented solutions in the health care business. It is the culmination of many years of experience of ICW in the development and use of in-house health care solutions and represents the foundation of ICW product developments based on the Java Enterprise Edition (Java EE). The ICW eHealth Framework has been leveraged to allow development by external partners - enabling adopters a straightforward integration into ICW solutions. The ICW eHealth Framework consists of reusable software components, development tools, architectural guidelines and conventions defining a full software-development and product lifecycle. From the perspective of a partner, the framework provides services and infrastructure capabilities for integrating applications within an eHF-based solution. This article introduces the ICW eHealth Framework's basic architectural concepts and technologies. It provides an overview of its module and component model, describes the development platform that supports the complete software development lifecycle of health care applications and outlines technological aspects, mainly focusing on application development frameworks and open standards.

  6. A DBR Framework for Designing Mobile Virtual Reality Learning Environments

    ERIC Educational Resources Information Center

    Cochrane, Thomas Donald; Cook, Stuart; Aiello, Stephen; Christie, Duncan; Sinfield, David; Steagall, Marcus; Aguayo, Claudio

    2017-01-01

    This paper proposes a design based research (DBR) framework for designing mobile virtual reality learning environments. The application of the framework is illustrated by two design-based research projects that aim to develop more authentic educational experiences and learner-centred pedagogies in higher education. The projects highlight the first…

  7. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.

    PubMed

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-02-01

    Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model.

  8. JACOB: an enterprise framework for computational chemistry.

    PubMed

    Waller, Mark P; Dresselhaus, Thomas; Yang, Jack

    2013-06-15

    Here, we present just a collection of beans (JACOB): an integrated batch-based framework designed for the rapid development of computational chemistry applications. The framework expedites developer productivity by handling the generic infrastructure tier, and can be easily extended by user-specific scientific code. Paradigms from enterprise software engineering were rigorously applied to create a scalable, testable, secure, and robust framework. A centralized web application is used to configure and control the operation of the framework. The application-programming interface provides a set of generic tools for processing large-scale noninteractive jobs (e.g., systematic studies), or for coordinating systems integration (e.g., complex workflows). The code for the JACOB framework is open sourced and is available at: www.wallerlab.org/jacob. Copyright © 2013 Wiley Periodicals, Inc.

  9. Generalized Intelligent Framework for Tutoring (GIFT) Cloud/Virtual Open Campus Quick Start Guide (Revision 1)

    DTIC Science & Technology

    2017-06-01

    for GIFT Cloud, the web -based application version of the Generalized Intelligent Framework for Tutoring (GIFT). GIFT is a modular, open-source...external applications. GIFT is available to users with a GIFT Account at no cost. GIFT Cloud is an implementation of GIFT. This web -based application...section. Approved for public release; distribution is unlimited. 3 3. Requirements for GIFT Cloud GIFT Cloud is accessed via a web browser

  10. Framework for near-field-communication-based geo-localization and personalization for Android-based smartphones--application in hospital environments.

    PubMed

    Meng, Philipp; Fehre, Karsten; Rappelsberger, Andrea; Adlassnig, Klaus-Peter

    2014-01-01

    Various applications using near field communication (NFC) have been developed for the medical sector. As a method of short-range wireless contact-driven data transfer, NFC is a useful tool in medicine. It can be used to transfer data such as blood pressure, control adherence to medication, or transmit in vivo data. The first proposed general framework uses NFC as a mechanism for indoor geo-localization in hospitals. NFC geo-localization is economical compared to classical concepts using indoor GPS or WLAN triangulation, and the granularity of location retrieval can be defined at a tag level. Using this framework, we facilitate the development of medical applications that require exact indoor geo-localization. Multi-user Android systems are addressed in the second framework. Using private NFC tags, users are able to carry on their personal settings for enabled applications. This eliminates the need for multiple user accounts on common Android devices, improves usability, and eases technical administration. Based on the prototypes presented here, we show a novel concept of using NFC-enabled Android devices in hospital environments.

  11. The Need for V&V in Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1997-01-01

    V&V is currently performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to entire' domain or product line rather than a critical processing, as early as possible during the development process. The system application provides the context under which the software artifacts are validated. engineering. This paper describes a framework that extends V&V from an individual application system to a product line of systems that are developed within an architecture-based software engineering environment. This framework includes the activities of traditional application-level V&V, and extends these activities into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for activities.

  12. Integrating UIMA annotators in a web-based text processing framework.

    PubMed

    Chen, Xiang; Arnold, Corey W

    2013-01-01

    The Unstructured Information Management Architecture (UIMA) [1] framework is a growing platform for natural language processing (NLP) applications. However, such applications may be difficult for non-technical users deploy. This project presents a web-based framework that wraps UIMA-based annotator systems into a graphical user interface for researchers and clinicians, and a web service for developers. An annotator that extracts data elements from lung cancer radiology reports is presented to illustrate the use of the system. Annotation results from the web system can be exported to multiple formats for users to utilize in other aspects of their research and workflow. This project demonstrates the benefits of a lay-user interface for complex NLP applications. Efforts such as this can lead to increased interest and support for NLP work in the clinical domain.

  13. A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care

    PubMed Central

    Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis

    2017-01-01

    This article describes a framework that has been developed to monetize the real value of simulation-based training in health care. A significant consideration has been given to the incorporation of the intangible and qualitative benefits, not only the tangible and quantitative benefits of simulation-based training in health care. The framework builds from three works: the value measurement methodology (VMM) used by several departments of the US Government, a methodology documented in several books by Dr Jack Phillips to monetize various training approaches, and a traditional return on investment methodology put forth by Frost and Sullivan, and Immersion Medical. All 3 source materials were adapted to create an integrated methodology that can be readily implemented. This article presents details on each of these methods and how they can be integrated and presents a framework that integrates the previous methods. In addition to that, it describes the concept and the application of the developed framework. As a test of the applicability of the framework, a real case study has been used to demonstrate the application of the framework. This case study provides real data related to the correlation between the pediatric patient cardiopulmonary arrest (CPA) survival rates and a simulation-based mock codes at the University of Michigan tertiary care academic medical center. It is important to point out that the proposed framework offers the capability to consider a wide range of benefits and values, but on the other hand, there are several limitations that has been discussed and need to be taken in consideration. PMID:28133988

  14. A Framework for Determining the Return on Investment of Simulation-Based Training in Health Care.

    PubMed

    Bukhari, Hatim; Andreatta, Pamela; Goldiez, Brian; Rabelo, Luis

    2017-01-01

    This article describes a framework that has been developed to monetize the real value of simulation-based training in health care. A significant consideration has been given to the incorporation of the intangible and qualitative benefits, not only the tangible and quantitative benefits of simulation-based training in health care. The framework builds from three works: the value measurement methodology (VMM) used by several departments of the US Government, a methodology documented in several books by Dr Jack Phillips to monetize various training approaches, and a traditional return on investment methodology put forth by Frost and Sullivan, and Immersion Medical. All 3 source materials were adapted to create an integrated methodology that can be readily implemented. This article presents details on each of these methods and how they can be integrated and presents a framework that integrates the previous methods. In addition to that, it describes the concept and the application of the developed framework. As a test of the applicability of the framework, a real case study has been used to demonstrate the application of the framework. This case study provides real data related to the correlation between the pediatric patient cardiopulmonary arrest (CPA) survival rates and a simulation-based mock codes at the University of Michigan tertiary care academic medical center. It is important to point out that the proposed framework offers the capability to consider a wide range of benefits and values, but on the other hand, there are several limitations that has been discussed and need to be taken in consideration.

  15. Open data models for smart health interconnected applications: the example of openEHR.

    PubMed

    Demski, Hans; Garde, Sebastian; Hildebrand, Claudia

    2016-10-22

    Smart Health is known as a concept that enhances networking, intelligent data processing and combining patient data with other parameters. Open data models can play an important role in creating a framework for providing interoperable data services that support the development of innovative Smart Health applications profiting from data fusion and sharing. This article describes a model-driven engineering approach based on standardized clinical information models and explores its application for the development of interoperable electronic health record systems. The following possible model-driven procedures were considered: provision of data schemes for data exchange, automated generation of artefacts for application development and native platforms that directly execute the models. The applicability of the approach in practice was examined using the openEHR framework as an example. A comprehensive infrastructure for model-driven engineering of electronic health records is presented using the example of the openEHR framework. It is shown that data schema definitions to be used in common practice software development processes can be derived from domain models. The capabilities for automatic creation of implementation artefacts (e.g., data entry forms) are demonstrated. Complementary programming libraries and frameworks that foster the use of open data models are introduced. Several compatible health data platforms are listed. They provide standard based interfaces for interconnecting with further applications. Open data models help build a framework for interoperable data services that support the development of innovative Smart Health applications. Related tools for model-driven application development foster semantic interoperability and interconnected innovative applications.

  16. An Open Source Extensible Smart Energy Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rankin, Linda

    Aggregated distributed energy resources are the subject of much interest in the energy industry and are expected to play an important role in meeting our future energy needs by changing how we use, distribute and generate electricity. This energy future includes an increased amount of energy from renewable resources, load management techniques to improve resiliency and reliability, and distributed energy storage and generation capabilities that can be managed to meet the needs of the grid as well as individual customers. These energy assets are commonly referred to as Distributed Energy Resources (DER). DERs rely on a means to communicate informationmore » between an energy provider and multitudes of devices. Today DER control systems are typically vendor-specific, using custom hardware and software solutions. As a result, customers are locked into communication transport protocols, applications, tools, and data formats. Today’s systems are often difficult to extend to meet new application requirements, resulting in stranded assets when business requirements or energy management models evolve. By partnering with industry advisors and researchers, an implementation DER research platform was developed called the Smart Energy Framework (SEF). The hypothesis of this research was that an open source Internet of Things (IoT) framework could play a role in creating a commodity-based eco-system for DER assets that would reduce costs and provide interoperable products. SEF is based on the AllJoynTM IoT open source framework. The demonstration system incorporated DER assets, specifically batteries and smart water heaters. To verify the behavior of the distributed system, models of water heaters and batteries were also developed. An IoT interface for communicating between the assets and a control server was defined. This interface supports a series of “events” and telemetry reporting, similar to those defined by current smart grid communication standards. The results of this effort demonstrated the feasibility and application potential of using IoT frameworks for the creation of commodity-based DER systems. All of the identified commodity-based system requirements were met by the AllJoyn framework. By having commodity solutions, small vendors can enter the market and the cost of implementation for all parties is reduced. Utilities and aggregators can choose from multiple interoperable products reducing the risk of stranded assets. Based on this research it is recommended that interfaces based on existing smart grid communication protocol standards be created for these emerging IoT frameworks. These interfaces should be standardized as part of the IoT framework allowing for interoperability testing and certification. Similarly, IoT frameworks are introducing application level security. This type of security is needed for protecting application and platforms and will be important moving forward. Recommendations are that along with DER-based data model interfaces, platform and application security requirements also be prescribed when IoT devices support DER applications.« less

  17. Event Driven Messaging with Role-Based Subscriptions

    NASA Technical Reports Server (NTRS)

    Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Kim, rachel; Allen, Christopher; Luong, Ivy; Chang, George; Zendejas, Silvino; Sadaqathulla, Syed

    2009-01-01

    Event Driven Messaging with Role-Based Subscriptions (EDM-RBS) is a framework integrated into the Service Management Database (SMDB) to allow for role-based and subscription-based delivery of synchronous and asynchronous messages over JMS (Java Messaging Service), SMTP (Simple Mail Transfer Protocol), or SMS (Short Messaging Service). This allows for 24/7 operation with users in all parts of the world. The software classifies messages by triggering data type, application source, owner of data triggering event (mission), classification, sub-classification and various other secondary classifying tags. Messages are routed to applications or users based on subscription rules using a combination of the above message attributes. This program provides a framework for identifying connected users and their applications for targeted delivery of messages over JMS to the client applications the user is logged into. EDMRBS provides the ability to send notifications over e-mail or pager rather than having to rely on a live human to do it. It is implemented as an Oracle application that uses Oracle relational database management system intrinsic functions. It is configurable to use Oracle AQ JMS API or an external JMS provider for messaging. It fully integrates into the event-logging framework of SMDB (Subnet Management Database).

  18. Bootstrapping Development of a Cloud-Based Spoken Dialog System in the Educational Domain from Scratch Using Crowdsourced Data. Research Report. ETS RR-16-16

    ERIC Educational Resources Information Center

    Ramanarayanan, Vikram; Suendermann-Oeft, David; Lange, Patrick; Ivanov, Alexei V.; Evanini, Keelan; Yu, Zhou; Tsuprun, Eugene; Qian, Yao

    2016-01-01

    We propose a crowdsourcing-based framework to iteratively and rapidly bootstrap a dialog system from scratch for a new domain. We leverage the open-source modular HALEF dialog system to deploy dialog applications. We illustrate the usefulness of this framework using four different prototype dialog items with applications in the educational domain…

  19. Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks

    PubMed Central

    Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly

    2014-01-01

    Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model. PMID:25485311

  20. An analysis of options available for developing a common laser ray tracing package for Ares and Kull code frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weeratunga, S K

    Ares and Kull are mature code frameworks that support ALE hydrodynamics for a variety of HEDP applications at LLNL, using two widely different meshing approaches. While Ares is based on a 2-D/3-D block-structured mesh data base, Kull is designed to support unstructured, arbitrary polygonal/polyhedral meshes. In addition, both frameworks are capable of running applications on large, distributed-memory parallel machines. Currently, both these frameworks separately support assorted collections of physics packages related to HEDP, including one for the energy deposition by laser/ion-beam ray tracing. This study analyzes the options available for developing a common laser/ion-beam ray tracing package that can bemore » easily shared between these two code frameworks and concludes with a set of recommendations for its development.« less

  1. Integrating Technology in Education: Moving the TPCK Framework towards Practical Applications

    ERIC Educational Resources Information Center

    Hechter, Richard P.; Phyfe, Lynette D.; Vermette, Laurie A.

    2012-01-01

    This theoretical paper offers a conceptual interpretation of the Technological, Pedagogical, and Content Knowledge (TPCK) framework to include the role of context within practical classroom applications. Our interpretation suggests that the importance of these three knowledge bases fluctuate within each stage of teachers' planning and instruction,…

  2. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Titanium-based Organic Frameworks for Chemical Transformations

    EPA Science Inventory

    Metal–organic frameworks (MOFs) based on organic bridging ligands are a promising class of highly ordered porous materials1 with potential applications in catalysis, gas storage and photoelectric devices. The availability of external surface of the solid-state catalysts plays an ...

  4. Π4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P. E.; Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P.

    2015-03-01

    We present Π4U, an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow.

  5. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  6. Shiny FHIR: An Integrated Framework Leveraging Shiny R and HL7 FHIR to Empower Standards-Based Clinical Data Applications.

    PubMed

    Hong, Na; Prodduturi, Naresh; Wang, Chen; Jiang, Guoqian

    2017-01-01

    In this study, we describe our efforts in building a clinical statistics and analysis application platform using an emerging clinical data standard, HL7 FHIR, and an open source web application framework, Shiny. We designed two primary workflows that integrate a series of R packages to enable both patient-centered and cohort-based interactive analyses. We leveraged Shiny with R to develop interactive interfaces on FHIR-based data and used ovarian cancer study datasets as a use case to implement a prototype. Specifically, we implemented patient index, patient-centered data report and analysis, and cohort analysis. The evaluation of our study was performed by testing the adaptability of the framework on two public FHIR servers. We identify common research requirements and current outstanding issues, and discuss future enhancement work of the current studies. Overall, our study demonstrated that it is feasible to use Shiny for implementing interactive analysis on FHIR-based standardized clinical data.

  7. Application of Resource Description Framework to Personalise Learning: Systematic Review and Methodology

    ERIC Educational Resources Information Center

    Jevsikova, Tatjana; Berniukevicius, Andrius; Kurilovas, Eugenijus

    2017-01-01

    The paper is aimed to present a methodology of learning personalisation based on applying Resource Description Framework (RDF) standard model. Research results are two-fold: first, the results of systematic literature review on Linked Data, RDF "subject-predicate-object" triples, and Web Ontology Language (OWL) application in education…

  8. Support for Mobile Collaborative Learning Applications

    ERIC Educational Resources Information Center

    Martin, Sergio; Boticki, Ivica; Jacobs, George; Castro, Manuel; Peire, Juan

    2010-01-01

    This work is intended to describe a framework aimed to address the challenges in the development of mobile Collaborative Learning applications. Firstly, the paper offers an overview of some of the main principles of Collaborative Learning that will be the basis of the framework, which is based on three main pillars: collaboration and communication…

  9. RT-18: Value of Flexibility. Phase 1

    DTIC Science & Technology

    2010-09-25

    an analytical framework based on sound mathematical constructs. A review of the current state-of-the-art showed that there is little unifying theory...framework that is mathematically consistent, domain independent and applicable under varying information levels. This report presents our advances in...During this period, we also explored the development of an analytical framework based on sound mathematical constructs. A review of the current state

  10. Guidance for the application of a population modeling framework in coordination with field based monitoring studies for multiple species and sites

    EPA Science Inventory

    A modeling framework was developed that can be applied in conjunction with field based monitoring efforts (e.g., through effects-based monitoring programs) to link chemically-induced alterations in molecular and biochemical endpoints to adverse outcomes in whole organisms and pop...

  11. JCell--a Java-based framework for inferring regulatory networks from time series data.

    PubMed

    Spieth, C; Supper, J; Streichert, F; Speer, N; Zell, A

    2006-08-15

    JCell is a Java-based application for reconstructing gene regulatory networks from experimental data. The framework provides several algorithms to identify genetic and metabolic dependencies based on experimental data conjoint with mathematical models to describe and simulate regulatory systems. Owing to the modular structure, researchers can easily implement new methods. JCell is a pure Java application with additional scripting capabilities and thus widely usable, e.g. on parallel or cluster computers. The software is freely available for download at http://www-ra.informatik.uni-tuebingen.de/software/JCell.

  12. A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices

    PubMed Central

    Zhao, Shuai; Yu, Le; Cheng, Bo

    2016-01-01

    With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are “silo” solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users’ data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations. PMID:27690038

  13. A Real-Time Web of Things Framework with Customizable Openness Considering Legacy Devices.

    PubMed

    Zhao, Shuai; Yu, Le; Cheng, Bo

    2016-09-28

    With the development of the Internet of Things (IoT), resources and applications based on it have emerged on a large scale. However, most efforts are "silo" solutions where devices and applications are tightly coupled. Infrastructures are needed to connect sensors to the Internet, open up and break the current application silos and move to a horizontal application mode. Based on the concept of Web of Things (WoT), many infrastructures have been proposed to integrate the physical world with the Web. However, issues such as no real-time guarantee, lack of fine-grained control of data, and the absence of explicit solutions for integrating heterogeneous legacy devices, hinder their widespread and practical use. To address these issues, this paper proposes a WoT resource framework that provides the infrastructures for the customizable openness and sharing of users' data and resources under the premise of ensuring the real-time behavior of their own applications. The proposed framework is validated by actual systems and experimental evaluations.

  14. Arcade: A Web-Java Based Framework for Distributed Computing

    NASA Technical Reports Server (NTRS)

    Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.

  15. Toxicology ontology perspectives.

    PubMed

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  16. Fabrication of composite membranes using copper metal organic framework for energy application

    NASA Astrophysics Data System (ADS)

    Gahlot, Swati; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Present manuscript deals with the synthesis of nanocomposite polymer electrolyte membrane (PEM) based on copper based metal organic framework (Cu-MOF) and sulfonated poly ether sulfone (SPES) for fuel cell application. Prepared material and composite membrane has been analyzed through various techniques. Structural and thermal characterization of prepared material has been carried out through XRD, FTIR and TGA technique. Measurement shows the successful synthesis of MOF and also confirms the thermal stability. Prepared membranes shows good physicochemical properties and good ionic conductivity which can be utilized as PEM for fuel cell application.

  17. Flight Software Development for the CHEOPS Instrument with the CORDET Framework

    NASA Astrophysics Data System (ADS)

    Cechticky, V.; Ottensamer, R.; Pasetti, A.

    2015-09-01

    CHEOPS is an ESA S-class mission dedicated to the precise measurement of radii of already known exoplanets using ultra-high precision photometry. The instrument flight software controlling the instrument and handling the science data is developed by the University of Vienna using the CORDET Framework offered by P&P Software GmbH. The CORDET Framework provides a generic software infrastructure for PUS-based applications. This paper describes how the framework is used for the CHEOPS application software to provide a consistent solution for to the communication and control services, event handling and FDIR procedures. This approach is innovative in four respects: (a) it is a true third-party reuse; (b) re-use is done at specification, validation and code level; (c) the re-usable assets and their qualification data package are entirely open-source; (d) re-use is based on call-back with the application developer providing functions which are called by the reusable architecture. File names missing from here on out (I tried to mimic the files names from before.)

  18. A Computational Framework for Efficient Low Temperature Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    Over the past years, scientific computing has emerged as an essential tool for the investigation and prediction of low temperature plasmas (LTP) applications which includes electronics, nanomaterial synthesis, metamaterials etc. To further explore the LTP behavior with greater fidelity, we present a computational toolbox developed to perform LTP simulations. This framework will allow us to enhance our understanding of multiscale plasma phenomenon using high performance computing tools mainly based on OpenFOAM FVM distribution. Although aimed at microplasma simulations, the modular framework is able to perform multiscale, multiphysics simulations of physical systems comprises of LTP. Some salient introductory features are capability to perform parallel, 3D simulations of LTP applications on unstructured meshes. Performance of the solver is tested based on numerical results assessing accuracy and efficiency of benchmarks for problems in microdischarge devices. Numerical simulation of microplasma reactor at atmospheric pressure with hemispherical dielectric coated electrodes will be discussed and hence, provide an overview of applicability and future scope of this framework.

  19. Design and applications of a multimodality image data warehouse framework.

    PubMed

    Wong, Stephen T C; Hoo, Kent Soo; Knowlton, Robert C; Laxer, Kenneth D; Cao, Xinhau; Hawkins, Randall A; Dillon, William P; Arenson, Ronald L

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications--namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains.

  20. HexSim - A general purpose framework for spatially-explicit, individual-based modeling

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications. This talk will focus on a subset of those ap...

  1. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  2. Adding Pluggable and Personalized Natural Control Capabilities to Existing Applications

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-01

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities. PMID:25635410

  3. Adding pluggable and personalized natural control capabilities to existing applications.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Carlevaris, Gilles; Demartini, Claudio

    2015-01-28

    Advancements in input device and sensor technologies led to the evolution of the traditional human-machine interaction paradigm based on the mouse and keyboard. Touch-, gesture- and voice-based interfaces are integrated today in a variety of applications running on consumer devices (e.g., gaming consoles and smartphones). However, to allow existing applications running on desktop computers to utilize natural interaction, significant re-design and re-coding efforts may be required. In this paper, a framework designed to transparently add multi-modal interaction capabilities to applications to which users are accustomed is presented. Experimental observations confirmed the effectiveness of the proposed framework and led to a classification of those applications that could benefit more from the availability of natural interaction modalities.

  4. A Video Game-Based Framework for Analyzing Human-Robot Interaction: Characterizing Interface Design in Real-Time Interactive Multimedia Applications

    DTIC Science & Technology

    2006-01-01

    segments video game interaction into domain-independent components which together form a framework that can be used to characterize real-time interactive...multimedia applications in general and HRI in particular. We provide examples of using the components in both the video game and the Unmanned Aerial

  5. Metascalable molecular dynamics simulation of nano-mechano-chemistry

    NASA Astrophysics Data System (ADS)

    Shimojo, F.; Kalia, R. K.; Nakano, A.; Nomura, K.; Vashishta, P.

    2008-07-01

    We have developed a metascalable (or 'design once, scale on new architectures') parallel application-development framework for first-principles based simulations of nano-mechano-chemical processes on emerging petaflops architectures based on spatiotemporal data locality principles. The framework consists of (1) an embedded divide-and-conquer (EDC) algorithmic framework based on spatial locality to design linear-scaling algorithms, (2) a space-time-ensemble parallel (STEP) approach based on temporal locality to predict long-time dynamics, and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework to map these scalable algorithms onto hardware. The EDC-STEP-HCD framework exposes and expresses maximal concurrency and data locality, thereby achieving parallel efficiency as high as 0.99 for 1.59-billion-atom reactive force field molecular dynamics (MD) and 17.7-million-atom (1.56 trillion electronic degrees of freedom) quantum mechanical (QM) MD in the framework of the density functional theory (DFT) on adaptive multigrids, in addition to 201-billion-atom nonreactive MD, on 196 608 IBM BlueGene/L processors. We have also used the framework for automated execution of adaptive hybrid DFT/MD simulation on a grid of six supercomputers in the US and Japan, in which the number of processors changed dynamically on demand and tasks were migrated according to unexpected faults. The paper presents the application of the framework to the study of nanoenergetic materials: (1) combustion of an Al/Fe2O3 thermite and (2) shock initiation and reactive nanojets at a void in an energetic crystal.

  6. A Modified Importance-Performance Framework for Evaluating Recreation-Based Experiential Learning Programs

    ERIC Educational Resources Information Center

    Pitas, Nicholas; Murray, Alison; Olsen, Max; Graefe, Alan

    2017-01-01

    This article describes a modified importance-performance framework for use in evaluation of recreation-based experiential learning programs. Importance-performance analysis (IPA) provides an effective and readily applicable means of evaluating many programs, but the near universal satisfaction associated with recreation inhibits the use of IPA in…

  7. Advanced Information Technology in Simulation Based Life Cycle Design

    NASA Technical Reports Server (NTRS)

    Renaud, John E.

    2003-01-01

    In this research a Collaborative Optimization (CO) approach for multidisciplinary systems design is used to develop a decision based design framework for non-deterministic optimization. To date CO strategies have been developed for use in application to deterministic systems design problems. In this research the decision based design (DBD) framework proposed by Hazelrigg is modified for use in a collaborative optimization framework. The Hazelrigg framework as originally proposed provides a single level optimization strategy that combines engineering decisions with business decisions in a single level optimization. By transforming this framework for use in collaborative optimization one can decompose the business and engineering decision making processes. In the new multilevel framework of Decision Based Collaborative Optimization (DBCO) the business decisions are made at the system level. These business decisions result in a set of engineering performance targets that disciplinary engineering design teams seek to satisfy as part of subspace optimizations. The Decision Based Collaborative Optimization framework more accurately models the existing relationship between business and engineering in multidisciplinary systems design.

  8. An application framework for computer-aided patient positioning in radiation therapy.

    PubMed

    Liebler, T; Hub, M; Sanner, C; Schlegel, W

    2003-09-01

    The importance of exact patient positioning in radiation therapy increases with the ongoing improvements in irradiation planning and treatment. Therefore, new ways to overcome precision limitations of current positioning methods in fractionated treatment have to be found. The Department of Medical Physics at the German Cancer Research Centre (DKFZ) follows different video-based approaches to increase repositioning precision. In this context, the modular software framework FIVE (Fast Integrated Video-based Environment) has been designed and implemented. It is both hardware- and platform-independent and supports merging position data by integrating various computer-aided patient positioning methods. A highly precise optical tracking system and several subtraction imaging techniques have been realized as modules to supply basic video-based repositioning techniques. This paper describes the common framework architecture, the main software modules and their interfaces. An object-oriented software engineering process has been applied using the UML, C + + and the Qt library. The significance of the current framework prototype for the application in patient positioning as well as the extension to further application areas will be discussed. Particularly in experimental research, where special system adjustments are often necessary, the open design of the software allows problem-oriented extensions and adaptations.

  9. A Framework for Performing V&V within Reuse-Based Software Engineering

    NASA Technical Reports Server (NTRS)

    Addy, Edward A.

    1996-01-01

    Verification and validation (V&V) is performed during application development for many systems, especially safety-critical and mission-critical systems. The V&V process is intended to discover errors, especially errors related to critical processing, as early as possible during the development process. Early discovery is important in order to minimize the cost and other impacts of correcting these errors. In order to provide early detection of errors, V&V is conducted in parallel with system development, often beginning with the concept phase. In reuse-based software engineering, however, decisions on the requirements, design and even implementation of domain assets can be made prior to beginning development of a specific system. In this case, V&V must be performed during domain engineering in order to have an impact on system development. This paper describes a framework for performing V&V within architecture-centric, reuse-based software engineering. This framework includes the activities of traditional application-level V&V, and extends these activities into domain engineering and into the transition between domain engineering and application engineering. The framework includes descriptions of the types of activities to be performed during each of the life-cycle phases, and provides motivation for the activities.

  10. A Framework for the Specification of the Semantics and the Dynamics of Instructional Applications

    ERIC Educational Resources Information Center

    Buendia-Garcia, Felix; Diaz, Paloma

    2003-01-01

    An instructional application consists of a set of resources and activities to implement interacting, interrelated, and structured experiences oriented towards achieving specific educational objectives. The development of computer-based instructional applications has to follow a well defined process, so models for computer-based instructional…

  11. Conformal Prediction Based on K-Nearest Neighbors for Discrimination of Ginsengs by a Home-Made Electronic Nose

    PubMed Central

    Sun, Xiyang; Miao, Jiacheng; Wang, You; Luo, Zhiyuan; Li, Guang

    2017-01-01

    An estimate on the reliability of prediction in the applications of electronic nose is essential, which has not been paid enough attention. An algorithm framework called conformal prediction is introduced in this work for discriminating different kinds of ginsengs with a home-made electronic nose instrument. Nonconformity measure based on k-nearest neighbors (KNN) is implemented separately as underlying algorithm of conformal prediction. In offline mode, the conformal predictor achieves a classification rate of 84.44% based on 1NN and 80.63% based on 3NN, which is better than that of simple KNN. In addition, it provides an estimate of reliability for each prediction. In online mode, the validity of predictions is guaranteed, which means that the error rate of region predictions never exceeds the significance level set by a user. The potential of this framework for detecting borderline examples and outliers in the application of E-nose is also investigated. The result shows that conformal prediction is a promising framework for the application of electronic nose to make predictions with reliability and validity. PMID:28805721

  12. Surgical model-view-controller simulation software framework for local and collaborative applications

    PubMed Central

    Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2010-01-01

    Purpose Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. Methods A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. Results The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. Conclusion A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users. PMID:20714933

  13. Surgical model-view-controller simulation software framework for local and collaborative applications.

    PubMed

    Maciel, Anderson; Sankaranarayanan, Ganesh; Halic, Tansel; Arikatla, Venkata Sreekanth; Lu, Zhonghua; De, Suvranu

    2011-07-01

    Surgical simulations require haptic interactions and collaboration in a shared virtual environment. A software framework for decoupled surgical simulation based on a multi-controller and multi-viewer model-view-controller (MVC) pattern was developed and tested. A software framework for multimodal virtual environments was designed, supporting both visual interactions and haptic feedback while providing developers with an integration tool for heterogeneous architectures maintaining high performance, simplicity of implementation, and straightforward extension. The framework uses decoupled simulation with updates of over 1,000 Hz for haptics and accommodates networked simulation with delays of over 1,000 ms without performance penalty. The simulation software framework was implemented and was used to support the design of virtual reality-based surgery simulation systems. The framework supports the high level of complexity of such applications and the fast response required for interaction with haptics. The efficacy of the framework was tested by implementation of a minimally invasive surgery simulator. A decoupled simulation approach can be implemented as a framework to handle simultaneous processes of the system at the various frame rates each process requires. The framework was successfully used to develop collaborative virtual environments (VEs) involving geographically distributed users connected through a network, with the results comparable to VEs for local users.

  14. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  15. Flower Power: The Armoured Expert in the CanMEDS Competency Framework?

    ERIC Educational Resources Information Center

    Whitehead, Cynthia R.; Austin, Zubin; Hodges, Brian D.

    2011-01-01

    Competency frameworks based on roles definitions are currently being used extensively in health professions education internationally. One of the most successful and widely used models is the CanMEDS Roles Framework. The medical literature has raised questions about both the theoretical underpinnings and the practical application of outcomes-based…

  16. Characterizing the reliability of a bioMEMS-based cantilever sensor

    NASA Astrophysics Data System (ADS)

    Bhalerao, Kaustubh D.

    2004-12-01

    The cantilever-based BioMEMS sensor represents one instance from many competing ideas of biosensor technology based on Micro Electro Mechanical Systems. The advancement of BioMEMS from laboratory-scale experiments to applications in the field will require standardization of their components and manufacturing procedures as well as frameworks to evaluate their performance. Reliability, the likelihood with which a system performs its intended task, is a compact mathematical description of its performance. The mathematical and statistical foundation of systems-reliability has been applied to the cantilever-based BioMEMS sensor. The sensor is designed to detect one aspect of human ovarian cancer, namely the over-expression of the folate receptor surface protein (FR-alpha). Even as the application chosen is clinically motivated, the objective of this study was to demonstrate the underlying systems-based methodology used to design, develop and evaluate the sensor. The framework development can be readily extended to other BioMEMS-based devices for disease detection and will have an impact in the rapidly growing $30 bn industry. The Unified Modeling Language (UML) is a systems-based framework for design and development of object-oriented information systems which has potential application for use in systems designed to interact with biological environments. The UML has been used to abstract and describe the application of the biosensor, to identify key components of the biosensor, and the technology needed to link them together in a coherent manner. The use of the framework is also demonstrated in computation of system reliability from first principles as a function of the structure and materials of the biosensor. The outcomes of applying the systems-based framework to the study are the following: (1) Characterizing the cantilever-based MEMS device for disease (cell) detection. (2) Development of a novel chemical interface between the analyte and the sensor that provides a degree of selectivity towards the disease. (3) Demonstrating the performance and measuring the reliability of the biosensor prototype, and (4) Identification of opportunities in technological development in order to further refine the proposed biosensor. Application of the methodology to design develop and evaluate the reliability of BioMEMS devices will be beneficial in the streamlining the growth of the BioMEMS industry, while providing a decision-support tool in comparing and adopting suitable technologies from available competing options.

  17. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Havens, S.; Marks, D. G.; Kormos, P.; Hedrick, A. R.; Johnson, M.; Robertson, M.; Sandusky, M.

    2017-12-01

    In the Western US, operational water supply managers rely on statistical techniques to forecast the volume of water left to enter the reservoirs. As the climate changes and the demand increases for stored water utilized for irrigation, flood control, power generation, and ecosystem services, water managers have begun to move from statistical techniques towards using physically based models. To assist with the transition, a new open source framework was developed, the Spatial Modeling for Resources Framework (SMRF), to automate and simplify the most common forcing data distribution methods. SMRF is computationally efficient and can be implemented for both research and operational applications. Currently, SMRF is able to generate all of the forcing data required to run physically based snow or hydrologic models at 50-100 m resolution over regions of 500-10,000 km2, and has been successfully applied in real time and historical applications for the Boise River Basin in Idaho, USA, the Tuolumne River Basin and San Joaquin in California, USA, and Reynolds Creek Experimental Watershed in Idaho, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input data. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of physics-based snow and hydrologic models possible.

  18. Semantic Framework of Internet of Things for Smart Cities: Case Studies.

    PubMed

    Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan

    2016-09-14

    In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications.

  19. Semantic Framework of Internet of Things for Smart Cities: Case Studies

    PubMed Central

    Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan

    2016-01-01

    In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications. PMID:27649185

  20. CLARA: CLAS12 Reconstruction and Analysis Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyurjyan, Vardan; Matta, Sebastian Mancilla; Oyarzun, Ricardo

    2016-11-01

    In this paper we present SOA based CLAS12 event Reconstruction and Analyses (CLARA) framework. CLARA design focus is on two main traits: real-time data stream processing, and service-oriented architecture (SOA) in a flow based programming (FBP) paradigm. Data driven and data centric architecture of CLARA presents an environment for developing agile, elastic, multilingual data processing applications. The CLARA framework presents solutions capable of processing large volumes of data interactively and substantially faster than batch systems.

  1. A theoretical framework for psychiatric nursing practice.

    PubMed

    Onega, L L

    1991-01-01

    Traditionally, specific theoretical frameworks which are congruent with psychiatric nursing practice have been poorly articulated. The purpose of this paper is to identify and discuss a philosophical base, a theoretical framework, application to psychiatric nursing, and issues related to psychiatric nursing knowledge development and practice. A philosophical framework that is likely to be congruent with psychiatric nursing, which is based on the nature of human beings, health, psychiatric nursing and reality, is identified. Aaron Antonovsky's Salutogenic Model is discussed and applied to psychiatric nursing. This model provides a helpful way for psychiatric nurses to organize their thinking processes and ultimately improve the health care services that they offer to their clients. Goal setting and nursing interventions using this model are discussed. Additionally, application of the use of Antonovsky's model is made to nursing research areas such as hardiness, uncertainty, suffering, empathy and literary works. Finally, specific issues related to psychiatric nursing are addressed.

  2. Leveraging Data Analysis for Domain Experts: An Embeddable Framework for Basic Data Science Tasks

    ERIC Educational Resources Information Center

    Lohrer, Johannes-Y.; Kaltenthaler, Daniel; Kröger, Peer

    2016-01-01

    In this paper, we describe a framework for data analysis that can be embedded into a base application. Since it is important to analyze the data directly inside the application where the data is entered, a tool that allows the scientists to easily work with their data, supports and motivates the execution of further analysis of their data, which…

  3. A Real-Time Data Acquisition and Processing Framework Based on FlexRIO FPGA and ITER Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zheng, W.; Zhang, M.; Yuan, T.; Zhuang, G.; Pan, Y.

    2016-06-01

    Measurement and control of the plasma in real-time are critical for advanced Tokamak operation. It requires high speed real-time data acquisition and processing. ITER has designed the Fast Plant System Controllers (FPSC) for these purposes. At J-TEXT Tokamak, a real-time data acquisition and processing framework has been designed and implemented using standard ITER FPSC technologies. The main hardware components of this framework are an Industrial Personal Computer (IPC) with a real-time system and FlexRIO devices based on FPGA. With FlexRIO devices, data can be processed by FPGA in real-time before they are passed to the CPU. The software elements are based on a real-time framework which runs under Red Hat Enterprise Linux MRG-R and uses Experimental Physics and Industrial Control System (EPICS) for monitoring and configuring. That makes the framework accord with ITER FPSC standard technology. With this framework, any kind of data acquisition and processing FlexRIO FPGA program can be configured with a FPSC. An application using the framework has been implemented for the polarimeter-interferometer diagnostic system on J-TEXT. The application is able to extract phase-shift information from the intermediate frequency signal produced by the polarimeter-interferometer diagnostic system and calculate plasma density profile in real-time. Different algorithms implementations on the FlexRIO FPGA are compared in the paper.

  4. Java Application Shell: A Framework for Piecing Together Java Applications

    NASA Technical Reports Server (NTRS)

    Miller, Philip; Powers, Edward I. (Technical Monitor)

    2001-01-01

    This session describes the architecture of Java Application Shell (JAS), a Swing-based framework for developing interactive Java applications. Java Application Shell is being developed by Commerce One, Inc. for NASA Goddard Space Flight Center Code 588. The purpose of JAS is to provide a framework for the development of Java applications, providing features that enable the development process to be more efficient, consistent and flexible. Fundamentally, JAS is based upon an architecture where an application is considered a collection of 'plugins'. In turn, a plug-in is a collection of Swing actions defined using XML and packaged in a jar file. Plug-ins may be local to the host platform or remotely-accessible through HTTP. Local and remote plugins are automatically discovered by JAS upon application startup; plugins may also be loaded dynamically without having to re-start the application. Using Extensible Markup Language (XML) to define actions, as opposed to hardcoding them in application logic, allows easier customization of application-specific operations by separating application logic from presentation. Through XML, a developer defines an action that may appear on any number of menus, toolbars, and buttons. Actions maintain and propagate enable/disable states and specify icons, tool-tips, titles, etc. Furthermore, JAS allows actions to be implemented using various scripting languages through the use of IBM's Bean Scripting Framework. Scripted action implementation is seamless to the end-user. In addition to action implementation, scripts may be used for application and unit-level testing. In the case of application-level testing, JAS has hooks to assist a script in simulating end-user input. JAS also provides property and user preference management, JavaHelp, Undo/Redo, Multi-Document Interface, Single-Document Interface, printing, and logging. Finally, Jini technology has also been included into the framework by means of a Jini services browser and the ability to associate services with actions. Several Java technologies have been incorporated into JAS, including Swing, Internal Frames, Java Beans, XML, JavaScript, JavaHelp, and Jini. Additional information is contained in the original extended abstract.

  5. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  6. AMP: a science-driven web-based application for the TeraGrid

    NASA Astrophysics Data System (ADS)

    Woitaszek, M.; Metcalfe, T.; Shorrock, I.

    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.

  7. Knowledge engineering for adverse drug event prevention: on the design and development of a uniform, contextualized and sustainable knowledge-based framework.

    PubMed

    Koutkias, Vassilis; Kilintzis, Vassilis; Stalidis, George; Lazou, Katerina; Niès, Julie; Durand-Texte, Ludovic; McNair, Peter; Beuscart, Régis; Maglaveras, Nicos

    2012-06-01

    The primary aim of this work was the development of a uniform, contextualized and sustainable knowledge-based framework to support adverse drug event (ADE) prevention via Clinical Decision Support Systems (CDSSs). In this regard, the employed methodology involved first the systematic analysis and formalization of the knowledge sources elaborated in the scope of this work, through which an application-specific knowledge model has been defined. The entire framework architecture has been then specified and implemented by adopting Computer Interpretable Guidelines (CIGs) as the knowledge engineering formalism for its construction. The framework integrates diverse and dynamic knowledge sources in the form of rule-based ADE signals, all under a uniform Knowledge Base (KB) structure, according to the defined knowledge model. Equally important, it employs the means to contextualize the encapsulated knowledge, in order to provide appropriate support considering the specific local environment (hospital, medical department, language, etc.), as well as the mechanisms for knowledge querying, inference, sharing, and management. In this paper, we present thoroughly the establishment of the proposed knowledge framework by presenting the employed methodology and the results obtained as regards implementation, performance and validation aspects that highlight its applicability and virtue in medication safety. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Making sense of complexity in context and implementation: the Context and Implementation of Complex Interventions (CICI) framework.

    PubMed

    Pfadenhauer, Lisa M; Gerhardus, Ansgar; Mozygemba, Kati; Lysdahl, Kristin Bakke; Booth, Andrew; Hofmann, Bjørn; Wahlster, Philip; Polus, Stephanie; Burns, Jacob; Brereton, Louise; Rehfuess, Eva

    2017-02-15

    The effectiveness of complex interventions, as well as their success in reaching relevant populations, is critically influenced by their implementation in a given context. Current conceptual frameworks often fail to address context and implementation in an integrated way and, where addressed, they tend to focus on organisational context and are mostly concerned with specific health fields. Our objective was to develop a framework to facilitate the structured and comprehensive conceptualisation and assessment of context and implementation of complex interventions. The Context and Implementation of Complex Interventions (CICI) framework was developed in an iterative manner and underwent extensive application. An initial framework based on a scoping review was tested in rapid assessments, revealing inconsistencies with respect to the underlying concepts. Thus, pragmatic utility concept analysis was undertaken to advance the concepts of context and implementation. Based on these findings, the framework was revised and applied in several systematic reviews, one health technology assessment (HTA) and one applicability assessment of very different complex interventions. Lessons learnt from these applications and from peer review were incorporated, resulting in the CICI framework. The CICI framework comprises three dimensions-context, implementation and setting-which interact with one another and with the intervention dimension. Context comprises seven domains (i.e., geographical, epidemiological, socio-cultural, socio-economic, ethical, legal, political); implementation consists of five domains (i.e., implementation theory, process, strategies, agents and outcomes); setting refers to the specific physical location, in which the intervention is put into practise. The intervention and the way it is implemented in a given setting and context can occur on a micro, meso and macro level. Tools to operationalise the framework comprise a checklist, data extraction tools for qualitative and quantitative reviews and a consultation guide for applicability assessments. The CICI framework addresses and graphically presents context, implementation and setting in an integrated way. It aims at simplifying and structuring complexity in order to advance our understanding of whether and how interventions work. The framework can be applied in systematic reviews and HTA as well as primary research and facilitate communication among teams of researchers and with various stakeholders.

  9. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, Zhanfeng; Liu, Guoliang; Chen, Yu-Sheng

    2017-03-20

    A stable framework has been constructed through multiple charge-assisted H-bonds between cationic coordination cages and chloride ions. The framework maintained its original structure upon desolvation, which has been established by single-crystal structure analysis. This is the first fully characterized stable porous framework based on coordination cages after desolvation, with a moderately high Brunauer–Emmett–Teller (BET) surface area of 1201 m2 g-1. This work will not only give a light to construct stable porous frameworks based on coordination cages and thus broaden their applications, but will also provide a new avenue to the assembly of other porous materials such as porous organicmore » cages and hydrogen-bonded organic frameworks (HOFs) through non covalent bonds.« less

  10. A Cyber-ITS Framework for Massive Traffic Data Analysis Using Cyber Infrastructure

    PubMed Central

    Fontaine, Michael D.

    2013-01-01

    Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing. PMID:23766690

  11. A Cyber-ITS framework for massive traffic data analysis using cyber infrastructure.

    PubMed

    Xia, Yingjie; Hu, Jia; Fontaine, Michael D

    2013-01-01

    Traffic data is commonly collected from widely deployed sensors in urban areas. This brings up a new research topic, data-driven intelligent transportation systems (ITSs), which means to integrate heterogeneous traffic data from different kinds of sensors and apply it for ITS applications. This research, taking into consideration the significant increase in the amount of traffic data and the complexity of data analysis, focuses mainly on the challenge of solving data-intensive and computation-intensive problems. As a solution to the problems, this paper proposes a Cyber-ITS framework to perform data analysis on Cyber Infrastructure (CI), by nature parallel-computing hardware and software systems, in the context of ITS. The techniques of the framework include data representation, domain decomposition, resource allocation, and parallel processing. All these techniques are based on data-driven and application-oriented models and are organized as a component-and-workflow-based model in order to achieve technical interoperability and data reusability. A case study of the Cyber-ITS framework is presented later based on a traffic state estimation application that uses the fusion of massive Sydney Coordinated Adaptive Traffic System (SCATS) data and GPS data. The results prove that the Cyber-ITS-based implementation can achieve a high accuracy rate of traffic state estimation and provide a significant computational speedup for the data fusion by parallel computing.

  12. Combinatorial-topological framework for the analysis of global dynamics.

    PubMed

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  13. Combinatorial-topological framework for the analysis of global dynamics

    NASA Astrophysics Data System (ADS)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  14. Research and Design of the Three-tier Distributed Network Management System Based on COM / COM + and DNA

    NASA Astrophysics Data System (ADS)

    Liang, Likai; Bi, Yushen

    Considered on the distributed network management system's demand of high distributives, extensibility and reusability, a framework model of Three-tier distributed network management system based on COM/COM+ and DNA is proposed, which adopts software component technology and N-tier application software framework design idea. We also give the concrete design plan of each layer of this model. Finally, we discuss the internal running process of each layer in the distributed network management system's framework model.

  15. Ontology to relational database transformation for web application development and maintenance

    NASA Astrophysics Data System (ADS)

    Mahmudi, Kamal; Inggriani Liem, M. M.; Akbar, Saiful

    2018-03-01

    Ontology is used as knowledge representation while database is used as facts recorder in a KMS (Knowledge Management System). In most applications, data are managed in a database system and updated through the application and then they are transformed to knowledge as needed. Once a domain conceptor defines the knowledge in the ontology, application and database can be generated from the ontology. Most existing frameworks generate application from its database. In this research, ontology is used for generating the application. As the data are updated through the application, a mechanism is designed to trigger an update to the ontology so that the application can be rebuilt based on the newest ontology. By this approach, a knowledge engineer has a full flexibility to renew the application based on the latest ontology without dependency to a software developer. In many cases, the concept needs to be updated when the data changed. The framework is built and tested in a spring java environment. A case study was conducted to proof the concepts.

  16. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  17. A discrete mechanics framework for real time virtual surgical simulations with application to virtual laparoscopic nephrectomy.

    PubMed

    Zhou, Xiangmin; Zhang, Nan; Sha, Desong; Shen, Yunhe; Tamma, Kumar K; Sweet, Robert

    2009-01-01

    The inability to render realistic soft-tissue behavior in real time has remained a barrier to face and content aspects of validity for many virtual reality surgical training systems. Biophysically based models are not only suitable for training purposes but also for patient-specific clinical applications, physiological modeling and surgical planning. When considering the existing approaches for modeling soft tissue for virtual reality surgical simulation, the computer graphics-based approach lacks predictive capability; the mass-spring model (MSM) based approach lacks biophysically realistic soft-tissue dynamic behavior; and the finite element method (FEM) approaches fail to meet the real-time requirement. The present development stems from physics fundamental thermodynamic first law; for a space discrete dynamic system directly formulates the space discrete but time continuous governing equation with embedded material constitutive relation and results in a discrete mechanics framework which possesses a unique balance between the computational efforts and the physically realistic soft-tissue dynamic behavior. We describe the development of the discrete mechanics framework with focused attention towards a virtual laparoscopic nephrectomy application.

  18. Model Based Analysis and Test Generation for Flight Software

    NASA Technical Reports Server (NTRS)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  19. Advances in the Application of Decision Theory to Test-Based Decision Making.

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    This paper reviews recent research in the Netherlands on the application of decision theory to test-based decision making about personnel selection and student placement. The review is based on an earlier model proposed for the classification of decision problems, and emphasizes an empirical Bayesian framework. Classification decisions with…

  20. A Multi-Channel Approach for Collaborative Web-Based Learning

    ERIC Educational Resources Information Center

    Azeta, A. A.

    2008-01-01

    This paper describes an architectural framework and a prototype implementation of a web-based multi-channel e-Learning application that allows students, lecturers and the research communities to collaborate irrespective of the communication device a user is carrying. The application was developed based on the concept of "right once run on any…

  1. Maintenance = reuse-oriented software development

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1989-01-01

    Maintenance is viewed as a reuse process. In this context, a set of models that can be used to support the maintenance process is discussed. A high level reuse framework is presented that characterizes the object of reuse, the process for adapting that object for its target application, and the reused object within its target application. Based upon this framework, a qualitative comparison is offered of the three maintenance process models with regard to their strengths and weaknesses and the circumstances in which they are appropriate. To provide a more systematic, quantitative approach for evaluating the appropriateness of the particular maintenance model, a measurement scheme is provided, based upon the reuse framework, in the form of an organized set of questions that need to be answered. To support the reuse perspective, a set of reuse enablers are discussed.

  2. Ex-ante assessment of the safety effects of intelligent transport systems.

    PubMed

    Kulmala, Risto

    2010-07-01

    There is a need to develop a comprehensive framework for the safety assessment of Intelligent Transport Systems (ITS). This framework should: (1) cover all three dimensions of road safety-exposure, crash risk and consequence, (2) cover, in addition to the engineering effect, also the effects due to behavioural adaptation and (3) be compatible with the other aspects of state of the art road safety theories. A framework based on nine ITS safety mechanisms is proposed and discussed with regard to the requirements set to the framework. In order to illustrate the application of the framework in practice, the paper presents a method based on the framework and the results from applying that method for twelve intelligent vehicle systems in Europe. The framework is also compared to two recent frameworks applied in the safety assessment of intelligent vehicle safety systems. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. The developing one door licensing service system based on RESTful oriented services and MVC framework

    NASA Astrophysics Data System (ADS)

    Widiyanto, Sigit; Setyawan, Aris Budi; Tarigan, Avinanta; Sussanto, Herry

    2016-02-01

    The increase of the number of business impact on the increasing service requirements for companies and Small Medium Enterprises (SMEs) in submitting their license request. The service system that is needed must be able to accommodate a large number of documents, various institutions, and time limitations of applicant. In addition, it is also required distributed applications which is able to be integrated each other. Service oriented application fits perfectly developed along client-server application which has been developed by the Government to digitalize submitted data. RESTful architecture and MVC framework are embedded in developing application. As a result, the application proves its capability in solving security, transaction speed, and data accuracy issues.

  4. Development and Application of a Systems Engineering Framework to Support Online Course Design and Delivery

    ERIC Educational Resources Information Center

    Bozkurt, Ipek; Helm, James

    2013-01-01

    This paper develops a systems engineering-based framework to assist in the design of an online engineering course. Specifically, the purpose of the framework is to provide a structured methodology for the design, development and delivery of a fully online course, either brand new or modified from an existing face-to-face course. The main strength…

  5. Exploring the Application of a Conceptual Framework in a Social MALL App

    ERIC Educational Resources Information Center

    Read, Timothy; Bárcena, Elena; Kukulska-Hulme, Agnes

    2016-01-01

    This article presents a prototype social Mobile Assisted Language Learning (henceforth, MALL) app based on Kukulska-Hulme's (2012) conceptual framework. This research allows the exploration of time, place and activity type as key factors in the design of MALL apps, and is the first step toward a systematic analysis of such a framework in this type…

  6. Libraries as Learning Labs in a Digital Age: A Youth Services Conference in an LIS Classroom

    ERIC Educational Resources Information Center

    Mills, J. Elizabeth; Campana, Kathleen; Goldsmith, Annette Y.

    2017-01-01

    In the face of a changing landscape of youth services, LIS education can push the field of librarianship forward by adopting research-based frameworks that are directly applicable to the profession. We combined the Connected Learning framework with Radical Change theory and Outcome-Based Planning and Evaluation (OBPE) to establish the structure…

  7. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  8. Entropy-functional-based online adaptive decision fusion framework with application to wildfire detection in video.

    PubMed

    Gunay, Osman; Toreyin, Behçet Ugur; Kose, Kivanc; Cetin, A Enis

    2012-05-01

    In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented.

  9. BioInt: an integrative biological object-oriented application framework and interpreter.

    PubMed

    Desai, Sanket; Burra, Prasad

    2015-01-01

    BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.

  10. Cloud-Based Perception and Control of Sensor Nets and Robot Swarms

    DTIC Science & Technology

    2016-04-01

    distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile

  11. Pervasive Restart In MOOSE-based Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Cody Permann; David Andrs

    Multiphysics applications are inherently complicated. Solving for multiple, interacting physical phenomena involves the solution of multiple equations, and each equation has its own data dependencies. Feeding the correct data to these equations at exactly the right time requires extensive effort in software design. In an ideal world, multiphysics applications always run to completion and produce correct answers. Unfortunately, in reality, there can be many reasons why a simulation might fail: power outage, system failure, exceeding a runtime allotment on a supercomputer, failure of the solver to converge, etc. A failure after many hours spent computing can be a significant setbackmore » for a project. Therefore, the ability to “continue” a solve from the point of failure, rather than starting again from scratch, is an essential component of any high-quality simulation tool. This process of “continuation” is commonly termed “restart” in the computational community. While the concept of restarting an application sounds ideal, the aforementioned complexities and data dependencies present in multiphysics applications make its implementation decidedly non-trivial. A running multiphysics calculation accumulates an enormous amount of “state”: current time, solution history, material properties, status of mechanical contact, etc. This “state” data comes in many different forms, including scalar, tensor, vector, and arbitrary, application-specific data types. To be able to restart an application, you must be able to both store and retrieve this data, effectively recreating the state of the application before the failure. When utilizing the Multiphysics Object Oriented Simulation Environment (MOOSE) framework developed at Idaho National Laboratory, this state data is stored both internally within the framework itself (such as solution vectors and the current time) and within the applications that use the framework. In order to implement restart in MOOSE-based applications, the total state of the system (both within the framework and without) must be stored and retrieved. To this end, the MOOSE team has implemented a “pervasive” restart capability which allows any object within MOOSE (or within a MOOSE-based application) to be declared as “state” data, and handles the storage and retrieval of said data.« less

  12. Just-in-Time Training of the Evidence-Based Public Health Framework, Oklahoma, 2016-2017.

    PubMed

    Douglas, Malinda R; Lowry, Jon P; Morgan, Latricia A

    2018-03-07

    Training of practitioners on evidence-based public health has shown to be beneficial, yet overwhelming. Chunking information and proximate practical application are effective techniques to increase retention in adult learning. Evidence-based public health training for practitioners from African American and Hispanic/Latino community agencies and tribes/tribal nations incorporated these 2 techniques. The community-level practitioners alternated attending training and implementing the steps of the evidence-based public health framework as they planned state-funded programs. One year later, survey results showed that participants reported increased confidence in skills that were reinforced by practical and practiced application as compared with posttraining survey results. In addition, at 1 year, reported confidence in skills that were not fortified by proximate application decreased when compared with posttraining confidence levels. All 7 community programs successfully created individualized evidence-based action plans that included evidence-based practices and policies across socioecological levels that fit with the unique culture and climate of their own community.

  13. A Function-Behavior-State Approach to Designing Human Machine Interface for Nuclear Power Plant Operators

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Zhang, W. J.

    2005-02-01

    This paper presents an approach to human-machine interface design for control room operators of nuclear power plants. The first step in designing an interface for a particular application is to determine information content that needs to be displayed. The design methodology for this step is called the interface design framework (called framework ). Several frameworks have been proposed for applications at varying levels, including process plants. However, none is based on the design and manufacture of a plant system for which the interface is designed. This paper presents an interface design framework which originates from design theory and methodology for general technical systems. Specifically, the framework is based on a set of core concepts of a function-behavior-state model originally proposed by the artificial intelligence research community and widely applied in the design research community. Benefits of this new framework include the provision of a model-based fault diagnosis facility, and the seamless integration of the design (manufacture, maintenance) of plants and the design of human-machine interfaces. The missing linkage between design and operation of a plant was one of the causes of the Three Mile Island nuclear reactor incident. A simulated plant system is presented to explain how to apply this framework in designing an interface. The resulting human-machine interface is discussed; specifically, several fault diagnosis examples are elaborated to demonstrate how this interface could support operators' fault diagnosis in an unanticipated situation.

  14. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2012-01-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  15. Heartbeat-based error diagnosis framework for distributed embedded systems

    NASA Astrophysics Data System (ADS)

    Mishra, Swagat; Khilar, Pabitra Mohan

    2011-12-01

    Distributed Embedded Systems have significant applications in automobile industry as steer-by-wire, fly-by-wire and brake-by-wire systems. In this paper, we provide a general framework for fault detection in a distributed embedded real time system. We use heartbeat monitoring, check pointing and model based redundancy to design a scalable framework that takes care of task scheduling, temperature control and diagnosis of faulty nodes in a distributed embedded system. This helps in diagnosis and shutting down of faulty actuators before the system becomes unsafe. The framework is designed and tested using a new simulation model consisting of virtual nodes working on a message passing system.

  16. Probabilistic arithmetic automata and their applications.

    PubMed

    Marschall, Tobias; Herms, Inke; Kaltenbach, Hans-Michael; Rahmann, Sven

    2012-01-01

    We present a comprehensive review on probabilistic arithmetic automata (PAAs), a general model to describe chains of operations whose operands depend on chance, along with two algorithms to numerically compute the distribution of the results of such probabilistic calculations. PAAs provide a unifying framework to approach many problems arising in computational biology and elsewhere. We present five different applications, namely 1) pattern matching statistics on random texts, including the computation of the distribution of occurrence counts, waiting times, and clump sizes under hidden Markov background models; 2) exact analysis of window-based pattern matching algorithms; 3) sensitivity of filtration seeds used to detect candidate sequence alignments; 4) length and mass statistics of peptide fragments resulting from enzymatic cleavage reactions; and 5) read length statistics of 454 and IonTorrent sequencing reads. The diversity of these applications indicates the flexibility and unifying character of the presented framework. While the construction of a PAA depends on the particular application, we single out a frequently applicable construction method: We introduce deterministic arithmetic automata (DAAs) to model deterministic calculations on sequences, and demonstrate how to construct a PAA from a given DAA and a finite-memory random text model. This procedure is used for all five discussed applications and greatly simplifies the construction of PAAs. Implementations are available as part of the MoSDi package. Its application programming interface facilitates the rapid development of new applications based on the PAA framework.

  17. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    PubMed

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  18. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  19. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.

    PubMed

    First, Eric L; Gounaris, Chrysanthos E; Floudas, Christodoulos A

    2013-05-07

    With the growing number of zeolites and metal-organic frameworks (MOFs) available, computational methods are needed to screen databases of structures to identify those most suitable for applications of interest. We have developed novel methods based on mathematical optimization to predict the shape selectivity of zeolites and MOFs in three dimensions by considering the energy costs of transport through possible pathways. Our approach is applied to databases of over 1800 microporous materials including zeolites, MOFs, zeolitic imidazolate frameworks, and hypothetical MOFs. New materials are identified for applications in gas separations (CO2/N2, CO2/CH4, and CO2/H2), air separation (O2/N2), and chemicals (propane/propylene, ethane/ethylene, styrene/ethylbenzene, and xylenes).

  20. New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis.

    PubMed

    Meek, M E; Boobis, A; Cote, I; Dellarco, V; Fotakis, G; Munn, S; Seed, J; Vickers, C

    2014-01-01

    The World Health Organization/International Programme on Chemical Safety mode of action/human relevance framework has been updated to reflect the experience acquired in its application and extend its utility to emerging areas in toxicity testing and non-testing methods. The underlying principles have not changed, but the framework's scope has been extended to enable integration of information at different levels of biological organization and reflect evolving experience in a much broader range of potential applications. Mode of action/species concordance analysis can also inform hypothesis-based data generation and research priorities in support of risk assessment. The modified framework is incorporated within a roadmap, with feedback loops encouraging continuous refinement of fit-for-purpose testing strategies and risk assessment. Important in this construct is consideration of dose-response relationships and species concordance analysis in weight of evidence. The modified Bradford Hill considerations have been updated and additionally articulated to reflect increasing experience in application for cases where the toxicological outcome of chemical exposure is known. The modified framework can be used as originally intended, where the toxicological effects of chemical exposure are known, or in hypothesizing effects resulting from chemical exposure, using information on putative key events in established modes of action from appropriate in vitro or in silico systems and other lines of evidence. This modified mode of action framework and accompanying roadmap and case examples are expected to contribute to improving transparency in explicitly addressing weight of evidence considerations in mode of action/species concordance analysis based on both conventional data sources and evolving methods. Copyright © 2013 John Wiley & Sons, Ltd. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  1. An object-oriented framework for medical image registration, fusion, and visualization.

    PubMed

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  2. Framework Based Guidance Navigation and Control Flight Software Development

    NASA Technical Reports Server (NTRS)

    McComas, David

    2007-01-01

    This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.

  3. The Unlock Project: a Python-based framework for practical brain-computer interface communication "app" development.

    PubMed

    Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H

    2012-01-01

    In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.

  4. Design and Applications of a Multimodality Image Data Warehouse Framework

    PubMed Central

    Wong, Stephen T.C.; Hoo, Kent Soo; Knowlton, Robert C.; Laxer, Kenneth D.; Cao, Xinhau; Hawkins, Randall A.; Dillon, William P.; Arenson, Ronald L.

    2002-01-01

    A comprehensive data warehouse framework is needed, which encompasses imaging and non-imaging information in supporting disease management and research. The authors propose such a framework, describe general design principles and system architecture, and illustrate a multimodality neuroimaging data warehouse system implemented for clinical epilepsy research. The data warehouse system is built on top of a picture archiving and communication system (PACS) environment and applies an iterative object-oriented analysis and design (OOAD) approach and recognized data interface and design standards. The implementation is based on a Java CORBA (Common Object Request Broker Architecture) and Web-based architecture that separates the graphical user interface presentation, data warehouse business services, data staging area, and backend source systems into distinct software layers. To illustrate the practicality of the data warehouse system, the authors describe two distinct biomedical applications—namely, clinical diagnostic workup of multimodality neuroimaging cases and research data analysis and decision threshold on seizure foci lateralization. The image data warehouse framework can be modified and generalized for new application domains. PMID:11971885

  5. A general framework of automorphic inflation

    NASA Astrophysics Data System (ADS)

    Schimmrigk, Rolf

    2016-05-01

    Automorphic inflation is an application of the framework of automorphic scalar field theory, based on the theory of automorphic forms and representations. In this paper the general framework of automorphic and modular inflation is described in some detail, with emphasis on the resulting stratification of the space of scalar field theories in terms of the group theoretic data associated to the shift symmetry, as well as the automorphic data that specifies the potential. The class of theories based on Eisenstein series provides a natural generalization of the model of j-inflation considered previously.

  6. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  7. Development and application of a real-time testbed for multiagent system interoperability: A case study on hierarchical microgrid control

    DOE PAGES

    Cintuglu, Mehmet Hazar; Youssef, Tarek; Mohammed, Osama A.

    2016-08-10

    This article presents the development and application of a real-time testbed for multiagent system interoperability. As utility independent private microgrids are installed constantly, standardized interoperability frameworks are required to define behavioral models of the individual agents for expandability and plug-and-play operation. In this paper, we propose a comprehensive hybrid agent framework combining the foundation for intelligent physical agents (FIPA), IEC 61850, and data distribution service (DDS) standards. The IEC 61850 logical node concept is extended using FIPA based agent communication language (ACL) with application specific attributes and deliberative behavior modeling capability. The DDS middleware is adopted to enable a real-timemore » publisher-subscriber interoperability mechanism between platforms. The proposed multi-agent framework was validated in a laboratory based testbed involving developed intelligent electronic device (IED) prototypes and actual microgrid setups. Experimental results were demonstrated for both decentralized and distributed control approaches. Secondary and tertiary control levels of a microgrid were demonstrated for decentralized hierarchical control case study. A consensus-based economic dispatch case study was demonstrated as a distributed control example. Finally, it was shown that the developed agent platform is industrially applicable for actual smart grid field deployment.« less

  8. Spatial Modeling for Resources Framework (SMRF): A modular framework for developing spatial forcing data for snow modeling in mountain basins

    NASA Astrophysics Data System (ADS)

    Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew

    2017-12-01

    In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.

  9. A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations

    PubMed Central

    Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2008-01-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033

  10. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence

    PubMed Central

    Meek, M E (Bette); Palermo, Christine M; Bachman, Ammie N; North, Colin M; Jeffrey Lewis, R

    2014-01-01

    The mode of action human relevance (MOA/HR) framework increases transparency in systematically considering data on MOA for end (adverse) effects and their relevance to humans. This framework continues to evolve as experience increases in its application. Though the MOA/HR framework is not designed to address the question of “how much information is enough” to support a hypothesized MOA in animals or its relevance to humans, its organizing construct has potential value in considering relative weight of evidence (WOE) among different cases and hypothesized MOA(s). This context is explored based on MOA analyses in published assessments to illustrate the relative extent of supporting data and their implications for dose–response analysis and involved comparisons for chemical assessments on trichloropropane, and carbon tetrachloride with several hypothesized MOA(s) for cancer. The WOE for each hypothesized MOA was summarized in narrative tables based on comparison and contrast of the extent and nature of the supporting database versus potentially inconsistent or missing information. The comparison was based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations of MOA taking into account increasing experience in their application internationally. This clarification of considerations for WOE determinations as a basis for comparative analysis is anticipated to contribute to increasing consistency in the application of MOA/HR analysis and potentially, transparency in separating science judgment from public policy considerations in regulatory risk assessment. Copyright © 2014. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd. The potential value of the mode of action (MOA)/human relevance (species concordance) framework in considering relative weight of evidence (WOE) amongst different cases and hypothesized MOA(s) is explored based on the content of several published assessments. The comparison is based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations for MOA based on experience internationally. PMID:24777878

  11. The Digital Anatomist Distributed Framework and Its Applications to Knowledge-based Medical Imaging

    PubMed Central

    Brinkley, James F.; Rosse, Cornelius

    1997-01-01

    Abstract The domain of medical imaging is anatomy. Therefore, anatomic knowledge should be a rational basis for organizing and analyzing images. The goals of the Digital Anatomist Program at the University of Washington include the development of an anatomically based software framework for organizing, analyzing, visualizing and utilizing biomedical information. The framework is based on representations for both spatial and symbolic anatomic knowledge, and is being implemented in a distributed architecture in which multiple client programs on the Internet are used to update and access an expanding set of anatomical information resources. The development of this framework is driven by several practical applications, including symbolic anatomic reasoning, knowledge based image segmentation, anatomy information retrieval, and functional brain mapping. Since each of these areas involves many difficult image processing issues, our research strategy is an evolutionary one, in which applications are developed somewhat independently, and partial solutions are integrated in a piecemeal fashion, using the network as the substrate. This approach assumes that networks of interacting components can synergistically work together to solve problems larger than either could solve on its own. Each of the individual projects is described, along with evaluations that show that the individual components are solving the problems they were designed for, and are beginning to interact with each other in a synergistic manner. We argue that this synergy will increase, not only within our own group, but also among groups as the Internet matures, and that an anatomic knowledge base will be a useful means for fostering these interactions. PMID:9147337

  12. Application of the adverse outcome pathway framework - advances and challenges

    EPA Science Inventory

    The adverse outcome pathway (AOP) framework, while not new in concept, has gained attention in recent years as a set of organizing principles and tools that can help facilitate greater use of mechanistic or pathway-based data in risk assessment and regulatory decision-making. Reg...

  13. A Framework for Safe Integration of Small UAS Into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.; Bland, Geoffrey; Murray, Jennifer

    2011-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine classes of platforms and operations. Finally, a framework is proposed for both airworthiness and operations that attempts to balance safety with utility for these important systems.

  14. Field Markup Language: biological field representation in XML.

    PubMed

    Chang, David; Lovell, Nigel H; Dokos, Socrates

    2007-01-01

    With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.

  15. Collaborative development of predictive toxicology applications

    PubMed Central

    2010-01-01

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals. The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation. Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way. PMID:20807436

  16. Collaborative development of predictive toxicology applications.

    PubMed

    Hardy, Barry; Douglas, Nicki; Helma, Christoph; Rautenberg, Micha; Jeliazkova, Nina; Jeliazkov, Vedrin; Nikolova, Ivelina; Benigni, Romualdo; Tcheremenskaia, Olga; Kramer, Stefan; Girschick, Tobias; Buchwald, Fabian; Wicker, Joerg; Karwath, Andreas; Gütlein, Martin; Maunz, Andreas; Sarimveis, Haralambos; Melagraki, Georgia; Afantitis, Antreas; Sopasakis, Pantelis; Gallagher, David; Poroikov, Vladimir; Filimonov, Dmitry; Zakharov, Alexey; Lagunin, Alexey; Gloriozova, Tatyana; Novikov, Sergey; Skvortsova, Natalia; Druzhilovsky, Dmitry; Chawla, Sunil; Ghosh, Indira; Ray, Surajit; Patel, Hitesh; Escher, Sylvia

    2010-08-31

    OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

  17. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan.

    PubMed

    Yang, Haile; Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems.

  18. Integrating landscape system and meta-ecosystem frameworks to advance the understanding of ecosystem function in heterogeneous landscapes: An analysis on the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan

    PubMed Central

    Chen, Jiakuan

    2018-01-01

    The successful integration of ecosystem ecology with landscape ecology would be conducive to understanding how landscapes function. There have been several attempts at this, with two main approaches: (1) an ecosystem-based approach, such as the meta-ecosystem framework and (2) a landscape-based approach, such as the landscape system framework. These two frameworks are currently disconnected. To integrate these two frameworks, we introduce a protocol, and then demonstrate application of the protocol using a case study. The protocol includes four steps: 1) delineating landscape systems; 2) classifying landscape systems; 3) adjusting landscape systems to meta-ecosystems and 4) integrating landscape system and meta-ecosystem frameworks through meta-ecosystems. The case study is the analyzing of the carbon fluxes in the Northern Highlands Lake District (NHLD) of Wisconsin and Michigan using this protocol. The application of this protocol revealed that one could follow this protocol to construct a meta-ecosystem and analyze it using the integrative framework of landscape system and meta-ecosystem frameworks. That is, one could (1) appropriately describe and analyze the spatial heterogeneity of the meta-ecosystem; (2) understand the emergent properties arising from spatial coupling of local ecosystems in the meta-ecosystem. In conclusion, this protocol is a useful approach for integrating the meta-ecosystem framework and the landscape system framework, which advances the describing and analyzing of the spatial heterogeneity and ecosystem function of interconnected ecosystems. PMID:29415066

  19. Development of a software framework for data assimilation and its applications for streamflow forecasting in Japan

    NASA Astrophysics Data System (ADS)

    Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.

    2012-04-01

    Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.

  20. Assessing the feasibility of a web-based domestic violence intervention using chronic disease frameworks: reducing the burden of 'treatment' and promoting capacity for action in women abused by a partner.

    PubMed

    Tarzia, Laura; May, Carl; Hegarty, Kelsey

    2016-11-24

    Domestic violence shares many features with chronic disease, including ongoing physical and mental health problems and eroded self-efficacy. Given the challenges around help-seeking for women experiencing domestic violence, it is essential that they be given support to 'self-manage' their condition. The growing popularity of web-based applications for chronic disease self-management suggests that there may be opportunities to use them as an intervention strategy for women experiencing domestic violence, however, as yet, little is known about whether this might work in practice. It is critical that interventions for domestic violence-whether web-based or otherwise-promote agency and capacity for action rather than adding to the 'workload' of already stressed and vulnerable women. Although randomised controlled trials are vital to determine the effectiveness of interventions, robust theoretical frameworks can complement them as a way of examining the feasibility of implementing an intervention in practice. To date, no such frameworks have been developed for the domestic violence context. Consequently, in this paper we propose that it may be useful to appraise interventions for domestic violence using frameworks developed to help understand the barriers and facilitators around self-management of chronic conditions. Using a case study of an online healthy relationship tool and safety decision aid developed in Australia (I-DECIDE), this paper adapts and applies two theories: Burden of Treatment Theory and Normalisation Process Theory, to assess whether the intervention might increase women's agency and capacity for action. In doing this, it proposes a new theoretical model with which the practical application of domestic violence interventions could be appraised in conjunction with other evaluation frameworks. This paper argues that theoretical frameworks for chronic disease are appropriate to assess the feasibility of implementing interventions for domestic violence in practice. The use of the modified Burden of Treatment/Normalisation Process Theory framework developed in this paper strengthens the case for I-DECIDE and other web-based applications as a way of supporting women experiencing domestic violence.

  1. Constraint-Based Local Search for Constrained Optimum Paths Problems

    NASA Astrophysics Data System (ADS)

    Pham, Quang Dung; Deville, Yves; van Hentenryck, Pascal

    Constrained Optimum Path (COP) problems arise in many real-life applications and are ubiquitous in communication networks. They have been traditionally approached by dedicated algorithms, which are often hard to extend with side constraints and to apply widely. This paper proposes a constraint-based local search (CBLS) framework for COP applications, bringing the compositionality, reuse, and extensibility at the core of CBLS and CP systems. The modeling contribution is the ability to express compositional models for various COP applications at a high level of abstraction, while cleanly separating the model and the search procedure. The main technical contribution is a connected neighborhood based on rooted spanning trees to find high-quality solutions to COP problems. The framework, implemented in COMET, is applied to Resource Constrained Shortest Path (RCSP) problems (with and without side constraints) and to the edge-disjoint paths problem (EDP). Computational results show the potential significance of the approach.

  2. A Framework for Enterprise Operating Systems Based on Zachman Framework

    NASA Astrophysics Data System (ADS)

    Ostadzadeh, S. Shervin; Rahmani, Amir Masoud

    Nowadays, the Operating System (OS) isn't only the software that runs your computer. In the typical information-driven organization, the operating system is part of a much larger platform for applications and data that extends across the LAN, WAN and Internet. An OS cannot be an island unto itself; it must work with the rest of the enterprise. Enterprise wide applications require an Enterprise Operating System (EOS). Enterprise operating systems used in an enterprise have brought about an inevitable tendency to lunge towards organizing their information activities in a comprehensive way. In this respect, Enterprise Architecture (EA) has proven to be the leading option for development and maintenance of enterprise operating systems. EA clearly provides a thorough outline of the whole information system comprising an enterprise. To establish such an outline, a logical framework needs to be laid upon the entire information system. Zachman Framework (ZF) has been widely accepted as a standard scheme for identifying and organizing descriptive representations that have prominent roles in enterprise-wide system development. In this paper, we propose a framework based on ZF for enterprise operating systems. The presented framework helps developers to design and justify completely integrated business, IT systems, and operating systems which results in improved project success rate.

  3. Social Exclusion and Education Inequality: Towards an Integrated Analytical Framework for the Urban-Rural Divide in China

    ERIC Educational Resources Information Center

    Wang, Li

    2012-01-01

    The aim of this paper is to build a capability-based framework, drawing upon the strengths of other approaches, which is applicable to the complexity of the urban-rural divide in education in China. It starts with a brief introduction to the capability approach. This is followed by a discussion of how the rights-based approach and resource-based…

  4. Facile synthesis of nickel-based metal organic framework [Ni3(HCOO)6] by microwave method and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Luo, Jujie; Yang, Xing; Wang, Shumin; Bi, Yuhong; Nautiyal, Amit; Zhang, Xinyu

    The metal organic framework (MOF) [Ni3(HCOO)6] was synthesized via the simple and fast microwave method, and the effect of irradiation power on crystallinity of synthesized Ni-based MOF was studied. The samples were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The synthesized Ni-based MOF was electrochemically characterized by using galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The synthesized MOF showed the highest specific capacitance of 1196.2F/g at 1A/g with excellent cyclability (86.04% capacitance retention after 2,000 cycles), thereby demonstrating its potential application in supercapacitors.

  5. On Developing a Taxonomy for Multidisciplinary Design Optimization: A Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Lewis, Kemper; Mistree, Farrokh

    1995-01-01

    In this paper, we approach MDO from a Decision-Based Design (DBD) perspective and explore classification schemes for designing complex systems and processes. Specifically, we focus on decisions, which are only a small portion of the Decision Support Problem (DSP) Technique, our implementation of DBD. We map coupled nonhierarchical and hierarchical representations from the DSP Technique into the Balling-Sobieski (B-S) framework (Balling and Sobieszczanski-Sobieski, 1994), and integrate domain-independent linguistic terms to complete our taxonomy. Application of DSPs to the design of complex, multidisciplinary systems include passenger aircraft, ships, damage tolerant structural and mechanical systems, and thermal energy systems. In this paper we show that Balling-Sobieski framework is consistent with that of the Decision Support Problem Technique through the use of linguistic entities to describe the same type of formulations. We show that the underlying linguistics of the solution approaches are the same and can be coalesced into a homogeneous framework with which to base the research, application, and technology MDO upon. We introduce, in the Balling-Sobieski framework, examples of multidisciplinary design, namely, aircraft, damage tolerant structural and mechanical systems, and thermal energy systems.

  6. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  7. Application of an informatics-based decision-making framework and process to the assessment of radiation safety in nanotechnology.

    PubMed

    Hoover, Mark D; Myers, David S; Cash, Leigh J; Guilmette, Raymond A; Kreyling, Wolfgang G; Oberdörster, Günter; Smith, Rachel; Cassata, James R; Boecker, Bruce B; Grissom, Michael P

    2015-02-01

    The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between ∼1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.

  8. Application of an Informatics-Based Decision-Making Framework and Process to the Assessment of Radiation Safety in Nanotechnology

    DOE PAGES

    Hoover, Mark D.; Myers, David S.; Cash, Leigh J.; ...

    2015-01-01

    The National Council on Radiation Protection and Measurements (NCRP) has established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between approximately 1 and 100 nanometers, where unique phenomena enable novel applications. While the full report is in preparation, this article presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are alreadymore » present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.« less

  9. Ethical aspects of registry-based research in the Nordic countries.

    PubMed

    Ludvigsson, Jonas F; Håberg, Siri E; Knudsen, Gun Peggy; Lafolie, Pierre; Zoega, Helga; Sarkkola, Catharina; von Kraemer, Stephanie; Weiderpass, Elisabete; Nørgaard, Mette

    2015-01-01

    National health care registries in the Nordic countries share many attributes, but different legal and ethical frameworks represent a challenge to promoting effective joint research. Internationally, there is a lack of knowledge about how ethical matters are considered in Nordic registry-based research, and a lack of knowledge about how Nordic ethics committees operate and what is needed to obtain an approval. In this paper, we review ethical aspects of registry-based research, the legal framework, the role of ethics review boards in the Nordic countries, and the structure of the ethics application. We discuss the role of informed consent in registry-based research and how to safeguard the integrity of study participants, including vulnerable subjects and children. Our review also provides information on the different government agencies that contribute registry-based data, and a list of the major health registries in Denmark, Finland, Iceland, Norway, and Sweden. Both ethical values and conditions for registry-based research are similar in the Nordic countries. While Denmark, Finland, Iceland, Norway, and Sweden have chosen different legal frameworks, these differences can be resolved through mutual recognition of ethical applications and by harmonizing the different systems, likely leading to increased collaboration and enlarged studies.

  10. Ethical aspects of registry-based research in the Nordic countries

    PubMed Central

    Ludvigsson, Jonas F; Håberg, Siri E; Knudsen, Gun Peggy; Lafolie, Pierre; Zoega, Helga; Sarkkola, Catharina; von Kraemer, Stephanie; Weiderpass, Elisabete; Nørgaard, Mette

    2015-01-01

    National health care registries in the Nordic countries share many attributes, but different legal and ethical frameworks represent a challenge to promoting effective joint research. Internationally, there is a lack of knowledge about how ethical matters are considered in Nordic registry-based research, and a lack of knowledge about how Nordic ethics committees operate and what is needed to obtain an approval. In this paper, we review ethical aspects of registry-based research, the legal framework, the role of ethics review boards in the Nordic countries, and the structure of the ethics application. We discuss the role of informed consent in registry-based research and how to safeguard the integrity of study participants, including vulnerable subjects and children. Our review also provides information on the different government agencies that contribute registry-based data, and a list of the major health registries in Denmark, Finland, Iceland, Norway, and Sweden. Both ethical values and conditions for registry-based research are similar in the Nordic countries. While Denmark, Finland, Iceland, Norway, and Sweden have chosen different legal frameworks, these differences can be resolved through mutual recognition of ethical applications and by harmonizing the different systems, likely leading to increased collaboration and enlarged studies. PMID:26648756

  11. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments.

    PubMed

    Sizo, Anton; Noble, Bram F; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability.

  12. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments

    NASA Astrophysics Data System (ADS)

    Sizo, Anton; Noble, Bram F.; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability.

  13. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  14. Pika: A snow science simulation tool built using the open-source framework MOOSE

    NASA Astrophysics Data System (ADS)

    Slaughter, A.; Johnson, M.

    2017-12-01

    The Department of Energy (DOE) is currently investing millions of dollars annually into various modeling and simulation tools for all aspects of nuclear energy. An important part of this effort includes developing applications based on the open-source Multiphysics Object Oriented Simulation Environment (MOOSE; mooseframework.org) from Idaho National Laboratory (INL).Thanks to the efforts of the DOE and outside collaborators, MOOSE currently contains a large set of physics modules, including phase-field, level set, heat conduction, tensor mechanics, Navier-Stokes, fracture and crack propagation (via the extended finite-element method), flow in porous media, and others. The heat conduction, tensor mechanics, and phase-field modules, in particular, are well-suited for snow science problems. Pika--an open-source MOOSE-based application--is capable of simulating both 3D, coupled nonlinear continuum heat transfer and large-deformation mechanics applications (such as settlement) and phase-field based micro-structure applications. Additionally, these types of problems may be coupled tightly in a single solve or across length and time scales using a loosely coupled Picard iteration approach. In addition to the wide range of physics capabilities, MOOSE-based applications also inherit an extensible testing framework, graphical user interface, and documentation system; tools that allow MOOSE and other applications to adhere to nuclear software quality standards. The snow science community can learn from the nuclear industry and harness the existing effort to build simulation tools that are open, modular, and share a common framework. In particular, MOOSE-based multiphysics solvers are inherently parallel, dimension agnostic, adaptive in time and space, fully coupled, and capable of interacting with other applications. The snow science community should build on existing tools to enable collaboration between researchers and practitioners throughout the world, and advance the state-of-the-art in line with other scientific research efforts.

  15. MAPI: a software framework for distributed biomedical applications

    PubMed Central

    2013-01-01

    Background The amount of web-based resources (databases, tools etc.) in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license). PMID:23311574

  16. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGES

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  17. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application executables, and user-controllable physical layer effects including inter-device wireless signal strength, reachability, and connectivity.« less

  18. Engineering Analysis Using a Web-based Protocol

    NASA Technical Reports Server (NTRS)

    Schoeffler, James D.; Claus, Russell W.

    2002-01-01

    This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool. The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and various design considerations in the storage and retrieval of application data.

  19. Implicit kernel sparse shape representation: a sparse-neighbors-based objection segmentation framework.

    PubMed

    Yao, Jincao; Yu, Huimin; Hu, Roland

    2017-01-01

    This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.

  20. An Asset-Based Approach to Tribal Community Energy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, Rachael A.; Martino, Anthony; Begay, Sandra K.

    Community energy planning is a vital component of successful energy resource development and project implementation. Planning can help tribes develop a shared vision and strategies to accomplish their energy goals. This paper explores the benefits of an asset-based approach to tribal community energy planning. While a framework for community energy planning and federal funding already exists, some areas of difficulty in the planning cycle have been identified. This paper focuses on developing a planning framework that offsets those challenges. The asset-based framework described here takes inventory of a tribe’s capital assets, such as: land capital, human capital, financial capital, andmore » political capital. Such an analysis evaluates how being rich in a specific type of capital can offer a tribe unique advantages in implementing their energy vision. Finally, a tribal case study demonstrates the practical application of an asset-based framework.« less

  1. An Unsupervised Anomalous Event Detection and Interactive Analysis Framework for Large-scale Satellite Data

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Lv, Q.; Klucik, R.; Chen, C.; Gallaher, D. W.; Grant, G.; Shang, L.

    2016-12-01

    Due to the high volume and complexity of satellite data, computer-aided tools for fast quality assessments and scientific discovery are indispensable for scientists in the era of Big Data. In this work, we have developed a framework for automated anomalous event detection in massive satellite data. The framework consists of a clustering-based anomaly detection algorithm and a cloud-based tool for interactive analysis of detected anomalies. The algorithm is unsupervised and requires no prior knowledge of the data (e.g., expected normal pattern or known anomalies). As such, it works for diverse data sets, and performs well even in the presence of missing and noisy data. The cloud-based tool provides an intuitive mapping interface that allows users to interactively analyze anomalies using multiple features. As a whole, our framework can (1) identify outliers in a spatio-temporal context, (2) recognize and distinguish meaningful anomalous events from individual outliers, (3) rank those events based on "interestingness" (e.g., rareness or total number of outliers) defined by users, and (4) enable interactively query, exploration, and analysis of those anomalous events. In this presentation, we will demonstrate the effectiveness and efficiency of our framework in the application of detecting data quality issues and unusual natural events using two satellite datasets. The techniques and tools developed in this project are applicable for a diverse set of satellite data and will be made publicly available for scientists in early 2017.

  2. SenSyF Experience on Integration of EO Services in a Generic, Cloud-Based EO Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Catarino, Nuno; Gutierrez, Antonio; Grosso, Nuno; Andrade, Joao; Caumont, Herve; Goncalves, Pedro; Villa, Guillermo; Mangin, Antoine; Serra, Romain; Johnsen, Harald; Grydeland, Tom; Emsley, Stephen; Jauch, Eduardo; Moreno, Jose; Ruiz, Antonio

    2016-08-01

    SenSyF is a cloud-based data processing framework for EO- based services. It has been pioneer in addressing Big Data issues from the Earth Observation point of view, and is a precursor of several of the technologies and methodologies that will be deployed in ESA's Thematic Exploitation Platforms and other related systems.The SenSyF system focuses on developing fully automated data management, together with access to a processing and exploitation framework, including Earth Observation specific tools. SenSyF is both a development and validation platform for data intensive applications using Earth Observation data. With SenSyF, scientific, institutional or commercial institutions developing EO- based applications and services can take advantage of distributed computational and storage resources, tailored for applications dependent on big Earth Observation data, and without resorting to deep infrastructure and technological investments.This paper describes the integration process and the experience gathered from different EO Service providers during the project.

  3. Optimization-based additive decomposition of weakly coercive problems with applications

    DOE PAGES

    Bochev, Pavel B.; Ridzal, Denis

    2016-01-27

    In this study, we present an abstract mathematical framework for an optimization-based additive decomposition of a large class of variational problems into a collection of concurrent subproblems. The framework replaces a given monolithic problem by an equivalent constrained optimization formulation in which the subproblems define the optimization constraints and the objective is to minimize the mismatch between their solutions. The significance of this reformulation stems from the fact that one can solve the resulting optimality system by an iterative process involving only solutions of the subproblems. Consequently, assuming that stable numerical methods and efficient solvers are available for every subproblem,more » our reformulation leads to robust and efficient numerical algorithms for a given monolithic problem by breaking it into subproblems that can be handled more easily. An application of the framework to the Oseen equations illustrates its potential.« less

  4. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  5. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-04

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  6. Accountable Information Flow for Java-Based Web Applications

    DTIC Science & Technology

    2010-01-01

    runtime library Swift server runtime Java servlet framework HTTP Web server Web browser Figure 2: The Swift architecture introduced an open-ended...On the server, the Java application code links against Swift’s server-side run-time library, which in turn sits on top of the standard Java servlet ...AFRL-RI-RS-TR-2010-9 Final Technical Report January 2010 ACCOUNTABLE INFORMATION FLOW FOR JAVA -BASED WEB APPLICATIONS

  7. A Framework for the Instructional Design of Multi-Structured Educational Applications.

    ERIC Educational Resources Information Center

    Buendia, F.; Diaz, P.; Benlloch, J. V.

    An instructional application consists of a set of resources and activities that implement interacting, interrelated and structured experiences oriented towards achieving specific educational objectives. Computer-based instructional applications have to be looked at as any other development activity following a well defined process. With this…

  8. Industrial applications of metal-organic frameworks.

    PubMed

    Czaja, Alexander U; Trukhan, Natalia; Müller, Ulrich

    2009-05-01

    New materials are prerequisite for major breakthrough applications influencing our daily life, and therefore are pivotal for the chemical industry. Metal-organic frameworks (MOFs) constitute an emerging class of materials useful in gas storage, gas purification and separation applications as well as heterogeneous catalysis. They not only offer higher surface areas and the potential for enhanced activity than currently used materials like base metal oxides, but also provide shape/size selectivity which is important both for separations and catalysis. In this critical review an overview of the potential applications of MOFs in the chemical industry is presented. Furthermore, the synthesis and characterization of the materials are briefly discussed from the industrial perspective (88 references).

  9. Communication: Introducing prescribed biases in out-of-equilibrium Markov models

    NASA Astrophysics Data System (ADS)

    Dixit, Purushottam D.

    2018-03-01

    Markov models are often used in modeling complex out-of-equilibrium chemical and biochemical systems. However, many times their predictions do not agree with experiments. We need a systematic framework to update existing Markov models to make them consistent with constraints that are derived from experiments. Here, we present a framework based on the principle of maximum relative path entropy (minimum Kullback-Leibler divergence) to update Markov models using stationary state and dynamical trajectory-based constraints. We illustrate the framework using a biochemical model network of growth factor-based signaling. We also show how to find the closest detailed balanced Markov model to a given Markov model. Further applications and generalizations are discussed.

  10. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  11. Applicability of risk-based management and the need for risk-based economic decision analysis at hazardous waste contaminated sites.

    PubMed

    Khadam, Ibrahim; Kaluarachchi, Jagath J

    2003-07-01

    Decision analysis in subsurface contamination management is generally carried out through a traditional engineering economic viewpoint. However, new advances in human health risk assessment, namely, the probabilistic risk assessment, and the growing awareness of the importance of soft data in the decision-making process, require decision analysis methodologies that are capable of accommodating non-technical and politically biased qualitative information. In this work, we discuss the major limitations of the currently practiced decision analysis framework, which evolves around the definition of risk and cost of risk, and its poor ability to communicate risk-related information. A demonstration using a numerical example was conducted to provide insight on these limitations of the current decision analysis framework. The results from this simple ground water contamination and remediation scenario were identical to those obtained from studies carried out on existing Superfund sites, which suggests serious flaws in the current risk management framework. In order to provide a perspective on how these limitations may be avoided in future formulation of the management framework, more matured and well-accepted approaches to decision analysis in dam safety and the utility industry, where public health and public investment are of great concern, are presented and their applicability in subsurface remediation management is discussed. Finally, in light of the success of the application of risk-based decision analysis in dam safety and the utility industry, potential options for decision analysis in subsurface contamination management are discussed.

  12. Design and Application of an Ontology for Component-Based Modeling of Water Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2012-12-01

    Many Earth system modeling frameworks have adopted an approach of componentizing models so that a large model can be assembled by linking a set of smaller model components. These model components can then be more easily reused, extended, and maintained by a large group of model developers and end users. While there has been a notable increase in component-based model frameworks in the Earth sciences in recent years, there has been less work on creating framework-agnostic metadata and ontologies for model components. Well defined model component metadata is needed, however, to facilitate sharing, reuse, and interoperability both within and across Earth system modeling frameworks. To address this need, we have designed an ontology for the water resources community named the Water Resources Component (WRC) ontology in order to advance the application of component-based modeling frameworks across water related disciplines. Here we present the design of the WRC ontology and demonstrate its application for integration of model components used in watershed management. First we show how the watershed modeling system Soil and Water Assessment Tool (SWAT) can be decomposed into a set of hydrological and ecological components that adopt the Open Modeling Interface (OpenMI) standard. Then we show how the components can be used to estimate nitrogen losses from land to surface water for the Baltimore Ecosystem study area. Results of this work are (i) a demonstration of how the WRC ontology advances the conceptual integration between components of water related disciplines by handling the semantic and syntactic heterogeneity present when describing components from different disciplines and (ii) an investigation of a methodology by which large models can be decomposed into a set of model components that can be well described by populating metadata according to the WRC ontology.

  13. A Component-based Programming Model for Composite, Distributed Applications

    NASA Technical Reports Server (NTRS)

    Eidson, Thomas M.; Bushnell, Dennis M. (Technical Monitor)

    2001-01-01

    The nature of scientific programming is evolving to larger, composite applications that are composed of smaller element applications. These composite applications are more frequently being targeted for distributed, heterogeneous networks of computers. They are most likely programmed by a group of developers. Software component technology and computational frameworks are being proposed and developed to meet the programming requirements of these new applications. Historically, programming systems have had a hard time being accepted by the scientific programming community. In this paper, a programming model is outlined that attempts to organize the software component concepts and fundamental programming entities into programming abstractions that will be better understood by the application developers. The programming model is designed to support computational frameworks that manage many of the tedious programming details, but also that allow sufficient programmer control to design an accurate, high-performance application.

  14. Clinical Transition Framework: Integrating Coaching Plans, Sampling, and Accountability in Clinical Practice Development.

    PubMed

    Boyer, Susan A; Mann-Salinas, Elizabeth A; Valdez-Delgado, Krystal K

    The clinical transition framework (CTF) is a competency-based practice development system used by nursing professional development practitioners to support nurses' initial orientation or transition to a new specialty. The CTF is applicable for both new graduate and proficient nurses. The current framework and tools evolved from 18 years of performance improvement and research projects engaged in both acute and community care environments in urban and rural settings. This article shares core CTF concepts, a description of coaching plans, and a professional accountability statement as experienced within the framework.

  15. Application of remote sensing and Geographic Information Systems to ecosystem-based urban natural resource management

    Treesearch

    Xiaohui Zhang; George Ball; Eve Halper

    2000-01-01

    This paper presents an integrated system to support urban natural resource management. With the application of remote sensing (RS) and geographic information systems (GIS), the paper emphasizes the methodology of integrating information technology and a scientific basis to support ecosystem-based management. First, a systematic integration framework is developed and...

  16. Evaluating Mixed Research Studies: A Mixed Methods Approach

    ERIC Educational Resources Information Center

    Leech, Nancy L.; Dellinger, Amy B.; Brannagan, Kim B.; Tanaka, Hideyuki

    2010-01-01

    The purpose of this article is to demonstrate application of a new framework, the validation framework (VF), to assist researchers in evaluating mixed research studies. Based on an earlier work by Dellinger and Leech, a description of the VF is delineated. Using the VF, three studies from education, health care, and counseling fields are…

  17. Applying the Grossman et al. Theoretical Framework: The Case of Reading

    ERIC Educational Resources Information Center

    Kucan, Linda; Palincsar, Annemarie Sullivan; Busse, Tracy; Heisey, Natalie; Klingelhofer, Rachel; Rimbey, Michelle; Schutz, Kristine

    2011-01-01

    Background/Context: This article describes the application of the theoretical framework proposed by Grossman and her colleagues to a research effort focusing on text-based discussion as a context for comprehension instruction. According to Grossman and her colleagues, a useful way to consider the teaching of complex practices to candidates is to…

  18. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing, E-mail: cuiyj@zju.edu.cn

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications. - Graphical abstract: A water-stable europium-based metal-organic framework hasmore » been reported for highly selective sensing of picric acid (PA) with a detection limit of 37.6 ppb in aqueous solution. - Highlights: • A water-stable metal-organic framework (MOF) EuNDC was synthesized. • The highly selective detection of picric acid with a detection limit of 37.6 ppb was realized. • The detection mechanism were also presented and discussed.« less

  19. ALFA: The new ALICE-FAIR software framework

    NASA Astrophysics Data System (ADS)

    Al-Turany, M.; Buncic, P.; Hristov, P.; Kollegger, T.; Kouzinopoulos, C.; Lebedev, A.; Lindenstruth, V.; Manafov, A.; Richter, M.; Rybalchenko, A.; Vande Vyvre, P.; Winckler, N.

    2015-12-01

    The commonalities between the ALICE and FAIR experiments and their computing requirements led to the development of large parts of a common software framework in an experiment independent way. The FairRoot project has already shown the feasibility of such an approach for the FAIR experiments and extending it beyond FAIR to experiments at other facilities[1, 2]. The ALFA framework is a joint development between ALICE Online- Offline (O2) and FairRoot teams. ALFA is designed as a flexible, elastic system, which balances reliability and ease of development with performance using multi-processing and multithreading. A message- based approach has been adopted; such an approach will support the use of the software on different hardware platforms, including heterogeneous systems. Each process in ALFA assumes limited communication and reliance on other processes. Such a design will add horizontal scaling (multiple processes) to vertical scaling provided by multiple threads to meet computing and throughput demands. ALFA does not dictate any application protocols. Potentially, any content-based processor or any source can change the application protocol. The framework supports different serialization standards for data exchange between different hardware and software languages.

  20. A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.

    PubMed

    Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao

    2018-05-23

    The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.

  1. Complex Nanostructures from Materials based on Metal-Organic Frameworks for Electrochemical Energy Storage and Conversion.

    PubMed

    Guan, Bu Yuan; Yu, Xin Yao; Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    Metal-organic frameworks (MOFs) have drawn tremendous attention because of their abundant diversity in structure and composition. Recently, there has been growing research interest in deriving advanced nanomaterials with complex architectures and tailored chemical compositions from MOF-based precursors for electrochemical energy storage and conversion. Here, a comprehensive overview of the synthesis and energy-related applications of complex nanostructures derived from MOF-based precursors is provided. After a brief summary of synthetic methods of MOF-based templates and their conversion to desirable nanostructures, delicate designs and preparation of complex architectures from MOFs or their composites are described in detail, including porous structures, single-shelled hollow structures, and multishelled hollow structures, as well as other unusual complex structures. Afterward, their applications are discussed as electrode materials or catalysts for lithium-ion batteries, hybrid supercapacitors, water-splitting devices, and fuel cells. Lastly, the research challenges and possible development directions of complex nanostructures derived from MOF-based-templates for electrochemical energy storage and conversion applications are outlined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Security and Dependability Solutions for Web Services and Workflows

    NASA Astrophysics Data System (ADS)

    Kokolakis, Spyros; Rizomiliotis, Panagiotis; Benameur, Azzedine; Sinha, Smriti Kumar

    In this chapter we present an innovative approach towards the design and application of Security and Dependability (S&D) solutions for Web services and service-based workflows. Recently, several standards have been published that prescribe S&D solutions for Web services, e.g. OASIS WS-Security. However,the application of these solutions in specific contexts has been proven problematic. We propose a new framework for the application of such solutions based on the SERENITY S&D Pattern concept. An S&D Pattern comprises all the necessary information for the implementation, verification, deployment, and active monitoring of an S&D Solution. Thus, system developers may rely on proven solutions that are dynamically deployed and monitored by the Serenity Runtime Framework. Finally, we further extend this approach to cover the case of executable workflows which are realised through the orchestration of Web services.

  3. Consensus Statement on Electronic Health Predictive Analytics: A Guiding Framework to Address Challenges

    PubMed Central

    Amarasingham, Ruben; Audet, Anne-Marie J.; Bates, David W.; Glenn Cohen, I.; Entwistle, Martin; Escobar, G. J.; Liu, Vincent; Etheredge, Lynn; Lo, Bernard; Ohno-Machado, Lucila; Ram, Sudha; Saria, Suchi; Schilling, Lisa M.; Shahi, Anand; Stewart, Walter F.; Steyerberg, Ewout W.; Xie, Bin

    2016-01-01

    Context: The recent explosion in available electronic health record (EHR) data is motivating a rapid expansion of electronic health care predictive analytic (e-HPA) applications, defined as the use of electronic algorithms that forecast clinical events in real time with the intent to improve patient outcomes and reduce costs. There is an urgent need for a systematic framework to guide the development and application of e-HPA to ensure that the field develops in a scientifically sound, ethical, and efficient manner. Objectives: Building upon earlier frameworks of model development and utilization, we identify the emerging opportunities and challenges of e-HPA, propose a framework that enables us to realize these opportunities, address these challenges, and motivate e-HPA stakeholders to both adopt and continuously refine the framework as the applications of e-HPA emerge. Methods: To achieve these objectives, 17 experts with diverse expertise including methodology, ethics, legal, regulation, and health care delivery systems were assembled to identify emerging opportunities and challenges of e-HPA and to propose a framework to guide the development and application of e-HPA. Findings: The framework proposed by the panel includes three key domains where e-HPA differs qualitatively from earlier generations of models and algorithms (Data Barriers, Transparency, and Ethics) and areas where current frameworks are insufficient to address the emerging opportunities and challenges of e-HPA (Regulation and Certification; and Education and Training). The following list of recommendations summarizes the key points of the framework: Data Barriers: Establish mechanisms within the scientific community to support data sharing for predictive model development and testing.Transparency: Set standards around e-HPA validation based on principles of scientific transparency and reproducibility.Ethics: Develop both individual-centered and society-centered risk-benefit approaches to evaluate e-HPA.Regulation and Certification: Construct a self-regulation and certification framework within e-HPA.Education and Training: Make significant changes to medical, nursing, and paraprofessional curricula by including training for understanding, evaluating, and utilizing predictive models. PMID:27141516

  4. Consensus Statement on Electronic Health Predictive Analytics: A Guiding Framework to Address Challenges.

    PubMed

    Amarasingham, Ruben; Audet, Anne-Marie J; Bates, David W; Glenn Cohen, I; Entwistle, Martin; Escobar, G J; Liu, Vincent; Etheredge, Lynn; Lo, Bernard; Ohno-Machado, Lucila; Ram, Sudha; Saria, Suchi; Schilling, Lisa M; Shahi, Anand; Stewart, Walter F; Steyerberg, Ewout W; Xie, Bin

    2016-01-01

    The recent explosion in available electronic health record (EHR) data is motivating a rapid expansion of electronic health care predictive analytic (e-HPA) applications, defined as the use of electronic algorithms that forecast clinical events in real time with the intent to improve patient outcomes and reduce costs. There is an urgent need for a systematic framework to guide the development and application of e-HPA to ensure that the field develops in a scientifically sound, ethical, and efficient manner. Building upon earlier frameworks of model development and utilization, we identify the emerging opportunities and challenges of e-HPA, propose a framework that enables us to realize these opportunities, address these challenges, and motivate e-HPA stakeholders to both adopt and continuously refine the framework as the applications of e-HPA emerge. To achieve these objectives, 17 experts with diverse expertise including methodology, ethics, legal, regulation, and health care delivery systems were assembled to identify emerging opportunities and challenges of e-HPA and to propose a framework to guide the development and application of e-HPA. The framework proposed by the panel includes three key domains where e-HPA differs qualitatively from earlier generations of models and algorithms (Data Barriers, Transparency, and ETHICS) and areas where current frameworks are insufficient to address the emerging opportunities and challenges of e-HPA (Regulation and Certification; and Education and Training). The following list of recommendations summarizes the key points of the framework: Data Barriers: Establish mechanisms within the scientific community to support data sharing for predictive model development and testing.Transparency: Set standards around e-HPA validation based on principles of scientific transparency and reproducibility. Develop both individual-centered and society-centered risk-benefit approaches to evaluate e-HPA.Regulation and Certification: Construct a self-regulation and certification framework within e-HPA.Education and Training: Make significant changes to medical, nursing, and paraprofessional curricula by including training for understanding, evaluating, and utilizing predictive models.

  5. The role of advanced nursing in lung cancer: A framework based development.

    PubMed

    Serena, A; Castellani, P; Fucina, N; Griesser, A-C; Jeanmonod, J; Peters, S; Eicher, M

    2015-12-01

    Advanced Practice Lung Cancer Nurses (APLCN) are well-established in several countries but their role has yet to be established in Switzerland. Developing an innovative nursing role requires a structured approach to guide successful implementation and to meet the overarching goal of improved nursing sensitive patient outcomes. The "Participatory, Evidence-based, Patient-focused process, for guiding the development, implementation, and evaluation of advanced practice nursing" (PEPPA framework) is one approach that was developed in the context of the Canadian health system. The purpose of this article is to describe the development of an APLCN model at a Swiss Academic Medical Center as part of a specialized Thoracic Cancer Center and to evaluate the applicability of PEPPA framework in this process. In order to develop and implement the APLCN role, we applied the first seven phases of the PEPPA framework. This article spreads the applicability of the PEPPA framework for an APLCN development. This framework allowed us to i) identify key components of an APLCN model responsive to lung cancer patients' health needs, ii) identify role facilitators and barriers, iii) implement the APLCN role and iv) design a feasibility study of this new role. The PEPPA framework provides a structured process for implementing novel Advanced Practice Nursing roles in a local context, particularly where such roles are in their infancy. Two key points in the process include assessing patients' health needs and involving key stakeholders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Foundations Framework for Developing and Reporting New Models of Care for Multimorbidity

    PubMed Central

    Stokes, Jonathan; Man, Mei-See; Guthrie, Bruce; Mercer, Stewart W.; Salisbury, Chris; Bower, Peter

    2017-01-01

    PURPOSE Multimorbidity challenges health systems globally. New models of care are urgently needed to better manage patients with multimorbidity; however, there is no agreed framework for designing and reporting models of care for multimorbidity and their evaluation. METHODS Based on findings from a literature search to identify models of care for multimorbidity, we developed a framework to describe these models. We illustrate the application of the framework by identifying the focus and gaps in current models of care, and by describing the evolution of models over time. RESULTS Our framework describes each model in terms of its theoretical basis and target population (the foundations of the model) and of the elements of care implemented to deliver the model. We categorized elements of care into 3 types: (1) clinical focus, (2) organization of care, (3) support for model delivery. Application of the framework identified a limited use of theory in model design and a strong focus on some patient groups (elderly, high users) more than others (younger patients, deprived populations). We found changes in elements with time, with a decrease in models implementing home care and an increase in models offering extended appointments. CONCLUSIONS By encouragin greater clarity about the underpinning theory and target population, and by categorizing the wide range of potentially important elements of an intervention to improve care for patients with multimorbidity, the framework may be useful in designing and reporting models of care and help advance the currently limited evidence base. PMID:29133498

  7. Dynamic social community detection and its applications.

    PubMed

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  8. Dynamic Social Community Detection and Its Applications

    PubMed Central

    Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164

  9. A general framework for multicharacter segmentation and its application in recognizing multilingual Asian documents

    NASA Astrophysics Data System (ADS)

    Wen, Di; Ding, Xiaoqing

    2003-12-01

    In this paper we propose a general framework for character segmentation in complex multilingual documents, which is an endeavor to combine the traditionally separated segmentation and recognition processes into a cooperative system. The framework contains three basic steps: Dissection, Local Optimization and Global Optimization, which are designed to fuse various properties of the segmentation hypotheses hierarchically into a composite evaluation to decide the final recognition results. Experimental results show that this framework is general enough to be applied in variety of documents. A sample system based on this framework to recognize Chinese, Japanese and Korean documents and experimental performance is reported finally.

  10. MARVIN: a medical research application framework based on open source software.

    PubMed

    Rudolph, Tobias; Puls, Marc; Anderegg, Christoph; Ebert, Lars; Broehan, Martina; Rudin, Adrian; Kowal, Jens

    2008-08-01

    This paper describes the open source framework MARVIN for rapid application development in the field of biomedical and clinical research. MARVIN applications consist of modules that can be plugged together in order to provide the functionality required for a specific experimental scenario. Application modules work on a common patient database that is used to store and organize medical data as well as derived data. MARVIN provides a flexible input/output system with support for many file formats including DICOM, various 2D image formats and surface mesh data. Furthermore, it implements an advanced visualization system and interfaces to a wide range of 3D tracking hardware. Since it uses only highly portable libraries, MARVIN applications run on Unix/Linux, Mac OS X and Microsoft Windows.

  11. The scholar role in the National Competence Based Catalogues of Learning Objectives for Undergraduate Medical Education (NKLM) compared to other international frameworks.

    PubMed

    Hautz, Stefanie C; Hautz, Wolf E; Keller, Niklas; Feufel, Markus A; Spies, Claudia

    2015-01-01

    In Germany, a national competence based catalogue of learning objectives in medicine (NKLM) was developed by the Society for Medical Education and the Council of Medical Faculties. As many of its international counterparts the NKLM describes the qualifications of medical school graduates. The definition of such outcome frameworks indents to make medical education transparent to students, teachers and society. The NKLM aims to amend existing lists of medical topics for assessment with learnable competencies. All outcome frameworks are structured into chapters, domains or physician roles. The definition of the scholar-role poses a number of questions such as: What distinguishes necessary qualifications of a scientifically qualified physician from those of a medical scientist? 13 outcome frameworks were identified through a systematic three-step literature review and their content compared to the scholar role in the NKLM by means of a qualitative text analysis. The three steps consist of (1) search for outcome frameworks, (2) in- and exclusion, and (3) data extraction, categorization, and validation. The results were afterwards matched with the scholar role of the NKLM. Extracted contents of all frameworks may be summarized into the components Common Basics, Clinical Application, Research, Teaching and Education, and Lifelong Learning. Compared to the included frameworks the NKLM emphasises competencies necessary for research and teaching while clinical application is less prominently mentioned. The scholar role of the NKLM differs from other international outcome frameworks. Discussing these results shall increase propagation and understanding of the NKLM and thus contribute to the qualification of future medical graduates in Germany.

  12. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  13. a Framework for Distributed Mixed Language Scientific Applications

    NASA Astrophysics Data System (ADS)

    Quarrie, D. R.

    The Object Management Group has defined an architecture (CORBA) for distributed object applications based on an Object Request Broker and Interface Definition Language. This project builds upon this architecture to establish a framework for the creation of mixed language scientific applications. A prototype compiler has been written that generates FORTRAN 90 or Eiffel stubs and skeletons and the required C++ glue code from an input IDL file that specifies object interfaces. This generated code can be used directly for non-distributed mixed language applications or in conjunction with the C++ code generated from a commercial IDL compiler for distributed applications. A feasibility study is presently underway to see whether a fully integrated software development environment for distributed, mixed-language applications can be created by modifying the back-end code generator of a commercial CASE tool to emit IDL.

  14. Resource Management for Real-Time Adaptive Agents

    NASA Technical Reports Server (NTRS)

    Welch, Lonnie; Chelberg, David; Pfarr, Barbara; Fleeman, David; Parrott, David; Tan, Zhen-Yu; Jain, Shikha; Drews, Frank; Bruggeman, Carl; Shuler, Chris

    2003-01-01

    Increased autonomy and automation in onboard flight systems offer numerous potential benefits, including cost reduction and greater flexibility. The existence of generic mechanisms for automation is critical for handling unanticipated science events and anomalies where limitations in traditional control software with fixed, predetermined algorithms can mean loss of science data and missed opportunities for observing important terrestrial events. We have developed such a mechanism by adding a Hierarchical Agent-based ReaLTime technology (HART) extension to our Dynamic Resource Management (DRM) middleware. Traditional DRM provides mechanisms to monitor the realtime performance of distributed applications and to move applications among processors to improve real-time performance. In the HART project we have designed and implemented a performance adaptation mechanism to improve reaktime performance. To use this mechanism, applications are developed that can run at various levels of quality. The DRM can choose a setting for the quality level of an application dynamically at run-time in order to manage satellite resource usage more effectively. A groundbased prototype of a satellite system that captures and processes images has also been developed as part of this project to be used as a benchmark for evaluating the resource management framework A significant enhancement of this generic mission-independent framework allows scientists to specify the utility, or "scientific benefit," of science observations under various conditions like cloud cover and compression method. The resource manager then uses these benefit tables to determine in redtime how to set the quality levels for applications to maximize overall system utility as defined by the scientists running the mission. We also show how maintenance functions llke health and safety data can be integrated into the utility framework. Once thls framework has been certified for missions and successfully flight tested it can be reused with little development overhead for other missions. In contrast, current space missions llke Swift manage similar types of resource trade -off completely with the scientific application code itself, and such code must be re-certified and tested for each mission even if a large portion of the code base is shared. This final report discusses some of the major issues motivating this research effort, provides a literature review of the related work, discusses the resource management framework and ground-based satellite system prototype that has been developed, indicates what work is yet to be performed, and provides a list of publications resulting from this work.

  15. Web Based Prognostics and 24/7 Monitoring

    NASA Technical Reports Server (NTRS)

    Strautkalns, Miryam; Robinson, Peter

    2013-01-01

    We created a general framework for analysts to store and view data in a way that removes the boundaries created by operating systems, programming languages, and proximity. With the advent of HTML5 and CSS3 with JavaScript the distribution of information is limited to only those who lack a browser. We created a framework based on the methodology: one server, one web based application. Additional benefits are increased opportunities for collaboration. Today the idea of a group in a single room is antiquated. Groups will communicate and collaborate with others from other universities, organizations, as well as other continents across times zones. There are many varieties of data gathering and condition-monitoring software available as well as companies who specialize in customizing software to individual applications. One single group will depend on multiple languages, environments, and computers to oversee recording and collaborating with one another in a single lab. The heterogeneous nature of the system creates challenges for seamless exchange of data and ideas between members. To address these limitations we designed a framework to allow users seamless accessibility to their data. Our framework was deployed using the data feed on the NASA Ames' planetary rover testbed. Our paper demonstrates the process and implementation we followed on the rover.

  16. ContextProvider: Context awareness for medical monitoring applications.

    PubMed

    Mitchell, Michael; Meyers, Christopher; Wang, An-I Andy; Tyson, Gary

    2011-01-01

    Smartphones are sensor-rich and Internet-enabled. With their on-board sensors, web services, social media, and external biosensors, smartphones can provide contextual information about the device, user, and environment, thereby enabling the creation of rich, biologically driven applications. We introduce ContextProvider, a framework that offers a unified, query-able interface to contextual data on the device. Unlike other context-based frameworks, ContextProvider offers interactive user feedback, self-adaptive sensor polling, and minimal reliance on third-party infrastructure. ContextProvider also allows for rapid development of new context and bio-aware applications. Evaluation of ContextProvider shows the incorporation of an additional monitoring sensor into the framework with fewer than 100 lines of Java code. With adaptive sensor monitoring, power consumption per sensor can be reduced down to 1% overhead. Finally, through the use of context, accuracy of data interpretation can be improved by up to 80%.

  17. Towards a cyber-physical era: soft computing framework based multi-sensor array for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv

    2018-02-01

    New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.

  18. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF.

  19. CyberMedVPS: visual programming for development of simulators.

    PubMed

    Morais, Aline M; Machado, Liliane S

    2011-01-01

    Computer applications based on Virtual Reality (VR) has been outstanding in training and teaching in the medical filed due to their ability to simulate realistic in which users can practice skills and decision making in different situations. But was realized in these frameworks a hard interaction of non-programmers users. Based on this problematic will be shown the CyberMedVPS, a graphical module which implement Visual Programming concepts to solve an interaction trouble. Frameworks to develop such simulators are available but their use demands knowledge of programming. Based on this problematic will be shown the CyberMedVPS, a graphical module for the CyberMed framework, which implements Visual Programming concepts to allow the development of simulators by non-programmers professionals of the medical field.

  20. The environmental design of children- nature relations: some strands of applicative theory

    Treesearch

    Robin C. Moore

    1977-01-01

    A brief framework for children-environment relations, focused on 8- to 12-year-olds and their natural environment, is based on the principles of maturation and Gestalt therapy. The concepts of "quality" and "place" are discussed. A comprehensive ecological framework is proposed, relating theory to the material resources used in place-making,...

  1. Maximizing the Potential of Mentoring: A Framework for Pre-Service Teacher Education

    ERIC Educational Resources Information Center

    Ambrosetti, Angelina; Knight, Bruce Allen; Dekkers, John

    2014-01-01

    Within the professional placement component of pre-service teacher education, mentoring has become a strategy that is used during the practical application of learning to teach. In this paper, we examine mentoring in the pre-service teacher education context by proposing a theoretically based framework for mentoring in this context. Firstly, the…

  2. A Qualitative Simulation Framework in Smalltalk Based on Fuzzy Arithmetic

    Treesearch

    Richard L. Olson; Daniel L. Schmoldt; David L. Peterson

    1996-01-01

    For many systems, it is not practical to collect and correlate empirical data necessary to formulate a mathematical model. However, it is often sufficient to predict qualitative dynamics effects (as opposed to system quantities), especially for research purposes. In this effort, an object-oriented application framework (AF) was developed for the qualitative modeling of...

  3. Leading by Design: A Collaborative and Creative Leadership Framework for Dance Integration in P-12 Schools

    ERIC Educational Resources Information Center

    Leonard, Alison E.; Hellenbrand, Leah; McShane-Hellenbrand, Karen

    2014-01-01

    This article presents the Mentorship, Integrated Curriculum, Collaboration, and Scholarship (MICCS) framework as an applicable model for transformative, creative, and curriculum-based K-12 dance education and arts integration. Developed and practiced by the authors--an artist/educator, a classroom teacher, and an arts education scholar and former…

  4. Screening Systems and Decision Making at the Preschool Level: Application of a Comprehensive Validity Framework

    ERIC Educational Resources Information Center

    Kettler, Ryan J.; Feeney-Kettler, Kelly A.

    2011-01-01

    Universal screening is designed to be an efficient method for identifying preschool students with mental health problems, but prior to use, screening systems must be evaluated to determine their appropriateness within a specific setting. In this article, an evidence-based validity framework is applied to four screening systems for identifying…

  5. Evidence-Based Practices: Applications of Concrete Representational Abstract Framework across Math Concepts for Students with Mathematics Disabilities

    ERIC Educational Resources Information Center

    Agrawal, Jugnu; Morin, Lisa L.

    2016-01-01

    Students with mathematics disabilities (MD) experience difficulties with both conceptual and procedural knowledge of different math concepts across grade levels. Research shows that concrete representational abstract framework of instruction helps to bridge this gap for students with MD. In this article, we provide an overview of this strategy…

  6. Local linear discriminant analysis framework using sample neighbors.

    PubMed

    Fan, Zizhu; Xu, Yong; Zhang, David

    2011-07-01

    The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.

  7. Topology Optimization using the Level Set and eXtended Finite Element Methods: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Villanueva Perez, Carlos Hernan

    Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.

  8. Methodology for setting risk-based concentrations of contaminants in soil and groundwater and application to a model contaminated site.

    PubMed

    Fujinaga, Aiichiro; Uchiyama, Iwao; Morisawa, Shinsuke; Yoneda, Minoru; Sasamoto, Yuzuru

    2012-01-01

    In Japan, environmental standards for contaminants in groundwater and in leachate from soil are set with the assumption that they are used for drinking water over a human lifetime. Where there is neither a well nor groundwater used for drinking, the standard is thus too severe. Therefore, remediation based on these standards incurs excessive effort and cost. In contrast, the environmental-assessment procedure used in the United States and the Netherlands considers the site conditions (land use, existing wells, etc.); however, a risk assessment is required for each site. Therefore, this study proposes a new framework for judging contamination in Japan by considering the merits of the environmental standards used and a method for risk assessment. The framework involves setting risk-based concentrations that are attainable remediation goals for contaminants in soil and groundwater. The framework was then applied to a model contaminated site for risk management, and the results are discussed regarding the effectiveness and applicability of the new methodology. © 2011 Society for Risk Analysis.

  9. Time-based management of patient processes.

    PubMed

    Kujala, Jaakko; Lillrank, Paul; Kronström, Virpi; Peltokorpi, Antti

    2006-01-01

    The purpose of this paper is to present a conceptual framework that would enable the effective application of time based competition (TBC) and work in process (WIP) concepts in the design and management of effective and efficient patient processes. This paper discusses the applicability of time-based competition and work-in-progress concepts to the design and management of healthcare service production processes. A conceptual framework is derived from the analysis of both existing research and empirical case studies. The paper finds that a patient episode is analogous to a customer order-to-delivery chain in industry. The effective application of TBC and WIP can be achieved by focusing on through put time of a patient episode by reducing the non-value adding time components and by minimizing time categories that are main cost drivers for all stakeholders involved in the patient episode. The paper shows that an application of TBC in managing patient processes can be limited if there is no consensus about optimal care episode in the medical community. In the paper it is shown that managing patient processes based on time and cost analysis enables one to allocate the optimal amount of resources, which would allow a healthcare system to minimize the total cost of specific episodes of illness. Analysing the total cost of patient episodes can provide useful information in the allocation of limited resources among multiple patient processes. This paper introduces a framework for health care managers and researchers to analyze the effect of reducing through put time to the total cost of patient episodes.

  10. Developing Deep Learning Applications for Life Science and Pharma Industry.

    PubMed

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  11. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  12. A graph-based computational framework for simulation and optimisation of coupled infrastructure networks

    DOE PAGES

    Jalving, Jordan; Abhyankar, Shrirang; Kim, Kibaek; ...

    2017-04-24

    Here, we present a computational framework that facilitates the construction, instantiation, and analysis of large-scale optimization and simulation applications of coupled energy networks. The framework integrates the optimization modeling package PLASMO and the simulation package DMNetwork (built around PETSc). These tools use a common graphbased abstraction that enables us to achieve compatibility between data structures and to build applications that use network models of different physical fidelity. We also describe how to embed these tools within complex computational workflows using SWIFT, which is a tool that facilitates parallel execution of multiple simulation runs and management of input and output data.more » We discuss how to use these capabilities to target coupled natural gas and electricity systems.« less

  13. Examination of Frameworks for Safe Integration of Intelligent Small UAS into the NAS

    NASA Technical Reports Server (NTRS)

    Logan, Michael J.

    2012-01-01

    This paper discusses a proposed framework for the safe integration of small unmanned aerial systems (sUAS) into the National Airspace System (NAS). The paper briefly examines the potential uses of sUAS to build an understanding of the location and frequency of potential future flight operations based on the future applications of the sUAS systems. The paper then examines the types of systems that would be required to meet the application-level demand to determine "classes" of platforms and operations. A framework for categorization of the "intelligence" level of the UAS is postulated for purposes of NAS integration. Finally, constraints on the intelligent systems are postulated to ensure their ease of integration into the NAS.

  14. A Canadian framework for applying the precautionary principle to public health issues.

    PubMed

    Weir, Erica; Schabas, Richard; Wilson, Kumanan; Mackie, Chris

    2010-01-01

    The precautionary principle has influenced environmental and public health policy. It essentially states that complete evidence of a potential risk is not required before action is taken to mitigate the effects of the potential risk. The application of precaution to public health issues is not straightforward and could paradoxically cause harm to the public's health when applied inappropriately. To avoid this, we propose a framework for applying the precautionary principle to potential public health risks. The framework consists of ten guiding questions to help establish whether a proposed application of the precautionary principle on a public health matter is based on adequacy of the evidence of causation, severity of harm and acceptability of the precautionary measures.

  15. An intervention fidelity framework for technology-based behavioral interventions.

    PubMed

    Devito Dabbs, Annette; Song, Mi-Kyung; Hawkins, Robert; Aubrecht, Jill; Kovach, Karen; Terhorst, Lauren; Connolly, Mary; McNulty, Mary; Callan, Judith

    2011-01-01

    Despite the proliferation of health technologies, descriptions of the unique considerations and practical guidance for evaluating the intervention fidelity of technology-based behavioral interventions are lacking. The aims of this study were to (a) discuss how technology-based behavioral interventions challenge conventions about how intervention fidelity is conceptualized and evaluated, (b) propose an intervention fidelity framework that may be more appropriate for technology-based behavioral interventions, and (c) present a plan for operationalizing each concept in the framework using the intervention fidelity monitoring plan for Pocket PATH (Personal Assistant for Tracking Health), a mobile health technology designed to promote self-care behaviors after lung transplantation, as an exemplar. The literature related to intervention fidelity and technology acceptance was used to identify the issues that are unique to the fidelity of technology-based behavioral interventions and thus important to include in a proposed intervention fidelity framework. An intervention fidelity monitoring plan for technology-based behavioral interventions was developed as an example. The intervention fidelity monitoring plan was deemed feasible and practical to implement and showed utility in operationalizing the concepts such as assessing interventionists' delivery and participants' acceptance of the technology-based behavioral intervention. The framework has the potential to guide the development of implementation fidelity monitoring tools for other technology-based behavioral interventions. Further application and testing of this framework will allow for a better understanding of the role that technology acceptance plays in the adoption and enactment of the behaviors that technology-based behavioral interventions are intended to promote.

  16. The Role of Multiphysics Simulation in Multidisciplinary Analysis

    NASA Technical Reports Server (NTRS)

    Rifai, Steven M.; Ferencz, Robert M.; Wang, Wen-Ping; Spyropoulos, Evangelos T.; Lawrence, Charles; Melis, Matthew E.

    1998-01-01

    This article describes the applications of the Spectrum(Tm) Solver in Multidisciplinary Analysis (MDA). Spectrum, a multiphysics simulation software based on the finite element method, addresses compressible and incompressible fluid flow, structural, and thermal modeling as well as the interaction between these disciplines. Multiphysics simulation is based on a single computational framework for the modeling of multiple interacting physical phenomena. Interaction constraints are enforced in a fully-coupled manner using the augmented-Lagrangian method. Within the multiphysics framework, the finite element treatment of fluids is based on Galerkin-Least-Squares (GLS) method with discontinuity capturing operators. The arbitrary-Lagrangian-Eulerian method is utilized to account for deformable fluid domains. The finite element treatment of solids and structures is based on the Hu-Washizu variational principle. The multiphysics architecture lends itself naturally to high-performance parallel computing. Aeroelastic, propulsion, thermal management and manufacturing applications are presented.

  17. A new framework for comprehensive, robust, and efficient global sensitivity analysis: 2. Application

    NASA Astrophysics Data System (ADS)

    Razavi, Saman; Gupta, Hoshin V.

    2016-01-01

    Based on the theoretical framework for sensitivity analysis called "Variogram Analysis of Response Surfaces" (VARS), developed in the companion paper, we develop and implement a practical "star-based" sampling strategy (called STAR-VARS), for the application of VARS to real-world problems. We also develop a bootstrap approach to provide confidence level estimates for the VARS sensitivity metrics and to evaluate the reliability of inferred factor rankings. The effectiveness, efficiency, and robustness of STAR-VARS are demonstrated via two real-data hydrological case studies (a 5-parameter conceptual rainfall-runoff model and a 45-parameter land surface scheme hydrology model), and a comparison with the "derivative-based" Morris and "variance-based" Sobol approaches are provided. Our results show that STAR-VARS provides reliable and stable assessments of "global" sensitivity across the full range of scales in the factor space, while being 1-2 orders of magnitude more efficient than the Morris or Sobol approaches.

  18. A FEniCS-based programming framework for modeling turbulent flow by the Reynolds-averaged Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Langtangen, Hans Petter; Wells, Garth N.

    2011-09-01

    Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model.

  19. Coalescent: an open-source and scalable framework for exact calculations in coalescent theory

    PubMed Central

    2012-01-01

    Background Currently, there is no open-source, cross-platform and scalable framework for coalescent analysis in population genetics. There is no scalable GUI based user application either. Such a framework and application would not only drive the creation of more complex and realistic models but also make them truly accessible. Results As a first attempt, we built a framework and user application for the domain of exact calculations in coalescent analysis. The framework provides an API with the concepts of model, data, statistic, phylogeny, gene tree and recursion. Infinite-alleles and infinite-sites models are considered. It defines pluggable computations such as counting and listing all the ancestral configurations and genealogies and computing the exact probability of data. It can visualize a gene tree, trace and visualize the internals of the recursion algorithm for further improvement and attach dynamically a number of output processors. The user application defines jobs in a plug-in like manner so that they can be activated, deactivated, installed or uninstalled on demand. Multiple jobs can be run and their inputs edited. Job inputs are persisted across restarts and running jobs can be cancelled where applicable. Conclusions Coalescent theory plays an increasingly important role in analysing molecular population genetic data. Models involved are mathematically difficult and computationally challenging. An open-source, scalable framework that lets users immediately take advantage of the progress made by others will enable exploration of yet more difficult and realistic models. As models become more complex and mathematically less tractable, the need for an integrated computational approach is obvious. Object oriented designs, though has upfront costs, are practical now and can provide such an integrated approach. PMID:23033878

  20. Fluorene-Based Two-Dimensional Covalent Organic Framework with Thermoelectric Properties through Doping.

    PubMed

    Wang, Liangying; Dong, Bin; Ge, Rile; Jiang, Fengxing; Xu, Jingkun

    2017-03-01

    Organic semiconductors have great potential as flexible thermoelectric materials. A fluorene-based covalent organic framework (FL-COF-1) was designed with the aim of creating an enhanced π-π interaction among the crystalline backbones. By the introduction of fluorene units into the frameworks, the FL-COF-1 had high thermal stability with a BET surface area over 1300 m 2 g -1 . The open frameworks were favorable for doping with iodine and followed with the improved charge carrier mobility. The compressed pellet of I 2 @FL-COF-1 exhibited a high Seebeck coefficient of 2450 μV K -1 and power factor of 0.063 μW m -1 K -2 at room temperature, giving the first example of COFs' potential application as thermoelectric materials.

  1. A Framework for Spatial Interaction Analysis Based on Large-Scale Mobile Phone Data

    PubMed Central

    Li, Weifeng; Cheng, Xiaoyun; Guo, Gaohua

    2014-01-01

    The overall understanding of spatial interaction and the exact knowledge of its dynamic evolution are required in the urban planning and transportation planning. This study aimed to analyze the spatial interaction based on the large-scale mobile phone data. The newly arisen mass dataset required a new methodology which was compatible with its peculiar characteristics. A three-stage framework was proposed in this paper, including data preprocessing, critical activity identification, and spatial interaction measurement. The proposed framework introduced the frequent pattern mining and measured the spatial interaction by the obtained association. A case study of three communities in Shanghai was carried out as verification of proposed method and demonstration of its practical application. The spatial interaction patterns and the representative features proved the rationality of the proposed framework. PMID:25435865

  2. Development of a Clinical Framework for Mirror Therapy in Patients with Phantom Limb Pain: An Evidence-based Practice Approach.

    PubMed

    Rothgangel, Andreas; Braun, Susy; de Witte, Luc; Beurskens, Anna; Smeets, Rob

    2016-04-01

    To describe the development and content of a clinical framework for mirror therapy (MT) in patients with phantom limb pain (PLP) following amputation. Based on an a priori formulated theoretical model, 3 sources of data collection were used to develop the clinical framework. First, a review of the literature took place on important clinical aspects and the evidence on the effectiveness of MT in patients with phantom limb pain. In addition, questionnaires and semi-structured interviews were used to analyze clinical experiences and preferences of physical and occupational therapists and patients suffering from PLP regarding the application of MT. All data were finally clustered into main and subcategories and were used to complement and refine the theoretical model. For every main category of the a priori formulated theoretical model, several subcategories emerged from the literature search, patient, and therapist interviews. Based on these categories, we developed a clinical flowchart that incorporates the main and subcategories in a logical way according to the phases in methodical intervention defined by the Royal Dutch Society for Physical Therapy. In addition, we developed a comprehensive booklet that illustrates the individual steps of the clinical flowchart. In this study, a structured clinical framework for the application of MT in patients with PLP was developed. This framework is currently being tested for its effectiveness in a multicenter randomized controlled trial. © 2015 World Institute of Pain.

  3. Data Centric Development Methodology

    ERIC Educational Resources Information Center

    Khoury, Fadi E.

    2012-01-01

    Data centric applications, an important effort of software development in large organizations, have been mostly adopting a software methodology, such as a waterfall or Rational Unified Process, as the framework for its development. These methodologies could work on structural, procedural, or object oriented based applications, but fails to capture…

  4. A Framework for Developing Mobile Location Based Applications

    DTIC Science & Technology

    2006-10-01

    B into the application running on her mobile device. The mobile application contacts the appropriate service provided by T- mobile which calculates...the optimal route between points A and B. The mobile application then displays driving directions to point B in a fashion similar to one found in car...navigation systems. The mobile application requires a Bluetooth GPS receiver to be connected to the mobile device to determine its current position

  5. NIRP Core Software Suite v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitener, Dustin Heath; Folz, Wesley; Vo, Duong

    The NIRP Core Software Suite is a core set of code that supports multiple applications. It includes miscellaneous base code for data objects, mathematic equations, and user interface components; and the framework includes several fully-developed software applications that exist as stand-alone tools to compliment other applications. The stand-alone tools are described below. Analyst Manager: An application to manage contact information for people (analysts) that use the software products. This information is often included in generated reports and may be used to identify the owners of calculations. Radionuclide Viewer: An application for viewing the DCFPAK radiological data. Compliments the Mixture Managermore » tool. Mixture Manager: An application to create and manage radionuclides mixtures that are commonly used in other applications. High Explosive Manager: An application to manage explosives and their properties. Chart Viewer: An application to view charts of data (e.g. meteorology charts). Other applications may use this framework to create charts specific to their data needs.« less

  6. Mode of action human relevance (species concordance) framework: Evolution of the Bradford Hill considerations and comparative analysis of weight of evidence.

    PubMed

    Meek, M E Bette; Palermo, Christine M; Bachman, Ammie N; North, Colin M; Jeffrey Lewis, R

    2014-06-01

    The mode of action human relevance (MOA/HR) framework increases transparency in systematically considering data on MOA for end (adverse) effects and their relevance to humans. This framework continues to evolve as experience increases in its application. Though the MOA/HR framework is not designed to address the question of "how much information is enough" to support a hypothesized MOA in animals or its relevance to humans, its organizing construct has potential value in considering relative weight of evidence (WOE) among different cases and hypothesized MOA(s). This context is explored based on MOA analyses in published assessments to illustrate the relative extent of supporting data and their implications for dose-response analysis and involved comparisons for chemical assessments on trichloropropane, and carbon tetrachloride with several hypothesized MOA(s) for cancer. The WOE for each hypothesized MOA was summarized in narrative tables based on comparison and contrast of the extent and nature of the supporting database versus potentially inconsistent or missing information. The comparison was based on evolved Bradford Hill considerations rank ordered to reflect their relative contribution to WOE determinations of MOA taking into account increasing experience in their application internationally. This clarification of considerations for WOE determinations as a basis for comparative analysis is anticipated to contribute to increasing consistency in the application of MOA/HR analysis and potentially, transparency in separating science judgment from public policy considerations in regulatory risk assessment. Copyright © 2014. The Authors. Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  7. A Review and Framework for Categorizing Current Research and Development in Health Related Geographical Information Systems (GIS) Studies.

    PubMed

    Lyseen, A K; Nøhr, C; Sørensen, E M; Gudes, O; Geraghty, E M; Shaw, N T; Bivona-Tellez, C

    2014-08-15

    The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health.

  8. A Review and Framework for Categorizing Current Research and Development in Health Related Geographical Information Systems (GIS) Studies

    PubMed Central

    Nøhr, C.; Sørensen, E. M.; Gudes, O.; Geraghty, E. M.; Shaw, N. T.; Bivona-Tellez, C.

    2014-01-01

    Summary Objectives The application of GIS in health science has increased over the last decade and new innovative application areas have emerged. This study reviews the literature and builds a framework to provide a conceptual overview of the domain, and to promote strategic planning for further research of GIS in health. Method The framework is based on literature from the library databases Scopus and Web of Science. The articles were identified based on keywords and initially selected for further study based on titles and abstracts. A grounded theory-inspired method was applied to categorize the selected articles in main focus areas. Subsequent frequency analysis was performed on the identified articles in areas of infectious and non-infectious diseases and continent of origin. Results A total of 865 articles were included. Four conceptual domains within GIS in health sciences comprise the framework: spatial analysis of disease, spatial analysis of health service planning, public health, health technologies and tools. Frequency analysis by disease status and location show that malaria and schistosomiasis are the most commonly analyzed infectious diseases where cancer and asthma are the most frequently analyzed non-infectious diseases. Across categories, articles from North America predominate, and in the category of spatial analysis of diseases an equal number of studies concern Asia. Conclusion Spatial analysis of diseases and health service planning are well-established research areas. The development of future technologies and new application areas for GIS and data-gathering technologies such as GPS, smartphones, remote sensing etc. will be nudging the research in GIS and health. PMID:25123730

  9. A Narrative Review and Novel Framework for Application of Team-Based Learning in Graduate Medical Education.

    PubMed

    Poeppelman, Rachel Stork; Liebert, Cara A; Vegas, Daniel Brandt; Germann, Carl A; Volerman, Anna

    2016-10-01

    Team-based learning (TBL) promotes problem solving and teamwork, and has been applied as an instructional method in undergraduate medical education with purported benefits. Although TBL curricula have been implemented for residents, no published systematic reviews or guidelines exist for the development and use of TBL in graduate medical education (GME). To review TBL curricula in GME, identify gaps in the literature, and synthesize a framework to guide the development of TBL curricula at the GME level. We searched PubMed, MEDLINE, and ERIC databases from 1990 to 2014 for relevant articles. References were reviewed to identify additional studies. The inclusion criteria were peer-reviewed publications in English that described TBL curriculum implementation in GME. Data were systematically abstracted and reviewed for consensus. Based on included publications, a 4-element framework-system, residents, significance, and scaffolding-was developed to serve as a step-wise guide to planning a TBL curriculum in GME. Nine publications describing 7 unique TBL curricula in residency met inclusion criteria. Outcomes included feasibility, satisfaction, clinical behavior, teamwork, and knowledge application. TBL appears feasible in the GME environment, with learner reactions ranging from positive to neutral. Gaps in the literature occur within each of the 4 elements of the suggested framework, including: system , faculty preparation time and minimum length of effective TBL sessions; residents , impact of team heterogeneity and inconsistent attendance; significance , comparison to other instructional methods and outcomes measuring knowledge retention, knowledge application, and skill development; and scaffolding , factors that influence the completion of preparatory work.

  10. FRAMEWORK FOR EVALUATION OF PHYSIOLOGICALLY-BASED PHARMACOKINETIC MODELS FOR USE IN SAFETY OR RISK ASSESSMENT

    EPA Science Inventory

    ABSTRACT

    Proposed applications of increasingly sophisticated biologically-based computational models, such as physiologically-based pharmacokinetic (PBPK) models, raise the issue of how to evaluate whether the models are adequate for proposed uses including safety or risk ...

  11. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project

    PubMed Central

    Boriani, Elena; Esposito, Roberto; Frazzoli, Chiara; Fantke, Peter; Hald, Tine; Rüegg, Simon R.

    2017-01-01

    Health intervention systems are complex and subject to multiple variables in different phases of implementation. This constitutes a concrete challenge for the application of translational science in real life. Complex systems as health-oriented interventions call for interdisciplinary approaches with carefully defined system boundaries. Exploring individual components of such systems from different viewpoints gives a wide overview and helps to understand the elements and the relationships that drive actions and consequences within the system. In this study, we present an application and assessment of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors’ system (BEST) aimed at monitoring the quality, health, and traceability of the chain of the bovine milk], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety), human, and ecosystem health (1). In fact, the European food safety framework calls for science-based support to the primary producers’ mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account the main actors, interactions, and relationships of stakeholders to depict a simplified skeleton of the system. The framework can provide elements to highlight how and where to improve the project development when project evaluations are required. PMID:28804707

  12. Framework to Define Structure and Boundaries of Complex Health Intervention Systems: The ALERT Project.

    PubMed

    Boriani, Elena; Esposito, Roberto; Frazzoli, Chiara; Fantke, Peter; Hald, Tine; Rüegg, Simon R

    2017-01-01

    Health intervention systems are complex and subject to multiple variables in different phases of implementation. This constitutes a concrete challenge for the application of translational science in real life. Complex systems as health-oriented interventions call for interdisciplinary approaches with carefully defined system boundaries. Exploring individual components of such systems from different viewpoints gives a wide overview and helps to understand the elements and the relationships that drive actions and consequences within the system. In this study, we present an application and assessment of a framework with focus on systems and system boundaries of interdisciplinary projects. As an example on how to apply our framework, we analyzed ALERT [an integrated sensors and biosensors' system (BEST) aimed at monitoring the quality, health, and traceability of the chain of the bovine milk], a multidisciplinary and interdisciplinary project based on the application of measurable biomarkers at strategic points of the milk chain for improved food security (including safety), human, and ecosystem health (1). In fact, the European food safety framework calls for science-based support to the primary producers' mandate for legal, scientific, and ethical responsibility in food supply. Because of its multidisciplinary and interdisciplinary approach involving human, animal, and ecosystem health, ALERT can be considered as a One Health project. Within the ALERT context, we identified the need to take into account the main actors, interactions, and relationships of stakeholders to depict a simplified skeleton of the system. The framework can provide elements to highlight how and where to improve the project development when project evaluations are required.

  13. Information security threats and an easy-to-implement attack detection framework for wireless sensor network-based smart grid applications

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.

    2016-03-01

    Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.

  14. From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems

    DTIC Science & Technology

    2015-03-13

    A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  15. Learning in the "Café": Pilot Testing the Collaborative Application for Education in Facebook

    ERIC Educational Resources Information Center

    McCarthy, Josh

    2015-01-01

    This paper reports on a pilot study using the "Café," the collaborative application for education as an online learning environment within the Facebook framework, for first-year tertiary design students. The "Café," a new e-learning application, has been designed based on five principles of user interface design--visibility,…

  16. Applicability of Domain-Specific Application Framework for End-User Development

    ERIC Educational Resources Information Center

    Chusho, Takeshi

    2016-01-01

    It is preferable for business professionals to develop web applications which must be modified frequently based on their needs. A website for matching is a typical example because various matching websites for C2C (Consumer to Consumer) have recently been opened in relation to the "sharing economy". In our case studies on end-user…

  17. A human-oriented framework for developing assistive service robots.

    PubMed

    McGinn, Conor; Cullinan, Michael F; Culleton, Mark; Kelly, Kevin

    2018-04-01

    Multipurpose robots that can perform a range of useful tasks have the potential to increase the quality of life for many people living with disabilities. Owing to factors such as high system complexity, as-yet unresolved research questions and current technology limitations, there is a need for effective strategies to coordinate the development process. Integrating established methodologies based on human-centred design and universal design, a framework was formulated to coordinate the robot design process over successive iterations of prototype development. An account is given of how the framework was practically applied to the problem of developing a personal service robot. Application of the framework led to the formation of several design goals which addressed a wide range of identified user needs. The resultant prototype solution, which consisted of several component elements, succeeded in demonstrating the performance stipulated by all of the proposed metrics. Application of the framework resulted in the development of a complex prototype that addressed many aspects of the functional and usability requirements of a personal service robot. Following the process led to several important insights which directly benefit the development of subsequent prototypes. Implications for Rehabilitation This research shows how universal design might be used to formulate usability requirements for assistive service robots. A framework is presented that guides the process of designing service robots in a human-centred way. Through practical application of the framework, a prototype robot system that addressed a range of identified user needs was developed.

  18. A Multiprocessor SoC Architecture with Efficient Communication Infrastructure and Advanced Compiler Support for Easy Application Development

    NASA Astrophysics Data System (ADS)

    Urfianto, Mohammad Zalfany; Isshiki, Tsuyoshi; Khan, Arif Ullah; Li, Dongju; Kunieda, Hiroaki

    This paper presentss a Multiprocessor System-on-Chips (MPSoC) architecture used as an execution platform for the new C-language based MPSoC design framework we are currently developing. The MPSoC architecture is based on an existing SoC platform with a commercial RISC core acting as the host CPU. We extend the existing SoC with a multiprocessor-array block that is used as the main engine to run parallel applications modeled in our design framework. Utilizing several optimizations provided by our compiler, an efficient inter-communication between processing elements with minimum overhead is implemented. A host-interface is designed to integrate the existing RISC core to the multiprocessor-array. The experimental results show that an efficacious integration is achieved, proving that the designed communication module can be used to efficiently incorporate off-the-shelf processors as a processing element for MPSoC architectures designed using our framework.

  19. Using the Intervention Mapping and Behavioral Intervention Technology Frameworks: Development of an mHealth Intervention for Physical Activity and Sedentary Behavior Change.

    PubMed

    Direito, Artur; Walsh, Deirdre; Hinbarji, Moohamad; Albatal, Rami; Tooley, Mark; Whittaker, Robyn; Maddison, Ralph

    2018-06-01

    Few interventions to promote physical activity (PA) adapt dynamically to changes in individuals' behavior. Interventions targeting determinants of behavior are linked with increased effectiveness and should reflect changes in behavior over time. This article describes the application of two frameworks to assist the development of an adaptive evidence-based smartphone-delivered intervention aimed at influencing PA and sedentary behaviors (SB). Intervention mapping was used to identify the determinants influencing uptake of PA and optimal behavior change techniques (BCTs). Behavioral intervention technology was used to translate and operationalize the BCTs and its modes of delivery. The intervention was based on the integrated behavior change model, focused on nine determinants, consisted of 33 BCTs, and included three main components: (1) automated capture of daily PA and SB via an existing smartphone application, (2) classification of the individual into an activity profile according to their PA and SB, and (3) behavior change content delivery in a dynamic fashion via a proof-of-concept application. This article illustrates how two complementary frameworks can be used to guide the development of a mobile health behavior change program. This approach can guide the development of future mHealth programs.

  20. Making research relevant? Ecological methods and the ecosystem services framework

    NASA Astrophysics Data System (ADS)

    Root-Bernstein, Meredith; Jaksic, Fabián. M.

    2017-07-01

    We examine some unexpected epistemological conflicts that arise at the interfaces between ecological science, the ecosystem services framework, policy, and industry. We use an example from our own research to motivate and illustrate our main arguments, while also reviewing standard approaches to ecological science using the ecosystem services framework. While we agree that the ecosystem services framework has benefits in its industrial applications because it may force economic decision makers to consider a broader range of costs and benefits than they would do otherwise, we find that many alignments of ecology with the ecosystem services framework are asking questions that are irrelevant to real-world applications, and generating data that does not serve real-world applications. We attempt to clarify why these problems arise and how to avoid them. We urge fellow ecologists to reflect on the kind of research that can lead to both scientific advances and applied relevance to society. In our view, traditional empirical approaches at landscape scales or with place-based emphases are necessary to provide applied knowledge for problem solving, which is needed once decision makers identify risks to ecosystem services. We conclude that the ecosystem services framework is a good policy tool when applied to decision-making contexts, but not a good theory either of social valuation or ecological interactions, and should not be treated as one.

  1. Telerobotic management system: coordinating multiple human operators with multiple robots

    NASA Astrophysics Data System (ADS)

    King, Jamie W.; Pretty, Raymond; Brothers, Brendan; Gosine, Raymond G.

    2003-09-01

    This paper describes an application called the Tele-robotic management system (TMS) for coordinating multiple operators with multiple robots for applications such as underground mining. TMS utilizes several graphical interfaces to allow the user to define a partially ordered plan for multiple robots. This plan is then converted to a Petri net for execution and monitoring. TMS uses a distributed framework to allow robots and operators to easily integrate with the applications. This framework allows robots and operators to join the network and advertise their capabilities through services. TMS then decides whether tasks should be dispatched to a robot or a remote operator based on the services offered by the robots and operators.

  2. Application and Survey of Business Intelligence (BI) Tools within the Context of Military Decision Making

    DTIC Science & Technology

    2012-06-01

    International Financial Reporting Standards ( IFRS ) are principles-based Standards, Interpretations and the Framework (1989) adopted by the International...direction of the organization and based on a four- perspective view of the world: Financial measures supported by customer, internal, and learning and...scorecard applications, financial consolidation, and statutory and financial reporting . 27 7. Performance Scorecards and Dashboards Dashboards and

  3. On-road anomaly detection by multimodal sensor analysis and multimedia processing

    NASA Astrophysics Data System (ADS)

    Orhan, Fatih; Eren, P. E.

    2014-03-01

    The use of smartphones in Intelligent Transportation Systems is gaining popularity, yet many challenges exist in developing functional applications. Due to the dynamic nature of transportation, vehicular social applications face complexities such as developing robust sensor management, performing signal and image processing tasks, and sharing information among users. This study utilizes a multimodal sensor analysis framework which enables the analysis of sensors in multimodal aspect. It also provides plugin-based analyzing interfaces to develop sensor and image processing based applications, and connects its users via a centralized application as well as to social networks to facilitate communication and socialization. With the usage of this framework, an on-road anomaly detector is being developed and tested. The detector utilizes the sensors of a mobile device and is able to identify anomalies such as hard brake, pothole crossing, and speed bump crossing. Upon such detection, the video portion containing the anomaly is automatically extracted in order to enable further image processing analysis. The detection results are shared on a central portal application for online traffic condition monitoring.

  4. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  5. A Risk-based Assessment And Management Framework For Multipollutant Air Quality

    PubMed Central

    Frey, H. Christopher; Hubbell, Bryan

    2010-01-01

    The National Research Council recommended both a risk- and performance-based multipollutant approach to air quality management. Specifically, management decisions should be based on minimizing the exposure to, and risk of adverse effects from, multiple sources of air pollution and that the success of these decisions should be measured by how well they achieved this objective. We briefly describe risk analysis and its application within the current approach to air quality management. Recommendations are made as to how current practice could evolve to support a fully risk- and performance-based multipollutant air quality management system. The ability to implement a risk assessment framework in a credible and policy-relevant manner depends on the availability of component models and data which are scientifically sound and developed with an understanding of their application in integrated assessments. The same can be said about accountability assessments used to evaluate the outcomes of decisions made using such frameworks. The existing risk analysis framework, although typically applied to individual pollutants, is conceptually well suited for analyzing multipollutant management actions. Many elements of this framework, such as emissions and air quality modeling, already exist with multipollutant characteristics. However, the framework needs to be supported with information on exposure and concentration response relationships that result from multipollutant health studies. Because the causal chain that links management actions to emission reductions, air quality improvements, exposure reductions and health outcomes is parallel between prospective risk analyses and retrospective accountability assessments, both types of assessment should be placed within a single framework with common metrics and indicators where possible. Improvements in risk reductions can be obtained by adopting a multipollutant risk analysis framework within the current air quality management system, e.g. focused on standards for individual pollutants and with separate goals for air toxics and ambient pollutants. However, additional improvements may be possible if goals and actions are defined in terms of risk metrics that are comparable across criteria pollutants and air toxics (hazardous air pollutants), and that encompass both human health and ecological risks. PMID:21209847

  6. A New Framework for Systematic Reviews: Application to Social Skills Interventions for Preschoolers with Autism

    ERIC Educational Resources Information Center

    Goldstein, Howard; Lackey, Kimberly C.; Schneider, Naomi J. B.

    2014-01-01

    This review presents a novel framework for evaluating evidence based on a set of parallel criteria that can be applied to both group and single-subject experimental design (SSED) studies. The authors illustrate use of this evaluation system in a systematic review of 67 articles investigating social skills interventions for preschoolers with autism…

  7. Multi-wall carbon nanotube@zeolite imidazolate framework composite from a nanoscale zinc oxide precursor

    DOE PAGES

    Yue, Yanfeng; Guo, Bingkun; Qiao, Zhenan; ...

    2014-07-24

    Nanocomposite of multi-walled carbon nanotube@zeolite imidazolate frameworks (MWNT@ZIF) was prepared through a nanotube-facilitated growth based on a nanosized ZnO precursor. The electrically conductive nanocomposite displays a capacity of 380 mAh/g at 0.1 °C in Li–sulfur battery, transforming electrically inactive ZIF into the active one for battery applications.

  8. Preparation and Analysis of Cyclodextrin-Based Metal-Organic Frameworks: Laboratory Experiments Adaptable for High School through Advanced Undergraduate Students

    ERIC Educational Resources Information Center

    Smith, Merry K.; Angle, Samantha R.; Northrop, Brian H.

    2015-01-01

    ?-Cyclodextrin can assemble in the presence of KOH or RbOH into metal-organic frameworks (CD-MOFs) with applications in gas adsorption and environmental remediation. Crystalline CD-MOFs are grown by vapor diffusion and their reversible adsorption of CO[subscript 2](g) is analyzed both qualitatively and quantitatively. The experiment can be…

  9. Information Framework of Pervasive Real Time Monitoring System: Case of Peat Land Forest Fires and Air Quality in South Sumatera, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurmaini, Siti; Firsandaya Malik, Reza; Stiawan, Deris; Firdaus; Saparudin; Tutuko, Bambang

    2017-04-01

    The information framework aims to holistically address the problems and issues posed by unwanted peat and land fires within the context of the natural environment and socio-economic systems. Informed decisions on planning and allocation of resources can only be made by understanding the landscape. Therefore, information on fire history and air quality impacts must be collected for future analysis. This paper proposes strategic framework based on technology approach with data fusion strategy to produce the data analysis about peat land fires and air quality management in in South Sumatera. The research framework should use the knowledge, experience and data from the previous fire seasons to review, improve and refine the strategies and monitor their effectiveness for the next fire season. Communicating effectively with communities and the public and private sectors in remote and rural landscapes is important, by using smartphones and mobile applications. Tools such as one-stop information based on web applications, to obtain information such as early warning to send and receive fire alerts, could be developed and promoted so that all stakeholders can share important information with each other.

  10. A compressive sensing based secure watermark detection and privacy preserving storage framework.

    PubMed

    Qia Wang; Wenjun Zeng; Jun Tian

    2014-03-01

    Privacy is a critical issue when the data owners outsource data storage or processing to a third party computing service, such as the cloud. In this paper, we identify a cloud computing application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We then propose a compressive sensing (CS)-based framework using secure multiparty computation (MPC) protocols to address such a requirement. In our framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a CS domain to protect the privacy. During CS transformation, the privacy of the CS matrix and the watermark pattern is protected by the MPC protocols under the semi-honest security model. We derive the expected watermark detection performance in the CS domain, given the target image, watermark pattern, and the size of the CS matrix (but without the CS matrix itself). The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the CS domain is feasible. Our framework can also be extended to other collaborative secure signal processing and data-mining applications in the cloud.

  11. TSI-Enhanced Pedagogical Agents to Engage Learners in Virtual Worlds

    ERIC Educational Resources Information Center

    Leung, Steve; Virwaney, Sandeep; Lin, Fuhua; Armstrong, AJ; Dubbelboer, Adien

    2013-01-01

    Building pedagogical applications in virtual worlds is a multi-disciplinary endeavor that involves learning theories, application development framework, and mediated communication theories. This paper presents a project that integrates game-based learning, multi-agent system architecture (MAS), and the theory of Transformed Social Interaction…

  12. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  13. The development of a competency framework for pharmacists providing cancer services.

    PubMed

    Carrington, Christine; Weir, Janet; Smith, Peter

    2011-09-01

    Health practitioners should possess relevant, up to date skills and be able to perform within their required scope of practice to ensure that they are competent. Maintaining the competency of health care professionals is a key principle of clinical governance and risk management. The aim of this project was to develop a competency framework for pharmacists providing pharmaceutical care to cancer patients. An initial draft framework was developed based on existing documentation and adapted to the needs of Queensland Health (QH) facilities. Pharmacists in QH and interstate were asked to review the framework for content and applicability. Cancer care pharmacists in QH were invited to evaluate and score the usefulness and relevance of the final framework. The framework consists of competency clusters, which describe core activities within three areas: patient care competencies, knowledge competencies, and advanced level competencies. The characteristics of the levels of practice at foundation, advanced, and consultant are defined. Twelve pharmacists evaluated the framework by self-assessing their own practice. Respondents reported that the framework was very to somewhat reflective of what they usually do and gave overall support for the content and applicability to practice. The framework has been developed using national and international documents and the input of experienced practitioners across Australia. It represents a set of key competencies for the pharmaceutical delivery of cancer care. The next essential step of the competency framework is to implement and integrate the framework into practice and to develop accompanying training tools.

  14. Application of Behavior Change Techniques in a Personalized Nutrition Electronic Health Intervention Study: Protocol for the Web-Based Food4Me Randomized Controlled Trial

    PubMed Central

    Macready, Anna L; Fallaize, Rosalind; Butler, Laurie T; Ellis, Judi A; Kuznesof, Sharron; Frewer, Lynn J; Celis-Morales, Carlos; Livingstone, Katherine M; Araújo-Soares, Vera; Fischer, Arnout RH; Stewart-Knox, Barbara J; Mathers, John C

    2018-01-01

    Background To determine the efficacy of behavior change techniques applied in dietary and physical activity intervention studies, it is first necessary to record and describe techniques that have been used during such interventions. Published frameworks used in dietary and smoking cessation interventions undergo continuous development, and most are not adapted for Web-based delivery. The Food4Me study (N=1607) provided the opportunity to use existing frameworks to describe standardized Web-based techniques employed in a large-scale, internet-based intervention to change dietary behavior and physical activity. Objective The aims of this study were (1) to describe techniques embedded in the Food4Me study design and explain the selection rationale and (2) to demonstrate the use of behavior change technique taxonomies, develop standard operating procedures for training, and identify strengths and limitations of the Food4Me framework that will inform its use in future studies. Methods The 6-month randomized controlled trial took place simultaneously in seven European countries, with participants receiving one of four levels of personalized advice (generalized, intake-based, intake+phenotype–based, and intake+phenotype+gene–based). A three-phase approach was taken: (1) existing taxonomies were reviewed and techniques were identified a priori for possible inclusion in the Food4Me study, (2) a standard operating procedure was developed to maintain consistency in the use of methods and techniques across research centers, and (3) the Food4Me behavior change technique framework was reviewed and updated post intervention. An analysis of excluded techniques was also conducted. Results Of 46 techniques identified a priori as being applicable to Food4Me, 17 were embedded in the intervention design; 11 were from a dietary taxonomy, and 6 from a smoking cessation taxonomy. In addition, the four-category smoking cessation framework structure was adopted for clarity of communication. Smoking cessation texts were adapted for dietary use where necessary. A posteriori, a further 9 techniques were included. Examination of excluded items highlighted the distinction between techniques considered appropriate for face-to-face versus internet-based delivery. Conclusions The use of existing taxonomies facilitated the description and standardization of techniques used in Food4Me. We recommend that for complex studies of this nature, technique analysis should be conducted a priori to develop standardized procedures and training and reviewed a posteriori to audit the techniques actually adopted. The present framework description makes a valuable contribution to future systematic reviews and meta-analyses that explore technique efficacy and underlying psychological constructs. This was a novel application of the behavior change taxonomies and was the first internet-based personalized nutrition intervention to use such a framework remotely. Trial Registration ClinicalTrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6y8XYUft1) PMID:29631993

  15. Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience.

    PubMed

    Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S; Kramarek, Maria T; Müller, Klaus-Robert; Blankertz, Benjamin

    2010-01-01

    This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain-computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation.

  16. Pyff – A Pythonic Framework for Feedback Applications and Stimulus Presentation in Neuroscience

    PubMed Central

    Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S.; Kramarek, Maria T.; Müller, Klaus-Robert; Blankertz, Benjamin

    2010-01-01

    This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain–computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation. PMID:21160550

  17. A Semantic Grid Oriented to E-Tourism

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Ming

    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

  18. Generalizing Backtrack-Free Search: A Framework for Search-Free Constraint Satisfaction

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Frank, Jeremy

    2000-01-01

    Tractable classes of constraint satisfaction problems are of great importance in artificial intelligence. Identifying and taking advantage of such classes can significantly speed up constraint problem solving. In addition, tractable classes are utilized in applications where strict worst-case performance guarantees are required, such as constraint-based plan execution. In this work, we present a formal framework for search-free (backtrack-free) constraint satisfaction. The framework is based on general procedures, rather than specific propagation techniques, and thus generalizes existing techniques in this area. We also relate search-free problem solving to the notion of decision sets and use the result to provide a constructive criterion that is sufficient to guarantee search-free problem solving.

  19. Clinical instruction: using the strengths-based approach with nursing students.

    PubMed

    Cederbaum, Julie; Klusaritz, Heather A

    2009-08-01

    Clinical instruction experience can vary significantly based on the needs of the organization and the individual characteristics of instructors and students. Clinical instructors may encounter difficulties in their relationships with students, such as personality conflicts, differences in style and values, and limited skill levels or a lack of interest on the part of students. To reduce obstacles when working with challenging students, a strengths perspective approach is recommended. This framework emphasizes discovering, affirming, and enhancing the capabilities, interests, knowledge, resources, goals, and objectives of individuals. The strengths perspective can provide an innovative framework for working with nursing students, one that emphasizes student empowerment, collaborative learning, and mutual growth. Strength-based strategies for supervision of students in clinical placements are shared, highlighting the practical application of the framework's tenets. Copyright 2009, SLACK Incorporated.

  20. Bivalent metal-based MIL-53 analogues: Synthesis, properties and application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yongxin; University of the Chinese Academy of Science, Beijing 100049; Liu, Dan, E-mail: liudan2007@ciac.ac.cn

    Trivalent metal-based MIL-53 (Al{sup 3+}, Cr{sup 3+}, Fe{sup 3+}, In{sup 3+}) compounds are interesting metal–organic frameworks (MOFs) with breathing effect and are promising gas sorption materials. Replacing bridging μ{sub 2}-OH group by neutral ligands such as pyridine N-oxide and its derivatives (PNOs), the trivalent metal-based MIL-53 analogous structures could be extended to bivalent metal systems. The introduction of PNOs and bivalent metal elements endows the frameworks with new structural features and physical and chemical properties. This minireview summarizes the recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}), typically, focusing on the synthetic strategies and potentialmore » applications based on our own works and literatures. We present the synthetic strategy to achieve structures evolution from single-ligand-walled to double-ligand-walled channel. Properties and application of these new materials in a wide range of potential areas are discussed including thermal stability, gas adsorption, magnetism and liquid-phase separation. Promising directions of this research field are also highlighted. - Graphical abstract: The recent development of bivalent metal-based MIL-53 analogues (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}) on their synthetic strategies, properties and potential applications was reviewed. - Highlights: • Structure features of bivalent metal-based MIL-53 analogues are illustrated. • Important properties and application are presented. • Host–guest interactions are main impetus for liquid-phase separation. • Promising directions of bivalent metal-based MIL-53 analogues are highlighted.« less

  1. Single-camera visual odometry to track a surgical X-ray C-arm base.

    PubMed

    Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn

    2017-12-01

    This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).

  2. Assessing sustainable remediation frameworks using sustainability principles.

    PubMed

    Ridsdale, D Reanne; Noble, Bram F

    2016-12-15

    The remediation industry has grown exponentially in recent decades. International organizations of practitioners and remediation experts have developed several frameworks for integrating sustainability into remediation projects; however, there has been limited attention to how sustainability is approached and operationalized in sustainable remediation frameworks and practices - or whether sustainability plays any meaningful role at all in sustainable remediation. This paper examines how sustainability is represented in remediation frameworks and the guidance provided for practical application. Seven broad sustainability principles and review criteria are proposed and applied to a sample of six international remediation frameworks. Not all review criteria were equally satisfied and none of the frameworks fully met all criteria; however, the best performing frameworks were those identified as sustainability remediation frameworks. Intra-generational equity was addressed by all frameworks. Integrating social, economic and biophysical components beyond triple-bottom-line indicators was explicitly addressed only by the sustainable remediation frameworks. No frameworks provided principle- or rule-based guidance for dealing with trade-offs in sustainability decisions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An Integrated Framework for Parameter-based Optimization of Scientific Workflows.

    PubMed

    Kumar, Vijay S; Sadayappan, P; Mehta, Gaurang; Vahi, Karan; Deelman, Ewa; Ratnakar, Varun; Kim, Jihie; Gil, Yolanda; Hall, Mary; Kurc, Tahsin; Saltz, Joel

    2009-01-01

    Data analysis processes in scientific applications can be expressed as coarse-grain workflows of complex data processing operations with data flow dependencies between them. Performance optimization of these workflows can be viewed as a search for a set of optimal values in a multi-dimensional parameter space. While some performance parameters such as grouping of workflow components and their mapping to machines do not a ect the accuracy of the output, others may dictate trading the output quality of individual components (and of the whole workflow) for performance. This paper describes an integrated framework which is capable of supporting performance optimizations along multiple dimensions of the parameter space. Using two real-world applications in the spatial data analysis domain, we present an experimental evaluation of the proposed framework.

  4. Evolutionary game based control for biological systems with applications in drug delivery.

    PubMed

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-07

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service

    PubMed Central

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016

  6. A framework for sharing and integrating remote sensing and GIS models based on Web service.

    PubMed

    Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin

    2014-01-01

    Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.

  7. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries.

    PubMed

    Schulte, Stephanie J; Knapp, Maureen

    2017-10-01

    In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. This study utilized a descriptive electronic survey. Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians.

  8. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries*

    PubMed Central

    Schulte, Stephanie J.; Knapp, Maureen

    2017-01-01

    Objective: In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. Methods: This study utilized a descriptive electronic survey. Results: Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. Conclusion: The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians. PMID:28983198

  9. Argumentation in Science Education: A Model-based Framework

    NASA Astrophysics Data System (ADS)

    Böttcher, Florian; Meisert, Anke

    2011-02-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin's framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.

  10. MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Hansen; C. Newman; D. Gaston

    Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even withmore » large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.« less

  11. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  12. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Parameswaran, Kirthika; Kircher, Michael; Schmidt, Douglas

    2003-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and open sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration framework for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of-service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines rejective middleware techniques designed to adaptively (1) select optimal communication mechanisms, (2) manage QoS properties of CORBA components in their contain- ers, and (3) (re)con$gure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of rejective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  13. Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA Component Model Implementation

    NASA Technical Reports Server (NTRS)

    Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.

    2000-01-01

    Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.

  14. Abstracting application deployment on Cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Aiftimiei, D. C.; Fattibene, E.; Gargana, R.; Panella, M.; Salomoni, D.

    2017-10-01

    Deploying a complex application on a Cloud-based infrastructure can be a challenging task. In this contribution we present an approach for Cloud-based deployment of applications and its present or future implementation in the framework of several projects, such as “!CHAOS: a cloud of controls” [1], a project funded by MIUR (Italian Ministry of Research and Education) to create a Cloud-based deployment of a control system and data acquisition framework, “INDIGO-DataCloud” [2], an EC H2020 project targeting among other things high-level deployment of applications on hybrid Clouds, and “Open City Platform”[3], an Italian project aiming to provide open Cloud solutions for Italian Public Administrations. We considered to use an orchestration service to hide the complex deployment of the application components, and to build an abstraction layer on top of the orchestration one. Through Heat [4] orchestration service, we prototyped a dynamic, on-demand, scalable platform of software components, based on OpenStack infrastructures. On top of the orchestration service we developed a prototype of a web interface exploiting the Heat APIs. The user can start an instance of the application without having knowledge about the underlying Cloud infrastructure and services. Moreover, the platform instance can be customized by choosing parameters related to the application such as the size of a File System or the number of instances of a NoSQL DB cluster. As soon as the desired platform is running, the web interface offers the possibility to scale some infrastructure components. In this contribution we describe the solution design and implementation, based on the application requirements, the details of the development of both the Heat templates and of the web interface, together with possible exploitation strategies of this work in Cloud data centers.

  15. A lightweight distributed framework for computational offloading in mobile cloud computing.

    PubMed

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.

  16. A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing

    PubMed Central

    Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul

    2014-01-01

    The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245

  17. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications

    PubMed Central

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks’ back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps’ detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies. PMID:26978523

  18. SMARTbot: A Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet Applications.

    PubMed

    Karim, Ahmad; Salleh, Rosli; Khan, Muhammad Khurram

    2016-01-01

    Botnet phenomenon in smartphones is evolving with the proliferation in mobile phone technologies after leaving imperative impact on personal computers. It refers to the network of computers, laptops, mobile devices or tablets which is remotely controlled by the cybercriminals to initiate various distributed coordinated attacks including spam emails, ad-click fraud, Bitcoin mining, Distributed Denial of Service (DDoS), disseminating other malwares and much more. Likewise traditional PC based botnet, Mobile botnets have the same operational impact except the target audience is particular to smartphone users. Therefore, it is import to uncover this security issue prior to its widespread adaptation. We propose SMARTbot, a novel dynamic analysis framework augmented with machine learning techniques to automatically detect botnet binaries from malicious corpus. SMARTbot is a component based off-device behavioral analysis framework which can generate mobile botnet learning model by inducing Artificial Neural Networks' back-propagation method. Moreover, this framework can detect mobile botnet binaries with remarkable accuracy even in case of obfuscated program code. The results conclude that, a classifier model based on simple logistic regression outperform other machine learning classifier for botnet apps' detection, i.e 99.49% accuracy is achieved. Further, from manual inspection of botnet dataset we have extracted interesting trends in those applications. As an outcome of this research, a mobile botnet dataset is devised which will become the benchmark for future studies.

  19. New frontiers for health information systems using Epi Info in developing countries: structured application framework for Epi Info (SAFE).

    PubMed

    Ma, J; Otten, M; Kamadjeu, R; Mir, R; Rosencrans, L; McLaughlin, S; Yoon, S

    2008-04-01

    For more than two decades, Epi Info software has been used to meet the data management, analysis, and mapping needs of public health professionals in more than 181 countries and 13 languages. Until now, most Epi Info systems have been relatively simple, mainly because of a lack of detailed and structured guidance for developing complex systems. We created the structured application framework for Epi Info (SAFE), which is a set of guidelines that allows developers to create both simple and complex information systems using accepted good programming practices. This has resulted in application code blocks that are re-useable and easy to maintain, modify, and enhance. The flexibility of SAFE allows various aggregate and case-based application modules to be rapidly created, combined, and updated to create health information systems or sub-systems enabling continuous, incremental enhancement as national and local capacity increases. SAFE and Epi Info are both cost-free and have low system requirements--characteristics that render this framework and software beneficial for developing countries.

  20. Systems-based accident analysis in the led outdoor activity domain: application and evaluation of a risk management framework.

    PubMed

    Salmon, P; Williamson, A; Lenné, M; Mitsopoulos-Rubens, E; Rudin-Brown, C M

    2010-08-01

    Safety-compromising accidents occur regularly in the led outdoor activity domain. Formal accident analysis is an accepted means of understanding such events and improving safety. Despite this, there remains no universally accepted framework for collecting and analysing accident data in the led outdoor activity domain. This article presents an application of Rasmussen's risk management framework to the analysis of the Lyme Bay sea canoeing incident. This involved the development of an Accimap, the outputs of which were used to evaluate seven predictions made by the framework. The Accimap output was also compared to an analysis using an existing model from the led outdoor activity domain. In conclusion, the Accimap output was found to be more comprehensive and supported all seven of the risk management framework's predictions, suggesting that it shows promise as a theoretically underpinned approach for analysing, and learning from, accidents in the led outdoor activity domain. STATEMENT OF RELEVANCE: Accidents represent a significant problem within the led outdoor activity domain. This article presents an evaluation of a risk management framework that can be used to understand such accidents and to inform the development of accident countermeasures and mitigation strategies for the led outdoor activity domain.

  1. Organizational factors affecting successful adoption of innovative eHealth services: a case study employing the FITT framework.

    PubMed

    Tsiknakis, Manolis; Kouroubali, Angelina

    2009-01-01

    The paper presents an application of the "Fit between Individuals, Task and Technology" (FITT) framework to analyze the socio-organizational-technical factors that influence IT adoption in the healthcare domain. The FITT framework was employed as the theoretical instrument for a retrospective analysis of a 15-year effort in implementing IT systems and eHealth services in the context of a Regional Health Information Network in Crete. Quantitative and qualitative research methods, interviews and participant observations were employed to gather data from a case study that involved the entire region of Crete. The detailed analysis of the case study based on the FITT framework, showed common features, but also differences of IT adoption within the various health organizations. The emerging picture is a complex nexus of factors contributing to IT adoption, and multi-level interventional strategies to promote IT use. The work presented in this paper shows the applicability of the FITT framework in explaining the complexity of aspects observed in the implementation of healthcare information systems. The reported experiences reveal that fit management can be viewed as a system with a feedback loop that is never really stable, but ever changing based on external factors or deliberate interventions. Management of fit, therefore, becomes a constant and complex task for the whole life cycle of IT systems.

  2. Framework for Evaluating the Impact of Advanced Practice Nursing Roles.

    PubMed

    Bryant-Lukosius, Denise; Spichiger, Elisabeth; Martin, Jacqueline; Stoll, Hansruedi; Kellerhals, Sabine Degen; Fliedner, Monica; Grossmann, Florian; Henry, Morag; Herrmann, Luzia; Koller, Antje; Schwendimann, René; Ulrich, Anja; Weibel, Lukas; Callens, Betty; De Geest, Sabina

    2016-03-01

    To address the gap in evidence-based information required to support the development of advanced practice nursing (APN) roles in Switzerland, stakeholders identified the need for guidance to generate strategic evaluation data. This article describes an evaluation framework developed to inform decisions about the effective utilization of APN roles across the country. A participatory approach was used by an international group of stakeholders. Published literature and an evidenced-based framework for introducing APN roles were analyzed and applied to define the purpose, target audiences, and essential elements of the evaluation framework. Through subsequent meetings and review by an expert panel, the framework was developed and refined. A framework to evaluate different types of APN roles as they evolve to meet dynamic population health, practice setting, and health system needs was created. It includes a matrix of key concepts to guide evaluations across three stages of APN role development: introduction, implementation, and long-term sustainability. For each stage, evaluation objectives and questions examining APN role structures, processes, and outcomes from different perspectives (e.g., patients, providers, managers, policy-makers) were identified. A practical, robust framework based on well-established evaluation concepts and current understanding of APN roles can be used to conduct systematic evaluations. The evaluation framework is sufficiently generic to allow application in developed countries globally, both for evaluation as well as research purposes. © 2016 Sigma Theta Tau International.

  3. Earth Science Computational Architecture for Multi-disciplinary Investigations

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.

    2005-12-01

    Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with visual response. At the platform level, multi-physics application development and workflow are available in the enriched environment of the Pyre framework. Advantages for combining separate expert domains include: multiple application components efficiently interact through Python shared libraries, investigators may nimbly swap models and try new parameter values, and a rich array of common tools are inherent in the Pyre system. The first four specific investigations to use this framework are: Gulf Coast subsidence: understanding of partitioning between compaction, subsidence and growth faulting; Gravity & deformation of a layered spherical earth model due to large earthquakes; Rift setting of Lake Vostok, Antarctica; and global ice mass changes.

  4. Applying graph partitioning methods in measurement-based dynamic load balancing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha

    Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less

  5. Information of Complex Systems and Applications in Agent Based Modeling.

    PubMed

    Bao, Lei; Fritchman, Joseph C

    2018-04-18

    Information about a system's internal interactions is important to modeling the system's dynamics. This study examines the finer categories of the information definition and explores the features of a type of local information that describes the internal interactions of a system. Based on the results, a dual-space agent and information modeling framework (AIM) is developed by explicitly distinguishing an information space from the material space. The two spaces can evolve both independently and interactively. The dual-space framework can provide new analytic methods for agent based models (ABMs). Three examples are presented including money distribution, individual's economic evolution, and artificial stock market. The results are analyzed in the dual-space, which more clearly shows the interactions and evolutions within and between the information and material spaces. The outcomes demonstrate the wide-ranging applicability of using the dual-space AIMs to model and analyze a broad range of interactive and intelligent systems.

  6. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file.

    PubMed Central

    Seoane, Beatriz; Coronas, Joaquin; Gascon, Ignacio; Benavides, Miren Etxeberria; Karvan, Oğuz; Caro, Jürgen; Kapteijn, Freek

    2015-01-01

    The field of metal–organic framework based mixed matrix membranes (M4s) is critically reviewed, with special emphasis on their application in CO2 capture during energy generation. After introducing the most relevant parameters affecting membrane performance, we define targets in terms of selectivity and productivity based on existing literature on process design for pre- and post-combustion CO2 capture. Subsequently, the state of the art in M4s is reviewed against these targets. Because final application of these membranes will only be possible if thin separation layers can be produced, the latest advances in the manufacture of M4 hollow fibers are discussed. Finally, the recent efforts in understanding the separation performance of these complex composite materials and future research directions are outlined. PMID:25692487

  7. Naver: a PC-cluster-based VR system

    NASA Astrophysics Data System (ADS)

    Park, ChangHoon; Ko, HeeDong; Kim, TaiYun

    2003-04-01

    In this paper, we present a new framework NAVER for virtual reality application. The NAVER is based on a cluster of low-cost personal computers. The goal of NAVER is to provide flexible, extensible, scalable and re-configurable framework for the virtual environments defined as the integration of 3D virtual space and external modules. External modules are various input or output devices and applications on the remote hosts. From the view of system, personal computers are divided into three servers according to its specific functions: Render Server, Device Server and Control Server. While Device Server contains external modules requiring event-based communication for the integration, Control Server contains external modules requiring synchronous communication every frame. And, the Render Server consists of 5 managers: Scenario Manager, Event Manager, Command Manager, Interaction Manager and Sync Manager. These managers support the declaration and operation of virtual environment and the integration with external modules on remote servers.

  8. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    NASA Astrophysics Data System (ADS)

    Li, Jun-Bao; Liu, Jing; Pan, Jeng-Shyang; Yao, Hongxun

    2017-06-01

    Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  9. Position Paper - pFLogger: The Parallel Fortran Logging framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or logger) similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  10. POSITION PAPER - pFLogger: The Parallel Fortran Logging Framework for HPC Applications

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Cruz, Carlos A.

    2017-01-01

    In the context of high performance computing (HPC), software investments in support of text-based diagnostics, which monitor a running application, are typically limited compared to those for other types of IO. Examples of such diagnostics include reiteration of configuration parameters, progress indicators, simple metrics (e.g., mass conservation, convergence of solvers, etc.), and timers. To some degree, this difference in priority is justifiable as other forms of output are the primary products of a scientific model and, due to their large data volume, much more likely to be a significant performance concern. In contrast, text-based diagnostic content is generally not shared beyond the individual or group running an application and is most often used to troubleshoot when something goes wrong. We suggest that a more systematic approach enabled by a logging facility (or 'logger') similar to those routinely used by many communities would provide significant value to complex scientific applications. In the context of high-performance computing, an appropriate logger would provide specialized support for distributed and shared-memory parallelism and have low performance overhead. In this paper, we present our prototype implementation of pFlogger - a parallel Fortran-based logging framework, and assess its suitability for use in a complex scientific application.

  11. A person-centered integrated care quality framework, based on a qualitative study of patients' evaluation of care in light of chronic care ideals.

    PubMed

    Berntsen, Gro; Høyem, Audhild; Lettrem, Idar; Ruland, Cornelia; Rumpsfeld, Markus; Gammon, Deede

    2018-06-20

    Person-Centered Integrated Care (PC-IC) is believed to improve outcomes and experience for persons with multiple long-term and complex conditions. No broad consensus exists regarding how to capture the patient-experienced quality of PC-IC. Most PC-IC evaluation tools focus on care events or care in general. Building on others' and our previous work, we outlined a 4-stage goal-oriented PC-IC process ideal: 1) Personalized goal setting 2) Care planning aligned with goals 3) Care delivery according to plan, and 4) Evaluation of goal attainment. We aimed to explore, apply, refine and operationalize this quality of care framework. This paper is a qualitative evaluative review of the individual Patient Pathways (iPP) experiences of 19 strategically chosen persons with multimorbidity in light of ideals for chronic care. The iPP includes all care events, addressing the persons collected health issues, organized by time. We constructed iPPs based on the electronic health record (from general practice, nursing services, and hospital) with patient follow-up interviews. The application of the framework and its refinement were parallel processes. Both were based on analysis of salient themes in the empirical material in light of the PC-IC process ideal and progressively more informed applications of themes and questions. The informants consistently reviewed care quality by how care supported/ threatened their long-term goals. Personal goals were either implicit or identified by "What matters to you?" Informants expected care to address their long-term goals and placed responsibility for care quality and delivery at the system level. The PC-IC process framework exposed system failure in identifying long-term goals, provision of shared long-term multimorbidity care plans, monitoring of care delivery and goal evaluation. The PC-IC framework includes descriptions of ideal care, key questions and literature references for each stage of the PC-IC process. This first version of a PC-IC process framework needs further validation in other settings. Gaps in care that are invisible with event-based quality of care frameworks become apparent when evaluated by a long-term goal-driven PC-IC process framework. The framework appears meaningful to persons with multimorbidity.

  12. Breaking Down Chemical Weapons by Metal-Organic Frameworks.

    PubMed

    Mondal, Suvendu Sekhar; Holdt, Hans-Jürgen

    2016-01-04

    Seek and destroy: Filtration schemes and self-detoxifying protective fabrics based on the Zr(IV)-containing metal-organic frameworks (MOFs) MOF-808 and UiO-66 doped with LiOtBu have been developed that capture and hydrolytically detoxify simulants of nerve agents and mustard gas. Both MOFs function as highly catalytic elements in these applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Physiologically based pharmacokinetic (PBPK) modeling considering methylated trivalent arsenicals

    EPA Science Inventory

    PBPK modeling provides a quantitative biologically-based framework to integrate diverse types of information for application to risk analysis. For example, genetic polymorphisms in arsenic metabolizing enzymes (AS3MT) can lead to differences in target tissue dosimetry for key tri...

  14. Integrated Systems Health Management (ISHM) Toolkit

    NASA Technical Reports Server (NTRS)

    Venkatesh, Meera; Kapadia, Ravi; Walker, Mark; Wilkins, Kim

    2013-01-01

    A framework of software components has been implemented to facilitate the development of ISHM systems according to a methodology based on Reliability Centered Maintenance (RCM). This framework is collectively referred to as the Toolkit and was developed using General Atomics' Health MAP (TM) technology. The toolkit is intended to provide assistance to software developers of mission-critical system health monitoring applications in the specification, implementation, configuration, and deployment of such applications. In addition to software tools designed to facilitate these objectives, the toolkit also provides direction to software developers in accordance with an ISHM specification and development methodology. The development tools are based on an RCM approach for the development of ISHM systems. This approach focuses on defining, detecting, and predicting the likelihood of system functional failures and their undesirable consequences.

  15. Consumer acceptance of technology-based food innovations: lessons for the future of nutrigenomics.

    PubMed

    Ronteltap, A; van Trijp, J C M; Renes, R J; Frewer, L J

    2007-07-01

    Determinants of consumer adoption of innovations have been studied from different angles and from the perspectives of various disciplines. In the food area, the literature is dominated by a focus on consumer concern. This paper reviews previous research into acceptance of technology-based innovation from both inside and outside the food domain, extracts key learnings from this literature and integrates them into a new conceptual framework for consumer acceptance of technology-based food innovations. The framework distinguishes 'distal' and 'proximal' determinants of acceptance. Distal factors (characteristics of the innovation, the consumer and the social system) influence consumers' intention to accept an innovation through proximal factors (perceived cost/benefit considerations, perceptions of risk and uncertainty, social norm and perceived behavioural control). The framework's application as a tool to anticipate consumer reaction to future innovations is illustrated for an actual technology-based innovation in food science, nutrigenomics (the interaction between nutrition and human genetics).

  16. Smart City Energy Interconnection Technology Framework Preliminary Research

    NASA Astrophysics Data System (ADS)

    Zheng, Guotai; Zhao, Baoguo; Zhao, Xin; Li, Hao; Huo, Xianxu; Li, Wen; Xia, Yu

    2018-01-01

    to improve urban energy efficiency, improve the absorptive ratio of new energy resources and renewable energy sources, and reduce environmental pollution and other energy supply and consumption technology framework matched with future energy restriction conditions and applied technology level are required to be studied. Relative to traditional energy supply system, advanced information technology-based “Energy Internet” technical framework may give play to energy integrated application and load side interactive technology advantages, as a whole optimize energy supply and consumption and improve the overall utilization efficiency of energy.

  17. Methane storage in metal-organic frameworks.

    PubMed

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  18. Film grain synthesis and its application to re-graining

    NASA Astrophysics Data System (ADS)

    Schallauer, Peter; Mörzinger, Roland

    2006-01-01

    Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.

  19. Engaging Elderly People in Telemedicine Through Gamification

    PubMed Central

    Tabak, Monique; Dekker - van Weering, Marit; Vollenbroek-Hutten, Miriam

    2015-01-01

    Background Telemedicine can alleviate the increasing demand for elderly care caused by the rapidly aging population. However, user adherence to technology in telemedicine interventions is low and decreases over time. Therefore, there is a need for methods to increase adherence, specifically of the elderly user. A strategy that has recently emerged to address this problem is gamification. It is the application of game elements to nongame fields to motivate and increase user activity and retention. Objective This research aims to (1) provide an overview of existing theoretical frameworks for gamification and explore methods that specifically target the elderly user and (2) explore user classification theories for tailoring game content to the elderly user. This knowledge will provide a foundation for creating a new framework for applying gamification in telemedicine applications to effectively engage the elderly user by increasing and maintaining adherence. Methods We performed a broad Internet search using scientific and nonscientific search engines and included information that described either of the following subjects: the conceptualization of gamification, methods to engage elderly users through gamification, or user classification theories for tailored game content. Results Our search showed two main approaches concerning frameworks for gamification: from business practices, which mostly aim for more revenue, emerge an applied approach, while academia frameworks are developed incorporating theories on motivation while often aiming for lasting engagement. The search provided limited information regarding the application of gamification to engage elderly users, and a significant gap in knowledge on the effectiveness of a gamified application in practice. Several approaches for classifying users in general were found, based on archetypes and reasons to play, and we present them along with their corresponding taxonomies. The overview we created indicates great connectivity between these taxonomies. Conclusions Gamification frameworks have been developed from different backgrounds—business and academia—but rarely target the elderly user. The effectiveness of user classifications for tailored game content in this context is not yet known. As a next step, we propose the development of a framework based on the hypothesized existence of a relation between preference for game content and personality. PMID:26685287

  20. Engaging Elderly People in Telemedicine Through Gamification.

    PubMed

    de Vette, Frederiek; Tabak, Monique; Dekker-van Weering, Marit; Vollenbroek-Hutten, Miriam

    2015-12-18

    Telemedicine can alleviate the increasing demand for elderly care caused by the rapidly aging population. However, user adherence to technology in telemedicine interventions is low and decreases over time. Therefore, there is a need for methods to increase adherence, specifically of the elderly user. A strategy that has recently emerged to address this problem is gamification. It is the application of game elements to nongame fields to motivate and increase user activity and retention. This research aims to (1) provide an overview of existing theoretical frameworks for gamification and explore methods that specifically target the elderly user and (2) explore user classification theories for tailoring game content to the elderly user. This knowledge will provide a foundation for creating a new framework for applying gamification in telemedicine applications to effectively engage the elderly user by increasing and maintaining adherence. We performed a broad Internet search using scientific and nonscientific search engines and included information that described either of the following subjects: the conceptualization of gamification, methods to engage elderly users through gamification, or user classification theories for tailored game content. Our search showed two main approaches concerning frameworks for gamification: from business practices, which mostly aim for more revenue, emerge an applied approach, while academia frameworks are developed incorporating theories on motivation while often aiming for lasting engagement. The search provided limited information regarding the application of gamification to engage elderly users, and a significant gap in knowledge on the effectiveness of a gamified application in practice. Several approaches for classifying users in general were found, based on archetypes and reasons to play, and we present them along with their corresponding taxonomies. The overview we created indicates great connectivity between these taxonomies. Gamification frameworks have been developed from different backgrounds-business and academia-but rarely target the elderly user. The effectiveness of user classifications for tailored game content in this context is not yet known. As a next step, we propose the development of a framework based on the hypothesized existence of a relation between preference for game content and personality.

  1. Integrating machine learning techniques into robust data enrichment approach and its application to gene expression data.

    PubMed

    Erdoğdu, Utku; Tan, Mehmet; Alhajj, Reda; Polat, Faruk; Rokne, Jon; Demetrick, Douglas

    2013-01-01

    The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework.

  2. Sensored fiber reinforced polymer grate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, Michael P.; Mack, Thomas Kimball

    Various technologies described herein pertain to a sensored grate that can be utilized for various security fencing applications. The sensored grate includes a grate framework and an embedded optical fiber. The grate framework is formed of a molded polymer such as, for instance, molded fiber reinforced polymer. Further, the grate framework includes a set of elongated elements, where the elongated elements are spaced to define apertures through the grate framework. The optical fiber is embedded in the elongated elements of the grate framework. Moreover, bending or breaking of one or more of the elongated elements can be detected based onmore » a change in a characteristic of input light provided to the optical fiber compared to output light received from the optical fiber.« less

  3. A process-based framework for soil ecosystem services study and management.

    PubMed

    Su, Changhong; Liu, Huifang; Wang, Shuai

    2018-06-15

    Soil provides various indispensable ecosystem services for human society. Soil's complex structure and property makes the soil ecological processes complicated and brings about tough challenges for soil ecosystem services study. Most of the current frameworks on soil services focus exclusively on services per se, neglecting the links and underlying ecological mechanisms. This article put forward a framework on soil services by stressing the underlying soil mechanisms and processes, which includes: 1) analyzing soil natural capital stock based on soil structure and property, 2) disentangling the underlying complex links and soil processes, 3) soil services valuation based on field investigation and spatial explicit models, and 4) enacting soil management strategy based on soil services and their driving factors. By application of this framework, we assessed the soil services of sediment retention, water yield, and grain production in the Upper-reach Fenhe Watershed. Based on the ecosystem services and human driving factors, the whole watershed was clustered into five groups: 1) municipal area, 2) typical coal mining area, 3) traditional farming area, 4) unsustainable urbanizing area, and 5) ecological conservation area. Management strategies on soils were made according to the clustering based soil services and human activities. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Can composite digital monitoring biomarkers come of age? A framework for utilization.

    PubMed

    Kovalchick, Christopher; Sirkar, Rhea; Regele, Oliver B; Kourtis, Lampros C; Schiller, Marie; Wolpert, Howard; Alden, Rhett G; Jones, Graham B; Wright, Justin M

    2017-12-01

    The application of digital monitoring biomarkers in health, wellness and disease management is reviewed. Harnessing the near limitless capacity of these approaches in the managed healthcare continuum will benefit from a systems-based architecture which presents data quality, quantity, and ease of capture within a decision-making dashboard. A framework was developed which stratifies key components and advances the concept of contextualized biomarkers. The framework codifies how direct, indirect, composite, and contextualized composite data can drive innovation for the application of digital biomarkers in healthcare. The de novo framework implies consideration of physiological, behavioral, and environmental factors in the context of biomarker capture and analysis. Application in disease and wellness is highlighted, and incorporation in clinical feedback loops and closed-loop systems is illustrated. The study of contextualized biomarkers has the potential to offer rich and insightful data for clinical decision making. Moreover, advancement of the field will benefit from innovation at the intersection of medicine, engineering, and science. Technological developments in this dynamic field will thus fuel its logical evolution guided by inputs from patients, physicians, healthcare providers, end-payors, actuarists, medical device manufacturers, and drug companies.

  5. A comparison of item response models for accuracy and speed of item responses with applications to adaptive testing.

    PubMed

    van Rijn, Peter W; Ali, Usama S

    2017-05-01

    We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures. © 2017 The British Psychological Society.

  6. Application of Psychological Theories in Agent-Based Modeling: The Case of the Theory of Planned Behavior.

    PubMed

    Scalco, Andrea; Ceschi, Andrea; Sartori, Riccardo

    2018-01-01

    It is likely that computer simulations will assume a greater role in the next future to investigate and understand reality (Rand & Rust, 2011). Particularly, agent-based models (ABMs) represent a method of investigation of social phenomena that blend the knowledge of social sciences with the advantages of virtual simulations. Within this context, the development of algorithms able to recreate the reasoning engine of autonomous virtual agents represents one of the most fragile aspects and it is indeed crucial to establish such models on well-supported psychological theoretical frameworks. For this reason, the present work discusses the application case of the theory of planned behavior (TPB; Ajzen, 1991) in the context of agent-based modeling: It is argued that this framework might be helpful more than others to develop a valid representation of human behavior in computer simulations. Accordingly, the current contribution considers issues related with the application of the model proposed by the TPB inside computer simulations and suggests potential solutions with the hope to contribute to shorten the distance between the fields of psychology and computer science.

  7. Active Wireless System for Structural Health Monitoring Applications.

    PubMed

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  8. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  9. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation

    PubMed Central

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-01-01

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  10. State-Based Implicit Coordination and Applications

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2011-01-01

    In air traffic management, pairwise coordination is the ability to achieve separation requirements when conflicting aircraft simultaneously maneuver to solve a conflict. Resolution algorithms are implicitly coordinated if they provide coordinated resolution maneuvers to conflicting aircraft when only surveillance data, e.g., position and velocity vectors, is periodically broadcast by the aircraft. This paper proposes an abstract framework for reasoning about state-based implicit coordination. The framework consists of a formalized mathematical development that enables and simplifies the design and verification of implicitly coordinated state-based resolution algorithms. The use of the framework is illustrated with several examples of algorithms and formal proofs of their coordination properties. The work presented here supports the safety case for a distributed self-separation air traffic management concept where different aircraft may use different conflict resolution algorithms and be assured that separation will be maintained.

  11. Characterizing behavioural ‘characters’: an evolutionary framework

    PubMed Central

    Araya-Ajoy, Yimen G.; Dingemanse, Niels J.

    2014-01-01

    Biologists often study phenotypic evolution assuming that phenotypes consist of a set of quasi-independent units that have been shaped by selection to accomplish a particular function. In the evolutionary literature, such quasi-independent functional units are called ‘evolutionary characters’, and a framework based on evolutionary principles has been developed to characterize them. This framework mainly focuses on ‘fixed’ characters, i.e. those that vary exclusively between individuals. In this paper, we introduce multi-level variation and thereby expand the framework to labile characters, focusing on behaviour as a worked example. We first propose a concept of ‘behavioural characters’ based on the original evolutionary character concept. We then detail how integration of variation between individuals (cf. ‘personality’) and within individuals (cf. ‘individual plasticity’) into the framework gives rise to a whole suite of novel testable predictions about the evolutionary character concept. We further propose a corresponding statistical methodology to test whether observed behaviours should be considered expressions of a hypothesized evolutionary character. We illustrate the application of our framework by characterizing the behavioural character ‘aggressiveness’ in wild great tits, Parus major. PMID:24335984

  12. Decision Manifold Approximation for Physics-Based Simulations

    NASA Technical Reports Server (NTRS)

    Wong, Jay Ming; Samareh, Jamshid A.

    2016-01-01

    With the recent surge of success in big-data driven deep learning problems, many of these frameworks focus on the notion of architecture design and utilizing massive databases. However, in some scenarios massive sets of data may be difficult, and in some cases infeasible, to acquire. In this paper we discuss a trajectory-based framework that quickly learns the underlying decision manifold of binary simulation classifications while judiciously selecting exploratory target states to minimize the number of required simulations. Furthermore, we draw particular attention to the simulation prediction application idealized to the case where failures in simulations can be predicted and avoided, providing machine intelligence to novice analysts. We demonstrate this framework in various forms of simulations and discuss its efficacy.

  13. A Unified Framework for Complex Networks with Degree Trichotomy Based on Markov Chains.

    PubMed

    Hui, David Shui Wing; Chen, Yi-Chao; Zhang, Gong; Wu, Weijie; Chen, Guanrong; Lui, John C S; Li, Yingtao

    2017-06-16

    This paper establishes a Markov chain model as a unified framework for describing the evolution processes in complex networks. The unique feature of the proposed model is its capability in addressing the formation mechanism that can reflect the "trichotomy" observed in degree distributions, based on which closed-form solutions can be derived. Important special cases of the proposed unified framework are those classical models, including Poisson, Exponential, Power-law distributed networks. Both simulation and experimental results demonstrate a good match of the proposed model with real datasets, showing its superiority over the classical models. Implications of the model to various applications including citation analysis, online social networks, and vehicular networks design, are also discussed in the paper.

  14. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  15. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization

    PubMed Central

    González, Rocío Ballesteros; Leinster, Paul; Wright, Ros

    2017-01-01

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results. PMID:28954434

  16. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization.

    PubMed

    Rivas Casado, Mónica; González, Rocío Ballesteros; Ortega, José Fernando; Leinster, Paul; Wright, Ros

    2017-09-26

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results.

  17. Testing Requirements Discussion

    DOT National Transportation Integrated Search

    2015-03-12

    Background : The Adjacent Band Compatibility assessment aims at developing a framework, to determine adjacent-band aggregate transmitter power limits for assumed new applications necessary for the protection of GPS and other space-based GNSS signals....

  18. Using Interactive "Shiny" Applications to Facilitate Research-Informed Learning and Teaching

    ERIC Educational Resources Information Center

    Fawcett, Lee

    2018-01-01

    In this article we discuss our attempt to incorporate research-informed learning and teaching activities into a final year undergraduate Statistics course. We make use of the Shiny web-based application framework for R to develop "Shiny apps" designed to help facilitate student interaction with methods from recently published papers in…

  19. Building Social-Aware Software Applications for the Interactive Learning Age

    ERIC Educational Resources Information Center

    Capuruco, Renato A. C.; Capretz, Luiz F.

    2009-01-01

    There have been a number of frameworks and models developed to support different aspects of interactive learning. Some were developed to deal with course design through the application of authoring tools, whereas others such as conversational, advisory, and ontology-based systems were used in virtual classrooms to improve and support collaborative…

  20. Integrating Supplementary Application-Based Tutorials in the Multivariable Calculus Course

    ERIC Educational Resources Information Center

    Verner, I. M.; Aroshas, S.; Berman, A.

    2008-01-01

    This article presents a study in which applications were integrated in the Multivariable Calculus course at the Technion in the framework of supplementary tutorials. The purpose of the study was to test the opportunity of extending the conventional curriculum by optional applied problem-solving activities and get initial evidence on the possible…

  1. An Information Provision Framework for Performance-Based Interactive eLearning Application for Manufacturing

    ERIC Educational Resources Information Center

    Sanders, Janet H.; Udoka, Silvanus J.

    2010-01-01

    Fundamental concepts and definitions of electronic learning (eLearning) continue to emerge, and theories of eLearning that have been advanced thus far cover an array of academic perspectives including training and education, learning and knowledge, and technology and applications to specific market segments. Any study of the effectiveness and…

  2. Securing Location Services Infrastructures: Practical Criteria for Application Developers and Solutions Architects

    ERIC Educational Resources Information Center

    Karamanian, Andre

    2013-01-01

    This qualitative, exploratory, normative study examined the security and privacy of location based services in mobile applications. This study explored risk, and controls to implement privacy and security. This study was addressed using components of the FIPS Risk Management Framework. This study found that risk to location information was…

  3. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-11-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Andres; Manzano Franco, Joseph B.; Song, Shuaiwen

    With Exascale performance and its challenges in mind, one ubiquitous concern among architects is energy efficiency. Petascale systems projected to Exascale systems are unsustainable at current power consumption rates. One major contributor to system-wide power consumption is the number of memory operations leading to data movement and management techniques applied by the runtime system. To address this problem, we present the concept of the Architected Composite Data Types (ACDT) framework. The framework is made aware of data composites, assigning them a specific layout, transformations and operators. Data manipulation overhead is amortized over a larger number of elements and program performancemore » and power efficiency can be significantly improved. We developed the fundamentals of an ACDT framework on a massively multithreaded adaptive runtime system geared towards Exascale clusters. Showcasing the capability of ACDT, we exercised the framework with two representative processing kernels - Matrix Vector Multiply and the Cholesky Decomposition – applied to sparse matrices. As transformation modules, we applied optimized compress/decompress engines and configured invariant operators for maximum energy/performance efficiency. Additionally, we explored two different approaches based on transformation opaqueness in relation to the application. Under the first approach, the application is agnostic to compression and decompression activity. Such approach entails minimal changes to the original application code, but leaves out potential applicationspecific optimizations. The second approach exposes the decompression process to the application, hereby exposing optimization opportunities that can only be exploited with application knowledge. The experimental results show that the two approaches have their strengths in HW and SW respectively, where the SW approach can yield performance and power improvements that are an order of magnitude better than ACDT-oblivious, hand-optimized implementations.We consider the ACDT runtime framework an important component of compute nodes that will lead towards power efficient Exascale clusters.« less

  5. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

    PubMed Central

    2014-01-01

    Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties. PMID:24843400

  6. StakeMeter: value-based stakeholder identification and quantification framework for value-based software systems.

    PubMed

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N A; Bin Zaheer, Kashif

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called 'StakeMeter'. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error.

  7. [The GIPSY-RECPAM model: a versatile approach for integrated evaluation in cardiologic care].

    PubMed

    Carinci, F

    2009-01-01

    Tree-structured methodology applied for the GISSI-PSICOLOGIA project, although performed in the framework of earliest GISSI studies, represents a powerful tool to analyze different aspects of cardiologic care. The GISSI-PSICOLOGIA project has delivered a novel methodology based on the joint application of psychometric tools and sophisticated statistical techniques. Its prospective use could allow building effective epidemiological models relevant to the prognosis of the cardiologic patient. The various features of the RECPAM method allow a versatile use in the framework of modern e-health projects. The study used the Cognitive Behavioral Assessment H Form (CBA-H) psychometrics scales. The potential for its future application in the framework of Italian cardiology is relevant and particularly indicated to assist planning of systems for integrated care and routine evaluation of the cardiologic patient.

  8. Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li-Li; Zhu, Youlong; Long, Hai

    2017-01-01

    We report the high hydrocarbon storage capacity and adsorption selectivity of two low-density pillar[n]arene-based SOFs. Our study would open new perspectives in the development of pillar[n]arene-based SOFs and study of their great potential in gas-storage and gas-separation applications.

  9. Towards a Trans-Disciplinary Methodology for a Game-Based Intervention Development Process

    ERIC Educational Resources Information Center

    Arnab, Sylvester; Clarke, Samantha

    2017-01-01

    The application of game-based learning adds play into educational and instructional contexts. Even though there is a lack of standard methodologies or formulaic frameworks to better inform game-based intervention development, there exist scientific and empirical studies that can serve as benchmarks for establishing scientific validity in terms of…

  10. Learning Axes and Bridging Tools in a Technology-Based Design for Statistics

    ERIC Educational Resources Information Center

    Abrahamson, Dor; Wilensky, Uri

    2007-01-01

    We introduce a design-based research framework, "learning axes and bridging tools," and demonstrate its application in the preparation and study of an implementation of a middle-school experimental computer-based unit on probability and statistics, "ProbLab" (Probability Laboratory, Abrahamson and Wilensky 2002 [Abrahamson, D., & Wilensky, U.…

  11. Community based research for an urban recreation application of benefits-based management

    Treesearch

    William T. Borrie; Joseph W. Roggenbuck

    1995-01-01

    Benefits-based management is an approach to park and recreation management that focuses on the positive outcomes of engaging in recreational experiences. Because one class of possible benefits accrue to the community, a philosophical framework is discussed suggesting that communities are themselves the primary sources, generators, and repositories of knowledge....

  12. Overarching framework for data-based modelling

    NASA Astrophysics Data System (ADS)

    Schelter, Björn; Mader, Malenka; Mader, Wolfgang; Sommerlade, Linda; Platt, Bettina; Lai, Ying-Cheng; Grebogi, Celso; Thiel, Marco

    2014-02-01

    One of the main modelling paradigms for complex physical systems are networks. When estimating the network structure from measured signals, typically several assumptions such as stationarity are made in the estimation process. Violating these assumptions renders standard analysis techniques fruitless. We here propose a framework to estimate the network structure from measurements of arbitrary non-linear, non-stationary, stochastic processes. To this end, we propose a rigorous mathematical theory that underlies this framework. Based on this theory, we present a highly efficient algorithm and the corresponding statistics that are immediately sensibly applicable to measured signals. We demonstrate its performance in a simulation study. In experiments of transitions between vigilance stages in rodents, we infer small network structures with complex, time-dependent interactions; this suggests biomarkers for such transitions, the key to understand and diagnose numerous diseases such as dementia. We argue that the suggested framework combines features that other approaches followed so far lack.

  13. A Unified Framework for Activity Recognition-Based Behavior Analysis and Action Prediction in Smart Homes

    PubMed Central

    Fatima, Iram; Fahim, Muhammad; Lee, Young-Koo; Lee, Sungyoung

    2013-01-01

    In recent years, activity recognition in smart homes is an active research area due to its applicability in many applications, such as assistive living and healthcare. Besides activity recognition, the information collected from smart homes has great potential for other application domains like lifestyle analysis, security and surveillance, and interaction monitoring. Therefore, discovery of users common behaviors and prediction of future actions from past behaviors become an important step towards allowing an environment to provide personalized service. In this paper, we develop a unified framework for activity recognition-based behavior analysis and action prediction. For this purpose, first we propose kernel fusion method for accurate activity recognition and then identify the significant sequential behaviors of inhabitants from recognized activities of their daily routines. Moreover, behaviors patterns are further utilized to predict the future actions from past activities. To evaluate the proposed framework, we performed experiments on two real datasets. The results show a remarkable improvement of 13.82% in the accuracy on average of recognized activities along with the extraction of significant behavioral patterns and precise activity predictions with 6.76% increase in F-measure. All this collectively help in understanding the users” actions to gain knowledge about their habits and preferences. PMID:23435057

  14. Heterogeneity image patch index and its application to consumer video summarization.

    PubMed

    Dang, Chinh T; Radha, Hayder

    2014-06-01

    Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.

  15. Development, Deployment, and Cost Effectiveness of a Self-Administered Stereo Non Mydriatic Automated Retinal Camera (SNARC) Containing Automated Retinal Lesion (ARL) Detection Using Adaptive Optics

    DTIC Science & Technology

    2010-10-01

    Requirements Application Server  BEA Weblogic Express 9.2 or higher  Java v5Apache Struts v2  Hibernate v2  C3PO  SQL*Net client / JDBC Database Server...designed for the desktop o An HTML and JavaScript browser-based front end designed for mobile Smartphones - A Java -based framework utilizing Apache...Technology Requirements The recommended technologies are as follows: Technology Use Requirements Java Application Provides the backend application

  16. ProFUSO: Business process and ontology-based framework to develop ubiquitous computing support systems for chronic patients' management.

    PubMed

    Jimenez-Molina, Angel; Gaete-Villegas, Jorge; Fuentes, Javier

    2018-06-01

    New advances in telemedicine, ubiquitous computing, and artificial intelligence have supported the emergence of more advanced applications and support systems for chronic patients. This trend addresses the important problem of chronic illnesses, highlighted by multiple international organizations as a core issue in future healthcare. Despite the myriad of exciting new developments, each application and system is designed and implemented for specific purposes and lacks the flexibility to support different healthcare concerns. Some of the known problems of such developments are the integration issues between applications and existing healthcare systems, the reusability of technical knowledge in the creation of new and more sophisticated systems and the usage of data gathered from multiple sources in the generation of new knowledge. This paper proposes a framework for the development of chronic disease support systems and applications as an answer to these shortcomings. Through this framework our pursuit is to create a common ground methodology upon which new developments can be created and easily integrated to provide better support to chronic patients, medical staff and other relevant participants. General requirements are inferred for any support system from the primary attention process of chronic patients by the Business Process Management Notation. Numerous technical approaches are proposed to design a general architecture that considers the medical organizational requirements in the treatment of a patient. A framework is presented for any application in support of chronic patients and evaluated by a case study to test the applicability and pertinence of the solution. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. People don't talk in institutional statements: A methodological case study of the Institutional Analysis and Development Framework

    Treesearch

    Cristy Watkins; Lynne M. Westphal

    2015-01-01

    In this paper, we describe our application of Ostrom et al.'s ADICO syntax, a grammatical tool based in the Institutional Analysis and Development framework, to a study of ecological restoration decision making in the Chicago Wilderness region. As this method has only been used to look at written policy and/or extractive natural resource management systems, our...

  18. Conceptualizing a Human Right to Prevention in Global HIV/AIDS Policy

    PubMed Central

    Meier, Benjamin Mason; Brugh, Kristen Nichole; Halima, Yasmin

    2012-01-01

    Given current constraints on universal treatment campaigns, recent advances in public health prevention initiatives have revitalized efforts to stem the tide of HIV transmission. Yet, despite a growing imperative for prevention—supported by the promise of behavioral, structural and biomedical approaches to lower the incidence of HIV—human rights frameworks remain limited in addressing collective prevention policy through global health governance. Assessing the evolution of rights-based approaches to global HIV/AIDS policy, this review finds that human rights have shifted from collective public health to individual treatment access. While the advent of the HIV/AIDS pandemic gave meaning to rights in framing global health policy, the application of rights in treatment access litigation came at the expense of public health prevention efforts. Where the human rights framework remains limited to individual rights enforced against a state duty bearer, such rights have faced constrained application in framing population-level policy to realize the public good of HIV prevention. Concluding that human rights frameworks must be developed to reflect the complementarity of individual treatment and collective prevention, this article conceptualizes collective rights to public health, structuring collective combination prevention to alleviate limitations on individual rights frameworks and frame rights-based global HIV/AIDS policy to assure research expansion, prevention access and health system integration. PMID:23226723

  19. Study of Water Pollution Early Warning Framework Based on Internet of Things

    NASA Astrophysics Data System (ADS)

    Chengfang, H.; Xiao, X.; Dingtao, S.; Bo, C.; Xiongfei, W.

    2016-06-01

    In recent years, with the increasing world environmental pollution happening, sudden water pollution incident has become more and more frequently in China. It has posed a serious threat to water safety of the people living in the water source area. Conventional water pollution monitoring method is manual periodic testing, it maybe miss the best time to find that pollution incident. This paper proposes a water pollution warning framework to change this state. On the basis of the Internet of things, we uses automatic water quality monitoring technology to realize monitoring. We calculate the monitoring data with water pollution model to judge whether the water pollution incident is happen or not. Water pollution warning framework is divided into three layers: terminal as the sensing layer, it with the deployment of the automatic water quality pollution monitoring sensor. The middle layer is the transfer network layer, data information implementation is based on GPRS wireless network transmission. The upper one is the application layer. With these application systems, early warning information of water pollution will realize the high-speed transmission between grassroots units and superior units. The paper finally gives an example that applying this pollution warning framework to water quality monitoring of Beijing, China, it greatly improves the speed of the pollution warning responding of Beijing.

  20. An extensible and lightweight architecture for adaptive server applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorton, Ian; Liu, Yan; Trivedi, Nihar

    2008-07-10

    Server applications augmented with behavioral adaptation logic can react to environmental changes, creating self-managing server applications with improved quality of service at runtime. However, developing adaptive server applications is challenging due to the complexity of the underlying server technologies and highly dynamic application environments. This paper presents an architecture framework, the Adaptive Server Framework (ASF), to facilitate the development of adaptive behavior for legacy server applications. ASF provides a clear separation between the implementation of adaptive behavior and the business logic of the server application. This means a server application can be extended with programmable adaptive features through the definitionmore » and implementation of control components defined in ASF. Furthermore, ASF is a lightweight architecture in that it incurs low CPU overhead and memory usage. We demonstrate the effectiveness of ASF through a case study, in which a server application dynamically determines the resolution and quality to scale an image based on the load of the server and network connection speed. The experimental evaluation demonstrates the erformance gains possible by adaptive behavior and the low overhead introduced by ASF.« less

  1. Quality of service routing in the differentiated services framework

    NASA Astrophysics Data System (ADS)

    Oliveira, Marilia C.; Melo, Bruno; Quadros, Goncalo; Monteiro, Edmundo

    2001-02-01

    In this paper we present a quality of service routing strategy for network where traffic differentiation follows the class-based paradigm, as in the Differentiated Services framework. This routing strategy is based on a metric of quality of service. This metric represents the impact that delay and losses verified at each router in the network have in application performance. Based on this metric, it is selected a path for each class according to the class sensitivity to delay and losses. The distribution of the metric is triggered by a relative criterion with two thresholds, and the values advertised are the moving average of the last values measured.

  2. Physics-based multiscale coupling for full core nuclear reactor simulation

    DOE PAGES

    Gaston, Derek R.; Permann, Cody J.; Peterson, John W.; ...

    2015-10-01

    Numerical simulation of nuclear reactors is a key technology in the quest for improvements in efficiency, safety, and reliability of both existing and future reactor designs. Historically, simulation of an entire reactor was accomplished by linking together multiple existing codes that each simulated a subset of the relevant multiphysics phenomena. Recent advances in the MOOSE (Multiphysics Object Oriented Simulation Environment) framework have enabled a new approach: multiple domain-specific applications, all built on the same software framework, are efficiently linked to create a cohesive application. This is accomplished with a flexible coupling capability that allows for a variety of different datamore » exchanges to occur simultaneously on high performance parallel computational hardware. Examples based on the KAIST-3A benchmark core, as well as a simplified Westinghouse AP-1000 configuration, demonstrate the power of this new framework for tackling—in a coupled, multiscale manner—crucial reactor phenomena such as CRUD-induced power shift and fuel shuffle. 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license« less

  3. Software Framework for Development of Web-GIS Systems for Analysis of Georeferenced Geophysical Data

    NASA Astrophysics Data System (ADS)

    Okladnikov, I.; Gordov, E. P.; Titov, A. G.

    2011-12-01

    Georeferenced datasets (meteorological databases, modeling and reanalysis results, remote sensing products, etc.) are currently actively used in numerous applications including modeling, interpretation and forecast of climatic and ecosystem changes for various spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their size which might constitute up to tens terabytes for a single dataset at present studies in the area of climate and environmental change require a special software support. A dedicated software framework for rapid development of providing such support information-computational systems based on Web-GIS technologies has been created. The software framework consists of 3 basic parts: computational kernel developed using ITTVIS Interactive Data Language (IDL), a set of PHP-controllers run within specialized web portal, and JavaScript class library for development of typical components of web mapping application graphical user interface (GUI) based on AJAX technology. Computational kernel comprise of number of modules for datasets access, mathematical and statistical data analysis and visualization of results. Specialized web-portal consists of web-server Apache, complying OGC standards Geoserver software which is used as a base for presenting cartographical information over the Web, and a set of PHP-controllers implementing web-mapping application logic and governing computational kernel. JavaScript library aiming at graphical user interface development is based on GeoExt library combining ExtJS Framework and OpenLayers software. Based on the software framework an information-computational system for complex analysis of large georeferenced data archives was developed. Structured environmental datasets available for processing now include two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, meteorological observational data for the territory of the former USSR for the 20th century, and others. Current version of the system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The software framework presented allows rapid development of Web-GIS systems for geophysical data analysis thus providing specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. This work is partially supported by RFBR grants #10-07-00547, #11-05-01190, and SB RAS projects 4.31.1.5, 4.31.2.7, 4, 8, 9, 50 and 66.

  4. Complex basis functions for molecular resonances: Methodology and applications

    NASA Astrophysics Data System (ADS)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  5. Implementation science theories to inform efforts for de-implementation of urologic oncology care practices resulting in overuse and misuse.

    PubMed

    Nielsen, Matthew E; Birken, Sarah A

    2018-05-01

    The field of implementation science has been conventionally applied in the context of increasing the application of evidence-based practices into clinical care, given evidence of underusage of appropriate interventions in many settings. Increasingly, however, there is recognition of the potential for similar frameworks to inform efforts to reduce the application of ineffective or potentially harmful practices. In this article, we provide some examples of clinical scenarios in which the quality problem may be overuse and misuse, and review relevant theories and frameworks that may inform improvement activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Highly selective luminescent sensing of picric acid based on a water-stable europium metal-organic framework

    NASA Astrophysics Data System (ADS)

    Xia, Tifeng; Zhu, Fengliang; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2017-01-01

    A water-stable metal-organic framework (MOF) EuNDC has been synthesized for selective detection of the well-known contaminant and toxicant picric acid (PA) in aqueous solution. Due to the photo-induced electron transfer and self-absorption mechanism, EuNDC displayed rapid, selective and sensitive detection of PA with a detection limit of 37.6 ppb. Recyclability experiments revealed that EuNDC retains its initial luminescent intensity and same quenching efficiency in each cycle, suggesting high photostability and reusability for long-term sensing applications. The excellent detection performance of EuNDC makes it a promising PA sensing material for practical applications.

  7. Miller's Pyramid and Core Competency Assessment: A Study in Relationship Construct Validity.

    PubMed

    Williams, Betsy White; Byrne, Phil D; Welindt, Dillon; Williams, Michael V

    2016-01-01

    Continuous professional development relies on the link between performance and an educational process aimed at improving knowledge and skill. One of the most broadly used frameworks for assessing skills is Miller's Pyramid. This Pyramid has a series of levels of achievement beginning with knowledge (at the base) and ending with routine application in the clinical setting. The purpose of this study was to determine the degree of convergence of two measurement methods, one based on Miller's framework, the second using the Accreditation Council for Graduate Medical Education/American Board of Medical Specialties (ACGME/ABMS) Core Competency framework. The data were gathered from the faculty of a large, Midwestern regional health care provider and hospital system. Data from 264 respondents were studied. The 360° data were from raters of physicians holding supervisory roles in the organization. The scale items were taken from an instrument that has been validated for both structure and known group prediction. The Miller scale was purposely built for this application. The questions were designed to describe each level of the model. The Miller scale was reduced to a single dimension. This result was then regressed on the items from the 360° item ratings. Results of a multivariate analysis of variance isolated a significant relationship between the Miller's Pyramid score and the competency items (P < 0.001). These findings demonstrate a relationship between measures based on Miller's framework and behavioral measures based on the ABMS/ACGME core competencies. Equally important is the finding that while they are related they are not identical. These findings have implications for continuous professional development programing design.

  8. Trialing the Community-Based Collaborative Action Research Framework: Supporting Rural Health Through a Community Health Needs Assessment.

    PubMed

    Van Gelderen, Stacey A; Krumwiede, Kelly A; Krumwiede, Norma K; Fenske, Candace

    2018-01-01

    To describe the application of the Community-Based Collaborative Action Research (CBCAR) framework to uplift rural community voices while conducting a community health needs assessment (CHNA) by formulating a partnership between a critical access hospital, public health agency, school of nursing, and community members to improve societal health of this rural community. This prospective explorative study used the CBCAR framework in the design, collection, and analysis of the data. The framework phases include: Partnership, dialogue, pattern recognition, dialogue on meaning of pattern, insight into action, and reflecting on evolving pattern. Hospital and public health agency leaders learned how to use the CBCAR framework when conducting a CHNA to meet Affordable Care Act federal requirements. Closing the community engagement gap helped ensure all voices were heard, maximized intellectual capital, synergized efforts, improved communication by establishing trust, aligned resources with initiatives, and diminished power struggles regarding rural health. The CBCAR framework facilitated community engagement and promoted critical dialogue where community voices were heard. A sustainable community-based collaborative was formed. The project increased the critical access hospital's capacity to conduct a CHNA. The collaborative's decision-making capacity was challenged and ultimately strengthened as efforts continue to be made to address rural health.

  9. The Performance of Short-Term Heart Rate Variability in the Detection of Congestive Heart Failure

    PubMed Central

    Barros, Allan Kardec; Ohnishi, Noboru

    2016-01-01

    Congestive heart failure (CHF) is a cardiac disease associated with the decreasing capacity of the cardiac output. It has been shown that the CHF is the main cause of the cardiac death around the world. Some works proposed to discriminate CHF subjects from healthy subjects using either electrocardiogram (ECG) or heart rate variability (HRV) from long-term recordings. In this work, we propose an alternative framework to discriminate CHF from healthy subjects by using HRV short-term intervals based on 256 RR continuous samples. Our framework uses a matching pursuit algorithm based on Gabor functions. From the selected Gabor functions, we derived a set of features that are inputted into a hybrid framework which uses a genetic algorithm and k-nearest neighbour classifier to select a subset of features that has the best classification performance. The performance of the framework is analyzed using both Fantasia and CHF database from Physionet archives which are, respectively, composed of 40 healthy volunteers and 29 subjects. From a set of nonstandard 16 features, the proposed framework reaches an overall accuracy of 100% with five features. Our results suggest that the application of hybrid frameworks whose classifier algorithms are based on genetic algorithms has outperformed well-known classifier methods. PMID:27891509

  10. Evidence-Based Evaluation of Practice and Innovation in Physical Therapy Using the IDEAL-Physio Framework.

    PubMed

    Beard, David; Hamilton, David; Davies, Loretta; Cook, Jonathan; Hirst, Allison; McCulloch, Peter; Paez, Arsenio

    2018-02-01

    The IDEAL framework is an established method for initial and ongoing evaluations of innovation and practice for complex health care interventions. First derived for surgical sciences and embedded at a global level for evaluating surgery/surgical devices, the IDEAL framework is based on the principle that innovation and evaluation in clinical practice can, and should, evolve together in an ordered manner: from conception to development and then to validation by appropriate clinical studies and, finally, longer-term follow-up. This framework is highly suited to other complex, nonpharmacological interventions, such as physical therapist interventions. This perspective outlines the application of IDEAL to physical therapy in the new IDEAL-Physio framework. The IDEAL-Physio framework comprises 5 stages. In stage 1, the idea phase, formal data collection should begin. Stage 2a is the phase for iterative improvement and adjustment with thorough data recording. Stage 2b involves the onset of formal evaluation using systematically collected group or cohort data. Stage 3 is the phase for formal comparative assessment of treatment, usually involving randomized studies. Stage 4 involves long-term follow-up. The IDEAL-Physio framework is recommended as a method for guiding and evaluating both innovation and practice in physical therapy, with the overall goal of providing better evidence-based care. © 2017 American Physical Therapy Association.

  11. MUFFSgenMC: An Open Source MUon Flexible Framework for Spectral GENeration for Monte Carlo Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatzidakis, Stylianos; Greulich, Christopher

    A cosmic ray Muon Flexible Framework for Spectral GENeration for Monte Carlo Applications (MUFFSgenMC) has been developed to support state-of-the-art cosmic ray muon tomographic applications. The flexible framework allows for easy and fast creation of source terms for popular Monte Carlo applications like GEANT4 and MCNP. This code framework simplifies the process of simulations used for cosmic ray muon tomography.

  12. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    PubMed

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  13. A framework for telehealth program evaluation.

    PubMed

    Nepal, Surya; Li, Jane; Jang-Jaccard, Julian; Alem, Leila

    2014-04-01

    Evaluating telehealth programs is a challenging task, yet it is the most sensible first step when embarking on a telehealth study. How can we frame and report on telehealth studies? What are the health services elements to select based on the application needs? What are the appropriate terms to use to refer to such elements? Various frameworks have been proposed in the literature to answer these questions, and each framework is defined by a set of properties covering different aspects of telehealth systems. The most common properties include application, technology, and functionality. With the proliferation of telehealth, it is important not only to understand these properties, but also to define new properties to account for a wider range of context of use and evaluation outcomes. This article presents a comprehensive framework for delivery design, implementation, and evaluation of telehealth services. We first survey existing frameworks proposed in the literature and then present our proposed comprehensive multidimensional framework for telehealth. Six key dimensions of the proposed framework include health domains, health services, delivery technologies, communication infrastructure, environment setting, and socioeconomic analysis. We define a set of example properties for each dimension. We then demonstrate how we have used our framework to evaluate telehealth programs in rural and remote Australia. A few major international studies have been also mapped to demonstrate the feasibility of the framework. The key characteristics of the framework are as follows: (a) loosely coupled and hence easy to use, (b) provides a basis for describing a wide range of telehealth programs, and (c) extensible to future developments and needs.

  14. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal

    PubMed Central

    Ramkumar, Barathram; Sabarimalai Manikandan, M.

    2017-01-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal. PMID:28529758

  15. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

    PubMed

    Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M

    2017-02-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.

  16. Systematic evaluation of deep learning based detection frameworks for aerial imagery

    NASA Astrophysics Data System (ADS)

    Sommer, Lars; Steinmann, Lucas; Schumann, Arne; Beyerer, Jürgen

    2018-04-01

    Object detection in aerial imagery is crucial for many applications in the civil and military domain. In recent years, deep learning based object detection frameworks significantly outperformed conventional approaches based on hand-crafted features on several datasets. However, these detection frameworks are generally designed and optimized for common benchmark datasets, which considerably differ from aerial imagery especially in object sizes. As already demonstrated for Faster R-CNN, several adaptations are necessary to account for these differences. In this work, we adapt several state-of-the-art detection frameworks including Faster R-CNN, R-FCN, and Single Shot MultiBox Detector (SSD) to aerial imagery. We discuss adaptations that mainly improve the detection accuracy of all frameworks in detail. As the output of deeper convolutional layers comprise more semantic information, these layers are generally used in detection frameworks as feature map to locate and classify objects. However, the resolution of these feature maps is insufficient for handling small object instances, which results in an inaccurate localization or incorrect classification of small objects. Furthermore, state-of-the-art detection frameworks perform bounding box regression to predict the exact object location. Therefore, so called anchor or default boxes are used as reference. We demonstrate how an appropriate choice of anchor box sizes can considerably improve detection performance. Furthermore, we evaluate the impact of the performed adaptations on two publicly available datasets to account for various ground sampling distances or differing backgrounds. The presented adaptations can be used as guideline for further datasets or detection frameworks.

  17. A simple versatile solution for collecting multidimensional clinical data based on the CakePHP web application framework.

    PubMed

    Biermann, Martin

    2014-04-01

    Clinical trials aiming for regulatory approval of a therapeutic agent must be conducted according to Good Clinical Practice (GCP). Clinical Data Management Systems (CDMS) are specialized software solutions geared toward GCP-trials. They are however less suited for data management in small non-GCP research projects. For use in researcher-initiated non-GCP studies, we developed a client-server database application based on the public domain CakePHP framework. The underlying MySQL database uses a simple data model based on only five data tables. The graphical user interface can be run in any web browser inside the hospital network. Data are validated upon entry. Data contained in external database systems can be imported interactively. Data are automatically anonymized on import, and the key lists identifying the subjects being logged to a restricted part of the database. Data analysis is performed by separate statistics and analysis software connecting to the database via a generic Open Database Connectivity (ODBC) interface. Since its first pilot implementation in 2011, the solution has been applied to seven different clinical research projects covering different clinical problems in different organ systems such as cancer of the thyroid and the prostate glands. This paper shows how the adoption of a generic web application framework is a feasible, flexible, low-cost, and user-friendly way of managing multidimensional research data in researcher-initiated non-GCP clinical projects. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. A Framework to Support the Sharing and Reuse of Computable Phenotype Definitions Across Health Care Delivery and Clinical Research Applications

    PubMed Central

    Richesson, Rachel L.; Smerek, Michelle M.; Blake Cameron, C.

    2016-01-01

    Introduction: The ability to reproducibly identify clinically equivalent patient populations is critical to the vision of learning health care systems that implement and evaluate evidence-based treatments. The use of common or semantically equivalent phenotype definitions across research and health care use cases will support this aim. Currently, there is no single consolidated repository for computable phenotype definitions, making it difficult to find all definitions that already exist, and also hindering the sharing of definitions between user groups. Method: Drawing from our experience in an academic medical center that supports a number of multisite research projects and quality improvement studies, we articulate a framework that will support the sharing of phenotype definitions across research and health care use cases, and highlight gaps and areas that need attention and collaborative solutions. Framework: An infrastructure for re-using computable phenotype definitions and sharing experience across health care delivery and clinical research applications includes: access to a collection of existing phenotype definitions, information to evaluate their appropriateness for particular applications, a knowledge base of implementation guidance, supporting tools that are user-friendly and intuitive, and a willingness to use them. Next Steps: We encourage prospective researchers and health administrators to re-use existing EHR-based condition definitions where appropriate and share their results with others to support a national culture of learning health care. There are a number of federally funded resources to support these activities, and research sponsors should encourage their use. PMID:27563686

  19. A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina

    2015-03-01

    Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.

  20. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.

    PubMed

    N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.

  1. A VGI data integration framework based on linked data model

    NASA Astrophysics Data System (ADS)

    Wan, Lin; Ren, Rongrong

    2015-12-01

    This paper aims at the geographic data integration and sharing method for multiple online VGI data sets. We propose a semantic-enabled framework for online VGI sources cooperative application environment to solve a target class of geospatial problems. Based on linked data technologies - which is one of core components of semantic web, we can construct the relationship link among geographic features distributed in diverse VGI platform by using linked data modeling methods, then deploy these semantic-enabled entities on the web, and eventually form an interconnected geographic data network to support geospatial information cooperative application across multiple VGI data sources. The mapping and transformation from VGI sources to RDF linked data model is presented to guarantee the unique data represent model among different online social geographic data sources. We propose a mixed strategy which combined spatial distance similarity and feature name attribute similarity as the measure standard to compare and match different geographic features in various VGI data sets. And our work focuses on how to apply Markov logic networks to achieve interlinks of the same linked data in different VGI-based linked data sets. In our method, the automatic generating method of co-reference object identification model according to geographic linked data is discussed in more detail. It finally built a huge geographic linked data network across loosely-coupled VGI web sites. The results of the experiment built on our framework and the evaluation of our method shows the framework is reasonable and practicable.

  2. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs

    NASA Astrophysics Data System (ADS)

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; Troia, Matthew J.

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  3. Organizing environmental flow frameworks to meet hydropower mitigation needs

    USGS Publications Warehouse

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette; Troia, Matthew J.

    2016-01-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  4. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs.

    PubMed

    McManamay, Ryan A; Brewer, Shannon K; Jager, Henriette I; Troia, Matthew J

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  5. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption

    PubMed Central

    Alhamami, Mays; Doan, Huu; Cheng, Chil-Hung

    2014-01-01

    Metal-organic frameworks (MOFs) are a new class of microporous materials that possess framework flexibility, large surface areas, “tailor-made” framework functionalities, and tunable pore sizes. These features empower MOFs superior performances and broader application spectra than those of zeolites and phosphine-based molecular sieves. In parallel with designing new structures and new chemistry of MOFs, the observation of unique breathing behaviors upon adsorption of gases or solvents stimulates their potential applications as host materials in gas storage for renewable energy. This has attracted intense research energy to understand the causes at the atomic level, using in situ X-ray diffraction, calorimetry, Fourier transform infrared spectroscopy, and molecular dynamics simulations. This article is developed in the following order: first to introduce the definition of MOFs and the observation of their framework flexibility. Second, synthesis routes of MOFs are summarized with the emphasis on the hydrothermal synthesis, owing to the environmental-benign and economically availability of water. Third, MOFs exhibiting breathing behaviors are summarized, followed by rationales from thermodynamic viewpoint. Subsequently, effects of various functionalities on breathing behaviors are appraised, including using post-synthetic modification routes. Finally, possible framework spatial requirements of MOFs for yielding breathing behaviors are highlighted as the design strategies for new syntheses. PMID:28788614

  6. Translational Scholarship and a Palliative Approach: Enlisting the Knowledge-As-Action Framework.

    PubMed

    Reimer-Kirkham, Sheryl; Doane, Gweneth Hartrick; Antifeau, Elisabeth; Pesut, Barbara; Porterfield, Pat; Roberts, Della; Stajduhar, Kelli; Wikjord, Nicole

    2015-01-01

    Based on a retheorized epistemology for knowledge translation (KT) that problematizes the "know-do gap" and conceptualizes the knower, knowledge, and action as inseparable, this paper describes the application of the Knowledge-As-Action Framework. When applied as a heuristic device to support an inquiry process, the framework with the metaphor of a kite facilitates a responsiveness to the complexities that characterize KT. Examples from a KT demonstration project on the integration of a palliative approach at 3 clinical sites illustrate the interrelatedness of 6 dimensions-the local context, processes, people, knowledge, fluctuating realities, and values.

  7. Ontology Mappings to Improve Learning Resource Search

    ERIC Educational Resources Information Center

    Gasevic, Dragan; Hatala, Marek

    2006-01-01

    This paper proposes an ontology mapping-based framework that allows searching for learning resources using multiple ontologies. The present applications of ontologies in e-learning use various ontologies (eg, domain, curriculum, context), but they do not give a solution on how to interoperate e-learning systems based on different ontologies. The…

  8. Decision Support Framework Implementation Of The Web-Based Environmental Decision Analysis DASEES: Decision Analysis For A Sustainable Environment, Economy, And Society

    EPA Science Inventory

    Solutions to pervasive environmental problems often are not amenable to a straightforward application of science-based actions. These problems encompass large-scale environmental policy questions where environmental concerns, economic constraints, and societal values conflict ca...

  9. Campaigning for Children's Oral Health: A Case Study

    ERIC Educational Resources Information Center

    Vaughan, Kate

    2009-01-01

    Arguably, the ultimate application of evidenced-based communications is translating the research recommendations into a full-fledged media campaign. This article explains the development and implementation of Watch Your Mouth, a campaign based on FrameWorks Institute's research on children's oral health. To date, this innovative campaign has been…

  10. An Examination of Learning Profiles in Physical Education

    ERIC Educational Resources Information Center

    Shen, Bo; Chen, Ang

    2007-01-01

    Using the model of domain learning as a theoretical framework, the study was designed to examine the extent to which learners' initial learning profiles based on previously acquired knowledge, learning strategy application, and interest-based motivation were distinctive in learning softball. Participants were 177 sixth-graders from three middle…

  11. A UML-based meta-framework for system design in public health informatics.

    PubMed

    Orlova, Anna O; Lehmann, Harold

    2002-01-01

    The National Agenda for Public Health Informatics calls for standards in data and knowledge representation within public health, which requires a multi-level framework that links all aspects of public health. The literature of public health informatics and public health informatics application were reviewed. A UML-based systems analysis was performed. Face validity of results was evaluated in analyzing the public health domain of lead poisoning. The core class of the UML-based system of public health is the Public Health Domain, which is associated with multiple Problems, for which Actors provide Perspectives. Actors take Actions that define, generate, utilize and/or evaluate Data Sources. The life cycle of the domain is a sequence of activities attributed to its problems that spirals through multiple iterations and realizations within a domain. The proposed Public Health Informatics Meta-Framework broadens efforts in applying informatics principles to the field of public health

  12. A system framework of inter-enterprise machining quality control based on fractal theory

    NASA Astrophysics Data System (ADS)

    Zhao, Liping; Qin, Yongtao; Yao, Yiyong; Yan, Peng

    2014-03-01

    In order to meet the quality control requirement of dynamic and complicated product machining processes among enterprises, a system framework of inter-enterprise machining quality control based on fractal was proposed. In this system framework, the fractal-specific characteristic of inter-enterprise machining quality control function was analysed, and the model of inter-enterprise machining quality control was constructed by the nature of fractal structures. Furthermore, the goal-driven strategy of inter-enterprise quality control and the dynamic organisation strategy of inter-enterprise quality improvement were constructed by the characteristic analysis on this model. In addition, the architecture of inter-enterprise machining quality control based on fractal was established by means of Web service. Finally, a case study for application was presented. The result showed that the proposed method was available, and could provide guidance for quality control and support for product reliability in inter-enterprise machining processes.

  13. Real-time visual tracking of less textured three-dimensional objects on mobile platforms

    NASA Astrophysics Data System (ADS)

    Seo, Byung-Kuk; Park, Jungsik; Park, Hanhoon; Park, Jong-Il

    2012-12-01

    Natural feature-based approaches are still challenging for mobile applications (e.g., mobile augmented reality), because they are feasible only in limited environments such as highly textured and planar scenes/objects, and they need powerful mobile hardware for fast and reliable tracking. In many cases where conventional approaches are not effective, three-dimensional (3-D) knowledge of target scenes would be beneficial. We present a well-established framework for real-time visual tracking of less textured 3-D objects on mobile platforms. Our framework is based on model-based tracking that efficiently exploits partially known 3-D scene knowledge such as object models and a background's distinctive geometric or photometric knowledge. Moreover, we elaborate on implementation in order to make it suitable for real-time vision processing on mobile hardware. The performance of the framework is tested and evaluated on recent commercially available smartphones, and its feasibility is shown by real-time demonstrations.

  14. An Attribute Based Access Control Framework for Healthcare System

    NASA Astrophysics Data System (ADS)

    Afshar, Majid; Samet, Saeed; Hu, Ting

    2018-01-01

    Nowadays, access control is an indispensable part of the Personal Health Record and supplies for its confidentiality by enforcing policies and rules to ensure that only authorized users gain access to requested resources in the system. In other words, the access control means protecting patient privacy in healthcare systems. Attribute-Based Access Control (ABAC) is a new access control model that can be used instead of other traditional types of access control such as Discretionary Access Control, Mandatory Access Control, and Role-Based Access Control. During last five years ABAC has shown some applications in both recent academic fields and industry purposes. ABAC by using user’s attributes and resources, makes a decision according to an access request. In this paper, we propose an ABAC framework for healthcare system. We use the engine of ABAC for rendering and enforcing healthcare policies. Moreover, we handle emergency situations in this framework.

  15. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  16. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  17. Segmentation of radiographic images under topological constraints: application to the femur.

    PubMed

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-09-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.

  18. Gender Divide and Acceptance of Collaborative Web 2.0 Applications for Learning in Higher Education

    ERIC Educational Resources Information Center

    Huang, Wen-Hao David; Hood, Denice Ward; Yoo, Sun Joo

    2013-01-01

    Situated in the gender digital divide framework, this survey study investigated the role of computer anxiety in influencing female college students' perceptions toward Web 2.0 applications for learning. Based on 432 college students' "Web 2.0 for learning" perception ratings collected by relevant categories of "Unified Theory of Acceptance and Use…

  19. Learning Organization in Mainland China: Empirical Research on Its Application to Chinese State-Owned Enterprises

    ERIC Educational Resources Information Center

    Zhang, De; Zhang, Zhen; Yang, Baiyin

    2004-01-01

    This paper examines the applicability of the learning organization concept and its measurement in a Chinese context. Based on the theoretical framework proposed by Watkins and Marsick (1993, 1996, 1997), this paper identifies the differences in seven of the Dimensions of Learning Organization Questionnaire (DLOQ) between traditional state-owned…

  20. 77 FR 19001 - Foreign-Trade Zone 94-Laredo, TX; Application for Reorganization Under Alternative Site Framework

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Portal Industrial Park, 8421 Amparan Road, Laredo; and, Site 11 (3.463 acres, expires 9/ 30/14)--Sony... be able to serve sites throughout the service area based on companies' needs for FTZ designation. The... facts and information presented in the application and case record and to report findings and...

  1. Applicability of the Classroom Assessment Scoring System in Chinese Preschools Based on Psychometric Evidence

    ERIC Educational Resources Information Center

    Hu, Bi Ying; Fan, Xitao; Gu, Chuanhua; Yang, Ning

    2016-01-01

    Research Findings: This study examined the applicability of the Classroom Assessment Scoring System (CLASS) Pre-K (Pianta, La Paro, & Hamre, 2008) and its underpinning framework of teaching through interactions in typical Chinese kindergarten classrooms. A sample of 180 kindergarten classrooms in China was selected, and the CLASS was used to…

  2. Suitability evaluation tool for lands (rice, corn and soybean) as mobile application

    NASA Astrophysics Data System (ADS)

    Rahim, S. E.; Supli, A. A.; Damiri, N.

    2017-09-01

    Evaluation of land suitability for special purposes e.g. for food crops is a must, a means to understand determining factors to be considered in the management of a land successfully. A framework for evaluating the land suitability for purposes in agriculture was first introduced by the Food and Agriculture Organization (FAO) in late 1970s. When using the framework manually, it is time consuming and not interesting for land users. Therefore, the authors have developed an effective tool by transforming the FAO framework into smart mobile application. This application is designed by using simple language for each factor and also by utilizing rule based system (RBS) algorithm. The factors involved are soil type, depth of soil solum, soil fertility, soil pH, drainage, risk of flood, etc. Suitability in this paper is limited to rice, corn and soybean. The application is found to be easier to understand and also could automatically determine the suitability of land. Usability testing was also conducted with 75 respondents. The results showed the usability was in "very good" classification. The program is urgently needed by the land managers, farmers, lecturers, students and government officials (planners) to help them more easily manage their land for a better future.

  3. Framework for Development of Object-Oriented Software

    NASA Technical Reports Server (NTRS)

    Perez-Poveda, Gus; Ciavarella, Tony; Nieten, Dan

    2004-01-01

    The Real-Time Control (RTC) Application Framework is a high-level software framework written in C++ that supports the rapid design and implementation of object-oriented application programs. This framework provides built-in functionality that solves common software development problems within distributed client-server, multi-threaded, and embedded programming environments. When using the RTC Framework to develop software for a specific domain, designers and implementers can focus entirely on the details of the domain-specific software rather than on creating custom solutions, utilities, and frameworks for the complexities of the programming environment. The RTC Framework was originally developed as part of a Space Shuttle Launch Processing System (LPS) replacement project called Checkout and Launch Control System (CLCS). As a result of the framework s development, CLCS software development time was reduced by 66 percent. The framework is generic enough for developing applications outside of the launch-processing system domain. Other applicable high-level domains include command and control systems and simulation/ training systems.

  4. Dynamic XML-based exchange of relational data: application to the Human Brain Project.

    PubMed

    Tang, Zhengming; Kadiyska, Yana; Li, Hao; Suciu, Dan; Brinkley, James F

    2003-01-01

    This paper discusses an approach to exporting relational data in XML format for data exchange over the web. We describe the first real-world application of SilkRoute, a middleware program that dynamically converts existing relational data to a user-defined XML DTD. The application, called XBrain, wraps SilkRoute in a Java Server Pages framework, thus permitting a web-based XQuery interface to a legacy relational database. The application is demonstrated as a query interface to the University of Washington Brain Project's Language Map Experiment Management System, which is used to manage data about language organization in the brain.

  5. The landscape of fear conceptual framework: definition and review of current applications and misuses.

    PubMed

    Bleicher, Sonny S

    2017-01-01

    Landscapes of Fear (LOF), the spatially explicit distribution of perceived predation risk as seen by a population, is increasingly cited in ecological literature and has become a frequently used "buzz-word". With the increase in popularity, it became necessary to clarify the definition for the term, suggest boundaries and propose a common framework for its use. The LOF, as a progeny of the "ecology of fear" conceptual framework, defines fear as the strategic manifestation of the cost-benefit analysis of food and safety tradeoffs. In addition to direct predation risk, the LOF is affected by individuals' energetic-state, inter- and intra-specific competition and is constrained by the evolutionary history of each species. Herein, based on current applications of the LOF conceptual framework, I suggest the future research in this framework will be directed towards: (1) finding applied management uses as a trait defining a population's habitat-use and habitat-suitability; (2) studying multi-dimensional distribution of risk-assessment through time and space; (3) studying variability between individuals within a population; (4) measuring eco-neurological implications of risk as a feature of environmental heterogeneity and (5) expanding temporal and spatial scales of empirical studies.

  6. The landscape of fear conceptual framework: definition and review of current applications and misuses

    PubMed Central

    2017-01-01

    Landscapes of Fear (LOF), the spatially explicit distribution of perceived predation risk as seen by a population, is increasingly cited in ecological literature and has become a frequently used “buzz-word”. With the increase in popularity, it became necessary to clarify the definition for the term, suggest boundaries and propose a common framework for its use. The LOF, as a progeny of the “ecology of fear” conceptual framework, defines fear as the strategic manifestation of the cost-benefit analysis of food and safety tradeoffs. In addition to direct predation risk, the LOF is affected by individuals’ energetic-state, inter- and intra-specific competition and is constrained by the evolutionary history of each species. Herein, based on current applications of the LOF conceptual framework, I suggest the future research in this framework will be directed towards: (1) finding applied management uses as a trait defining a population’s habitat-use and habitat-suitability; (2) studying multi-dimensional distribution of risk-assessment through time and space; (3) studying variability between individuals within a population; (4) measuring eco-neurological implications of risk as a feature of environmental heterogeneity and (5) expanding temporal and spatial scales of empirical studies. PMID:28929015

  7. Community-based prevention marketing: organizing a community for health behavior intervention.

    PubMed

    Bryant, Carol A; Brown, Kelli R McCormack; McDermott, Robert J; Forthofer, Melinda S; Bumpus, Elizabeth C; Calkins, Susan A; Zapata, Lauren B

    2007-04-01

    This article describes the application and refinement of community-based prevention marketing (CBPM), an example of community-based participatory research that blends social marketing theories and techniques and community organization principles to guide voluntary health behavior change. The Florida Prevention Research Center has worked with a community coalition in Sarasota County, Florida to define locally important health problems and issues and to develop responsive health-promotion interventions. The CBPM framework has evolved as academic and community-based researchers have gained experience applying it. Community boards can use marketing principles to design evidence-based strategies for addressing local public health concerns. Based on 6 years of experience with the "Believe in All Your Possibilities" program, lessons learned that have led to revision and improvement of the CBPM framework are described.

  8. Critical analysis of e-health readiness assessment frameworks: suitability for application in developing countries.

    PubMed

    Mauco, Kabelo Leonard; Scott, Richard E; Mars, Maurice

    2018-02-01

    Introduction e-Health is an innovative way to make health services more effective and efficient and application is increasing worldwide. e-Health represents a substantial ICT investment and its failure usually results in substantial losses in time, money (including opportunity costs) and effort. Therefore it is important to assess e-health readiness prior to implementation. Several frameworks have been published on e-health readiness assessment, under various circumstances and geographical regions of the world. However, their utility for the developing world is unknown. Methods A literature review and analysis of published e-health readiness assessment frameworks or models was performed to determine if any are appropriate for broad assessment of e-health readiness in the developing world. A total of 13 papers described e-health readiness in different settings. Results and Discussion Eight types of e-health readiness were identified and no paper directly addressed all of these. The frameworks were based upon varying assumptions and perspectives. There was no underlying unifying theory underpinning the frameworks. Few assessed government and societal readiness, and none cultural readiness; all are important in the developing world. While the shortcomings of existing frameworks have been highlighted, most contain aspects that are relevant and can be drawn on when developing a framework and assessment tools for the developing world. What emerged is the need to develop different assessment tools for the various stakeholder sectors. This is an area that needs further research before attempting to develop a more generic framework for the developing world.

  9. Implementation of a multi-threaded framework for large-scale scientific applications

    DOE PAGES

    Sexton-Kennedy, E.; Gartung, Patrick; Jones, C. D.; ...

    2015-05-22

    The CMS experiment has recently completed the development of a multi-threaded capable application framework. In this paper, we will discuss the design, implementation and application of this framework to production applications in CMS. For the 2015 LHC run, this functionality is particularly critical for both our online and offline production applications, which depend on faster turn-around times and a reduced memory footprint relative to before. These applications are complex codes, each including a large number of physics-driven algorithms. While the framework is capable of running a mix of thread-safe and 'legacy' modules, algorithms running in our production applications need tomore » be thread-safe for optimal use of this multi-threaded framework at a large scale. Towards this end, we discuss the types of changes, which were necessary for our algorithms to achieve good performance of our multithreaded applications in a full-scale application. Lastly performance numbers for what has been achieved for the 2015 run are presented.« less

  10. A human rights framework for midwifery care.

    PubMed

    Thompson, Joyce Beebe

    2004-01-01

    This article presents a rights-based model for midwifery care of women and childbearing families. Salient features include discussion of the influence of values on how women are viewed within cultures and societies, universal ethical principles applicable to health care services, and human rights based on the view of women as persons rather than as objects or chattel. Examples of the health impact on women of persistent violation of basic human rights are used to support the need for using a human rights framework for midwifery care--a model supported by codes of ethics, the midwifery philosophy of care, and standards of practice.

  11. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  12. Child Safety Reference Frameworks: a Policy Tool for Child Injury Prevention at the Sub-national Level.

    PubMed

    Scholtes, Beatrice; Schröder-Bäck, Peter; Mackay, Morag; Vincenten, Joanne; Brand, Helmut

    2017-06-01

    The aim of this paper is to present the Child Safety Reference Frameworks (CSRF), a policy advice tool that places evidence-based child safety interventions, applicable at the sub-national level, into a framework resembling the Haddon Matrix. The CSRF is based on work done in previous EU funded projects, which we have adapted to the field of child safety. The CSRF were populated following a literature review. Four CSRF were developed for four domains of child safety: road, water and home safety, and intentional injury prevention. The CSRF can be used as a reference, assessment and comparative tool by child safety practitioners and policy makers working at the sub-national level. Copyright© by the National Institute of Public Health, Prague 2017

  13. Forensic interpretation of molecular variation on networks of disease transmission and genetic inheritance.

    PubMed

    Velsko, Stephan P; Osburn, Joanne; Allen, Jonathan

    2014-11-01

    This paper describes the inference-on-networks (ION) framework for forensic interpretat ION of molecular typing data in cases involving allegations of infectious microbial transmission, association of disease outbreaks with alleged sources, and identifying familial relationships using mitochondrial or Y chromosomal DNA. The framework is applicable to molecular typing data obtained using any technique, including those based on electrophoretic separations. A key insight is that the networks associated with disease transmission or DNA inheritance can be used to define specific testable relationships and avoid the ambiguity and subjectivity associated with the criteria used for inferring genetic relatedness now in use. We discuss specific applications of the framework to the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore and the 2001 foot-and-mouth disease virus (FMDV) outbreak in Great Britain. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Tractable policy management framework for IoT

    NASA Astrophysics Data System (ADS)

    Goynugur, Emre; de Mel, Geeth; Sensoy, Murat; Calo, Seraphin

    2017-05-01

    Due to the advancement in the technology, hype of connected devices (hence forth referred to as IoT) in support of automating the functionality of many domains, be it intelligent manufacturing or smart homes, have become a reality. However, with the proliferation of such connected and interconnected devices, efficiently and effectively managing networks manually becomes an impractical, if not an impossible task. This is because devices have their own obligations and prohibitions in context, and humans are not equip to maintain a bird's-eye-view of the state. Traditionally, policies are used to address the issue, but in the IoT arena, one requires a policy framework in which the language can provide sufficient amount of expressiveness along with efficient reasoning procedures to automate the management. In this work we present our initial work into creating a scalable knowledge-based policy framework for IoT and demonstrate its applicability through a smart home application.

  15. Communicating physics and the design of textbooks

    NASA Astrophysics Data System (ADS)

    Barojas, J.; Trigueros, M.

    1991-05-01

    The cognitive domains of a communication scheme for learning physics are related to a framework based on epistemology, and the planning of an introductory calculus textbook in classical mechanics is shown as an example of application.

  16. A novel framework for virtual prototyping of rehabilitation exoskeletons.

    PubMed

    Agarwal, Priyanshu; Kuo, Pei-Hsin; Neptune, Richard R; Deshpande, Ashish D

    2013-06-01

    Human-worn rehabilitation exoskeletons have the potential to make therapeutic exercises increasingly accessible to disabled individuals while reducing the cost and labor involved in rehabilitation therapy. In this work, we propose a novel human-model-in-the-loop framework for virtual prototyping (design, control and experimentation) of rehabilitation exoskeletons by merging computational musculoskeletal analysis with simulation-based design techniques. The framework allows to iteratively optimize design and control algorithm of an exoskeleton using simulation. We introduce biomechanical, morphological, and controller measures to quantify the performance of the device for optimization study. Furthermore, the framework allows one to carry out virtual experiments for testing specific "what-if" scenarios to quantify device performance and recovery progress. To illustrate the application of the framework, we present a case study wherein the design and analysis of an index-finger exoskeleton is carried out using the proposed framework.

  17. A Survey of Recent MARTe Based Systems

    NASA Astrophysics Data System (ADS)

    Neto, André C.; Alves, Diogo; Boncagni, Luca; Carvalho, Pedro J.; Valcarcel, Daniel F.; Barbalace, Antonio; De Tommasi, Gianmaria; Fernandes, Horácio; Sartori, Filippo; Vitale, Enzo; Vitelli, Riccardo; Zabeo, Luca

    2011-08-01

    The Multithreaded Application Real-Time executor (MARTe) is a data driven framework environment for the development and deployment of real-time control algorithms. The main ideas which led to the present version of the framework were to standardize the development of real-time control systems, while providing a set of strictly bounded standard interfaces to the outside world and also accommodating a collection of facilities which promote the speed and ease of development, commissioning and deployment of such systems. At the core of every MARTe based application, is a set of independent inter-communicating software blocks, named Generic Application Modules (GAM), orchestrated by a real-time scheduler. The platform independence of its core library provides MARTe the necessary robustness and flexibility for conveniently testing applications in different environments including non-real-time operating systems. MARTe is already being used in several machines, each with its own peculiarities regarding hardware interfacing, supervisory control configuration, operating system and target control application. This paper presents and compares the most recent results of systems using MARTe: the JET Vertical Stabilization system, which uses the Real Time Application Interface (RTAI) operating system on Intel multi-core processors; the COMPASS plasma control system, driven by Linux RT also on Intel multi-core processors; ISTTOK real-time tomography equilibrium reconstruction which shares the same support configuration of COMPASS; JET error field correction coils based on VME, PowerPC and VxWorks; FTU LH reflected power system running on VME, Intel with RTAI.

  18. StakeMeter: Value-Based Stakeholder Identification and Quantification Framework for Value-Based Software Systems

    PubMed Central

    Babar, Muhammad Imran; Ghazali, Masitah; Jawawi, Dayang N. A.; Zaheer, Kashif Bin

    2015-01-01

    Value-based requirements engineering plays a vital role in the development of value-based software (VBS). Stakeholders are the key players in the requirements engineering process, and the selection of critical stakeholders for the VBS systems is highly desirable. Based on the stakeholder requirements, the innovative or value-based idea is realized. The quality of the VBS system is associated with the concrete set of valuable requirements, and the valuable requirements can only be obtained if all the relevant valuable stakeholders participate in the requirements elicitation phase. The existing value-based approaches focus on the design of the VBS systems. However, the focus on the valuable stakeholders and requirements is inadequate. The current stakeholder identification and quantification (SIQ) approaches are neither state-of-the-art nor systematic for the VBS systems. The existing approaches are time-consuming, complex and inconsistent which makes the initiation process difficult. Moreover, the main motivation of this research is that the existing SIQ approaches do not provide the low level implementation details for SIQ initiation and stakeholder metrics for quantification. Hence, keeping in view the existing SIQ problems, this research contributes in the form of a new SIQ framework called ‘StakeMeter’. The StakeMeter framework is verified and validated through case studies. The proposed framework provides low-level implementation guidelines, attributes, metrics, quantification criteria and application procedure as compared to the other methods. The proposed framework solves the issues of stakeholder quantification or prioritization, higher time consumption, complexity, and process initiation. The framework helps in the selection of highly critical stakeholders for the VBS systems with less judgmental error. PMID:25799490

  19. An Ontology-based Architecture for Integration of Clinical Trials Management Applications

    PubMed Central

    Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.

    2007-01-01

    Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919

  20. Towards a unified model of passive drug permeation I: origins of the unstirred water layer with applications to ionic permeation.

    PubMed

    Ghosh, Avijit; Scott, Dennis O; Maurer, Tristan S

    2014-02-14

    In this work, we provide a unified theoretical framework describing how drug molecules can permeate across membranes in neutral and ionized forms for unstirred in vitro systems. The analysis provides a self-consistent basis for the origin of the unstirred water layer (UWL) within the Nernst-Planck framework in the fully unstirred limit and further provides an accounting mechanism based simply on the bulk aqueous solvent diffusion constant of the drug molecule. Our framework makes no new assumptions about the underlying physics of molecular permeation. We hold simply that Nernst-Planck is a reasonable approximation at low concentrations and all physical systems must conserve mass. The applicability of the derived framework has been examined both with respect to the effect of stirring and externally applied voltages to measured permeability. The analysis contains data for 9 compounds extracted from the literature representing a range of permeabilities and aqueous diffusion coefficients. Applicability with respect to ionized permeation is examined using literature data for the permanently charged cation, crystal violet, providing a basis for the underlying mechanism for ionized drug permeation for this molecule as being due to mobile counter-current flow. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture.

    PubMed

    Mat Kiah, M L; Al-Bakri, S H; Zaidan, A A; Zaidan, B B; Hussain, Muzammil

    2014-10-01

    One of the applications of modern technology in telemedicine is video conferencing. An alternative to traveling to attend a conference or meeting, video conferencing is becoming increasingly popular among hospitals. By using this technology, doctors can help patients who are unable to physically visit hospitals. Video conferencing particularly benefits patients from rural areas, where good doctors are not always available. Telemedicine has proven to be a blessing to patients who have no access to the best treatment. A telemedicine system consists of customized hardware and software at two locations, namely, at the patient's and the doctor's end. In such cases, the video streams of the conferencing parties may contain highly sensitive information. Thus, real-time data security is one of the most important requirements when designing video conferencing systems. This study proposes a secure framework for video conferencing systems and a complete management solution for secure video conferencing groups. Java Media Framework Application Programming Interface classes are used to design and test the proposed secure framework. Real-time Transport Protocol over User Datagram Protocol is used to transmit the encrypted audio and video streams, and RSA and AES algorithms are used to provide the required security services. Results show that the encryption algorithm insignificantly increases the video conferencing computation time.

  2. A Framework to Improve Energy Efficient Behaviour at Home through Activity and Context Monitoring

    PubMed Central

    García, Óscar; Alonso, Ricardo S.; Corchado, Juan M.

    2017-01-01

    Real-time Localization Systems have been postulated as one of the most appropriated technologies for the development of applications that provide customized services. These systems provide us with the ability to locate and trace users and, among other features, they help identify behavioural patterns and habits. Moreover, the implementation of policies that will foster energy saving in homes is a complex task that involves the use of this type of systems. Although there are multiple proposals in this area, the implementation of frameworks that combine technologies and use Social Computing to influence user behaviour have not yet reached any significant savings in terms of energy. In this work, the CAFCLA framework (Context-Aware Framework for Collaborative Learning Applications) is used to develop a recommendation system for home users. The proposed system integrates a Real-Time Localization System and Wireless Sensor Networks, making it possible to develop applications that work under the umbrella of Social Computing. The implementation of an experimental use case aided efficient energy use, achieving savings of 17%. Moreover, the conducted case study pointed to the possibility of attaining good energy consumption habits in the long term. This can be done thanks to the system’s real time and historical localization, tracking and contextual data, based on which customized recommendations are generated. PMID:28758987

  3. A lightweight messaging-based distributed processing and workflow execution framework for real-time and big data analysis

    NASA Astrophysics Data System (ADS)

    Laban, Shaban; El-Desouky, Aly

    2014-05-01

    To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Also, it is possible to extend the use of the framework in monitoring the IDC pipeline. The detailed design, implementation,conclusion and future work of the proposed framework will be presented.

  4. Conceptualising the effectiveness of impact assessment processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchitpricha, Chaunjit, E-mail: chaunjit@g.sut.ac.th; Bond, Alan, E-mail: alan.bond@uea.ac.uk; Unit for Environmental Sciences and Management School of Geo and Spatial Sciences, Internal Box 375, North West University

    2013-11-15

    This paper aims at conceptualising the effectiveness of impact assessment processes through the development of a literature-based framework of criteria to measure impact assessment effectiveness. Four categories of effectiveness were established: procedural, substantive, transactive and normative, each containing a number of criteria; no studies have previously brought together all four of these categories into such a comprehensive, criteria-based framework and undertaken systematic evaluation of practice. The criteria can be mapped within a cycle/or cycles of evaluation, based on the ‘logic model’, at the stages of input, process, output and outcome to enable the identification of connections between the criteria acrossmore » the categories of effectiveness. This framework is considered to have potential application in measuring the effectiveness of many impact assessment processes, including strategic environmental assessment (SEA), environmental impact assessment (EIA), social impact assessment (SIA) and health impact assessment (HIA). -- Highlights: • Conceptualising effectiveness of impact assessment processes. • Identification of factors influencing effectiveness of impact assessment processes. • Development of criteria within a framework for evaluating IA effectiveness. • Applying the logic model to examine connections between effectiveness criteria.« less

  5. A generic biokinetic model for noble gases with application to radon.

    PubMed

    Leggett, Rich; Marsh, James; Gregoratto, Demetrio; Blanchardon, Eric

    2013-06-01

    To facilitate the estimation of radiation doses from intake of radionuclides, the International Commission on Radiological Protection (ICRP) publishes dose coefficients (dose per unit intake) based on reference biokinetic and dosimetric models. The ICRP generally has not provided biokinetic models or dose coefficients for intake of noble gases, but plans to provide such information for (222)Rn and other important radioisotopes of noble gases in a forthcoming series of reports on occupational intake of radionuclides (OIR). This paper proposes a generic biokinetic model framework for noble gases and develops parameter values for radon. The framework is tailored to applications in radiation protection and is consistent with a physiologically based biokinetic modelling scheme adopted for the OIR series. Parameter values for a noble gas are based largely on a blood flow model and physical laws governing transfer of a non-reactive and soluble gas between materials. Model predictions for radon are shown to be consistent with results of controlled studies of its biokinetics in human subjects.

  6. Genoviz Software Development Kit: Java tool kit for building genomics visualization applications.

    PubMed

    Helt, Gregg A; Nicol, John W; Erwin, Ed; Blossom, Eric; Blanchard, Steven G; Chervitz, Stephen A; Harmon, Cyrus; Loraine, Ann E

    2009-08-25

    Visualization software can expose previously undiscovered patterns in genomic data and advance biological science. The Genoviz Software Development Kit (SDK) is an open source, Java-based framework designed for rapid assembly of visualization software applications for genomics. The Genoviz SDK framework provides a mechanism for incorporating adaptive, dynamic zooming into applications, a desirable feature of genome viewers. Visualization capabilities of the Genoviz SDK include automated layout of features along genetic or genomic axes; support for user interactions with graphical elements (Glyphs) in a map; a variety of Glyph sub-classes that promote experimentation with new ways of representing data in graphical formats; and support for adaptive, semantic zooming, whereby objects change their appearance depending on zoom level and zooming rate adapts to the current scale. Freely available demonstration and production quality applications, including the Integrated Genome Browser, illustrate Genoviz SDK capabilities. Separation between graphics components and genomic data models makes it easy for developers to add visualization capability to pre-existing applications or build new applications using third-party data models. Source code, documentation, sample applications, and tutorials are available at http://genoviz.sourceforge.net/.

  7. Application of preconditioned alternating direction method of multipliers in depth from focal stack

    NASA Astrophysics Data System (ADS)

    Javidnia, Hossein; Corcoran, Peter

    2018-03-01

    Postcapture refocusing effect in smartphone cameras is achievable using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map, which has been an open issue for decades. To tackle this issue, a framework is proposed based on a preconditioned alternating direction method of multipliers for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy, the optimization function of the proposed framework can, in fact, converge faster and better than state-of-the-art methods. The qualitative evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against five other methods. Later, 10 light field image sets have been transformed into focal stacks for quantitative evaluation purposes. Preliminary results indicate that the proposed framework has a better performance in terms of structural accuracy and optimization in comparison to the current state-of-the-art methods.

  8. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework

    PubMed Central

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation. PMID:28225811

  9. Koopman Operator Framework for Time Series Modeling and Analysis

    NASA Astrophysics Data System (ADS)

    Surana, Amit

    2018-01-01

    We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.

  10. Automated numerical simulation of biological pattern formation based on visual feedback simulation framework.

    PubMed

    Sun, Mingzhu; Xu, Hui; Zeng, Xingjuan; Zhao, Xin

    2017-01-01

    There are various fantastic biological phenomena in biological pattern formation. Mathematical modeling using reaction-diffusion partial differential equation systems is employed to study the mechanism of pattern formation. However, model parameter selection is both difficult and time consuming. In this paper, a visual feedback simulation framework is proposed to calculate the parameters of a mathematical model automatically based on the basic principle of feedback control. In the simulation framework, the simulation results are visualized, and the image features are extracted as the system feedback. Then, the unknown model parameters are obtained by comparing the image features of the simulation image and the target biological pattern. Considering two typical applications, the visual feedback simulation framework is applied to fulfill pattern formation simulations for vascular mesenchymal cells and lung development. In the simulation framework, the spot, stripe, labyrinthine patterns of vascular mesenchymal cells, the normal branching pattern and the branching pattern lacking side branching for lung branching are obtained in a finite number of iterations. The simulation results indicate that it is easy to achieve the simulation targets, especially when the simulation patterns are sensitive to the model parameters. Moreover, this simulation framework can expand to other types of biological pattern formation.

  11. Use of Annotations for Component and Framework Interoperability

    NASA Astrophysics Data System (ADS)

    David, O.; Lloyd, W.; Carlson, J.; Leavesley, G. H.; Geter, F.

    2009-12-01

    The popular programming languages Java and C# provide annotations, a form of meta-data construct. Software frameworks for web integration, web services, database access, and unit testing now take advantage of annotations to reduce the complexity of APIs and the quantity of integration code between the application and framework infrastructure. Adopting annotation features in frameworks has been observed to lead to cleaner and leaner application code. The USDA Object Modeling System (OMS) version 3.0 fully embraces the annotation approach and additionally defines a meta-data standard for components and models. In version 3.0 framework/model integration previously accomplished using API calls is now achieved using descriptive annotations. This enables the framework to provide additional functionality non-invasively such as implicit multithreading, and auto-documenting capabilities while achieving a significant reduction in the size of the model source code. Using a non-invasive methodology leads to models and modeling components with only minimal dependencies on the modeling framework. Since models and modeling components are not directly bound to framework by the use of specific APIs and/or data types they can more easily be reused both within the framework as well as outside of it. To study the effectiveness of an annotation based framework approach with other modeling frameworks, a framework-invasiveness study was conducted to evaluate the effects of framework design on model code quality. A monthly water balance model was implemented across several modeling frameworks and several software metrics were collected. The metrics selected were measures of non-invasive design methods for modeling frameworks from a software engineering perspective. It appears that the use of annotations positively impacts several software quality measures. In a next step, the PRMS model was implemented in OMS 3.0 and is currently being implemented for water supply forecasting in the western United States at the USDA NRCS National Water and Climate Center. PRMS is a component based modular precipitation-runoff model developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow and general basin hydrology. The new OMS 3.0 PRMS model source code is more concise and flexible as a result of using the new framework’s annotation based approach. The fully annotated components are now providing information directly for (i) model assembly and building, (ii) dataflow analysis for implicit multithreading, (iii) automated and comprehensive model documentation of component dependencies, physical data properties, (iv) automated model and component testing, and (v) automated audit-traceability to account for all model resources leading to a particular simulation result. Experience to date has demonstrated the multi-purpose value of using annotations. Annotations are also a feasible and practical method to enable interoperability among models and modeling frameworks. As a prototype example, model code annotations were used to generate binding and mediation code to allow the use of OMS 3.0 model components within the OpenMI context.

  12. Systems theory as a framework for examining a college campus-based support program for the former foster youth.

    PubMed

    Schelbe, Lisa; Randolph, Karen A; Yelick, Anna; Cheatham, Leah P; Groton, Danielle B

    2018-01-01

    Increased attention to former foster youth pursuing post-secondary education has resulted in the creation of college campus based support programs to address their need. However, limited empirical evidence and theoretical knowledge exist about these programs. This study seeks to describe the application of systems theory as a framework for examining a college campus based support program for former foster youth. In-depth semi-structured interviews were conducted with 32 program stakeholders including students, mentors, collaborative members, and independent living program staff. Using qualitative data analysis software, holistic coding techniques were employed to analyze interview transcripts. Then applying principles of extended case method using systems theory, data were analyzed. Findings suggest systems theory serves as a framework for understanding the functioning of a college campus based support program. The theory's concepts help delineate program components and roles of stakeholders; outline boundaries between and interactions among stakeholders; and identify program strengths and weakness. Systems theory plays an important role in identifying intervention components and providing a structure through which to identify and understand program elements as a part of the planning process. This study highlights the utility of systems theory as a framework for program planning and evaluation.

  13. A framework for the analysis of the security of supply of utilising carbon dioxide as a chemical feedstock.

    PubMed

    Fraga, Eric S; Ng, Melvin

    2015-01-01

    Recent developments in catalysts have enhanced the potential for the utilisation of carbon dioxide as a chemical feedstock. Using the appropriate energy efficient catalyst enables a range of chemical pathways leading to desirable products. In doing so, CO2 provides an economically and environmentally beneficial source of C1 feedstock, while improving the issues relating to security of supply that are associated with fossil-based feedstocks. However, the dependence on catalysts brings other supply chains into consideration, supply chains that may also have security of supply issues. The choice of chemical pathways for specific products will therefore entail an assessment not only of economic factors but also the security of supply issues for the catalysts. This is a multi-criteria decision making problem. In this paper, we present a modified 4A framework based on the framework suggested by the Asian Pacific Energy Research centre for macro-economic applications. The 4A methodology is named after the criteria used to compare alternatives: availability, acceptability, applicability and affordability. We have adapted this framework for the consideration of alternative chemical reaction processes using a micro-economic outlook. Data from a number of sources were collected and used to quantify each of the 4A criteria. A graphical representation of the assessments is used to support the decision maker in comparing alternatives. The framework not only allows for the comparison of processes but also highlights current limitations in the CCU processes. The framework presented can be used by a variety of stakeholders, including regulators, investors, and process industries, with the aim of identifying promising routes within a broader multi-criteria decision making process.

  14. The Mining Minds digital health and wellness framework.

    PubMed

    Banos, Oresti; Bilal Amin, Muhammad; Ali Khan, Wajahat; Afzal, Muhammad; Hussain, Maqbool; Kang, Byeong Ho; Lee, Sungyong

    2016-07-15

    The provision of health and wellness care is undergoing an enormous transformation. A key element of this revolution consists in prioritizing prevention and proactivity based on the analysis of people's conducts and the empowerment of individuals in their self-management. Digital technologies are unquestionably destined to be the main engine of this change, with an increasing number of domain-specific applications and devices commercialized every year; however, there is an apparent lack of frameworks capable of orchestrating and intelligently leveraging, all the data, information and knowledge generated through these systems. This work presents Mining Minds, a novel framework that builds on the core ideas of the digital health and wellness paradigms to enable the provision of personalized support. Mining Minds embraces some of the most prominent digital technologies, ranging from Big Data and Cloud Computing to Wearables and Internet of Things, as well as modern concepts and methods, such as context-awareness, knowledge bases or analytics, to holistically and continuously investigate on people's lifestyles and provide a variety of smart coaching and support services. This paper comprehensively describes the efficient and rational combination and interoperation of these technologies and methods through Mining Minds, while meeting the essential requirements posed by a framework for personalized health and wellness support. Moreover, this work presents a realization of the key architectural components of Mining Minds, as well as various exemplary user applications and expert tools to illustrate some of the potential services supported by the proposed framework. Mining Minds constitutes an innovative holistic means to inspect human behavior and provide personalized health and wellness support. The principles behind this framework uncover new research ideas and may serve as a reference for similar initiatives.

  15. Workflow based framework for life science informatics.

    PubMed

    Tiwari, Abhishek; Sekhar, Arvind K T

    2007-10-01

    Workflow technology is a generic mechanism to integrate diverse types of available resources (databases, servers, software applications and different services) which facilitate knowledge exchange within traditionally divergent fields such as molecular biology, clinical research, computational science, physics, chemistry and statistics. Researchers can easily incorporate and access diverse, distributed tools and data to develop their own research protocols for scientific analysis. Application of workflow technology has been reported in areas like drug discovery, genomics, large-scale gene expression analysis, proteomics, and system biology. In this article, we have discussed the existing workflow systems and the trends in applications of workflow based systems.

  16. An open-access, mobile compatible, electronic patient register for rheumatic heart disease ('eRegister') based on the World Heart Federation's framework for patient registers.

    PubMed

    van Dam, Joris; Musuku, John; Zühlke, Liesl J; Engel, Mark E; Nestle, Nick; Tadmor, Brigitta; Spector, Jonathan; Mayosi, Bongani M

    2015-01-01

    Rheumatic heart disease (RHD) remains a major disease burden in low-resource settings globally. Patient registers have long been recognised to be an essential instrument in RHD control and elimination programmes, yet to date rely heavily on paper-based data collection and non-networked data-management systems, which limit their functionality. To assess the feasibility and potential benefits of producing an electronic RHD patient register. We developed an eRegister based on the World Heart Federation's framework for RHD patient registers using CommCare, an open-source, cloud-based software for health programmes that supports the development of customised data capture using mobile devices. The resulting eRegistry application allows for simultaneous data collection and entry by field workers using mobile devices, and by providers using computer terminals in clinics and hospitals. Data are extracted from CommCare and are securely uploaded into a cloud-based database that matches the criteria established by the WHF framework. The application can easily be tailored to local needs by modifying existing variables or adding new ones. Compared with traditional paper-based data-collection systems, the eRegister reduces the risk of data error, synchronises in real-time, improves clinical operations and supports management of field team operations. The user-friendly eRegister is a low-cost, mobile, compatible platform for RHD treatment and prevention programmes based on materials sanctioned by the World Heart Federation. Readily adaptable to local needs, this paperless RHD patient register program presents many practical benefits.

  17. Intelligent FPGA Data Acquisition Framework

    NASA Astrophysics Data System (ADS)

    Bai, Yunpeng; Gaisbauer, Dominic; Huber, Stefan; Konorov, Igor; Levit, Dmytro; Steffen, Dominik; Paul, Stephan

    2017-06-01

    In this paper, we present the field programmable gate arrays (FPGA)-based framework intelligent FPGA data acquisition (IFDAQ), which is used for the development of DAQ systems for detectors in high-energy physics. The framework supports Xilinx FPGA and provides a collection of IP cores written in very high speed integrated circuit hardware description language, which use the common interconnect interface. The IP core library offers functionality required for the development of the full DAQ chain. The library consists of Serializer/Deserializer (SERDES)-based time-to-digital conversion channels, an interface to a multichannel 80-MS/s 10-b analog-digital conversion, data transmission, and synchronization protocol between FPGAs, event builder, and slow control. The functionality is distributed among FPGA modules built in the AMC form factor: front end and data concentrator. This modular design also helps to scale and adapt the DAQ system to the needs of the particular experiment. The first application of the IFDAQ framework is the upgrade of the read-out electronics for the drift chambers and the electromagnetic calorimeters (ECALs) of the COMPASS experiment at CERN. The framework will be presented and discussed in the context of this paper.

  18. Large scale air pollution estimation method combining land use regression and chemical transport modeling in a geostatistical framework.

    PubMed

    Akita, Yasuyuki; Baldasano, Jose M; Beelen, Rob; Cirach, Marta; de Hoogh, Kees; Hoek, Gerard; Nieuwenhuijsen, Mark; Serre, Marc L; de Nazelle, Audrey

    2014-04-15

    In recognition that intraurban exposure gradients may be as large as between-city variations, recent air pollution epidemiologic studies have become increasingly interested in capturing within-city exposure gradients. In addition, because of the rapidly accumulating health data, recent studies also need to handle large study populations distributed over large geographic domains. Even though several modeling approaches have been introduced, a consistent modeling framework capturing within-city exposure variability and applicable to large geographic domains is still missing. To address these needs, we proposed a modeling framework based on the Bayesian Maximum Entropy method that integrates monitoring data and outputs from existing air quality models based on Land Use Regression (LUR) and Chemical Transport Models (CTM). The framework was applied to estimate the yearly average NO2 concentrations over the region of Catalunya in Spain. By jointly accounting for the global scale variability in the concentration from the output of CTM and the intraurban scale variability through LUR model output, the proposed framework outperformed more conventional approaches.

  19. Development of an integrated economic and ecological framework for ecosystem-based fisheries management in New England

    NASA Astrophysics Data System (ADS)

    Jin, D.; Hoagland, P.; Dalton, T. M.; Thunberg, E. M.

    2012-09-01

    We present an integrated economic-ecological framework designed to help assess the implementation of ecosystem-based fisheries management (EBFM) in New England. We develop the framework by linking a computable general equilibrium (CGE) model of a coastal economy to an end-to-end (E2E) model of a marine food web for Georges Bank. We focus on the New England region using coastal county economic data for a restricted set of industry sectors and marine ecological data for three top level trophic feeding guilds: planktivores, benthivores, and piscivores. We undertake numerical simulations to model the welfare effects of changes in alternative combinations of yields from feeding guilds and alternative manifestations of biological productivity. We estimate the economic and distributional effects of these alternative simulations across a range of consumer income levels. This framework could be used to extend existing methodologies for assessing the impacts on human communities of groundfish stock rebuilding strategies, such as those expected through the implementation of the sector management program in the US northeast fishery. We discuss other possible applications of and modifications and limitations to the framework.

  20. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges.

    PubMed

    Wu, Hao Bin; Lou, Xiong Wen David

    2017-12-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

  1. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges

    PubMed Central

    Wu, Hao Bin; Lou, Xiong Wen (David)

    2017-01-01

    In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area. PMID:29214220

  2. Practice-Based Knowledge Discovery for Comparative Effectiveness Research: An Organizing Framework

    PubMed Central

    Lucero, Robert J.; Bakken, Suzanne

    2014-01-01

    Electronic health information systems can increase the ability of health-care organizations to investigate the effects of clinical interventions. The authors present an organizing framework that integrates outcomes and informatics research paradigms to guide knowledge discovery in electronic clinical databases. They illustrate its application using the example of hospital acquired pressure ulcers (HAPU). The Knowledge Discovery through Informatics for Comparative Effectiveness Research (KDI-CER) framework was conceived as a heuristic to conceptualize study designs and address potential methodological limitations imposed by using a single research perspective. Advances in informatics research can play a complementary role in advancing the field of outcomes research including CER. The KDI-CER framework can be used to facilitate knowledge discovery from routinely collected electronic clinical data. PMID:25278645

  3. Sequentially Executed Model Evaluation Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Provides a message passing framework between generic input, model and output drivers, and specifies an API for developing such drivers. Also provides batch and real-time controllers which step the model and I/O through the time domain (or other discrete domain), and sample I/O drivers. This is a library framework, and does not, itself, solve any problems or execute any modeling. The SeMe framework aids in development of models which operate on sequential information, such as time-series, where evaluation is based on prior results combined with new data for this iteration. Has applications in quality monitoring, and was developed as partmore » of the CANARY-EDS software, where real-time water quality data is being analyzed for anomalies.« less

  4. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  5. Formation of Virtual Organizations in Grids: A Game-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Carroll, Thomas E.; Grosu, Daniel

    The execution of large scale grid applications requires the use of several computational resources owned by various Grid Service Providers (GSPs). GSPs must form Virtual Organizations (VOs) to be able to provide the composite resource to these applications. We consider grids as self-organizing systems composed of autonomous, self-interested GSPs that will organize themselves into VOs with every GSP having the objective of maximizing its profit. We formulate the resource composition among GSPs as a coalition formation problem and propose a game-theoretic framework based on cooperation structures to model it. Using this framework, we design a resource management system that supports the VO formation among GSPs in a grid computing system.

  6. Off-diagonal Jacobian support for Nodal BCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, John W.; Andrs, David; Gaston, Derek R.

    In this brief note, we describe the implementation of o-diagonal Jacobian computations for nodal boundary conditions in the Multiphysics Object Oriented Simulation Environment (MOOSE) [1] framework. There are presently a number of applications [2{5] based on the MOOSE framework that solve complicated physical systems of partial dierential equations whose boundary conditions are often highly nonlinear. Accurately computing the on- and o-diagonal Jacobian and preconditioner entries associated to these constraints is crucial for enabling ecient numerical solvers in these applications. Two key ingredients are required for properly specifying the Jacobian contributions of nonlinear nodal boundary conditions in MOOSE and nite elementmore » codes in general: 1. The ability to zero out entire Jacobian matrix rows after \

  7. Interactive Classification of Construction Materials: Feedback Driven Framework for Annotation and Analysis of 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Hess, M. R.; Petrovic, V.; Kuester, F.

    2017-08-01

    Digital documentation of cultural heritage structures is increasingly more common through the application of different imaging techniques. Many works have focused on the application of laser scanning and photogrammetry techniques for the acquisition of threedimensional (3D) geometry detailing cultural heritage sites and structures. With an abundance of these 3D data assets, there must be a digital environment where these data can be visualized and analyzed. Presented here is a feedback driven visualization framework that seamlessly enables interactive exploration and manipulation of massive point cloud data. The focus of this work is on the classification of different building materials with the goal of building more accurate as-built information models of historical structures. User defined functions have been tested within the interactive point cloud visualization framework to evaluate automated and semi-automated classification of 3D point data. These functions include decisions based on observed color, laser intensity, normal vector or local surface geometry. Multiple case studies are presented here to demonstrate the flexibility and utility of the presented point cloud visualization framework to achieve classification objectives.

  8. Tsunami evacuation modelling as a tool for risk reduction: application to the coastal area of El Salvador

    NASA Astrophysics Data System (ADS)

    González-Riancho, P.; Aguirre-Ayerbe, I.; Aniel-Quiroga, I.; Abad, S.; González, M.; Larreynaga, J.; Gavidia, F.; Gutiérrez, O. Q.; Álvarez-Gómez, J. A.; Medina, R.

    2013-12-01

    Advances in the understanding and prediction of tsunami impacts allow the development of risk reduction strategies for tsunami-prone areas. This paper presents an integral framework for the formulation of tsunami evacuation plans based on tsunami vulnerability assessment and evacuation modelling. This framework considers (i) the hazard aspects (tsunami flooding characteristics and arrival time), (ii) the characteristics of the exposed area (people, shelters and road network), (iii) the current tsunami warning procedures and timing, (iv) the time needed to evacuate the population, and (v) the identification of measures to improve the evacuation process. The proposed methodological framework aims to bridge between risk assessment and risk management in terms of tsunami evacuation, as it allows for an estimation of the degree of evacuation success of specific management options, as well as for the classification and prioritization of the gathered information, in order to formulate an optimal evacuation plan. The framework has been applied to the El Salvador case study, demonstrating its applicability to site-specific response times and population characteristics.

  9. The Wild Wild West: A Framework to Integrate mHealth Software Applications and Wearables to Support Physical Activity Assessment, Counseling and Interventions for Cardiovascular Disease Risk Reduction

    PubMed Central

    Lobelo, Felipe; Kelli, Heval M.; Tejedor, Sheri Chernetsky; Pratt, Michael; McConnell, Michael V.; Martin, Seth S.; Welk, Gregory J.

    2017-01-01

    Physical activity (PA) interventions constitute a critical component of cardiovascular disease (CVD) risk reduction programs. Objective mobile health (mHealth) software applications (apps) and wearable activity monitors (WAMs) can advance both assessment and integration of PA counseling in clinical settings and support community-based PA interventions. The use of mHealth technology for CVD risk reduction is promising, but integration into routine clinical care and population health management has proven challenging. The increasing diversity of available technologies and the lack of a comprehensive guiding framework are key barriers for standardizing data collection and integration. This paper reviews the validity, utility and feasibility of implementing mHealth technology in clinical settings and proposes an organizational framework to support PA assessment, counseling and referrals to community resources for CVD risk reduction interventions. This integration framework can be adapted to different clinical population needs. It should also be refined as technologies and regulations advance under an evolving health care system landscape in the United States and globally. PMID:26923067

  10. The Wild Wild West: A Framework to Integrate mHealth Software Applications and Wearables to Support Physical Activity Assessment, Counseling and Interventions for Cardiovascular Disease Risk Reduction.

    PubMed

    Lobelo, Felipe; Kelli, Heval M; Tejedor, Sheri Chernetsky; Pratt, Michael; McConnell, Michael V; Martin, Seth S; Welk, Gregory J

    2016-01-01

    Physical activity (PA) interventions constitute a critical component of cardiovascular disease (CVD) risk reduction programs. Objective mobile health (mHealth) software applications (apps) and wearable activity monitors (WAMs) can advance both assessment and integration of PA counseling in clinical settings and support community-based PA interventions. The use of mHealth technology for CVD risk reduction is promising, but integration into routine clinical care and population health management has proven challenging. The increasing diversity of available technologies and the lack of a comprehensive guiding framework are key barriers for standardizing data collection and integration. This paper reviews the validity, utility and feasibility of implementing mHealth technology in clinical settings and proposes an organizational framework to support PA assessment, counseling and referrals to community resources for CVD risk reduction interventions. This integration framework can be adapted to different clinical population needs. It should also be refined as technologies and regulations advance under an evolving health care system landscape in the United States and globally. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  12. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acun, Bilge; Jain, Nikhil; Bhatele, Abhinav

    2015-03-23

    TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.

  13. Trace Replay and Network Simulation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Nikhil; Bhatele, Abhinav; Acun, Bilge

    TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.

  14. Operator algebra as an application of logarithmic representation of infinitesimal generators

    NASA Astrophysics Data System (ADS)

    Iwata, Yoritaka

    2018-02-01

    The operator algebra is introduced based on the framework of logarithmic representation of infinitesimal generators. In conclusion a set of generally-unbounded infinitesimal generators is characterized as a module over the Banach algebra.

  15. A generalized framework for nucleosynthesis calculations

    NASA Astrophysics Data System (ADS)

    Sprouse, Trevor; Mumpower, Matthew; Aprahamian, Ani

    2014-09-01

    Simulating astrophysical events is a difficult process, requiring a detailed pairing of knowledge from both astrophysics and nuclear physics. Astrophysics guides the thermodynamic evolution of an astrophysical event. We present a nucleosynthesis framework written in Fortran that combines as inputs a thermodynamic evolution and nuclear data to time evolve the abundances of nuclear species. Through our coding practices, we have emphasized the applicability of our framework to any astrophysical event, including those involving nuclear fission. Because these calculations are often very complicated, our framework dynamically optimizes itself based on the conditions at each time step in order to greatly minimize total computation time. To highlight the power of this new approach, we demonstrate the use of our framework to simulate both Big Bang nucleosynthesis and r-process nucleosynthesis with speeds competitive with current solutions dedicated to either process alone.

  16. An Enhanced Text-Mining Framework for Extracting Disaster Relevant Data through Social Media and Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Scheele, C. J.; Huang, Q.

    2016-12-01

    In the past decade, the rise in social media has led to the development of a vast number of social media services and applications. Disaster management represents one of such applications leveraging massive data generated for event detection, response, and recovery. In order to find disaster relevant social media data, current approaches utilize natural language processing (NLP) methods based on keywords, or machine learning algorithms relying on text only. However, these approaches cannot be perfectly accurate due to the variability and uncertainty in language used on social media. To improve current methods, the enhanced text-mining framework is proposed to incorporate location information from social media and authoritative remote sensing datasets for detecting disaster relevant social media posts, which are determined by assessing the textual content using common text mining methods and how the post relates spatiotemporally to the disaster event. To assess the framework, geo-tagged Tweets were collected for three different spatial and temporal disaster events: hurricane, flood, and tornado. Remote sensing data and products for each event were then collected using RealEarthTM. Both Naive Bayes and Logistic Regression classifiers were used to compare the accuracy within the enhanced text-mining framework. Finally, the accuracies from the enhanced text-mining framework were compared to the current text-only methods for each of the case study disaster events. The results from this study address the need for more authoritative data when using social media in disaster management applications.

  17. UAF: a generic OPC unified architecture framework

    NASA Astrophysics Data System (ADS)

    Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans

    2012-09-01

    As an emerging Service Oriented Architecture (SOA) specically designed for industrial automation and process control, the OPC Unied Architecture specication should be regarded as an attractive candidate for controlling scientic instrumentation. Even though an industry-backed standard such as OPC UA can oer substantial added value to these projects, its inherent complexity poses an important obstacle for adopting the technology. Building OPC UA applications requires considerable eort, even when taking advantage of a COTS Software Development Kit (SDK). The OPC Unied Architecture Framework (UAF) attempts to reduce this burden by introducing an abstraction layer between the SDK and the application code in order to achieve a better separation of the technical and the functional concerns. True to its industrial origin, the primary requirement of the framework is to maintain interoperability by staying close to the standard specications, and by expecting the minimum compliance from other OPC UA servers and clients. UAF can therefore be regarded as a software framework to quickly and comfortably develop and deploy OPC UA-based applications, while remaining compatible to third party OPC UA-compliant toolkits, servers (such as PLCs) and clients (such as SCADA software). In the rst phase, as covered by this paper, only the client-side of UAF has been tackled in order to transparently handle discovery, session management, subscriptions, monitored items etc. We describe the design principles and internal architecture of our open-source software project, the rst results of the framework running at the Mercator Telescope, and we give a preview of the planned server-side implementation.

  18. Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends

    PubMed Central

    2018-01-01

    Group 4 metal-based metal–organic frameworks (MIV-MOFs), including Ti-, Zr-, and Hf-based MOFs, are one of the most attractive classes of MOF materials owing to their superior chemical stability and structural tunability. Despite being a relatively new field, MIV-MOFs have attracted significant research attention in the past few years, leading to exciting advances in syntheses and applications. In this outlook, we start with a brief overview of the history and current status of MIV-MOFs, emphasizing the challenges encountered in their syntheses. The unique properties of MIV-MOFs are discussed, including their high chemical stability and strong tolerance toward defects. Particular emphasis is placed on defect engineering in Zr-MOFs which offers additional routes to tailor their functions. Photocatalysis of MIV-MOF is introduced as a representative example of their emerging applications. Finally, we conclude with the perspective of new opportunities in synthesis and defect engineering. PMID:29721526

  19. Supporting openEHR Java desktop application developers.

    PubMed

    Kashfi, Hajar; Torgersson, Olof

    2011-01-01

    The openEHR community suggests that an appropriate approach for creating a graphical user interface for an openEHR-based application is to generate forms from the underlying archetypes and templates. However, current generation techniques are not mature enough to be able to produce high quality interfaces with good usability. Therefore, developing efficient ways to combine manually designed and developed interfaces to openEHR backends is an interesting alternative. In this study, a framework for binding a pre-designed graphical user interface to an openEHR-based backend is proposed. The proposed framework contributes to the set of options available for developers. In particular we believe that the approach of combining user interface components with an openEHR backend in the proposed way might be useful in situations where the quality of the user interface is essential and for creating small scale and experimental systems.

  20. Recurrence measure of conditional dependence and applications.

    PubMed

    Ramos, Antônio M T; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E N; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  1. Recurrence measure of conditional dependence and applications

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E. N.; Kurths, Jürgen; Marwan, Norbert

    2017-05-01

    Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.

  2. The impact of biotechnology on agricultural worker safety and health.

    PubMed

    Shutske, J M; Jenkins, S M

    2002-08-01

    Biotechnology applications such as the use and production of genetically modified organisms (GMOs) have been widely promoted, adopted, and employed by agricultural producers throughout the world. Yet, little research exists that examines the implications of agricultural biotechnology on the health and safety of workers involved in agricultural production and processing. Regulatory frameworks do exist to examine key issues related to food safety and environmental protection in GMO applications. However, based on the lack of research and regulatory oversight, it would appear that the potential impact on the safety and health of workers is of limited interest. This article examines some of the known worker health and safety implications related to the use and production of GMOs using the host, agent, and environment framework. The characteristics of employers, workers, inputs, production practices, and socio-economic environments in which future agricultural workers perform various tasks is likely to change based on the research summarized here.

  3. A Method for Transforming Existing Web Service Descriptions into an Enhanced Semantic Web Service Framework

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng; Song, William; Munro, Malcolm

    Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.

  4. Parameterized Facial Expression Synthesis Based on MPEG-4

    NASA Astrophysics Data System (ADS)

    Raouzaiou, Amaryllis; Tsapatsoulis, Nicolas; Karpouzis, Kostas; Kollias, Stefanos

    2002-12-01

    In the framework of MPEG-4, one can include applications where virtual agents, utilizing both textual and multisensory data, including facial expressions and nonverbal speech help systems become accustomed to the actual feelings of the user. Applications of this technology are expected in educational environments, virtual collaborative workplaces, communities, and interactive entertainment. Facial animation has gained much interest within the MPEG-4 framework; with implementation details being an open research area (Tekalp, 1999). In this paper, we describe a method for enriching human computer interaction, focusing on analysis and synthesis of primary and intermediate facial expressions (Ekman and Friesen (1978)). To achieve this goal, we utilize facial animation parameters (FAPs) to model primary expressions and describe a rule-based technique for handling intermediate ones. A relation between FAPs and the activation parameter proposed in classical psychological studies is established, leading to parameterized facial expression analysis and synthesis notions, compatible with the MPEG-4 standard.

  5. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  6. Risk-Informed Safety Assurance and Probabilistic Assessment of Mission-Critical Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Guarro, Sergio B.

    2010-01-01

    This report validates and documents the detailed features and practical application of the framework for software intensive digital systems risk assessment and risk-informed safety assurance presented in the NASA PRA Procedures Guide for Managers and Practitioner. This framework, called herein the "Context-based Software Risk Model" (CSRM), enables the assessment of the contribution of software and software-intensive digital systems to overall system risk, in a manner which is entirely compatible and integrated with the format of a "standard" Probabilistic Risk Assessment (PRA), as currently documented and applied for NASA missions and applications. The CSRM also provides a risk-informed path and criteria for conducting organized and systematic digital system and software testing so that, within this risk-informed paradigm, the achievement of a quantitatively defined level of safety and mission success assurance may be targeted and demonstrated. The framework is based on the concept of context-dependent software risk scenarios and on the modeling of such scenarios via the use of traditional PRA techniques - i.e., event trees and fault trees - in combination with more advanced modeling devices such as the Dynamic Flowgraph Methodology (DFM) or other dynamic logic-modeling representations. The scenarios can be synthesized and quantified in a conditional logic and probabilistic formulation. The application of the CSRM method documented in this report refers to the MiniAERCam system designed and developed by the NASA Johnson Space Center.

  7. Variation of Kozinets' framework and application to nursing research.

    PubMed

    Witney, Cynthia; Hendricks, Joyce; Cope, Vicki

    2016-05-01

    Online communities are new sites for undertaking research, with their textual interactions providing a rich source of data in real time. 'Ethnonetnography' is a research methodology based on ethnography that can be used in these online communities. In this study, the researcher and a specialist breast care nurse (SBCN) were immersed in the online community, adding to patients' breast cancer care and providing a nursing research component to the community. To examine Kozinets' ( 2010 ) framework for ethnonetnography and how it may be varied for use in a purpose-built, disease-specific, online support community. The online community provided an area where members could communicate with each other. Kozinets' ( 2010 ) framework was varied in that the research was carried out in a purpose-built community opf which an SBCN was a member who could provide support and advice. The application of the ethnonetnographic methodology has wide implications for clinical nursing practice and research. Ethnonetnography can be used to study disease-specific communities in a focused manner and can provide immediate benefits through the inclusion of an expert nurse and contemporaneous application of research findings to patient care. With ethical permission and the permission of online community members, nurse researchers can enter already established online communities. Ethnonetnography is ideally suited to nursing research as it provides the immediacy of evidence-based interaction with an expert nurse. These real-time responses improve support for those experiencing a critical life event.

  8. Developing a framework for community-based sexual health interventions for youth in the rural setting: protocol for a participatory action research study

    PubMed Central

    Heslop, Carl William; Burns, Sharyn; Lobo, Roanna; McConigley, Ruth

    2017-01-01

    Introduction There is limited research examining community-based or multilevel interventions that address the sexual health of young people in the rural Australian context. This paper describes the Participatory Action Research (PAR) project that will develop and validate a framework that is effective for planning, implementing and evaluating multilevel community-based sexual health interventions for young people aged 16–24 years in the Australian rural setting. Methods and analysis To develop a framework for sexual health interventions with stakeholders, PAR will be used. Three PAR cycles will be conducted, using semistructured one-on-one interviews, focus groups, community mapping and photovoice to inform the development of a draft framework. Cycle 2 and Cycle 3 will use targeted Delphi studies to gather evaluation and feedback on the developed draft framework. All data collected will be reviewed and analysed in detail and coded as concepts become apparent at each stage of the process. Ethics and dissemination This protocol describes a supervised doctoral research project. This project seeks to contribute to the literature regarding PAR in the rural setting and the use of the Delphi technique within PAR projects. The developed framework as a result of the project will provide a foundation for further research testing the application of the framework in other settings and health areas. This research has received ethics approval from the Curtin University Human Research and Ethics Committee (HR96/2015). PMID:28559453

  9. A Riemannian framework for orientation distribution function computing.

    PubMed

    Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid

    2009-01-01

    Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation.

  10. Creating an outcomes framework.

    PubMed

    Doerge, J B

    2000-01-01

    Four constructs used to build a framework for outcomes management for a large midwestern tertiary hospital are described in this article. A system framework outlining a model of clinical integration and population management based in Steven Shortell's work is discussed. This framework includes key definitions of high-risk patients, target groups, populations and community. Roles for each level of population management and how they were implemented in the health care system are described. A point of service framework centered on seven dimensions of care is the next construct applied on each nursing unit. The third construct outlines the framework for role development. Three roles for nursing were created to implement strategies for target groups that are strategic disease categories; two of those roles are described in depth. The philosophy of nursing practice is centered on caring and existential advocacy. The final construct is the modification of the Dartmouth model as a common framework for outcomes. System applications of the scorecard and lessons learned in the 2-year process of implementation are shared

  11. The Step approach to Message Design and Testing (SatMDT): A conceptual framework to guide the development and evaluation of persuasive health messages.

    PubMed

    Lewis, Ioni; Watson, Barry; White, Katherine M

    2016-12-01

    This paper provides an important and timely overview of a conceptual framework designed to assist with the development of message content, as well as the evaluation, of persuasive health messages. While an earlier version of this framework was presented in a prior publication by the authors in 2009, important refinements to the framework have seen it evolve in recent years, warranting the need for an updated review. This paper outlines the Step approach to Message Design and Testing (or SatMDT) in accordance with the theoretical evidence which underpins, as well as empirical evidence which demonstrates the relevance and feasibility of, each of the framework's steps. The development and testing of the framework have thus far been based exclusively within the road safety advertising context; however, the view expressed herein is that the framework may have broader appeal and application to the health persuasion context. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    PubMed Central

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-01-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems. PMID:24220603

  13. A New Framework and Practice Center for Adapting, Translating, and Scaling Evidence-Based Health/Wellness Programs for People With Disabilities.

    PubMed

    Rimmer, James H; Vanderbom, Kerri A; Graham, Ian D

    2016-04-01

    Supporting the transition of people with newly acquired and existing disability from rehabilitation into community-based health/wellness programs, services, and venues requires rehabilitation professionals to build evidence by capturing successful strategies at the local level, finding innovative ways to translate successful practices to other communities, and ultimately to upgrade and maintain their applicability and currency for future scale-up. This article describes a knowledge-to-practice framework housed in a national resource and practice center that will support therapists and other rehabilitation professionals in building and maintaining a database of successful health/wellness guidelines, recommendations, and adaptations to promote community health inclusion for people with disabilities. A framework was developed in the National Center on Health, Physical Activity and Disability (NCHPAD) to systematically build and advance the evidence base of health/wellness programs, practices, and services applicable to people with disabilities. N-KATS (NCHPAD Knowledge Adaptation, Translation, and Scale-up) has 4 sequencing strategies: strategy 1-new evidence- and practice-based knowledge is collected and adapted for the local context (ie, community); strategy 2-customized resources are effectively disseminated to key stakeholders including rehabilitation professionals with appropriate training tools; strategy 3-NCHPAD staff serve as facilitators assisting key stakeholders in implementing recommendations; strategy 4-successful elements of practice (eg, guideline, recommendation, adaptation) are archived and scaled to other rehabilitation providers. The N-KATS framework supports the role of rehabilitation professionals as knowledge brokers, facilitators, and users in a collaborative, dynamic structure that will grow and be sustained over time through the NCHPAD.Video abstract available for additional insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A130).

  14. Fracture behavior of metal-ceramic fixed dental prostheses with frameworks from cast or a newly developed sintered cobalt-chromium alloy.

    PubMed

    Krug, Klaus-Peter; Knauber, Andreas W; Nothdurft, Frank P

    2015-03-01

    The aim of this study was to investigate the fracture behavior of metal-ceramic bridges with frameworks from cobalt-chromium-molybdenum (CoCrMo), which are manufactured using conventional casting or a new computer-aided design/computer-aided manufacturing (CAD/CAM) milling and sintering technique. A total of 32 metal-ceramic fixed dental prostheses (FDPs), which are based on a nonprecious metal framework, was produced using a conventional casting process (n = 16) or a new CAD/CAM milling and sintering process (n = 16). Eight unveneered frameworks were manufactured using each of the techniques. After thermal and mechanical aging of half of the restorations, all samples were subjected to a static loading test in a universal testing machine, in which acoustic emission monitoring was performed. Three different critical forces were revealed: the fracture force (F max), the force at the first reduction in force (F decr1), and the force at the critical acoustic event (F acoust1). With the exception of the veneered restorations with cast or sintered metal frameworks without artificial aging, which presented a statistically significant but slightly different F max, no statistically significant differences between cast and CAD/CAM sintered and milled FDPs were detected. Thermal and mechanical loading did not significantly affect the resulting forces. Cast and CAD/CAM milled and sintered metal-ceramic bridges were determined to be comparable with respect to the fracture behavior. FDPs based on CAD/CAM milled and sintered frameworks may be an applicable and less technique-sensitive alternative to frameworks that are based on conventionally cast frameworks.

  15. Equalizer: a scalable parallel rendering framework.

    PubMed

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  16. On domain modelling of the service system with its application to enterprise information systems

    NASA Astrophysics Data System (ADS)

    Wang, J. W.; Wang, H. F.; Ding, J. L.; Furuta, K.; Kanno, T.; Ip, W. H.; Zhang, W. J.

    2016-01-01

    Information systems are a kind of service systems and they are throughout every element of a modern industrial and business system, much like blood in our body. Types of information systems are heterogeneous because of extreme uncertainty in changes in modern industrial and business systems. To effectively manage information systems, modelling of the work domain (or domain) of information systems is necessary. In this paper, a domain modelling framework for the service system is proposed and its application to the enterprise information system is outlined. The framework is defined based on application of a general domain modelling tool called function-context-behaviour-principle-state-structure (FCBPSS). The FCBPSS is based on a set of core concepts, namely: function, context, behaviour, principle, state and structure and system decomposition. Different from many other applications of FCBPSS in systems engineering, the FCBPSS is applied to both infrastructure and substance systems, which is novel and effective to modelling of service systems including enterprise information systems. It is to be noted that domain modelling of systems (e.g. enterprise information systems) is a key to integration of heterogeneous systems and to coping with unanticipated situations facing to systems.

  17. Fluorescence enhancement through the formation of a single-layer two-dimensional supramolecular organic framework and its application in highly selective recognition of picric acid.

    PubMed

    Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin

    2016-06-18

    A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.

  18. Computer Based Testing Using "Digital Ink": Participatory Design of a Tablet PC Based Assessment Application for Secondary Education

    ERIC Educational Resources Information Center

    Siozos, Panagiotis; Palaigeorgiou, George; Triantafyllakos, George; Despotakis, Theofanis

    2009-01-01

    In this paper, we identify key challenges faced by computer-based assessment (CBA) in secondary education and we put forward a framework of design considerations: design with the students and teachers, select the most appropriate media platform and plan an evolution rather than a revolution of prior practices. We present the CBA application…

  19. The Spirit of Culture: Applying Cultural Competency to Strength-Based Youth Development.

    ERIC Educational Resources Information Center

    Lucero, Maria Guajardo

    Applying the research-based developmental assets list of 40 positive relationships, experiences, and values as a framework for positive youth development provides communities with a set of factors associated with increased healthy behaviors and fewer high-risk behaviors. Beginning with a question regarding the applicability of this model for youth…

  20. Integration of a three-dimensional process-based hydrological model into the Object Modeling System

    USDA-ARS?s Scientific Manuscript database

    The integration of a spatial process model into an environmental modelling framework can enhance the model’s capabilities. We present the integration of the GEOtop model into the Object Modeling System (OMS) version 3.0 and illustrate its application in a small watershed. GEOtop is a physically base...

  1. The Construct Validation of Learning Organization and Its Influence upon Firm Performance in Mainland China

    ERIC Educational Resources Information Center

    Li, Mingfei; Lu, Xiaojun

    2007-01-01

    This paper examines the applicability of the learning organization concept and its influence upon firm performance in mainland China. Based on the theoretical framework proposed by Watkins and Marsick, four dimensions of the learning organization instead of seven dimensions were identified. A balanced scorecard-based performance evaluation…

  2. Analysis of Students' Participation Patterns and Learning Presence in a Wiki-Based Project

    ERIC Educational Resources Information Center

    Roussinos, Dimitrios; Jimoyiannis, Athanassios

    2013-01-01

    The educational applications of wikis are becoming very popular among instructors and researchers and they have captured their attention and imagination. This paper reports on the investigation of a wiki project designed to support university students' collaborative authoring and learning. The design framework of the wiki-based project is outlined…

  3. Implementing a Tier 2 Behavioral Intervention in a Therapeutic Alternative High School Program

    ERIC Educational Resources Information Center

    Fallon, Lindsay M.; Feinberg, Adam B.

    2017-01-01

    The research base for Check-in, Check-out (CICO), a targeted behavioral intervention within a schoolwide positive behavioral interventions and supports framework, is growing. However, little has been written about its application in therapeutic alternative programs. To extend the literature base, the current article describes a study conducted…

  4. A Low Cost Structurally Optimized Design for Diverse Filter Types

    PubMed Central

    Kazmi, Majida; Aziz, Arshad; Akhtar, Pervez; Ikram, Nassar

    2016-01-01

    A wide range of image processing applications deploys two dimensional (2D)-filters for performing diversified tasks such as image enhancement, edge detection, noise suppression, multi scale decomposition and compression etc. All of these tasks require multiple type of 2D-filters simultaneously to acquire the desired results. The resource hungry conventional approach is not a viable option for implementing these computationally intensive 2D-filters especially in a resource constraint environment. Thus it calls for optimized solutions. Mostly the optimization of these filters are based on exploiting structural properties. A common shortcoming of all previously reported optimized approaches is their restricted applicability only for a specific filter type. These narrow scoped solutions completely disregard the versatility attribute of advanced image processing applications and in turn offset their effectiveness while implementing a complete application. This paper presents an efficient framework which exploits the structural properties of 2D-filters for effectually reducing its computational cost along with an added advantage of versatility for supporting diverse filter types. A composite symmetric filter structure is introduced which exploits the identities of quadrant and circular T-symmetries in two distinct filter regions simultaneously. These T-symmetries effectually reduce the number of filter coefficients and consequently its multipliers count. The proposed framework at the same time empowers this composite filter structure with additional capabilities of realizing all of its Ψ-symmetry based subtypes and also its special asymmetric filters case. The two-fold optimized framework thus reduces filter computational cost up to 75% as compared to the conventional approach as well as its versatility attribute not only supports diverse filter types but also offers further cost reduction via resource sharing for sequential implementation of diversified image processing applications especially in a constraint environment. PMID:27832133

  5. Application of Behavior Change Techniques in a Personalized Nutrition Electronic Health Intervention Study: Protocol for the Web-Based Food4Me Randomized Controlled Trial.

    PubMed

    Macready, Anna L; Fallaize, Rosalind; Butler, Laurie T; Ellis, Judi A; Kuznesof, Sharron; Frewer, Lynn J; Celis-Morales, Carlos; Livingstone, Katherine M; Araújo-Soares, Vera; Fischer, Arnout Rh; Stewart-Knox, Barbara J; Mathers, John C; Lovegrove, Julie A

    2018-04-09

    To determine the efficacy of behavior change techniques applied in dietary and physical activity intervention studies, it is first necessary to record and describe techniques that have been used during such interventions. Published frameworks used in dietary and smoking cessation interventions undergo continuous development, and most are not adapted for Web-based delivery. The Food4Me study (N=1607) provided the opportunity to use existing frameworks to describe standardized Web-based techniques employed in a large-scale, internet-based intervention to change dietary behavior and physical activity. The aims of this study were (1) to describe techniques embedded in the Food4Me study design and explain the selection rationale and (2) to demonstrate the use of behavior change technique taxonomies, develop standard operating procedures for training, and identify strengths and limitations of the Food4Me framework that will inform its use in future studies. The 6-month randomized controlled trial took place simultaneously in seven European countries, with participants receiving one of four levels of personalized advice (generalized, intake-based, intake+phenotype-based, and intake+phenotype+gene-based). A three-phase approach was taken: (1) existing taxonomies were reviewed and techniques were identified a priori for possible inclusion in the Food4Me study, (2) a standard operating procedure was developed to maintain consistency in the use of methods and techniques across research centers, and (3) the Food4Me behavior change technique framework was reviewed and updated post intervention. An analysis of excluded techniques was also conducted. Of 46 techniques identified a priori as being applicable to Food4Me, 17 were embedded in the intervention design; 11 were from a dietary taxonomy, and 6 from a smoking cessation taxonomy. In addition, the four-category smoking cessation framework structure was adopted for clarity of communication. Smoking cessation texts were adapted for dietary use where necessary. A posteriori, a further 9 techniques were included. Examination of excluded items highlighted the distinction between techniques considered appropriate for face-to-face versus internet-based delivery. The use of existing taxonomies facilitated the description and standardization of techniques used in Food4Me. We recommend that for complex studies of this nature, technique analysis should be conducted a priori to develop standardized procedures and training and reviewed a posteriori to audit the techniques actually adopted. The present framework description makes a valuable contribution to future systematic reviews and meta-analyses that explore technique efficacy and underlying psychological constructs. This was a novel application of the behavior change taxonomies and was the first internet-based personalized nutrition intervention to use such a framework remotely. ClinicalTrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6y8XYUft1). ©Anna L Macready, Rosalind Fallaize, Laurie T Butler, Judi A Ellis, Sharron Kuznesof, Lynn J Frewer, Carlos Celis-Morales, Katherine M Livingstone, Vera Araújo-Soares, Arnout RH Fischer, Barbara J Stewart-Knox, John C Mathers, Julie A Lovegrove. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 09.04.2018.

  6. YAPPA: a Compiler-Based Parallelization Framework for Irregular Applications on MPSoCs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovergine, Silvia; Tumeo, Antonino; Villa, Oreste

    Modern embedded systems include hundreds of cores. Because of the difficulty in providing a fast, coherent memory architecture, these systems usually rely on non-coherent, non-uniform memory architectures with private memories for each core. However, programming these systems poses significant challenges. The developer must extract large amounts of parallelism, while orchestrating communication among cores to optimize application performance. These issues become even more significant with irregular applications, which present data sets difficult to partition, unpredictable memory accesses, unbalanced control flow and fine grained communication. Hand-optimizing every single aspect is hard and time-consuming, and it often does not lead to the expectedmore » performance. There is a growing gap between such complex and highly-parallel architectures and the high level languages used to describe the specification, which were designed for simpler systems and do not consider these new issues. In this paper we introduce YAPPA (Yet Another Parallel Programming Approach), a compilation framework for the automatic parallelization of irregular applications on modern MPSoCs based on LLVM. We start by considering an efficient parallel programming approach for irregular applications on distributed memory systems. We then propose a set of transformations that can reduce the development and optimization effort. The results of our initial prototype confirm the correctness of the proposed approach.« less

  7. User-level framework for performance monitoring of HPC applications

    NASA Astrophysics Data System (ADS)

    Hristova, R.; Goranov, G.

    2013-10-01

    HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.

  8. A general modeling framework for describing spatially structured population dynamics

    USGS Publications Warehouse

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance that comparative analyses are colored by model details rather than general principles

  9. An evidence-based public health approach to climate change adaptation.

    PubMed

    Hess, Jeremy J; Eidson, Millicent; Tlumak, Jennifer E; Raab, Kristin K; Luber, George

    2014-11-01

    Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders.

  10. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  11. Violence against women in Pakistan: a framework for analysis.

    PubMed

    Ali, Parveen Azam; Gavino, Maria Irma Bustamante

    2008-04-01

    Understanding violence against women is as complex as its process. As a perusal of literature shows that most of the explanations were contextually and culturally based, this review attempts to analyze the issue of violence against women using theories applicable within the Pakistani context. Literature examining the issue of violence against women and its various theories was reviewed. A framework using the determinants of violence against women as proposed, include intrinsic and extrinsic factors within the people, the socio-economic-political and cultural system of Pakistan and the influences of surrounding countries. The Pakistani scenario has been described and the theoretical bases were presented. Each determinant has been discussed with supporting literature. Further studies are needed to strengthen the framework; however, it provided a modest view of violence against women in Pakistan. The framework would help the policy and decision makers to understand the dynamics of violence against women and may move them to action to bring about improvements in women's' lives.

  12. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  13. A Novel Protective Framework for Defeating HTTP-Based Denial of Service and Distributed Denial of Service Attacks.

    PubMed

    Saleh, Mohammed A; Abdul Manaf, Azizah

    2015-01-01

    The growth of web technology has brought convenience to our life, since it has become the most important communication channel. However, now this merit is threatened by complicated network-based attacks, such as denial of service (DoS) and distributed denial of service (DDoS) attacks. Despite many researchers' efforts, no optimal solution that addresses all sorts of HTTP DoS/DDoS attacks is on offer. Therefore, this research aims to fix this gap by designing an alternative solution called a flexible, collaborative, multilayer, DDoS prevention framework (FCMDPF). The innovative design of the FCMDPF framework handles all aspects of HTTP-based DoS/DDoS attacks through the following three subsequent framework's schemes (layers). Firstly, an outer blocking (OB) scheme blocks attacking IP source if it is listed on the black list table. Secondly, the service traceback oriented architecture (STBOA) scheme is to validate whether the incoming request is launched by a human or by an automated tool. Then, it traces back the true attacking IP source. Thirdly, the flexible advanced entropy based (FAEB) scheme is to eliminate high rate DDoS (HR-DDoS) and flash crowd (FC) attacks. Compared to the previous researches, our framework's design provides an efficient protection for web applications against all sorts of DoS/DDoS attacks.

  14. A Novel Protective Framework for Defeating HTTP-Based Denial of Service and Distributed Denial of Service Attacks

    PubMed Central

    Saleh, Mohammed A.; Abdul Manaf, Azizah

    2015-01-01

    The growth of web technology has brought convenience to our life, since it has become the most important communication channel. However, now this merit is threatened by complicated network-based attacks, such as denial of service (DoS) and distributed denial of service (DDoS) attacks. Despite many researchers' efforts, no optimal solution that addresses all sorts of HTTP DoS/DDoS attacks is on offer. Therefore, this research aims to fix this gap by designing an alternative solution called a flexible, collaborative, multilayer, DDoS prevention framework (FCMDPF). The innovative design of the FCMDPF framework handles all aspects of HTTP-based DoS/DDoS attacks through the following three subsequent framework's schemes (layers). Firstly, an outer blocking (OB) scheme blocks attacking IP source if it is listed on the black list table. Secondly, the service traceback oriented architecture (STBOA) scheme is to validate whether the incoming request is launched by a human or by an automated tool. Then, it traces back the true attacking IP source. Thirdly, the flexible advanced entropy based (FAEB) scheme is to eliminate high rate DDoS (HR-DDoS) and flash crowd (FC) attacks. Compared to the previous researches, our framework's design provides an efficient protection for web applications against all sorts of DoS/DDoS attacks. PMID:26065015

  15. Virtual shelves in a digital library: a framework for access to networked information sources.

    PubMed

    Patrick, T B; Springer, G K; Mitchell, J A; Sievert, M E

    1995-01-01

    Develop a framework for collections-based access to networked information sources that addresses the problem of location-dependent access to information sources. This framework uses a metaphor of a virtual shelf. A virtual shelf is a general-purpose server that is dedicated to a particular information subject class. The identifier of one of these servers identifies its subject class. Location-independent call numbers are assigned to information sources. Call numbers are based on standard vocabulary codes. The call numbers are first mapped to the location-independent identifiers of virtual shelves. When access to an information resource is required, a location directory provides a second mapping of these location-independent server identifiers to actual network locations. The framework has been implemented in two different systems. One system is based on the Open System Foundation/Distributed Computing Environment and the other is based on the World Wide Web. This framework applies in new ways traditional methods of library classification and cataloging. It is compatible with two traditional styles of selecting information searching and browsing. Traditional methods may be combined with new paradigms of information searching that will be able to take advantage of the special properties of digital information. Cooperation between the library-informational science community and the informatics community can provide a means for a continuing application of the knowledge and techniques of library science to the new problems of networked information sources.

  16. Modular GIS Framework for National Scale Hydrologic and Hydraulic Modeling Support

    NASA Astrophysics Data System (ADS)

    Djokic, D.; Noman, N.; Kopp, S.

    2015-12-01

    Geographic information systems (GIS) have been extensively used for pre- and post-processing of hydrologic and hydraulic models at multiple scales. An extensible GIS-based framework was developed for characterization of drainage systems (stream networks, catchments, floodplain characteristics) and model integration. The framework is implemented as a set of free, open source, Python tools and builds on core ArcGIS functionality and uses geoprocessing capabilities to ensure extensibility. Utilization of COTS GIS core capabilities allows immediate use of model results in a variety of existing online applications and integration with other data sources and applications.The poster presents the use of this framework to downscale global hydrologic models to local hydraulic scale and post process the hydraulic modeling results and generate floodplains at any local resolution. Flow forecasts from ECMWF or WRF-Hydro are downscaled and combined with other ancillary data for input into the RAPID flood routing model. RAPID model results (stream flow along each reach) are ingested into a GIS-based scale dependent stream network database for efficient flow utilization and visualization over space and time. Once the flows are known at localized reaches, the tools can be used to derive the floodplain depth and extent for each time step in the forecast at any available local resolution. If existing rating curves are available they can be used to relate the flow to the depth of flooding, or synthetic rating curves can be derived using the tools in the toolkit and some ancillary data/assumptions. The results can be published as time-enabled spatial services to be consumed by web applications that use floodplain information as an input. Some of the existing online presentation templates can be easily combined with available online demographic and infrastructure data to present the impact of the potential floods on the local community through simple, end user products. This framework has been successfully used in both the data rich environments as well as in locales with minimum available spatial and hydrographic data.

  17. A generic framework for internet-based interactive applications of high-resolution 3-D medical image data.

    PubMed

    Liu, Danzhou; Hua, Kien A; Sugaya, Kiminobu

    2008-09-01

    With the advances in medical imaging devices, large volumes of high-resolution 3-D medical image data have been produced. These high-resolution 3-D data are very large in size, and severely stress storage systems and networks. Most existing Internet-based 3-D medical image interactive applications therefore deal with only low- or medium-resolution image data. While it is possible to download the whole 3-D high-resolution image data from the server and perform the image visualization and analysis at the client site, such an alternative is infeasible when the high-resolution data are very large, and many users concurrently access the server. In this paper, we propose a novel framework for Internet-based interactive applications of high-resolution 3-D medical image data. Specifically, we first partition the whole 3-D data into buckets, remove the duplicate buckets, and then, compress each bucket separately. We also propose an index structure for these buckets to efficiently support typical queries such as 3-D slicer and region of interest, and only the relevant buckets are transmitted instead of the whole high-resolution 3-D medical image data. Furthermore, in order to better support concurrent accesses and to improve the average response time, we also propose techniques for efficient query processing, incremental transmission, and client sharing. Our experimental study in simulated and realistic environments indicates that the proposed framework can significantly reduce storage and communication requirements, and can enable real-time interaction with remote high-resolution 3-D medical image data for many concurrent users.

  18. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    PubMed Central

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M.L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2017-01-01

    The term ‘synergy’ – from the Greek synergia – means ‘working together’. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project “The Hand Embodied” (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. PMID:26923030

  19. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands.

    PubMed

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M L; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project "The Hand Embodied" (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial hands

    NASA Astrophysics Data System (ADS)

    Santello, Marco; Bianchi, Matteo; Gabiccini, Marco; Ricciardi, Emiliano; Salvietti, Gionata; Prattichizzo, Domenico; Ernst, Marc; Moscatelli, Alessandro; Jörntell, Henrik; Kappers, Astrid M. L.; Kyriakopoulos, Kostas; Albu-Schäffer, Alin; Castellini, Claudio; Bicchi, Antonio

    2016-07-01

    The term 'synergy' - from the Greek synergia - means 'working together'. The concept of multiple elements working together towards a common goal has been extensively used in neuroscience to develop theoretical frameworks, experimental approaches, and analytical techniques to understand neural control of movement, and for applications for neuro-rehabilitation. In the past decade, roboticists have successfully applied the framework of synergies to create novel design and control concepts for artificial hands, i.e., robotic hands and prostheses. At the same time, robotic research on the sensorimotor integration underlying the control and sensing of artificial hands has inspired new research approaches in neuroscience, and has provided useful instruments for novel experiments. The ambitious goal of integrating expertise and research approaches in robotics and neuroscience to study the properties and applications of the concept of synergies is generating a number of multidisciplinary cooperative projects, among which the recently finished 4-year European project ;The Hand Embodied; (THE). This paper reviews the main insights provided by this framework. Specifically, we provide an overview of neuroscientific bases of hand synergies and introduce how robotics has leveraged the insights from neuroscience for innovative design in hardware and controllers for biomedical engineering applications, including myoelectric hand prostheses, devices for haptics research, and wearable sensing of human hand kinematics. The review also emphasizes how this multidisciplinary collaboration has generated new ways to conceptualize a synergy-based approach for robotics, and provides guidelines and principles for analyzing human behavior and synthesizing artificial robotic systems based on a theory of synergies.

  1. Extending information retrieval methods to personalized genomic-based studies of disease.

    PubMed

    Ye, Shuyun; Dawson, John A; Kendziorski, Christina

    2014-01-01

    Genomic-based studies of disease now involve diverse types of data collected on large groups of patients. A major challenge facing statistical scientists is how best to combine the data, extract important features, and comprehensively characterize the ways in which they affect an individual's disease course and likelihood of response to treatment. We have developed a survival-supervised latent Dirichlet allocation (survLDA) modeling framework to address these challenges. Latent Dirichlet allocation (LDA) models have proven extremely effective at identifying themes common across large collections of text, but applications to genomics have been limited. Our framework extends LDA to the genome by considering each patient as a "document" with "text" detailing his/her clinical events and genomic state. We then further extend the framework to allow for supervision by a time-to-event response. The model enables the efficient identification of collections of clinical and genomic features that co-occur within patient subgroups, and then characterizes each patient by those features. An application of survLDA to The Cancer Genome Atlas ovarian project identifies informative patient subgroups showing differential response to treatment, and validation in an independent cohort demonstrates the potential for patient-specific inference.

  2. An efficient framework for Java data processing systems in HPC environments

    NASA Astrophysics Data System (ADS)

    Fries, Aidan; Castañeda, Javier; Isasi, Yago; Taboada, Guillermo L.; Portell de Mora, Jordi; Sirvent, Raül

    2011-11-01

    Java is a commonly used programming language, although its use in High Performance Computing (HPC) remains relatively low. One of the reasons is a lack of libraries offering specific HPC functions to Java applications. In this paper we present a Java-based framework, called DpcbTools, designed to provide a set of functions that fill this gap. It includes a set of efficient data communication functions based on message-passing, thus providing, when a low latency network such as Myrinet is available, higher throughputs and lower latencies than standard solutions used by Java. DpcbTools also includes routines for the launching, monitoring and management of Java applications on several computing nodes by making use of JMX to communicate with remote Java VMs. The Gaia Data Processing and Analysis Consortium (DPAC) is a real case where scientific data from the ESA Gaia astrometric satellite will be entirely processed using Java. In this paper we describe the main elements of DPAC and its usage of the DpcbTools framework. We also assess the usefulness and performance of DpcbTools through its performance evaluation and the analysis of its impact on some DPAC systems deployed in the MareNostrum supercomputer (Barcelona Supercomputing Center).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Balaprakash, Prasanna; Meng, Jiayuan

    We present Raexplore, a performance modeling framework for architecture exploration. Raexplore enables rapid, automated, and systematic search of architecture design space by combining hardware counter-based performance characterization and analytical performance modeling. We demonstrate Raexplore for two recent manycore processors IBM Blue- Gene/Q compute chip and Intel Xeon Phi, targeting a set of scientific applications. Our framework is able to capture complex interactions between architectural components including instruction pipeline, cache, and memory, and to achieve a 3–22% error for same-architecture and cross-architecture performance predictions. Furthermore, we apply our framework to assess the two processors, and discover and evaluate a list ofmore » architectural scaling options for future processor designs.« less

  4. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  5. FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET

    PubMed Central

    N. Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash

    2016-01-01

    Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks. PMID:27285146

  6. Application of a policy framework for the public funding of drugs for rare diseases.

    PubMed

    Winquist, Eric; Coyle, Doug; Clarke, Joe T R; Evans, Gerald A; Seager, Christine; Chan, Winnie; Martin, Janet

    2014-08-01

    In many countries, decisions about the public funding of drugs are preferentially based on the results of randomized trials. For truly rare diseases, such trials are not typically available, and approaches by public payers are highly variable. In view of this, a policy framework intended to fairly evaluate these drugs was developed by the Drugs for Rare Diseases Working Group (DRDWG) at the request of the Ontario Public Drug Programs. To report the initial experience of applying a novel evaluation framework to funding applications for drugs for rare diseases. Retrospective observational cohort study. Clinical effectiveness, costs, funding recommendations, funding approval. Between March 2008 and February 2013, eight drugs were evaluated using the DRDWG framework. The estimated average annual drug cost per patient ranged from 28,000 to 1,200,000 Canadian dollars (CAD). For five drugs, full evaluations were completed, specific funding recommendations were made by the DRDWG, and funding was approved after risk-sharing agreements with the manufacturers were negotiated. For two drugs, the disease indications were determined to be ineligible for consideration. For one drug, there was insufficient natural history data for the disease to provide a basis for recommendation. For the five drugs fully evaluated, 32 patients met the predefined eligibility criteria for funding, and five were denied based on predefined exclusion criteria. The framework improved transparency and consistency for evaluation and public funding of drugs for rare diseases in Ontario. The evaluation process will continue to be iteratively refined as feedback on actual versus expected clinical and economic outcomes is incorporated.

  7. Fall prevention intervention technologies: A conceptual framework and survey of the state of the art.

    PubMed

    Hamm, Julian; Money, Arthur G; Atwal, Anita; Paraskevopoulos, Ioannis

    2016-02-01

    In recent years, an ever increasing range of technology-based applications have been developed with the goal of assisting in the delivery of more effective and efficient fall prevention interventions. Whilst there have been a number of studies that have surveyed technologies for a particular sub-domain of fall prevention, there is no existing research which surveys the full spectrum of falls prevention interventions and characterises the range of technologies that have augmented this landscape. This study presents a conceptual framework and survey of the state of the art of technology-based fall prevention systems which is derived from a systematic template analysis of studies presented in contemporary research literature. The framework proposes four broad categories of fall prevention intervention system: Pre-fall prevention; Post-fall prevention; Fall injury prevention; Cross-fall prevention. Other categories include, Application type, Technology deployment platform, Information sources, Deployment environment, User interface type, and Collaborative function. After presenting the conceptual framework, a detailed survey of the state of the art is presented as a function of the proposed framework. A number of research challenges emerge as a result of surveying the research literature, which include a need for: new systems that focus on overcoming extrinsic falls risk factors; systems that support the environmental risk assessment process; systems that enable patients and practitioners to develop more collaborative relationships and engage in shared decision making during falls risk assessment and prevention activities. In response to these challenges, recommendations and future research directions are proposed to overcome each respective challenge. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Organizing environmental flow frameworks to meet hydropower mitigation needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow sciencemore » due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Here, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. In conclusion, our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. As a result, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.« less

  9. RANZCR Body Systems Framework of diagnostic imaging examination descriptors.

    PubMed

    Pitman, Alexander G; Penlington, Lisa; Doromal, Darren; Slater, Gregory; Vukolova, Natalia

    2014-08-01

    A unified and logical system of descriptors for diagnostic imaging examinations and procedures is a desirable resource for radiology in Australia and New Zealand and is needed to support core activities of RANZCR. Existing descriptor systems available in Australia and New Zealand (including the Medicare DIST and the ACC Schedule) have significant limitations and are inappropriate for broader clinical application. An anatomically based grid was constructed, with anatomical structures arranged in rows and diagnostic imaging modalities arranged in columns (including nuclear medicine and positron emission tomography). The grid was segregated into five body systems. The cells at the intersection of an anatomical structure row and an imaging modality column were populated with short, formulaic descriptors of the applicable diagnostic imaging examinations. Clinically illogical or physically impossible combinations were 'greyed out'. Where the same examination applied to different anatomical structures, the descriptor was kept identical for the purposes of streamlining. The resulting Body Systems Framework of diagnostic imaging examination descriptors lists all the reasonably common diagnostic imaging examinations currently performed in Australia and New Zealand using a unified grid structure allowing navigation by both referrers and radiologists. The Framework has been placed on the RANZCR website and is available for access free of charge by registered users. The Body Systems Framework of diagnostic imaging examination descriptors is a system of descriptors based on relationships between anatomical structures and imaging modalities. The Framework is now available as a resource and reference point for the radiology profession and to support core College activities. © 2014 The Royal Australian and New Zealand College of Radiologists.

  10. Organizing environmental flow frameworks to meet hydropower mitigation needs

    DOE PAGES

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; ...

    2016-06-25

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow sciencemore » due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Here, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. In conclusion, our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. As a result, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.« less

  11. Comparative SWOT analysis of strategic environmental assessment systems in the Middle East and North Africa region.

    PubMed

    Rachid, G; El Fadel, M

    2013-08-15

    This paper presents a SWOT analysis of SEA systems in the Middle East North Africa region through a comparative examination of the status, application and structure of existing systems based on country-specific legal, institutional and procedural frameworks. The analysis is coupled with the multi-attribute decision making method (MADM) within an analytical framework that involves both performance analysis based on predefined evaluation criteria and countries' self-assessment of their SEA system through open-ended surveys. The results show heterogenous status with a general delayed progress characterized by varied levels of weaknesses embedded in the legal and administrative frameworks and poor integration with the decision making process. Capitalizing on available opportunities, the paper highlights measures to enhance the development and enactment of SEA in the region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration

    NASA Technical Reports Server (NTRS)

    Lin, Risheng; Afjeh, Abdollah A.

    2003-01-01

    This paper discusses the detailed design of an XML databinding framework for aircraft engine simulation. The framework provides an object interface to access and use engine data. while at the same time preserving the meaning of the original data. The Language independent representation of engine component data enables users to move around XML data using HTTP through disparate networks. The application of this framework is demonstrated via a web-based turbofan propulsion system simulation using the World Wide Web (WWW). A Java Servlet based web component architecture is used for rendering XML engine data into HTML format and dealing with input events from the user, which allows users to interact with simulation data from a web browser. The simulation data can also be saved to a local disk for archiving or to restart the simulation at a later time.

  13. CoP Sensing Framework on Web-Based Environment

    NASA Astrophysics Data System (ADS)

    Mustapha, S. M. F. D. Syed

    The Web technologies and Web applications have shown similar high growth rate in terms of daily usages and user acceptance. The Web applications have not only penetrated in the traditional domains such as education and business but have also encroached into areas such as politics, social, lifestyle, and culture. The emergence of Web technologies has enabled Web access even to the person on the move through PDAs or mobile phones that are connected using Wi-Fi, HSDPA, or other communication protocols. These two phenomena are the inducement factors toward the need of building Web-based systems as the supporting tools in fulfilling many mundane activities. In doing this, one of the many focuses in research has been to look at the implementation challenges in building Web-based support systems in different types of environment. This chapter describes the implementation issues in building the community learning framework that can be supported on the Web-based platform. The Community of Practice (CoP) has been chosen as the community learning theory to be the case study and analysis as it challenges the creativity of the architectural design of the Web system in order to capture the presence of learning activities. The details of this chapter describe the characteristics of the CoP to understand the inherent intricacies in modeling in the Web-based environment, the evidences of CoP that need to be traced automatically in a slick manner such that the evidence-capturing process is unobtrusive, and the technologies needed to embrace a full adoption of Web-based support system for the community learning framework.

  14. A framework for analysis of sentinel events in medical student education.

    PubMed

    Cohen, Daniel M; Clinchot, Daniel M; Werman, Howard A

    2013-11-01

    Although previous studies have addressed student factors contributing to dismissal or withdrawal from medical school for academic reasons, little information is available regarding institutional factors that may hinder student progress. The authors describe the development and application of a framework for sentinel event (SE) root cause analysis to evaluate cases in which students are dismissed or withdraw because of failure to progress in the medical school curriculum. The SE in medical student education (MSE) framework was piloted at the Ohio State University College of Medicine (OSUCOM) during 2010-2012. Faculty presented cases using the framework during academic oversight committee discussions. Nine SEs in MSE were presented using the framework. Major institution-level findings included the need for improved communication, documentation of cognitive and noncognitive (e.g., mental health) issues, clarification of requirements for remediation and fitness for duty, and additional psychological services. Challenges related to alternative and combined programs were identified as well. The OSUCOM undertook system changes based on the action plans developed through the discussions of these SEs. An SE analysis process appears to be a useful method for making system changes in response to institutional issues identified in evaluation of cases in which students fail to progress in the medical school curriculum. The authors plan to continue to refine the SE in MSE framework and analysis process. Next steps include assessing whether analysis using this framework yields improved student outcomes with universal applications for other institutions.

  15. High efficient optical remote sensing images acquisition for nano-satellite-framework

    NASA Astrophysics Data System (ADS)

    Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi

    2017-09-01

    It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.

  16. Nature-based supportive care opportunities: a conceptual framework.

    PubMed

    Blaschke, Sarah; O'Callaghan, Clare C; Schofield, Penelope

    2018-03-22

    Given preliminary evidence for positive health outcomes related to contact with nature for cancer populations, research is warranted to ascertain possible strategies for incorporating nature-based care opportunities into oncology contexts as additional strategies for addressing multidimensional aspects of cancer patients' health and recovery needs. The objective of this study was to consolidate existing research related to nature-based supportive care opportunities and generate a conceptual framework for discerning relevant applications in the supportive care setting. Drawing on research investigating nature-based engagement in oncology contexts, a two-step analytic process was used to construct a conceptual framework for guiding nature-based supportive care design and future research. Concept analysis methodology generated new representations of understanding by extracting and synthesising salient concepts. Newly formulated concepts were transposed to findings from related research about patient-reported and healthcare expert-developed recommendations for nature-based supportive care in oncology. Five theoretical concepts (themes) were formulated describing patients' reasons for engaging with nature and the underlying needs these interactions address. These included: connecting with what is genuinely valued, distancing from the cancer experience, meaning-making and reframing the cancer experience, finding comfort and safety, and vital nurturance. Eight shared patient and expert recommendations were compiled, which address the identified needs through nature-based initiatives. Eleven additional patient-reported recommendations attend to beneficial and adverse experiential qualities of patients' nature-based engagement and complete the framework. The framework outlines salient findings about helpful nature-based supportive care opportunities for ready access by healthcare practitioners, designers, researchers and patients themselves. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Application of dynamic traffic assignment to advanced managed lane modeling.

    DOT National Transportation Integrated Search

    2013-11-01

    In this study, a demand estimation framework is developed for assessing the managed lane (ML) : strategies by utilizing dynamic traffic assignment (DTA) modeling, instead of the traditional : approaches that are based on the static traffic assignment...

  18. Agricultural Conservation Planning Toolbox User's Manual

    USDA-ARS?s Scientific Manuscript database

    Agricultural Conservation Planning Framework (ACPF) comprises an approach for applying concepts of precision conservation to watershed planning in agricultural landscapes. To enable application of this approach, USDA/ARS has developed a set of Geographic Information System (GIS) based software tools...

  19. AN ECOEPIDEMIOLOGICAL APPROACH FOR DEVELOPING WATER QUALITY CRITERIA

    EPA Science Inventory

    The USEPA's Draft Framework for Developing Suspended and Bedded Sediments Water Quality Criteria is based on an ecoepidemiological approach that is potentially applicable to any chemical or non-chemical agent. An ecoepidemiological approach infers associations from the co-occurre...

  20. Collaborative Information Retrieval Method among Personal Repositories

    NASA Astrophysics Data System (ADS)

    Kamei, Koji; Yukawa, Takashi; Yoshida, Sen; Kuwabara, Kazuhiro

    In this paper, we describe a collaborative information retrieval method among personal repositorie and an implementation of the method on a personal agent framework. We propose a framework for personal agents that aims to enable the sharing and exchange of information resources that are distributed unevenly among individuals. The kernel of a personal agent framework is an RDF(resource description framework)-based information repository for storing, retrieving and manipulating privately collected information, such as documents the user read and/or wrote, email he/she exchanged, web pages he/she browsed, etc. The repository also collects annotations to information resources that describe relationships among information resources and records of interaction between the user and information resources. Since the information resources in a personal repository and their structure are personalized, information retrieval from other users' is an important application of the personal agent. A vector space model with a personalized concept-base is employed as an information retrieval mechanism in a personal repository. Since a personalized concept-base is constructed from information resources in a personal repository, it reflects its user's knowledge and interests. On the other hand, it leads to another problem while querying other users' personal repositories; that is, simply transferring query requests does not provide desirable results. To solve this problem, we propose a query equalization scheme based on a relevance feedback method for collaborative information retrieval between personalized concept-bases. In this paper, we describe an implementation of the collaborative information retrieval method and its user interface on the personal agent framework.

Top