Science.gov

Sample records for application methods water

  1. How to save water by choice of irrigation application method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  2. Water footprint assessment for wastewater treatment: method, indicator, and application.

    PubMed

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  3. Metropolitan Water Availability Forecasting Methods and Applications in South Florida

    EPA Science Inventory

    The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...

  4. Mean-value second-order uncertainty analysis method: application to water quality modelling

    NASA Astrophysics Data System (ADS)

    Mailhot, Alain; Villeneuve, Jean-Pierre

    Uncertainty analysis in hydrology and water quality modelling is an important issue. Various methods have been proposed to estimate uncertainties on model results based on given uncertainties on model parameters. Among these methods, the mean-value first-order second-moment (MFOSM) method and the advanced mean-value first-order second-moment (AFOSM) method are the most common ones. This paper presents a method based on a second-order approximation of a model output function. The application of this method requires the estimation of first- and second-order derivatives at a mean-value point in the parameter space. Application to a Streeter-Phelps prototype model is presented. Uncertainties on two and six parameters are considered. Exceedance probabilities (EP) of dissolved oxygen concentrations are obtained and compared with EP computed using Monte Carlo, AFOSM and MFOSM methods. These results show that the mean-value second-order method leads to better estimates of EP.

  5. Effect of liquid municipal biosolid application method on tile and ground water quality.

    PubMed

    Lapen, D R; Topp, E; Edwards, M; Sabourin, L; Curnoe, W; Gottschall, N; Bolton, P; Rahman, S; Ball-Coelho, B; Payne, M; Kleywegt, S; McLaughlin, N

    2008-01-01

    This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p < 0.1) reduced application-induced LMB contamination of tile drains relative to the SS treatment, as shown by mass loads of total Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p < 0.1) higher for the SS treatment, relative to the A treatment, but there were no significant (p > 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.

  6. A new method for qualitative simulation of water resources systems: 2. Applications

    NASA Astrophysics Data System (ADS)

    Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  7. Water-budget methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    A water budget is an accounting of water movement into and out of, and storage change within, some control volume. Universal and adaptable are adjectives that reflect key features of water-budget methods for estimating recharge. The universal concept of mass conservation of water implies that water-budget methods are applicable over any space and time scales (Healy et al., 2007). The water budget of a soil column in a laboratory can be studied at scales of millimeters and seconds. A water-budget equation is also an integral component of atmospheric general circulation models used to predict global climates over periods of decades or more. Water-budget equations can be easily customized by adding or removing terms to accurately portray the peculiarities of any hydrologic system. The equations are generally not bound by assumptions on mechanisms by which water moves into, through, and out of the control volume of interest. So water-budget methods can be used to estimate both diffuse and focused recharge, and recharge estimates are unaffected by phenomena such as preferential flow paths within the unsaturated zone. Water-budget methods represent the largest class of techniques for estimating recharge. Most hydrologic models are derived from a water-budget equation and can therefore be classified as water-budget models. It is not feasible to address all water-budget methods in a single chapter. This chapter is limited to discussion of the “residual” water-budget approach, whereby all variables in a water-budget equation, except for recharge, are independently measured or estimated and recharge is set equal to the residual. This chapter is closely linked with Chapter 3, on modeling methods, because the equations presented here form the basis of many models and because models are often used to estimate individual components in water-budget studies. Water budgets for streams and other surface-water bodies are addressed in Chapter 4. The use of soil-water budgets and

  8. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure.

    PubMed

    Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E

    2012-05-01

    A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

  9. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.

    PubMed

    Hammes, Frederik; Egli, Thomas

    2010-06-01

    Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.

  10. A method for the characterization of emulsions, thermogranulometry: application to water-in-crude oil emulsion.

    PubMed

    Clausse, D; Gomez, F; Dalmazzone, C; Noik, C

    2005-07-15

    Emulsions are used in a wide range of applications and industries. Their size distribution is an important parameter because it influences most of the emulsion properties of emulsions. Several techniques of characterization are used to determine the granulometric distribution of emulsions, but they are generally limited to dilute samples and are based on complex algorithms. We describe a method that allows characterization of the droplet size distribution of emulsions using thermal analysis (thermogranulometry). This method permits the use of very concentrated samples without any dilution or perturbation of the system. We first define our method by a thermodynamic and kinetic approach. We studied a real system, i.e., crude oil emulsions, which form very concentrated, viscous, and opaque emulsions with water. We present a correlation between the size of droplets and their freezing temperature, corresponding to our system. Then we compare the size distributions obtained by our method with those derived by direct microscopy observations. The results obtained show that thermogranulometry may be an interesting method of characterization of emulsions, even for concentrated systems. PMID:15925639

  11. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    NASA Astrophysics Data System (ADS)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  12. A numerical analysis on the applicability of the water level fluctuation method for quantifying groundwater recharge

    NASA Astrophysics Data System (ADS)

    Koo, M.; Lee, D.

    2002-12-01

    The water table fluctuation(WTF) method is a conventional method for quantifying groundwater recharge by multiplying the specific yield to the water level rise. Based on the van Genuchten model, an analytical relationship between groundwater recharge and the water level rise is derived. The equation is used to analyze the effects of the depth to water level and the soil properties on the recharge estimate using the WTF method. The results show that the WTF method is reliable when applied to the aquifers of the fluvial sand provided the water table is below 1m depth. However, if it is applied to the silt loam having the water table depth ranging 4~10m, the recharge is overestimated by 30~80%, and the error increases drastically as the water table is getting shallower. A 2-D unconfined flow model with a time series of the recharge rate is developed. It is used for elucidating the errors of the WTF method, which is implicitly based on the tank model where the horizontal flow in the saturated zone is ignored. Simulations show that the recharge estimated by the WTF method is underestimated for the observation well near the discharge boundary. This is due to the fact that the hydraulic stress resulting from the recharge is rapidly dissipating by the horizontal flow near the discharge boundary. Simulations also reveal that the recharge is significantly underestimated with increase in the hydraulic conductivity and the recharge duration, and decrease in the specific yield.

  13. [Development and Applicability of Analytical Methods for Quantifying Cyanide and Bromic Acid in Mineral Waters].

    PubMed

    Fukuda, Yusaku; Kataoka, Yohei; Sano, Yuki; Takizawa, Kazuhiro; Watanabe, Takahiro; Teshima, Reiko

    2015-01-01

    We developed and evaluated methods of quantifying cyanide (cyanide ion and cyanogen chloride) and bromic acid in mineral waters (MW). After performance evaluation, recovery studies were performed on 110 kinds of MW products to examine the applicability of the methods. The approximate proportion of the MW samples, in which the recovery rate of these anionic compounds was within 90 to 110%, was 95% in the cyanide ion and bromic acid analysis and 45% in the cyanogen chloride analysis. We observed low rates of recovery of cyanogen chloride from some MW products with pH values around neutral. To increase the recovery rate, we propose adding phosphoric acid buffer to adjust the pH of these MW samples. The retention times for bromic acid in some MW products differed from that in standard solution. We concluded that carbonic acid influences the retention times. It may be necessary to to exclude carbon dioxide from the MW samples by degassing to synchronize the retention times of bromic acid in the MW samples and the standard solution.

  14. [Development and Applicability of Analytical Methods for Quantifying Cyanide and Bromic Acid in Mineral Waters].

    PubMed

    Fukuda, Yusaku; Kataoka, Yohei; Sano, Yuki; Takizawa, Kazuhiro; Watanabe, Takahiro; Teshima, Reiko

    2015-01-01

    We developed and evaluated methods of quantifying cyanide (cyanide ion and cyanogen chloride) and bromic acid in mineral waters (MW). After performance evaluation, recovery studies were performed on 110 kinds of MW products to examine the applicability of the methods. The approximate proportion of the MW samples, in which the recovery rate of these anionic compounds was within 90 to 110%, was 95% in the cyanide ion and bromic acid analysis and 45% in the cyanogen chloride analysis. We observed low rates of recovery of cyanogen chloride from some MW products with pH values around neutral. To increase the recovery rate, we propose adding phosphoric acid buffer to adjust the pH of these MW samples. The retention times for bromic acid in some MW products differed from that in standard solution. We concluded that carbonic acid influences the retention times. It may be necessary to to exclude carbon dioxide from the MW samples by degassing to synchronize the retention times of bromic acid in the MW samples and the standard solution. PMID:26699274

  15. Corn yield and water use efficiency under contrasting irrigation application methods: an AquaCrop study contrasting subsurface drip and sprinkler irrigation methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain corn (Zea mays, L.) is sensitive to soil water availability, which can be influenced by irrigation application method. Four facts motivate deficit irrigation of corn in this region. First, declining Ogallala aquifer well yields limit water availability and thus the area of land that can be irr...

  16. Non Invasive Water Level Monitoring on Boiling Water Reactors Using Internal Gamma Radiation: Application of Soft Computing Methods

    SciTech Connect

    Fleischer, Sebastian; Hampel, Rainer

    2006-07-01

    To provide best knowledge about safety-related water level values in boiling water reactors (BWR) is essentially for operational regime. For the water level determination hydrostatic level measurement systems are almost exclusively applied, because they stand the test over many decades in conventional and nuclear power plants (NPP). Due to the steam generation especially in BWR a specific phenomenon occurs which leads to a water-steam mixture level in the reactor annular space and reactor plenum. The mixture level is a high transient non-measurable value concerning the hydrostatic water level measuring system and it significantly differs from the measured collapsed water level. In particular, during operational and accidental transient processes like fast negative pressure transients, the monitoring of these water levels is very important. In addition to the hydrostatic water level measurement system a diverse water level measurement system for BWR should be used. A real physical diversity is given by gamma radiation distribution inside and outside the reactor pressure vessel correlating with the water level. The vertical gamma radiation distribution depends on the water level, but it is also a function of the neutron flux and the coolant recirculation pump speed. For the water level monitoring, special algorithms are required. An analytical determination of the gamma radiation distribution outside the reactor pressure vessel is impossible due to the multitude of radiation of physical processes, complicated non-stationary radiation source distribution and complex geometry of fixtures. For creating suited algorithms Soft Computing methods (Fuzzy Sets Theory, Artificial Neural Networks, etc.) will be used. Therefore, a database containing input values (gamma radiation distribution) and output values (water levels) had to be built. Here, the database was established by experiments (data from BWR and from a test setup) and simulation with the authorised thermo

  17. A new method of calculating electrical conductivity with applications to natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  18. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    PubMed

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial

  19. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    PubMed

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial

  20. Exploring the Application of Community Development Methods on Water Research in Developing Countries

    NASA Astrophysics Data System (ADS)

    Crane, P. E.

    2012-12-01

    In research and community development focused on water in developing countries, there is a common focus on issues of water quantity and quality. In the best circumstances both are innovative - bringing understanding and solutions to resource poor regions that is appropriate to their unique situations. But the underlying methods and measures for success often differ significantly. Applying critical aspects of community development methods to water research in developing countries could increase the probability of identifying innovative and sustainable solutions. This is examined through two case studies: the first identifies common methods across community development projects in six African countries, and the second examines water quality research performed in Benin, West Africa through the lens of these methods. The first case study is taken from observations gathered between 2008 and 2012 of community development projects focused on water quantity and quality in six sub-Saharan African countries implemented through different non-governmental organizations. These projects took place in rural and peri-urban regions where public utilities were few to none, instance of diarrheal disease was high, and most adults had received little formal education. The water projects included drilling of boreholes, building of rain water tanks, oasis rehabilitation, spring protection, and household biosand filters. All solutions were implemented with hygiene and sanitation components. Although these projects occurred in a wide array of cultural, geographical and climatic regions, the most successful projects shared methods of implementation. These methods are: high levels of stakeholder participation, environmental and cultural adaptation of process and product, and implementation over an extended length of time. The second case study focuses on water quality research performed in Benin, West Africa from 2003 to 2008. This research combined laboratory and statistical analyses with

  1. Method detection limit determination and application of a convenient headspace analysis method for methyl tert-butyl ether in water.

    PubMed

    O'Neill, Dennis T; Rochette, Elizabeth A; Ramsey, Philip J

    2002-11-15

    Methyl tert-butyl ether (MTBE) is a common groundwater contaminant, introduced to the environment by leaking petroleum storage tanks, urban runoff, and motorized watercraft. In this study. a simplified (static) headspace analysis method was adapted for determination of MTBE in water samples and soil water extracts. The MDL of the headspace method was calculated to be 2.0 microg L(-1) by the EPA single-concentration design method(1) and 1.2 microg L(-1) by a calibration method developed by Hubaux and Vos (Hubaux, A.; Vos, G. Anal. Chem. 1970,42, 849-855). The MDL calculated with the Hubaux and Vos method was favored because it considers both a true positive and a false positive. The static headspace method was applied to analysis of a tap water sample and a monitoring well sample from a gasoline service station, a river sample, and aqueous extracts from soil excavated during removal of a leaking underground storage tank (LUST). The water samples examined in this study had MTTBE concentrations ranging from 6 to 19 microg L(-1). Aqueous extracts of a soil sample taken from the LUST site had 8 microg L(-1) MTBE.

  2. Soil water content assessment: critical issues concerning the operational application of the triangle method.

    PubMed

    Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo

    2015-01-01

    Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. PMID:25808771

  3. Soil Water Content Assessment: Critical Issues Concerning the Operational Application of the Triangle Method

    PubMed Central

    Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo

    2015-01-01

    Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. PMID:25808771

  4. Field and laboratory arsenic speciation methods and their application to natural-water analysis

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.

    2004-01-01

    The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.

  5. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  6. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.

    PubMed

    Choi, Tae Hoon; Liang, Ruibin; Maupin, C Mark; Voth, Gregory A

    2013-05-01

    The self-consistent charge density functional tight binding (SCC-DFTB) method has been applied to hydroxide water clusters and a hydroxide ion in bulk water. To determine the impact of various implementations of SCC-DFTB on the energetics and dynamics of a hydroxide ion in gas phase and condensed phase, the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus, and DFTB3-3OB implementations have been tested. Energetic stabilities for small hydroxide clusters, OH(-)(H2O)n, where n = 4-7, are inconsistent with the results calculated with the B3LYP and second order Møller-Plesset (MP2) levels of ab initio theory. The condensed phase simulations, OH(-)(H2O)127, using the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus and DFTB3-3OB methods are compared to Car-Parrinello molecular dynamics (CPMD) simulations using the BLYP functional. The SCC-DFTB method including a modified O-H repulsive potential and the third order correction (DFTB3-diag/Full+gaus) is shown to poorly reproduce the CPMD computational results, while the DFTB2 and DFTB2-γ(h) method somewhat more closely describe the structural and dynamical nature of the hydroxide ion in condensed phase. The DFTB3-3OB outperforms the MIO parameter set but is no more accurate than DFTB2. It is also shown that the overcoordinated water molecules lead to an incorrect bulk water density and result in unphysical water void formation. The results presented in this paper point to serious drawbacks for various DFTB extensions and corrections for a hydroxide ion in aqueous environments. PMID:23566052

  7. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the

  8. Susceptibility indexing method for irrigation water management planning: applications to K. Menderes river basin, Turkey.

    PubMed

    Pusatli, O Tolga; Camur, M Zeki; Yazicigil, Hasan

    2009-01-01

    A susceptibility indexing method was developed based on vulnerability and quality indices. The contamination susceptibility index (SI) at a given location was calculated by taking the product of the vulnerability index (VI) and the quality index (QI): SI=VIxQI. This method incorporates both hydrogeological and hydrochemical data for a comprehensive index mapping. The DRASTIC index methodology was used for the hydrogeological data evaluations. The quality index calculation procedure based on a water quality classification scheme was introduced to evaluate hydrochemical data. The suggested susceptibility indexing method was applied to the Küçük Menderes river basin located in western Turkey. The susceptibility index map shows both hydrogeological and hydrochemical data related to the contamination problem including areas that should be taken into consideration during water management planning. The index map indicates that the most susceptible groundwater is located along the river channel between Kiraz and Tire towns, in the Selçuk area and along the Fertek stream channel to the north of Torbali town. The results indicate that the incorporation of both hydrogeological and hydrochemical datasets enables more realistic evaluations than those of an individual dataset to estimate the groundwater contamination susceptibility of an aquifer. The numerical procedure applied could be extended further by including other parameters such as retardation, potential contaminant sources, etc. that affect the water quality in a given basin.

  9. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  10. Water treatment method

    SciTech Connect

    Martin, F.S.; Silver, G.L.

    1990-02-02

    A method for reducing the concentration of many undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite. 1 tab.

  11. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  12. Applicability of the doubly labelled water method to the rhinoceros auklet, Cerorhinca monocerata

    PubMed Central

    Shirai, Masaki; Ito, Motohiro; Yoda, Ken; Niizuma, Yasuaki

    2012-01-01

    Summary The doubly labelled water (DLW) method is an isotope-based technique that is used to measure the metabolic rates of free-living animals. We validated the DLW method for measuring metabolic rates in five rhinoceros auklets (Cerorhinca monocerata) compared with simultaneous measurements using the respirometric method. We calculated the CO2 production rate of four auklets (mean initial body mass: 552 g±36 s.d.) injected with DLW, using the one- and two-pool models. The metabolic rate during the 24-h measurements in a respirometric chamber for resting auklets averaged 16.30±1.66 kJ h−1 (n = 4). The metabolic rates determined using the one- and two-pool models in the DLW method for the same period as the respirometric measurement averaged 16.61±2.13 kJ h−1 (n = 4) and 16.16±2.10 kJ h−1 (n = 4), respectively. The mean absolute percent error between the DLW and respirometric methods was 8.04% using the one-pool model and was slightly better than that with the two-pool model. The differences in value between the DLW and respirometric methods are probably due to oxygen isotope turnover, which eliminated only 10–14% of the initial enrichment excess. PMID:23213394

  13. Testing and Training of the Eggbeater Kick Movement in Water Polo: Applicability of a New Method.

    PubMed

    Melchiorri, Giovanni; Viero, Valerio; Triossi, Tamara; Tancredi, Virginia; Galvani, Christel; Bonifazi, Marco

    2015-10-01

    In water polo, many of the technical actions and the contacts with the opponent take place in quasi-vertical floating position using 2 types of lower limb actions: the eggbeater kick is used most often in fighting and passing and the breaststroke kick in jumping and throwing. The aim of this study was to identify a new system to evaluate and to train the eggbeater kick movement and to verify its applicability. Twenty amateur players and 22 elite players participated in the study. A jacket, homemade and easy to make, allowing the application of an overload submerged in water but not hindering breathing or mobility, was used. Standard anthropometry and a test consisting of different trials of the eggbeater kick action until exhaustion with an increasing overload (5, 7.5, 10, 12.5, 15, and 17.5 kg) were collected. Time to exhaustion and the overload estimated maximum value (OEMV) at second 2 were determined for each load. Body weight, height, and lower limb muscle performance of the elite and nonelite players were significantly different from each other (p ≤ 0.05). The effectiveness of the different measured variables in both subgroups and that of the OEMV was evaluated with receiver operating characteristic (ROC) curve analysis. Areas under the ROC curve for the different overloads were 0.72 (0.53-0.92) for 5 kg, 0.80 (0.68-0.90) for 7.5 kg, 0.87 (0.77-0.91) for 10 kg, and 0.88 (0.84-0.92) for 12.5 kg overload. Our results show that the test is sensitive enough and therefore can be used to plan and control training and injury recovery. PMID:25785702

  14. Testing and Training of the Eggbeater Kick Movement in Water Polo: Applicability of a New Method.

    PubMed

    Melchiorri, Giovanni; Viero, Valerio; Triossi, Tamara; Tancredi, Virginia; Galvani, Christel; Bonifazi, Marco

    2015-10-01

    In water polo, many of the technical actions and the contacts with the opponent take place in quasi-vertical floating position using 2 types of lower limb actions: the eggbeater kick is used most often in fighting and passing and the breaststroke kick in jumping and throwing. The aim of this study was to identify a new system to evaluate and to train the eggbeater kick movement and to verify its applicability. Twenty amateur players and 22 elite players participated in the study. A jacket, homemade and easy to make, allowing the application of an overload submerged in water but not hindering breathing or mobility, was used. Standard anthropometry and a test consisting of different trials of the eggbeater kick action until exhaustion with an increasing overload (5, 7.5, 10, 12.5, 15, and 17.5 kg) were collected. Time to exhaustion and the overload estimated maximum value (OEMV) at second 2 were determined for each load. Body weight, height, and lower limb muscle performance of the elite and nonelite players were significantly different from each other (p ≤ 0.05). The effectiveness of the different measured variables in both subgroups and that of the OEMV was evaluated with receiver operating characteristic (ROC) curve analysis. Areas under the ROC curve for the different overloads were 0.72 (0.53-0.92) for 5 kg, 0.80 (0.68-0.90) for 7.5 kg, 0.87 (0.77-0.91) for 10 kg, and 0.88 (0.84-0.92) for 12.5 kg overload. Our results show that the test is sensitive enough and therefore can be used to plan and control training and injury recovery.

  15. Development and application of a shipboard method for spectrophotometric determination of trace dissolved manganese in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Feng, Sichao; Huang, Yongming; Yuan, Dongxing; Zhu, Yong; Zhou, Tingjin

    2015-01-01

    A shipboard method for the determination of trace dissolved manganese in estuarine and coastal waters was developed using a technique of reverse flow injection analysis, which adopted a 1-m liquid waveguide capillary cell and spectrophotometric detection of manganese derivation with 1-(2-pyridylazo)-2-naphthol (PAN). The design of dual-sample-carrier speeded up the sample throughput and eliminated the Schlieren effect. The salinity of estuarine and coastal waters caused a huge increase in the blank absorption value at the maximum absorption wavelength; therefore, a less sensitive detection wavelength was selected to achieve a low blank value while the method sensitivity was not significantly decreased. Method parameters were optimized. The salinity effect from estuarine and coastal waters was carefully investigated, and interference from iron was evaluated. The proposed method had high sensitivity with a detection limit of 3.0 nmol L-1 and a wide linear range of 10-1500 nmol L-1 for dissolved manganese in seawater (S=35). The analytical results of five water samples with different salinities obtained using the proposed method showed good agreement with those using a reference ICP-MS method. The sample throughput of the proposed method was 120 h-1, which was capable of obtaining high spatial and temporal resolution data in shipboard analysis. The proposed method had the advantages of convenient application in estuarine and coastal waters with different salinities, low detection limit, as well as high sample throughput. The proposed method was successfully applied to a 24 h on-line analysis and a shipboard underway analysis of dissolved manganese in the Jiulongjiang Estuary.

  16. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method.

    PubMed

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-10

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5).

  17. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-01

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100 μL of chloroform, 1.3 mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0 mg mL-1 of MR in initial solution with R2 = 0.995 (n = 5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015 mg mL-1, respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n = 5).

  18. Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method

    SciTech Connect

    Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe

    2008-09-01

    One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, t is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.

  19. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  20. A resilience perspective to water risk management: case-study application of the adaptation tipping point method

    NASA Astrophysics Data System (ADS)

    Gersonius, Berry; Ashley, Richard; Jeuken, Ad; Nasruddin, Fauzy; Pathirana, Assela; Zevenbergen, Chris

    2010-05-01

    In a context of high uncertainty about hydrological variables due to climate change and other factors, the development of updated risk management approaches is as important as—if not more important than—the provision of improved data and forecasts of the future. Traditional approaches to adaptation attempt to manage future water risks to cities with the use of the predict-then-adapt method. This method uses hydrological change projections as the starting point to identify adaptive strategies, which is followed by analysing the cause-effect chain based on some sort of Pressures-State-Impact-Response (PSIR) scheme. The predict-then-adapt method presumes that it is possible to define a singular (optimal) adaptive strategy according to a most likely or average projection of future change. A key shortcoming of the method is, however, that the planning of water management structures is typically decoupled from forecast uncertainties and is, as such, inherently inflexible. This means that there is an increased risk of under- or over-adaptation, resulting in either mal-functioning or unnecessary costs. Rather than taking a traditional approach, responsible water risk management requires an alternative approach to adaptation that recognises and cultivates resiliency for change. The concept of resiliency relates to the capability of complex socio-technical systems to make aspirational levels of functioning attainable despite the occurrence of possible changes. Focusing on resiliency does not attempt to reduce uncertainty associated with future change, but rather to develop better ways of managing it. This makes it a particularly relevant perspective for adaptation to long-term hydrological change. Although resiliency is becoming more refined as a theory, the application of the concept to water risk management is still in an initial phase. Different methods are used in practice to support the implementation of a resilience-focused approach. Typically these approaches

  1. Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications

    PubMed Central

    Kazuko, Ishikawa-Takata; Kim, Eunkyung; Kim, Jeonghyun; Yoon, Jinsook

    2014-01-01

    The accuracy and noninvasive nature of the doubly labeled water (DLW) method makes it ideal for the study of human energy metabolism in free-living conditions. However, the DLW method is not always practical in many developing and Asian countries because of the high costs of isotopes and equipment for isotope analysis as well as the expertise required for analysis. This review provides information about the theoretical background and practical aspects of the DLW method, including optimal dose, basic protocols of two- and multiple-point approaches, experimental procedures, and isotopic analysis. We also introduce applications of DLW data, such as determining the equations of estimated energy requirement and validation studies of energy intake. PMID:24944767

  2. Application of selected methods of remote sensing for detecting carbonaceous water pollution

    NASA Technical Reports Server (NTRS)

    Davis, E. M.; Fosbury, W. J.

    1972-01-01

    The use of aerial photography to determine the nature and extent of water pollution from carbonaceous materials is discussed. Flights were conducted over the Galveston Bay estuarine complex. Ground truth data were developed from field sampling of the waters in a region near the Houston Ship Channel. Tests conducted in the field were those for the following physical and chemical factors: (1) ph, (2) dissolved oxygen, (3) temperature, and (4) light penetration. Laboratory analyses to determine various properties of the water are described and the types of instruments used are identified. Results of the analyses are presented as charts and graphs.

  3. Detection of Microbial Water Quality Indicators and Fecal Waterborne Pathogens in Environmental Waters: A Review of Methods, Applications, and Limitations

    EPA Science Inventory

    Environmental waters are important reservoirs of pathogenic microorganisms, many of which are of fecal origin. In most cases, the presence of pathogens is determined using surrogate bacterial indicators. In other cases, direct detection of the pathogen in question is required. M...

  4. Application of EOF/PCA-based methods in the post-processing of GRACE derived water variations

    NASA Astrophysics Data System (ADS)

    Forootan, Ehsan; Kusche, Jürgen

    2010-05-01

    Two problems that users of monthly GRACE gravity field solutions face are 1) the presence of correlated noise in the Stokes coefficients that increases with harmonic degree and causes ‘striping', and 2) the fact that different physical signals are overlaid and difficult to separate from each other in the data. These problems are termed the signal-noise separation problem and the signal-signal separation problem. Methods that are based on principal component analysis and empirical orthogonal functions (PCA/EOF) have been frequently proposed to deal with these problems for GRACE. However, different strategies have been applied to different (spatial: global/regional, spectral: global/order-wise, geoid/equivalent water height) representations of the GRACE level 2 data products, leading to differing results and a general feeling that PCA/EOF-based methods are to be applied ‘with care'. In addition, it is known that conventional EOF/PCA methods force separated modes to be orthogonal, and that, on the other hand, to either EOFs or PCs an arbitrary orthogonal rotation can be applied. The aim of this paper is to provide a common theoretical framework and to study the application of PCA/EOF-based methods as a signal separation tool due to post-process GRACE data products. In order to investigate and illustrate the applicability of PCA/EOF-based methods, we have employed them on GRACE level 2 monthly solutions based on the Center for Space Research, University of Texas (CSR/UT) RL04 products and on the ITG-GRACE03 solutions from the University of Bonn, and on various representations of them. Our results show that EOF modes do reveal the dominating annual, semiannual and also long-periodic signals in the global water storage variations, but they also show how choosing different strategies changes the outcome and may lead to unexpected results.

  5. Application of Computer-Assisted Dispute Resolution Methods to Water Resources Management

    NASA Astrophysics Data System (ADS)

    Cardwell, H. E.

    2006-12-01

    Although technical information has been used for centuries to support water resources decision making, the increased technical capabilities due to ever-more powerful computational resources has allowed a larger number of groups to participate in the technical analysis for water decisions. And the public increasingly demands more involvement by affected stakeholders in these decisions about public resources. Yet water management challenges involve complex technical and scientific issues. Stakeholders, public representatives, decision-makers and experts frequently have different levels of knowledge and comfort with technical aspects of a problem. When left to experts alone, computer models may be seen as "black boxes" and may not be trusted by stakeholders and decision-makers. An alternative is to involve stakeholders and decision-makers in the development and design of decision support models from the beginning. This kind of approach can be referred to as collaborative modeling. Here we present a collaborative modeling approach which has been developed by the Corps over the last fifteen years called Shared Vision Planning. Shared Vision Planning is a combination of three common practices that have a long history in water resources management: 1) traditional planning; 2) technical systems modeling; and 3) structured collaboration with a broad range of stakeholders. Aside from the intensive and continuous collaboration, the thing that most sets SVP apart is the use of collaboratively developed, transparent decision-support models that then serve as primary tools for plan formulation and evaluation. SVP models are typically integrated tools in that they include hydrologic and hydraulic simulations, along with economic, environmental other performance measure. We present past and current cases where collaborative modeling approaches have been used by the Corps to involve stakeholders early and often in the technical analysis that supports the planning process. We will

  6. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  7. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations

  8. Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides.

    PubMed

    Álvarez-Martín, Alba; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2016-05-01

    Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds. PMID:26832876

  9. Greenhouse Gases Emission from Land Application of Swine Waste Water: A Comparison of Three Different Swine Slurry Application Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural activities (including land application of animal manures) account for about 20% of the total human induced global warming budget due to emissions of greenhouse gases (GHG). Recently, there has been an increasing emphasis on controlling these emissions from livestock operations. One of...

  10. Borehole data-collection methods applicable for the regional observation and monitor well program, Southwest Florida Water Management District

    USGS Publications Warehouse

    Hickey, John J.

    1981-01-01

    Management of ground-water resources within the Southwest Florida Water Management District requires that hydrogeologic characteristics of water-bearing rocks and quality characteristics of water be described. Wells for the District 's Regional Observation and Monitor Well Program are drilled specifically to collect data to describe the ground-water resource. Suggested borehole data-collection methods for these wells include drilling in stages; running geophysical logs at the completion of each stage; collection of water-level and specific-conductance data before, during, and after a day 's drilling; specific-capacity determinations after a day 's drilling; and placing a packer in the gypsiferous and anhydritic limestone and dolomite for water-level and water-quality data. (USGS)

  11. A method for estimating soil water diffusivity from moisture profiles and its application across an experimental catchment

    NASA Astrophysics Data System (ADS)

    Espejo, A.; Giráldez, J. V.; Vanderlinden, K.; Taguas, E. V.; Pedrera, A.

    2014-08-01

    Despite the well-accepted value of soil hydraulic properties for describing and modeling matter and energy fluxes in the unsaturated zone, their accurate measurement across scales is still a daunting task. The increasing availability of continuous soil water content measurements at discrete points in space, as provided by sensor networks, offers still unexplored possibilities for evaluating soil physical properties across landscapes. In this study, we propose a new method, based on the Bruce and Klute equation, to estimate effective soil water diffusivity from soil water profile data observed during continuous desiccation periods. An analytical expression is proposed for the diffusion-soil water relationship, assuming an exponential relationship between soil water content and the Boltzmann variable. The method has been evaluated using soil water profile data observed at inter-row and under canopy locations across a rainfed olive orchard in SW Spain. The spatial variability of the effective soil water diffusivity across the orchard was estimated. Different soil conditions under the tree canopies as compared to inter-row areas resulted in significantly different effective diffusivity relationships, reflecting the effect of trees on soil physical properties and water dynamics across olive orchards. The proposed method offers a suitable alternative to traditional laboratory methods and can be easily extended to estimate soil hydraulic conductivity and water retention curves.

  12. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  13. Integrated hydrochemical method of water quality assessment for irrigation in arid areas: application to the Jilh aquifer, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Bassam, Abdulaziz M.; Al-Rumikhani, Yousef A.

    2003-05-01

    Water samples from 72 wells tapping the Jilh aquifer were collected and analyzed for 10 different water quality parameters. Using these data, a regional irrigation water quality was assessed using three techniques: (i) United States Department of Agriculture method (USDA), (ii) Food and Agriculture Organization (FAO) guidelines for water quality assessment, and (iii) Water-Types approach. The USDA method revealed that the aquifer water salinity, as represented by electrical conductivity, ECw, ranges from high salinity (C3: ECw > 0.75-2.25 dS/m) to a very high salinity (C4: ECw > 2.25 dS/m). The sodium adsorption ratio (SAR) varied from low (S1) to very high (S4) sodicity. Therefore, the water of the Jilh aquifer is dominantly of the C4-S2 class representing 56% of the total wells followed by C4-S1, C4-S3, C3-S1 and C4-S4 classes at 19%, 14%, 8%, and 3% of the wells respectively. The FAO system indicated moderate to severe restriction on the use for irrigation and slight to moderate ion toxicities for Na+, Cl-, B+, NO3- and HCO3-. It is clear that, both USDA and FAO systems condemn the Jilh groundwater as hazardous for irrigation due to its high salt content, unless certain measures for salinity control are undertaken. The dominant salt constituents in the water are Mg-Cl2, Na-Cl and Ca-Cl2 as per the Water-Types method. However, due to the complexity in classifying the aquifer groundwater for irrigation, a simplified approach acknowledging three class groups (I-suitable water, II-conditionally suitable water and III-unsuitable water) adopted from the three methods, is suggested in this paper. The simplified approach combines C-S classes of the USDA method among these three groups according to the lowest ratings. The salinity of the FAO method has been split arbitrarily into slight and moderate subclasses with values of 0.7-2.25 and >2.25 dS/m, respectively; to match with the C3-class of the USDA system. The Water-Types were classified assuming that Ca-Cl2 is the

  14. [Method for study of phase transitions in evaporating drop and its application for evaluation of physical-chemical properties of water and water solutions].

    PubMed

    Iakhno, T A; Sanin, A G; Sanina, O A; Iakhno, V G

    2012-01-01

    Spatial-temporal crystallization features of inorganic chlorides in evaporating drops of water solutions, considering solid surface wettability, were studied using a microscopic technique and the acoustical impedansometry. Physical-chemical mechanisms responsible for the difference in "dynamical portraits" of distilled water and salt solutions, as well as relaxation effects in water were discussed. The study demonstrated the potential use of a drying drop method in registration of changes in water properties under the action of physical and chemical factors.

  15. Application of the methods of gas dynamics to water flows with free surface I : flows with no energy dissipation

    NASA Technical Reports Server (NTRS)

    Preiswerk, Ernst

    1940-01-01

    The application is treated in sufficient detail to facilitate as much as possible its application by the engineer who is less familiar with the subject. The present work was undertaken with two objects in view. In the first place, it is considered as a contribution to the water analogy of gas flows, and secondly, a large portion is devoted to the general theory of the two-dimensional supersonic flows.

  16. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  17. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    NASA Astrophysics Data System (ADS)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  18. Application of a contaminant mass balance method at an old landfill to assess the impact on water resources.

    PubMed

    Thomsen, Nanna I; Milosevic, Nemanja; Bjerg, Poul L

    2012-12-01

    Old and unlined landfill sites pose a risk to groundwater and surface water resources. While landfill leachate plumes in sandy aquifers have been studied, landfills in clay till settings and their impact on receiving water bodies are not well understood. In addition, methods for quantitatively linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance, the mass discharge of chloride from the landfill was 9.4 ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4 ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge of chloride to the small Risby Stream down gradient of the landfill was approximately 31 kg/year. The contaminant mass balance method worked well for chloride and dissolved organic carbon, but the uncertainties were elevated for ammonium due to substantial spatial variability in the source composition and attenuation processes in the underlying clay till.

  19. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake.

  20. The development of TXRF method and its application on the study of trace elements in water at SSRF

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Yu, H. S.; Li, L. N.; Wei, X. J.; Huang, Y. Y.

    2016-05-01

    The objective of this study is the development of Total Reflection X-ray Fluorescence (TXRF) method at Shanghai Synchrotron Radiation Facility (SSRF). In this paper, the SR-TXRF setup and the related experimental methods and results for the determination of trace elements in water were described. Compared with the conventional lab TXRF, the detection limits obtained in our experiment are very lower due to the advantages of synchrotron radiation, which varied from 1.11 pg (Cr) to 0.28 pg (Zn). The average deviation of the specimen replicates is below 5%, and the deviations of measured element concentrations for Cr, Mn, Co, Ni and Cu by SR-TXRF are within 10% compared with the values by ICP-MS, so our TXRF results are agreed with those obtained by ICP-MS for the detected metals. Based on the results, the SR-TXRF setup and method have been feasible for the quantitative analysis of multi-elements in water at SSRF and that will play an important role in the research area for the environmental liquid samples analysis.

  1. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  2. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  3. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods.

    PubMed

    Grochowska, Jolanta; Brzozowska, Renata; Lopata, Michał

    2013-01-01

    The study was conducted on Długie Lake (area 26.8 ha, maximum depth 17.3 m), located in the town of Olsztyn, in north-eastern Poland (the Masurian Lake District). For 20 years starting in the 1950s, Długie Lake was used as a receiver of raw domestic and storm sewage in quantities oscillating between 350 and 400 m(3) day(-1). This led to complete degradation of the lake, known as saprotrophy. After some preliminary protective treatments in the catchment, the lake has been renewed by artificial aeration with thermal destratification and the phosphorus inactivation methods. Long-term reclamation of the reservoir has resulted in distinct and durable improvement of water quality. Before the restoration, the average phosphorus concentration in the surface water layer was 0.079 mg P L(-1) and in the over-bottom water it reached 2.277 mg P L(-1). The total phosphorus (TP) level also was very high, i.e. up to 3.5 mg P L(-1). After the restoration, these values have declined to 0.001-0.017 mg P L(-1) in the case of mineral P, and the current TP concentrations do not exceed 0.350 mg P L(-1).

  4. Photochemical-spectrofluorimetric method for the determination of benzoylurea insecticides: applications in river water samples and in technical formulations.

    PubMed

    Gil-Garcia, M D; Martínez-Galera, M; López-López, T; Martínez-Vidal, J L; Mahedero, M C; Salinas, F

    2001-01-26

    Ultraviolet (UV) irradiation was used to obtain fluorescent photoproducts from four non-fluorescent benzoylurea (BU) insecticides (flufenoxuron (FLF), lufenuron (LUF), hexaflumuron (HF) and triflumuron (TRF)). The effect of solvent, pH (in aqueous solutions), organic solvent percentage and UV irradiation time on the excitation and emission wavelengths and fluorescence intensity were investigated. The largest fluorescence signals and the shortest UV irradiation time were obtained in methanol, ethanol and 2-propanol. Linear calibration graphs were established in the interval between 0.025 and 1.000 microg ml(-1) from FLF and TRF and between 0.050 and 1.000 microg ml(-1) from LUF and HF with regression coefficients larger than 0.99. A method based on the use of the first-derivative of the spectra of photoproducts was applied to the determination of BU insecticides in river water samples and in technical formulations. The mean recoveries ranged from 95.0% to 110.0% in river water samples and from 92.0% to 101.0% in technical formulations, according to the compound. A preconcentration step, using LLE, allowed to reach the concentration levels established by the EU directive for pesticides in drinking water. PMID:18968181

  5. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  6. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  7. Evaluation of methods to detect and control nitrification inhibition with specific application to incinerator flue-gas scrubber water

    SciTech Connect

    Daigger, G.T.; Sadick, T.E.

    1998-11-01

    Two procedures for determining the maximum specific growth rate of nitrifying bacteria in the presence of inhibitors were evaluated. One procedure uses a population of nitrifying bacteria and a short-term (6-hour) batch assay to determine the impact of the test wastewater on the maximum specific growth rate of the nitrifiers. The difference in the specific nitrification rate for the subject population between a control and the test wastewater quantifies the effect of the constituents in the test wastewater on the nitrifier maximum specific growth rate. The second procedure uses batch fill-and-draw bioreactors operated under steady-state conditions to determine the minimum mean cell residence time for growth of the nitrifiers. The need to assess nitrification inhibition at two large municipal wastewater treatment plants provided the opportunity to evaluate these two procedures. Incineration of biosolids is practiced at both of these plants, and it was shown that in-plant recycle of the multiple-hearth flue-gas scrubber water can be inhibitory to nitrification. Results from extensive testing indicated that hydrocyanic acid (HCN), present in the scrubber water, is the probable inhibitor. Consistent results were obtained at both plants. They indicated that HCN concentrations on the order of 0.1 to 0.2 mg/L resulted in a reduction in the nitrifier maximum specific growth rate of approximately 50%. Treatment methods were evaluated at each plant and implemented. At one plant, aerobic biological treatment of the incinerator sidestream is being practiced. At the other facility, cyanide is thermally destroyed in afterburners before contact with the wet scrubbing system.

  8. Development of an improved single-drop microextraction method and its application for the analysis of carbamate and organophosphorus pesticides in water samples.

    PubMed

    Wang, Xiuhong; Cheng, Jing; Wang, Xiangfang; Wu, Min; Cheng, Min

    2012-11-21

    An improved single-drop microextraction (SDME) method combined with high performance liquid chromatography has been developed for the detection of trace carbamate and organophosphorus pesticides in water samples. The most fascinating feature of the proposed method is the use of an oval-shaped polychloroprene rubber (PCR) tube to load the extraction solvent, which efficiently loads more solvent and improves the stability of extraction microdrop. Furthermore, this device provides a larger contact surface between the extraction solvent and the inner surface of the oval-shaped PCR tube than that between the extraction solvent and the tip of a microsyringe needle in the conventional SDME. It thereby avoids the problem of the drop floating upwards or dislodging from the tip of the microsyringe needle as observed in the traditional SDME. This method is significant for the great improvement it can offer in extraction efficiency. A series of extraction parameters were investigated systematically using carbamate and organophosphorus as the model analytes. Under the optimal conditions, the enrichment factors for analysis were between 117 and 177, and the limits of detection were ≦0.63 μg L(-1) (S/N = 3). The repeatability study was carried out by extracting the spiked water samples. Here the relative standard deviations varied between 4.0 and 5.8% (n = 5). Additionally, the proposed method was successfully applied to the determination of pesticides in real water samples, and good recoveries were obtained from 79% to 112%. The proposed method was demonstrated to hold advantages of low cost, simplicity of operation, and successful application to in real water samples.

  9. [Application of a rapid and simple multi-residue method for determination of pesticide residues in drinking water and beverages using liquid chromatography-tandem mass spectrometry].

    PubMed

    Fukui, Naoki; Takatori, Satoshi; Kitagawa, Yoko; Okihashi, Masahiro; Osakada, Masakazu; Nakatsuji, Naoto; Nakayama, Yukiko; Kakimoto, You; Obana, Hirotaka

    2012-01-01

    A rapid and simple multi-residue method for determination of pesticides has been applied to drinking water and beverages. To a disposable polypropylene tube containing 10.0 g sample, 20 mL acetonitrile was added and the mixture was shaken vigorously for 1 min to extract pesticides. Then, 1 g sodium chloride and 4 g magnesium sulfate anhydrous were added, followed by vigorous shaking for 1 min and centrifugation to obtain the organic phase. The organic phase was processed with a graphite carbon black/PSA solid phase column. After concentration and reconstitution with 25% methanol containing aqueous solution, the test solution was analyzed with LC-MS/MS. Recovery tests of 91 pesticides fortified (0.02 μg/g) in 35 kinds of drinking water and beverages were conducted. The decline of recoveries in alcoholic beverages is considered to be due to the increase of organic phase volume owing to ethanol included in the alcoholic beverages. A simulation study was carried out with simulated alcoholic beverages, which consisted of 50% grape juice, with various amounts of ethanol and water, to examine pesticides recoveries and volume of the organic phase. The results suggested this method would be applicable both to alcoholic beverages containing less than 10% ethanol and to alcoholic beverages containing over 10% ethanol after dilution with water to below 10% ethanol prior to the addition of acetonitrile. A sample could be processed and analyzed by LC-MS/MS within 2 h. Thus, this method should be useful for monitoring and screening pesticide residues in drinking water and various beverages.

  10. Application of the Methods of Gas Dynamics to Water Flows with Free Surface II : Flows with Momentum Discontinuities (hydraulic Jumps)

    NASA Technical Reports Server (NTRS)

    Preiswerk, Ernst

    1940-01-01

    In this paper an introduction to shock polar diagrams is given which then leads into an examination of water depths in hydraulic jumps. Energy loss during these jumps is considered along with an extended look at elementary solutions of flow. An experimental test set-up is described and the results presented.

  11. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  12. Application of near surface geophysical methods to image water table response in an Alpine Meadow, Northern California.

    NASA Astrophysics Data System (ADS)

    Ayers, M.; Blacic, T. M.; Craig, M. S.; Yarnell, S. M.

    2015-12-01

    Meadows are recognized for their value to the ecological, hydrologic, and aesthetic functions of a watershed. As natural water retention sinks, meadows attenuate floods, improve water quality and support herbaceous vegetation that stabilize streambanks and promote high biodiversity. Alpine meadows are especially vital, serving as freshwater sources and distributing to lower lying provinces through ground and surface water interaction. These complexes are highly vulnerable to drought conditions, altered seasonal precipitation patterns, and mismanaged land use. One such location, Van Norden meadow located in the Donner Summit area west of Lake Tahoe, is one of the largest sub-alpine meadows in the Sierra Nevada mountain range of Northern California. Van Norden meadow offers a natural hydrologic laboratory. Ownership transfer of the area from a local land trust to the Forestry Service requires restoration toward natural meadow conditions, and involves notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre-and post-base level alteration is required. Comprehensive understanding of groundwater flux that supports meadow reaches relies on knowledge of their often complex stratigraphic and structural subsurface framework. In recent years hydrogeophysics has emphasized the combination of near surface geophysical techniques, collaborated with well and borehole measures, to qualitatively define these parameters. Building on a preliminary GPR investigation conducted in 2014, in which 44 270 MHz transect lines were collected, we returned to Van Norden meadow in late summer 2015 to collect lower frequency GPR (50 and 100 MHz) and electrical resistivity profiles to better define the groundwater table, sedimentary, and structural features of the meadow.

  13. Method for treating waste water

    SciTech Connect

    Helke, R.C.

    1980-12-02

    A method useful for treating waste water is disclosed wherein waste water is collected in a first vessel and a portion of the large solid particles are filtered from said waste waters. The liquid waste including suspended solid particles is combined with a solids coagulant, effective in coagulating solid particles, and the waste is disinfected. In one embodiment, coagulation and disinfection occurs simultaneously in a single treatment vessel. In the treatment vessel, the disinfectant and the coagulant are reacted with the waste waters to form gas bubbles and coagulated solid particles. The reaction of the disinfectant causes a substantial portion of the coagulated solids contained in the treatment vessel to float to the upper portion of the treatment vessel as a result of being carried to the surface by the gas bubbles. The clarified waste water is then removed from an outer chamber in the treatment vessel. In another embodiment, waste water is disinfected by radiation so that gas bubbles are not formed by the disinfection reaction. In this embodiment the coagulated solids are floated to the surface of the treatment vessel by providing small gas, i.e., air, bubbles in the treatment vessel generated from an extraneous source.

  14. Online solid phase extraction LC-MS/MS method for the analysis of succinate dehydrogenase inhibitor fungicides and its applicability to surface water samples.

    PubMed

    Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas

    2014-10-01

    A sensitive and selective analytical method, based on online solid phase extraction coupled to LC-MS/MS, was developed and validated to determine traces of several recently introduced fungicides in surface water and wastewater. The list of target analytes included eight succinate dehydrogenase inhibitors (bixafen, boscalid, fluopyram, flutolanil, fluxapyroxad, isopyrazam, penflufen, and penthiopyrad), and two other fungicides with different modes of action, fenpyrazamine and fluopicolide. Detection and quantification limits in various matrices were in the range of 0.1 to 2 and 0.5 to 10 ng/L, respectively. Moderate signal suppression was observed in surface water (≤15%) and wastewater (≤25%) and was well compensated by the selected internal standard. The intra- and inter-day precisions were generally <10 and <20%, respectively. The applicability of the method was demonstrated in a study on the occurrence of fungicides in the river Glatt, Switzerland, that drains a catchment area of 419 km(2) with a substantial proportion of agricultural land. Of the studied compounds, only boscalid and fluopicolide were detected in flow-proportional weekly composite samples, generally at low concentrations up to 15 and 5 ng/L, respectively. While fluopicolide was detected in only 30% of the samples above the LOD of 0.5 ng/L, boscalid was detected in all samples analyzed between March and October 2012.

  15. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters

    PubMed Central

    Thiers, Laurie; Louzao, Maite; Ridoux, Vincent; Le Corre, Matthieu; Jaquemet, Sébastien; Weimerskirch, Henri

    2014-01-01

    In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns) and subsurface predators (e.g., dolphins, tunas). To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs), we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry) and dynamic (e.g. Chlorophyll a concentration and sea surface temperature) factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators). PMID:25494047

  16. An experimental application of the Periodic Tracer Hierarchy (PERTH) method to quantify time-variable water and solute transport in a sloping soil lysimeter

    NASA Astrophysics Data System (ADS)

    Pangle, L. A.; Cardoso, C.; Kim, M.; Lora, M.; Wang, Y.; Troch, P. A. A.; Harman, C. J.

    2014-12-01

    Water molecules traverse myriad flow paths and spend different lengths of time on or within the landscape before they are discharged into a stream channel. The transit-time distribution (TTD) is a probability distribution that represents the range and likelihood of transit times for water and conservative solutes within soils and catchments, and is useful for comparative analysis and prediction of solute transport into streams. The TTD has customarily been assumed to be time-invariant in practical applications, but is understood to vary due to unsteady flow rates, changes in water-balance partitioning, and shifting flow pathways. Recent theoretical advances have clarified how the distribution of transit times experienced by water and solutes within a stream channel at any moment in time is conditional on the specific series of precipitation events preceding that time. Observations resolving how TTDs vary during a specific sequence of precipitation events could be obtained by introducing unique and conservative tracers during each event and quantifying their distinct breakthrough curves in the stream. At present, the number of distinct and conservative tracers available for this purpose is insufficient. Harman and Kim [Harman, C.J. and Kim, M., 2014, Geophysical Research Letters, 41, 1567-1575] proposed a new experimental method—based on the establishment of periodic steady-state conditions—that allows multiple overlapping breakthrough curves of non-unique tracers to be decomposed, thus enabling analysis of the distinct TTDs associated with their specific times of introduction through precipitation. We present results from one of the first physical experiments to test this methodology. Our experiment involves a sloping lysimeter (10° slope) that contains one cubic meter of crushed basalt rock (loamy sand texture), an irrigation system adaptable to controlled tracer introductions, and instruments that enable total water balance monitoring. We imposed a repeated

  17. Development of a new three-phase membrane-assisted liquid-phase microextraction method: determination of nitrite in tap water samples as model analytical application.

    PubMed

    Pedrón, Isabel; Chisvert, Alberto; March, Juan G; Salvador, Amparo; Benedé, Juan L

    2011-04-01

    A novel and simple device for membrane-assisted liquid-phase microextraction is used for the first time in a three-phase system. The device consists of a glass vial containing the aqueous acceptor phase, whose septum of its screw stopper has been replaced by a sized piece of polytetrafluoroethylene membrane impregnated with n-decane. The vial is assembled to a volumetric flask containing the aqueous donor phase, and the membrane comes in contact alternatively with both donor and acceptor aqueous phases by orbital agitation. The device has been tested for the determination of nitrite in tap water samples, which is extensively carried out in routine analysis, as model analytical application. Experimental variables, such as the organic solvent used to form the supported liquid membrane, the volumes of both donor and acceptor phases, the orbital agitation rate, and the extraction time were studied and optimized in terms of enrichment factor. Under the selected working conditions, the analytical figures of merit for nitrite determination were a linearity range up to 50 ng mL(-1), limits of detection and quantification of 0.15 and 0.50 ng mL(-1), respectively, and a good repeatability (RSD < 10%). The method has been applied to four tap water samples of different origins, and accurate and precise results were achieved. Besides, the very low volume of organic solvent used, its low cost and the no-risk of cross-contamination are significant operational advantages.

  18. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  19. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water

  20. Development of highly sensitive cadmium iondashselective electrodes by titration method and its application to cadmium ion determination in industrial waste water.

    PubMed

    Ito, S; Asano, Y; Wada, H

    1997-04-01

    Characteristics of cadmium iondashselective electrode made cadmium sulphide (CdS)-silver sulphide (Ag(2)S) mixture were studied. CdS-Ag(2)S mixtures were obtained by gas/solid-phase reaction between silver-cadmium mixed powder and hydrogen sulphide gas (dry method) and by ionic reaction between cadmium-silver mixed ions and sulphide ion (wet method). As a result, it was found that the CdS-Ag(2)S mixture had to be made in the condition of excess existence of sulfur and had better regulate the excess sulfur quantity minimum, for the CdS-Ag(2)S pressed membrane gave a good Nernstian response against the cadmium ion concentration change. As the best way, CdS-Ag(2)S mixture was obtained by adding sulphide ion solution to 5 mol% cadmium ion and 95 mol% silver ion mixed solution while measuring silver sulphide (Ag(2)S) electrode potential as an indicator electrode. According to the reaction was stopped when the potential variation from the initial potential in the sulphide ion solution reached at 87-116 mV which the sulphide ion concentration became 10(-3) - 10(-4) of the initial concentration, the cadmium ion membrane pressed diameter of 8 mm and thickness of 2 mm showed a Nernstian response from 10(-8) to 10(-1) M of cadmium ion concentration. Furthermore, aiming to its application for industrial waste water, masking buffer for interfering metal ions such as lead ion (Pb(2+)) and copper ion (Cu(2+)), which were possibly coexisted and to adjust total ionic strength and pH of sample was developed. The present Cd(2+) iondashselective electrode was applied to the determination of Cd(2+) in the industrial waste water. The good regression line with correlation factor of 0.984 was obtained compared with the conventional atomic absorption spectroscopy. PMID:18966791

  1. Field Application of the Micro Biological Survey Method for a Simple and Effective Assessment of the Microbiological Quality of Water Sources in Developing Countries

    PubMed Central

    Arienzo, Alyexandra; Sobze, Martin Sanou; Wadoum, Raoul Emeric Guetiya; Losito, Francesca; Colizzi, Vittorio; Antonini, Giovanni

    2015-01-01

    According to the World Health Organization (WHO) guidelines, “safe drinking-water must not represent any significant risk to health over a lifetime of consumption, including different sensitivities that may occur between life stages”. Traditional methods of water analysis are usually complex, time consuming and require an appropriately equipped laboratory, specialized personnel and expensive instrumentation. The aim of this work was to apply an alternative method, the Micro Biological Survey (MBS), to analyse for contaminants in drinking water. Preliminary experiments were carried out to demonstrate the linearity and accuracy of the MBS method and to verify the possibility of using the evaluation of total coliforms in 1 mL of water as a sufficient parameter to roughly though accurately determine water microbiological quality. The MBS method was then tested “on field” to assess the microbiological quality of water sources in the city of Douala (Cameroon, Central Africa). Analyses were performed on both dug and drilled wells in different periods of the year. Results confirm that the MBS method appears to be a valid and accurate method to evaluate the microbiological quality of many water sources and it can be of valuable aid in developing countries. PMID:26308038

  2. Field Application of the Micro Biological Survey Method for a Simple and Effective Assessment of the Microbiological Quality of Water Sources in Developing Countries.

    PubMed

    Arienzo, Alyexandra; Sobze, Martin Sanou; Wadoum, Raoul Emeric Guetiya; Losito, Francesca; Colizzi, Vittorio; Antonini, Giovanni

    2015-09-01

    According to the World Health Organization (WHO) guidelines, "safe drinking-water must not represent any significant risk to health over a lifetime of consumption, including different sensitivities that may occur between life stages". Traditional methods of water analysis are usually complex, time consuming and require an appropriately equipped laboratory, specialized personnel and expensive instrumentation. The aim of this work was to apply an alternative method, the Micro Biological Survey (MBS), to analyse for contaminants in drinking water. Preliminary experiments were carried out to demonstrate the linearity and accuracy of the MBS method and to verify the possibility of using the evaluation of total coliforms in 1 mL of water as a sufficient parameter to roughly though accurately determine water microbiological quality. The MBS method was then tested "on field" to assess the microbiological quality of water sources in the city of Douala (Cameroon, Central Africa). Analyses were performed on both dug and drilled wells in different periods of the year. Results confirm that the MBS method appears to be a valid and accurate method to evaluate the microbiological quality of many water sources and it can be of valuable aid in developing countries.

  3. Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water-Method details and application to two Georgia streams

    USGS Publications Warehouse

    Hladik, Michelle L.; Calhoun, Daniel L.

    2012-01-01

    A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.

  4. Using new approaches to environmental decision-making: An application of integrated assessment methods to water resource issues in the binational Lower Rio Grande basin

    SciTech Connect

    Mathis, M.L.

    1999-12-31

    This article examines a unique application of integrated assessment methodologies to analyze water scarcity, development and the environment in the semi-arid Lower Rio Grande/Rio Bravo watershed. US and Mexican data are analyzed to produce an integrated baseline report of current socio-economic, ecological, water supply and demand, water quality, and management conditions and trends. The baseline report provides the basis for subsequent analysis of alternative future scenarios for the region. Scenarios are developed by combining demographic projections with alternatives for future water availability, irrigation technologies, and management practices. The integrated assessment methodology is evaluated as a general tool for environmental decision-making. Problems encountered in applying the methodology are discussed, as are possibilities for improvements. The article concludes that, despite inherent difficulties, integrated assessments can provide a powerful framework by which to analyze complex environmental issues involving different disciplines and large amounts of information.

  5. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.

    PubMed

    Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia

    2016-07-13

    Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency. PMID:27286474

  6. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.

    PubMed

    Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia

    2016-07-13

    Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency.

  7. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  8. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  9. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  10. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  11. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves-Optimization by Response Surface Method and Application in Oil-in-Water Emulsions.

    PubMed

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar

    2014-01-01

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior. PMID:26784875

  12. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions

    PubMed Central

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H.; Almajano, María Pilar

    2014-01-01

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50–90 °C, 0%–30%–60% ethanol (v/v), and 10–15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior. PMID:26784875

  13. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves-Optimization by Response Surface Method and Application in Oil-in-Water Emulsions.

    PubMed

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar

    2014-05-06

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.

  14. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Grinevsky, Sergey O.; Pozdniakov, Sergey P.; Yu, Jingjie; Dautova, Dina S.; Min, Leilei; Du, Chaoyang; Zhang, Yichi

    2014-11-01

    Shallow groundwater is primarily discharged via evapotranspiration (ETg) in arid and semi-arid riparian systems; however, the quantification of ETg remains a challenge in regional water resource assessments of such systems. In this study, the diagnostic indicators of groundwater evapotranspiration processes and the principles of applying the water table fluctuation (WTF) method to estimate ETg based on seasonal groundwater level changes were presented. These techniques were then used to investigate groundwater evapotranspiration processes at two sites dominated by phreatophytes (Tamarix ramosissima and Populus euphratica) within hyper-arid desert environments in northwestern China for the period 2010-2012. The results indicate that steady declines in the water table, which are commonly attributed to groundwater evapotranspiration, occurred at both sites during the growing season. Based on the proposed WTF method, the estimated ETg was 0.63-0.73 mm/d at the Tamarix ramosissima site and 1.89-2.33 mm/d at the Populus euphratica site during the summer months (June-August). Numerical simulations using a one-dimensional root water uptake model indicate that the seasonal variations in ETg at both sites were primarily dependent on the potential evaporation rates. Comparisons with previous studies on plant transpiration at similar sites in this area show that these results are reasonable. It is apparent that the WTF method can provide a simple and relatively inexpensive method of estimating ETg on a large scale in arid/semi-arid regions. However, there are significant uncertainties associated with time-dependent lateral flow rates, which creates a challenge when applying this method. In addition, the selection of calculation periods that show steady declines in the groundwater level can be somewhat subjective. To enhance the performance of the WTF method based on seasonal water table declines, further research on the estimation of lateral flow rates should be performed

  15. New on-line method for water isotope analysis of fluid inclusions in speleothems using laser absorption spectroscopy: Application to stalagmites from Borneo and Switzerland

    NASA Astrophysics Data System (ADS)

    Affolter, Stéphane; Fleitmann, Dominik; Nele Meckler, Anna; Leuenberger, Markus

    2014-05-01

    Speleothems are recognised as key continental archives for paleoclimate reconstructions. They contain fluid inclusions representing past drip water trapped in the calcite structure. Speleothem can be precisely dated and therefore the oxygen (δ18O) and hydrogen (δD) isotopes of fluid inclusions constitute powerful proxies for paleotemperature or to investigate changes in the moisture source over several interglacial-glacial cycles. To liberate fluid inclusion water and to analyse its isotopic composition, a new online extraction method developed at Bern is used. The principle can be summarised as follows: Prior to crushing, the sample is placed into a copper tube, fixed to the line previously heated to 140° C and flushed with a nitrogen and standard water mixture. Thereafter, the speleothem sample is crushed using a simple hydraulic crushing device and the released water from fluid inclusions is transferred by the nitrogen-standard water mixture flow to a Picarro L1102-i isotopic liquid water and water vapor analyser. The measuring principle is based on wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology that allows us to simultaneously monitor hydrogen and oxygen isotopes. Reproducibility of standard water measurements is typically better than 1.5 o for δD and 0.4 o for δ18O. With this method, we successfully analysed δD and δ18O isotopic composition of a stalagmite from Northern Borneo (tropical West Pacific) covering almost two glacial-interglacial cycles from MIS 12 to early MIS 9 (460-330 ka) as well as recent samples from Switzerland and Borneo. These results are used in combination with calcite δ18O to reconstruct paleotemperature. Currently, we are measuring a stalagmite from Milandre cave (Jura, Switzerland) covering the Bølling-Allerød, Younger Dryas cold phase and the Holocene.

  16. Method of treating waste water

    DOEpatents

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  17. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    NASA Astrophysics Data System (ADS)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non

  18. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water.

    PubMed Central

    Miyamoto, H; Yamamoto, H; Arima, K; Fujii, J; Maruta, K; Izu, K; Shiomori, T; Yoshida, S

    1997-01-01

    The presence of PCR inhibitors in water samples is well known and contributes to the fact that a practical PCR assay has not been developed for legionella surveillance. In this study, we devised a new seminested PCR assay for detection of Legionella spp. in water samples as a means of overriding the PCR inhibitors without loss of sensitivity. The seminested PCR assay utilized primers to amplify the 16S rRNA gene (LEG primers) of 39 Legionella spp. The assay was specific to legionellae, and the sensitivity was 1 fg of extracted Legionella DNA in laboratory examination. To evaluate the feasibility and sensitivity of the PCR assay in identifying the presence of legionellae, it was used to survey Legionella contamination in the water of 49 cooling towers of 32 hospitals. A commercially available EnviroAmp Legionella kit and a culture method were also used in the survey for comparison with the seminested PCR assay. The detection rates of legionellae in the samples were 91.8% (45 of 49) by the PCR assay and 79.5% (39 of 49) by the culture method. The EnviroAmp kit revealed that 30.6% of the water samples (15 of 49) contained inhibitors of the PCR amplification. However, the seminested PCR assay could produce the Legionella-specific DNA bands in 14 of the 15 samples. Although 8 of the 14 samples were positive in the first-step PCR, 6 of the 14 samples became positive in the second-step PCR. These results suggest that the effect of PCR inhibitors in samples, if any, can be reduced because of the dilution of the sample in the second-step PCR and that sensitivity of detection can be increased by the second-step PCR. Thus, the seminested PCR assay with LEG primers to amplify the 16S rRNA gene of 39 Legionella spp. was a practical and sensitive method to detect Legionella spp. in water samples. PMID:9212400

  19. Application of a fast and cost-effective in situ derivatization method prior to gas chromatography with mass spectrometry to monitor endocrine disruptors in water matrices.

    PubMed

    Melo, Armindo; Ferreira, Isabel M P L V O; Mansilha, Catarina

    2015-06-01

    This work deals with the optimization of a rapid, cost-effective, and eco-friendly gas chromatography with mass spectrometry method for the simultaneous determination of four endocrine disruptor compounds in water matrices: estrone, 17β-estradiol, 17α-ethinylestradiol, and bisphenol A, that are currently considered to be of main concern in the field of water policy and that could became candidates for future regulations. The method involves simultaneous derivatization and extraction of compounds by dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry analysis. Derivatization and extraction parameters were optimized with the aid of experimental design approach. An excellent linear response was achieved for all analytes (r(2) ≥ 0.999). Limits of detection and quantification are 0.003-0.005 and 0.0094-0.0164 μg/L, respectively. Intraday precision ranged between 1.1 and 12.6%, whereas interday precision ranged between 0.5 and 14.7%. For accuracy, bias values varied between -15.0 and 13.7%. Recoveries at three concentration levels ranged from 86.4 to 118.2%. The proposed method can be applied to the routine analysis of groundwater, river, sea, tap, and mineral water samples with excellent sensitivity, precision, and accuracy.

  20. Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection.

    PubMed

    Lemos, Maria Augusta Travassos; Matos, Camila Alves; de Resende, Michele Fabri; Prado, Rachel Bardy; Donagemma, Raquel Andrade; Netto, Annibal Duarte Pereira

    2016-11-01

    Avermectins (AVM) are macrocyclic lactones used in livestock and agriculture. A quantitative method of high performance liquid chromatography with fluorescence detection for the determination of eprinomectin, abamectin, doramectin and ivermectin in rural water samples was developed and validated. The method was employed to study samples collected in the Pito Aceso River microbasin, located in the Bom Jardim municipality, Rio de Janeiro State, Brazil. Samples were extracted by solid phase extraction using a polymeric stationary phase, the eluted fraction was re-concentrated under a gentle N2 flow and derivatized to allow AVM determination using liquid chromatography with fluorescence detection. The excitation and emission wavelengths of the derivatives were 365 and 470nm, respectively, and a total chromatographic run of 12min was achieved. Very low limits of quantification (22-58ngL(-1)) were found after re-concentration using N2. Recovery values varied from 85.7% to 119.2% with standard deviations between 1.2% and 10.2%. The validated method was applied in the determination of AVM in 15 water samples collected in the Pito Aceso River microbasin, but most of them were free of AVM or showed only trace levels of these compounds, except for a sample that contained doramectin (9.11µgL(-1)). The method is suitable for routine analysis with satisfactory recovery, sensitivity, and selectivity.

  1. Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection.

    PubMed

    Lemos, Maria Augusta Travassos; Matos, Camila Alves; de Resende, Michele Fabri; Prado, Rachel Bardy; Donagemma, Raquel Andrade; Netto, Annibal Duarte Pereira

    2016-11-01

    Avermectins (AVM) are macrocyclic lactones used in livestock and agriculture. A quantitative method of high performance liquid chromatography with fluorescence detection for the determination of eprinomectin, abamectin, doramectin and ivermectin in rural water samples was developed and validated. The method was employed to study samples collected in the Pito Aceso River microbasin, located in the Bom Jardim municipality, Rio de Janeiro State, Brazil. Samples were extracted by solid phase extraction using a polymeric stationary phase, the eluted fraction was re-concentrated under a gentle N2 flow and derivatized to allow AVM determination using liquid chromatography with fluorescence detection. The excitation and emission wavelengths of the derivatives were 365 and 470nm, respectively, and a total chromatographic run of 12min was achieved. Very low limits of quantification (22-58ngL(-1)) were found after re-concentration using N2. Recovery values varied from 85.7% to 119.2% with standard deviations between 1.2% and 10.2%. The validated method was applied in the determination of AVM in 15 water samples collected in the Pito Aceso River microbasin, but most of them were free of AVM or showed only trace levels of these compounds, except for a sample that contained doramectin (9.11µgL(-1)). The method is suitable for routine analysis with satisfactory recovery, sensitivity, and selectivity. PMID:27513222

  2. Water harvesting applications for rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although water harvesting techniques have been used effectively in irrigated agriculture and domestic water supplies, there seems to have been little continued exploitation of the same techniques in arid and semiarid rangeland restoration. A review of the history of rangeland water harvesting allow...

  3. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  4. Assessing and comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods.

    PubMed

    Queirós, Raquel B; Tafulo, Paula A R; Sales, M Goreti F

    2013-01-01

    This work measures and tries to compare the Antioxidant Capacity (AC) of 50 commercial beverages of different kinds: 6 wines, 12 beers, 18 soft drinks and 14 flavoured waters. Because there is no reference procedure established for this purpose, three different optical methods were used to analyse these samples: Total Radical trapping Antioxidant Parameter (TRAP), Trolox Equivalent Antioxidant Capacity (TEAC) and Ferric ion Reducing Antioxidant Parameter (FRAP). These methods differ on the chemical background and nature of redox system. The TRAP method involves the transfer of hydrogen atoms while TEAC and FRAP involves electron transfer reactions. The AC was also assessed against three antioxidants of reference, Ascorbic acid (AA), Gallic acid (GA) and 6-hydroxy-2,5,7,8-tetramethyl- 2-carboxylic acid (Trolox). The results obtained were analyzed statistically. Anova one-way tests were applied to all results and suggested that methods and standards exhibited significant statistical differences. The possible effect of sample features in the AC, such as gas, flavours, food colouring, sweeteners, acidity regulators, preservatives, stabilizers, vitamins, juice percentage, alcohol percentage, antioxidants and the colour was also investigated. The AC levels seemed to change with brand, kind of antioxidants added, and kind of flavour, depending on the sample. In general, higher ACs were obtained for FRAP as method, and beer for kind of sample, and the standard expressing the smaller AC values was GA. PMID:22931382

  5. New energy partitioning scheme based on the self-consistent charge and configuration method for subsystems: Application to water dimer system

    NASA Astrophysics Data System (ADS)

    Korchowiec, Jacek; Uchimaru, Tadafumi

    2000-01-01

    The charge-transfer energy in water dimer is analyzed. The analysis is based on self-consistent charge and configuration method for subsystems (SCCCMS). The SCCCMS, as such, is not restricted to any computational schemes and can be applied at Hartree-Fock (HF), post-HF, and density functional levels of theory. In our approach, the interaction energy is decomposed into deformation (DEF), electrostatic (ES), polarization (P), charge transfer (CT), and exchange (EX) [exchange-correlation (XC)] contributions. The CT energy is derived from the energy surface spanned in the populational space. The intermediate results obtained during construction of this energy surface, such as chemical potentials, hardness and softness parameters, are of particular interest in the theory of chemical reactivity and, thus, these values are discussed as well. The influence of basis set and computational method is analyzed. The numerical values of the energy components obtained at the HF level of theory are compared with those of Kitaura-Morokuma (KM) and reduced variational space (RVS) analyses. It is shown that SCCCMS correctly describes the polarization process. The CT contribution is less dependent on the basis set than KM or RVS scheme and is free from the basis set superposition error (BSSE). It is demonstrated that the CT energy is of little importance for the water dimer. In addition, the amount of CT calculated in our scheme is almost identical to that obtained from the supermolecule calculations.

  6. Streamer Discharges in Water and their Application

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Xiao, Shu; Scully, Noah; Joshi, Ravindra P.; Schoenbach, Karl H.

    2008-10-01

    Electrical discharges in liquids have been widely investigated for transient high voltage insulation and switching applications. Despite extensive efforts, the mechanism of breakdown initiation and formation of streamers are not completely understood, in particular for the application of short, sub-microsecond pulses. Regardless, streamers in water generated under these conditions are an attractive means of water treatment for a variety of applications, such as remediation of chemical and biological pathogens in waste-water, purification of drinking water, the cleaning of algae from freshwater ponds. Radicals, ultraviolet light, high electric fields and shockwaves are all considered as possible mediators of the effects, and all of which are generated in the streamer propagation process. We will present experimental results on the initiation and propagation of streamers in water and discuss the mechanisms. Further selected applications will be presented.

  7. Domestic applications for aerospace waste and water management technologies

    NASA Technical Reports Server (NTRS)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  8. Application of zeolites for radium removal from mine water.

    PubMed

    Chałupnik, Stanisław; Franus, Wojciech; Wysocka, Małgorzata; Gzyl, Grzegorz

    2013-11-01

    For removal of radium from saline waters in Upper Silesian mines, several methods of purification have been developed. The most efficient one is based on application of barium chloride, which was implemented in full technical scale in two Polish coal mines several years ago. Very good results of purification have been achieved-the removal efficiency exceeding 95% of the initial activity. Another possibility for the removal of different ions from salty waters and brines is the application of zeolites. We found that technique as a very promising method for removal of not only radium isotopes from mine waters but also other ions (barium, iron, manganese). Treatment of several various water samples has been done to assess the removal efficiency for natural radionuclides. Preliminary results show very good effects for radium isotopes as well as for barium ions. In the paper, a short description of laboratory results of the purification of mine waters with application of synthetic zeolites is presented.

  9. An optical method to assess water clarity in coastal waters.

    PubMed

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2015-12-01

    Accurate estimation of water clarity in coastal regions is highly desired by various activities such as search and recovery operations, dredging and water quality monitoring. This study intends to develop a practical method for estimating water clarity based on a larger in situ dataset, which includes Secchi depth (Z sd ), turbidity, chlorophyll and optical properties from several field campaigns in turbid coastal waters. The Secchi depth parameter is found to closely vary with the concentration of suspended sediments, vertical diffuse attenuation coefficient K d (m(-1)) and beam attenuation coefficient c (m(-1)). The optical relationships obtained for the selected wavelengths (i.e. 520, 530 and 540 nm) exhibit an inverse relationship between Secchi depth and the length attenuation coefficient (1/(c + K d )). The variation in Secchi depth is expressed in terms of undetermined coupling coefficient which is composed of light penetration factor (expressed by z(1%)K d (λ)) and a correction factor (ξ) (essentially governed by turbidity of the water column). This method of estimating water clarity was validated using independent in situ data from turbid coastal waters, and its results were compared with those obtained from the existing methods. The statistical analysis of the measured and the estimated Z sd showed that the present method yields lower error when compared to the existing methods. The spatial structures of the measured and predicted Z sd are also highly consistent with in situ data, which indicates the potential of the present method for estimating the water clarity in turbid coastal and associated lagoon waters.

  10. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    USGS Publications Warehouse

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.

  11. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir.

    PubMed

    Berger, T; Hajek, M; Schöner, W; Fugger, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V; Kartashov, D

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems. Moscow. Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities. Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LETinfinity) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body. PMID:12382930

  12. Development, validation, and application of a method for the GC-MS analysis of fipronil and three of its degradation products in samples of water, soil, and sediment.

    PubMed

    de Toffoli, Ana L; da Mata, Kamilla; Bisinoti, Márcia C; Moreira, Altair B

    2015-01-01

    A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.

  13. Application of carrier element free coprecipitation (CEFC) method for determination of Co(II), Cu(II) and Ni(II) ions in food and water samples.

    PubMed

    Serencam, Huseyin; Duran, Celal; Ozdes, Duygu; Bektas, Hakan

    2013-01-01

    A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples. PMID:23878931

  14. Monograph for using paleoflood data in Water Resources Applications

    USGS Publications Warehouse

    Swain, R.E.; Jarrett, R.D.

    2004-01-01

    The Environmental and Water Resources Institute (EWRI) Technical Committee on Surface Water Hydrology is sponsoring a Task Committee on Paleoflood Hydrology to prepare a monograph entitled, "Use of Paleoflood and Historical Data in Water Resources Applications." This paper introduces the subject of paleoflood hydrology and discusses the topics, which are expected to be included in the monograph. The procedure for preparing and reviewing the monograph will also be discussed. The paleoflood hydrology monograph will include a discussion of types of hydrologic and paleoflood data, paleostage indicators, flood chronology, modeling methods, interpretation issues, water resources applications and case studies, and research needs. Paleoflood data collection and analysis techniques will be presented, and various applications in water-resources investigations will be provided. An overview of several flood frequency analysis approaches, which consider historical and paleoflood data along with systematic streamflow records, will be presented. The monograph is scheduled for completion and publication in 2001. Copyright ASCE 2004.

  15. Comparison of ISO-GUM and Monte Carlo methods for the evaluation of measurement uncertainty: application to direct cadmium measurement in water by GFAAS.

    PubMed

    Theodorou, Dimitrios; Meligotsidou, Loukia; Karavoltsos, Sotirios; Burnetas, Apostolos; Dassenakis, Manos; Scoullos, Michael

    2011-02-15

    The propagation stage of uncertainty evaluation, known as the propagation of distributions, is in most cases approached by the GUM (Guide to the Expression of Uncertainty in Measurement) uncertainty framework which is based on the law of propagation of uncertainty assigned to various input quantities and the characterization of the measurand (output quantity) by a Gaussian or a t-distribution. Recently, a Supplement to the ISO-GUM was prepared by the JCGM (Joint Committee for Guides in Metrology). This Guide gives guidance on propagating probability distributions assigned to various input quantities through a numerical simulation (Monte Carlo Method) and determining a probability distribution for the measurand. In the present work the two approaches were used to estimate the uncertainty of the direct determination of cadmium in water by graphite furnace atomic absorption spectrometry (GFAAS). The expanded uncertainty results (at 95% confidence levels) obtained with the GUM Uncertainty Framework and the Monte Carlo Method at the concentration level of 3.01 μg/L were ±0.20 μg/L and ±0.18 μg/L, respectively. Thus, the GUM Uncertainty Framework slightly overestimates the overall uncertainty by 10%. Even after taking into account additional sources of uncertainty that the GUM Uncertainty Framework considers as negligible, the Monte Carlo gives again the same uncertainty result (±0.18 μg/L). The main source of this difference is the approximation used by the GUM Uncertainty Framework in estimating the standard uncertainty of the calibration curve produced by least squares regression. Although the GUM Uncertainty Framework proves to be adequate in this particular case, generally the Monte Carlo Method has features that avoid the assumptions and the limitations of the GUM Uncertainty Framework.

  16. Integrated Methods: Applications in Quantum Chemistry

    SciTech Connect

    Irle, Stephen; Morokuma, Keiji

    2004-03-31

    Authors introduce quantum chemical methods applicable to extended molecular systems or parts of them, describe in short the theory behind integrated methods, and discuss their applications to the most recognizable areas of nanochemistry (fullerenes, nanotubes, and silica- based nanosystems).

  17. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography-mass spectrometry.

    PubMed

    Weigel, S; Bester, K; Hühnerfuss, H

    2001-03-30

    A method has been developed that allows the solid-phase extraction of microorganic compounds from large volumes of water (10 l) for non-target analysis of filtered seawater. The filtration-extraction system is operated with glass fibre filter candles and the polymeric styrene-divinylbenzene sorbent SDB-1 at flow-rates as high as 500 ml/min. Recovery studies carried out for a couple of model substances covering a wide range of polarity and chemical classes revealed a good performance of the method. Especially for polar compounds (log Kow 3.3-0.7) quantitative recovery was achieved. Limits of detection were between 0.1 and 0.7 ng/l in the full scan mode of the MS. The suitability of the method for the analysis of marine water samples is demonstrated by the non-target screening of water from the German Bight for the presence of organic contaminants. In the course of this screening a large variety of substances was identified including pesticides, industrial chemicals and pharmaceuticals. For some of the identified compounds their occurrence in marine ecosystems has not been reported before, such as dichloropyridines, carbamazepine, propyphenazone and caffeine.

  18. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities.

    PubMed

    Shelver, Weilin L; Hakk, Heldur; Larsen, Gerald L; DeSutter, Thomas M; Casey, Francis X M

    2010-02-19

    An analytical method was developed using ultra-high-pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in 6 min. Despite the rapidity of the assay the system was properly re-equilibrated in this time. No carryover was observed even after high analyte concentrations. The instrumental detection limit based on signal-to-noise ratio (S/N)>3, was below 1 pg/microL (5 pg on column) for all SAs except sulfachloropyridazine. Surface water, ground water, soil, and slurry manure contained in storage ponds in and around swine [Sus scrofa domesticus] rearing facilities were analyzed. Sample cleanup for ground water and surface water included using solid phase extraction (SPE) using Oasis hydrophilic-lipophilic balance (HLB) cartridges. The soil and slurry manure required tandem strong anion exchange (SAX) and HLB solid phase extraction cartridges for sample cleanup. With few exceptions, the recoveries ranged from 60 to 100% for all matrices. The minimum detectable levels were below 2.0 ng/L for water, 30 ng/L for slurry manure, and 45 ng/kg for soil except for sulfachloropyridazine. The coefficient of variation (CV) was within 20% for most of the compounds analyzed. Using this method, sulfamethazine concentrations of 2250-5060 ng/L, sulfamethoxazole concentrations of 108-1.47 x 10(6)ng/L, and sulfathiazole concentrations of 785-1700 ng/L were found in the slurry manure. Sulfadimethoxine (2.0-32 ng/L), sulfamethazine (2.0-5.1 ng/L), and sulfamethoxazole (20.5-43.0 ng/L) were found in surface water and ground water. In top soil (0-15 cm), sulfamethazine ranged 34.5-663 ng/kg dry weight in those locations that received slurry manure as a nutrient; no SAs were found in the soil depths between 46 and 61 cm. The speed makes the method practical for medium to high throughput applications. The sensitivity and positive analyte identification make the method suitable for the demanding requirements for

  19. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  20. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  1. An application of the novel quantum mechanical/molecular mechanical method combined with the theory of energy representation: An ionic dissociation of a water molecule in the supercritical water.

    PubMed

    Takahashi, Hideaki; Satou, Wataru; Hori, Takumi; Nitta, Tomoshige

    2005-01-22

    A novel quantum chemical approach recently developed has been applied to an ionic dissociation of a water molecule (2H(2)O-->H(3)O(+)+OH(-)) in ambient and supercritical water. The method is based on the quantum mechanical/molecular mechanical (QM/MM) simulations combined with the theory of energy representation (QM/MM-ER), where the energy distribution function of MM solvent molecules around a QM solute serves as a fundamental variable to determine the hydration free energy of the solute according to the rigorous framework of the theory of energy representation. The density dependence of the dissociation free energy in the supercritical water has been investigated for the density range from 0.1 to 0.6 g/cm(3) with the temperature fixed at a constant. It has been found that the product ionic species significantly stabilizes in the high density region as compared with the low density. Consequently, the dissociation free energy decreases monotonically as the density increases. The decomposition of the hydration free energy has revealed that the entropic term (-TDeltaS) strongly depends on the density of the solution and dominates the behavior of the dissociation free energy with respect to the variation of the density. The increase in the entropic term in the low density region can be attributed to the decrease in the translational degrees of freedom brought about by the aggregation of solvent water molecules around the ionic solute.

  2. Application of a stream-aquifer model to Monument Creek for development of a method to estimate transit losses for reusable water, El Paso County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Arnold, L. Rick

    2006-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 to (1) apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise the existing transit-loss accounting program for Fountain Creek to incorporate new water-management strategies and allow for incorporation of future changes in water-management strategies, and (4) integrate the two accounting programs into a single program with a Web-based user interface. The purpose of this report is to present the results of applying a stream-aquifer model to the Monument Creek study reach. More...

  3. Multi-Application Small Light Water Reactor

    SciTech Connect

    Pierre Babka

    2002-10-31

    The Multi-Application Small Light Water Reactor (MASLWR ) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objective was to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility.

  4. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  5. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  6. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    USGS Publications Warehouse

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that

  7. Measurement of "total" microcystins using the MMPB/LC/MS/MS method, and application to HAB impacted surface waters-presentation

    EPA Science Inventory

    The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focus...

  8. Storm Water Management Model Applications Manual

    EPA Science Inventory

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model that computes runoff quantity and quality from primarily urban areas. This manual is a practical application guide for new SWMM users who have already had some previous training in hydrolog...

  9. Application of surface geophysics to ground-water investigations

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  10. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  11. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  12. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended...) The measurement and estimation of the n-octanol/water partition coefficient (Kow), has become...

  13. Application of ensemble-based methods for assimilating 4D ERT data at the groundwater-river water interaction zone based on a coupled hydrogeophysical model

    NASA Astrophysics Data System (ADS)

    Chen, X.; Johnson, T.; Hammond, G. E.; Zachara, J. M.

    2013-12-01

    Dynamic groundwater-river water exchange between the Columbia River and the Hanford 300 Area has substantial influence on flow and transport processes and biogeochemical cycles at the site. Existing research efforts have shown that the groundwater-river water interaction zone is a heterogeneous and highly dynamic region exhibiting variability over a range of space and time scales. Since it is insufficient to rely on well-based information to characterize the spatially variable subsurface properties within this interaction zone, we have installed a large-scale (300 m by 300 m) 3-dimensional electrical resistivity tomography (ERT) array to monitor river water intrusion and retreat at a temporal resolution of four images per day, using a novel time lapse ERT imaging methodology that explicitly accommodates the sharp, transient bulk conductivity contrast at the water table. The 4-dimensional electrical geophysical data is incorporated into ensemble-based data assimilation algorithms (e.g., ensemble Kalman filter and ensemble smoother) to statistically estimate the heterogeneous permeability field at the groundwater-river water interaction zone, which is critical for modeling flow and biogeochemical transport processes at the site. A new high performance computing capability has been developed to couple the ERT imaging code E4D (Johnson et al., 2010) with the site-scale flow and transport code, PFLOTRAN (Hammond et al., 2012), which serves as the forward simulator of the hydrogeophysical data assimilation. The joint, parallel, multi-physics code is able to simulate well-based pressure and pore-fluid conductivity measurements, as well as spatially continuous ERT measurements collected throughout the experiment. The data assimilation framework integrates both the well-based point measurements and spatially continuous ERT measurements in a sequential Bayesian manner. Our study demonstrates the effectiveness of ERT data for large-scale characterization of subsurface

  14. Directional microwave applicator and methods

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)

    2008-01-01

    A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.

  15. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  16. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals. PMID:25714628

  17. Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam

    2016-04-01

    In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536).

  18. Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam

    2016-04-01

    In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536). PMID:27037653

  19. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  20. Radiative Transfer: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Emde, Claudia; Buras, Robert; Kylling, Arve

    Solar and terrestrial radiation is the driver of atmospheric dynamics and chemistry and can be exploited by remote sensing algorithms to determine atmospheric composition. For this purpose, accurate radiative transfer models are needed. Here, a modern radiative transfer tool developed over many years at the Institute of Atmospheric Physics is explained. As an application, the remote sensing of cloud microphysics using the angular distribution of reflected solar radiance in the rainbow and backscatter glory is shown, with special emphasis on the polarization of radiation.

  1. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity.

  2. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity. PMID:25591399

  3. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  4. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  5. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  6. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  7. APPLICATION OF RADON REDUCTION METHODS

    EPA Science Inventory

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  8. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    PubMed

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  9. Development of an UPLC-MS/MS Sulfonamide Multi-residue Method and It's Application to Water, Manure Slurry, and Soils from Swine Rearing Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An analytical method was developed using ultra performance liquid chromatography-triple quadrupole-tandem mass spectrophotometry (UPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in six minutes. The instrumental detection limit based on signal-to-noise ratio (S/N) > 3, was below 1 pg/µL...

  10. Method of arsenic removal from water

    DOEpatents

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  11. New methods of nitrate removal from water.

    PubMed

    Shrimali, M; Singh, K P

    2001-01-01

    Nitrate contamination in groundwater resources originates mainly from the excessive use of fertilisers and uncontrolled land discharges of treated wastewater. This can cause potential health hazards to infants and pregnant women, thus limiting the direct use of the groundwater resources for the human consumption in several parts of the world, including India. The conventional processes used to eliminate nitrate from water are ion exchange, reverse osmosis and electro-dialysis. The utility of these processes has been limited due to their expensive operation and subsequent disposal problem of the generated nitrate waste brine. This paper presents a comprehensive account of the methods/techniques used for the removal of nitrate ion from water during the last 10 years with special reference to the biological denitrification and fate of the metals in decontamination processes.

  12. NASA Data for Water Resources Applications

    NASA Technical Reports Server (NTRS)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  13. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie; Cheng, Chu-lin; Perfect, Edmund; Horita, Juske; Warren, Jeffrey

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  14. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    NASA Astrophysics Data System (ADS)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  15. Diet history: Method and applications.

    PubMed

    Morán Fagúndez, Luis Juan; Rivera Torres, Alejandra; González Sánchez, María Eugenia; de Torres Aured, Mari Lourdes; Pérez Rodrigo, Carmen; Irles Rocamora, José Antonio

    2015-02-26

    The diet history is a traditional method of analysis of food intake. In its traditional structure consists of three components that provide an overall information of the usual food consumption pattern of the individual and also detailed information on certain foods. The information is collected in an interview and requires highly experienced qualified interviewers. The quality of information depends largely on the skills of the interviewer. It is mostly used in clinical practice. It has also been used in studies of diet and health relationship to investigate the usual diet in the past. The high cost and long duration of the interview limit their usefulness in large epidemiological studies.

  16. Hybrid codes: Methods and applications

    SciTech Connect

    Winske, D. ); Omidi, N. )

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  17. Empirical Distributional Semantics: Methods and Biomedical Applications

    PubMed Central

    Cohen, Trevor; Widdows, Dominic

    2009-01-01

    Over the past fifteen years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed. PMID:19232399

  18. Recent applications of the stochastic variational method.

    SciTech Connect

    Varga, K.

    1998-10-20

    The stochastic variational method has proved to be useful in various fields of physics, including atomic, molecular, solid state, nuclear and subnuclear physics. This paper only reviewed a small part of the applications. Other contributions to this volume will show its usefulness in studies related to the structure of the baryons. Its main application is in nuclear physics, which has not been covered here but the interested reader can find examples in the references. We would like to extend its applicability to larger systems and for more complicated interactions. Such developments are under way. This paper overviews the most recent developments and applications of the stochastic variational method for different physical systems.

  19. Water recycling system using thermopervaporation method

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Ashida, A.; Mitani, K.; Ebara, K.; Yamada, A.

    1986-01-01

    A water recycling system concept for the crew of the space station is presented. A thermopervaporation method is a new key technology used for the distillation process, utilizing a hydrophobic membrane. An experimental study of thermopervaporation revealed that the permeation depends on the gap between the membrane and the cooling surface in the condensation room: the steam diffusion occurs with gaps less than 5 mm while natural convection becomes dominant with gaps more than 5 mm. A brief discussion of the system operation is also described.

  20. AMMOS software: method and application.

    PubMed

    Pencheva, T; Lagorce, D; Pajeva, I; Villoutreix, B O; Miteva, M A

    2012-01-01

    Recent advances in computational sciences enabled extensive use of in silico methods in projects at the interface between chemistry and biology. Among them virtual ligand screening, a modern set of approaches, facilitates hit identification and lead optimization in drug discovery programs. Most of these approaches require the preparation of the libraries containing small organic molecules to be screened or a refinement of the virtual screening results. Here we present an overview of the open source AMMOS software, which is a platform performing an automatic procedure that allows for a structural generation and optimization of drug-like molecules in compound collections, as well as a structural refinement of protein-ligand complexes to assist in silico screening exercises.

  1. Geomatic methods at the service of water resources modelling

    NASA Astrophysics Data System (ADS)

    Molina, José-Luis; Rodríguez-Gonzálvez, Pablo; Molina, Mª Carmen; González-Aguilera, Diego; Espejo, Fernando

    2014-02-01

    Acquisition, management and/or use of spatial information are crucial for the quality of water resources studies. In this sense, several geomatic methods arise at the service of water modelling, aiming the generation of cartographic products, especially in terms of 3D models and orthophotos. They may also perform as tools for problem solving and decision making. However, choosing the right geomatic method is still a challenge in this field. That is mostly due to the complexity of the different applications and variables involved for water resources management. This study is aimed to provide a guide to best practices in this context by tackling a deep review of geomatic methods and their suitability assessment for the following study types: Surface Hydrology, Groundwater Hydrology, Hydraulics, Agronomy, Morphodynamics and Geotechnical Processes. This assessment is driven by several decision variables grouped in two categories, classified depending on their nature as geometric or radiometric. As a result, the reader comes with the best choice/choices for the method to use, depending on the type of water resources modelling study in hand.

  2. Near term application of water cooling

    NASA Astrophysics Data System (ADS)

    Horner, M. W.; Caruvana, A.; Cohn, A.; Smith, D. P.

    1980-03-01

    The paper presents studies of combined gas and steam-turbine cycles related to the near term application of water cooling technology to the commercial gas turbine operating on heavy residual oil or coal derived liquid fuels. Water cooling promises significant reduction of hot corrosion and ash deposition at the turbine first-stage nozzle. It was found that: (1) corrosion of some alloys in the presence of alkali contaminant was less as metal temperatures were lowered to the 800-1000 F range, (2) the rate of ash deposition is increased for air-cooled and water-cooled nozzles at the 2060 F turbine firing temperature compared to 1850 F, (3) the ash deposit for the water cooled nozzle was lighter and more easily removed at both 1850 and 2050 F, (4) on-line nutshelling was effective on the water-cooled nozzles even at 2050 F, and (5) the data indicates that the rate of ash deposition may be sensitive to surface wall temperatures.

  3. Evaluation of soil-venting application. Ground-water issue

    SciTech Connect

    DiGiulio, D.C.

    1992-04-01

    The Regional Superfund Ground-Water Forum is a group of scientists, representing EPA's Regional Superfund Offices, organized to exchange up-to-date information related to ground-water remediation at Superfund sites. One of the major issues of concern to the Forum is the transport and fate of contaminants in soil and ground water as related to subsurface remediation. The ability of soil venting to inexpensively remove large amounts of volatile organic compounds (VOCs) from contaminated soils is well established. However, the time required using venting to remediate soils to low contaminant levels often required by state and federal regulators has not been adequately investigated. Discussion is presented to aid in evaluating the feasibility of venting application. Methods to optimize venting application are also discussed.

  4. Subjective evidence based ethnography: method and applications.

    PubMed

    Lahlou, Saadi; Le Bellu, Sophie; Boesen-Mariani, Sabine

    2015-06-01

    Subjective Evidence Based Ethnography (SEBE) is a method designed to access subjective experience. It uses First Person Perspective (FPP) digital recordings as a basis for analytic Replay Interviews (RIW) with the participants. This triggers their memory and enables a detailed step by step understanding of activity: goals, subgoals, determinants of actions, decision-making processes, etc. This paper describes the technique and two applications. First, the analysis of professional practices for know-how transferring purposes in industry is illustrated with the analysis of nuclear power-plant operators' gestures. This shows how SEBE enables modelling activity, describing good and bad practices, risky situations, and expert tacit knowledge. Second, the analysis of full days lived by Polish mothers taking care of their children is described, with a specific focus on how they manage their eating and drinking. This research has been done on a sub-sample of a large scale intervention designed to increase plain water drinking vs sweet beverages. It illustrates the interest of SEBE as an exploratory technique in complement to other more classic approaches such as questionnaires and behavioural diaries. It provides the detailed "how" of the effects that are measured at aggregate level by other techniques.

  5. Subjective evidence based ethnography: method and applications.

    PubMed

    Lahlou, Saadi; Le Bellu, Sophie; Boesen-Mariani, Sabine

    2015-06-01

    Subjective Evidence Based Ethnography (SEBE) is a method designed to access subjective experience. It uses First Person Perspective (FPP) digital recordings as a basis for analytic Replay Interviews (RIW) with the participants. This triggers their memory and enables a detailed step by step understanding of activity: goals, subgoals, determinants of actions, decision-making processes, etc. This paper describes the technique and two applications. First, the analysis of professional practices for know-how transferring purposes in industry is illustrated with the analysis of nuclear power-plant operators' gestures. This shows how SEBE enables modelling activity, describing good and bad practices, risky situations, and expert tacit knowledge. Second, the analysis of full days lived by Polish mothers taking care of their children is described, with a specific focus on how they manage their eating and drinking. This research has been done on a sub-sample of a large scale intervention designed to increase plain water drinking vs sweet beverages. It illustrates the interest of SEBE as an exploratory technique in complement to other more classic approaches such as questionnaires and behavioural diaries. It provides the detailed "how" of the effects that are measured at aggregate level by other techniques. PMID:25579747

  6. Method to estimate water storage capacity of capillary barriers - Discussion

    SciTech Connect

    Gee, Glendon W. ); Ward, Anderson L. ); Meyer, Philip D. )

    1998-11-01

    This is a brief comment on a previously published paper. The paper by Stormont and Morris[JGGE 124 (4):297-302] provides an interesting approach to computing water storage capacity of capillary barriers used as landfill covers. They correctly show that available water storage capacity can be increased up to a factor of two for a silt loam soil, when it is used in a capillary barrier as compared to existing as a deep soil profile. For this very reason such a capillary barrier, utilizing silt loam soil, was constructed and successfully tested at the U. S. Department of Energy?s Hanford Site in southeastern Washington State. Silt loam soil provides optimal water storage for capillary barriers and ensures minimal drainage. Less benefits are obtained when capillary barriers utilize more sandy soils. We would endorse a limited application of the method of Stormont and Morris. We suggest that there will be large uncertainties in field capacity, wilting point and water retention characteristics and only when these uncertainties are accounted for can such a method be used to provide sound engineering judgement for cover design. A recommended procedure for using this method would include actual field measurements of the soil hydraulic properties of the cover materials.

  7. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    SciTech Connect

    Chofor, N; Poppe, B; Nebah, F; Harder, D

    2014-06-01

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio of the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.

  8. METHODS FOR DETERMINING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    The goal of the clean water act of 1972 was to restore and maintain physical, chemical & biological quality of waters in the U.S. Although great progress has been made in cleaning up lakes, rivers and coastal waters many still do not meet water quality standards. Most beaches ha...

  9. Method of extracting uranium from sea water

    SciTech Connect

    Paschke, M.; Wagener, K.; Wald, M.

    1981-04-21

    A method is described for producing a matrix of micro-organisms for extracting and gaining uranium from sea water, according to which the matrix is made of micro-organisms occurring in nature that are exposed to x-ray irradiations. These predetermined micro-organisms accordingly form colonies or threads and are filtered easily and cultivated. These microorganisms have a ratio of surface to volume that is relatively high. Subsequently, the irradiated micro-organisms are placed on a nutrient medium rich in uranium and are left there until colonies are formed. Thereupon, the surviving colonies of mutants are inoculated in a nutrient solution, and are then cultivated to produce the matrix.

  10. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  11. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  12. Thiram: degradation, applications and analytical methods.

    PubMed

    Sharma, Vaneet Kumar; Aulakh, J S; Malik, Ashok Kumar

    2003-10-01

    In this review a brief introduction to thiram (tetramethylthiuram disulfide; TMTD) pesticide has been given along with other applications. All the important methods available are systematically arranged and are listed under various techniques. Some of these methods have been applied for the determination of thiram in commercial formulations, synthetic mixtures in grains, vegetables and fruits. A comparison of different methods is the salient feature of this review.

  13. Methods for virus recovery in water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Food safety is intimately connected to water sanitary quality as water is used at almost every node in the food production process. Common contaminating pathogens in water are human enteric viruses, many of which are responsible for foodborne disease outbreaks in the United States and other high-inc...

  14. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  15. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.

  16. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application. PMID:26856930

  17. Extending the applicability of multigrid methods

    SciTech Connect

    Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

    2006-09-25

    Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. Specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics.

  18. Solid-phase extraction combined with high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis of pesticides in water: method performance and application in a reconnaissance survey of residues in drinking water in Greater Cairo, Egypt.

    PubMed

    Potter, Thomas L; Mohamed, Mahmoud A; Ali, Hannah

    2007-01-24

    Monitoring of water resources for pesticide residues is often needed to ensure that pesticide use does not adversely impact the quality of public water supplies or the environment. In many rural areas and throughout much of the developing world, monitoring is often constrained by lack of testing facilities; thus, collection of samples and shipment to centralized laboratories for analysis is required. The portability, ease of use, and potential to enhance analyte stability make solid-phase extraction (SPE) an attractive technique for handling water samples prior to their shipment. We describe performance of an SPE method targeting a structurally diverse mixture of 25 current-use pesticides and two common degradates in samples of raw and filtered drinking water collected in Greater Cairo, Egypt. SPE was completed in a field laboratory in Egypt, and cartridges were shipped to the United States for elution and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis. Quantitative and reproducible recovery of 23 of 27 compounds (average = 96%; percent relative standard deviation = 21%) from matrix spikes (1 microg L-1 per component) prepared in the field and from deionized water fortified similarly in the analytical laboratory was obtained. Concurrent analysis of unspiked samples identified four parent compounds and one degradate in drinking water samples. No significant differences were observed between raw and filtered samples. Residue levels in all cases were below drinking water and "harm to aquatic-life" thresholds, indicating that human and ecological risks of pesticide contamination were relatively small; however, the study was limited in scale and scope. Further monitoring is needed to define spatial and temporal variation in residue concentrations. The study has demonstrated the feasibility of performing studies of this type using SPE to extract and preserve samples in the field. The approach should be broadly

  19. Study methods for disinfection water for injection

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Polyakov, Vladimir; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    Experimental results presented in this study tends to explore viruses in the water for their further decontamination under the influence of laser radiation (λ=220-390 nm). Conducted a series of experiments to study the dependence of water quality from the effects of laser radiation. Correlation between degree of survival of viruses and power density. The results showed that all the analyzed samples of water is clearing from bacteria to 98%. Preliminary tests of the prototype laboratory system UFOVI has opened up new opportunities for water sterilizing.

  20. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality criteria. 227.31 Section 227.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.31 Applicable marine water...

  1. Some Recent Applications of Nuclear Methods

    NASA Astrophysics Data System (ADS)

    Csikai, J.; Dóczi, R.

    2005-11-01

    In this paper among the wide-ranging applications of nuclear methods the following topics were selected: a) Nuclear safeguards, illicit trafficking and demining; b) Bulk hydrogen analysis; c) Radiopharmaceuticals and related charged particle reactions; d) Accelerator transmutation of radioactive waste; e) Validation of nuclear data libraries by differential and integral measurements.

  2. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  3. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  4. Analytical Method for Measuring Cosmogenic (35)S in Natural Waters.

    PubMed

    Urióstegui, Stephanie H; Bibby, Richard K; Esser, Bradley K; Clark, Jordan F

    2015-06-16

    Cosmogenic sulfur-35 in water as dissolved sulfate ((35)SO4) has successfully been used as an intrinsic hydrologic tracer in low-SO4, high-elevation basins. Its application in environmental waters containing high SO4 concentrations has been limited because only small amounts of SO4 can be analyzed using current liquid scintillation counting (LSC) techniques. We present a new analytical method for analyzing large amounts of BaSO4 for (35)S. We quantify efficiency gains when suspending BaSO4 precipitate in Inta-Gel Plus cocktail, purify BaSO4 precipitate to remove dissolved organic matter, mitigate interference of radium-226 and its daughter products by selection of high purity barium chloride, and optimize LSC counting parameters for (35)S determination in larger masses of BaSO4. Using this improved procedure, we achieved counting efficiencies that are comparable to published LSC techniques despite a 10-fold increase in the SO4 sample load. (35)SO4 was successfully measured in high SO4 surface waters and groundwaters containing low ratios of (35)S activity to SO4 mass demonstrating that this new analytical method expands the analytical range of (35)SO4 and broadens the utility of (35)SO4 as an intrinsic tracer in hydrologic settings. PMID:25981756

  5. Surface water quality assessment by environmetric methods.

    PubMed

    Boyacioglu, Hülya; Boyacioglu, Hayal

    2007-08-01

    This environmetric study deals with the interpretation of river water monitoring data from the basin of the Buyuk Menderes River and its tributaries in Turkey. Eleven variables were measured to estimate water quality at 17 sampling sites. Factor analysis was applied to explain the correlations between the observations in terms of underlying factors. Results revealed that, water quality was strongly affected from agricultural uses. Cluster analysis was used to classify stations with similar properties and results distinguished three groups of stations. Water quality at downstream of the river was quite different from the other part. It is recommended to involve the environmetric data treatment as a substantial procedure in assessment of water quality data.

  6. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    flux in the subsurface is difficult, prompting investigators to pursue indirect methods. Geophysical approaches that exploit the coupled relation between heat and water transport provide an attractive class of methods that have become widely used in investigations of recharge. This appendix reviews the application of heat to the problem of recharge estimation. Its objective is to provide a fairly complete account of the theoretical underpinnings together with a comprehensive review of thermal methods in practice. Investigators began using subsurface temperatures to delineate recharge areas and infer directions of ground-water flow around the turn of the 20th century. During the 1960s, analytical and numerical solutions for simplified heat- and fluid-flow problems became available. These early solutions, though one-dimensional and otherwise restricted, provided a strong impetus for applying thermal methods to problems of liquid and vapor movement in systems ranging from soils to geothermal reservoirs. Today?s combination of fast processors, massive data-storage units, and efficient matrix techniques provide numerical solutions to complex, three-dimensional transport problems. These approaches allow researchers to take advantage of the considerable information content routinely achievable in high-accuracy temperature work.

  7. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey,...

  8. Trends in aptamer selection methods and applications.

    PubMed

    Yüce, Meral; Ullah, Naimat; Budak, Hikmet

    2015-08-21

    Aptamers are target specific ssDNA, RNA or peptide sequences generated by an in vitro selection and amplification method called SELEX (Systematic Evolution of Ligands by EXponential Enrichment), which involves repetitive cycles of binding, recovery and amplification steps. Aptamers have the ability to bind with a variety of targets such as drugs, proteins, heavy metals, and pathogens with high specificity and selectivity. Aptamers are similar to monoclonal antibodies regarding their binding affinities, but they offer a number of advantages over the existing antibody-based detection methods, which make the aptamers promising diagnostic and therapeutic tools for future biomedical and analytical applications. The aim of this review article is to provide an overview of the recent advancements in aptamer screening methods along with a concise description of the major application areas of aptamers including biomarker discovery, diagnostics, imaging and nanotechnology. PMID:26114391

  9. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  10. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P.

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  11. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P.

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  12. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  13. EPA METHODS FOR VIRUS DETECTION IN WATER

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Members of the enterovirus group cause numerous diseases, including gastroenteritis, encephalitis, meningitis, myocard...

  14. Structural sensitivity analysis: Methods, applications and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. The techniques include a finite difference step size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Some of the critical needs in the structural sensitivity area are indicated along with plans for dealing with some of those needs.

  15. Structural sensitivity analysis: Methods, applications, and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs.

  16. Applications of water stable metal-organic frameworks.

    PubMed

    Wang, Chenghong; Liu, Xinlei; Keser Demir, Nilay; Chen, J Paul; Li, Kang

    2016-09-21

    The recent advancement of water stable metal-organic frameworks (MOFs) expands the application of this unique porous material. This review article aims at studying their applications in terms of five major areas: adsorption, membrane separation, sensing, catalysis, and proton conduction. These applications are either conducted in a water-containing environment or directly targeted on water treatment processes. The representative and significant studies in each area were comprehensively reviewed and discussed for perspectives, to serve as a reference for researchers working in related areas. At the end, a summary and future outlook on the applications of water stable MOFs are suggested as concluding remarks. PMID:27406473

  17. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  18. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water.

    PubMed

    Ens, Waldemar; Senner, Frank; Gygax, Benjamin; Schlotterbeck, Götz

    2014-05-01

    A new method for the simultaneous determination of iodated X-ray contrast media (ICM) and artificial sweeteners (AS) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operated in positive and negative ionization switching mode was developed. The method was validated for surface, ground, and drinking water samples. In order to gain higher sensitivities, a 10-fold sample enrichment step using a Genevac EZ-2 plus centrifugal vacuum evaporator that provided excellent recoveries (90 ± 6 %) was selected for sample preparation. Limits of quantification below 10 ng/L were obtained for all compounds. Furthermore, sample preparation recoveries and matrix effects were investigated thoroughly for all matrix types. Considerable matrix effects were observed in surface water and could be compensated by the use of four stable isotope-labeled internal standards. Due to their persistence, fractions of diatrizoic acid, iopamidol, and acesulfame could pass the whole drinking water production process and were observed also in drinking water. To monitor the fate and occurrence of these compounds, the validated method was applied to samples from different stages of the drinking water production process of the Industrial Works of Basel (IWB). Diatrizoic acid was found as the most persistent compound which was eliminated by just 40 % during the whole drinking water treatment process, followed by iopamidol (80 % elimination) and acesulfame (85 % elimination). All other compounds were completely restrained and/or degraded by the soil and thus were not detected in groundwater. Additionally, a direct injection method without sample preparation achieving 3-20 ng/L limits of quantification was compared to the developed method.

  19. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Assessment of didecyldimethylammonium chloride as a ballast water treatment method.

    PubMed

    van Slooten, Cees; Peperzak, Louis; Buma, Anita G J

    2015-01-01

    Ballast water-mediated transfer of aquatic invasive species is considered a major threat to marine biodiversity, marine industry and human health. A ballast water treatment is needed to comply with International Maritime Organization (IMO) ballast water discharge regulations. Didecyldimethylammonium chloride (DDAC) was tested for its applicability as a ballast water treatment method. The treatment of the marine phytoplankton species Tetraselmis suecica, Isochrysis galbana and Chaetoceros calcitrans showed that at 2.5 µL L(-1) DDAC was able to inactivate photosystem II (PSII) efficiency and disintegrate the cells after 5 days of dark incubation. The treatment of natural marine plankton communities with 2.5 µL L(-1) DDAC did not sufficiently decrease zooplankton abundance to comply with the IMO D-2 standard. Bivalve larvae showed the highest resistance to DDAC. PSII efficiency was inactivated within 5 days but phytoplankton cells remained intact. Regrowth occurred within 2 days of incubation in the light. However, untreated phytoplankton exposed to residual DDAC showed delayed cell growth and reduced PSII efficiency, indicating residual DDAC toxicity. Natural marine plankton communities treated with 5 µL L(-1) DDAC showed sufficient disinfection of zooplankton and inactivation of PSII efficiency. Phytoplankton regrowth was not detected after 9 days of light incubation. Bacteria were initially reduced due to the DDAC treatment but regrowth was observed within 5 days of dark incubation. Residual DDAC remained too high after 5 days to be safely discharged. Two neutralization cycles of 50 mg L(-1) bentonite were needed to inactivate residual DDAC upon discharge. The inactivation of residual DDAC may seriously hamper the practical use of DDAC as a ballast water disinfectant.

  1. Field Deployable Method for Arsenic Speciation in Water

    PubMed Central

    Voice, Thomas C.; Flores del Pino, Lisveth V.; Havezov, Ivan; Long, David T.

    2010-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance. The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78–112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  2. Field Deployable Method for Arsenic Speciation in Water.

    PubMed

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  3. Field deployable method for arsenic speciation in water

    NASA Astrophysics Data System (ADS)

    Voice, Thomas C.; Flores del Pino, Lisveth V.; Havezov, Ivan; Long, David T.

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance. The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 μg/L, were analyzed. Arsenic recoveries ranged from 78% to 112% and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 μg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  4. Method Development and Monitoring of Cyanotoxins in Water

    EPA Science Inventory

    This presentation describes method development of two ambient water LC/MS/MS methods for microcystins, cylindrospermopsin and anatoxin-a. Ruggedness of the methods will be demonstrated by evaluation of quality control samples derived from various water bodies across the country.

  5. Harmony Search Method: Theory and Applications

    PubMed Central

    Gao, X. Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K.

    2015-01-01

    The Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem. PMID:25945083

  6. Experimental design methods for bioengineering applications.

    PubMed

    Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri

    2016-01-01

    Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.

  7. A rapid improved method for sexing embryo of water buffalo.

    PubMed

    Zoheir, K M A; Allam, A A

    2011-07-01

    The objective of the experiment of this paper is to develop and improve in the sexing method for preimplantation embryos of water buffalo (Bubalus bubalis) using loop-mediated isothermal amplification (LAMP) reaction. Embryo sexing has been recognized to control effectively the sex of offspring in the embryo transfer industry. A rapid and simple detection system was established by adding ethidium bromide (EB) or 5 μl of CuSO4 (3M) to the product of LAMP reaction. The result of these additions after 2 min was a color change and a precipitate. It could be employed as an alternative method in the detection of the reaction products in place of the time consuming electrophoresis or the turbidity meter. The in vitro produced buffalo embryos were divided into one to eight pieces using a microblade attached to a micromanipulator. The cell number in each piece was counted before sexing. Sexing of DNA samples extracted from one to five biopsies cells was performed by LAMP. After biopsy, the remaining part of the embryos was used to confirm the sex by polymerase chain reaction (PCR). Fifty buffalo embryos were used and the accuracy of sex prediction was 100% when the blastomeres dissociated from a morula exceeds three. In conclusion, the present procedure without turbidity meter and electrophoresis was reliable and applicable for sexing the water buffalo embryos.

  8. Method for thermochemical decomposition of water

    DOEpatents

    Abraham, Bernard M.; Schreiner, Felix

    1977-01-11

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions: KI, NH.sub.3, CO.sub. 2 and water in an organic solvent such as ethyl or propyl alcohol are reacted to produce KHCO 3 and NH.sub.4 I. The KHCO.sub.3 is thermally decomposed to K.sub.2 CO.sub.3, H.sub.2 O and CO.sub.2, while the NH.sub.4 I is reacted with Hg to produce HgI.sub.2, NH.sub.3 and H.sub.2. The K.sub.2 CO.sub.3 obtained by calcining KHCO.sub.3 is then reacted with HgI.sub.2 to produce Hg, KI, CO and O.sub.2. All products of the reaction are recycled except hydrogen and oxygen.

  9. Water-harvesting applications for rangelands revisited

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although water harvesting techniques have been used effectively in irrigated agriculture and domestic water supplies, there seems to have been little exploitation of the same techniques in arid and semiarid rangeland restoration. A review of the history of rangeland water harvesting allows identifi...

  10. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  11. Discharges in Water and Applications to Wasted Water Treatment

    NASA Astrophysics Data System (ADS)

    Yamabe, Chobei; Yamashita, Takanori; Ihara, Satoshi

    Recently the electrical discharge in water has been used for the water treatment. In this study, various shape of electrodes were examined to observe and measure the electrical discharge phenomena in water. Both the Marx generator and the pulsed power generator were used to generate the discharge in water. The oscillation on the waveforms of both applied voltage and discharge current was observed using the pulsed power generator whose peak applied voltage was about 80-120 kV and its discharge repetition rate was about one pulse per thirty seconds although it wasn't observed on the waveforms in the practical use of the high voltage generator (peak applied voltage was about 30-40 kV) with high repetition rate of discharge (20-300 pulses per second). Bubbles were introduced into the discharge region of main electrode using the ejector and the generation of hydroxyl radicals (OH) was confirmed by the measurement of emission spectrum of discharge in water and the intensity of OH radicals increased with the ratio of G/L (where, G is gas flow rate and L is water flow rate). The hydrogen peroxide (H2O2) was also measured and this reactor system was applied for the de-color of water.

  12. Review of methods for assessing nonpoint-source contaminated ground-water discharge to surface water

    SciTech Connect

    Not Available

    1991-04-01

    The document provides an overview of selected methods that have been used for assessing nonpoint source contaminated ground water discharge to surface water. EPA undertook the project in response to the growing awareness that contaminated ground water discharge is a significant source of nonpoint source contaminant loading to surface water in many parts of the country.

  13. Low hardness organisms: Culture methods, sensitivities, and practical applications

    SciTech Connect

    DaCruz, A.; DaCruz, N.; Bird, M.

    1995-12-31

    EPA Regulations require biomonitoring of permitted effluent and stormwater runoff. Several permit locations were studied, in Virginia, that have supply water and or stormwater runoff which ranges in hardness from 5--30 mg/L. Ceriodaphnia dubia (dubia) and Pimephales promelas (fathead minnow) were tested in reconstituted water with hardnesses from 5--30 mg/L. Results indicated osmotic stresses present in the acute tests with the fathead minnow as well as chronic tests for the dubia and the fathead minnow. Culture methods were developed for both organism types in soft (30 mg) reconstituted freshwater. Reproductivity and development for each organisms type meets or exceeds EPA testing requirements for moderately hard organisms. Sensitivities were measured over an 18 month interval using cadmium chloride as a reference toxicant. Additionally, sensitivities were charted in contrast with those of organisms cultured in moderately hard water. The comparison proved that the sensitivities of both the dubia and the fathead minnow cultured in 30 mg water increased, but were within two standard deviations of the organism sensitivities of those cultured in moderately hard water. Latitude for use of organisms cultured in 30 mg was documented for waters ranging in hardness from 10--100 mg/L with no acclimation period required. The stability of the organism sensitivity was also validated. The application was most helpful in stormwater runoff and in effluents where the hardness was 30 mg/L or less.

  14. Welcome to Methods and Applications in Fluorescence

    NASA Astrophysics Data System (ADS)

    Birch, David; Mély, Yves; Wolfbeis, Otto S.

    2013-03-01

    On behalf of the Editorial Board of Methods and Applications in Fluorescence and IOP Publishing we are delighted to invite you to read the first articles in our new journal. Methods and Applications in Fluorescence is forged out of the renowned MAF conference series of the same name and we fully expect the natural synergy between the two to provide the ideal platform for moving the field of fluorescence forward. Our aim is for this new journal to reflect the truly global and diverse impact fluorescence is having across many disciplines and help fluorescence achieve its full potential. Just as MAF is the leading conference in fluorescence we are confident of the high impact of this new journal. Methods and Applications in Fluorescence has a distinguished Editorial Board that is drawn from the MAF conference Permanent Steering Committee. Together with the Editorial Board and the rest of the community, the journal will closely track the very latest developments in fluorescence while delivering a fair and constructive review process. We are very pleased that this journal is backed by the Institute of Physics, one of the world's premier learned societies. IOP Publishing has a wealth of experience in science publishing that dates back to 1874. It is a not-for-profit organization that publishes over 60 journals, many on multidisciplinary topics and many including seminal contributions from Nobel Laureates. Any funding surplus generated by IOP Publishing goes directly back into science through the Institute of Physics, thus helping to nurture science for future generations. We invite submissions as regular articles, review articles and technical notes within the scope of the journal, which includes all the major aspects of fluorescence. This covers both theory and experiment across spectroscopy, imaging, materials, labels, probes and sensors. The applications of fluorescence to emerging areas in bionanotechnology, nanotechnology and medicine are very much part of the

  15. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  16. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  17. SARAL/Altika for inland water: current and potential applications

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  18. Measuring Plant Water Status: A Simple Method for Investigative Laboratories.

    ERIC Educational Resources Information Center

    Mansfield, Donald H.; Anderson, Jay E.

    1980-01-01

    Describes a method suitable for quantitative studies of plant water status conducted by high school or college students and the calculation of the relative water content (RWC) of a plant. Materials, methods, procedures, and results are discussed, with sample data figures provided. (CS)

  19. Exploiting interfacial water properties for desalination and purification applications.

    SciTech Connect

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo; Xomeritakis, George K.; Frankamp, Benjamin L.; Siepmann, J. Ilja; Cygan, Randall Timothy; Hartl, Monika A.; Travesset, Alex; Anderson, Joshua A.; Huber, Dale L.; Kissel, David J.; Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C.; McGrath, Matthew J.; Farrow, Darcie; Cecchi, Joseph L.; van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu; Zhu, Xiaoyang; Dunphy, Darren Robert; Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L.; Gerung, Henry; Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  20. A rapid method for the determination of radioactive cesium isotopes in water

    USGS Publications Warehouse

    Janzer, V.J.

    1973-01-01

    Radioactive cesium in water is concentrated by ion-exchange on finely divided ammonium hexacyanocobalt ferrate (NCFC), and then determined by beta counting. No carrier is added, and the method can be used to determine beta-emitting cesium isotopes at the 10-pCi/l level using a 100-ml sample. Five samples can be prepared for counting, in approximately 3 hours, and the method is applicable to fresh and saline waters.

  1. Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method

    NASA Astrophysics Data System (ADS)

    Wei, Z.

    2016-08-01

    Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.

  2. Status and applications of echinoid (phylum echinodermata) toxicity test methods

    SciTech Connect

    Bay, S.; Burgess, R.; Nacci, D.

    1993-01-01

    The use of echinoderms for toxicity testing has focused primarily on sea urchins and sand dollars (Strongylocentrotus purpuratus, Arbacia punctulata, Lytechinus pictus, and Dendraster excentricus, for example). The status and relative sensitivity of various test methods are described. The most frequently used test methods consist of short-term exposures of sea urchin sperm or embryos; these tests can be easily conducted at all times of the year by using species with complementary spawning cycles or laboratory conditioned populations of a single species. Data from reference toxicant and effluent toxicity tests are summarized. Information on the precision and sensitivity of echinoid test methods are limited and preclude rigorous comparisons with other test methods. The available data indicate that the sensitivity and precision of these methods are comparable to short-term chronic methods for other marine invertebrates and fish. Recent application of the sperm test in toxicity identification evaluations (TIEs) and studies of effluent toxicity decay and sediment toxicity illustrate the versatility of this rapid (10 to 60 min exposure) test method. Embryo tests typically use a 48 to 96 h exposure period and measure the occurrence of embryo malformations. Most recent applications of the embryo test have been for the assessment of sediment elutriate toxicity. Adult echinoderms are not frequently used to assess effluent or receiving water toxicity. Recent studies have had success in using the adult life stage of urchins and sand dollars to assess the effects of contaminated sediment on growth, behavior, and bioaccumulation.

  3. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  4. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; De Castro, Manuel

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  5. Application of water quality guidelines and water quantity calculations to decisions for beneficial use of treated water

    NASA Astrophysics Data System (ADS)

    Pham, Minh Phung T.; Castle, James W.; Rodgers, John H.

    2011-12-01

    Water reuse guidelines were compiled as a decision-analysis screening tool for application to potential water reuse for irrigation, livestock watering, aquaculture, and drinking. Data compiled from the literature for water reuses yielded guideline values for over 50 water quality parameters, including concentrations of inorganic and organic constituents as well as general water chemistry parameters. These water quality guidelines can be used to identify constituents of concern in water, to determine the levels to which the constituents must be treated for water reuse applications, and assess the suitability of treated water for reuse. An example is provided to illustrate the application of water quality guidelines for decision analysis. Water quantity analysis was also investigated, and water volumes required for producing 16 different crops in 15 countries were estimated as an example of applying water quantity in the decision-making process regarding the potential of water reuse. For each of the countries investigated, the crop that produces the greatest yield in terms of weight per water volume is tomatoes in Australia, Brazil, Italy, Japan, Saudi Arabia, Turkey, USA; sugarcane in Chad, India, Indonesia, Sudan; watermelons in China; lettuce in Egypt, Mexico; and onions (dry) in Russia.

  6. Methods for determination of radioactive substances in water and fluvial sediments

    USGS Publications Warehouse

    Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.

    1977-01-01

    Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.

  7. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, M. J., (Edited By)

    1993-01-01

    Methods to be used to analyze samples of water, suspended sediment and bottom material for their content of inorganic and organic constituents are presented. Technology continually changes, and so this laboratory manual includes new and revised methods for determining the concentration of dissolved constituents in water, whole water recoverable constituents in water-suspended sediment samples, and recoverable concentration of constit- uents in bottom material. For each method, the general topics covered are the application, the principle of the method, interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data. Included in this manual are 30 methods.

  8. Compositions and methods for removing arsenic in water

    DOEpatents

    Gadgil, Ashok Jagannth

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  9. 78 FR 57373 - Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Energy Regulatory Commission Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water Withdraw Facilty Pursuant to License Article 202 and Soliciting Comments, Motions... Filed: July 31, 2013. d. Applicant: Appalachian Power Company (licensee). e. Name of Project:...

  10. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  11. Future Directions of Electromagnetic Methods for Hydrocarbon Applications

    NASA Astrophysics Data System (ADS)

    Strack, K. M.

    2014-01-01

    For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will

  12. Methods of geodiversity assessment and theirs application

    NASA Astrophysics Data System (ADS)

    Zwoliński, Zbigniew; Najwer, Alicja; Giardino, Marco

    2016-04-01

    The concept of geodiversity has rapidly gained the approval of scientists around the world (Wiedenbein 1993, Sharples 1993, Kiernan 1995, 1996, Dixon 1996, Eberhard 1997, Kostrzewski 1998, 2011, Gray 2004, 2008, 2013, Zwoliński 2004, Serrano, Ruiz- Flano 2007, Gordon et al. 2012). However, the problem recognition is still at an early stage, and in effect not explicitly understood and defined (Najwer, Zwoliński 2014). Nevertheless, despite widespread use of the concept, little progress has been made in its assessment and mapping. Less than the last decade can be observing investigation of methods for geodiversity assessment and its visualisation. Though, many have acknowledged the importance of geodiversity evaluation (Kozłowski 2004, Gray 2004, Reynard, Panizza 2005, Zouros 2007, Pereira et al. 2007, Hjort et al. 2015). Hitherto, only a few authors have undertaken that kind of methodological issues. Geodiversity maps are being created for a variety of purposes and therefore their methods are quite manifold. In the literature exists some examples of the geodiversity maps applications for the geotourism purpose, basing mainly on the geological diversity, in order to point the scale of the area's tourist attractiveness (Zwoliński 2010, Serrano and Gonzalez Trueba 2011, Zwoliński and Stachowiak 2012). In some studies, geodiversity maps were created and applied to investigate the spatial or genetic relationships with the richness of particular natural environmental components (Burnett et al. 1998, Silva 2004, Jačková, Romportl 2008, Hjort et al. 2012, 2015, Mazurek et al. 2015, Najwer et al. 2014). There are also a few examples of geodiversity assessment in order to geoconservation and efficient management and planning of the natural protected areas (Serrano and Gonzalez Trueba 2011, Pellitero et al. 2011, 2014, Jaskulska et al. 2013, Melelli 2014, Martinez-Grana et al. 2015). The most popular method of assessing the diversity of abiotic components of the natural

  13. Formal methods demonstration project for space applications

    NASA Technical Reports Server (NTRS)

    Divito, Ben L.

    1995-01-01

    The Space Shuttle program is cooperating in a pilot project to apply formal methods to live requirements analysis activities. As one of the larger ongoing shuttle Change Requests (CR's), the Global Positioning System (GPS) CR involves a significant upgrade to the Shuttle's navigation capability. Shuttles are to be outfitted with GPS receivers and the primary avionics software will be enhanced to accept GPS-provided positions and integrate them into navigation calculations. Prior to implementing the CR, requirements analysts at Loral Space Information Systems, the Shuttle software contractor, must scrutinize the CR to identify and resolve any requirements issues. We describe an ongoing task of the Formal Methods Demonstration Project for Space Applications whose goal is to find an effective way to use formal methods in the GPS CR requirements analysis phase. This phase is currently under way and a small team from NASA Langley, ViGYAN Inc. and Loral is now engaged in this task. Background on the GPS CR is provided and an overview of the hardware/software architecture is presented. We outline the approach being taken to formalize the requirements, only a subset of which is being attempted. The approach features the use of the PVS specification language to model 'principal functions', which are major units of Shuttle software. Conventional state machine techniques form the basis of our approach. Given this background, we present interim results based on a snapshot of work in progress. Samples of requirements specifications rendered in PVS are offered to illustration. We walk through a specification sketch for the principal function known as GPS Receiver State processing. Results to date are summarized and feedback from Loral requirements analysts is highlighted. Preliminary data is shown comparing issues detected by the formal methods team versus those detected using existing requirements analysis methods. We conclude by discussing our plan to complete the remaining

  14. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  15. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  16. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  17. Assimilation of spatially distributed water levels into a shallow-water flood model. Part I: Mathematical method and test case

    NASA Astrophysics Data System (ADS)

    Lai, X.; Monnier, J.

    2009-10-01

    SummaryRecent applications of remote sensing techniques produce rich spatially distributed observations for flood monitoring. In order to improve numerical flood prediction, we have developed a variational data assimilation method (4D-var) that combines remote sensing data (spatially distributed water levels extracted from spatial images) and a 2D shallow water model. In the present paper (part I), we demonstrate the efficiency of the method with a test case. First, we assimilated a single fully observed water level image to identify time-independent parameters (e.g. Manning coefficients and initial conditions) and time-dependent parameters (e.g. inflow). Second, we combined incomplete observations (a time series of water elevations at certain points and one partial image). This last configuration was very similar to the real case we analyze in a forthcoming paper (part II). In addition, a temporal strategy with time overlapping is suggested to decrease the amount of memory required for long-duration simulation.

  18. Improved Correction Method for Water-Refracted Terrestrial Laser Scanning Data Acquired in the Mountain Channel

    NASA Astrophysics Data System (ADS)

    Miura, N.; Asano, Y.; Moribe, Y.

    2016-06-01

    Detailed information of underwater topography is required for better understanding and prediction of water and sediment transport in a mountain channel. Recent research showed promising utility of green-wavelength Terrestrial Laser Scanning (TLS) for measuring submerged stream-bed structure in fluvial environment. However, difficulty in acquiring reliable underwater data has been remained in the part of mountain channel where water surface has some gradient. Since horizontal water surface was a major premise for the existing water refraction correction method, significant error was resulted in such area. Therefore, this paper presents a modified method to correct water-refracted TLS data acquired over mountain channel with complex water-surface slope. Applicability of the modified method was validated using the field data and compared with the existing correction method and non-corrected data. The results showed that the modified method has much smaller error with RMSE value of 3 mm than the existing method (RMSE = 10 mm) and non-corrected data (RMSE = 23 mm). Presented method successfully corrected water-refracted TLS data acquired over sloped channel. This would enable us to quantitatively measure whole units of complex mountain channels, and help us to understand water dynamics better in the area.

  19. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  20. Trapped water of human erythrocytes and its application in cryopreservation.

    PubMed

    Zhao, Gang; He, Liqun; Zhang, Haifeng; Ding, Weiping; Liu, Zhong; Luo, Dawei; Gao, Dayong

    2004-02-01

    The novel differential scanning calorimetry method as a technique for determining human red cell volume during freezing process has been reexamined and has been shown to provide a final erythrocyte volume to be 53% of its isotonic value after freezing from 0 to -40 degrees C. A new type of electronic particle counter (Multisizer 3, Beckman Coulter Inc., USA) was used to measure cell volume changes in response to equilibration in anisotonic media, and which gave out an equilibrated volume to be 57% of cell isotonic value in solution of 3186 mOsm. Both of these results indicate that 34-40% of intracellular water is trapped and is unavailable for participation in osmotic shifts. These findings are consistent with the published data that at least 20-32% (v/v) of the isotonic cell water is retained within RBCs. Then the application of trapped water in both simulation of freezing models and freezing-drying control was pointed out. PMID:14962599

  1. The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    NASA Technical Reports Server (NTRS)

    Schulz, Leslie O.

    1991-01-01

    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations.

  2. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    DOEpatents

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  3. Delineation of recharge rate from a hybrid water table fluctuation method

    NASA Astrophysics Data System (ADS)

    Park, Eungyu

    2012-07-01

    The concept of the hybrid water table fluctuation (WTF) method for recharge rate estimation was revisited. To estimate the recharge rate, a physically based WTF equation was established. The concept of transient fillable porosity was proposed and computed with unsaturated hydraulics models. The developed model is tested by applying to the water table fluctuation data from Hongcheon, Korea. In the applications, the recharge and fillable porosity estimates were found to be most sensitive to nonlinearity in the unsaturated water content profile and permeability. Also, the water table level drift, which does not originate from precipitation, serves as a major source of estimation error.

  4. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  5. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  6. Evaluation and implementation of a membrane filter method for Cronobacter detection in drinking water.

    PubMed

    Liu, Hui; Yang, Yuelian; Cui, Jinghua; Liu, Lanzheng; Liu, Huiyuan; Hu, Guangchun; Shi, Yuwen; Li, Jian

    2013-07-01

    A membrane filter (MF) method was evaluated for its suitability for qualitative and quantitative analyses of Cronobacter spp. in drinking water by pure strains of Cronobacter and non-Cronobacter, and samples spiked with chlorinated Cronobacter sakazakii ATCC 29544. The applicability was verified by the tests: for pure strains, the sensitivity and the specificity were both 100%; for spiked samples, the MF method recovered 82.8 ± 10.4% chlorinated ATCC 29544 cells. The MF method was also applied to screen Cronobacter spp. in drinking water samples from municipal water supplies on premises (MWSP) and small community water supplies on premises (SCWSP). The isolation rate of Cronobacter spp. from SCWSP samples was 31/114, which was significantly higher than that from MWSP samples which was 1/131. Besides, the study confirmed the possibility of using total coliform as an indicator of contamination level of Cronobacter spp. in drinking water, and the acquired correct positive rate was 96%.

  7. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  8. A bootstrap method for estimating uncertainty of water quality trends

    USGS Publications Warehouse

    Hirsch, Robert M.; Archfield, Stacey A.; DeCicco, Laura

    2015-01-01

    Estimation of the direction and magnitude of trends in surface water quality remains a problem of great scientific and practical interest. The Weighted Regressions on Time, Discharge, and Season (WRTDS) method was recently introduced as an exploratory data analysis tool to provide flexible and robust estimates of water quality trends. This paper enhances the WRTDS method through the introduction of the WRTDS Bootstrap Test (WBT), an extension of WRTDS that quantifies the uncertainty in WRTDS-estimates of water quality trends and offers various ways to visualize and communicate these uncertainties. Monte Carlo experiments are applied to estimate the Type I error probabilities for this method. WBT is compared to other water-quality trend-testing methods appropriate for data sets of one to three decades in length with sampling frequencies of 6–24 observations per year. The software to conduct the test is in the EGRETci R-package.

  9. AN IMPROVED METHOD FOR DETECTING VIRUSES IN WATER

    EPA Science Inventory

    Enteroviruses are important etiological agents of waterborne disease and are responsible for outbreaks of gastroenteritis. However, the prevalence and occurrence of these pathogens in raw drinking water sources is poorly understood. This is primarily due to the limited methods ...

  10. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  11. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation. PMID:23412765

  12. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.

  13. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.

    PubMed

    Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja

    2008-05-01

    The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.

  14. Applications of spectroscopy to remote determination of water quality

    NASA Technical Reports Server (NTRS)

    Goldberg, M. C.; Weiner, E. R.

    1972-01-01

    The use of remote laser Raman and molecular spectroscopic techniques to measure water quality is examined. Measurements cover biological, chemical, and physical properties of the water. Experimental results show chemical properties are harder to obtain remotely than biological or physical properties and that molecular spectroscopy seems to be the best method for obtaining water quality data.

  15. Development of a new microextraction method based on a dynamic single drop in a narrow-bore tube: application in extraction and preconcentration of some organic pollutants in well water and grape juice samples.

    PubMed

    Farajzadeh, Mir Ali; Djozan, Djavanshir; Khorram, Parisa

    2011-08-15

    A novel sample preparation technique, the microextraction method based on a dynamic single drop in a narrow-bore tube, coupled with gas chromatography-flame ionization detection (GC-FID) is presented in this paper. The most important features of this method are simplicity and high enrichment factors. In this method, a microdrop of an extraction solvent assisted by an air bubble was repeatedly passed through a narrow-bore closed end tube containing aqueous sample. It has been successfully used for the analysis of some pesticides as model analytes in aqueous samples. Parameters affecting the method's performance such as selection of extraction solvent type and volume, number of extractions, volume of aqueous sample (tube length), and salt effect were studied and optimized. Under the optimal conditions, the enrichment factors (EFs) for triazole pesticides were in the range of 141-214 and the limits of detection (LODs) were between 2 and 112 μg L(-1). The relative standard deviations (C=1000 μg L(-1), n=6) were obtained in the range of 2.9-4.5%. The recoveries obtained for the spiked well water and grape juice samples were between 71 and 106%. Low cost, relatively short sample preparation time and less solvent consumption are other advantages of the proposed method. PMID:21726749

  16. EPOC WATER INC. MICROFILTRATION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the EPOC Water, Inc. Microfiltration Technology and its applicability as a treatment technique for water contaminated with metals. oth the technical aspects arid the economics of this technology were examined. Operational data ...

  17. Methods of geodiversity assessment and theirs application

    NASA Astrophysics Data System (ADS)

    Zwoliński, Zbigniew; Najwer, Alicja; Giardino, Marco

    2016-04-01

    The concept of geodiversity has rapidly gained the approval of scientists around the world (Wiedenbein 1993, Sharples 1993, Kiernan 1995, 1996, Dixon 1996, Eberhard 1997, Kostrzewski 1998, 2011, Gray 2004, 2008, 2013, Zwoliński 2004, Serrano, Ruiz- Flano 2007, Gordon et al. 2012). However, the problem recognition is still at an early stage, and in effect not explicitly understood and defined (Najwer, Zwoliński 2014). Nevertheless, despite widespread use of the concept, little progress has been made in its assessment and mapping. Less than the last decade can be observing investigation of methods for geodiversity assessment and its visualisation. Though, many have acknowledged the importance of geodiversity evaluation (Kozłowski 2004, Gray 2004, Reynard, Panizza 2005, Zouros 2007, Pereira et al. 2007, Hjort et al. 2015). Hitherto, only a few authors have undertaken that kind of methodological issues. Geodiversity maps are being created for a variety of purposes and therefore their methods are quite manifold. In the literature exists some examples of the geodiversity maps applications for the geotourism purpose, basing mainly on the geological diversity, in order to point the scale of the area's tourist attractiveness (Zwoliński 2010, Serrano and Gonzalez Trueba 2011, Zwoliński and Stachowiak 2012). In some studies, geodiversity maps were created and applied to investigate the spatial or genetic relationships with the richness of particular natural environmental components (Burnett et al. 1998, Silva 2004, Jačková, Romportl 2008, Hjort et al. 2012, 2015, Mazurek et al. 2015, Najwer et al. 2014). There are also a few examples of geodiversity assessment in order to geoconservation and efficient management and planning of the natural protected areas (Serrano and Gonzalez Trueba 2011, Pellitero et al. 2011, 2014, Jaskulska et al. 2013, Melelli 2014, Martinez-Grana et al. 2015). The most popular method of assessing the diversity of abiotic components of the natural

  18. METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR

    DOEpatents

    Vernon, H.C.

    1962-08-14

    A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

  19. Systems and Methods for Automated Water Detection Using Visible Sensors

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  20. New methods of subcooled water recognition in dew point hygrometers

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard

    2001-08-01

    Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

  1. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  2. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  3. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  4. Method of sealing an ultracapacitor substantially free of water

    DOEpatents

    Chapman-Irwin, Patricia; Feist, Thomas Paul

    2002-04-02

    A method of sealing an ultracapacitor substantially free of water is disclosed. The method includes providing a multilayer cell comprising two solid, non porous current collectors, separated by two porous electrodes with a separator between the two electrodes, sealing the cell with a reclosable hermetic closure. Water inside the closure is dissociated by an applied voltage to the cell and escapes in the form of hydrogen and oxygen when the closure is unmated, the closure is then mated to hermetically seal the cell which is substantially free of water.

  5. 25 CFR 700.461 - Method for soliciting applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Method for soliciting applications. 700.461 Section 700.461 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES Discretionary Funds § 700.461 Method for soliciting applications. (a) The Commission shall utilize two methods to solicit applications...

  6. 78 FR 10615 - Westfield Water Resources Department; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... Energy Regulatory Commission Westfield Water Resources Department; Notice of Application Accepted for.... Date filed: January 22, 2013. d. Applicant: Westfield Water Resources Department. e. Name of Project... Darling, Water Systems Engineer, Westfield Water Resources Department, 28 Sackett Street, Westfield,...

  7. Root Causes of Component Failures Program: Methods and applications

    SciTech Connect

    Satterwhite, D G; Cadwallader, L C; Vesely, W E; Meale, B M

    1986-12-01

    This report contains information pertaining to definitions, methodologies, and applications of root cause analysis. Of specific interest, and highlighted throughout the discussion, are applications pertaining to current and future Nuclear Regulatory Commission (NRC) light water reactor safety programs. These applications are discussed in view of addressing specific program issues under NRC consideration and reflect current root cause analysis capabilities.

  8. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  9. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  10. Application of minidisk infiltrometer to estimate soil water repellency

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  11. Near Term Application of Supercritical Water Technologies

    SciTech Connect

    Vogt, Bastian; Starflinger, Joerg; Schulenberg, Thomas

    2006-07-01

    A pressurized water reactor with a supercritical water primary loop is analyzed (PWR-SC) within this paper. It will be shown that the PWR-SC offers considerable advantages in the fields of safety, economy and efficiency compared with a conventional PWR design. A cycle analysis shows that the net plant efficiency increases by 2% compared to currently operated or built systems. In addition, the mass flow rate of the primary side is strongly decreased, which enables a reduction of the primary pump power by a factor of 4. In the secondary loop, the mass flow rate can be decreased by about 15%, which allows down-scaling of all secondary side components such as turbines, condensers and feed-water preheat systems as a consequence of the high core exit temperature. A coupled core analysis and a hot channel factor analysis are performed to demonstrate the promising safety features of the PWR-SC and to show the technical feasibility of such a system. (authors)

  12. Emerging approaches to integrated urban water management: cluster scale application.

    PubMed

    Hunt, J; Anda, M; Mathew, K; Ho, G; Priest, G

    2005-01-01

    Integrated Urban Water Management (IUWM) seeks to extend Water Sensitive Urban Design to a total water cycle approach that includes reuse of wastewaters. This paper investigates the appropriateness of environmental technologies for application at a cluster scale in IUWM. Many environmental technologies are economically or physically unsuited to use on a municipal or unit scale. Cluster scale is a middle ground that will allow such environmental technologies to achieve full potential. The concept of cluster scale and the application of environmental technologies at this scale are discussed along with some examples of suitable technologies.

  13. A discovery of an ultra-pure water detection method based on water mark

    NASA Astrophysics Data System (ADS)

    Cao, Hui-Wen; Jing, Yu-Peng; Zhao, Shi-Rui; Xu, Xin-Wei; Tian, He; Xin, Xin; Li, Xiao-Ning; Liu, Bo; Liu, Rui-Tao; Wang, Gang; Ge, Jie; Cai, Hua-Lin; Yang, Yi; Ren, Tian-Ling

    2015-02-01

    The purity evaluation of deionized (DI) water is highly desirable for VLSI or ULSI industry, as the traditional "reverse osmosis filter" cannot always meet the requirement towards the DI water. The filtered DI water may still contain many contaminations which are not up to the standard for the wet cleaning of wafer surface. A novel method is presented by analyzing the residues of a water droplet after the low-temperature evaporation. The contamination contained in the water will remain during the gasification. By analyzing the residual contamination's morphology, the purity of the DI water can be estimated by employing merely a 3D laser microscope. Compared to the traditional fluorescence detecting system for water quality monitoring, it is simpler and has a lower cost. The paper describes an excellent water detection method which is meaningful for preparing ultra-pure water. Experimental results have shown that the deionized distilled (DID) water can repeatedly get a higher purity using this detection method. The DID water can be applied to the wet cleaning of wafer surface, preparation of chemical reagents and many other aspects.

  14. A simple method for locating the fresh water-salt water interface using pressure data.

    PubMed

    Kim, Kue-Young; Chon, Chul-Min; Park, Ki-Hwa

    2007-01-01

    Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole. This method uses the density difference between fresh water and saline water and can practically be used at coastal aquifers that have a relatively sharp fresh water-salt water interface with a thin transition zone. The proposed method was applied to data collected from a coastal aquifer on Jeju Island, Korea, to estimate the variations in the depth of the interface. The interface varied with daily tidal fluctuations and heavy rainfall in the rainy season. The estimated depth of the interface showed a good agreement with the measured electrical conductivity profile.

  15. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Zhao, An; Han, Yun-Feng; Ren, Ying-Yu; Zhai, Lu-Sheng; in, Ning-De

    2016-03-01

    Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.

  16. [Toxicity tests and their application in safety assessment of water quality].

    PubMed

    Xu, Jian-Ying; Zhao, Chun-Tao; Wei, Dong-Bin

    2014-10-01

    The safety of water quality has important impacts not only on the health of ecological system, but also on the survival and development of human beings. The conventional assessment methods for water quality based on the concentration limits are not reliable. The toxicity tests can vividly reflect the whole adverse biological effects of multiple chemicals in water body, which has been regarded as a necessary supplement for conventional water quality assessment methods based on physicochemical parameters. Considering the chemical pollutants usually have various adverse biological effects, the ecotoxicity testing methods, including lethality, genotoxicity, endocrine disrupting effects, were classified according to the different toxicity types. Then, the potential applications of toxicity testing methods and corresponding evaluation indices in evaluating the toxicity characteristics of ambient water samples were discussed. Particularly, the safety assessment methods for water quality based on the toxicity tests, including potential toxicology, toxicity unit classification system, potential ecotoxic effect probe, and safety assessment of water quality based on toxicity test battery, were summarized. This paper not only systematically reviewed the progress of toxicity tests and their application in safety assessment of water quality, but also provided the scientific basis for the further development in the future.

  17. Fluorescent protein methods: strategies and applications.

    PubMed

    Hutter, Harald

    2012-01-01

    Fluorescent proteins such as the "green fluorescent protein" (GFP) are popular tools in Caenorhabditis elegans, because as genetically encoded markers they are easy to introduce. Furthermore, they can be used in a living animal without the need for extensive sample preparation, because C. elegans is transparent and small enough so that entire animals can be imaged directly. Consequently, fluorescent proteins have emerged as the method of choice to study gene expression in C. elegans and reporter constructs for thousands of genes are currently available. When fused to a protein of interest, fluorescent proteins allow the imaging of its subcellular localization in vivo, offering a powerful alternative to antibody staining techniques. Fluorescent proteins can be employed to label cellular and subcellular structures and as indicators for cell physiological parameters like calcium concentration. Genetic screens relying on fluorescent proteins to visualize anatomical structures and recent progress in automation techniques have tremendously expanded their potential uses. This chapter presents tools and techniques related to the use of fluorescent proteins, discusses their advantages and shortcomings, and provides practical considerations for various applications. PMID:22226521

  18. Feasibility study on common methods for wave force estimation of deep water combined breakwaters

    NASA Astrophysics Data System (ADS)

    Yu, Dingyong; Tang, Peng; Song, Qingguo

    2015-08-01

    China's newly enacted Breakwater Design Specifications (JTS154-2011) explicitly state that breakwaters with water depths greater than 20 m are categorized as deep-water breakwaters, and emphasize that design principles, methods and construction requirements are different from those of common shallow water breakwaters. However, the specifications do not make any mention of how to choose wave force calculation methods of deep-water breakwaters. To study the feasibility of different formulae for wave force estimation of deep water combined breakwaters, the wave force calculated by the Sainflou's, Goda's, modified Goda's and specifications' methods are compared for various water depths and wave heights in this paper. The calculated results are also compared with experimental data. The total horizontal forcing and the pattern of pressure distributions are presented. Comparisons show that the wave pressure distributions by the four methods are similar, but the total horizontal forces are different. The results obtained by the Goda's method and the specified formulae are much closer to the experimental data. As for the wave force estimation for the deepwater mixed embankment foundation bed parapet, the Goda's formula is applied in the case with a water depth of less than 42 m. The Specifications method is suitable for standing waves. In the wave force estimates of breastworks, Sainflou's and the modified Gaoda's formulae are no longer applicable for the foundation bed of mixed embankment.

  19. Methods for the determination of organic compounds in drinking water

    SciTech Connect

    Not Available

    1988-12-01

    Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. Six of the methods are for volatile organic compounds (VOCs) and certain disinfection by-products. These methods were cited in the Federal Register of July 8, 1987, under the National Primary Drinking Water Regulations. The other seven methods are designed for the determination of a variety of synthetic organic compounds and pesticides, and these methods were cited in proposed drinking-water regulations in the Federal Register of May 22, 1989. Five of the methods utilize the inert gas purge-and-trap extraction procedure for VOCs, six methods employ a classical liquid-liquid extraction, one method uses a new liquid-solid extraction technique, and one method is for direct aqueous analysis. Of the 13 methods, 12 use either packed or capillary gas-chromatography column separations followed by detection with mass spectrometry or a selective gas-chromatography detector. One method is based on a high-performance liquid-chromatography separation.

  20. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed. PMID:24483100

  1. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  2. Tectonic influences on ground water quality: insight from complementary methods.

    PubMed

    Earman, Sam; McPherson, Brian J O L; Phillips, Fred M; Ralser, Steve; Herrin, James M; Broska, James

    2008-01-01

    A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.

  3. The Halliwick Method: Water Freedom for Individuals with Disabilities.

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    This publication explains the Halliwick Method of swim instruction for people with disabilities. The Halliwick Method emphasizes independent functioning in the water, obtained through the development of control over body movements and establishing physical and psychological comfort. Containing over 75 photographs, including underwater shots, this…

  4. GROUND WATER PURGING AND SAMPLING METHODS: HISTORY VS. HYSTERIA

    EPA Science Inventory

    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  5. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  6. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention.

  7. Computational aeroacoustics: Its methods and applications

    NASA Astrophysics Data System (ADS)

    Zheng, Shi

    The first part of this thesis deals with the methodology of computational aeroacoustics (CAA). It is shown that although the overall accuracy of a broadband optimized upwind scheme can be improved to some degree, a scheme that is accurate everywhere in a wide range is not possible because increasing the accuracy for large wavenumbers is always at the expense of decreasing that for smaller wavenumbers. Partially for avoiding such a dilemma, optimized multi-component schemes are proposed that are superior to optimized broadband schemes for a sound field with dominant wavenumbers. The Fourier analysis shows that even for broadband waves an optimized central multi-component scheme is at least comparable to an optimized central broadband scheme. Numerical implementation of the impedance boundary condition in the time domain is a unique and challenging topic in CAA. A benchmark problem is proposed for such implementation and its analytical solution is derived. A CAA code using Tam and Auriault's formulation of broadband time-domain impedance boundary condition accurately reproduces the analytical solution. For the duct environment, the code also accurately predicts the analytical solution of a semi-infinite impedance duct problem and the experimental data from the NASA Langley Flow Impedance Tube Facility. In the second part of the thesis are applications of the developed CAA codes. A time-domain method is formulated to separate the instability waves from the acoustic waves of the linearized Euler equations in a critical sheared mean flow. Its effectiveness is demonstrated with the CAA code solving a test problem. Other applications are concerned with optimization using the CAA codes. A noise prediction and optimization system for turbofan engine inlet duct design is developed and applied in three scenarios: liner impedance optimization, duct geometry optimization and liner layout optimization. The results show that the system is effective in finding design variable

  8. Application of cold-induced aggregation microextraction as a fast, simple, and organic solvent-free method for the separation and preconcentration of Se(IV) in rice and various water samples.

    PubMed

    Rahnama, Reyhaneh; Abed, Zinat

    2014-07-01

    The developed method is based on cold-induced aggregation microextraction of Se(IV) using the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid as an extractant followed by spectrophotometry determination. The extraction of Se(IV) was performed in the presence of dithizone as the complexing agent. In this method, a very small amount of 1-butyl-3-methylimidazolium hexafluorophosphate was added to the sample solution containing Se-dithizone complex. Then, the solution was kept in a thermostated bath at 50 °C for 4 min. Subsequently, the solution was cooled in an ice bath and a cloudy solution was formed. After centrifuging, the extractant phase was analyzed using a spectrophotometric detection method. Some important parameters that might affect the extraction efficiency were optimized (HCl, 0.6 mol L(-1); dithizone, 4.0 × 10(-6) mol L(-1); ionic liquid, 100 μL). Under the optimum conditions, good linear relationship, sensitivity, and reproducibility were obtained. The limit of detection (LOD) (3Sb/m) was 1.5 μg L(-1), and the relative standard deviation (RSD) was 1.2 % for 30 μg L(-1) of Se(IV). The linear range was obtained in the range of 5-60 μg L(-1). It was satisfactory to analyze rice and various water samples. PMID:24590231

  9. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application.

    PubMed

    Tlili, Ines; Caria, Giovanni; Ouddane, Baghdad; Ghorbel-Abid, Ibtissem; Ternane, Riadh; Trabelsi-Ayadi, Malika; Net, Sopheak

    2016-09-01

    Due to their widespread use in human and animal healthcare, antibiotics and other drug residues are ubiquitous in the aquatic environment. Given their potential impacts on ecosystem functioning and public health, the quantification of environmental drug residues has become a necessity. Various analysis techniques have been found to be suitable for reliable detection of such compounds. However, quantification can be difficult because these compounds are present at trace or ultra-trace levels. Consequently, the accuracy of environmental analyses depends on both the efficiency and the robustness of the extraction and quantification method. In this work, an off-line solid-phase extraction (SPE) combined with on-line SPE-LC-MS/MS was applied to the simultaneous extraction and quantification of 26 pharmaceutical products, including 18 antibiotics, dissolved in a water phase. Optimal conditions were determined and then applied to assess the contamination level of the targeted drug residues in water collected from four sites in Northern France: a river, the input and output of an aerated lagoon, and a wastewater treatment plant. Drug residues associated with suspended solid matter (SSM) were also quantified in this work using pressurized liquid extraction (PLE) combined with an on-line SPE-LC-MS/MS system in order to complete an assessment of the degree of total background pollution.

  10. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application.

    PubMed

    Tlili, Ines; Caria, Giovanni; Ouddane, Baghdad; Ghorbel-Abid, Ibtissem; Ternane, Riadh; Trabelsi-Ayadi, Malika; Net, Sopheak

    2016-09-01

    Due to their widespread use in human and animal healthcare, antibiotics and other drug residues are ubiquitous in the aquatic environment. Given their potential impacts on ecosystem functioning and public health, the quantification of environmental drug residues has become a necessity. Various analysis techniques have been found to be suitable for reliable detection of such compounds. However, quantification can be difficult because these compounds are present at trace or ultra-trace levels. Consequently, the accuracy of environmental analyses depends on both the efficiency and the robustness of the extraction and quantification method. In this work, an off-line solid-phase extraction (SPE) combined with on-line SPE-LC-MS/MS was applied to the simultaneous extraction and quantification of 26 pharmaceutical products, including 18 antibiotics, dissolved in a water phase. Optimal conditions were determined and then applied to assess the contamination level of the targeted drug residues in water collected from four sites in Northern France: a river, the input and output of an aerated lagoon, and a wastewater treatment plant. Drug residues associated with suspended solid matter (SSM) were also quantified in this work using pressurized liquid extraction (PLE) combined with an on-line SPE-LC-MS/MS system in order to complete an assessment of the degree of total background pollution. PMID:27151499

  11. Method and apparatus for collaborative use of application program

    DOEpatents

    Dean, Craig D.

    1994-01-01

    Method and apparatus permitting the collaborative use of a computer application program simultaneously by multiple users at different stations. The method is useful with communication protocols having client/server control structures. The method of the invention requires only a sole executing copy of the application program and a sole executing copy of software comprising the invention. Users may collaboratively use a set of application programs by invoking for each desired application program one copy of software comprising the invention.

  12. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples. This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for eachmethod and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental samples.

  13. Industrial application of APOLLO2 to boiling water reactors

    SciTech Connect

    Marotte, V.; Clement, F.; Thareau, S.; Misu, S.; Zmijarevic, I.

    2006-07-01

    AREVA NP - a joint's subsidiary of AREVA and Siemens- decided to develop a new calculation scheme based on the multigroup neutron transport code APOLLO2, developed at CEA, for industrial application to Boiling Water Reactors. This scheme is based on the CEA93 library with the XMAS-172 energy mesh and the JEF2.2 evaluation. Microscopic cross-sections are improved by a self-shielding calculation that accounts for 2D geometrical effects and the overlapping of resonances. The flux is calculated with the Method of Characteristics. A best-estimate flux is found with the 172 energy group structure. In the industrial scheme, the computing time and the memory size are reduced by a simplified self-shielding and the calculation of the flux with 26 energy groups. The results are presented for three BWR assemblies. Several BWR operating conditions were simulated. Results are accurate compared to the Monte-Carlo code MCNP. A very good agreement is obtained between the best-estimate and the industrial calculations, also during depletion. These results show the high physical quality of the APOLLO2 code and its capability to calculate accurately BWR assemblies for industrial applications. (authors)

  14. A review of Central European methods for the biological estimation of water pollution levels*

    PubMed Central

    Bick, Hartmut

    1963-01-01

    With the increasing amount and variety of pollution of surface and other waters in the modern world, there is an increasing need for simple, rapid and reliable methods for assessing the degree of purity or contamination of water. Partly for historical reasons, chemical methods have been used more widely than biological ones, although the latter possess certain advantages not shared by the former. Much important work on the biological assessment of water pollution has been done in Central Europe, and the author of this paper reviews the more significant of the modern methods evolved there. Some are ecological, some physiological; and certain of them merit consideration as standardizable procedures, applicable over a wider range of waters than those for which they were developed. To this end it will be necessary to conduct carefully controlled field trials under varying climatic and other conditions. PMID:14058231

  15. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  16. Evaluation of alternative methods of supplemental recharge by storm-water basins on Long Island, New York

    USGS Publications Warehouse

    Aronson, D.A.

    1976-01-01

    Many of the more than 2,200 storm-water basins on Long Island, N.Y., having runoff and infiltration characteristics similar to those of a basin studied in North Massapequa are potential sites for returning large volumes of reclaimed water (highly treated waste water) to the ground-water reservoir. By use of a finite-difference method of calculation, formulas were devised to calculate changes in basin storage at various time intervals from the start of storm inflow, with and without addition of reclaimed water. The North Massapequa storm-water basin was the prototype design used to test several methods of water application. Calculations using various infiltration rates, storm durations, and storm-return periods indicate that several methods of applying reclaimed water to storm-water basins on Long Island would be feasible. (Woodard-USGS)

  17. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  18. Application of borehole geophysics to water-resources investigations

    USGS Publications Warehouse

    Keys, W.S.; MacCary, L.M.

    1971-01-01

    This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.

  19. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  20. Calculation Methods and Conversions for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…

  1. Apparatus and a method for biological treatment of waste waters

    SciTech Connect

    Besik, F.

    1983-12-20

    An apparatus and a method for biological treatment of waste waters achieving biological oxidation of organic matter, biological nitrification and denitrification of nitrogenous compounds and biological removal of phosphorus and clarification of the treated waste water in a single reaction tank in a single suspended growth sludge system without the use of traditional compressors, mixers, recirculation pumps, piping and valving and without the use of the traditional clarifier.

  2. Reaction of catalytic oxidation by liquid water and its application to waste water purification

    SciTech Connect

    Ioffe, I.I.; Rubinskaya, E.V.

    1997-06-01

    In this paper the results of experiments and some considerations of theoretical and practical problems devoted to a new type of chemical reaction--oxidation of organic substances by liquid water with the aid of noble metal catalyst--are given. Some problems of application such as reaction to self-purification of industrial waste waters are also considered.

  3. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters.

    PubMed

    Bouvier-Capely, C; Bonthonneau, J P; Dadache, E; Rebière, F

    2014-01-01

    The general population is chronically exposed to uranium ((234)U, (235)U, and (238)U) and polonium ((210)Po) mainly through day-to-day food and beverage intake. The measurement of these naturally-occurring radionuclides in drinking water is important to assess their health impact. In this work the applicability of calix[6]arene-derivatives columns for uranium analysis in drinking water was investigated. A simple and effective method was proposed on a specific column called AQUALIX, for the separation and preconcentration of U from drinking water. This procedure is suitable for routine analysis and the analysis time is considerably shortened (around 4h) by combining the separation on AQUALIX with fast ICP-MS measurement. This new method was tested on different French bottled waters (still mineral water, sparkling mineral water, and spring water). Then, the case of simultaneous presence of uranium and polonium in water was considered due to interferences in alpha spectrometry measurement. A protocol was proposed using a first usual step of spontaneous deposition of polonium on silver disc in order to separate Po, followed by the uranium extraction on AQUALIX column before alpha spectrometry counting.

  4. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters.

    PubMed

    Bouvier-Capely, C; Bonthonneau, J P; Dadache, E; Rebière, F

    2014-01-01

    The general population is chronically exposed to uranium ((234)U, (235)U, and (238)U) and polonium ((210)Po) mainly through day-to-day food and beverage intake. The measurement of these naturally-occurring radionuclides in drinking water is important to assess their health impact. In this work the applicability of calix[6]arene-derivatives columns for uranium analysis in drinking water was investigated. A simple and effective method was proposed on a specific column called AQUALIX, for the separation and preconcentration of U from drinking water. This procedure is suitable for routine analysis and the analysis time is considerably shortened (around 4h) by combining the separation on AQUALIX with fast ICP-MS measurement. This new method was tested on different French bottled waters (still mineral water, sparkling mineral water, and spring water). Then, the case of simultaneous presence of uranium and polonium in water was considered due to interferences in alpha spectrometry measurement. A protocol was proposed using a first usual step of spontaneous deposition of polonium on silver disc in order to separate Po, followed by the uranium extraction on AQUALIX column before alpha spectrometry counting. PMID:24274286

  5. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration method... ferricyanide titration method for the determination of sulfide in wastewaters discharged by plants operating...

  6. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration method... ferricyanide titration method for the determination of sulfide in wastewaters discharged by plants operating...

  7. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  8. Investigations into water mitigation using a meshless particle method

    NASA Astrophysics Data System (ADS)

    Liu, M. B.; Liu, G. R.; Lam, K. Y.

    It is very difficult for traditional numerical methods to simulate the problems of water mitigation which has been increasingly used to reduce blast effects. This paper studies water mitigation problems by using smoothed particle hydrodynamics (SPH), which is a meshless, Lagrangian method appealing in treating large deformation explosion events with significant inhomogeneities. Numerical verifications considering high explosive detonation and underwater explosion shock waves have demonstrated the effectiveness of the SPH method, the solution procedure and the code. Contact and non-contact water mitigation simulations have been carried out and are compared with the case without mitigation. For either contact or non-contact water shield, the peak shock pressure and the equilibrium gas pressure are reduced to different levels according to the relevant geometry of the system setup. An optimum contact water shield thickness is found to produce the best mitigation effect for a given high explosive charge, while the non-contact water shield, if properly designed, can result in further reduction of the peak shock pressure and the equilibrium gas pressure.

  9. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance with... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Method of Application. 18.6 Section...

  10. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  11. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  12. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  13. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  14. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  15. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  16. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  17. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  18. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  19. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  20. 7 CFR 786.103 - Time and method of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Time and method of application. 786.103 Section 786.103 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Time and method of application. (a) Dairy producers may obtain an application, in person, by mail,...

  1. A Facile High-speed Vibration Milling Method to Water-disperse Single- walled Carbon Nanohorns

    SciTech Connect

    Shu, Chunying; Zhang, Jianfei; Sim, Jae Hyun; Burke, Brian; Williams, Keith A; Rylander, Nichole M; Campbell, Tom; Puretzky, Alexander A; Rouleau, Christopher M; Geohegan, David B; More, Karren Leslie; Esker, Alan R; Gibson, Harry W; Dorn, Harry C

    2010-01-01

    A high-speed vibration milling (HSVM) method was applied to synthesize water dispersible single- walled carbon nanohorns (SWNHs). Highly reactive free radicals (HOOCCH2CH2 ) produced from an acyl peroxide under HSVM conditions react with hydrophobic SWNHs to produce a highly water dispersible derivative (f-SWNHs), which has been characterized in detail by spectroscopic and microscopic techniques together with thermogravimetric analysis (TGA) and dynamic light scatter- ing (DLS). The carboxylic acid functionalized, water-dispersible SWNHs material are versatile precursors that have potential applications in the biomedical area.

  2. NEOCHIM: An electrochemical method for environmental application

    USGS Publications Warehouse

    Leinz, R.W.; Hoover, D.B.; Meier, A.L.

    1999-01-01

    Ion migration and electroosmosis are the principal processes underlying electrokinetic remediation of hazardous wastes from soils. These processes are a response of charged species to an applied electrical current and they are accompanied by electrolysis of water at the electrodes through which the current is applied. Electrolysis results in the formation of OH- at the cathode and H+ at the anode. The current drives the OH- and H+ thus formed from the electrodes, through the soil and to the electrode of opposite charge. Introduction of OH- and H+ into the soil being treated modifies soil chemistry and can interfere with either the collection or immobilization of hazardous waste ions. The introduction of either OH- or H+ to the soil can be problematic to electrokinetic remediation but the problem caused by OH- has been the focus of most researchers. The problem has been addressed by flushing the OH- from the soil near the cathode or treating the soil with buffers. These treatments would apply as well to soils affected by H+. With the NEOCHIM technology, developed by the U.S. Geological Survey (USGS) for use as a sampling technique in exploration for buried ore deposits, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions, including anionic forms of toxic metals such as HAsO42-. One of the principal attributes of NEOCHIM is the large volume of soil from which ions can be extracted. It is mathematically demonstrable that NEOCHIM extraction volumes can be orders of magnitude greater than volumes typically sampled in more conventional geochemical exploration methods or for environmental sampling. The technology may also be used to introduce selected ions into the soil that affect the solubility of ceratin ions present in the soil. Although field tests for mineral exploration have shown NEOCHIM extraction efficiencies of about 25-35%, laboratory

  3. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  4. Isolation of Legionella from water samples using various culture methods.

    PubMed

    Kusnetsov, J M; Jousimies-Somer, H R; Nevalainen, A I; Martikainen, P J

    1994-02-01

    The efficacy of a non-selective medium and two selective media were compared for the isolation of legionellas from water samples. The effect of acid wash treatment for decontamination of the water samples on the isolation frequency of legionellas was also studied. The 236 samples were taken from cooling, humidifying and drinking water systems; 21% were legionella-positive when inoculated directly on modified Wadowsky-Yee (MWY) medium and 26% were positive when concentrated (x 200) before cultivation on MWY or CCVC media. Inoculation on MWY medium after concentration followed by decontamination by the acid-wash technique gave the highest isolation frequency (31%). The lowest frequency (8%) was found with the non-selective BCYE alpha medium. An isolation frequency of 28% was achieved with the BCYE alpha medium after concentration and acid-wash treatment of the samples. Forty per cent of the samples were positive for legionellas when the results from all the culture methods were combined. Not all the legionella-positive samples were identified by a single culture method. Ninety-three of the 95 positive samples were detected with the two best combinations of three culture methods. The best culture method for detecting legionellas depended on the source of the water sample. Some water quality characteristics, like temperature and organic matter content, affected the isolation frequency of Legionella spp.

  5. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.

    PubMed

    Shi, Xinjian; Cai, Lili; Ma, Ming; Zheng, Xiaolin; Park, Jong Hyeok

    2015-10-12

    Photoelectrochemical (PEC) water splitting is a very promising technology that converts water into clean hydrogen fuel and oxygen by using solar light. However, the characterization methods for PEC cells are diverse and a systematic introduction to characterization methods for PEC cells has rarely been attempted. Unlike most other review articles that focus mainly on the material used for the working electrodes of PEC cells, this review introduces general characterization methods for PEC cells, including their basic configurations and methods for characterizing their performance under various conditions, regardless of the materials used. Detailed experimental operation procedures with theoretical information are provided for each characterization method. The PEC research area is rapidly expanding and more researchers are beginning to devote themselves to related work. Therefore, the content of this Minireview can provide entry-level knowledge to beginners in the area of PEC, which might accelerate progress in this area.

  6. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.

    PubMed

    Shi, Xinjian; Cai, Lili; Ma, Ming; Zheng, Xiaolin; Park, Jong Hyeok

    2015-10-12

    Photoelectrochemical (PEC) water splitting is a very promising technology that converts water into clean hydrogen fuel and oxygen by using solar light. However, the characterization methods for PEC cells are diverse and a systematic introduction to characterization methods for PEC cells has rarely been attempted. Unlike most other review articles that focus mainly on the material used for the working electrodes of PEC cells, this review introduces general characterization methods for PEC cells, including their basic configurations and methods for characterizing their performance under various conditions, regardless of the materials used. Detailed experimental operation procedures with theoretical information are provided for each characterization method. The PEC research area is rapidly expanding and more researchers are beginning to devote themselves to related work. Therefore, the content of this Minireview can provide entry-level knowledge to beginners in the area of PEC, which might accelerate progress in this area. PMID:26365789

  7. Methods for enumerating Escherichia coli in subtropical waters.

    PubMed

    Cheung, W H; Ha, D K; Yeung, K Y; Hung, R P

    1991-04-01

    The standard membrane filtration method of the UK has been modified in order to improve its specificity for enumerating Escherichia coli in the subtropical waters of Hong Kong. This involves incorporating into the membrane lauryl sulphate (mLS) method either an in situ urease test (the mLS-UA method), or an in situ beta-glucuronidase test (the mLS-GUD method). The false-positive errors of the mLS-UA and mLS-GUD methods are low, ranging from 3-5%. A comparison between the membrane filtration (mLS-UA) method and the multiple tube technique in testing E. coli in subtropical beach-waters has demonstrated that the former can give much more precise counts, and is the method of choice for such a purpose. The mLS-GUD method, for which automated counting of E. coli colonies is possible, is a good alternative to mLS-UA in routine enumeration of this bacterial indicator in environmental waters.

  8. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  9. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  10. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  11. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  12. 7 CFR 760.804 - Time and method of application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Crop Disaster Program § 760.804 Time and method of application. (a) The 2005, 2006, 2007 Crop Disaster Program application must...

  13. 7 CFR 760.804 - Time and method of application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF AGRICULTURE SPECIAL PROGRAMS INDEMNITY PAYMENT PROGRAMS 2005-2007 Crop Disaster Program § 760.804 Time and method of application. (a) The 2005, 2006, 2007 Crop Disaster Program application must...

  14. Comparison of beach bacterial water quality indicator measurement methods.

    PubMed

    Noble, Rachel T; Weisberg, Stephen B; Leecaster, Molly K; McGee, Charles D; Ritter, Kerry; Walker, Kathy O; Vainik, Patricia M

    2003-01-01

    Three methods (membrane filtration, multiple tube fermentation, and chromogenic substrate technology kits manufactured by IDEXX Laboratories, Inc.) are routinely used to measure indicator bacteria for beach water quality. To assess comparability of these methods, quantify within-laboratory variability for each method, and place that variability into context of variability among laboratories using the same method, 22 southern California laboratories participated in a series of intercalibration exercises. Each laboratory processed three to five replicates from thirteen samples, with total coliforms, fecal coliforms or enterococci measured depending on the sample. Results were generally comparable among methods, though membrane filtration appeared to underestimate the other two methods for fecal coliforms, possibly due to clumping. Variability was greatest for the multiple tube fermentation method. For all three methods, within laboratory variability was greater than among laboratories variability.

  15. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity.

  16. Recent applications of spectral methods in fluid dynamics

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Hussaini, M. Y.

    1985-01-01

    Origins of spectral methods, especially their relation to the method of weighted residuals, are surveyed. Basic Fourier and Chebyshev spectral concepts are reviewed and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic and mixzed type. Fluid dynamical applications are emphasized.

  17. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered. PMID:26398042

  18. Aerodynamic method for obtaining the soil water retention curve

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Maksimov, I. I.

    2013-07-01

    A new method for the rapid plotting of the soil water retention curve (SWRC) has been proposed that considers the soil water as an environment limited by the soil solid phase on one side and by the soil air on the other side. Both contact surfaces have surface energies, which play the main role in water retention. The use of an idealized soil model with consideration for the nonequilibrium thermodynamic laws and the aerodynamic similarity principles allows us to estimate the volumetric specific surface areas of soils and, using the proposed pedotransfer function (PTF), to plot the SWRC. The volumetric specific surface area of the solid phase, the porosity, and the specific free surface energy at the water-air interface are used as the SWRC parameters. Devices for measuring the parameters are briefly described. The differences between the proposed PTF and the experimental data have been analyzed using the statistical processing of the data.

  19. Method for rapid, high sensitivity tritiated water extraction

    SciTech Connect

    Failor, R.; Belovodsky, L.; Gaevoy, V.; Golubev, A.

    1997-04-20

    We have developed a thermal vacuum desorption process to rapidly extract water from environmental samples for tritium analysis. Thermal vacuum desorption allows for extraction of the moisture from the sample within a few hours in a form and quantity suitable for liquid scintillation counting and allows detection of tritium at the levels of <2 Bq/L of milk, <0.5 Bq/gm of vegetation, and < 0.5 Bq/gin of soil. We developed a prototype unit that can process batches of twenty or more samples within 24 hours. Early data shows that a high percentage of water is extracted reproducibly without enrichment or depletion of the tritium content. The quench coefficient of the extracted water is low allowing for accurate, direct liquid scintillation counting. Excellent comparison has been observed with results using freeze-dry lypholization as the water extraction method.

  20. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  1. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  2. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  3. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  4. Lidar Measurement of Water Clouds and Its Applications

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Winker, D. M.; Hair, J. W.; Vaughan, M. A.; Hostetler, C. A.; Zeng, S.; Liu, Z.; Omar, A. H.; MacDonnell, D.; Butler, C. F.; Sun, W.

    2015-12-01

    Recent theoretical advances now enable accurate characterization of both the single scattering and multiple scattering contributions to the lidar backscatter signals obtained from opaque water clouds (Hu et al., 2006). As a consequence, lidar measurements of opaque water clouds have increasingly broad applications, especially for space-based polarization-sensitive lidars such as CALIOP. Among the most prominent and useful of these are (1) calibration and assessments of calibration accuracy (e.g., O'Connor et al., 2004; Hu et al., 2006); (2) accurate estimates of extrinsic (e.g., optical depths) and intrinsic (e.g., extinction-to-backscatter ratios) optical properties of clouds and aerosol layers lying above opaque water clouds (Hu et al., 2007; Liu et al., 2015); and (3) retrievals of water cloud microphysical properties such as cloud droplet number concentrations (Hu et al., 2007; Li et al., 2011; Zeng et al., 2014). In the first part of this presentation we give an overview of the recent advances in this subject area. The second part introduces several new studies of water clouds using the multi-wavelength depolarization measurement capabilities of NASA's airborne high spectral resolution lidars (HSRL). We use these measurements to assess existing theory, validate the measurement concept and explore several new application concepts. The third part discusses changes in Arctic water clouds using CALIOP measurements. The HSRL water cloud study is supported by NASA's atmospheric composition program.

  5. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    NASA Astrophysics Data System (ADS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-11-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  6. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  7. Determination of the Electronics Charge--Electrolysis of Water Method.

    ERIC Educational Resources Information Center

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  8. Problems of applicability of statistical methods in cosmology

    SciTech Connect

    Levin, S. F.

    2015-12-15

    The problems arising from the incorrect formulation of measuring problems of identification for cosmological models and violations of conditions of applicability of statistical methods are considered.

  9. Cumulative soil chemistry changes from land application of saline-sodic waters

    SciTech Connect

    Ganjegunte, G.K.; King, L.A.; Vance, G.F.

    2008-09-15

    Management of large volumes (60,000 ha-m) of co-production water associated with coal bed natural gas (CBNG) water extraction is a potential concern in the Powder River Basin (PRB) of Wyoming and Montana due to elevated water salinity and sodicity levels. Land application of saline-sodic CBNG water is a common water management method being practiced in the PRB, which can result in deterioration in soil quality. The objective of this study was to evaluate effects from 1 to 4 yr of land application with CBNG water on soil chemical properties at six study sites (fine to loamy, mixed to smectitic, mesic, Ustic Ardisols and Entisols) in the Wyoming PRB region. Changes in chemistry of soils collected from six depths irrigated with CBNG water were compared with representative non-irrigated soils. Applications of CBNG water significantly increased soil EC, SAR, and ESP values (up to 21, 74, and 24 times, respectively) compared with non-irrigated soils. Differences in soil chemical properties between an irrigated and non-irrigated coarse-textured soil were less than that of fine-textured soils, emphasizing texture as an important factor for salinity buildup. Pretreatment of CBNG water using a sulfur burner and application of gypsum and elemental S soil amendments reduced soil pH but did not prevent the build-up of salts and sodium. Study results suggest that current CBNG water management strategies are not as effective as projected. Additional research is needed to develop management strategies appropriate for mitigating adverse effects of CBNG water irrigation.

  10. Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods

    USGS Publications Warehouse

    Senay, G.B.; Leake, S.; Nagler, P.L.; Artan, G.; Dickinson, J.; Cordova, J.T.; Glenn, E.P.

    2011-01-01

    Evapotranspiration (ET) is an important hydrological process that can be studied and estimated at multiple spatial scales ranging from a leaf to a river basin. We present a review of methods in estimating basin scale ET and its applications in understanding basin water balance dynamics. The review focuses on two aspects of ET: (i) how the basin scale water balance approach is used to estimate ET; and (ii) how ‘direct’ measurement and modelling approaches are used to estimate basin scale ET. Obviously, the basin water balance-based ET requires the availability of good precipitation and discharge data to calculate ET as a residual on longer time scales (annual) where net storage changes are assumed to be negligible. ET estimated from such a basin water balance principle is generally used for validating the performance of ET models. On the other hand, many of the direct estimation methods involve the use of remotely sensed data to estimate spatially explicit ET and use basin-wide averaging to estimate basin scale ET. The direct methods can be grouped into soil moisture balance modelling, satellite-based vegetation index methods, and methods based on satellite land surface temperature measurements that convert potential ET into actual ET using a proportionality relationship. The review also includes the use of complementary ET estimation principles for large area applications. The review identifies the need to compare and evaluate the different ET approaches using standard data sets in basins covering different hydro-climatic regions of the world.

  11. Corn and sorghum performance are affected by irrigation application method: SDI versus Mid-elevation spray irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  12. Corn and sorghum performance affected by irrigation application method:SDI versus mid-elevation spray irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  13. Corn and sorghum performance are affected by irrigation application method: SDI versus mid-elevation spray irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation application method can impact crop water use and water use efficiency (WUE), but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through the planting, early growth and yield developme...

  14. Water cooled absorption chillers for solar cooling applications

    NASA Astrophysics Data System (ADS)

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  15. Scenistic Methods for Training: Applications and Practice

    ERIC Educational Resources Information Center

    Lyons, Paul R.

    2011-01-01

    Purpose: This paper aims to complement an earlier article (2010) in "Journal of European Industrial Training" in which the description and theory bases of scenistic methods were presented. This paper also offers a description of scenistic methods and information on theory bases. However, the main thrust of this paper is to describe, give suggested…

  16. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be

  17. Validation of doubly labeled water method using a ruminant

    SciTech Connect

    Fancy, S.G.; Blanchard, J.M.; Holleman, D.F.; Kokjer, K.J.; White, R.G.

    1986-07-01

    CO/sub 2/ production (CDP, ml CO/sub 2/ . g-1 . h-1) by captive caribou and reindeer (Rangifer tarandus) was measured using the doubly labeled water method (/sup 3/H/sub 2/O and H2(18)O) and compared with CO/sub 2/ expiration rates (VCO/sub 2/), adjusted for CO/sub 2/ losses in CH4 and urine, as determined by open-circuit respirometry. CDP calculated from samples of blood or urine from a reindeer in winter was 1-3% higher than the adjusted VCO/sub 2/. Differences between values derived by the two methods of 5-20% were found in summer trials with caribou. None of these differences were statistically significant (P greater than 0.05). Differences in summer could in part be explained by the net deposition of /sup 3/H, 18O, and unlabeled CO/sub 2/ in antlers and other growing tissues. Total body water volumes calculated from /sup 3/H/sub 2/O dilution were up to 15% higher than those calculated from H/sub 2/(18)O dilution. The doubly labeled water method appears to be a reasonably accurate method for measuring CDP by caribou and reindeer in winter when growth rates are low, but the method may overestimate CDP by rapidly growing and/or fattening animals.

  18. Fuzzy pricing for urban water resources: model construction and application.

    PubMed

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP. PMID:17499421

  19. Method for Water Management Considering Long-term Probabilistic Forecasts

    NASA Astrophysics Data System (ADS)

    Hwang, J.; Kang, J.; Suh, A. S.

    2015-12-01

    This research is aimed at predicting the monthly inflow of the Andong-dam basin in South Korea using long-term probabilistic forecasts to apply long-term forecasts to water management. Forecasted Cumulative Distribution Functions (CDFs) of monthly precipitation are plotted by combining the range of monthly precipitation based on proper Probability Density Function (PDF) in past data with probabilistic forecasts in each category. Ensembles of inflow are estimated by entering generated ensembles of precipitation based on the CDFs into the 'abcd' water budget model. The bias and RMSE between averages in past data and observed inflow are compared to them in forecasted ensembles. In our results, the bias and RMSE of average precipitation in the forecasted ensemble are bigger than in past data, whereas the average inflow in the forecasted ensemble is smaller than in past data. This result could be used for reference data to apply long-term forecasts to water management, because of the limit in the number of forecasted data for verification and differences between the Andong-dam basin and the forecasted regions. This research has significance by suggesting a method of applying probabilistic information in climate variables from long-term forecasts to water management in Korea. Original data of a climate model, which produces long-term probabilistic forecasts should be verified directly as input data of a water budget model in the future, so that a more scientific response in water management against uncertainty of climate change could be reached.

  20. Scatterscore : A reconnaissance method to evaluate changes in water quality

    SciTech Connect

    Kim, A.G.; Cardone, C.R.

    2005-12-01

    Water quality data collected in periodic monitoring programs are often difficult to evaluate, especially if the number of parameters is large, the sampling schedule varies, and values are of different orders of magnitude. The Scatterscore Water Quality Evaluation was developed to yield a quantitative score, based on all measured variables in periodic water quality reports, indicating positive, negative or random change. This new methodology calculates a reconnaissance score based on the differences between up-gradient (control) versus down-gradient (treatment) water quality data sets. All parameters measured over a period of time at two or more sampling points are compared. The relationship between the ranges of measured values and the ratio of the medians for each parameter produces a data point that falls into one of four sections on a scattergram. The number and average values of positive, negative and random change points is used to calculate a Scatterscore that indicates the magnitude and direction of overall change in water quality. The Scatterscore Water Quality Evaluation, a reconnaissance method to track general changes, has been applied to 20 sites at which coal utilization by-products (CUB) were used to control acid mine drainage (AMD).

  1. Development of a Rapid Assimilable Organic Carbon Method for Water

    PubMed Central

    LeChevallier, Mark W.; Shaw, Nancy E.; Kaplan, Louis A.; Bott, Thomas L.

    1993-01-01

    A rapid method for measurement of assimilable organic carbon (AOC) is proposed. The time needed to perform the assay is reduced by increasing the incubation temperature and increasing the inoculum density. The ATP luciferin-luciferase method quickly enumerates the test organisms without the need for plate count media or dilution bottles. There was no significant difference between AOC values determined with strain P17 for the ATP and plate count procedures. For strain NOX, the plate count procedure underestimated bacterial levels in some samples. Comparison of AOC values obtained by the Belleville laboratory (by the ATP technique) and the Stroud Water Research Center (by plate counts) showed that values were significantly correlated and not significantly different. The study concludes that the rapid AOC method can quickly determine the bacterial growth potential of water within 2 to 4 days. PMID:16348936

  2. Predicting recreational water quality advisories: A comparison of statistical methods

    USGS Publications Warehouse

    Brooks, Wesley R.; Corsi, Steven R.; Fienen, Michael N.; Carvin, Rebecca B.

    2016-01-01

    Epidemiological studies indicate that fecal indicator bacteria (FIB) in beach water are associated with illnesses among people having contact with the water. In order to mitigate public health impacts, many beaches are posted with an advisory when the concentration of FIB exceeds a beach action value. The most commonly used method of measuring FIB concentration takes 18–24 h before returning a result. In order to avoid the 24 h lag, it has become common to ”nowcast” the FIB concentration using statistical regressions on environmental surrogate variables. Most commonly, nowcast models are estimated using ordinary least squares regression, but other regression methods from the statistical and machine learning literature are sometimes used. This study compares 14 regression methods across 7 Wisconsin beaches to identify which consistently produces the most accurate predictions. A random forest model is identified as the most accurate, followed by multiple regression fit using the adaptive LASSO.

  3. Evaluation of super-water reducers for highway applications

    NASA Astrophysics Data System (ADS)

    Whiting, D.

    1981-03-01

    Super-water reducers were characterized and evaluated as potential candidates for production of low water to cement ratio, high strength concretes for highway construction applications. Admixtures were composed of either naphthalene or melamine sulfonated formaldehyde condensates. A mini-slump procedure was used to assess dosage requirements and behavior of workability with time of cement pastes. Required dosage was found to be a function of tricalcium aluminate content, alkali content, and fineness of the cement. Concretes exhibited high rates of slump loss when super-water reducers were used. The most promising area of application of these products appears to be in production of dense, high cement content concrete using mobile concrete mixer/transporters.

  4. Power Measurement Methods for Energy Efficient Applications

    PubMed Central

    Calandrini, Guilherme; Gardel, Alfredo; Bravo, Ignacio; Revenga, Pedro; Lázaro, José L.; Toledo-Moreo, F. Javier

    2013-01-01

    Energy consumption constraints on computing systems are more important than ever. Maintenance costs for high performance systems are limiting the applicability of processing devices with large dissipation power. New solutions are needed to increase both the computation capability and the power efficiency. Moreover, energy efficient applications should balance performance vs. consumption. Therefore power data of components are important. This work presents the most remarkable alternatives to measure the power consumption of different types of computing systems, describing the advantages and limitations of available power measurement systems. Finally, a methodology is proposed to select the right power consumption measurement system taking into account precision of the measure, scalability and controllability of the acquisition system. PMID:23778191

  5. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  6. The application of heat pump water heating in Hawaii

    SciTech Connect

    Lloyd, A.S.

    1995-12-01

    The Hawaiian Electric Company is the national leader in the application and general commercial acceptance of heat pump water heating. Since 1980, over 600 commercial-size heat pump water heaters have been installed in Hawaii. Over 300 apartment buildings with over 35,000 living units, some 30 hotels, 8 hospitals and numerous restaurants and lauderettes have replaced their central gas water heating systems with commercial-size heat pump water heaters. This exceptionally efficient electrotechnology permits hotels and apartments to extract significant amounts of solar energy from the warm sub-tropical atmosphere or to recycle waste heat from the building`s air conditioning system for water heating. Heat pump water heaters discharge thermal energy from their condensers that is 2.5 to 6.5 times greater than the electric energy that they consume. Existing gas and oil-fired water heater efficiencies will vary from 0.50 to 0.75 depending on their age, their duty cycle, their adjustment and the cleanliness of their heat exchange surfaces. As a result, these conventional fuel fired water heaters consume 3 to 12 times more energy than the heat pumps that replace them.

  7. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  8. Rapid quantification method for Legionella pneumophila in surface water.

    PubMed

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila. PMID:26873217

  9. Rapid quantification method for Legionella pneumophila in surface water.

    PubMed

    Wunderlich, Anika; Torggler, Carmen; Elsässer, Dennis; Lück, Christian; Niessner, Reinhard; Seidel, Michael

    2016-03-01

    World-wide legionellosis outbreaks caused by evaporative cooling systems have shown that there is a need for rapid screening methods for Legionella pneumophila in water. Antibody-based methods for the quantification of L. pneumophila are rapid, non-laborious, and relatively cheap but not sensitive enough for establishment as a screening method for surface and drinking water. Therefore, preconcentration methods have to be applied in advance to reach the needed sensitivity. In a basic test, monolithic adsorption filtration (MAF) was used as primary preconcentration method that adsorbs L. pneumophila with high efficiency. Ten-liter water samples were concentrated in 10 min and further reduced to 1 mL by centrifugal ultrafiltration (CeUF). The quantification of L. pneumophila strains belonging to the monoclonal subtype Bellingham was performed via flow-based chemiluminescence sandwich microarray immunoassays (CL-SMIA) in 36 min. The whole analysis process takes 90 min. A polyclonal antibody (pAb) against L. pneumophila serogroup 1-12 and a monoclonal antibody (mAb) against L. pneumophila SG 1 strain Bellingham were immobilized on a microarray chip. Without preconcentration, the detection limit was 4.0 × 10(3) and 2.8 × 10(3) CFU/mL determined by pAb and mAb 10/6, respectively. For samples processed by MAF-CeUF prior to SMIA detection, the limit of detection (LOD) could be decreased to 8.7 CFU/mL and 0.39 CFU/mL, respectively. A recovery of 99.8 ± 15.9% was achieved for concentrations between 1-1000 CFU/mL. The established combined analytical method is sensitive for rapid screening of surface and drinking water to allow fast hygiene control of L. pneumophila.

  10. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  11. Cold Water Fish Gelatin Methacryloyl Hydrogel for Tissue Engineering Application

    PubMed Central

    Yoon, Hee Jeong; Shin, Su Ryon; Cha, Jae Min; Lee, Soo-Hong; Kim, Jin-Hoi; Do, Jeong Tae; Song, Hyuk

    2016-01-01

    Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been used in various biomedical fields. Thus far, however, GelMA is mostly obtained from mammalian sources, which are associated with a risk of transmission of diseases, such as mad cow disease, as well as certain religious restrictions. In this study, we synthesized GelMA using fish-derived gelatin by a conventional GelMA synthesis method, and evaluated its physical properties and cell responses. The lower melting point of fish gelatin compared to porcine gelatin allowed larger-scale synthesis of GelMA and enabled hydrogel fabrication at room temperature. The properties (mechanical strength, water swelling degree and degradation rate) of fish GelMA differed from those of porcine GelMA, and could be tuned to suit diverse applications. Cells adhered, proliferated, and formed networks with surrounding cells on fish GelMA, and maintained high initial cell viability. These data suggest that fish GelMA could be utilized in a variety of biomedical fields as a substitute for mammalian-derived materials. PMID:27723807

  12. A General Symbolic Method with Physical Applications

    NASA Astrophysics Data System (ADS)

    Smith, Gregory M.

    2000-06-01

    A solution to the problem of unifying the General Relativistic and Quantum Theoretical formalisms is given which introduces a new non-axiomatic symbolic method and an algebraic generalization of the Calculus to non-finite symbolisms without reference to the concept of a limit. An essential feature of the non-axiomatic method is the inadequacy of any (finite) statements: Identifying this aspect of the theory with the "existence of an external physical reality" both allows for the consistency of the method with the results of experiments and avoids the so-called "measurement problem" of quantum theory.

  13. A new method for water desalination using microbial desalination cells.

    PubMed

    Cao, Xiaoxin; Huang, Xia; Liang, Peng; Xiao, Kang; Zhou, Yingjun; Zhang, Xiaoyuan; Logan, Bruce E

    2009-09-15

    Current water desalination techniques are energy intensive and some use membranes operated at high pressures. It is shown here that water desalination can be accomplished without electrical energy input or high water pressure by using a source of organic matter as the fuel to desalinate water. A microbial fuel cell was modified by placing two membranes between the anode and cathode, creating a middle chamber for water desalination between the membranes. An anion exchange membrane was placed adjacent to the anode, and a cation exchange membrane was positioned next to the cathode. When current was produced by bacteria on the anode, ionic species in the middle chamber were transferred into the two electrode chambers, desalinating the water in the middle chamber. Proof-of-concept experiments for this approach, using what we call a microbial desalination cell (MDC), was demonstrated using water at different initial salt concentrations (5, 20, and 35 g/L) with acetate used as the substrate for the bacteria. The MDC produced a maximum of 2 W/m2 (31 W/m3) while at the same time removing about 90% of the salt in a single desalination cycle. As the salt was removed from the middle chamber the ohmic resistance of the MDC (measured using electrochemical impedance spectroscopy) increased from 25 Omega to 970 Omega at the end of the cycle. This increased resistance was reflected by a continuous decrease in the voltage produced over the cycle. These results demonstrate for the first time the possibility for a new method for water desalination and power production that uses only a source of biodegradable organic matter and bacteria.

  14. 7 CFR 1430.503 - Time and method for application.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS Dairy Market Loss Assistance Program § 1430.503 Time and method for application. (a) Dairy operations may obtain an application, Form CCC-1040 (Dairy Market Loss Assistance Program Payment Application), in person, by mail,...

  15. 7 CFR 1430.503 - Time and method for application.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS Dairy Market Loss Assistance Program § 1430.503 Time and method for application. (a) Dairy operations may obtain an application, Form CCC-1040 (Dairy Market Loss Assistance Program Payment Application), in person, by mail,...

  16. 7 CFR 1430.503 - Time and method for application.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS Dairy Market Loss Assistance Program § 1430.503 Time and method for application. (a) Dairy operations may obtain an application, Form CCC-1040 (Dairy Market Loss Assistance Program Payment Application), in person, by mail,...

  17. 7 CFR 1430.503 - Time and method for application.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS Dairy Market Loss Assistance Program § 1430.503 Time and method for application. (a) Dairy operations may obtain an application, Form CCC-1040 (Dairy Market Loss Assistance Program Payment Application), in person, by mail,...

  18. 7 CFR 1430.503 - Time and method for application.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DAIRY PRODUCTS Dairy Market Loss Assistance Program § 1430.503 Time and method for application. (a) Dairy operations may obtain an application, Form CCC-1040 (Dairy Market Loss Assistance Program Payment Application), in person, by mail,...

  19. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  20. Comparison and verification of bacterial water quality indicator measurement methods using ambient coastal water samples.

    PubMed

    Griffith, John F; Aumand, Larissa A; Lee, Ioannice M; McGee, Charles D; Othman, Laila L; Ritter, Kerry J; Walker, Kathy O; Weisberg, Stephen B

    2006-05-01

    More than 30 laboratories routinely monitor water along southern California's beaches for bacterial indicators of fecal contamination. Data from these efforts frequently are combined and compared even though three different methods (membrane filtration (MF), multiple tube fermentation (MTF), and chromogenic substrate (CS) methods) are used. To assess data comparability and quantify variability within method and across laboratories, 26 laboratories participated in an intercalibration exercise. Each laboratory processed three replicates from eight ambient water samples employing the method or methods they routinely use for water quality monitoring. Verification analyses also were conducted on a subset of wells from the CS analysis to confirm or exclude the presence of the target organism. Enterococci results were generally comparable across methods. Confirmation revealed a 9% false positive rate and a 4% false negative rate in the CS method for enterococci, though these errors were small in the context of within- and among-laboratory variability. Fecal coliforms also were comparable across all methods, though CS underestimated the other methods by about 10%, probably because it measures only E. coli, rather than the larger fecal coliform group measured by MF and MTF. CS overestimated total coliforms relative to the other methods by several fold and was found to have a 40% false positive rate in verification. Across-laboratory variability was small relative to within- and among-method variability, but only after data entry errors were corrected. One fifth of the laboratories committed data entry errors that were much larger than any method-related errors. These errors are particularly significant because these data were submitted in a test situation where laboratories were aware they would be under increased scrutiny. Under normal circumstances, it is unlikely that these errors would have been detected and managers would have been obliged to issue beach water quality

  1. Radiation processing applications in the Czechoslovak water treatment technologies

    NASA Astrophysics Data System (ADS)

    Vacek, K.; Pastuszek, F.; Sedláček, M.

    The regeneration of biologically clogged water wells by radiation proved to be a successful and economically beneficial process among other promising applications of ionizing radiation in the water supply technology. The application conditions and experience are mentioned. The potential pathogenic Mycobacteria occuring in the warm washing and bathing water are resistant against usual chlorine and ozone concentrations. The radiation sensitivity of Mycobacteria allowed to suggest a device for their destroying by radiation. Some toxic substances in the underground water can be efficiently degraded by gamma radiation directly in the wells drilled as a hydraulic barrier surrounding the contaminated land area. Substantial decrease of CN - concentration and C.O.D. value was observed in water pumped from such well equipped with cobalt sources and charcoal. The removing of pathogenic contamination remains to be the main goal of radiation processing in the water purification technologies. The decrease of liquid sludge specific filter resistance and sedimentation acceleration by irradiation have a minor technological importance. The hygienization of sludge cake from the mechanical belt filter press by electron beam appears to be the optimum application in the Czechoslovak conditions. The potatoes and barley crop yields from experimental plots treated with sludge were higher in comparison with using the manure. Biological sludge from the municipal and food industry water purification plants contains nutritive components. The proper hygienization is a necessary condition for using them as a livestock feed supplement. Feeding experiments with broilers and pigs confirmed the possibility of partial (e.g. 50%) replacement of soya-, bone- or fish flour in feed mixtures by dried sludge hygienized either by heat or by the irradiation.

  2. Multigrid methods with applications to reservoir simulation

    SciTech Connect

    Xiao, Shengyou

    1994-05-01

    Multigrid methods are studied for solving elliptic partial differential equations. Focus is on parallel multigrid methods and their use for reservoir simulation. Multicolor Fourier analysis is used to analyze the behavior of standard multigrid methods for problems in one and two dimensions. Relation between multicolor and standard Fourier analysis is established. Multiple coarse grid methods for solving model problems in 1 and 2 dimensions are considered; at each coarse grid level we use more than one coarse grid to improve convergence. For a given Dirichlet problem, a related extended problem is first constructed; a purification procedure can be used to obtain Moore-Penrose solutions of the singular systems encountered. For solving anisotropic equations, semicoarsening and line smoothing techniques are used with multiple coarse grid methods to improve convergence. Two-level convergence factors are estimated using multicolor. In the case where each operator has the same stencil on each grid point on one level, exact multilevel convergence factors can be obtained. For solving partial differential equations with discontinuous coefficients, interpolation and restriction operators should include information about the equation coefficients. Matrix-dependent interpolation and restriction operators based on the Schur complement can be used in nonsymmetric cases. A semicoarsening multigrid solver with these operators is used in UTCOMP, a 3-D, multiphase, multicomponent, compositional reservoir simulator. The numerical experiments are carried out on different computing systems. Results indicate that the multigrid methods are promising.

  3. Adaptation of the doubly labeled water method for subjects consuming isotopically enriched water.

    PubMed

    Gretebeck, R J; Schoeller, D A; Socki, R A; Davis-Street, J; Gibson, E K; Schulz, L O; Lane, H W

    1997-02-01

    The use of doubly labeled water (DLW) to measure energy expenditure is subject to error if the background abundance of the oxygen and hydrogen isotope tracers changes during the test period. This study evaluated the accuracy and precision of different methods by which such background isotope changes can be corrected, including a modified method that allows prediction of the baseline that would be achieved if subjects were to consume water from a given source indefinitely. Subjects in this study were eight women (4 test subjects and 4 control subjects) who consumed for 28 days water enriched to resemble drinking water aboard the United States space shuttle. Test subjects and control subjects were given a DLW dose on days 1 and 15, respectively. The change to an enriched water source produced a bias in expenditure calculations that exceeded 2.9 MJ/day (35%), relative to calculations from intake-balance. The proposed correction based on the predicted final abundance of 18O and deuterium after equilibration to the new water source eliminated this bias, as did the traditional use of a control group. This new modified correction method is advantageous under field conditions when subject numbers are limited.

  4. Latex-like water-borne polyaniline for coating applications

    SciTech Connect

    Liu, H.; Clark, R.; Yang, S.C.

    1998-07-01

    The authors report the synthesis of a polymeric complex of polyaniline that is dispersed in water as a stable suspension. The polymer, PAN:PVME-MLA, is a molecular complex of polyaniline and poly(vinylmethylether-co-maleic acid). The synthetic process leads to a stable latex-like suspension in water. The water-borne conducting polymer, once dried as a thin film on a substrate, is not dissolvable by water or other solvents. An example of piece-dyeing process is presented to show its potential for electrostatic dissipation of textile products. Another example illustrates that the material may be used as electroactive thin-films for electrochromic windows and for rechargeable battery applications.

  5. Polyoxometalate water oxidation catalysts and methods of use thereof

    DOEpatents

    Hill, Craig L.; Gueletii, Yurii V.; Musaev, Djamaladdin G.; Yin, Qiushi; Botar, Bogdan

    2014-09-02

    Homogeneous water oxidation catalysts (WOCs) for the oxidation of water to produce hydrogen ions and oxygen, and methods of making and using thereof are described herein. In a preferred embodiment, the WOC is a polyoxometalate WOC which is hydrolytically stable, oxidatively stable, and thermally stable. The WOC oxidized waters in the presence of an oxidant. The oxidant can be generated photochemically, using light, such as sunlight, or electrochemically using a positively biased electrode. The hydrogen ions are subsequently reduced to form hydrogen gas, for example, using a hydrogen evolution catalyst (HEC). The hydrogen gas can be used as a fuel in combustion reactions and/or in hydrogen fuel cells. The catalysts described herein exhibit higher turn over numbers, faster turn over frequencies, and/or higher oxygen yields than prior art catalysts.

  6. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  7. Standardised survey method for identifying catchment risks to water quality.

    PubMed

    Baker, D L; Ferguson, C M; Chier, P; Warnecke, M; Watkinson, A

    2016-06-01

    This paper describes the development and application of a systematic methodology to identify and quantify risks in drinking water and recreational catchments. The methodology assesses microbial and chemical contaminants from both diffuse and point sources within a catchment using Escherichia coli, protozoan pathogens and chemicals (including fuel and pesticides) as index contaminants. Hazard source information is gathered by a defined sanitary survey process involving use of a software tool which groups hazards into six types: sewage infrastructure, on-site sewage systems, industrial, stormwater, agriculture and recreational sites. The survey estimates the likelihood of the site affecting catchment water quality, and the potential consequences, enabling the calculation of risk for individual sites. These risks are integrated to calculate a cumulative risk for each sub-catchment and the whole catchment. The cumulative risks process accounts for the proportion of potential input sources surveyed and for transfer of contaminants from upstream to downstream sub-catchments. The output risk matrices show the relative risk sources for each of the index contaminants, highlighting those with the greatest impact on water quality at a sub-catchment and catchment level. Verification of the sanitary survey assessments and prioritisation is achieved by comparison with water quality data and microbial source tracking. PMID:27280603

  8. 25 CFR 700.461 - Method for soliciting applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Method for soliciting applications. 700.461 Section 700... PROCEDURES Discretionary Funds § 700.461 Method for soliciting applications. (a) The Commission shall utilize... of work required. (b) The annual announcements of the availability of funds and periodic requests...

  9. Rapid method for measuring rotenone in water at piscicidal concentrations

    USGS Publications Warehouse

    Dawson, V.K.; Harman, P.D.; Schultz, D.P.; Allen, J.L.

    1983-01-01

    A high-performance liquid chromatography (HPLC) procedure that is rapid, specific, and sensitive (limit of detection <0.005 mg/liter) was developed for monitoring application and degradation rates of rotenone. For analysis, a water sample is buffered to pH 5 and injected through a Sep Pak(R) C18 disposable cartridge. The cartridge adsorbs and retains the rotenone which then can be eluted quantitatively from the cartridge with a small volume of methanol. This step effectively concentrates the sample and provides sample cleanup. The methanol extract is analyzed directly by HPLC on an MCH 10 reverse-phase column; methanol: water (75:25, volume : volume) is the mobile phase and flow rate is 1.5 ml/minute. The rotenone is detected by ultraviolet spectrophotometry at a wavelength of 295 nm.

  10. Methods of measuring water levels in deep wells

    USGS Publications Warehouse

    Garber, M.S.; Koopman, F. C.

    1968-01-01

    Accurate measurement of water levels deeper than 1,000 feet in wells requires specialized equipment. Corrections for stretch and thermal expansion of measuring tapes must be considered, and other measuring devices must be calibrated periodically. Bore-hole deviation corrections also must be made. Devices for recording fluctuation of fluid level usually require mechanical modification for use at these depths. A multichannel recording device utilizing pressure transducers has been constructed. This device was originally designed to record aquifer response to nearby underground nuclear explosions but can also be used for recording data from multi-well pumping tests. Bottom-hole recording devices designed for oil-field use have been utilized in a limited manner. These devices were generally found to lack the precision required, in ground-water investigations at the Nevada Test Site but may be applicable in other areas. A newly developed bottom-hole recording pressure gauge of improved accuracy has been used with satisfactory results.

  11. Translational bioinformatics in psychoneuroimmunology: methods and applications.

    PubMed

    Yan, Qing

    2012-01-01

    Translational bioinformatics plays an indispensable role in transforming psychoneuroimmunology (PNI) into personalized medicine. It provides a powerful method to bridge the gaps between various knowledge domains in PNI and systems biology. Translational bioinformatics methods at various systems levels can facilitate pattern recognition, and expedite and validate the discovery of systemic biomarkers to allow their incorporation into clinical trials and outcome assessments. Analysis of the correlations between genotypes and phenotypes including the behavioral-based profiles will contribute to the transition from the disease-based medicine to human-centered medicine. Translational bioinformatics would also enable the establishment of predictive models for patient responses to diseases, vaccines, and drugs. In PNI research, the development of systems biology models such as those of the neurons would play a critical role. Methods based on data integration, data mining, and knowledge representation are essential elements in building health information systems such as electronic health records and computerized decision support systems. Data integration of genes, pathophysiology, and behaviors are needed for a broad range of PNI studies. Knowledge discovery approaches such as network-based systems biology methods are valuable in studying the cross-talks among pathways in various brain regions involved in disorders such as Alzheimer's disease.

  12. Treatment methods for breaking certain oil and water emulsions

    DOEpatents

    Sealock, Jr., L. John; Baker, Eddie G.; Elliott, Douglas C.

    1992-01-01

    Disclosed are treatment methods for breaking emulsions of petroleum oil and salt water, fatty oil and water, and those resulting from liquefication of organic material. The emulsions are broken by heating to a predetermined temperature at or above about 200.degree. C. and pressurizing to a predetermined pressure above the vapor pressure of water at the predetermined temperature to produce a heated and pressurized fluid. The heated and pressurized fluid is contained in a single vessel at the predetermined temperature and pressure for a predetermined period of time to effectively separate the emulsion into substantially distinct first and second phases, the first phase comprising primarily the petroleum oil, the second phase comprising primarily the water. The first and second phases are separately withdrawn from the vessel at a withdraw temperature between about 200.degree. C. and 374.degree. C. and a withdraw pressure above the vapor pressure of water at the withdraw temperature. Where solids are present in the certain emulsions, the above described treatment may also effectively separate the certain emulsion into a substantially distinct third phase comprising primarily the solids.

  13. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  14. Applications of MIDAS regression in analysing trends in water quality

    NASA Astrophysics Data System (ADS)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  15. Selective demineralization of water by nanofiltration application to the defluorination of brackish water.

    PubMed

    Lhassani, A; Rumeau, M; Benjelloun, D; Pontie, M

    2001-09-01

    Nanofiltration is generally used to separate monovalent ions from divalent ions, but it is also possible to separate ions of the same valency by careful application of the transfer mechanisms involved. Analysis of the retention of halide salts reveals that small ions like fluoride are the best retained, and that this is even more marked under reduced pressure when selectivity is greatest. The selectivity desalination of fluorinated brackish water is hence feasible and drinking water can be produced directly at much lower cost than using reverse osmosis by optimizing the pressure for the type of water treated.

  16. An automated dynamic water vapor permeation test method

    NASA Astrophysics Data System (ADS)

    Gibson, Phillip; Kendrick, Cyrus; Rivin, Donald; Charmchii, Majid; Sicuranza, Linda

    1995-05-01

    This report describes an automated apparatus developed to measure the transport of water vapor through materials under a variety of conditions. The apparatus is more convenient to use than the traditional test methods for textiles and clothing materials, and allows one to use a wider variety of test conditions to investigate the concentration-dependent and nonlinear transport behavior of many of the semipermeable membrane laminates which are now available. The dynamic moisture permeation cell (DMPC) has been automated to permit multiple setpoint testing under computer control, and to facilitate investigation of transient phenomena. Results generated with the DMPC are in agreement with and of comparable accuracy to those from the ISO 11092 (sweating guarded hot plate) method of measuring water vapor permeability.

  17. Water Budget in the UAE for Applications in Food Security.

    NASA Astrophysics Data System (ADS)

    Gonzalez Sanchez, R.; Ouarda, T.; Marpu, P. R.; Pearson, S.

    2014-12-01

    The current rate of population growth combined with climate change, have increased the impact on natural resources globally, especially water, land and energy, and therefore the food availability. Arid and semi-arid countries are highly vulnerable to these threats being already aware of the scarcity of resources depending mainly on imports. This study focuses on the UAE, with a very low rainfall, high temperatures and a very high rate of growth. It represents the perfect scenario to study the adaptive strategies that would allow to alleviate the effects of changing climate conditions and increase of population. Water is a key factor to food security especially in dry regions like the UAE, therefore, the first step of this approach is to analyze the water budget, first at a global scale (UAE), and after at smaller scales where particular and in-depth studies can be performed. The water budget is represented by the following equation: total precipitation and desalinated water minus the evapotranspiration equals the change in the terrestrial water storage. The UAE is highly dependent on desalinated water, therefore, this factor is included as a water input in the water budget. The procedure adopted in this study is applicable to other Gulf countries where desalination represents a large component of the water budget. Remotely sensed data will be used to obtain the components of the water budget equation performing a preliminary study of the suitability of TRMM data to estimate the precipitation in the UAE by comparison with six ground stations in the country. GRACE and TRMM data will then be used to obtain the terrestrial water storage and the precipitation respectively. The evapotranspiration will be estimated from the water budget equation and maps of these three variables will be obtained. This spatial analysis of the water resources will help to determine the best areas for cultivation and whether it can be planned in a way that increases the agricultural

  18. Rapid Method for the Determination of the Stable Oxygen Isotope Ratio of Water in Alcoholic Beverages.

    PubMed

    Wang, Daobing; Zhong, Qiding; Li, Guohui; Huang, Zhanbin

    2015-10-28

    This paper demonstrates the first successful application of an online pyrolysis technique for the direct determination of oxygen isotope ratios (δ(18)O) of water in alcoholic beverages. Similar water concentrations in each sample were achieved by adjustment with absolute ethyl alcohol, and then a fixed GC split ratio can be used. All of the organic ingredients were successfully separated from the analyte on a CP-PoraBond Q column and subsequently vented out, whereas water molecules were transferred into the reaction furnace and converted to CO. With the system presented, 15-30 μL of raw sample was diluted and can be analyzed repeatedly; the analytical precision was better than 0.4‰ (n = 5) in all cases, and more than 50 injections can be made per day. No apparent memory effect was observed even if water samples were injected using the same syringe; a strong correlation (R(2) = 0.9998) was found between the water δ(18)O of measured sample and that of working standards. There was no significant difference (p > 0.05) between the mean δ(18)O value and that obtained by the traditional method (CO2-water equilibration/isotope ratio mass spectrometry) and the newly developed method in this study. The advantages of this new method are its rapidity and straightforwardness, and less test portion is required.

  19. 40 CFR 125.61 - Existence of and compliance with applicable water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable water quality standards. 125.61 Section 125.61 Protection of Environment ENVIRONMENTAL PROTECTION... Water Act § 125.61 Existence of and compliance with applicable water quality standards. (a) There must exist a water quality standard or standards applicable to the pollutant(s) for which a section...

  20. 40 CFR 125.61 - Existence of and compliance with applicable water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applicable water quality standards. 125.61 Section 125.61 Protection of Environment ENVIRONMENTAL PROTECTION... Water Act § 125.61 Existence of and compliance with applicable water quality standards. (a) There must exist a water quality standard or standards applicable to the pollutant(s) for which a section...

  1. 40 CFR 125.61 - Existence of and compliance with applicable water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable water quality standards. 125.61 Section 125.61 Protection of Environment ENVIRONMENTAL PROTECTION... Water Act § 125.61 Existence of and compliance with applicable water quality standards. (a) There must exist a water quality standard or standards applicable to the pollutant(s) for which a section...

  2. 40 CFR 125.61 - Existence of and compliance with applicable water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable water quality standards. 125.61 Section 125.61 Protection of Environment ENVIRONMENTAL PROTECTION... Water Act § 125.61 Existence of and compliance with applicable water quality standards. (a) There must exist a water quality standard or standards applicable to the pollutant(s) for which a section...

  3. The Benchmark Farm Program : a method for estimating irrigation water use in southwest Florida

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1982-01-01

    Irrigation water-use data are summarized in this report for 74 farms in the Southwest Florida Water Management District. Most data are for 1978-90, but 18 farms have data extending back to the early 1970's. Data include site number and location, season and year, crop type, irrigation system, monitoring method, and inches of water applied per acre. Crop types include citrus, cucumbers, pasture, peanuts, sod, strawberries, and tropical fish farms are also included. Water-application rates per growing season ranged from 0 inches per acre for several citrus and pasture sites to 239.7 inches per acre for a nursery site. The report also includes rainfall data for 12 stations throughout the study area. (USGS)

  4. ERTS-1 applications in hydrology and water resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.

    1973-01-01

    After having been in orbit for less than one year, the Earth Resources Technology Satellite (ERTS-1) has shown that it provides very applicable data for more effective monitoring and management of surface water features over the globe. Mapping flooded areas, snowcover, and wetlands and surveying the size, type, and response of glaciers to climate are among the specific areas where ERTS-1 data were applied. In addition the data collection system has proven to be a reliable tool for gathering hydrologic data from remote regions. Turbidity variations in lakes and rivers were also observed and related to shoreline erosion, industrial plant effluent, and overall water quality.

  5. Domain adaptive boosting method and its applications

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Miao, Zhenjiang

    2015-03-01

    Differences of data distributions widely exist among datasets, i.e., domains. For many pattern recognition, nature language processing, and content-based analysis systems, a decrease in performance caused by the domain differences between the training and testing datasets is still a notable problem. We propose a domain adaptation method called domain adaptive boosting (DAB). It is based on the AdaBoost approach with extensions to cover the domain differences between the source and target domains. Two main stages are contained in this approach: source-domain clustering and source-domain sample selection. By iteratively adding the selected training samples from the source domain, the discrimination model is able to achieve better domain adaptation performance based on a small validation set. The DAB algorithm is suitable for the domains with large scale samples and easy to extend for multisource adaptation. We implement this method on three computer vision systems: the skin detection model in single images, the video concept detection model, and the object classification model. In the experiments, we compare the performances of several commonly used methods and the proposed DAB. Under most situations, the DAB is superior.

  6. Cartesian Methods for the Shallow Water Equations on a Sphere

    SciTech Connect

    Drake, J.B.

    2000-02-14

    The shallow water equations in a spherical geometry are solved using a 3-dimensional Cartesian method. Spatial discretization of the 2-dimensional, horizontal differential operators is based on the Cartesian form of the spherical harmonics and an icosahedral (spherical) grid. Computational velocities are expressed in Cartesian coordinates so that a problem with a singularity at the pole is avoided. Solution of auxiliary elliptic equations is also not necessary. A comparison is made between the standard form of the Cartesian equations and a rotational form using a standard set of test problems. Error measures and conservation properties of the method are reported for the test problems.

  7. Moisture absorption characteristics of the Orbiter thermal protection system and methods used to prevent water ingestion

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L.; Tillian, D. J.

    1983-01-01

    The Space Shuttle Orbiter's silica tile Thermal Protection System (TPS) is beset by the moisture absorption problems inherently associated with low density, highly porous insulation systems. Attention is presently given to the comparative success of methods for the minimization and/or prevention of water ingestion by the TPS tiles, covering the development of water-repellent agents and their tile application techniques, flight test program results, and materials improvements. The use of external films for rewaterproofing of the TPS tiles after each mission have demonstrated marginal to unacceptable performance. By contrast, a tile interior waterproofing agent has shown promise.

  8. Analysis of ice water by the thermally stimulated depolarized current (TSDC) method.

    PubMed

    Sato, Kazuishi; Koizumi, Toshinori; Okajima, Kunihiko

    2005-03-01

    The thermally stimulated depolarized current and temperature profiles (TSDC analysis) on iced water was proved to be an effective tool for the qualitative evaluation of various water samples, each having an independent relaxation process, brought about by a pure dipolar orientation. The method proved to be applicable to different kinds of water samples used in the experiment and tap-water samples from different suppliers. Five main peaks (A to E, in the order of increasing temperature) were observed, of which two peaks (B and D) were found for the first time. The appearance of multiple peaks suggested the existence of multi-states of the hydrogen bond, cleaved by the TSDC process. The TSDC profiles were quite reproducible when the water samples contained practically no cations. A separate addition of each cation at a low concentration level revealed that a cation with a smaller ionic radius shifted peak A to a higher temperature. For ice of tap water, which contained relatively higher amount of cations, the TSDC profiles were quite different in shape compared with the standard ice-water samples (shift of peaks A - D to higher temperature, and a strong increase in the current strength of peaks B - E). However, it was still possible to tell from which districts the water samples were supplied. PMID:15790122

  9. Coordinate-Free Methods with Applications

    NASA Astrophysics Data System (ADS)

    Rolf, Steven R.

    A formalism for the coordinate-free description of the vector properties of a physical system has been developed. A concise definition of coordinate-free vectors, dyadics and their algebraic properties are presented. It is demonstrated that a finite number of independent vectors in a system leads to a complete set of dyadic operators based upon these vectors. These operators are shown to obey a closed, associative algebra. Several sets of operators are demonstrated for one and two vectors in two and three dimensions, including a dyadic representation of the Pauli matrices. The algebra for these operators is exploited to reduce an arbitrary function of the dyadics to a linear combination of them. This result is used to find the inverse of a linear combination of the dyadic operators and to define a generalized rotation operator. Applications to electrodynamics include the derivation of optical rotation in gyrotropic media and the general solution for the dispersion relations and polarization states of a wave propagating in a conductive medium. This last result has been applied to a cold, magnetized plasma. It is demonstrated that Faraday rotation results for an arbitrarily directed wave in such a plasma.

  10. Radar Altimetry for Inland Water: Current and Potential Applications

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; da Silva, Joecila Santos; Calmant, Stephane

    2015-12-01

    Apart from oceans and ice-sheets, radar altimeters are shown by a plethora of works to be of considerable interest in monitoring inland water bodies such as rivers, lakes, wetlands and floodplains. More than a decade of research on the application in the field of continental hydrology has demonstrated the advantages of providing global coverage, regular temporal sampling and short delivery delays, especially via the acquisition of numerous useful measurements over ungauged areas. With the aim to investigate the benefits that can be achieved by Sentinel-3 mission, two applications are here shown for selected pilot rivers and the results on discharge estimation are analyzed and discussed in terms of performance measures.

  11. Limits and conditions of applicability of the experimental measurement methods of liquid flow rates through pipes

    NASA Astrophysics Data System (ADS)

    Botezatu, N. P.

    1980-04-01

    Various flow measurement methods and their applications are reviewed in order to establish the best methods for rationalization and optimization of water consumption in a large industrial system. The methods discussed include volumetric and gravimetric techniques, Pitot and Venturi tubes, electromagnetic and ultrasonic flowmeters, counters, rotameters, and anemometers, as well as the use of classical and radioactive tracers. A comparative analysis of various methods and experimental results indicate that the method of radioactive tracers is the only universal method of measurement of fluid flows through pipes and channels for fluids of any physicochemical properties under any conditions.

  12. Extending the application of critical path methods.

    PubMed

    Coffey, R J; Othman, J E; Walters, J I

    1995-01-01

    Most health care organizations are using critical pathways in an attempt to reduce the variation in patient care, improve quality, enhance communication, and reduce costs. Virtually all of the critical path efforts to date have developed tables of treatments, medications, and so forth by day and have displayed them in a format known as a Gantt chart. This article presents a methodology for identifying the true "time-limiting" critical path, describes three additional methods for presenting the information--the network, precedent, and resource formats--and shows how these can significantly enhance current critical path efforts.

  13. Analytical chromatography. Methods, instrumentation and applications

    NASA Astrophysics Data System (ADS)

    Yashin, Ya I.; Yashin, A. Ya

    2006-04-01

    The state-of-the-art and the prospects in the development of main methods of analytical chromatography, viz., gas, high performance liquid and ion chromatographic techniques, are characterised. Achievements of the past 10-15 years in the theory and general methodology of chromatography and also in the development of new sorbents, columns and chromatographic instruments are outlined. The use of chromatography in the environmental control, biology, medicine, pharmaceutics, and also for monitoring the quality of foodstuffs and products of chemical, petrochemical and gas industries, etc. is considered.

  14. A method for the temperature calibration of an infrared camera using water as a radiative source

    SciTech Connect

    Bower, S. M.; Kou, J.; Saylor, J. R.

    2009-09-15

    Presented here is an effective low-cost method for the temperature calibration of infrared cameras, for applications in the 0-100 deg. C range. The calibration of image gray level intensity to temperature is achieved by imaging an upwelling flow of water, the temperature of which is measured with a thermistor probe. The upwelling flow is created by a diffuser located below the water surface of a constant temperature water bath. The thermistor probe is kept immediately below the surface, and the distance from the diffuser outlet to the surface is adjusted so that the deformation of the water surface on account of the flow is small, yet the difference between the surface temperature seen by the camera and the bulk temperature measured by the thermistor is also small. The benefit of this method compared to typical calibration procedures is that, without sacrificing the quality of the calibration, relatively expensive commercial blackbodies are replaced by water as the radiative source ({epsilon}{approx_equal}0.98 for the wavelengths considered here). A heat transfer analysis is provided, which improves the accuracy of the calibration method and also provides the user with guidance to further increases in accuracy of the method.

  15. Stability of Materials in High Temperature Water Vapor: SOFC Applications

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Jacobson, N. S.

    2010-01-01

    Solid oxide fuel cell material systems require long term stability in environments containing high-temperature water vapor. Many materials in fuel cell systems react with high-temperature water vapor to form volatile hydroxides which can degrade cell performance. In this paper, experimental methods to characterize these volatility reactions including the transpiration technique, thermogravimetric analysis, and high pressure mass spectrometry are reviewed. Experimentally determined data for chromia, silica, and alumina volatility are presented. In addition, data from the literature for the stability of other materials important in fuel cell systems are reviewed. Finally, methods for predicting material recession due to volatilization reactions are described.

  16. Influence of nitrogen rate and drip application method on pomegranate fruit yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, 98% of domestic commercial pomegranate fruit (Punica granatum L.) are produced in California on over 13,000 ha. Developing more efficient methods of water and fertilizer application are important in reducing production costs. In 2012, a pomegranate orchard established in 2010 with a den...

  17. 7 CFR 1783.8 - What are the acceptable methods for submitting applications?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false What are the acceptable methods for submitting applications? 1783.8 Section 1783.8 Agriculture Regulations of the Department of Agriculture (Continued) RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE (CONTINUED) REVOLVING FUNDS FOR FINANCING WATER AND...

  18. Water monitoring by optofluidic Raman spectroscopy for in situ applications.

    PubMed

    Persichetti, Gianluca; Bernini, Romeo

    2016-08-01

    The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene. PMID:27216667

  19. Water monitoring by optofluidic Raman spectroscopy for in situ applications.

    PubMed

    Persichetti, Gianluca; Bernini, Romeo

    2016-08-01

    The feasibility of water monitoring by Raman spectroscopy with a portable optofluidic system for in-situ applications has been successfully demonstrated. In the proposed approach, the sample under analysis is injected into a capillary nozzle in order to produce a liquid jet that acts as an optical waveguide. This jet waveguide provides an effective strategy to excite and collect the Raman signals arising from water contaminants due to the high refractive index difference between air and water. The proposed approach avoids any necessity of liquid container or flow cell and removes any background signal coming from the sample container commonly affects Raman measurements. Furthermore, this absence is a significant advantage for in situ measurements where fouling problems can be relevant and cleaning procedures are troublesome. The extreme simplicity and efficiency of the optical scheme adopted in our approach result in highly sensitive and rapid measurements that have been performed on different representative water pollutants. The experimental results demonstrate the high potentiality of our device in water quality monitoring and analysis. In particular, nitrate and sulfate are detected below the maximum contamination level allowed for drinking water, whereas a limit of detection of 40mg/l has been found for benzene.

  20. Aspects of testing and selecting stainless steels for sea water applications

    SciTech Connect

    Steinsmo, U.; Rogne, T.; Drugli, J.M.

    1994-12-31

    In the period from 1980, highly alloyed stainless steels (i.e. Pitting Resistance Equivalent (PRE{sub N}) > 40) have been widely selected for chlorinated sea water systems in the Norwegian offshore industry. Recently failures have been reported -- severe crevice corrosion on flanges in a cooling water system and crevice corrosion at the threaded cast and forged joints in a fire water system. The failures highlights the question of corrosion testing and safe use limits for high alloyed stainless steels in sea water systems. This paper discusses three aspects regarding testing and selection of highly alloyed stainless steels for sea water application -- the relevancy of the electrochemical test methods used, the quality control system and the importance of repassivation.

  1. QMRA and water safety management: review of application in drinking water systems.

    PubMed

    Petterson, S R; Ashbolt, N J

    2016-08-01

    Quantitative microbial risk assessment (QMRA), the assessment of microbial risks when model inputs and estimated health impacts are explicitly quantified, is a valuable tool to support water safety plans (WSP). In this paper, research studies undertaken on the application of QMRA in drinking water systems were reviewed, highlighting their relevance for WSP. The important elements for practical implementation include: the data requirements to achieve sufficient certainty to support decision-making; level of expertise necessary to undertake the required analysis; and the accessibility of tools to support wider implementation, hence these aspects were the focus of the review. Recommendations to support the continued and growing application of QMRA to support risk management in the water sector are provided. PMID:27441853

  2. Endothelial cell micropatterning: Methods, effects, and applications

    PubMed Central

    Anderson, Deirdre E.J.; Hinds, Monica T.

    2012-01-01

    The effects of flow on endothelial cells have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of endothelial cell morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines endothelial cell micropatterning research by exploring both the many alternative methods used to alter endothelial cell morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in endothelial cell proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, is discussed. PMID:21761242

  3. Applications of geophysical methods to volcano monitoring

    USGS Publications Warehouse

    Wynn, Jeff; Dzurisin, Daniel; Finn, Carol A.; Kauahikaua, James P.; Lahusen, Richard G.

    2006-01-01

    The array of geophysical technologies used in volcano hazards studies - some developed originally only for volcano monitoring - ranges from satellite remote sensing including InSAR to leveling and EDM surveys, campaign and telemetered GPS networks, electronic tiltmeters and strainmeters, airborne magnetic and electromagnetic surveys, short-period and broadband seismic monitoring, even microphones tuned for infrasound. They include virtually every method used in resource exploration except large-scale seismic reflection. By “geophysical ” we include both active and passive methods as well as geodetic technologies. Volcano monitoring incorporates telemetry to handle high-bandwith cameras and broadband seismometers. Critical geophysical targets include the flux of magma in shallow reservoir and lava-tube systems, changes in active hydrothermal systems, volcanic edifice stability, and lahars. Since the eruption of Mount St. Helens in Washington State in 1980, and the eruption at Pu’u O’o in Hawai’i beginning in 1983 and still continuing, dramatic advances have occurred in monitoring technology such as “crisis GIS” and lahar modeling, InSAR interferograms, as well as gas emission geochemistry sampling, and hazards mapping and eruption predictions. The on-going eruption of Mount St. Helens has led to new monitoring technologies, including advances in broadband Wi-Fi and satellite telemetry as well as new instrumentation. Assessment of the gap between adequate monitoring and threat at the 169 potentially dangerous Holocene volcanoes shows where populations are dangerously exposed to volcanic catastrophes in the United States and its territories . This paper focuses primarily on Hawai’ian volcanoes and the northern Pacific and Cascades volcanoes. The US Geological Survey, the US National Park System, and the University of Utah cooperate in a program to monitor the huge Yellowstone volcanic system, and a separate observatory monitors the restive Long Valley

  4. Scheduled Relaxation Jacobi method: Improvements and applications

    NASA Astrophysics Data System (ADS)

    Adsuara, J. E.; Cordero-Carrión, I.; Cerdá-Durán, P.; Aloy, M. A.

    2016-09-01

    Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficiency in the reduction of the residual increases with the number of levels employed in the algorithm. Applying the original methodology to compute the algorithm parameters with more than 5 levels notably hinders obtaining optimal SRJ schemes, as the mixed (non-linear) algebraic-differential system of equations from which they result becomes notably stiff. Here we present a new methodology for obtaining the parameters of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ schemes with up to 15 levels and resolutions of up to 215 points per dimension, allowing for acceleration factors larger than several hundreds with respect to the Jacobi method for typical resolutions and, in some high resolution cases, close to 1000. Most of the success in finding SRJ optimal schemes with more than 10 levels is based on an analytic reduction of the complexity of the previously mentioned system of equations. Furthermore, we extend the original algorithm to apply it to certain systems of non-linear ePDEs.

  5. A Simple Technique of Liquid Purity Analysis and Its Application to Analysis of Water Concentration in Alcohol-Water Mixtures

    NASA Astrophysics Data System (ADS)

    de, Dilip; Aziz de, Abdul

    2012-10-01

    The change of activation energy of a liquid molecule and hence its viscosity coefficient with addition of contaminants to the original liquid gives rise to a new technology for analysis of purity of the liquid. We discovered that concentration of certain contaminants such as water in alcohol or vice versa can be uniquely and accurately determined in a short time (about 10-15 minutes) using a simple and yet innovative technique that only requires measurement of time of flow of the impure liquid (say, water-alcohol mixture) and distilled water through a simple viscometer. We determined the increase of activation energy of alcohol molecules with increase of water concentration for ethyl and methyl alcohol. Our detailed investigation on the alcohol-water mixtures along with discussion on possible future potential application of the simple and very reliable inexpensive technique for liquid purity analysis is presented. We compared our present method with other methods on the accuracies, problems and reliability of impurity analysis in liquids. We also discuss a part of the quantum theory of viscosity of liquid mixtures that is in the developmental stage.

  6. A combined-water-system approach for tackling water scarcity: application to the Permilovo groundwater basin, Russia

    NASA Astrophysics Data System (ADS)

    Filimonova, Elena A.; Baldenkov, Mikhail G.

    2016-03-01

    The suitability of a combined water system (CWS) is assessed for meeting drinking-water demand for the city of Arkhangelsk (northwestern Russian Federation), instead of using the polluted surface water of the Northern Dvina River. An appropriate aquifer system (Permilovo groundwater basin) was found and explored in the 1980s, and there were plans then to operate an abstraction scheme using traditional pumping methods. However, the 1980s planned water system was abandoned due to projected impermissible stream depletion such that complete interception of the cone of depression with the riverbed would cause the riverbed to become dry. The design of a CWS is now offered as an approach to addressing this environmental problem. Several sets of major pumping wells associated with the CWS are located on the banks of Vaymuga River and induce infiltration from the stream. The deficiency of the stream flow in dry seasons is compensated for by pumping from aquifer storage. A numerical model was constructed using MODFLOW-2000. The results of the simulation showed the efficiency of the compensation pumping. The streamflow depletion caused by the CWS is equal to the minimum permissible stream flow and is lower than the depletion projected by the abandoned plan. Application of the CWS in the Permilovo groundwater basin makes it possible to meet water demands during water-limited periods and to avoid environmental problems.

  7. Application of an environmental decision support system to a water quality trading program affected by surface water diversions.

    PubMed

    Obropta, Christopher C; Niazi, Mehran; Kardos, Josef S

    2008-12-01

    Environmental decision support systems (EDSSs) are an emerging tool used to integrate the evaluation of highly complex and interrelated physicochemical, biological, hydrological, social, and economic aspects of environmental problems. An EDSS approach is developed to address hot-spot concerns for a water quality trading program intended to implement the total maximum daily load (TMDL) for phosphorus in the Non-Tidal Passaic River Basin of New Jersey. Twenty-two wastewater treatment plants (WWTPs) spread throughout the watershed are considered the major sources of phosphorus loading to the river system. Periodic surface water diversions to a major reservoir from the confluence of two key tributaries alter the natural hydrology of the watershed and must be considered in the development of a trading framework that ensures protection of water quality. An EDSS is applied that enables the selection of a water quality trading framework that protects the watershed from phosphorus-induced hot spots. The EDSS employs Simon's (1960) three stages of the decision-making process: intelligence, design, and choice. The identification of two potential hot spots and three diversion scenarios enables the delineation of three management areas for buying and selling of phosphorus credits among WWTPs. The result shows that the most conservative option entails consideration of two possible diversion scenarios, and trading between management areas is restricted accordingly. The method described here is believed to be the first application of an EDSS to a water quality trading program that explicitly accounts for surface water diversions. PMID:18592303

  8. Preliminary characterization of a water vaporizer for resistojet applications

    NASA Technical Reports Server (NTRS)

    Morren, W. Earl

    1992-01-01

    A series of tests was conducted to explore the characteristics of a water vaporizer intended for application to resistojet propulsion systems. The objectives of these tests were to (1) observe the effect of orientation with respect to gravity on vaporizer stability, (2) characterize vaporizer efficiency and outlet conditions over a range of flow rates, and (3) measure the thrust performance of a vaporizer/resistojet thruster assembly. A laboratory model of a forced-flow, once-through water vaporizer employing a porous heat exchange medium was built and characterized over a range of flow rates and power levels of interest for application to water resistojets. In a test during which the vaporizer was rotated about a horizontal axis normal to its own axis, the outlet temperature and mass flow rate through the vaporizer remained steady. Throttlability to 30 percent of the maximum flow rate tested was demonstrated. The measured thermal efficiency of the vaporizer was near 0.9 for all tests. The water vaporizer was integrated with an engineering model multipropellant resistojet. Performance of the vaporizer/thruster assembly was measured over a narrow range of operating conditions. The maximum specific impulse measured was 234 s at a mass flow rate and specific power level (vaporizer and thruster combined) of 154 x 10(exp-6)kg/s and 6.8 MJ/kg, respectively.

  9. Testing the applicability of rapid on-site enzymatic activity detection for surface water monitoring

    NASA Astrophysics Data System (ADS)

    Stadler, Philipp; Vogl, Wolfgang; Juri, Koschelnik; Markus, Epp; Maximilian, Lackner; Markus, Oismüller; Monika, Kumpan; Peter, Strauss; Regina, Sommer; Gabriela, Ryzinska-Paier; Farnleitner Andreas, H.; Matthias, Zessner

    2015-04-01

    bacteria. Therefore the applicability of on-site enzymatic activity determination as a direct surrogate or proxy parameter for microbiological standard assays and quantification of fecal indicator bacteria (FIB) concentration could not be approved and further research in this field is necessary. Presently we conclude that rapid on-site detection of enzymatic activity is applicable for surface water monitoring and that it constitutes a complementary on-site monitoring parameter with high potential. Selection of the type of measured enzymatic activities has to be done on a catchment-specific basis and further work is needed to learn more about its detailed information characteristics in different habitats. The accomplishment of this method detecting continuous data of enzymatic activity in high temporal resolution caused by a target bacterial member is on the way of becoming a powerful tool for water quality monitoring, health related water quality- and early warning requirements.

  10. Remote Sensing Applications in Water Resources and the Global Energy and Water Exchanges Project

    NASA Astrophysics Data System (ADS)

    van Oevelen, P. J.

    2015-12-01

    The Global Water and Energy Exchanges project (GEWEX) as part of the World Climate Research Programme has developed in 2013 a new set of science questions and imperatives with one set focusing in particular on the human component in the global water cycle and water resources management. In the past GEWEX primarily focused solely on the geophysical aspects of the water cycle and ignored to a great extent the human influences on it. The increased human interactions with the environment as well as the water cycle at both a local and global scale cannot be ignored any longer, in particular to analyse and interpret observations, improve models and process descriptions and to make more accurate predictions with less uncertainty. The model development has currently progressed to a stage where human interactions and processes can be better described and incorporated though much still remains to be done. One of the biggest challenges in incorporating human interactions into hydrological models and tools is to obtain the required observations, data and information. Water resource management decisions are based upon both geophysical conditions as well as socio-economic circumstances and in many cases also the individual decision makers state of being. To observe and model such processes requires expertise from a multitude of disciplines that are only now are beginning to collaborate more intensely. Another example of where obtaining the required information is tedious and often suspect is in transboundary water systems where this type of information can have direct geopolitical and socio-economical consequences. Earth observation in particular new or more advanced systems can help alleviate some of these issues. For GEWEX the challenge comes with an upside in that the models that incorporate the human component will also have more and better applicability. In this presentation several examples of application of new earth observing systems will be explored with an emphasis on

  11. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  12. Methods and applications of HPLC-AMS

    NASA Astrophysics Data System (ADS)

    Buchholz, Bruce A.; Dueker, Stephen R.; Lin, Yumei; Clifford, Andrew J.; Vogel, John S.

    2000-10-01

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a 14C-labeled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the 14C content above the control predose tissue and converting to equivalents of the parent compound. High performance liquid chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement. Unknowns are tentatively identified by co-elution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the 14C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of 14C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected 14C activity <0.17 Bq (4.5 pCi) on the HPLC column.

  13. Method for rapid detection of viable Escherichia coli in water using real-time NASBA.

    PubMed

    Heijnen, Leo; Medema, Gertjan

    2009-07-01

    A rapid real-time NASBA method was developed for detection of Escherichia coli in water samples. In this method, a fragment of the clpB-mRNA is amplified and a specific molecular beacon probe is used to detect the amplified mRNA fragment during the NASBA reaction. The method was shown to be specific and sensitive (1 viable E. coli in 100ml) and can be performed within 3-4h. Different inactivation processes (starvation, heat, UV-irradiation and chlorine) were employed to study the relationship between culturability and the ability to detect E. coli using NASBA. Detection of clpB-mRNA correlated with culturability after starvation or chlorine treatment. After UV-irradiation or heat-inactivation, detection of the increase in production of clpB-mRNA in viable E. coli cells after heat-shock induction correlated with culturability. Application of the NASBA method on tap water, treated sewage and surface water samples showed that culture and NASBA yielded comparable results in these different matrices. This study demonstrates that the NASBA method has high potential as a rapid test for microbiological water quality monitoring.

  14. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms.

    PubMed

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L; LeChevallier, Mark W; Liu, Wen-Tso

    2012-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characterize the complex microbial ecology of the DWDS. This study compared the quantity and quality of DNA yields from selected DWDS bacteria with different cell wall properties using five widely used DNA extraction methods. These were further selected and evaluated for their efficiency and reproducibility of DNA extraction from DWDS samples. Terminal restriction fragment length analysis and the 454 pyrosequencing technique were used to interpret the differences in microbial community structure and composition, respectively, from extracted DNA. Such assessments serve as a concrete step towards the determination of an optimal DNA extraction method for drinking water biofilms, which can then provide a reliable comparison of the meta-analysis results obtained in different laboratories.

  15. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.

    PubMed

    Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing. PMID:24183559

  16. Monitoring microbiological changes in drinking water systems using a fast and reproducible flow cytometric method.

    PubMed

    Prest, E I; Hammes, F; Kötzsch, S; van Loosdrecht, M C M; Vrouwenvelder, J S

    2013-12-01

    Flow cytometry (FCM) is a rapid, cultivation-independent tool to assess and evaluate bacteriological quality and biological stability of water. Here we demonstrate that a stringent, reproducible staining protocol combined with fixed FCM operational and gating settings is essential for reliable quantification of bacteria and detection of changes in aquatic bacterial communities. Triplicate measurements of diverse water samples with this protocol typically showed relative standard deviation values and 95% confidence interval values below 2.5% on all the main FCM parameters. We propose a straightforward and instrument-independent method for the characterization of water samples based on the combination of bacterial cell concentration and fluorescence distribution. Analysis of the fluorescence distribution (or so-called fluorescence fingerprint) was accomplished firstly through a direct comparison of the raw FCM data and subsequently simplified by quantifying the percentage of large and brightly fluorescent high nucleic acid (HNA) content bacteria in each sample. Our approach enables fast differentiation of dissimilar bacterial communities (less than 15 min from sampling to final result), and allows accurate detection of even small changes in aquatic environments (detection above 3% change). Demonstrative studies on (a) indigenous bacterial growth in water, (b) contamination of drinking water with wastewater, (c) household drinking water stagnation and (d) mixing of two drinking water types, univocally showed that this FCM approach enables detection and quantification of relevant bacterial water quality changes with high sensitivity. This approach has the potential to be used as a new tool for application in the drinking water field, e.g. for rapid screening of the microbial water quality and stability during water treatment and distribution in networks and premise plumbing.

  17. Multispectral digital holographic microscopy with applications in water quality assessment

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Jin, Chao; Yu, Mei; Amelard, Robert; Haider, Shahid; Saini, Simarjeet; Emelko, Monica; Clausi, David A.; Wong, Alexander

    2015-09-01

    Safe drinking water is essential for human health, yet over a billion people worldwide do not have access to safe drinking water. Due to the presence and accumulation of biological contaminants in natural waters (e.g., pathogens and neuro-, hepato-, and cytotoxins associated with algal blooms) remain a critical challenge in the provision of safe drinking water globally. It is not financially feasible and practical to monitor and quantify water quality frequently enough to identify the potential health risk due to contamination, especially in developing countries. We propose a low-cost, small-profile multispectral (MS) system based on Digital Holographic Microscopy (DHM) and investigate methods for rapidly capturing holographic data of natural water samples. We have developed a test-bed for an MSDHM instrument to produce and capture holographic data of the sample at different wavelengths in the visible and the near Infra-red spectral region, allowing for resolution improvement in the reconstructed images. Additionally, we have developed high-speed statistical signal processing and analysis techniques to facilitate rapid reconstruction and assessment of the MS holographic data being captured by the MSDHM instrument. The proposed system is used to examine cyanobacteria as well as Cryptosporidium parvum oocysts which remain important and difficult to treat microbiological contaminants that must be addressed for the provision of safe drinking water globally.

  18. Improved biostability assessment of drinking water with a suite of test methods at a water supply treating eutrophic lake water.

    PubMed

    van der Kooij, Dick; Martijn, Bram; Schaap, Peter G; Hoogenboezem, Wim; Veenendaal, Harm R; van der Wielen, Paul W J J

    2015-12-15

    Assessment of drinking-water biostability is generally based on measuring bacterial growth in short-term batch tests. However, microbial growth in the distribution system is affected by multiple interactions between water, biofilms and sediments. Therefore a diversity of test methods was applied to characterize the biostability of drinking water distributed without disinfectant residual at a surface-water supply. This drinking water complied with the standards for the heterotrophic plate count and coliforms, but aeromonads periodically exceeded the regulatory limit (1000 CFU 100 mL(-1)). Compounds promoting growth of the biopolymer-utilizing Flavobacterium johnsoniae strain A3 accounted for c. 21% of the easily assimilable organic carbon (AOC) concentration (17 ± 2 μg C L(-1)) determined by growth of pure cultures in the water after granular activated-carbon filtration (GACF). Growth of the indigenous bacteria measured as adenosine tri-phosphate in water samples incubated at 25 °C confirmed the low AOC in the GACF but revealed the presence of compounds promoting growth after more than one week of incubation. Furthermore, the concentration of particulate organic carbon in the GACF (83 ± 42 μg C L(-1), including 65% carbohydrates) exceeded the AOC concentration. The increased biomass accumulation rate in the continuous biofouling monitor (CBM) at the distribution system reservoir demonstrated the presence of easily biodegradable by-products related to ClO2 dosage to the GACF and in the CBM at 42 km from the treatment plant an iron-associated biomass accumulation was observed. The various methods applied thus distinguished between easily assimilable compounds, biopolymers, slowly biodegradable compounds and biomass-accumulation potential, providing an improved assessment of the biostability of the water. Regrowth of aeromonads may be related to biomass-turnover processes in the distribution system, but establishment of quantitative relationships is needed for

  19. A method for the detection of bacteriophages from ocean water

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1980-03-01

    A method for the isolation of bacteriophages from ocean water is described. It precludes sample storage before starting phage-enrichment cultures and provides for the use of 3 sub-samples enriched with organic nutrients after 1, 2 and 3 days of incubation. The method was used with samples collected from 6 m below the surface at 48 stations between the European continental shelf and the Sargasso Sea. With 213 among 931 bacterial isolates about 250 strains of bacteriophages were detected by two methods of different sensitivity. From 14 samples taken east of the Azores 115 host bacteria have been found versus only 98 from 34 samples collected at westerly stations. The employment of more than one sub-sample per station as well as the use of more sensitive phage-detection procedures was found to be more advantageous the lower the concentration of cultivatable bacteria in a sample.

  20. Method and apparatus for hydrogen production from water

    NASA Technical Reports Server (NTRS)

    Muradov, Nazim Z. (Inventor)

    2012-01-01

    A method, apparatuses and chemical compositions are provided for producing high purity hydrogen from water. Metals or alloys capable of reacting with water and producing hydrogen in aqueous solutions at ambient conditions are reacted with one or more inorganic hydrides capable of releasing hydrogen in aqueous solutions at ambient conditions, one or more transition metal compounds are used to catalyze the reaction and, optionally, one or more alkali metal-based compounds. The metal or alloy is preferably aluminum. The inorganic hydride is from a family of complex inorganic hydrides; most preferably, NaBH.sub.4. The transition metal catalyst is from the groups VIII and IB; preferably, Cu and Fe. The alkali metal-based compounds are preferably NaOH, KOH, and the like. Hydrogen generated has a purity of at least 99.99 vol. % (dry basis), and is used without further purification in all types of fuel cells, including the polymer electrolyte membrane (PEM) fuel cell.

  1. Method of burning lightly loaded coal-water slurries

    DOEpatents

    Krishna, C.R.

    1984-07-27

    In a preferred arrangement of the method of the invention, a lightly loaded coal-water slurry, containing in the range of approximately 40% to 52% + 2% by weight coal, is atomized to strip water from coal particles in the mixture. Primary combustor air is forced around the atomized spray in a combustion chamber of a combustor to swirl the air in a helical path through the combustion chamber. A flame is established within the combustion chamber to ignite the stripped coal particles, and flame temperature regulating means are provided for maintaining the flame temperature within a desired predetermined range of temperatures that is effective to produce dry, essentially slag-free ash from the combustion process.

  2. Application of magnetic iron-based nanosorbents for water cleaning

    NASA Astrophysics Data System (ADS)

    Medvedeva, Irina; Bakhteeva, Iuliia; Revvo, Anastasya; Byzov, Ilya; Baerner, Klaus

    2014-05-01

    Iron-based magnetic nanopowders (Fe, γ-Fe2O3, γ-Fe3O4) are effective sorbents for the cleaning of water from heavy metal ions, radionuclides, organic and biological materials. The sorption capacity of the powder is defined by the specific surface which for particle diameter in nanosized range comes up to hundreds of m2/g. However, the small particle size creates difficulties to separate the solid phase from the water suspension using conventional mechanical filtration and sedimentation methods without additional reagents. If the nanoparticles have magnetic moments, their separation from aqueous solution can be enhanced in gradient magnetic fields. This will help to avoid a secondary water pollution by coagulants and flocculants. The sedimentation dynamics of the magnetite (Fe3O4) nanopowders with different particle sizes (10-100 nm) in water in gradient magnetic fields of different configurations ( radial and strip), with the strengths H = 0.5-6 kOe, and gradients up to dH/dz= 2 kOe/cm was studied by optical and by Nuclear Magnetic Resonance (NMR) methods. . In the gravitation field the suspensions of the small particles (~ 10-20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, and the sedimentation time is reduced down to several minutes. In a gradient magnetic field enhanced by a steel grid the sedimentation of the nanopowder (c0= 0.1 g/l) for 180 minutes resulted in the reduction of the iron concentration in water down to 0.4 mg/l. In the flowing water regime the residual iron concentration in water 0.3 mg/l is reached after 80 minutes. This corresponds to the hygienic and environmental standards for drinking water and fishery.

  3. Biosolids applications affect runoff water quality following forest fire.

    PubMed

    Meyer, V F; Redente, E F; Barbarick, K A; Brobst, R

    2001-01-01

    Soil erosion and nutrient losses are great concerns following forest wildfires. Biosolids application might enhance revegetation efforts while reducing soil erodibility. Consequently, we applied Denver Metro Wastewater District composted biosolids at rates of 0, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to increase plant cover and growth. Soils were classified as Ustorthents, Ustochrepts, and Haploborols. Simulated rainfall was applied for 30 min at a rate of 100 mm h(-1) to 3- x 10-m paired plots. Biosolids application rates did not significantly affect mean total runoff (p < 0.05). Sediment concentrations were significantly greater (p < 0.05) from the control plots compared with the plots that had received the 80 Mg biosolids ha(-1) rate. Biosolids application rate had mixed effects on water-quality constituents; however, concentrations of all runoff constituents for all treatment rates were below levels recommended for drinking water standards, except Pb. Biosolids application to this site increased plant cover, which should provide erosion control.

  4. Microbiological water methods: quality control measures for Federal Clean Water Act and Safe Drinking Water Act regulatory compliance.

    PubMed

    Root, Patsy; Hunt, Margo; Fjeld, Karla; Kundrat, Laurie

    2014-01-01

    Quality assurance (QA) and quality control (QC) data are required in order to have confidence in the results from analytical tests and the equipment used to produce those results. Some AOAC water methods include specific QA/QC procedures, frequencies, and acceptance criteria, but these are considered to be the minimum controls needed to perform a microbiological method successfully. Some regulatory programs, such as those at Code of Federal Regulations (CFR), Title 40, Part 136.7 for chemistry methods, require additional QA/QC measures beyond those listed in the method, which can also apply to microbiological methods. Essential QA/QC measures include sterility checks, reagent specificity and sensitivity checks, assessment of each analyst's capabilities, analysis of blind check samples, and evaluation of the presence of laboratory contamination and instrument calibration and checks. The details of these procedures, their performance frequency, and expected results are set out in this report as they apply to microbiological methods. The specific regulatory requirements of CFR Title 40 Part 136.7 for the Clean Water Act, the laboratory certification requirements of CFR Title 40 Part 141 for the Safe Drinking Water Act, and the International Organization for Standardization 17025 accreditation requirements under The NELAC Institute are also discussed. PMID:24830168

  5. A facile method to fabricate functionally integrated devices for oil/water separation

    NASA Astrophysics Data System (ADS)

    An, Qi; Zhang, Yihe; Lv, Kaikai; Luan, Xinglong; Zhang, Qian; Shi, Feng

    2015-02-01

    In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be used as oil-sorption materials; a high oil/water separating efficiency which was suitable for water/oil-separating film. In this way, the functions of oil collection, absorption, and water/oil separation are integrated into a single device, and these functions could work independently, reducing the cost in terms of energy consumption and being versatile for a wide range of applications.In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be

  6. Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems.

    PubMed

    Ji, Xiaoliang; Dahlgren, Randy A; Zhang, Minghua

    2016-01-01

    In the context of water resource management and pollution control, the characterization of water quality impairments and identification of dominant pollutants are of critical importance. In this study, water quality impairment was assessed on the basis of 7 hydrochemical variables that were monitored bimonthly at 17 sites in 2010 along the rural-suburban-urban portion of the Wen-Rui Tang River in eastern China. Seven methods were used to assess water quality in the river system. These methods included single-factor assessment, water quality grading, comprehensive pollution index, the Nemerow pollution index, principle component analysis, fuzzy comprehensive evaluation, and comprehensive water quality identification index. Our analysis showed that the comprehensive water quality identification index was the best method for assessing water quality in the Wen-Rui Tang River due to its ability to effectively characterize highly polluted waters with multiple impairments. Furthermore, a guideline for the applications of these methods was presented based on their characteristics and efficacy. Results indicated that the dominant pollutant impairing water quality was total nitrogen comprised mainly of ammonium. The temporal variation of water quality was closely related to precipitation as a result of dilution. The spatial variation of water quality was associated with anthropogenic influences (urban, industrial, and agriculture activities) and water flow direction (downstream segments experiencing cumulative effects of upstream inputs). These findings provide valuable information and guidance for water pollution control and water resource management in highly polluted surface waters with multiple water quality impairments in areas with rapid industrial growth and urbanization. PMID:26643812

  7. Methods for evaluating the attainment of cleanup standards. Volume 2. Ground water. Final report

    SciTech Connect

    Rogers, J.; DiGaetano, R.; Chu, A.; Bryant, E.; Lipsky, D.

    1992-07-01

    The reference document provides regional project managers, on-site coordinators, and their contractors with sampling and analysis methods for evaluating whether ground water remediation has met pre-established cleanup standards for one or more chemical contaminants at a hazardous waste site. The verification of cleanup by evaluating a site relative to a cleanup standard or an applicable or relevant and appropriate requirement (ARAR) is mandated in Section 121 of the Superfund Amendments and Reauthorization Act (SARA). The document, the second in a series, provides sampling and data analysis methods for the purpose of verifying attainment of a cleanup standard in ground water. The first volume addresses evaluating attainment in soils and solid media. Volume 2 presents statistical methods which can be used to address the uncertainty of whether a site has met a cleanup standard.

  8. An Evaluation of Two Hydrograph Separation Methods of Potential Use in Regional Water Quality Assessment

    SciTech Connect

    Huff, D.D.

    1999-01-01

    Streamflow data are more useful for evaluating hydrologic model results and studying water quality once baseflow and storm runoff have been separated. However, it is important to select an appropriate hydrograph separation method. They examined tow methods and evaluated their conceptual basis, ease of application, cost of data processing, and acceptability of results. they chose the quick flow hydrograph separation method, which is in use at the Coweeta Hydrologic Laboratory, because it gives acceptable results and is easy and inexpensive to use. For regional assessment, they anticipate that the Coweeta program will be useful as an aid in developing general quantitative relationships between changes in land use and the associated changes in surface runoff yield and water quality degradation.

  9. Compound Method to Disperse CaCO3 Nanoparticles to Nano-Size in Water.

    PubMed

    Gu, Sui; Cai, Jihua; Wang, Jijun; Yuan, Ye; Chang, Dewu; Chikhotkin, Viktor F

    2015-12-01

    The invalidation of CaCO3 nanoparticles (nCaCO3) is often caused by the fact of agglomeration and inhomogeneous dispersion which limits its application into water-based drilling muds for low permeability reservoirs such as coalbed methane reservoir and shale gas/oil reservoir. Effective methods to disperse nCaCO3 to nano-size (≤ 100 nm) in water have seldom been reported. Here we developed a compound method containing mechanical stirring, ultrasonic treatment, the use of surfactant and stabilizer to disperse nCaCO3 in water. It comprises the steps adding 2% nCaCO3, 1% sodium dodecyl sulfonate (SDS), 2% cetyltrimethyl ammonium bromide (CTAB), 2% OP-10, 3% to 4% biopolymer (XC) in water successively, stirring it at a shear rate of 6000 to 8000 r/min for 15 minutes and treating it with ultrasonic at a frequency of 28 KHz for 30 to 40 minutes. The dispersed nCaCO3 was characterized with scanning electron microscope (SEM), transmission electron microscope (TEM) and particle size distribution (PSD) tests. We found that nCaCO3 could be dispersed to below 100 nm in water and the medium value of nCaCO3 was below 50 nm. This method paved the way for the utilization of nCaCO3 in drilling fluid and completion fluid for low permeability reservoirs such as coal seams and shale gas/oil formations. PMID:26682370

  10. A novel method of atomization with potential gas turbine applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Arthur H.

    1988-10-01

    In conventional airblast or air-assist nozzles the bulk liquid to be atomized is first transformed into a jet or sheet before being exposed to the atomizing air. In the method of atomization described in this paper, the air is introduced into the bulk liquid at some point upstream of the nozzle discharge orifice. This injected air forms bubbles which 'explode' downstream of the injection orifice thereby shattering the liquid into small drops. Experiments carried out on this atomizer, using water as the working fluid and nitrogen as the driving gas, show that good atomization can be achieved using only small amounts of atomizing gas at injection pressures as low as 173 kPa (25 psi). It is found that atomization quality is largely independent of the size of the nozzle discharge orifice. Thus, the system appears to have good potential for applications where small holes and passages cannot be employed due to the risk of blockage by contaminants in the fuel.

  11. Applications of Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.

    2004-01-01

    Initial steps in the application o f a low-order panel method computational fluid dynamic (CFD) code to the calculation of aircraft dynamic stability and control (S&C) derivatives are documented. Several capabilities, unique to CFD but not unique to this particular demonstration, are identified and demonstrated in this paper. These unique capabilities complement conventional S&C techniques and they include the ability to: 1) perform maneuvers without the flow-kinematic restrictions and support interference commonly associated with experimental S&C facilities, 2) easily simulate advanced S&C testing techniques, 3) compute exact S&C derivatives with uncertainty propagation bounds, and 4) alter the flow physics associated with a particular testing technique from those observed in a wind or water tunnel test in order to isolate effects. Also presented are discussions about some computational issues associated with the simulation of S&C tests and selected results from numerous surface grid resolution studies performed during the course of the study.

  12. Illustrated structural application of universal first-order reliability method

    NASA Technical Reports Server (NTRS)

    Verderaime, V.

    1994-01-01

    The general application of the proposed first-order reliability method was achieved through the universal normalization of engineering probability distribution data. The method superimposes prevailing deterministic techniques and practices on the first-order reliability method to surmount deficiencies of the deterministic method and provide benefits of reliability techniques and predictions. A reliability design factor is derived from the reliability criterion to satisfy a specified reliability and is analogous to the deterministic safety factor. Its application is numerically illustrated on several practical structural design and verification cases with interesting results and insights. Two concepts of reliability selection criteria are suggested. Though the method was developed to support affordable structures for access to space, the method should also be applicable for most high-performance air and surface transportation systems.

  13. Remote sensing applications of the extended radiosity method

    SciTech Connect

    Gerstl, S.A.W.; Borel, C.C.

    1992-01-01

    In this paper we describe the progress made in the last three years on developing the radiosity method for remote sensing applications. The research covered canopy modeling, volumetric scattering and atmospheric corrections for future analysis of EOS imaging spectrometer data.

  14. Applications of Ferrate(VI) to Wastewater Reclamation and Water Treatment

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choi, H.; Lee, K.; Nam, J.; Kim, I.

    2010-12-01

    The estimated amount of water resources is about 63 billion cubic meters in Korea. However, due to the lack of precipitation during the dry season, natural flows are not enough for the water supply. In addition, since the lack of water affects water quality, environmental problems are occurred in natural and social systems. In this study, we investigated the application feasibility of ferrate(VI) systems to water and wastewater treatment. And we'd like to suggest an alternative solution for conservation and efficient reuse of the limited water resources. In the research area of environmental applications, a primary interest has been focused to the power of ferrate(VI) systems in the decomposition of pollutants in wastewater and industrial effluents due to its potential use as a strong, relatively non-toxic, and oxidizing agent for diverse environmental contaminants. Also ferrate(VI) has additional advantages as a very efficient coagulant and a sorbent of pollutants. We have analysed and compared several ferrate(VI) manufacturing processes, especially focused on the electro chemical methods(Fig. 1). And we have investigated the applications of the manufactured ferrate(VI) in our own laboratory and the commercial ferrate(VI) to decomposition of persistent organic pollutants in water. Under optimal conditions, the removal efficiencies of 2-chlorophenol and benzothiophene were above 90%(Fig. 2). The ferrate system(VI) is promising and can be one of the most efficient alternatives among the advanced oxidation processes(AOPs) for degradation of persistent organic pollutants, and is an innovative technology for the wastewater reclamation, water reusing systems, and water treatment systems. Fig 1. Comparison of Electro-Chemical Ferrate(VI) manufacturing Processes Fig 2. Degradation of 2-Chlorophenol and Bezothiophene by Ferrate. (Experimental Conditions : 2-CP = 3ppm, BT = 5ppm, NaClO4 = 0.05M)

  15. Automated ground-water monitoring with robowell-Case studies and potential applications

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.; ,

    2001-01-01

    Robowell is an automated system and method for monitoring ground-water quality. Robowell meets accepted manual-sampling protocols without high labor and laboratory costs. Robowell periodically monitors and records water-quality properties and constituents in ground water by pumping a well or multilevel sampler until one or more purge criteria have been met. A record of frequent water-quality measurements from a monitoring site can indicate changes in ground-water quality and can provide a context for the interpretation of laboratory data from discrete samples. Robowell also can communicate data and system performance through a remote communication link. Remote access to ground-water data enables the user to monitor conditions and optimize manual sampling efforts. Six Robowell prototypes have successfully monitored ground-water quality during all four seasons of the year under different hydrogeologic conditions, well designs, and geochemical environments. The U.S. Geological Survey is seeking partners for research with robust and economical water-quality monitoring instruments designed to measure contaminants of concern in conjunction with the application and commercialization of the Robowell technology. Project publications and information about technology transfer opportunities are available on the Internet at URL http://ma.water.usgs.gov/automon/.

  16. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  17. Optical scattering methods applicable to drops and bubbles

    NASA Technical Reports Server (NTRS)

    Marston, Philip L.

    1990-01-01

    An overview of optical scattering properties of drops and bubbles is presented. The properties lead to unconventional methods for optically monitoring the size or shape of a scatterer and are applicable to acoustically levitated objects. Several of the methods are applicable to the detection and measurement of small amplitude oscillations. Relevant optical phenomena include: (1) rainbows; (2) diffraction catastrophes from spheroids; (3) critical angle scattering; (4) effects of coatings; (5) glory scattering; and (6) optical levitation.

  18. Instream water use in the United States: water laws and methods for determining flow requirements

    USGS Publications Warehouse

    Lamb, Berton L.; Doerksen, Harvey R.

    1987-01-01

    the conterminous United States consists of about 12,000 miles of maintained waterways, over which about 500 million tons of cargo is carried each year (U.S. Army Corps of Engineers, 1988, p. 16). Although not so widely practiced in recent years, streams have been used to dispose of raw waste products from homes, communities, and factories. This use has been discouraged by law and public policy because of public health concerns and the damage it causes to the environment. Beginning in the mid-1960's, other instream uses gained new prominence in the water-resources arena-the assertion of a legal right to a free-flowing stream for biological, recreational, and esthetic purposes. These uses themselves, however, are not new. Riverine habitat always has produced fish, and the beauty of flowing water always has evoked a strong sense of esthetic appreciation. What is new is the emerging legitimacy and awareness of these noneconomic uses under State and Federal laws and regulations. In the past, environmental uses of flowing water were ignored, for the most part, under a long-standing legal tradition that favored offstream uses and certain instream uses that had a strong economic basis. The history of instream-flow policy debate really concerns those recently recognized types of interim uses. Although the more transitional water uses have been protected by law, the recognition of other in stream uses has resulted in substantial changes in State water laws. Although methods for determining the volume of water needed for most traditional water uses are relatively straight-forward and well-established, methods for determining water requirements for the in stream uses have been developed only recently and are continuing to evolve. Water laws that have favored the more traditional water uses, the inherent nature of conflict between instream and offstream water uses, and the special kinds of technological and philosophical problems posed by the "newer" types of instream uses are

  19. Application of biasing techniques to the contributon Monte Carlo method

    SciTech Connect

    Dubi, A.; Gerstl, S.A.W.

    1980-01-01

    Recently, a new Monte Carlo Method called the Contribution Monte Carlo Method was developed. The method is based on the theory of contributions, and uses a new receipe for estimating target responses by a volume integral over the contribution current. The analog features of the new method were discussed in previous publications. The application of some biasing methods to the new contribution scheme is examined here. A theoretical model is developed that enables an analytic prediction of the benefit to be expected when these biasing schemes are applied to both the contribution method and regular Monte Carlo. This model is verified by a variety of numerical experiments and is shown to yield satisfying results, especially for deep-penetration problems. Other considerations regarding the efficient use of the new method are also discussed, and remarks are made as to the application of other biasing methods. 14 figures, 1 tables.

  20. Water Interactions with Micronized Lunar Analogs and Application to the Behavior of Water on the Moon

    NASA Astrophysics Data System (ADS)

    Poston, M.; Grieves, G. A.; Aleksandrov, A.; Hibbitts, C.; Dyar, M. D.; McLain, J.; Johnson, M. A.; Orlando, T. M.

    2011-12-01

    Temperature Program Desorption (TPD) experiments were performed to measure the thermal desorption activation energies of water on lunar regolith analogs. These data provide constraints for modeling water transport and possible formation on/in the lunar regolith, with likely application to other rocky airless solar system bodies as well. Mechanically micronized JSC-1A was chosen to simulate lunar mare regions, micronized albite was used to represent feldspars in the lunar highlands, and synthetic basaltic glass similar to Apollo glasses were examined to constrain the importance of amorphous vs. crystalline phase1 of the lunar surface materials. Water desorption was observed during the initial heating of both mineral samples to 750 K under ultra-high vacuum, with Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) spectra indicating probable recombinative desorption of hydroxyls above ~450 - 500 K. After then intentionally dosing extrinsic water, no dissociative chemisorption of water (i.e. formation of surface hydroxyl sites) was observed on these samples over laboratory timescales. However, JSC-1A and albite were found to have a distribution of molecular chemisorption sites for water with albite samples having at least twice as many as the JSC-1A by mass. The glass slab only exhibited physisorption of water as ice2. Assuming diffusion to be negligible on the experimental timescale, fitting the TPD profile required a distribution function with desorption activation energies ranging from ~0.45 eV (multilayer water ice) up to 1.3 eV3. This distribution function was then used to estimate the concentration of water that could survive the lunar diurnal heating cycle following a saturating pulse of water (such as from a wet impactor). The estimate showed water concentrations would decrease with decreasing latitude (i.e. with increasing maximum surface temperature). Making the assumption that the water exposure had sampled the entire powder film during our

  1. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    SciTech Connect

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  2. [Application of the method of one-day learning in a Morris water maze to analyse the effects of sleep deprivation on memory trace recall 24 hours later, after learning].

    PubMed

    Dorokhov, V B; Kozhedub, R G; Arsenyev, G N; Bukhgolts, O I; Marchenko, V G; Puchkova, A N

    2014-01-01

    The proposed model of a one-day spatial learning is of interest in research of how sleep influences the hippocamp-dependent memory consolidation. We have studied the influence of a one-day total sleep deprivation on spatial memory consolidation in hooded rats after a one-day learning in the Morris water maze according to Feldman et al. [2010] protocol. According to it rats had to find a submerged platform that was alternatively marked by a flag or completely invisible to an animal. In a previous study [Dorokhov et al., 2011] we have used another one-day learning protocol [Frick et al., 2000] and Wistar rats and have demonstrated a large interindividual variance in learning parameters and sleep deprivation effects on memory consolidation. In this study we confirm previously acquired results on negative impact of sleep deprivation on spatial memory consolidation. To demonstrate the effects of sleep deprivation on the results of one-day learning we are using for the first time an evaluation of the time spent by an animal in the area of the platform placement and corresponding areas in the other quadrants of the water maze.

  3. High performance concentration method for viruses in drinking water.

    PubMed

    Kunze, Andreas; Pei, Lu; Elsässer, Dennis; Niessner, Reinhard; Seidel, Michael

    2015-09-15

    According to the risk assessment of the WHO, highly infectious pathogenic viruses like rotaviruses should not be present in large-volume drinking water samples of up to 90 m(3). On the other hand, quantification methods for viruses are only operable in small volumes, and presently no concentration procedure for processing such large volumes has been reported. Therefore, the aim of this study was to demonstrate a procedure for processing viruses in-line of a drinking water pipeline by ultrafiltration (UF) and consecutive further concentration by monolithic filtration (MF) and centrifugal ultrafiltration (CeUF) of viruses to a final 1-mL sample. For testing this concept, the model virus bacteriophage MS2 was spiked continuously in UF instrumentation. Tap water was processed in volumes between 32.4 m(3) (22 h) and 97.7 m(3) (72 h) continuously either in dead-end (DE) or cross-flow (CF) mode. Best results were found by DE-UF over 22 h. The concentration of MS2 was increased from 4.2×10(4) GU/mL (genomic units per milliliter) to 3.2×10(10) GU/mL and from 71 PFU/mL to 2×10(8) PFU/mL as determined by qRT-PCR and plaque assay, respectively.

  4. 33 CFR 151.2035 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in Waters of the United States § 151.2035 Implementation schedule for approved ballast water management methods. (a) To discharge ballast water into waters of the United States, the...

  5. Transferable ab Initio Dipole Moment for Water: Three Applications to Bulk Water.

    PubMed

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M

    2016-03-01

    We recently reported a second-generation, ab initio dipole moment surface (DMS) for water and applied it successfully to the IR spectrum of liquid water at 300 K. Here the transferability of this DMS is demonstrated in three applications. One is the distribution of monomer dipole moments, considering two definitions, and effective atomic charges of liquid water at 300 K and also for a model of ice Ih at 0 K. The second one is a calculation of the dielectric constant of liquid water at 280, 300, 320, 340, 360 K, and the third one is correcting the intensities of the IR spectrum of liquid water at 300 K, obtained using the q-TIP4P/F potential, bringing them into much improved agreement with experiment. For the purpose of obtaining statistical ensembles we use molecular dynamics simulations with the TIP4P+E3B water model developed by Skinner and co-workers. The average monomer dipole moments for 300 K water and 0 K ice Ih are 2.94 and 3.54 D, respectively, in good agreement with literature values. Effective monomer charge distributions are derived from the monomer dipoles and give average values of -1.02 e for O and 0.51 e for H in liquid water, which are also in agreement with values reported from experiment. The calculated dielectric constant of liquid water at the above five temperatures is compared to experiment and is roughly 10-15% lower than experiment.

  6. Remote sensing applications in water resources management by the California Department of Water Resources

    NASA Technical Reports Server (NTRS)

    Brown, B.

    1975-01-01

    The possibility of applying imagery from high altitude aircraft and satellites sensors to water management in California was evaluated. Results from seven applications studies comparing the costs of using high altitude imagery for various purposes to the costs of using conventional data sources, reveal the high altitude imagery to be more cost effective in six cases and equal to conventional data sources in one case. These results also reveal that the imagery provides a level of quality not generally achievable with uncorrected conventional imagery. Although satellite application studies are not yet complete, preliminary results indicate that some definite possibilities exist for employing satellite imagery on an operational basis within the next few years.

  7. RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.

    2008-08-27

    The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

  8. Environmental application of nanotechnology: air, soil, and water.

    PubMed

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  9. Method of cross-linking polyvinyl alcohol and other water soluble resins

    NASA Technical Reports Server (NTRS)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  10. Determination of elemental composition of river water and slime by PIXE method

    SciTech Connect

    Augustyniak, S.; Jarczyk, L.; Lenczowska, J.B.; Rokita, E.; Slominska, D.

    1981-04-01

    The application of PIXE method was developed for determination of concentration of different elements in river water and bottom slime. The internal standard technique was applied for quantitative evaluation of contents of different elements. In case of river water yttrium standard was used in form of yttrium nitrate solution. The measurements for bottom slime was performed with external beam using standards with predetermined concentration of different elements. The concentration of following elements: S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, Hg, Pb was determined with the described procedure. The estimated concentration of elements ranged from about 0.05 to about 200 ppm for water samples and from about 1.5 to about 30000 ppm in bottom slime samples.

  11. Method of generating hydrogen by catalytic decomposition of water

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Bose, Arun C.; Stiegel, Gary J.; Lee, Tae-Hyun

    2002-01-01

    A method for producing hydrogen includes providing a feed stream comprising water; contacting at least one proton conducting membrane adapted to interact with the feed stream; splitting the water into hydrogen and oxygen at a predetermined temperature; and separating the hydrogen from the oxygen. Preferably the proton conducting membrane comprises a proton conductor and a second phase material. Preferable proton conductors suitable for use in a proton conducting membrane include a lanthanide element, a Group VIA element and a Group IA or Group IIA element such as barium, strontium, or combinations of these elements. More preferred proton conductors include yttrium. Preferable second phase materials include platinum, palladium, nickel, cobalt, chromium, manganese, vanadium, silver, gold, copper, rhodium, ruthenium, niobium, zirconium, tantalum, and combinations of these. More preferably second phase materials suitable for use in a proton conducting membrane include nickel, palladium, and combinations of these. The method for generating hydrogen is preferably preformed in the range between about 600.degree. C. and 1,700.degree. C.

  12. Evaluation of Water Treatment Methods for Endocrine Disrupting Compounds

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Murray, K. E.

    2006-05-01

    Endocrine disrupting compounds (EDCs) have caught recent attention as one of the major concerns in the environment. They are known to interfere with the activity of growth-related hormones and usually, as a result, cause disruption in normal functioning of the body. The compounds currently classified as EDCs range from a variety of both natural and synthetic organic compounds and also some heavy metals. Most of these compounds are used in household, pharmaceutical, industrial, agricultural activities, the consumption or usage of which increases with population. There is a lack of detailed chemical and biological analysis as to what concentrations each of these EDCs pose harmless to the environment because of the large number of the suspected compounds. However, several published reports have established that endocrine disruption is observed in aquatic species due to chronic exposure to concentrations of some EDCs as low as a few ng/l. Conventional water treatment facilities do not usually suffice to remove EDCs in concentrations below 1 ng/l. Available technologies for removal of EDCs include adsorption, degradation and membrane treatment. The removal rates, however, are dependant on the properties of the compound, such as molecular weight, water- octanol partition coefficient and vapor pressure; physiochemical conditions of the matrix such as, redox and temperature conditions; type and dose of degrading agent and the concentration of the EDCs. Since, EDCs comprise a vast variety of compounds, their response to each of these treatment methods will be different and hence it is plausible that a single treatment technique will not be sufficient to remove the EDCs to very low concentrations. Based on our review of existing water treatment methods, we believe that a sequential treatment technique that consists of an adsorption, a degradation and finally a fine membrane treatment, each optimized for favorable, efficient and inexpensive removal may be required to remove

  13. An explicit approach to capture diffusive effects in finite water-content method for solving vadose zone flow

    NASA Astrophysics Data System (ADS)

    Zhu, Jianting; Ogden, Fred L.; Lai, Wencong; Chen, Xiangfeng; Talbot, Cary A.

    2016-04-01

    Vadose zone flow problems are usually solved from the Richards equation. Solution to the Richards equation is generally challenging because the hydraulic conductivity and diffusivity in the equation are strongly non-linear functions of water content. The finite water-content method was proposed as an alternative general solution method of the vadose zone flow problem for infiltration, falling slugs, and vadose zone response to water table dynamics based on discretizing the water content domain into numerous bins instead of the traditional spatial discretization. In this study, we develop an improved approach to the original finite water-content method (referred to as TO method hereinafter) that better simulates diffusive effects but retains the robustness of the TO method. The approach treats advection and diffusion separately and considers diffusion on a bin by bin basis. After discretizing into water content bins, we treat the conductivity and diffusivity in individual bins as water content dependent constant evaluated at given water content corresponding to each bin. For each bin, we can solve the flow equations analytically since the hydraulic conductivity and diffusivity can be treated as a constant. We then develop solutions for each bin to determine the diffusive water amounts at each time step. The water amount ahead of the convective front for each bin is redistributed among water content bins to account for diffusive effects. The application of developed solution is straightforward only involving algebraic manipulations at each time step. The method can mainly improve water content profiles, but has no significant difference for the total infiltration rate and cumulative infiltration compared to the TO method. Although the method separately deals with advection and diffusion, it can account for the coupling effects of advection and diffusion reasonably well.

  14. 75 FR 39680 - Santiam Water Control District; Notice of Application Ready for Environmental Analysis, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Energy Regulatory Commission Santiam Water Control District; Notice of Application Ready for... FERC ] 61,159). d. Applicant: Santiam Water Control District. e. Name of Project: Stayton Hydroelectric... 1978, 16 U.S.C. 2705 and 2708. h. Applicant Contact: Brent Stevenson, Santiam Water Control...

  15. Engineering applications of a dynamical state feedback chaotification method

    NASA Astrophysics Data System (ADS)

    Şahin, Savaş; Güzeliş, Cüneyt

    2012-09-01

    This paper presents two engineering applications of a chaotification method which can be applied to any inputstate linearizable (nonlinear) system including linear controllable ones as special cases. In the used chaotification method, a reference chaotic and linear system can be combined into a special form by a dynamical state feedback increasing the order of the open loop system to have the same chaotic dynamics with the reference chaotic system. Promising dc motor applications of the method are implemented by the proposed dynamical state feedback which is based on matching the closed loop dynamics to the well known Chua and also Lorenz chaotic systems. The first application, which is the chaotified dc motor used for mixing a corn syrup added acid-base mixture, is implemented via a personal computer and a microcontroller based circuit. As a second application, a chaotified dc motor with a taco-generator used in the feedback is realized by using fully analog circuit elements.

  16. Applications of Artificial Neural Networks in integrated water management: fiction or future?

    PubMed

    Schulze, F H; Wolf, H; Jansen, H W; van der Veer, P

    2005-01-01

    An Artificial Neural Network (ANN) is nowadays recognized as a very promising tool for relating input data to output data. It is said that the possibilities of artificial neural networks are unlimited. Here we focus on the potential role of neural networks in integrated water management. An Artificial Neural Network (ANN) is a mathematical methodology which describes relations between cause (input data) and effects (output data) irrespective of the process laying behind and without the need for making assumptions considering the nature of the relations. The applications are widespread and vary from optimization of measuring networks, operational water management, prediction of drinking water consumption, on-line steering of wastewater treatment plants and sewage systems, up to more specific applications such as establishing a relationship between the observed erosion of groyne field sediments and the characteristics of passing vessels on the river Rhine. Especially where processes are complex, neural networks can open new possibilities for understanding and modelling these kinds of complex processes. Besides explaining the method of ANN this paper shows different applications. Three examples have been worked out in more detail. An intelligent monitoring system is shown for the on-line prediction of water consumption, ANN are successfully used for sludge cost monitoring and optimizing wastewater treatment and the usage of ANN is shown in optimizing and monitoring water quality measuring networks. An ANN appears to be a multiuse and powerful tool for modelling complex processes.

  17. SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators.

    PubMed

    Neuman, D G; Stauffer, P R; Jacobsen, S; Rossetto, F

    2002-01-01

    This study examines the effect of various thickness water bolus coupling layers on the SAR (Specific Absorption Rate) patterns from Dual Concentric Conductor (DCC) based Conformal Microwave Array (CMA) superficial hyperthermia applicators. Previous theory has suggested that water bolus coupling layers can be considered as a dielectric resonator; therefore, it is possible for the impinging electric field to stimulate volume oscillations and surface wave oscillations inside the water bolus. These spurious oscillations will destructively or constructively interact with the impinging electric field to cause a perturbation of the applicator SAR pattern. An experiment was designed which consisted of mapping the electric field produced by a four element DCC CMA applicator in liquid muscle phantom at depths of 5 and 10mm in front of four different thickness water boli; 0 (no bolus) 4, 9 and 13mm. Using the Finite Difference Time Domain (FDTD) method, SAR distributions were calculated for similar test cases. It was found that for water bolus thicknesses of 9mm or greater, there is a marked perturbation of both experimental and theoretical SAR distributions. It is believed that this perturbation is experimental confirmation of the volume and surface wave oscillation theory described by previous investigators.

  18. Mathematical models of water application for a variable rate irrigating hill-seeder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable rate irrigating hill-seeder can adjust water application automatically according to the difference in soil moisture content in the field to alleviate drought and save water. Two key problems to realize variable rate water application are how to determine the right amount of water for the ...

  19. Mathematic models of water application for a variable rate irrigating hill-seeder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variable rate irrigating hill-seeder can adjust water application automatically according to the difference in soil moisture content in the field to alleviate drought and save water. Two key problems to realize variable rate water application are how to determine the right amount of water for the ...

  20. Silicon carbide composite for light water reactor fuel assembly applications

    NASA Astrophysics Data System (ADS)

    Yueh, Ken; Terrani, Kurt A.

    2014-05-01

    The feasibility of using SiCf-SiCm composites in light water reactor (LWR) fuel designs was evaluated. The evaluation was motivated by the desire to improve fuel performance under normal and accident conditions. The Fukushima accident once again highlighted the need for improved fuel materials that can maintain fuel integrity to higher temperatures for longer periods of time. The review identified many benefits as well as issues in using the material. Issues perceived as presenting the biggest challenges to the concept were identified to be flux gradient induced differential volumetric swelling, fragmentation and thermal shock resistance. The oxidation of silicon and its release into the coolant as silica has been identified as an issue because existing plant systems have limited ability for its removal. Detailed evaluation using available literature data and testing as part of this evaluation effort have eliminated most of the major concerns. The evaluation identified Boiling Water Reactor (BWR) channel, BWR fuel water tube, and Pressurized Water Reactor (PWR) guide tube as feasible applications for SiC composite. A program has been initiated to resolve some of the remaining issues and to generate physical property data to support the design of commercial fuel components.

  1. Spectral reflectance of selected aqueous solutions for water quality applications

    NASA Technical Reports Server (NTRS)

    Querr, M. R.; Waring, R. C.; Holland, W. E.; Nijm, W.; Hale, G. M.

    1972-01-01

    The relative specular reflectances of individual aqueous solutions having a particular chemical salt content were measured in the 2 to 20 micrometers region of the infrared component or radiant flux. Distilled water was the reflectance standard. The angle of incidence was 70.03 deg plus or minus 0.23 deg. Absolute reflectances of the solutions for the same polarization and angle of incidence were computed by use of the measured relative reflectances, one of the Fresnel equations, and the optical constants of distilled water. Phase shift and phase difference spectra were obtained by respectively applying a Kramers-Kronig dispersion analysis to the absolute and relative reflectance spectra. The optical constants of the solutions were determined by algorithms commonly associated with the Kramers-Kronig analysis. Spectral signatures that qualitatively and quantitatively characterize the solute and that show structure of the infrared bands of water were noted in the phase difference spectra. The relative and absolute reflectances, the phase shift and phase difference spectra and the optical constants are presented in graphical form. Application of these results to remote sensing of the chemical quality of natural waters is discussed briefly.

  2. Coordinating standards and applications for optical water quality sensor networks

    USGS Publications Warehouse

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  3. On multidisciplinary research on the application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This research is directed toward development of a practical, operational remote sensing water quality monitoring system. To accomplish this, five fundamental aspects of the problem have been under investigation during the past three years. These are: (1) development of practical and economical methods of obtaining, handling and analyzing remote sensing data; (2) determination of the correlation between remote sensed imagery and actual water quality parameters; (3) determination of the optimum technique for monitoring specific water pollution parameters and for evaluating the reliability with which this can be accomplished; (4) determination of the extent of masking due to depth of penetration, bottom effects, film development effects, and angle falloff, and development of techniques to eliminate or minimize them; and (5) development of operational procedures which might be employed by a municipal, state or federal agency for the application of remote sensing to water quality monitoring, including space-generated data.

  4. Field Evaluation of a Semiautomated Method for Rapid and Simple Analysis of Recreational Water Microbiological Quality

    PubMed Central

    Anglès d'Auriac, Marc B.; Roberts, Hildegarde; Shaw, Terri; Sirevåg, Reidun; Hermansen, Leonila Fajardo; Berg, James D.

    2000-01-01

    An early warning system using a rapid enzymatic semiautomated method suitable for fecal coliform detection in recreational waters within 8 h was developed further and evaluated in this study. This rapid method was compared to the standard method followed in the United Kingdom. We used 1,011 samples originating from 206 different locations in Wales. When we assessed the presence or absence of fecal coliforms, targeting very low levels of contamination, we obtained 83.9% agreement between the rapid method and the lauryl sulfate broth-membrane filtration technique, whereas direct confirmation of the samples processed by the rapid method showed 89.3% agreement. Environmental enzymatic background activity was found to be the main limiting factor for this method. Owing to a specific and integrated handling of the results by the software of the instrument, the percentage of false-positive results (a consequence of enzymatic background) was successfully limited to 2.9% by the direct confirmation evaluation. However, 7.8% false-negative results due to “late-growers” had to be accepted in order to produce results within a working day. At present, the method can be used in a more conservative way to assess the environmental threshold of 100 CFU of fecal coliforms per 100 ml in recreational waters. The implications of our findings with regard to the applicability of rapid enzymatic methods are discussed. PMID:11010890

  5. Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method

    NASA Astrophysics Data System (ADS)

    Mohan, Rajneesh; Drbohlavova, Jana; Hubalek, Jaromir

    2013-12-01

    A biphasic solvothermal reaction method has been used for the synthesis of TiO2 nanoparticles (NPs). In this method, hydrolysis and nucleation occur at the interface of organic phase (titanium (IV) n-propoxide and stearic acid dissolved in toluene) and water phase ( tert-butylamine dissolved in water) resulting in the nucleation of the stearic acid-capped TiO2 NPs. These NPs are hydrophilic due to hydrophobic stearic acid ligands and could be dispersed in toluene, but not in water. These stearic acid-capped TiO2 NPs were surface-modified with 2,3-dimercaptosuccinic acid (DMSA) in order to make them water soluble. The resultant TiO2 NPs were easily redispersed in water without any noticeable aggregation. The Rietveld profile fitting of X-ray diffraction (XRD) pattern of the TiO2 NPs revealed highly crystalline anatase structure. The average crystallite size of TiO2 NPs was calculated to be 6.89 nm, which agrees with TEM results. These results have important implications for the use of TiO2 in biomedical, environmental, and industrial applications.

  6. Decomposition of water Raman stretching band with a combination of optimization methods

    NASA Astrophysics Data System (ADS)

    Burikov, Sergey; Dolenko, Sergey; Dolenko, Tatiana; Patsaeva, Svetlana; Yuzhakov, Viktor

    2010-03-01

    In this study, an investigation of the behaviour of stretching bands of CH and OH groups of water-ethanol solutions at alcohol concentrations ranging from 0 to 96% by volume has been performed. A new approach to decomposition of the wide structureless water Raman band into spectral components based on modern mathematical methods of solution of inverse multi-parameter problems-combination of Genetic Algorithm and the method of Generalized Reduced Gradient-has been demonstrated. Application of this approach to decomposition of Raman stretching bands of water-ethanol solutions allowed obtaining new interesting results practically without a priori information. The behaviour of resolved spectral components of Raman stretching OH band in binary mixture with rising ethanol concentration is in a good agreement with the concept of clathrate-like structure of water-ethanol solutions. The results presented in this paper confirm existence of essential structural rearrangement in water-ethanol solutions at ethanol concentrations 20-30% by volume.

  7. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  8. Project 6: Cumulative Risk Assessment (CRA) Methods and Applications

    EPA Science Inventory

    Project 6: CRA Methods and Applications addresses the need to move beyond traditional risk assessment practices by developing CRA methods to integrate and evaluate impacts of chemical and nonchemical stressors on the environment and human health. Project 6 has three specific obje...

  9. Recent Developments in Quantum Monte Carlo: Methods and Applications

    NASA Astrophysics Data System (ADS)

    Aspuru-Guzik, Alan; Austin, Brian; Domin, Dominik; Galek, Peter T. A.; Handy, Nicholas; Prasad, Rajendra; Salomon-Ferrer, Romelia; Umezawa, Naoto; Lester, William A.

    2007-12-01

    The quantum Monte Carlo method in the diffusion Monte Carlo form has become recognized for its capability of describing the electronic structure of atomic, molecular and condensed matter systems to high accuracy. This talk will briefly outline the method with emphasis on recent developments connected with trial function construction, linear scaling, and applications to selected systems.

  10. Applications of Genetic Methods to NASA Design and Operations Problems

    NASA Technical Reports Server (NTRS)

    Laird, Philip D.

    1996-01-01

    We review four recent NASA-funded applications in which evolutionary/genetic methods are important. In the process we survey: the kinds of problems being solved today with these methods; techniques and tools used; problems encountered; and areas where research is needed. The presentation slides are annotated briefly at the top of each page.

  11. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  12. Impact of animal waste application on runoff water quality in field experimental plots.

    PubMed

    Hill, Dagne D; Owens, William E; Tchoounwou, Paul B

    2005-08-01

    Animal waste from dairy and poultry operations is an economical and commonly used fertilizer in the state of Louisiana. The application of animal waste to pasture lands not only is a source of fertilizer, but also allows for a convenient method of waste disposal. The disposal of animal wastes on land is a potential nonpoint source of water degradation. Water degradation and human health is a major concern when considering the disposal of large quantities of animal waste. The objective of this research was to determine the effect of animal waste application on biological (fecal coliform, Enterobacter spp. and Escherichia coli) and physical/chemical (temperature, pH, nitrate nitrogen, ammonia nitrogen, phosphate, copper, zinc, and sulfate) characteristics of runoff water in experimental plots. The effects of the application of animal waste have been evaluated by utilizing experimental plots and simulated rainfall events. Samples of runoff water were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols. An analysis of temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [1]. In the experimental plots, less time was required in the tilled broiler litter plots for the measured chemicals to decrease below the initial pre-treatment levels. A decrease of over 50% was noted between the first and second rainfall events for sulfate levels. This decrease was seen after only four simulated rainfall events in tilled broiler litter plots whereas broiler litter plots required eight simulated rainfall events to show this same type of reduction. A reverse trend was seen in the broiler litter plots and the tilled broiler plots for potassium. Bacteria numbers

  13. A facile method to fabricate functionally integrated devices for oil/water separation.

    PubMed

    An, Qi; Zhang, Yihe; Lv, Kaikai; Luan, Xinglong; Zhang, Qian; Shi, Feng

    2015-03-14

    In this paper, we present a facile method for the fabrication of a functionally integrated device, which has the multi-functions of the oil-containment boom, oil-sorption material, and water/oil-separating film, through a single immersion step in an ethanol solution of stearic acid. During the simple immersion process, the two dominant factors of superhydrophobicity, surface roughness and low-surface-energy coatings, could be accomplished simultaneously. The as-prepared functionally integrated device with superhydrophobicity/superoleophilicity displayed a lower density than that of water, such that it could float on water and act as an oil-containment boom; an efficient oil-absorbing property, which was attributed to the capillary effect caused by micrometer-sized pore structures and could be used as oil-sorption materials; a high oil/water separating efficiency which was suitable for water/oil-separating film. In this way, the functions of oil collection, absorption, and water/oil separation are integrated into a single device, and these functions could work independently, reducing the cost in terms of energy consumption and being versatile for a wide range of applications. PMID:25685993

  14. 78 FR 22540 - Notice of Public Meeting/Webinar: EPA Method Development Update on Drinking Water Testing Methods...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AGENCY Notice of Public Meeting/Webinar: EPA Method Development Update on Drinking Water Testing Methods...: Notice of public meeting. SUMMARY: The U.S. Environmental Protection Agency (EPA) Office of Ground Water and Drinking Water, Standards and Risk Management Division's Technical Support Center (TSC)...

  15. Drinking water test methods in crisis-afflicted areas: comparison of methods under field conditions.

    PubMed

    Merle, Roswitha; Bleul, Ingo; Schulenburg, Jörg; Kreienbrock, Lothar; Klein, Günter

    2011-11-01

    To simplify the testing of drinking water in crisis-afflicted areas (as in Kosovo in 2007), rapid test methods were compared with the standard test. For Escherichia coli and coliform pathogens, rapid tests were made available: Colilert(®)-18, P/A test with 4-methylumbelliferyl-β-D-glucoronid, and m-Endo Broth. Biochemical differentiation was carried out by Enterotube™ II. Enterococci were determined following the standard ISO test and by means of Enterolert™. Four hundred ninety-nine water samples were tested for E. coli and coliforms using four methods. Following the standard method, 20.8% (n=104) of the samples contained E. coli, whereas the rapid tests detected between 19.6% (m-Endo Broth, 92.0% concordance) and 20.0% (concordance: 93.6% Colilert-18 and 94.8% P/A-test) positive samples. Regarding coliforms, the percentage of concordant results ranged from 98.4% (P/A-test) to 99.0% (Colilert-18). Colilert-18 and m-Endo Broth detected even more positive samples than the standard method did. Enterococci were detected in 93 of 573 samples by the standard method, but in 92 samples by Enterolert (concordance: 99.5%). Considering the high-quality equipment and time requirements of the standard method, the use of rapid tests in crisis-afflicted areas is sufficiently reliable.

  16. StreamStats: A Water Resources Web Application

    USGS Publications Warehouse

    Ries, Kernell G.; Guthrie, John G.; Rea, Alan H.; Steeves, Peter A.; Stewart, David W.

    2008-01-01

    . Streamflow measurements are collected systematically over a period of years at partial-record stations to estimate peak-flow or low-flow statistics. Streamflow measurements usually are collected at miscellaneous-measurement stations for specific hydrologic studies with various objectives. StreamStats is a Web-based Geographic Information System (GIS) application (fig. 1) that was created by the USGS, in cooperation with Environmental Systems Research Institute, Inc. (ESRI)1, to provide users with access to an assortment of analytical tools that are useful for water-resources planning and management. StreamStats functionality is based on ESRI's ArcHydro Data Model and Tools, described on the Web at http://support.esri.com/index.cfm?fa=downloads.dataModels.filteredGateway&dmid=15. StreamStats allows users to easily obtain streamflow statistics, basin characteristics, and descriptive information for USGS data-collection stations and user-selected ungaged sites. It also allows users to identify stream reaches that are upstream and downstream from user-selected sites, and to identify and obtain information for locations along the streams where activities that may affect streamflow conditions are occurring. This functionality can be accessed through a map-based user interface that appears in the user's Web browser (fig. 1), or individual functions can be requested remotely as Web services by other Web or desktop computer applications. StreamStats can perform these analyses much faster than historically used manual techniques. StreamStats was designed so that each state would be implemented as a separate application, with a reliance on local partnerships to fund the individual applications, and a goal of eventual full national implementation. Idaho became the first state to implement StreamStats in 2003. By mid-2008, 14 states had applications available to the public, and 18 other states were in various stages of implementation.

  17. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  18. Domain decomposition methods with applications to fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. A.

    In this presentation, a brief review of domain decomposition methods with emphasis on the applications to solving elliptic problems arising from the Navier-Stokes equations via operator splitting methods is given. The singularly perturbed convection-diffusion equation is chosen as a model problem. We consider both overlapping (multiplicative and additive Schwarz) and nonoverlapping (Neumann-Dirichlet and Neumann-Neumann) domain decomposition methods. Some convergence results for particular cases are presented.

  19. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    ERIC Educational Resources Information Center

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  20. Real-time TaqMan polymerase chain reaction detection and quantification of cow DNA in pure water buffalo mozzarella cheese: method validation and its application on commercial samples.

    PubMed

    Lopparelli, Rosa M; Cardazzo, Barbara; Balzan, Stefania; Giaccone, Valerio; Novelli, Enrico

    2007-05-01

    Mozzarella cheese obtained from buffalo (Bubalus bubalis) milk is a typical Italian product certificated by means of the European Protected Designation of Origin (PDO). Mozzarella cheese can also be obtained from bovine milk or bovine/buffalo milk mixtures, but in this case, it cannot be sold as PDO product, and its label must report the actual ingredients. However, bovine milk in PDO products was frequently detected in the past, suggesting fraudulent addition or accidental contamination. Several methods based on end-point polymerase chain reaction (PCR) have been profitably applied in a large number of tests to detect the presence of undeclared ingredients, also in dairy products. In the present study we report a real-time PCR method able to quantify bovine milk addition to pure buffalo cheese products. We validated a normalized procedure based on two targets: bovine mitochondrial cytochrome b (cyt b) to detect and quantify the bovine DNA and nuclear growth hormone (GH) gene used as a universal reference marker. With the use of this real-time PCR assay, 64 commercial mozzarella di bufala cheese samples purchased at local supermarkets, dairy shops, or directly from cheese manufacturers were analyzed. The results obtained demonstrate that most of the commercial samples were contaminated with bovine milk. Therefore, this assay could be conveniently employed to carry out routine and accurate controls aimed not only to discourage any fraudulent behavior but also to reduce risks for consumer health.