Science.gov

Sample records for application methods water

  1. Ground water modeling applications using the analytic element method.

    PubMed

    Hunt, Randall J

    2006-01-01

    Though powerful and easy to use, applications of the analytic element method are not as widespread as finite-difference or finite-element models due in part to their relative youth. Although reviews that focus primarily on the mathematical development of the method have appeared in the literature, a systematic review of applications of the method is not available. An overview of the general types of applications of analytic elements in ground water modeling is provided in this paper. While not fully encompassing, the applications described here cover areas where the method has been historically applied (regional, two-dimensional steady-state models, analyses of ground water-surface water interaction, quick analyses and screening models, wellhead protection studies) as well as more recent applications (grid sensitivity analyses, estimating effective conductivity and dispersion in highly heterogeneous systems). The review of applications also illustrates areas where more method development is needed (three-dimensional and transient simulations).

  2. How to save water by choice of irrigation application method

    USDA-ARS?s Scientific Manuscript database

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  3. Application of improved extension evaluation method to water quality evaluation

    NASA Astrophysics Data System (ADS)

    Wong, Heung; Hu, Bao Qing

    2014-02-01

    The extension evaluation method (EEM) has been developed and applied to evaluate water quality. There are, however, negative values in the correlative degree (water quality grades from EEM) after the calculation. This is not natural as the correlative degree is essentially an index based on grades (rankings) of water quality by different methods, which are positive. To overcome this negativity issue, the interval clustering approach (ICA) was introduced, which is based on the grey clustering approach (GCA) and interval-valued fuzzy sets. However, the computing process and formulas of ICA are rather complex. This paper provides a novel method, i.e., improved extension evaluation method, so as to avoid negative values in the correlative degree. To demonstrate our proposed approach, the improved EEM is applied to evaluate the water quality of three different cross-sections of the Fen River, the second major branch river of the Yellow River in China and the Han Jiang River, one of the major branch rivers of the Yangtse River in China. The results of the improved evaluation method are basically the same as the official water quality. The proposed method possesses also the same merit as the EEM and ICA method, which can be applied to assess water quality when the levels of attributes are defined in terms of intervals in the water quality criteria. Existing methods are mostly applicable to data in the form of single numeric values.

  4. Troubled waters: Environmental applications of electrical and electromagnetic methods

    NASA Astrophysics Data System (ADS)

    Nobes, David C.

    1996-07-01

    existing technology has lead to the development of fresh instruments, such as electrode arrays towed across the ground, resistivity logging while drilling, fast-rise time TEM, NMR combined with TEM, electric quadripole, et cetera. The applications of E & EM methods cover a wide range of geographic areas and groundwater problems, but have had particularly wide use for groundwater exploration in arid and semi-arid regions, for mapping and monitoring salt-water incursion in susceptible aquifers, and for mapping and monitoring contaminants.

  5. Water footprint assessment for wastewater treatment: method, indicator, and application.

    PubMed

    Shao, Ling; Chen, G Q

    2013-07-16

    The water footprint in terms of the sum of both direct and indirect water cost of wastewater treatment is for the first time accounted in this work. On the basis of the hybrid method as a combination of process analysis and input-output analysis, a detailed water footprint accounting procedure is provided to cover the supply chain of a wastewater treatment plant. A set of indices intending to reveal the efficiency as well as renewability of wastewater treatment systems are devised as parallels of corresponding indicators in net energy analysis for energy supply systems. A case study is carried out for the Beijing Space City wastewater treatment plant as a landmark project. The high WROI (water return on investment) and low WIWP (water investment in water purified) indicate a high efficiency and renewability of the case system, illustrating the fundamental function of wastewater treatment for water reuse. The increasing of the wastewater and sludge treatment rates are revealed in an urgent need to reduce the water footprint of China and to improve the performance of wastewater treatment.

  6. Liposome/water lipophilicity: methods, information content, and pharmaceutical applications.

    PubMed

    van Balen, Georgette Plemper; Martinet, Catherine a Marca; Caron, Giulia; Bouchard, Géraldine; Reist, Marianne; Carrupt, Pierre-Alain; Fruttero, Roberta; Gasco, Alberto; Testa, Bernard

    2004-05-01

    This review discusses liposome/water lipophilicity in terms of the structure of liposomes, experimental methods, and information content. In a first part, the structural properties of the hydrophobic core and polar surface of liposomes are examined in the light of potential interactions with solute molecules. Particular emphasis is placed on the physicochemical properties of polar headgroups of lipids in liposomes. A second part is dedicated to three useful methods to study liposome/water partitioning, namely potentiometry, equilibrium dialysis, and (1)H-NMR relaxation rates. In each case, the principle and limitations of the method are discussed. The next part presents the structural information encoded in liposome/water lipophilicity, in other words the solutes' structural and physicochemical properties that determine their behavior and hence their partitioning in such systems. This presentation is based on a comparison between isotropic (i.e., solvent/water) and anisotropic (e.g., liposome/water) systems. An important factor to be considered is whether the anisotropic lipid phase is ionized or not. Three examples taken from the authors' laboratories are discussed to illustrate the factors or combinations thereof that govern liposome/water lipophilicity, namely (a) hydrophobic interactions alone, (b) hydrophobic and polar interactions, and (c) conformational effects plus hydrophobic and ionic interactions. The next part presents two studies taken from the field of QSAR to exemplify the use of liposome/water lipophilicity in structure-disposition and structure-activity relationships. In the conclusion, we summarize the interests and limitations of this technology and point to promising developments.

  7. Metropolitan Water Availability Forecasting Methods and Applications in South Florida

    EPA Science Inventory

    The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...

  8. Metropolitan Water Availability Forecasting Methods and Applications in South Florida

    EPA Science Inventory

    The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...

  9. Are fragment-based quantum chemistry methods applicable to medium-sized water clusters?

    PubMed

    Yuan, Dandan; Shen, Xiaoling; Li, Wei; Li, Shuhua

    2016-06-28

    Fragment-based quantum chemistry methods are either based on the many-body expansion or the inclusion-exclusion principle. To compare the applicability of these two categories of methods, we have systematically evaluated the performance of the generalized energy based fragmentation (GEBF) method (J. Phys. Chem. A, 2007, 111, 2193) and the electrostatically embedded many-body (EE-MB) method (J. Chem. Theory Comput., 2007, 3, 46) for medium-sized water clusters (H2O)n (n = 10, 20, 30). Our calculations demonstrate that the GEBF method provides uniformly accurate ground-state energies for 10 low-energy isomers of three water clusters under study at a series of theory levels, while the EE-MB method (with one water molecule as a fragment and without using the cutoff distance) shows a poor convergence for (H2O)20 and (H2O)30 when the basis set contains diffuse functions. Our analysis shows that the neglect of the basis set superposition error for each subsystem has little effect on the accuracy of the GEBF method, but leads to much less accurate results for the EE-MB method. The accuracy of the EE-MB method can be dramatically improved by using an appropriate cutoff distance and using two water molecules as a fragment. For (H2O)30, the average deviation of the EE-MB method truncated up to the three-body level calculated using this strategy (relative to the conventional energies) is about 0.003 hartree at the M06-2X/6-311++G** level, while the deviation of the GEBF method with a similar computational cost is less than 0.001 hartree. The GEBF method is demonstrated to be applicable for electronic structure calculations of water clusters at any basis set.

  10. Application of the conjugate-gradient method to ground-water models

    USGS Publications Warehouse

    Manteuffel, T.A.; Grove, D.B.; Konikow, L.F.

    1984-01-01

    The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)

  11. A new method for qualitative simulation of water resources systems: 2. Applications

    NASA Astrophysics Data System (ADS)

    Antunes, M. P.; Seixas, M. J.; Camara, A. S.; Pinheiro, M.

    1987-11-01

    SLIN (Simulação Linguistica) is a new method for qualitative dynamic simulation. As was presented previously (Camara et al., this issue), SLIN relies upon a categorical representation of variables which are manipulated by logical rules. Two applications to water resources systems are included to illustrate SLIN's potential usefulness: the environmental impact evaluation of a hydropower plant and the assessment of oil dispersion in the sea after a tanker wreck.

  12. Water-budget methods

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    A water budget is an accounting of water movement into and out of, and storage change within, some control volume. Universal and adaptable are adjectives that reflect key features of water-budget methods for estimating recharge. The universal concept of mass conservation of water implies that water-budget methods are applicable over any space and time scales (Healy et al., 2007). The water budget of a soil column in a laboratory can be studied at scales of millimeters and seconds. A water-budget equation is also an integral component of atmospheric general circulation models used to predict global climates over periods of decades or more. Water-budget equations can be easily customized by adding or removing terms to accurately portray the peculiarities of any hydrologic system. The equations are generally not bound by assumptions on mechanisms by which water moves into, through, and out of the control volume of interest. So water-budget methods can be used to estimate both diffuse and focused recharge, and recharge estimates are unaffected by phenomena such as preferential flow paths within the unsaturated zone.Water-budget methods represent the largest class of techniques for estimating recharge. Most hydrologic models are derived from a water-budget equation and can therefore be classified as water-budget models. It is not feasible to address all water-budget methods in a single chapter. This chapter is limited to discussion of the “residual” water-budget approach, whereby all variables in a water-budget equation, except for recharge, are independently measured or estimated and recharge is set equal to the residual. This chapter is closely linked with Chapter 3, on modeling methods, because the equations presented here form the basis of many models and because models are often used to estimate individual components in water-budget studies. Water budgets for streams and other surface-water bodies are addressed in Chapter 4. The use of soil-water budgets and

  13. Bacterial contamination of tile drainage water and shallow groundwater under different application methods of liquid swine manure.

    PubMed

    Samarajeewa, A D; Glasauer, S M; Lauzon, J D; O'Halloran, I P; Parkin, Gary W; Dunfield, K E

    2012-05-01

    A 2 year field experiment evaluated liquid manure application methods on the movement of manure-borne pathogens (Salmonella sp.) and indicator bacteria (Escherichia coli and Clostridium perfringens) to subsurface water. A combination of application methods including surface application, pre-application tillage, and post-application incorporation were applied in a randomized complete block design on an instrumented field site in spring 2007 and 2008. Tile and shallow groundwater were sampled immediately after manure application and after rainfall events. Bacterial enumeration from water samples showed that the surface-applied manure resulted in the highest concentration of E. coli in tile drainage water. Pre-tillage significantly (p < 0.05) reduced the movement of manure-based E. coli and C. perfringens to tile water and to shallow groundwater within 3 days after manure application (DAM) in 2008 and within 10 DAM in 2007. Pre-tillage also decreased the occurrence of Salmonella sp. in tile water samples. Indicator bacteria and pathogens reached nondetectable levels within 50 DAM. The results suggest that tillage before application of liquid swine manure can minimize the movement of bacteria to tile and groundwater, but is effective only for the drainage events immediately after manure application or initial rainfall-associated drainage flows. Furthermore, the study highlights the strong association between bacterial concentrations in subsurface waters and rainfall timing and volume after manure application.

  14. Toward a generic method for studying water renewal, with application to the epilimnion of Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Gourgue, Olivier; Deleersnijder, Eric; White, Laurent

    2007-09-01

    We present a method, based on the concept of age and residence time, to study the water renewal in a semi-enclosed domain. We split the water of this domain into different water types. The initial water is the water initially present in the semi-enclosed domain. The renewing water is defined as the water entering the domain of interest. Several renewing water types may be considered depending on their origin. We present the equations for computing the age and the residence time of a certain water type. These timescales are of use to understand the rate at which the water renewal takes place. Computing these timescales can be achieved at an acceptable extra computer cost. The above-mentioned method is applied to study the renewal of epilimnion (i.e. the surface layer) water in Lake Tanganyika. We have built a finite element reduced-gravity model modified to take into account the water exchange between the epilimnion and the hypolimnion (i.e. the bottom layer), the water supply from precipitation and incoming rivers, and the water loss from evaporation and the only outgoing river. With our water renewal diagnoses, we show that the only significant process in the renewal of epilimnion water in Lake Tanganyika is the water exchange between the epilimnion and the hypolimnion, other phenomena being negligible.

  15. Irrigation water sources and irrigation application methods used by U.S. plant nursery producers

    NASA Astrophysics Data System (ADS)

    Paudel, Krishna P.; Pandit, Mahesh; Hinson, Roger

    2016-02-01

    We examine irrigation water sources and irrigation methods used by U.S. nursery plant producers using nested multinomial fractional regression models. We use data collected from the National Nursery Survey (2009) to identify effects of different firm and sales characteristics on the fraction of water sources and irrigation methods used. We find that regions, sales of plants types, farm income, and farm age have significant roles in what water source is used. Given the fraction of alternative water sources used, results indicated that use of computer, annual sales, region, and the number of IPM practices adopted play an important role in the choice of irrigation method. Based on the findings from this study, government can provide subsidies to nursery producers in water deficit regions to adopt drip irrigation method or use recycled water or combination of both. Additionally, encouraging farmers to adopt IPM may enhance the use of drip irrigation and recycled water in nursery plant production.

  16. [Development and Applicability of Analytical Methods for Quantifying Cyanide and Bromic Acid in Mineral Waters].

    PubMed

    Fukuda, Yusaku; Kataoka, Yohei; Sano, Yuki; Takizawa, Kazuhiro; Watanabe, Takahiro; Teshima, Reiko

    2015-01-01

    We developed and evaluated methods of quantifying cyanide (cyanide ion and cyanogen chloride) and bromic acid in mineral waters (MW). After performance evaluation, recovery studies were performed on 110 kinds of MW products to examine the applicability of the methods. The approximate proportion of the MW samples, in which the recovery rate of these anionic compounds was within 90 to 110%, was 95% in the cyanide ion and bromic acid analysis and 45% in the cyanogen chloride analysis. We observed low rates of recovery of cyanogen chloride from some MW products with pH values around neutral. To increase the recovery rate, we propose adding phosphoric acid buffer to adjust the pH of these MW samples. The retention times for bromic acid in some MW products differed from that in standard solution. We concluded that carbonic acid influences the retention times. It may be necessary to to exclude carbon dioxide from the MW samples by degassing to synchronize the retention times of bromic acid in the MW samples and the standard solution.

  17. Corn yield and water use efficiency under contrasting irrigation application methods: an AquaCrop study contrasting subsurface drip and sprinkler irrigation methods

    USDA-ARS?s Scientific Manuscript database

    Grain corn (Zea mays, L.) is sensitive to soil water availability, which can be influenced by irrigation application method. Four facts motivate deficit irrigation of corn in this region. First, declining Ogallala aquifer well yields limit water availability and thus the area of land that can be irr...

  18. A new method of calculating electrical conductivity with applications to natural waters

    NASA Astrophysics Data System (ADS)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004-0.7 mol kg-1), temperature (0-95 °C), pH (1-10), and conductivity (30-70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4-substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  19. A new method of calculating electrical conductivity with applications to natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.; Ball, James W.

    2012-01-01

    A new method is presented for calculating the electrical conductivity of natural waters that is accurate over a large range of effective ionic strength (0.0004–0.7 mol kg-1), temperature (0–95 °C), pH (1–10), and conductivity (30–70,000 μS cm-1). The method incorporates a reliable set of equations to calculate the ionic molal conductivities of cations and anions (H+, Li+, Na+, K+, Cs+, NH4+, Mg2+, Ca2+, Sr2+, Ba2+, F-, Cl-, Br-, SO42-, HCO3-, CO32-, NO3-, and OH-), environmentally important trace metals (Al3+, Cu2+, Fe2+, Fe3+, Mn2+, and Zn2+), and ion pairs (HSO4-, NaSO4-, NaCO3-, and KSO4-). These equations are based on new electrical conductivity measurements for electrolytes found in a wide range of natural waters. In addition, the method is coupled to a geochemical speciation model that is used to calculate the speciated concentrations required for accurate conductivity calculations. The method was thoroughly tested by calculating the conductivities of 1593 natural water samples and the mean difference between the calculated and measured conductivities was -0.7 ± 5%. Many of the samples tested were selected to determine the limits of the method and include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. Transport numbers were calculated and H+, Na+, Ca2+, Mg2+, NH4+, K+, Cl-, SO42-, HCO3-, CO32-, F-, Al3+, Fe2+, NO3-, and HSO4- substantially contributed (>10%) to the conductivity of at least one of the samples. Conductivity imbalance in conjunction with charge imbalance can be used to identify whether a cation or an anion measurement is likely in error, thereby providing an additional quality assurance/quality control constraint on water analyses.

  20. Application of multivariate statistical methods and water-quality index to evaluation of water quality in the Kashkan River.

    PubMed

    Mostafaei, Abazar

    2014-04-01

    The Kashkan River (KR), located in the west of Iran, is a major source of water supply for residential and agricultural areas as well as livestock. The objective of this study was to assess the spatial and long temporal variations of surface water quality of the KR based on measured chemical ions. The Canadian Council of Ministers of Environment Water Quality Index (CCME WQI) technique was utilized using measurements from 10 sampling stations during a period of 36 years (1974-2009). The measured data included cations (Na⁺, K⁺, Ca²⁺, Mg²⁺), anions (HCO(3)⁻, Cl⁻, SO(4)²⁻), pH, and electrical conductivity. Principal component analysis was performed to identify which of the parameters to be included in the CCME WQI calculations were actually correlated and which ones were responsible for most of the variance observed in the water-quality data. In addition, KR water quality was evaluated for its suitability for drinking and irrigation purposes using conventional methods. Last, trend detection in the WQI time series of the KR showed water-quality degradation at all sampling stations, whereas the Jelhool sub-basin more adversely affects the quality of KR water in the watershed. Nonetheless, on average, the water quality of the KR was rated as fair.

  1. [The establishment and application of the method with virus concentration and detection in drinking water].

    PubMed

    Ye, Xiao-yan; Xiao, Wen-qing; Huang, Xia-ning; Zhang, Yong-lu; Cao, Yu-guang; Gu, Kang-ding

    2012-07-01

    This study aimed to construct an effective method to concentrate and detect virus in drinking water, and human adenovirus pollution status in actual water samples was monitored by constructed method. The concentration efficient of NanoCeram filter for the first concentration with source water and drinking water and the concentration efficient of the different concentrations of PEG 8000 for the second concentration were assessed by spiking f₂ bacteriophage into water samples. The standard of human adenovirus for real-time PCR was constructed by T-A clone. The plasmid obtained was identified through sequence analyzing and consistency check comparing to target gene fragment was conducted by using blast algorithm. Then, real-time PCR was constructed to quantify the concentration of human adenovirus using the plasmid as standard. Water samples were concentrated by using NanoCeram filter on the spot and then concentrated for the second time by PEG/NaCl in 2011. The DNA of concentrated samples were extracted for the quantification of human adenovirus in real-time PCR subsequently to monitor the pollution of human adenovirus in water. For the first concentration by NanoCeram filter, the recovery rates were (51.63 ± 26.60)% in source water and (50.27 ± 14.35)% in treated water, respectively. For the second concentration, the highest recovery rate was reached to (90.09 ± 10.50)% at the concentration of 0.13 kg/L of PEG 8000. The sequence identity score of standard of adenovirus for real time PCR and adenovirus gene was 99%, implying that it can be successfully used to quantification with human adenovirus. The levels of human adenovirus in the water samples sampled in 2011 ranged from 4.13×10³ to 2.20×10⁶ copies/L in source water, while range from 5.57×10² to 7.52×10⁵ copies/L in treated water and the removal efficiency range was (75.49 ± 11.71)%. NanoCeram filers combined with PEG/NaCl was an effective method to concentrate virus in aquatic environment. There

  2. Adaptation strategies for water supply management in a drought prone Mediterranean river basin: Application of outranking method.

    PubMed

    Kumar, Vikas; Del Vasto-Terrientes, Luis; Valls, Aida; Schuhmacher, Marta

    2016-01-01

    The regional water allocation planning is one of those complex decision problems where holistic approach to water supply management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. Objective of this paper is to develop scenarios for the future imbalances in water supply and demand for a water stressed Mediterranean area of Northern Spain (Tarragona) and to test the applicability and suitability of an outranking method ELECTRE-III-H for evaluating sectoral water allocation policies. This study is focused on the use of alternative water supply scenarios to fulfil the demand of water from three major sectors: domestic, industrial and agricultural. A detail scenario planning for regional water demand and supply has been discussed. For each future scenario of climate change, the goal is to obtain a ranking of a set of possible actions with regards to different types of indicators (costs, water stress and environmental impact). The analytical method used is based on outranking models for decision aid with hierarchical structures of criteria and ranking alternatives using partial preorders based on pairwise preference relations. We compare several adaptation measures including alternative water sources (reclaimed water and desalination); inter basin water transfer and sectoral demand management coming from industry, agriculture and domestic sectors and tested the sustainability of management actions for different climate change scenarios. Results have shown use of alternative water resources as the most reliable alternative with medium reclaimed water reuse in industry and agriculture and low to medium use of desalination water in domestic and industrial sectors as the best alternative. The proposed method has several advantages such as the management of heterogeneous scales of measurement without requiring any artificial

  3. Exploring the Application of Community Development Methods on Water Research in Developing Countries

    NASA Astrophysics Data System (ADS)

    Crane, P. E.

    2012-12-01

    In research and community development focused on water in developing countries, there is a common focus on issues of water quantity and quality. In the best circumstances both are innovative - bringing understanding and solutions to resource poor regions that is appropriate to their unique situations. But the underlying methods and measures for success often differ significantly. Applying critical aspects of community development methods to water research in developing countries could increase the probability of identifying innovative and sustainable solutions. This is examined through two case studies: the first identifies common methods across community development projects in six African countries, and the second examines water quality research performed in Benin, West Africa through the lens of these methods. The first case study is taken from observations gathered between 2008 and 2012 of community development projects focused on water quantity and quality in six sub-Saharan African countries implemented through different non-governmental organizations. These projects took place in rural and peri-urban regions where public utilities were few to none, instance of diarrheal disease was high, and most adults had received little formal education. The water projects included drilling of boreholes, building of rain water tanks, oasis rehabilitation, spring protection, and household biosand filters. All solutions were implemented with hygiene and sanitation components. Although these projects occurred in a wide array of cultural, geographical and climatic regions, the most successful projects shared methods of implementation. These methods are: high levels of stakeholder participation, environmental and cultural adaptation of process and product, and implementation over an extended length of time. The second case study focuses on water quality research performed in Benin, West Africa from 2003 to 2008. This research combined laboratory and statistical analyses with

  4. A generic method for projecting and valuing domestic water uses, application to the Mediterranean basin at the 2050 horizon.

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2014-05-01

    The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.

  5. Soil Water Content Assessment: Critical Issues Concerning the Operational Application of the Triangle Method

    PubMed Central

    Maltese, Antonino; Capodici, Fulvio; Ciraolo, Giuseppe; La Loggia, Goffredo

    2015-01-01

    Knowledge of soil water content plays a key role in water management efforts to improve irrigation efficiency. Among the indirect estimation methods of soil water content via Earth Observation data is the triangle method, used to analyze optical and thermal features because these are primarily controlled by water content within the near-surface evaporation layer and root zone in bare and vegetated soils. Although the soil-vegetation-atmosphere transfer theory describes the ongoing processes, theoretical models reveal limits for operational use. When applying simplified empirical formulations, meteorological forcing could be replaced with alternative variables when the above-canopy temperature is unknown, to mitigate the effects of calibration inaccuracies or to account for the temporal admittance of the soil. However, if applied over a limited area, a characterization of both dry and wet edges could not be properly achieved; thus, a multi-temporal analysis can be exploited to include outer extremes in soil water content. A diachronic empirical approach introduces the need to assume a constancy of other meteorological forcing variables that control thermal features. Airborne images were acquired on a Sicilian vineyard during most of an entire irrigation period (fruit-set to ripening stages, vintage 2008), during which in situ soil water content was measured to set up the triangle method. Within this framework, we tested the triangle method by employing alternative thermal forcing. The results were inaccurate when air temperature at airborne acquisition was employed. Sonic and aerodynamic air temperatures confirmed and partially explained the limits of simultaneous meteorological forcing, and the use of proxy variables improved model accuracy. The analysis indicates that high spatial resolution does not necessarily imply higher accuracies. PMID:25808771

  6. Field and laboratory arsenic speciation methods and their application to natural-water analysis

    USGS Publications Warehouse

    Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.

    2004-01-01

    The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.

  7. Application of the SCC-DFTB method to hydroxide water clusters and aqueous hydroxide solutions.

    PubMed

    Choi, Tae Hoon; Liang, Ruibin; Maupin, C Mark; Voth, Gregory A

    2013-05-02

    The self-consistent charge density functional tight binding (SCC-DFTB) method has been applied to hydroxide water clusters and a hydroxide ion in bulk water. To determine the impact of various implementations of SCC-DFTB on the energetics and dynamics of a hydroxide ion in gas phase and condensed phase, the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus, and DFTB3-3OB implementations have been tested. Energetic stabilities for small hydroxide clusters, OH(-)(H2O)n, where n = 4-7, are inconsistent with the results calculated with the B3LYP and second order Møller-Plesset (MP2) levels of ab initio theory. The condensed phase simulations, OH(-)(H2O)127, using the DFTB2, DFTB2-γ(h), DFTB2-γ(h)+gaus, DFTB3-diag, DFTB3-diag+gaus, DFTB3-Full+gaus and DFTB3-3OB methods are compared to Car-Parrinello molecular dynamics (CPMD) simulations using the BLYP functional. The SCC-DFTB method including a modified O-H repulsive potential and the third order correction (DFTB3-diag/Full+gaus) is shown to poorly reproduce the CPMD computational results, while the DFTB2 and DFTB2-γ(h) method somewhat more closely describe the structural and dynamical nature of the hydroxide ion in condensed phase. The DFTB3-3OB outperforms the MIO parameter set but is no more accurate than DFTB2. It is also shown that the overcoordinated water molecules lead to an incorrect bulk water density and result in unphysical water void formation. The results presented in this paper point to serious drawbacks for various DFTB extensions and corrections for a hydroxide ion in aqueous environments.

  8. Application of Method of Variation to Analyze and Predict Human Induced Modifications of Water Resource Systems

    NASA Astrophysics Data System (ADS)

    Dessu, S. B.; Melesse, A. M.; Mahadev, B.; McClain, M.

    2010-12-01

    Water resource systems have often used gravitational surface and subsurface flows because of their practicality in hydrological modeling and prediction. Activities such as inter/intra-basin water transfer, the use of small pumps and the construction of micro-ponds challenge the tradition of natural rivers as water resource management unit. On the contrary, precipitation is barely affected by topography and plot harvesting in wet regions can be more manageable than diverting from rivers. Therefore, it is indicative to attend to systems where precipitation drives the dynamics while the internal mechanics constitutes spectrum of human activity and decision in a network of plots. The trade-in volume and path of harvested precipitation depends on water balance, energy balance and the kinematics of supply and demand. Method of variation can be used to understand and predict the implication of local excess precipitation harvest and exchange on the natural water system. A system model was developed using the variational form of Euler-Bernoulli’s equation for the Kenyan Mara River basin. Satellite derived digital elevation models, precipitation estimates, and surface properties such as fractional impervious surface area, are used to estimate the available water resource. Four management conditions are imposed in the model: gravitational flow, open water extraction and high water use investment at upstream and downstream respectively. According to the model, the first management maintains the basin status quo while the open source management could induce externality. The high water market at the upstream in the third management offers more than 50% of the basin-wide total revenue to the upper third section of the basin thus may promote more harvesting. The open source and upstream exploitation suggest potential drop of water availability to downstream. The model exposed the latent potential of economic gradient to reconfigure the flow network along the direction where the

  9. An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications.

    PubMed

    Chiu, Yi-Ting; Yen, Hung-Kai; Lin, Tsair-Fuh

    2016-11-01

    2-Methylisoborneol (2-MIB) is a commonly detected cyanobacterial odorant in drinking water sources in many countries. To provide safe and high-quality water, development of a monitoring method for the detection of 2-MIB-synthesis (mibC) genes is very important. In this study, new primers MIBS02F/R intended specifically for the mibC gene were developed and tested. Experimental results show that the MIBS02F/R primer set was able to capture 13 2-MIB producing cyanobacterial strains grown in the laboratory, and to effectively amplify the targeted DNA region from 17 2-MIB-producing cyanobacterial strains listed in the literature. The primers were further coupled with a TaqMan probe to detect 2-MIB producers in 29 drinking water reservoirs (DWRs). The results showed statistically significant correlations between mibC genes and 2-MIB concentrations for the data from each reservoir (R(2)=0.413-0.998; p<0.05), from all reservoirs in each of the three islands (R(2)=0.302-0.796; p<0.01), and from all data of the three islands (R(2)=0.473-0.479; p<0.01). The results demonstrate that the real-time PCR can be an alternative method to provide information to managers of reservoirs and water utilities facing 2-MIB-related incidents.

  10. Water treatment method

    DOEpatents

    Martin, F.S.; Silver, G.L.

    1991-04-30

    A method is described for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  11. Water treatment method

    DOEpatents

    Martin, Frank S.; Silver, Gary L.

    1991-04-30

    A method for reducing the concentration of any undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite.

  12. Water treatment method

    SciTech Connect

    Martin, F.S.; Silver, G.L.

    1990-02-02

    A method for reducing the concentration of many undesirable metals dissolved in contaminated water, such as waste water. The method involves uniformly reacting the contaminated water with an excess amount of solid particulate calcium sulfite to insolubilize the undesirable metal ions, followed by removal thereof and of the unreacted calcium sulfite. 1 tab.

  13. A novel method for preventing surface film entrapment of water fleas and its application for toxicity testing with heavy metals.

    PubMed

    Cui, Rongxue; Kwak, Jin Il; An, Youn-Joo

    2017-02-01

    Some water fleas such as Daphnia galeata and Bosmina longirostris are difficult to culture and use in ecotoxicity testing since they can easily become entrapped at the surface film. Cetyl alcohol was the most prevalent chemical used to prevent the entrapment of water fleas in previous studies. However, cetyl alcohol possesses a number of disadvantages including its toxicity and water insolubility. This study presents a novel method for preventing surface film entrapment of the water flea D. galeata and B. longirostris acute testing. We examined the applicability of saponin extracts from Quillaja saponaria, natural surfactants commonly extracted from plants. Its application of saponin extracts was tested by ecotoxicity testing of heavy metals. Based on the acute test results for heavy metals, a concentration of 1.0 mg/L of saponins was determined as suitable for preventing surface film entrapment of D. galeata and B. longirostris with negligible adverse effects. This study proposes a novel method for preventing surface film entrapment of D. galeata and B. longirostris through the application saponins and could be valuable to make them suitable test species in ecotoxicity testing.

  14. Testing and Training of the Eggbeater Kick Movement in Water Polo: Applicability of a New Method.

    PubMed

    Melchiorri, Giovanni; Viero, Valerio; Triossi, Tamara; Tancredi, Virginia; Galvani, Christel; Bonifazi, Marco

    2015-10-01

    In water polo, many of the technical actions and the contacts with the opponent take place in quasi-vertical floating position using 2 types of lower limb actions: the eggbeater kick is used most often in fighting and passing and the breaststroke kick in jumping and throwing. The aim of this study was to identify a new system to evaluate and to train the eggbeater kick movement and to verify its applicability. Twenty amateur players and 22 elite players participated in the study. A jacket, homemade and easy to make, allowing the application of an overload submerged in water but not hindering breathing or mobility, was used. Standard anthropometry and a test consisting of different trials of the eggbeater kick action until exhaustion with an increasing overload (5, 7.5, 10, 12.5, 15, and 17.5 kg) were collected. Time to exhaustion and the overload estimated maximum value (OEMV) at second 2 were determined for each load. Body weight, height, and lower limb muscle performance of the elite and nonelite players were significantly different from each other (p ≤ 0.05). The effectiveness of the different measured variables in both subgroups and that of the OEMV was evaluated with receiver operating characteristic (ROC) curve analysis. Areas under the ROC curve for the different overloads were 0.72 (0.53-0.92) for 5 kg, 0.80 (0.68-0.90) for 7.5 kg, 0.87 (0.77-0.91) for 10 kg, and 0.88 (0.84-0.92) for 12.5 kg overload. Our results show that the test is sensitive enough and therefore can be used to plan and control training and injury recovery.

  15. Development and application of a shipboard method for spectrophotometric determination of trace dissolved manganese in estuarine and coastal waters

    NASA Astrophysics Data System (ADS)

    Feng, Sichao; Huang, Yongming; Yuan, Dongxing; Zhu, Yong; Zhou, Tingjin

    2015-01-01

    A shipboard method for the determination of trace dissolved manganese in estuarine and coastal waters was developed using a technique of reverse flow injection analysis, which adopted a 1-m liquid waveguide capillary cell and spectrophotometric detection of manganese derivation with 1-(2-pyridylazo)-2-naphthol (PAN). The design of dual-sample-carrier speeded up the sample throughput and eliminated the Schlieren effect. The salinity of estuarine and coastal waters caused a huge increase in the blank absorption value at the maximum absorption wavelength; therefore, a less sensitive detection wavelength was selected to achieve a low blank value while the method sensitivity was not significantly decreased. Method parameters were optimized. The salinity effect from estuarine and coastal waters was carefully investigated, and interference from iron was evaluated. The proposed method had high sensitivity with a detection limit of 3.0 nmol L-1 and a wide linear range of 10-1500 nmol L-1 for dissolved manganese in seawater (S=35). The analytical results of five water samples with different salinities obtained using the proposed method showed good agreement with those using a reference ICP-MS method. The sample throughput of the proposed method was 120 h-1, which was capable of obtaining high spatial and temporal resolution data in shipboard analysis. The proposed method had the advantages of convenient application in estuarine and coastal waters with different salinities, low detection limit, as well as high sample throughput. The proposed method was successfully applied to a 24 h on-line analysis and a shipboard underway analysis of dissolved manganese in the Jiulongjiang Estuary.

  16. New methods versus the smart application of existing tools in the design of water distribution network

    NASA Astrophysics Data System (ADS)

    Cisty, Milan; Bajtek, Zbynek; Celar, Lubomir; Soldanova, Veronika

    2017-04-01

    methodology testing was achieved in the presented work. The knowledge gained from these computational experiments lies not in offering a new advanced heuristic or hybrid optimization methods of a water distribution network, but in the fact that it is possible to obtain very good results with simple, known methods if they are properly used methodologically. ACKNOWLEDGEMENT This work was supported by the Slovak Research and Development Agency under Contract No. APVV-15-0489 and by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences, Grant No. 1/0665/15.

  17. Application of Multivariate Statistical Methods to Optimize Water Quality Monitoring Network with Emphasis on the Pollution Caused by Fish Farms.

    PubMed

    Tavakol, Mitra; Arjmandi, Reza; Shayeghi, Mansoureh; Monavari, Seyed Masoud; Karbassi, Abdolreza

    2017-01-01

    One of the key issues in determining the quality of water in rivers is to create a water quality control network with a suitable performance. The measured qualitative variables at stations should be representative of all the changes in water quality in water systems. Since the increase in water quality monitoring stations increases annual monitoring costs, recognition of the stations with higher importance as well as main parameters can be effective in future decisions to improve the existing monitoring network. Sampling was carried out on 12 physical and chemical parameters measured at 15 stations during 2013-2014 in Haraz River, northern Iran. The results of the measurements were analyzed using multivariate statistical analysis methods including cluster analysis (CA), principal component analysis (PCA), factor analysis (FA), and discriminant analysis (DA). According to the CA, PCA, and FA, the stations were divided into three groups of high pollution, medium pollution, and low pollution. The research findings confirm applicability of multivariate statistical techniques in the interpretation of large data sets, water quality assessment, and source apportionment of different pollution sources.

  18. Application of Chemometric Methods for Assessment and Modelling of Microbiological Quality Data Concerning Coastal Bathing Water in Greece

    PubMed Central

    Papaioannou, Agelos; Rigas, George; Papastergiou, Panagiotis; Hadjichristodoulou, Christos

    2014-01-01

    Background Worldwide, the aim of managing water is to safeguard human health whilst maintaining sustainable aquatic and associated terrestrial, ecosystems. Because human enteric viruses are the most likely pathogens responsible for waterborne diseases from recreational water use, but detection methods are complex and costly for routine monitoring, it is of great interest to determine the quality of coastal bathing water with a minimum cost and maximum safety. Design and methods This study handles the assessment and modelling of the microbiological quality data of 2149 seawater bathing areas in Greece over 10-year period (1997-2006) by chemometric methods. Results Cluster analysis results indicated that the studied bathing beaches are classified in accordance with the seasonality in three groups. Factor analysis was applied to investigate possible determining factors in the groups resulted from the cluster analysis, and also two new parameters were created in each group; VF1 includes E. coli, faecal coliforms and total coliforms and VF2 includes faecal streptococci/enterococci. By applying the cluster analysis in each seasonal group, three new groups of coasts were generated, group A (ultraclean), group B (clean) and group C (contaminated). Conclusions The above analysis is confirmed by the application of discriminant analysis, and proves that chemometric methods are useful tools for assessment and modeling microbiological quality data of coastal bathing water on a large scale, and thus could attribute to effective and economical monitoring of the quality of coastal bathing water in a country with a big number of bathing coasts, like Greece. Significance for public health The microbiological protection of coastal bathing water quality is of great interest for the public health authorities as well as for the economy. The present study proves that this protection can be achieved by monitoring only two microbiological parameters, E. coli and faecal streptococci

  19. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method.

    PubMed

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-10

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5).

  20. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method

    NASA Astrophysics Data System (ADS)

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-01

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100 μL of chloroform, 1.3 mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0 mg mL-1 of MR in initial solution with R2 = 0.995 (n = 5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015 mg mL-1, respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n = 5).

  1. Application of 2D-Nonlinear Shallow Water Model of Tsunami by using Adomian Decomposition Method

    SciTech Connect

    Waewcharoen, Sribudh; Boonyapibanwong, Supachai; Koonprasert, Sanoe

    2008-09-01

    One of the most important questions in tsunami modeling is the estimation of tsunami run-up heights at different points along a coastline. Methods for numerical simulation of tsunami wave propagation in deep and shallow seas are well developed and have been widely used by many scientists (2001-2008). In this paper, we consider a two-dimensional nonlinear shallow water model of tsunami given by Tivon Jacobson is work [1]. u{sub t}+uu{sub x}+{nu}u{sub y} -c{sup 2}(h{sub x}+(h{sub b}){sub x}) {nu}{sub t}+u{nu}{sub x}+{nu}{nu}{sub y} = -c{sup 2}(h{sub y}+(h{sub b}){sub y}) h{sub t}+(hu){sub x}+(h{nu}){sub y} = 0 g-shore, h is surface elevation and s, t is time, u is velocity of cross-shore, {nu} is velocity of along-shore, h is surface elevation and h{sub b} is function of shore. This is a nondimensionalized model with the gravity g and constant reference depth H factored into c = {radical}(gH). We apply the Adomian Decompostion Method (ADM) to solve the tsunami model. This powerful method has been used to obtain explicit and numerical solutions of three types of diffusion-convection-reaction (DECR) equations. The ADM results for the tsunami model yield analytical solutions in terms of a rapidly convergent infinite power series. Symbolic computation, numerical results and graphs of solutions are obtained by Maple program.

  2. Application of nonlinear-regression methods to a ground-water flow model of the Albuquerque Basin, New Mexico

    USGS Publications Warehouse

    Tiedeman, C.R.; Kernodle, J.M.; McAda, D.P.

    1998-01-01

    This report documents the application of nonlinear-regression methods to a numerical model of ground-water flow in the Albuquerque Basin, New Mexico. In the Albuquerque Basin, ground water is the primary source for most water uses. Ground-water withdrawal has steadily increased since the 1940's, resulting in large declines in water levels in the Albuquerque area. A ground-water flow model was developed in 1994 and revised and updated in 1995 for the purpose of managing basin ground- water resources. In the work presented here, nonlinear-regression methods were applied to a modified version of the previous flow model. Goals of this work were to use regression methods to calibrate the model with each of six different configurations of the basin subsurface and to assess and compare optimal parameter estimates, model fit, and model error among the resulting calibrations. The Albuquerque Basin is one in a series of north trending structural basins within the Rio Grande Rift, a region of Cenozoic crustal extension. Mountains, uplifts, and fault zones bound the basin, and rock units within the basin include pre-Santa Fe Group deposits, Tertiary Santa Fe Group basin fill, and post-Santa Fe Group volcanics and sediments. The Santa Fe Group is greater than 14,000 feet (ft) thick in the central part of the basin. During deposition of the Santa Fe Group, crustal extension resulted in development of north trending normal faults with vertical displacements of as much as 30,000 ft. Ground-water flow in the Albuquerque Basin occurs primarily in the Santa Fe Group and post-Santa Fe Group deposits. Water flows between the ground-water system and surface-water bodies in the inner valley of the basin, where the Rio Grande, a network of interconnected canals and drains, and Cochiti Reservoir are located. Recharge to the ground-water flow system occurs as infiltration of precipitation along mountain fronts and infiltration of stream water along tributaries to the Rio Grande; subsurface

  3. Identifying major sources of uncertainty in watershed water quality modeling: an application of the Deterministic Equivalent Modeling Method (DEMM)

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wang, W.

    2009-12-01

    Watershed water quality models are widely used in management practices such as Total Maximum Daily Loads (TMDLs). However, the modeling often involves significant uncertainty, especially in addressing non-conventional pollutants on which both knowledge and data are very limited. In this study, the Deterministic Equivalent Modeling Method (DEMM), incorporating the Probabilistic Collocation Method (PCM), is used as an efficient alternative to conventional Monte Carlo Simulation (MCS) for uncertainty analysis. DEMM is one of the Response Surface Methods (RSMs) which calculates uncertainty in output variables based on the direct effect of every uncertain input parameter. This study aims to 1) examine the applicability of DEMM to complex watershed models; 2) develop strategies for identifying major uncertainty sources in watershed water quality modeling. A case study of watershed diazinon (an organophosphorus pesticide) pollution modeling is explored. The results demonstrate that the stochastic response of the output variables to the uncertain input parameters can be adequately approximated by DEMM. A low-order DEMM can save a great amount of CPU time, compared to MCS. Also, DEMM can be used for parameter sensitivity analysis and preliminary model validation without a full calibration of the watershed model. Overall, if designed appropriately, DEMM can be used to identify major sources of uncertainty in watershed water quality modeling, and provides useful information on improving the modeling.

  4. Estimating free-living human energy expenditure: Practical aspects of the doubly labeled water method and its applications

    PubMed Central

    Kazuko, Ishikawa-Takata; Kim, Eunkyung; Kim, Jeonghyun; Yoon, Jinsook

    2014-01-01

    The accuracy and noninvasive nature of the doubly labeled water (DLW) method makes it ideal for the study of human energy metabolism in free-living conditions. However, the DLW method is not always practical in many developing and Asian countries because of the high costs of isotopes and equipment for isotope analysis as well as the expertise required for analysis. This review provides information about the theoretical background and practical aspects of the DLW method, including optimal dose, basic protocols of two- and multiple-point approaches, experimental procedures, and isotopic analysis. We also introduce applications of DLW data, such as determining the equations of estimated energy requirement and validation studies of energy intake. PMID:24944767

  5. Application of selected methods of remote sensing for detecting carbonaceous water pollution

    NASA Technical Reports Server (NTRS)

    Davis, E. M.; Fosbury, W. J.

    1972-01-01

    The use of aerial photography to determine the nature and extent of water pollution from carbonaceous materials is discussed. Flights were conducted over the Galveston Bay estuarine complex. Ground truth data were developed from field sampling of the waters in a region near the Houston Ship Channel. Tests conducted in the field were those for the following physical and chemical factors: (1) ph, (2) dissolved oxygen, (3) temperature, and (4) light penetration. Laboratory analyses to determine various properties of the water are described and the types of instruments used are identified. Results of the analyses are presented as charts and graphs.

  6. The 'principal components' statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel

    NASA Astrophysics Data System (ADS)

    Melloul, A.; Collin, M.

    1992-12-01

    In general, Schoeller and Piper diagrams, as well as other classical techniques, facilitate the description of the various geochemical groups of water, and help to explain quality changes in an aquifer. We propose the use mainly of 'principal components' analysis for identification of relevant groups of water and the factors that bring about a change in their quality. The major advantage of this method is its suitability for simultaneous analysis of a great number of variables and observations. It is here being applied for the investigation of the Dan metropolitan region of Israel's Coastal Plain. The variables involved include major ions as well as the physical factors of depth of the well intake filter below sea-level, distance from the sea, and aquifer recharge. The primary purpose of this work is to demonstrate the use and reliability of principal components analysis (PCA) as a method complementary to classical approaches for hydrogeochemical research. Subsidiary purposes involve determination of the major water groups characterizing the Coastal Plain aquifer, identification of some of the principal variables that influence changes in water quality in the aquifer, and description of some of the geochemical phenomena contributing to change in aquifer water quality. The following results were achieved for the test area: (1) Two major groups of water were identified: a low-salinity, calcium bicarbonate water occurring in the phreatic portion of the Coastal Plain aquifer, and a more saline, sodium chloride water characterizing the neighboring Cenomanian aquifer and the confined portions of the Coastal Plain aquifer. (2) The major water input sources, such as rain, injection water, waste water, irrigation, etc., may vary in their influence upon resulting water quality; this water quality is affected by such physical factors as distance from the sea, depth of well intake filters below sea-level, proximity to streams and the lithology of the saturated and unsaturated

  7. An overview of advanced reduction processes for bromate removal from drinking water: Reducing agents, activation methods, applications and mechanisms.

    PubMed

    Xiao, Qian; Yu, Shuili; Li, Lei; Wang, Ting; Liao, Xinlei; Ye, Yubing

    2017-02-15

    Bromate (BrO3(-)) is a possible human carcinogen regulated at a strict standard of 10μg/L in drinking water. Various techniques to eliminate BrO3(-) usually fall into three main categories: reducing bromide (Br(-)) prior to formation of BrO3(-), minimizing BrO3(-) formation during the ozonation process, and removing BrO3(-) from post-ozonation waters. However, the first two approaches exhibit low degradation efficiency and high treatment cost. The third workaround has obvious advantages, such as high reduction efficiency, more stable performance and easier combination with UV disinfection, and has therefore been widely implemented in water treatment. Recently, advanced reduction processes (ARPs), the photocatalysis of BrO3(-), have attracted much attention due to improved performance. To increase the feasibility of photocatalytic systems, the focus of this work concerns new technological developments, followed by a summary of reducing agents, activation methods, operational parameters, and applications. The reaction mechanisms of two typical processes involving UV/sulfite homogeneous photocatalysis and UV/titanium dioxide heterogeneous photocatalysis are further summarized. The future research needs for ARPs to reach full-scale potential in drinking water treatment are suggested accordingly. Copyright © 2016. Published by Elsevier B.V.

  8. Detection of Microbial Water Quality Indicators and Fecal Waterborne Pathogens in Environmental Waters: A Review of Methods, Applications, and Limitations

    EPA Science Inventory

    Environmental waters are important reservoirs of pathogenic microorganisms, many of which are of fecal origin. In most cases, the presence of pathogens is determined using surrogate bacterial indicators. In other cases, direct detection of the pathogen in question is required. M...

  9. Application of ground water tracer methods in straddle packer testing at the ICPP, INEL

    SciTech Connect

    Welhan, J. ); Fromm, J.; McCurry, M. . Dept. of Geology)

    1993-01-01

    The State Oversight Program's straddle packer sampling system was tested at the Idaho National Engineering Laboratory during July--September, 1992, in USGS monitoring well No. 44. The straddle packer was designed for the Oversight Program's ground water research program, to provide a means of characterizing the vertical hydraulic and water quality variations believed to exist in the eastern Snake River Plain aquifer beneath the Idaho National Engineering Laboratory. During the field program, tracer introduction and recovery experiments were conducted to evaluate QA sampling objectives as well as to assess the feasibility of obtaining additional information on aquifer/borehole characteristics such as specific discharge through different aquifer zones, integrity of packer seals, etc. A total of twelve tracer tests were performed on six different intervals from 467 to 600 feet below land surface (ft bls). Lithium bromide powder dissolved in de-ionized water was used as a tracer. All tracer tests were conducted in two phases: Emplacement -- introduction of a slug of a known quantity of tracer, followed by continuous mixing within the test interval for periods ranging from 8 to 72 minutes (without pumping to surface), during which time the tracer was diluted by ground water advection through the test interval; and recovery - pumping of the test interval to withdraw tracer from the borehole interval and the adjacent aquifer. Once tracer recovery had been completed, water quality sampling could be initiated, with the degree of interval purging having been defined by the degree of tracer recovery.

  10. Application of classification-tree methods to identify nitrate sources in ground water

    USGS Publications Warehouse

    Spruill, T.B.; Showers, W.J.; Howe, S.S.

    2002-01-01

    A study was conducted to determine if nitrate sources in ground water (fertilizer on crops, fertilizer on golf courses, irrigation spray from hog (Sus scrofa) wastes, and leachate from poultry litter and septic systems) could be classified with 80% or greater success. Two statistical classification-tree models were devised from 48 water samples containing nitrate from five source categories. Model I was constructed by evaluating 32 variables and selecting four primary predictor variables (??15N, nitrate to ammonia ratio, sodium to potassium ratio, and zinc) to identify nitrate sources. A ??15N value of nitrate plus potassium 18.2 indicated inorganic or soil organic N. A nitrate to ammonia ratio 575 indicated nitrate from golf courses. A sodium to potassium ratio 3.2 indicated spray or poultry wastes. A value for zinc 2.8 indicated poultry wastes. Model 2 was devised by using all variables except ??15N. This model also included four variables (sodium plus potassium, nitrate to ammonia ratio, calcium to magnesium ratio, and sodium to potassium ratio) to distinguish categories. Both models were able to distinguish all five source categories with better than 80% overall success and with 71 to 100% success in individual categories using the learning samples. Seventeen water samples that were not used in model development were tested using Model 2 for three categories, and all were correctly classified. Classification-tree models show great potential in identifying sources of contamination and variables important in the source-identification process.

  11. Application of acoustical methods for estimating water flow and constituent loads in Perdido Bay, Florida

    USGS Publications Warehouse

    Grubbs, J.W.; Pittman, J.R.

    1997-01-01

    Water flow and quality data were collected from December 1994 to September 1995 to evaluate variations in discharge, water quality, and chemical fluxes (loads) through Perdido Bay, Florida. Data were collected at a cross section parallel to the U.S. Highway 98 bridge. Discharges measured with an acoustic Doppler current profiler (ADCP) and computed from stage-area and velocity ratings varied roughly between + or - 10,000 cubic feet per second during a typical tidal cycle. Large reversals in flow direction occurred rapidly (less than 1 hour), and complete reversals (resulting in near peak net-upstream or downstream discharges) occurred within a few hours of slack water. Observations of simultaneous upstream and downstream flow (bidirectional flow) were quite common in the ADCP measurements, with opposing directions of flow occurring predominantly in vertical layers. Continuous (every 15 minutes) discharge data were computed for the period from August 18, 1995, to September 28, 1995, and filtered daily mean discharge values were computed for the period from August 19 to September 26, 1995. Data were not computed prior to August 18, 1995, either because of missing data or because the velocity rating was poorly defined (because of insufficient data) for the period prior to landfall of hurricane Erin (August 3, 1995). The results of the study indicate that acoustical techniques can yield useful estimates of continuous (instantaneous) discharge in Perdido Bay. Useful estimates of average daily net flow rates can also be obtained, but the accuracy of these estimates will be limited by small rating shifts that introduce bias into the instantaneous values that are used to compute the net flows. Instantaneous loads of total nitrogen ranged from -180 to 220 grams per second for the samples collected during the study, and instantaneous loads of total phosphorous ranged from -10 to 11 grams per second (negative loads indicate net upstream transport). The chloride concentrations

  12. Enzymatic methods for choline-containing water soluble phospholipids based on fluorescence of choline oxidase: Application to lyso-PAF.

    PubMed

    Sanz-Vicente, Isabel; Domínguez, Andrés; Ferrández, Carlos; Galbán, Javier

    2017-02-15

    In this paper we present methods to determine water soluble phospholipids containing choline (wCh-PL). The analytes were hydrolyzed by the enzyme phospholipase D and the choline formed was oxidized by the enzyme Choline Oxidase (ChOx); the fluorescence changes of the ChOx are followed during the enzymatic reaction, avoiding the necessity of an indicating step. Both reactions (hydrolysis and oxidation) can be combined in two different ways: 1) a two-step process (TSP) in which the hydrolysis reaction takes place during an incubation time and then the oxidation reaction is carried out, the analytical signal being provided by the intrinsic fluorescence of ChOx due to tryptophan; 2) a one-step process (OSP) in which both enzymatic reactions are carried out simultaneously in the same test; in this case the analytical signal is provided by the ChOx extrinsic fluorescence due to a fluorescent probe (Ru (II) chelate) linked to the enzyme (ChOx-RuC). The analytical capabilities of these methods were studied using 1,2-dioctanoyl-sn-glycero-3-phosphocholine (C8PC), a water soluble short alkyl chain Ch-PL as a substrate, and 1-O-hexadecyl-sn-glyceryl-3-phosphorylcholine (lyso-PAF). The analytical features of merit for both analytes using both methods were obtained. The TSP gave a 10-fold sensitivity and lower quantification limit (1.0*10(-5) M for lyso-PAF), but OSP reduced the determination time and permitted to use the same enzyme aliquot for several measurements. Both methods gave similar precision (RSD 7%, n = 5). The TSP was applied to the determination of C8PC and lyso-PAF in spiked synthetic serum matrix using the standard addition method. The application of this methodology to PLD activity determination is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Parabolic stationing method application to intertidal shellfish (Sinonovacula constricta) and growing waters microbiological monitoring in Yueqing Bay, China.

    PubMed

    Jin, Lei; Liu, Huan; Xu, Dan; Gu, Beiqiao

    2016-12-28

    This study reported microbiological monitoring by parabolic stationing method for S. constricta and their growing waters, and application for the first time in Yueqing Bay, China. The results indicated that numbers of Escherichia coli and aerobic colony count in S. constricta flesh showed an approximate 'parabola' distribution across the whole shellfish bed. Numbers of faecal coliform in seawater samples were significantly higher in the top of the bay, and lower in the lower half of the bay, whilst higher located in the edge of the bay than the center in contrast to three sampling sites on the same latitude. Numbers of total bacterial count were not significantly correlated with faecal coliform in seawater samples. Finally, the shellfish production areas were classified based on three batches of E. coli monitoring.

  14. Application of a biosorbent to soil: a potential method for controlling water pollution by pesticides.

    PubMed

    Álvarez-Martín, Alba; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2016-05-01

    Different strategies are now being optimized to prevent water from agricultural areas being contaminated by pesticides. The aim of this work was to optimize the adsorption of non-polar (tebuconazole, triadimenol) and polar (cymoxanil, pirimicarb) pesticides by soils after applying the biosorbent spent mushroom substrate (SMS) at different rates. The adsorption isotherms of pesticides by three soils and SMS-amended soils were obtained and the adsorption constants were calculated. The distribution coefficients (K d) increased 1.40-23.1 times (tebuconazole), 1.08-23.7 times (triadimenol), 1.31-42.1 times (cymoxanil), and 0.55-23.8 times (pirimicarb) for soils amended with biosorbent at rates between 2 and 75 %. Increasing the SMS rates led to a constant increase in adsorption efficiency for non-polar pesticides but not for polar pesticides, due to the increase in the organic carbon (OC) content of soils as indicated by K OC values. The OC content of SMS-amended soils accounted for more than 90 % of the adsorption variability of non-polar pesticides, but it accounted for only 56.3 % for polar pesticides. The estimated adsorption of SMS-amended soils determined from the individual adsorption of soils and SMS was more consistent with real experimental values for non-polar pesticides than for polar pesticides. The results revealed the use of SMS as a tool to optimize pesticide adsorption by soils in dealing with specific contamination problems involving these compounds.

  15. Greenhouse Gases Emission from Land Application of Swine Waste Water: A Comparison of Three Different Swine Slurry Application Methods

    USDA-ARS?s Scientific Manuscript database

    Agricultural activities (including land application of animal manures) account for about 20% of the total human induced global warming budget due to emissions of greenhouse gases (GHG). Recently, there has been an increasing emphasis on controlling these emissions from livestock operations. One of...

  16. Development and application of a quantification method for water soluble organosulfates in atmospheric aerosols.

    PubMed

    Cao, Gang; Zhao, Xiaopei; Hu, Di; Zhu, Rongshu; Ouyang, Feng

    2017-03-16

    In recent years, organosulfates have been found as a significant component of secondary organic aerosols from both smog chamber experiments and field measurements. In this study, an indirect method was developed to estimate organosulfates in aerosol particles as a whole based on their sulfate functional group. A series of experiments were conducted to optimize and validate the method, and it was then applied to quantify organosulfates in the aerosol samples collected at three sampling characteristic sites in Shenzhen, with one close to a power plant (PP), one at a heavy traffic intersection (HTI), and one on the campus of Harbin Institute of Technology Shenzhen graduate school (HITSZ). On average, the mass concentrations of organic sulfur (Sorg) were 1.98, 1.11, 0.25 μgS m(-3) in PP, HTI and HITSZ respectively. The lower bounds of mass concentrations of organosuflates (OMs-related) were 6.86, 3.85 and 0.86 μg m(-3) and the upper bounds of mass concentrations of organosulfates were 23.05, 12.93 and 2.90 μg m(-3) in PP, HTI and HITSZ respectively. This indicates that primary emissions from coal burning and automobile exhaust can promote the secondary formation of organosulfates in the atmosphere. Overall, the mass concentrations observed in this work were higher than those reported by previous studies.

  17. [Calculation method of ecological water requirement for forestland and its application to Huang-Huai-Hai region].

    PubMed

    Zhang, Yuan; Yang, Zhifeng

    2002-12-01

    The evapotranspiration and soil moisture content of forestland were studied in relation to free growth. It was found that when the soil moisture content was about 45-100% of field capacity and the actual evapotranspiration came up to 60-100% of potential evapotranspiration, the growth of trees could be sustained. On the basis of our research, the grading standard and calculation method of ecological water requirement of forestland were established. Moreover, the ecological water requirement for forestland in Huang-Huai-Hai are was estimated by GIS technology, and its ecological water shortage was compared to its current water consumption. The results indicated of that the annual ecological water requirement of forestland in Huang-Huai-Hai region was 25.6-45.8 billion m3, and its current water consumption was approximately 2.8 billion m3 below the minimum of ecological water requirement, and 8.4 billion m3 below the optimal ecological water requirement.

  18. A method for estimating soil water diffusivity from moisture profiles and its application across an experimental catchment

    NASA Astrophysics Data System (ADS)

    Espejo, A.; Giráldez, J. V.; Vanderlinden, K.; Taguas, E. V.; Pedrera, A.

    2014-08-01

    Despite the well-accepted value of soil hydraulic properties for describing and modeling matter and energy fluxes in the unsaturated zone, their accurate measurement across scales is still a daunting task. The increasing availability of continuous soil water content measurements at discrete points in space, as provided by sensor networks, offers still unexplored possibilities for evaluating soil physical properties across landscapes. In this study, we propose a new method, based on the Bruce and Klute equation, to estimate effective soil water diffusivity from soil water profile data observed during continuous desiccation periods. An analytical expression is proposed for the diffusion-soil water relationship, assuming an exponential relationship between soil water content and the Boltzmann variable. The method has been evaluated using soil water profile data observed at inter-row and under canopy locations across a rainfed olive orchard in SW Spain. The spatial variability of the effective soil water diffusivity across the orchard was estimated. Different soil conditions under the tree canopies as compared to inter-row areas resulted in significantly different effective diffusivity relationships, reflecting the effect of trees on soil physical properties and water dynamics across olive orchards. The proposed method offers a suitable alternative to traditional laboratory methods and can be easily extended to estimate soil hydraulic conductivity and water retention curves.

  19. [Method for study of phase transitions in evaporating drop and its application for evaluation of physical-chemical properties of water and water solutions].

    PubMed

    Iakhno, T A; Sanin, A G; Sanina, O A; Iakhno, V G

    2012-01-01

    Spatial-temporal crystallization features of inorganic chlorides in evaporating drops of water solutions, considering solid surface wettability, were studied using a microscopic technique and the acoustical impedansometry. Physical-chemical mechanisms responsible for the difference in "dynamical portraits" of distilled water and salt solutions, as well as relaxation effects in water were discussed. The study demonstrated the potential use of a drying drop method in registration of changes in water properties under the action of physical and chemical factors.

  20. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    NASA Astrophysics Data System (ADS)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  1. Integrated hydrochemical method of water quality assessment for irrigation in arid areas: application to the Jilh aquifer, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Bassam, Abdulaziz M.; Al-Rumikhani, Yousef A.

    2003-05-01

    Water samples from 72 wells tapping the Jilh aquifer were collected and analyzed for 10 different water quality parameters. Using these data, a regional irrigation water quality was assessed using three techniques: (i) United States Department of Agriculture method (USDA), (ii) Food and Agriculture Organization (FAO) guidelines for water quality assessment, and (iii) Water-Types approach. The USDA method revealed that the aquifer water salinity, as represented by electrical conductivity, ECw, ranges from high salinity (C3: ECw > 0.75-2.25 dS/m) to a very high salinity (C4: ECw > 2.25 dS/m). The sodium adsorption ratio (SAR) varied from low (S1) to very high (S4) sodicity. Therefore, the water of the Jilh aquifer is dominantly of the C4-S2 class representing 56% of the total wells followed by C4-S1, C4-S3, C3-S1 and C4-S4 classes at 19%, 14%, 8%, and 3% of the wells respectively. The FAO system indicated moderate to severe restriction on the use for irrigation and slight to moderate ion toxicities for Na+, Cl-, B+, NO3- and HCO3-. It is clear that, both USDA and FAO systems condemn the Jilh groundwater as hazardous for irrigation due to its high salt content, unless certain measures for salinity control are undertaken. The dominant salt constituents in the water are Mg-Cl2, Na-Cl and Ca-Cl2 as per the Water-Types method. However, due to the complexity in classifying the aquifer groundwater for irrigation, a simplified approach acknowledging three class groups (I-suitable water, II-conditionally suitable water and III-unsuitable water) adopted from the three methods, is suggested in this paper. The simplified approach combines C-S classes of the USDA method among these three groups according to the lowest ratings. The salinity of the FAO method has been split arbitrarily into slight and moderate subclasses with values of 0.7-2.25 and >2.25 dS/m, respectively; to match with the C3-class of the USDA system. The Water-Types were classified assuming that Ca-Cl2 is the

  2. Application of the methods of gas dynamics to water flows with free surface I : flows with no energy dissipation

    NASA Technical Reports Server (NTRS)

    Preiswerk, Ernst

    1940-01-01

    The application is treated in sufficient detail to facilitate as much as possible its application by the engineer who is less familiar with the subject. The present work was undertaken with two objects in view. In the first place, it is considered as a contribution to the water analogy of gas flows, and secondly, a large portion is devoted to the general theory of the two-dimensional supersonic flows.

  3. [Measuring water ecological carrying capacity with the ecosystem-service-based ecological footprint (ESEF) method: Theory, models and application].

    PubMed

    Jiao, Wen-jun; Min, Qing-wen; Li, Wen-hua; Fuller, Anthony M

    2015-04-01

    Integrated watershed management based on aquatic ecosystems has been increasingly acknowledged. Such a change in the philosophy of water environment management requires recognizing the carrying capacity of aquatic ecosystems for human society from a more general perspective. The concept of the water ecological carrying capacity is therefore put forward, which considers both water resources and water environment, connects socio-economic development to aquatic ecosystems and provides strong support for integrated watershed management. In this paper, the authors proposed an ESEF-based measure of water ecological carrying capacity and constructed ESEF-based models of water ecological footprint and capacity, aiming to evaluate water ecological carrying capacity with footprint methods. A regional model of Taihu Lake Basin was constructed and applied to evaluate the water ecological carrying capacity in Changzhou City which located in the upper reaches of the basin. Results showed that human demand for water ecosystem services in this city had exceeded the supply capacity of local aquatic ecosystems and the significant gap between demand and supply had jeopardized the sustainability of local aquatic ecosystems. Considering aqua-product provision, water supply and pollutant absorption in an integrated way, the scale of population and economy aquatic ecosystems in Changzhou could bear only 54% of the current status.

  4. Effects of Irrigation Method and Level of Water Application on Fruit Size and Yield in Red Raspberry (Rubus idaeus L.) during the First Year of Full Production

    USDA-ARS?s Scientific Manuscript database

    A study was done to determine the effects of irrigation method and amount of water application on production and fruit quality in red raspberry. Two cultivars, 'Meeker' and 'Coho', were irrigated by overhead sprinkler or subsurface drip at 50, 100, and 150% of the estimated crop evapotranspiration (...

  5. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    NASA Astrophysics Data System (ADS)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  6. Development of a method for comprehensive water quality forecasting and its application in Miyun reservoir of Beijing, China.

    PubMed

    Zhang, Lei; Zou, Zhihong; Shan, Wei

    2017-06-01

    Water quality forecasting is an essential part of water resource management. Spatiotemporal variations of water quality and their inherent constraints make it very complex. This study explored a data-based method for short-term water quality forecasting. Prediction of water quality indicators including dissolved oxygen, chemical oxygen demand by KMnO4 and ammonia nitrogen using support vector machine was taken as inputs of the particle swarm algorithm based optimal wavelet neural network to forecast the whole status index of water quality. Gubeikou monitoring section of Miyun reservoir in Beijing, China was taken as the study case to examine effectiveness of this approach. The experiment results also revealed that the proposed model has advantages of stability and time reduction in comparison with other data-driven models including traditional BP neural network model, wavelet neural network model and Gradient Boosting Decision Tree model. It can be used as an effective approach to perform short-term comprehensive water quality prediction. Copyright © 2016. Published by Elsevier B.V.

  7. Application of Monte Carlo Methods to Perform Uncertainty and Sensitivity Analysis on Inverse Water-Rock Reactions with NETPATH

    SciTech Connect

    McGraw, David; Hershey, Ronald L.

    2016-06-01

    Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries. The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little

  8. Validation of Alternative Methods for the Analysis of Drinking Water and Their Application to Escherichia coli ▿

    PubMed Central

    Boubetra, Abdelkader; Le Nestour, François; Allaert, Corrie; Feinberg, Max

    2011-01-01

    In Europe, the Drinking Water Directive of the European Commission indicates which methods (most of which are CEN/ISO-standardized methods) should be used for the analysis of microbiological parameters (European Commission, Environment, Council Directive 98/83/EC of 3 November 1998). According to the Directive, alternative methods “may be used, providing it can be demonstrated that the results obtained are at least as reliable as those produced by the methods specified.” The prerequisite for the routine use of any alternative method is to provide evidence that this method performs equivalently to the corresponding reference method. In this respect, the ISO 16140 standard (ISO, ISO 16140. Microbiology of Food and Animal Feeding Stuffs—Protocol for the Validation of Alternative Methods, 2003) represents a key issue in generating such a procedure based on an interlaboratory study. A new statistical tool, called the accuracy profile, has been developed to better interpret the data. The study presented here is based upon the enumeration of Escherichia coli bacteria in water. The reference method may require up to 72 h to provide a confirmed result. The aim of this publication is to present data for an alternative method by which results can be obtained in 18 h (Colilert-18/Quanti-Tray) based upon defined substrate technology (DST). The accuracy profile is a statistical and graphical decision-making tool and consists of simultaneously combining, in a single graphic, β expectation tolerance intervals (β-ETIs) and acceptability limits (λ). The study presents the validation criteria calculated at the three levels of contamination used in the trial for a β equal to 80% and a λ equal to ±0.3 and combines the accuracy profiles of Escherichia coli for a λ of ±0.3 log10 unit/100 ml, a λ of ±0.4 log10 unit/100 ml, and a β of 80% or 90%. Several interesting conclusions can be drawn from these data. The accuracy profile method has been applied to the validation of

  9. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. An integrated method for evaluating community-based safe water programmes and an application in rural Mexico.

    PubMed

    deWilde, Carol Kolb; Milman, Anita; Flores, Yvonne; Salmerón, Jorge; Ray, Isha

    2008-11-01

    The burden of diarrhoeal disease remains high in the developing world. Community-based safe drinking water programmes are being promoted as cost-effective interventions that will help reduce this illness burden. However, the effectiveness of these programmes remains under-investigated. The primary argument of this paper is that the biological exposure reductions underlying safe water interventions vary tremendously over space and time, and studies that only report results of intent-to-treat analyses cannot reveal why such programmes succeed or fail. The paper develops a stepwise evaluation framework to characterize, and so analyse, the technical, financial, social and behavioural factors that underlie exposure and mediate the impact of safe water investments. Relevant factors include physical performance of the water system, community capacity to maintain and manage the systems, and the time and budget constraints of households participating in the programme. The approach draws on the public health, community-based resource management, and household choice literatures to identify modifiable points of failure along the causal pathway to programme impact. The evaluation framework is used to assess the performance and impact of UVWaterworks, a community-based water purification system in rural Mexico, 5 years after the programme began. No impact on diarrhoea incidence was found in this case. The assessment method revealed that (a) household priorities and preferences were a key factor in maintaining exposure to safe drinking water sources, and therefore (b) user convenience was a primary leverage point for programme improvement. The findings indicate that a comprehensive examination of the many factors that influence the performance and impact of safe water programmes is necessary to elucidate why these programmes fail or succeed.

  11. Application of 1H NMR spectroscopy method for determination of characteristics of thin layers of water adsorbed on the surface of dispersed and porous adsorbents.

    PubMed

    Turov, V V; Leboda, R

    1999-02-01

    The paper presents 1H NMR spectroscopy as a perspective method of the studies of the characteristics of water boundary layers in the hydrated powders and aqueous dispergated suspensions of the adsorbents. The method involves measurements of temperature dependence proton signals intensity in the adsorbed water at temperatures lower than 273 K. Free energy of water molecules at the adsorbent/water interface is diminished due to the adsorption interactions causing the water dosed to the adsorbent surface freezes at T < 273 K. Thickness of a non-freezing layer of water can be determined from the intensity of the water signal of 1H NMR during the freezing-thawing process. Due to a disturbing action of the adsorbent surface, water occurs in the quasi-liquid state. As a result, it is observed in the 1H NMR spectra as a relatively narrow signal. The signal of ice is not registered due to great differences in the transverse relaxation times of the adsorbed water and ice. The method of measuring the free surface energy of the adsorbents from the temperature dependence of the signal intensity of non-freezing water is based on the fact that the temperature of water freezing decreases by the quantity which depends on the surface energy and the distance of the adsorbed molecules from the solid surface. The water at the interface freezes when the free energies of the adsorbed water and ice are equal. To illustrate the applicability of the method under consideration the series of adsorption systems in which the absorbents used differed in the surface chemistry and porous structure. In particular, the behaviour of water on the surface of the following adsorbents is discussed: non-porous and porous silica (aerosils, silica gels); chemically and physically modified non-porous and porous silica (silanization, carbonization, biopolymer deposition); and pyrogeneous Al2O3 and aluminasilicas. The effect of preliminary treatment of the adsorbent (thermal, high pressure, wetting with polar

  12. Novel flow injection-fluorometric method for the determination of trace silicate and its application to ultrapurified water analysis.

    PubMed

    Sabarudin, Akhmad; Oshima, Mitsuko; Ishii, Naoe; Motomizu, Shoji

    2003-08-29

    A highly sensitive fluorescence quenching method for the determination of silicate based on the formation of an ion associate between molybdosilicate and Rhodamine B (RB) in nitric acid medium was developed. A flow injection system coupled with a fluorescence detector was used for the measurement of fluorescence intensity at 560 and 580 nm as excitation and emission wavelengths, respectively. The calibration graph for Si showed a linear range of 0.1-5 ng cm(-3) with correlation coefficient of 0.9999, and the detection limit of 0.06 ng cm(-3). The proposed method was successfully applied to the determination of silicate in ultrapurified water with satisfactory results.

  13. Linking Predictive Models to Generic Planning Methods for Water Resource System Adaptation: Initial Application to The Thames Basin

    NASA Astrophysics Data System (ADS)

    Harou, J. J.; Matrosov, E.; Wade, S.; New, M. G.; Pinte, D.

    2009-12-01

    Adapting water resource systems to unknown future conditions will involve using trusted predictive models within planning methods. Planning methods include stochastic simulation and optimization, shared vision planning, robust-decision making, and others. The methods embed existing predictive models into the core of a planning process aiming to improve system design and/or operation. Planning methods that connect in a generic and modular way to predictive models will enable flexible and efficient deployment. This talk describes a generic open-source model platform that helps link models to planning methods. The link is made through standardized import/export functions or customized add-ins. The program allows to edit, organize, store, visualize and transfer model inputs and outputs. A computationally efficient water resource simulation model, IRAS, was connected to the platform using an add-in. A simple IRAS model of the Thames basin system was built with a weekly time step and 80 year time horizon and compared to a more detailed daily predictive model used by the UK’s Environment Agency. The Thames model is being connected to a scenario generator based on robust decision making. The scenarios will help identify robust system designs given multiple uncertain inputs (inflows, demands, energy prices).

  14. Benzotriazole and 5-methylbenzotriazole in recycled water, surface water and dishwashing detergents from Perth, Western Australia: analytical method development and application.

    PubMed

    Alotaibi, M D; Patterson, B M; McKinley, A J; Reeder, A Y; Furness, A J

    2015-02-01

    A simplified and sensitive liquid chromatography mass spectrometry (LC-MS) method without requiring sample pre-concentration was successfully developed for detecting the occurrence of ultra-low (ng L(-1)) concentrations of benzotriazole (BTri), and its derivative 5-methyl benzotriazole (5-MeBT) in various Western Australian environmental water samples. The method detection limit was 2 ng L(-1), providing similar detection limits to other more process intensive methods where pre-concentration using solid phase extraction (SPE) was employed. The method was used to assess the occurrence of BTri and 5-MeBT in wastewater and surface water samples. Over a period of 12 months, BTri and 5-MeBT concentrations in secondary treated wastewater were measured, with the highest BTri and 5-MeBT concentrations observed during winter months at 78 ng L(-1) and 21 ng L(-1), respectively. The method was also used to assess the removal efficiency of BTri and 5-MeBT through an advanced water recycling plant (AWRP). While BTri was more persistent than 5-MeBT, both compounds were removed from the AWRP to <10 ng L(-1) (BTri) and <2 ng L(-1) (5-MeBT), with reverse osmosis (RO) providing the most effective treatment process for their removal.

  15. A study of alternative methods for reclaiming oxygen from carbon dioxide and water by a solid-electrolyte process for spacecraft applications

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Two alternative technical approaches were studied for application of an electrochemical process using a solid oxide electrolyte (zirconia stabilized by yttria or scandia) to oxygen reclamation from carbon dioxide and water, for spacecraft life support systems. Among the topics considered are the advisability of proceeding to engineering prototype development and fabrication of a full scale model for the system concept, the optimum choice of method or approach to be carried into prototype development, and the technical problem areas which exist.

  16. The development of TXRF method and its application on the study of trace elements in water at SSRF

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Yu, H. S.; Li, L. N.; Wei, X. J.; Huang, Y. Y.

    2016-05-01

    The objective of this study is the development of Total Reflection X-ray Fluorescence (TXRF) method at Shanghai Synchrotron Radiation Facility (SSRF). In this paper, the SR-TXRF setup and the related experimental methods and results for the determination of trace elements in water were described. Compared with the conventional lab TXRF, the detection limits obtained in our experiment are very lower due to the advantages of synchrotron radiation, which varied from 1.11 pg (Cr) to 0.28 pg (Zn). The average deviation of the specimen replicates is below 5%, and the deviations of measured element concentrations for Cr, Mn, Co, Ni and Cu by SR-TXRF are within 10% compared with the values by ICP-MS, so our TXRF results are agreed with those obtained by ICP-MS for the detected metals. Based on the results, the SR-TXRF setup and method have been feasible for the quantitative analysis of multi-elements in water at SSRF and that will play an important role in the research area for the environmental liquid samples analysis.

  17. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  18. Methods for Using Ground-Water Model Predictions to Guide Hydrogeologic Data Collection, with Applications to the Death Valley Regional Ground-Water Flow System

    SciTech Connect

    Claire R. Tiedeman; M.C. Hill; F.A. D'Agnese; C.C. Faunt

    2001-07-31

    Calibrated models of ground-water systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions, by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow-system features that can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new ''value of improved information'' (VOII) method, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. The PSS and VOII methods are demonstrated using a model of the Death Valley regional ground-water flow system. The predictions of interest are advective-transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated, the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow-system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  19. Durability of changes in phosphorus compounds in water of an urban lake after application of two reclamation methods.

    PubMed

    Grochowska, Jolanta; Brzozowska, Renata; Lopata, Michał

    2013-01-01

    The study was conducted on Długie Lake (area 26.8 ha, maximum depth 17.3 m), located in the town of Olsztyn, in north-eastern Poland (the Masurian Lake District). For 20 years starting in the 1950s, Długie Lake was used as a receiver of raw domestic and storm sewage in quantities oscillating between 350 and 400 m(3) day(-1). This led to complete degradation of the lake, known as saprotrophy. After some preliminary protective treatments in the catchment, the lake has been renewed by artificial aeration with thermal destratification and the phosphorus inactivation methods. Long-term reclamation of the reservoir has resulted in distinct and durable improvement of water quality. Before the restoration, the average phosphorus concentration in the surface water layer was 0.079 mg P L(-1) and in the over-bottom water it reached 2.277 mg P L(-1). The total phosphorus (TP) level also was very high, i.e. up to 3.5 mg P L(-1). After the restoration, these values have declined to 0.001-0.017 mg P L(-1) in the case of mineral P, and the current TP concentrations do not exceed 0.350 mg P L(-1).

  20. Photochemical-spectrofluorimetric method for the determination of benzoylurea insecticides: applications in river water samples and in technical formulations.

    PubMed

    Gil-Garcia, M D; Martínez-Galera, M; López-López, T; Martínez-Vidal, J L; Mahedero, M C; Salinas, F

    2001-01-26

    Ultraviolet (UV) irradiation was used to obtain fluorescent photoproducts from four non-fluorescent benzoylurea (BU) insecticides (flufenoxuron (FLF), lufenuron (LUF), hexaflumuron (HF) and triflumuron (TRF)). The effect of solvent, pH (in aqueous solutions), organic solvent percentage and UV irradiation time on the excitation and emission wavelengths and fluorescence intensity were investigated. The largest fluorescence signals and the shortest UV irradiation time were obtained in methanol, ethanol and 2-propanol. Linear calibration graphs were established in the interval between 0.025 and 1.000 microg ml(-1) from FLF and TRF and between 0.050 and 1.000 microg ml(-1) from LUF and HF with regression coefficients larger than 0.99. A method based on the use of the first-derivative of the spectra of photoproducts was applied to the determination of BU insecticides in river water samples and in technical formulations. The mean recoveries ranged from 95.0% to 110.0% in river water samples and from 92.0% to 101.0% in technical formulations, according to the compound. A preconcentration step, using LLE, allowed to reach the concentration levels established by the EU directive for pesticides in drinking water.

  1. A practical method to avoid zero-point leak in molecular dynamics calculations: application to the water dimer.

    PubMed

    Czakó, Gábor; Kaledin, Alexey L; Bowman, Joel M

    2010-04-28

    We report the implementation of a previously suggested method to constrain a molecular system to have mode-specific vibrational energy greater than or equal to the zero-point energy in quasiclassical trajectory calculations [J. M. Bowman et al., J. Chem. Phys. 91, 2859 (1989); W. H. Miller et al., J. Chem. Phys. 91, 2863 (1989)]. The implementation is made practical by using a technique described recently [G. Czako and J. M. Bowman, J. Chem. Phys. 131, 244302 (2009)], where a normal-mode analysis is performed during the course of a trajectory and which gives only real-valued frequencies. The method is applied to the water dimer, where its effectiveness is shown by computing mode energies as a function of integration time. Radial distribution functions are also calculated using constrained quasiclassical and standard classical molecular dynamics at low temperature and at 300 K and compared to rigorous quantum path integral calculations.

  2. Field Application of the Micro Biological Survey Method for the Assessment of the Microbiological Safety of Different Water Sources in Horn of Africa and the Evaluation of the Effectiveness of Moringa Oleifera in Drinking Water Purification

    PubMed Central

    Losito, Francesca; Arienzo, Alyexandra; Somma, Daniela; Murgia, Lorenza; Stalio, Ottavia; Zuppi, Paolo; Rossi, Elisabetta; Antonini, Giovanni

    2017-01-01

    Water monitoring requires expensive instrumentations and skilled technicians. In developing Countries as Africa, the severe economic restrictions and lack of technology make water safety monitoring approaches applied in developed Countries, still not sustainable. The need to develop new methods that are suitable, affordable, and sustainable in the African context is urgent. The simple, economic and rapid Micro Biological Survey (MBS) method does not require an equipped laboratory nor special instruments and skilled technicians, but it can be very useful for routine water analysis. The aim of this work was the application of the MBS method to evaluate the microbiological safety of different water sources and the effectiveness of different drinking water treatments in the Horn of Africa. The obtained results have proved that this method could be very helpful to monitor water safety before and after various purification treatments, with the aim to control waterborne diseases especially in developing Countries, whose population is the most exposed to these diseases. In addition, it has been proved that Moringa oleifera water treatment is ineffective in decreasing bacterial load of Eritrea water samples. PMID:28748063

  3. Field Application of the Micro Biological Survey Method for the Assessment of the Microbiological Safety of Different Water Sources in Horn of Africa and the Evaluation of the Effectiveness of Moringa Oleifera in Drinking Water Purification.

    PubMed

    Losito, Francesca; Arienzo, Alyexandra; Somma, Daniela; Murgia, Lorenza; Stalio, Ottavia; Zuppi, Paolo; Rossi, Elisabetta; Antonini, Giovanni

    2017-06-23

    Water monitoring requires expensive instrumentations and skilled technicians. In developing Countries as Africa, the severe economic restrictions and lack of technology make water safety monitoring approaches applied in developed Countries, still not sustainable. The need to develop new methods that are suitable, affordable, and sustainable in the African context is urgent. The simple, economic and rapid Micro Biological Survey (MBS) method does not require an equipped laboratory nor special instruments and skilled technicians, but it can be very useful for routine water analysis. The aim of this work was the application of the MBS method to evaluate the microbiological safety of different water sources and the effectiveness of different drinking water treatments in the Horn of Africa. The obtained results have proved that this method could be very helpful to monitor water safety before and after various purification treatments, with the aim to control waterborne diseases especially in developing Countries, whose population is the most exposed to these diseases. In addition, it has been proved that Moringa oleifera water treatment is ineffective in decreasing bacterial load of Eritrea water samples.

  4. Efficient Simulation Method for Polarizable Protein Force Fields: Application to the Simulation of BPTI in Liquid Water

    SciTech Connect

    Harder, Edward; Kim, Byungchan; Friesner, Richard A.; Berne, Bruce J.

    2005-01-31

    A methodology for large scale molecular dynamics simulation of a solvated polarizable protein, using a combination of permanent and inducible point dipoles with fluctuating and fixed charges, is discussed and applied to the simulation of water solvated bovine pancreatic trypsin inhibitor (BPTI). The electrostatic forces are evaluated using a generalized form of the P3M Ewald method which includes point dipoles in addition to point charge sites. The electrostatic configuration is propagated along with the nuclei during the course of the simulation using an extended Lagrangian formalism. For the system size studied, 20000 atoms, this method gives only a marginal computational overhead relative to nonpolarizable potential models (1.23-1.45) per time step of simulation. The models employ a newly developed polarizable dipole force field for the protein1 with two commonly used water models TIP4P-FQ and RPOL. Performed at constant energy and constant volume (NVE) using the velocity Verlet algorithm, the simulations show excellent energy conservation and run stably for their 2 ns duration. To characterize the accuracy of the solvation models the protein structure is analyzed. The simulated structures remain within 1 Å of the experimental crystal structure for the duration of the simulation in line with the nonpolarizable OPLS-AA model.

  5. Application of nano TiO(2) towards polluted water treatment combined with electro-photochemical method.

    PubMed

    Chen, Junshui; Liu, Meichuan; Zhang, Li; Zhang, Jidong; Jin, Litong

    2003-09-01

    A novel composite reactor was prepared and studied towards the degradation of organic pollutants in this work. In the reactor, a UV lamp was installed to provide energy to excite nano TiO(2), which served as photocatalyst, leading to the production of hole-electron pairs, and a three-electrode electrolysis system was used to accumulate H(2)O(2) which played an important role in the degradation process. The reactor was evaluated by the degradation process of rhodamine 6G (R-6G), and the data obtained in the experiments showed that the combination of the photochemical and electrochemical system raised the degradation rate of R-6G greatly; the working mechanism of the reactor was also discussed in the article. The prepared reactor was also utilized to treat polluted water from dyeing and printing process. After continuous treatment for 0.5h, chemical oxygen demand biochemical oxygen demand, quantity of bacteria and ammonia nitrogen of the polluted water were reduced by 93.9%, 87.6%, 99.9% and 67.5%, respectively, which indicated that the method used here could be used for effective organic dyes degradation.

  6. Application of the Markov Chain Monte Carlo method for snow water equivalent retrieval based on passive microwave measurements

    NASA Astrophysics Data System (ADS)

    Pan, J.; Durand, M. T.; Vanderjagt, B. J.

    2015-12-01

    Markov Chain Monte Carlo (MCMC) method is a retrieval algorithm based on Bayes' rule, which starts from an initial state of snow/soil parameters, and updates it to a series of new states by comparing the posterior probability of simulated snow microwave signals before and after each time of random walk. It is a realization of the Bayes' rule, which gives an approximation to the probability of the snow/soil parameters in condition of the measured microwave TB signals at different bands. Although this method could solve all snow parameters including depth, density, snow grain size and temperature at the same time, it still needs prior information of these parameters for posterior probability calculation. How the priors will influence the SWE retrieval is a big concern. Therefore, in this paper at first, a sensitivity test will be carried out to study how accurate the snow emission models and how explicit the snow priors need to be to maintain the SWE error within certain amount. The synthetic TB simulated from the measured snow properties plus a 2-K observation error will be used for this purpose. It aims to provide a guidance on the MCMC application under different circumstances. Later, the method will be used for the snowpits at different sites, including Sodankyla, Finland, Churchill, Canada and Colorado, USA, using the measured TB from ground-based radiometers at different bands. Based on the previous work, the error in these practical cases will be studied, and the error sources will be separated and quantified.

  7. A simulation method for calculating the absolute entropy and free energy of fluids: Application to liquid argon and water

    PubMed Central

    White, Ronald P.; Meirovitch, Hagai

    2004-01-01

    The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy and free energy by analyzing Boltzmann samples obtained by Monte Carlo (MC) or molecular dynamics techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by adding its atoms gradually to the initially empty volume, i.e., by placing them in their positions at i using transition probabilities (TPs). At each step of the process, the volume is divided into two parts, the already visited part (the “past”) and the “future” part, where obtaining the TP requires calculating partition functions over the future part in the presence of the frozen past. In recent publications, the TPs were calculated approximately by taking into account only partial future. Here we present a “complete HSMC” procedure, where the TPs are calculated from MC simulations carried out over the complete future. The complete HSMC method is applied to systems of liquid argon and the TIP3P model of water, and very good results for the free energy are obtained, as compared with results obtained by thermodynamic integration. PMID:15197270

  8. Clean Water Act Analytical Methods

    EPA Pesticide Factsheets

    EPA publishes laboratory analytical methods (test procedures) that are used by industries and municipalities to analyze the chemical, physical and biological components of wastewater and other environmental samples required by the Clean Water Act.

  9. Monitoring of inland waters for culturing shrimp Litopenaeus vannamei: application of a method based on survival and chemical composition.

    PubMed

    Valencia-Castañeda, G; Millán-Almaraz, M I; Fierro-Sañudo, J F; Fregoso-López, M G; Páez-Osuna, F

    2017-08-01

    This study evaluated the suitability of 21 inland waters (16 well waters and 5 surface waters) from Northwest Mexico via short- (48 h) and medium-term (28 days) tests using postlarvae (PL18) of Litopenaeus vannamei. In the short test, survival was assessed at 48 h after shrimp were placed in groups of 10 postlarvae into 2-L containers of inland water, to which they had been previously acclimated. The second, medium-term test consisted of four replicates with 10 postlarvae, and each group was placed in 15-L containers with the treatment water. Weights (initial and final) and survival were evaluated weekly for 28 days. In those waters for which the short test was positive and the medium-term test was negative and which also had a deficiency of potassium and/or magnesium, a third test was conducted. These last waters were supplemented with salts, and the shrimp survival and weights (initial and final) were recorded for 28 days. The water samples from San Jose, Mochicahui, Sinaloa River, Caimanero inner Lagoon, La Pipima, Campo Santa Fe, Escopama, and Fitmar had >60% survival in the short test. The Caimanero inner Lagoon water had the highest survival (87.5 ± 9.6%) and final mean weight (201.3 ± 86.2 mg). In the third test, it was found that shrimp in the water from La Pipima, Campo Santa Fe, and Fitmar exhibited 100% survival for 2 weeks. Finally, in this work, a decision tree to evaluate the suitability of low-salinity water for shrimp farming was proposed, which can be applied in other regions.

  10. [Application of a rapid and simple multi-residue method for determination of pesticide residues in drinking water and beverages using liquid chromatography-tandem mass spectrometry].

    PubMed

    Fukui, Naoki; Takatori, Satoshi; Kitagawa, Yoko; Okihashi, Masahiro; Osakada, Masakazu; Nakatsuji, Naoto; Nakayama, Yukiko; Kakimoto, You; Obana, Hirotaka

    2012-01-01

    A rapid and simple multi-residue method for determination of pesticides has been applied to drinking water and beverages. To a disposable polypropylene tube containing 10.0 g sample, 20 mL acetonitrile was added and the mixture was shaken vigorously for 1 min to extract pesticides. Then, 1 g sodium chloride and 4 g magnesium sulfate anhydrous were added, followed by vigorous shaking for 1 min and centrifugation to obtain the organic phase. The organic phase was processed with a graphite carbon black/PSA solid phase column. After concentration and reconstitution with 25% methanol containing aqueous solution, the test solution was analyzed with LC-MS/MS. Recovery tests of 91 pesticides fortified (0.02 μg/g) in 35 kinds of drinking water and beverages were conducted. The decline of recoveries in alcoholic beverages is considered to be due to the increase of organic phase volume owing to ethanol included in the alcoholic beverages. A simulation study was carried out with simulated alcoholic beverages, which consisted of 50% grape juice, with various amounts of ethanol and water, to examine pesticides recoveries and volume of the organic phase. The results suggested this method would be applicable both to alcoholic beverages containing less than 10% ethanol and to alcoholic beverages containing over 10% ethanol after dilution with water to below 10% ethanol prior to the addition of acetonitrile. A sample could be processed and analyzed by LC-MS/MS within 2 h. Thus, this method should be useful for monitoring and screening pesticide residues in drinking water and various beverages.

  11. Synthesis of hydroxyapatite nanorods for application in water defluoridation and optimization of process variables: Advantage of ultrasonication with precipitation method over conventional method.

    PubMed

    Mehta, Dhiraj; Mondal, Poonam; Saharan, Virendra Kumar; George, Suja

    2017-07-01

    This research work presents the synthesis of hydroxyapatite (Hap) nanorods for defluoridation of drinking water by using both conventional (CM) and ultrasonication with precipitation (USPM) methods. Calcium nitrate was reacted with potassium phosphate in presence of ammonia for controlled pH to synthesize Hap nanorods, which was characterized using FTIR, XRD, SEM, TG-DTA, and TEM/EDS for determining its phase composition, structural and thermal decomposition behavior. When USPM method was used for synthesis, the yield of the Hap nanorods was improved from 83.24±1.0% to 90.2±1.0%, and complete phase transformation occurred with formation of elongated Hap nanorods. Effects of process parameters such as solution pH, contact time and adsorbent dose were studied through response surface methodology (RSM). A simple quadratic model was developed using Central Composite Design (CCD) and optimum parameters for fluoride adsorption process were determined to be pH 7, contact time 3h and adsorbent dose 7g/L for maximum removal capacity. Fluoride removal efficiency was predicted to be 93.64% which was very close to the experimental value obtained at 92.86% using ultrasonically prepared Hap. Fluoride adsorption isotherms fitted the Freundlich isotherm with an adsorption capacity of 1.49mg/g, while the kinetic studies revealed that the process followed pseudo-second order model. The treated water quality parameters such as residual fluoride, calcium leached, total hardness and alkalinity was investigated, and it was observed that all these parameters were within the permissible limits as per WHO and BIS standards. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Water resources by orbital remote sensing: Examples of applications

    NASA Technical Reports Server (NTRS)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  13. Application of the Methods of Gas Dynamics to Water Flows with Free Surface II : Flows with Momentum Discontinuities (hydraulic Jumps)

    NASA Technical Reports Server (NTRS)

    Preiswerk, Ernst

    1940-01-01

    In this paper an introduction to shock polar diagrams is given which then leads into an examination of water depths in hydraulic jumps. Energy loss during these jumps is considered along with an extended look at elementary solutions of flow. An experimental test set-up is described and the results presented.

  14. Selection of an empirical detection method for determination of water-soluble carbohydrates in feedstuffs for application in ruminant nutrition

    USDA-ARS?s Scientific Manuscript database

    Water-soluble carbohydrates (WSC) are commonly measured in ruminant feedstuffs for use in diet formulation. However, we lack information as to which empirical detection assay most correctly measures WSC. The objective of this study was to determine which commonly used empirical assay was most approp...

  15. Application of quantitative real-time PCR compared to filtration methods for the enumeration of Escherichia coli in surface waters within Vietnam.

    PubMed

    Vital, Pierangeli G; Van Ha, Nguyen Thi; Tuyet, Le Thi Hong; Widmer, Kenneth W

    2017-02-01

    Surface water samples in Vietnam were collected from the Saigon River, rural and suburban canals, and urban runoff canals in Ho Chi Minh City, Vietnam, and were processed to enumerate Escherichia coli. Quantification was done through membrane filtration and quantitative real-time polymerase chain reaction (PCR). Mean log colony-forming unit (CFU)/100 ml E. coli counts in the dry season for river/suburban canals and urban canals were log 2.8 and 3.7, respectively, using a membrane filtration method, while using Taqman quantitative real-time PCR they were log 2.4 and 2.8 for river/suburban canals and urban canals, respectively. For the wet season, data determined by the membrane filtration method in river/suburban canals and urban canals samples had mean counts of log 3.7 and 4.1, respectively. While mean log CFU/100 ml counts in the wet season using quantitative PCR were log 3 and 2, respectively. Additionally, the urban canal samples were significantly lower than those determined by conventional culture methods for the wet season. These results show that while quantitative real-time PCR can be used to determine levels of fecal indicator bacteria in surface waters, there are some limitations to its application and it may be impacted by sources of runoff based on surveyed samples.

  16. Application of near surface geophysical methods to image water table response in an Alpine Meadow, Northern California.

    NASA Astrophysics Data System (ADS)

    Ayers, M.; Blacic, T. M.; Craig, M. S.; Yarnell, S. M.

    2015-12-01

    Meadows are recognized for their value to the ecological, hydrologic, and aesthetic functions of a watershed. As natural water retention sinks, meadows attenuate floods, improve water quality and support herbaceous vegetation that stabilize streambanks and promote high biodiversity. Alpine meadows are especially vital, serving as freshwater sources and distributing to lower lying provinces through ground and surface water interaction. These complexes are highly vulnerable to drought conditions, altered seasonal precipitation patterns, and mismanaged land use. One such location, Van Norden meadow located in the Donner Summit area west of Lake Tahoe, is one of the largest sub-alpine meadows in the Sierra Nevada mountain range of Northern California. Van Norden meadow offers a natural hydrologic laboratory. Ownership transfer of the area from a local land trust to the Forestry Service requires restoration toward natural meadow conditions, and involves notching the dam in 2016 to reduce currently impounded water volumes from 250 to less than 50 acre-feet. To monitor the effects of notching the dam on the upstream meadow conditions, better understanding of the surface and groundwater hydrology both pre-and post-base level alteration is required. Comprehensive understanding of groundwater flux that supports meadow reaches relies on knowledge of their often complex stratigraphic and structural subsurface framework. In recent years hydrogeophysics has emphasized the combination of near surface geophysical techniques, collaborated with well and borehole measures, to qualitatively define these parameters. Building on a preliminary GPR investigation conducted in 2014, in which 44 270 MHz transect lines were collected, we returned to Van Norden meadow in late summer 2015 to collect lower frequency GPR (50 and 100 MHz) and electrical resistivity profiles to better define the groundwater table, sedimentary, and structural features of the meadow.

  17. Development of a rapid soil water content detection technique using active infrared thermal methods for in-field applications.

    PubMed

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory-based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil heterogeneity.

  18. Development of a Rapid Soil Water Content Detection Technique Using Active Infrared Thermal Methods for In-Field Applications

    PubMed Central

    Antonucci, Francesca; Pallottino, Federico; Costa, Corrado; Rimatori, Valentina; Giorgi, Stefano; Papetti, Patrizia; Menesatti, Paolo

    2011-01-01

    The aim of this study was to investigate the suitability of active infrared thermography and thermometry in combination with multivariate statistical partial least squares analysis as rapid soil water content detection techniques both in the laboratory and the field. Such techniques allow fast soil water content measurements helpful in both agricultural and environmental fields. These techniques, based on the theory of heat dissipation, were tested by directly measuring temperature dynamic variation of samples after heating. For the assessment of temperature dynamic variations data were collected during three intervals (3, 6 and 10 s). To account for the presence of specific heats differences between water and soil, the analyses were regulated using slopes to linearly describe their trends. For all analyses, the best model was achieved for a 10 s slope. Three different approaches were considered, two in the laboratory and one in the field. The first laboratory-based one was centred on active infrared thermography, considered measurement of temperature variation as independent variable and reported r = 0.74. The second laboratory–based one was focused on active infrared thermometry, added irradiation as independent variable and reported r = 0.76. The in-field experiment was performed by active infrared thermometry, heating bare soil by solar irradiance after exposure due to primary tillage. Some meteorological parameters were inserted as independent variables in the prediction model, which presented r = 0.61. In order to obtain more general and wide estimations in-field a Partial Least Squares Discriminant Analysis on three classes of percentage of soil water content was performed obtaining a high correct classification in the test (88.89%). The prediction error values were lower in the field with respect to laboratory analyses. Both techniques could be used in conjunction with a Geographic Information System for obtaining detailed information on soil

  19. [Study on the validation of the computer science application's activity monitor in assessing the physical activity among adults using doubly labeled water method].

    PubMed

    Liu, Ai-ling; Li, Yan-ping; Song, Jun; Pan, Hui; Han, Xiu-ming; Ma, Guan-sheng

    2005-03-01

    Using doubly labeled water method to validate the colmputer science application's activity monitor (CSA) in assessing physical activity of free-living adults in Beijing, in order to develop equations to predict total daily energy expenditure (TEE) and activity related energy expenditure (AEE) from activity counts (AC) and anthropometric variables. A total of 72 healthy adults (33 males and 39 females, mean age 43.6 +/- 4.0 yr) were monitored for 7 consecutive days by CSA. TEE was simultaneously measured using doubly labeled water method. Average AC (counts/min(-1)) was compared with TEE, AEE and physical activity level (PAL). Physical activity determined by AC was significantly related to data on energy expenditures: TEE (r = 0.31, P < 0.01), AEE (r = 0.30, P < 0.05), and PAL (r = 0.26, P < 0.05). Multiple stepwise regression analysis showed that TEE was significantly influenced by gender, fat-free mass (FFM) or BMI and AC (R(2) = 0.52 - 0.70) while AEE was significantly influenced by gender, FFM and AC (R(2) = 0.25 - 0.32). AC from CSA activity monitor seemed a useful measure in studying the total amount of physical activity in free-living adults while AC significantly contributed to the explained variation in TEE and AEE.

  20. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters

    PubMed Central

    Thiers, Laurie; Louzao, Maite; Ridoux, Vincent; Le Corre, Matthieu; Jaquemet, Sébastien; Weimerskirch, Henri

    2014-01-01

    In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns) and subsurface predators (e.g., dolphins, tunas). To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs), we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry) and dynamic (e.g. Chlorophyll a concentration and sea surface temperature) factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators). PMID:25494047

  1. A novel phase-unwrapping method based on pixel clustering and local surface fitting with application to Dixon water-fat MRI.

    PubMed

    Cheng, Junying; Mei, Yingjie; Liu, Biaoshui; Guan, Jijing; Liu, Xiaoyun; Wu, Ed X; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2017-03-01

    To develop and evaluate a novel 2D phase-unwrapping method that works robustly in the presence of severe noise, rapid phase changes, and disconnected regions. The MR phase map usually varies rapidly in regions adjacent to wraps. In contrast, the phasors can vary slowly, especially in regions distant from tissue boundaries. Based on this observation, this paper develops a phase-unwrapping method by using a pixel clustering and local surface fitting (CLOSE) approach to exploit different local variation characteristics between the phase and phasor data. The CLOSE approach classifies pixels into easy-to-unwrap blocks and difficult-to-unwrap residual pixels first, and then sequentially performs intrablock, interblock, and residual-pixel phase unwrapping by a region-growing surface-fitting method. The CLOSE method was evaluated on simulation and in vivo water-fat Dixon data, and was compared with phase region expanding labeler for unwrapping discrete estimates (PRELUDE). In the simulation experiment, the mean error ratio by CLOSE was less than 1.50%, even in areas with signal-to-noise ratio equal to 0.5, phase changes larger than π, and disconnected regions. For 350 in vivo knee and ankle images, the water-fat swap ratio of CLOSE was 4.29%, whereas that of PRELUDE was 25.71%. The CLOSE approach can correctly unwrap phase with high robustness, and benefit MRI applications that require phase unwrapping. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. An experimental application of the Periodic Tracer Hierarchy (PERTH) method to quantify time-variable water and solute transport in a sloping soil lysimeter

    NASA Astrophysics Data System (ADS)

    Pangle, L. A.; Cardoso, C.; Kim, M.; Lora, M.; Wang, Y.; Troch, P. A. A.; Harman, C. J.

    2014-12-01

    Water molecules traverse myriad flow paths and spend different lengths of time on or within the landscape before they are discharged into a stream channel. The transit-time distribution (TTD) is a probability distribution that represents the range and likelihood of transit times for water and conservative solutes within soils and catchments, and is useful for comparative analysis and prediction of solute transport into streams. The TTD has customarily been assumed to be time-invariant in practical applications, but is understood to vary due to unsteady flow rates, changes in water-balance partitioning, and shifting flow pathways. Recent theoretical advances have clarified how the distribution of transit times experienced by water and solutes within a stream channel at any moment in time is conditional on the specific series of precipitation events preceding that time. Observations resolving how TTDs vary during a specific sequence of precipitation events could be obtained by introducing unique and conservative tracers during each event and quantifying their distinct breakthrough curves in the stream. At present, the number of distinct and conservative tracers available for this purpose is insufficient. Harman and Kim [Harman, C.J. and Kim, M., 2014, Geophysical Research Letters, 41, 1567-1575] proposed a new experimental method—based on the establishment of periodic steady-state conditions—that allows multiple overlapping breakthrough curves of non-unique tracers to be decomposed, thus enabling analysis of the distinct TTDs associated with their specific times of introduction through precipitation. We present results from one of the first physical experiments to test this methodology. Our experiment involves a sloping lysimeter (10° slope) that contains one cubic meter of crushed basalt rock (loamy sand texture), an irrigation system adaptable to controlled tracer introductions, and instruments that enable total water balance monitoring. We imposed a repeated

  3. Water electrolysis and its applications

    SciTech Connect

    Shimamune, T.; Nakajima, Y.; Nishiki, Y.; Tanaka, M.

    1995-12-31

    Permelec Electrode has commercialized various electrodes for industrial uses since 1969. Recently, we are focusing on developing several electrolytic systems which are composed of such electrodes and an ion exchange membrane. The membrane has abilities of separating ions and proceeding electrolysis even in the solution of low conductivity. It is clarified that various applications can be realized by this type of the electrolysis cell, so called the zero gap electrolysis system. The profitable and potential applications are introduced here, such as ozone production and diluted salt electrolytic systems for disinfection and water treatments.

  4. Development of a new three-phase membrane-assisted liquid-phase microextraction method: determination of nitrite in tap water samples as model analytical application.

    PubMed

    Pedrón, Isabel; Chisvert, Alberto; March, Juan G; Salvador, Amparo; Benedé, Juan L

    2011-04-01

    A novel and simple device for membrane-assisted liquid-phase microextraction is used for the first time in a three-phase system. The device consists of a glass vial containing the aqueous acceptor phase, whose septum of its screw stopper has been replaced by a sized piece of polytetrafluoroethylene membrane impregnated with n-decane. The vial is assembled to a volumetric flask containing the aqueous donor phase, and the membrane comes in contact alternatively with both donor and acceptor aqueous phases by orbital agitation. The device has been tested for the determination of nitrite in tap water samples, which is extensively carried out in routine analysis, as model analytical application. Experimental variables, such as the organic solvent used to form the supported liquid membrane, the volumes of both donor and acceptor phases, the orbital agitation rate, and the extraction time were studied and optimized in terms of enrichment factor. Under the selected working conditions, the analytical figures of merit for nitrite determination were a linearity range up to 50 ng mL(-1), limits of detection and quantification of 0.15 and 0.50 ng mL(-1), respectively, and a good repeatability (RSD < 10%). The method has been applied to four tap water samples of different origins, and accurate and precise results were achieved. Besides, the very low volume of organic solvent used, its low cost and the no-risk of cross-contamination are significant operational advantages.

  5. Application of a real-time PCR method for Salmonella spp., Escherichia coli, Staphylococcus aureus and Clostridium perfringens detection in water samples.

    PubMed

    Rozwadowska, Beata; Albertyńska, Marta; Hudzik, Grzegorz; Okła, Hubert; Jasik, Krzysztof P; Słodki, Jan

    2013-01-01

    The diagnostic assessment of water sanitary state is based mainly on the cultivation of bacteria retained on membrane filters. However classical microbiology methods have a lot of disadvantages. More and more frequently, rapid detection and identification of pathogens present in water is based on molecular biology techniques. The aim of this study was to determine the effectiveness and usefulness of a real-time PCR method, when compared to the recommended bacteria culture method, in diagnostics of pathogens in water samples. The research concerned the detection and identification of main sanitary indicators of water such as: Salmonella spp., Escherichia coli, Staphylococcus aureus and Clostridium perfringens. The analyses were conducted in water samples contaminated with the reference material (the aforementioned bacteria) and real environmental samples, which were examined for the presence of nucleic acid of: Salmonella spp., E. coli, S. aureus and C. perfringens using a real-time PCR method.

  6. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  7. Semi-automated disk-type solid-phase extraction method for polychlorinated dibenzo-p-dioxins and dibenzofurans in aqueous samples and its application to natural water.

    PubMed

    Choi, J W; Lee, J H; Moon, B S; Baek, K H

    2007-07-20

    A disk-type solid-phase extraction (SPE) method was used for the extraction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in natural water and tap water. Since this SPE system comprised airtight glass covers with a decompression pump, it enabled continuous extraction with semi-automation. The disk-type SPE method was validated by comparing its recovery rates of spiked internal standards with those of the liquid-liquid extraction (LLE). The recovery ranges of both methods were similar in terms of (13)C-labeled internal standards: 64.3-99.2% for the LLE and 52.4-93.6% for the SPE. For the native spike of 1,3,6,8-tetrachlorinated dibenzo-p-dioxin (TCDD) and octachlorinated dibenzo-p-dioxin (OCDD), the recoveries in the SPE were in the normal range of 77.9-101.1%. However, in the LLE, the recoveries of 1,3,6,8-TCDD decreased significantly. One of the reasons for the low recovery is that the solubility of this congener is high. The semi-automated SPE method was applied to the analysis of different types of water: river water, snow, sea water, raw water for drinking purposes, and tap water. PCDD/F congeners were found in some sea water and snow samples, while their concentrations in the other samples were below the limits of detection (LODs). This SPE system is appropriate for the routine analysis of water samples below 50L.

  8. The water method combined with chromoendoscopy enhances adenoma detection

    PubMed Central

    Ransibrahmanakul, Kanat; Toomsen, Lee; Mann, Surinder K; Siao-Salera, Rodelei

    2011-01-01

    Background The water method is easy-to-learn and improves colonoscopy outcomes. Dye-spray chromoendoscopy enhances ADR but has not been widely accepted for routine application in screening or surveillance colonoscopy. Hypothesis With dye added to the water used in the water method, ADR can be enhanced compared with the water or air method alone. Objective To compare ADR determined by the air method, water method alone, and water method with indigo carmine (0.008%) added. Design Review of prospectively collected data in a performance improvement program. Setting VA endoscopy unit. Patient Screening or surveillance colonoscopy. Methods Patients (n=50/group) underwent colonoscopy with each of the three methods. Water method involved warm water infusion in lieu of air insufflation coupled with removal of residual air by suction and residual feces by water exchange. ADR and procedural data were collected prospectively to monitor performance. Main Outcome Measurements ADR. Results ADR in the air method, water method alone and water method with indigo carmine were 36%, 40% and 62%, respectively. Water method with indigo carmine produced significantly higher ADR than the air or water method alone (p<0.05). Limitations Non-randomized data, single VA site, retrospective comparison. Absence of significant difference between air and water methods could be a type II error due to small number of patients Conclusions The approach with indigo carmine added to the water used in the water method yielded significantly higher ADR than the water or the air method alone. The data suggest that a prospective RCT to compare the different methods is warranted. PMID:21776426

  9. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water

  10. Field Application of the Micro Biological Survey Method for a Simple and Effective Assessment of the Microbiological Quality of Water Sources in Developing Countries

    PubMed Central

    Arienzo, Alyexandra; Sobze, Martin Sanou; Wadoum, Raoul Emeric Guetiya; Losito, Francesca; Colizzi, Vittorio; Antonini, Giovanni

    2015-01-01

    According to the World Health Organization (WHO) guidelines, “safe drinking-water must not represent any significant risk to health over a lifetime of consumption, including different sensitivities that may occur between life stages”. Traditional methods of water analysis are usually complex, time consuming and require an appropriately equipped laboratory, specialized personnel and expensive instrumentation. The aim of this work was to apply an alternative method, the Micro Biological Survey (MBS), to analyse for contaminants in drinking water. Preliminary experiments were carried out to demonstrate the linearity and accuracy of the MBS method and to verify the possibility of using the evaluation of total coliforms in 1 mL of water as a sufficient parameter to roughly though accurately determine water microbiological quality. The MBS method was then tested “on field” to assess the microbiological quality of water sources in the city of Douala (Cameroon, Central Africa). Analyses were performed on both dug and drilled wells in different periods of the year. Results confirm that the MBS method appears to be a valid and accurate method to evaluate the microbiological quality of many water sources and it can be of valuable aid in developing countries. PMID:26308038

  11. [Application of robustness test for assessment of the measurement uncertainty at the end of development phase of a chromatographic method for quantification of water-soluble vitamins].

    PubMed

    Ihssane, B; Bouchafra, H; El Karbane, M; Azougagh, M; Saffaj, T

    2016-05-01

    We propose in this work an efficient way to evaluate the measurement of uncertainty at the end of the development step of an analytical method, since this assessment provides an indication of the performance of the optimization process. The estimation of the uncertainty is done through a robustness test by applying a Placquett-Burman design, investigating six parameters influencing the simultaneous chromatographic assay of five water-soluble vitamins. The estimated effects of the variation of each parameter are translated into standard uncertainty value at each concentration level. The values obtained of the relative uncertainty do not exceed the acceptance limit of 5%, showing that the procedure development was well done. In addition, a statistical comparison conducted to compare standard uncertainty after the development stage and those of the validation step indicates that the estimated uncertainty are equivalent. The results obtained show clearly the performance and capacity of the chromatographic method to simultaneously assay the five vitamins and suitability for use in routine application. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  12. Application Perspectives of the new Methods of Quick Test Analysis of Heavy Metals in Natural and Sewage Waters and Soil Extracts in the Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Nazarenko, Y.

    2004-05-01

    In hybrid methods, which are based on preliminary concentration of heavy metals on sorbets, a sample of water can be introduced into contact with a sorbet for the extraction of the ions being studied right after taking the probes. At the final stage, the hybrid methods include X-ray-fluorescent, neutron-activation or photometric analysis in visible, IR or UV regions in the sorbet phase. The spectral analysis of sorbet samples with extracted heavy metals can be conducted through measuring diffuse reflection of electromagnetic radiation in visible, IR and UV regions. The application of chemosorptional concentration with direct on sorbet photometric analysis introduces the following requirements to the result: - heavy metal extraction must be quantitative in a broad diapason of concentrations; - as far as possible, only heavy metals must be extracted, this extraction must be selective; - the color intensity of the compounds, obtained by the interaction of a dye with metals, concentrated on a sorbet, must depend only on the concentration of a metal in the solid surface phase; - a sorbet must have a sufficient mechanical firmness and not swell; We have conducted the investigation of Pb2+, Cd2+ and Zn2+ ions extraction with the usage of silochrome, modified by x-mercaptopropyl groups. At the first stage of research, the dependence of the sorption degree on pH of a sample being studied was registered. The pH alteration was performed with the help of buffer solutions in the gap from 7 to 9. The best results were achieved for pH = 8. At the second stage of research, the quest for dyes, which would interact with particular extracted on x-mercaptopropylsilica heavy metals, was being performed. Series of experiments for every of the three mentioned heavy metals (Pb, Cd and Zn) were carried out with the following dyes: brilliant green, murexide, zinkon, PAR, sulpharsazene, eriochrome black T. At the third stage of research, investigations for different metal concentrations on a

  13. Analysis of the herbicide diuron, three diuron degradates, and six neonicotinoid insecticides in water-Method details and application to two Georgia streams

    USGS Publications Warehouse

    Hladik, Michelle; Calhoun, Daniel L.

    2012-01-01

    A method for the determination of the widely used herbicide diuron, three degradates of diuron, and six neonicotinoid insecticides in environmental water samples is described. Filtered water samples were extracted by using solid-phase extraction (SPE) with no additional cleanup steps. Quantification of the pesticides from the extracted water samples was done by using liquid chromatography with tandem mass spectrometry (LC/MS/MS). Recoveries in test water samples fortified at 20 nanograms per liter (ng/L) for each compound ranged from 75 to 97 percent; relative standard deviations ranged from 5 to 10 percent. Method detection limits (MDLs) in water ranged from 3.0 to 6.2 ng/L using LC/MS/MS. The method was applied to water samples from two streams in Georgia, Sope Creek and the Chattahoochee River. Diuron and 3,4-dichloroaniline (3,4-DCA) were detected in 100 and 80 percent, respectively, of the samples from the Chattahoochee River, whereas Sope creek had detection frequencies of 15 percent for diuron and 31 percent for 3,4-DCA. Detection frequencies for the neonicotinoid insecticide, imidacloprid, were 60 percent for the Chattahoochee River and 85 percent for Sope Creek. Field matrix-spike recoveries for each compound, when averaged over four water samples, ranged from 79 to 100 percent. The average percentage difference between replicate pairs for all compounds detected in the field samples was 10.1 (± 4.5) percent.

  14. Method for treating waste water

    SciTech Connect

    Masaki, Y.; Odawara, Y.; Shimizu, N.

    1982-10-26

    The invention relates to an improvement of the floc-formation property of activated sludge contained in waste water. A waste water treatment process comprises steps culturing a novel strain-alcaligenes faecalis hrl-1-and adding the cultured cells to to-be-treated waste water.

  15. Robust and Superhydrophobic Surface Modification by a "Paint + Adhesive" Method: Applications in Self-Cleaning after Oil Contamination and Oil-Water Separation.

    PubMed

    Chen, Baiyi; Qiu, Jianhui; Sakai, Eiichi; Kanazawa, Nobuhiro; Liang, Ruilu; Feng, Huixia

    2016-07-13

    Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency.

  16. Application of remote sensing to water resources problems

    NASA Technical Reports Server (NTRS)

    Clapp, J. L.

    1972-01-01

    The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.

  17. A new method to assess long-term sea-bottom vertical displacement in shallow water using a bottom pressure sensor: Application to Campi Flegrei, Southern Italy

    NASA Astrophysics Data System (ADS)

    Chierici, Francesco; Iannaccone, Giovanni; Pignagnoli, Luca; Guardato, Sergio; Locritani, Marina; Embriaco, Davide; Donnarumma, Gian Paolo; Rodgers, Mel; Malservisi, Rocco; Beranzoli, Laura

    2016-11-01

    We present a new methodology using bottom pressure recorder (BPR) measurements in conjunction with sea level, water column, and barometric data to assess the long-term vertical seafloor deformation to a few centimeters accuracy in shallow water environments. The method helps to remove the apparent vertical displacement on the order of tens of centimeters caused by the BPR instrumental drift and by seawater density variations. We have applied the method to the data acquired in 2011 by a BPR deployed at 96 m depth in the marine sector of the Campi Flegrei Caldera, during a seafloor uplift episode of a few centimeters amplitude, lasted for several months. The method detected a vertical uplift of the caldera of 2.5 ± 1.3 cm achieving an unprecedented level of precision in the measurement of the submarine vertical deformation in shallow water. The estimated vertical deformation at the BPR also compares favorably with data acquired by a land-based GPS station located at the same distance from the maximum of the modeled deformation field. While BPR measurements are commonly performed in deep waters, where the oceanic noise is relatively low, and in areas with rapid, large-amplitude vertical ground displacement, the proposed method extends the capability of estimating vertical uplifts from BPR time series to shallow waters and to slow deformation processes.

  18. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, D.A.; Duncan, J.B.; Jensen, G.A.

    1995-09-19

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained. 1 fig.

  19. Method and apparatus for tritiated water separation

    DOEpatents

    Nelson, David A.; Duncan, James B.; Jensen, George A.

    1995-01-01

    The present invention is a membrane method and apparatus for separating isotopic water constituents from light water. The method involves providing a supported membrane of an aromatic polyphosphazene and pressurizing the water on one side of the membrane thereby forcing the light water through the supported membrane while isotopic water constituents are retained or vice versa. The apparatus of the present invention includes an aromatic polyphosphazene placed on a porous support and means for pressurizing water through the membrane while certain isotopic water constituents are retained.

  20. Comparison of electrical conductivity calculation methods for natural waters

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  1. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves-Optimization by Response Surface Method and Application in Oil-in-Water Emulsions.

    PubMed

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H; Almajano, María Pilar

    2014-05-06

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50-90 °C, 0%-30%-60% ethanol (v/v), and 10-15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior.

  2. Extraction of Antioxidants from Borage (Borago officinalis L.) Leaves—Optimization by Response Surface Method and Application in Oil-in-Water Emulsions

    PubMed Central

    Segovia, Francisco; Lupo, Bryshila; Peiró, Sara; Gordon, Michael H.; Almajano, María Pilar

    2014-01-01

    Borage (Borago officinalis L.) is a typical Spanish plant. During processing, 60% are leaves. The aim of this work is to model and optimize the extraction of polyphenol from borage leaves using the response surface method (RSM) and to use this extract for application in emulsions. The responses were: total polyphenol content (TPC), antioxidant capacity by ORAC, and rosmarinic acid by HPLC. The ranges of the variables temperature, ethanol content and time were 50–90 °C, 0%–30%–60% ethanol (v/v), and 10–15 min. For ethanolic extraction, optimal conditions were at 75.9 °C, 52% ethanol and 14.8 min, yielding activity of 27.05 mg GAE/g DW TPC; 115.96 mg TE/g DW in ORAC and 11.02 mg/L rosmarinic acid. For water extraction, optimal activity was achieved with extraction at 98.3 °C and 22 min, with responses of 22.3 mg GAE/g DW TPC; 81.6 mg TE/g DW in ORAC and 3.9 mg/L rosmarinic acid. The significant variables were ethanol concentration and temperature. For emulsions, the peroxide value was inhibited by 60% for 3% extract concentration; and 80% with 3% extract concentration and 0.2% of BSA. The p-anisidine value between the control and the emulsion with 3% extract was reduced to 73.6% and with BSA 86.3%, and others concentrations had similar behavior. PMID:26784875

  3. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  4. Method Development and Monitoring of Cyanotoxins in Water ...

    EPA Pesticide Factsheets

    Increasing occurrence of cyanobacterial harmful algal blooms (HABs) in ambient waters has become a worldwide concern. Numerous cyanotoxins can be produced during HAB events which are toxic to animals and humans. Validated standardized methods that are rugged, selective and sensitive are needed for these cyanotoxins in drinking and ambient waters. EPA Drinking Water Methods 544 (six microcystins [MCs] and nodularin) and 545 (cylindrospermopsin [CYL] and anatoxin-a [ANA]) have been developed using liquid chromatography/tandem mass spectrometry (LC/MS/MS). This presentation will describe the adaptation of Methods 544 and 545 to ambient waters and application of these ambient water methods to seven bodies of water across the country with visible cyanobacterial blooms.Several changes were made to Method 544 to accommodate the increased complexity of ambient water. The major changes were to reduce the sample volume from 500 to 100 mL for ambient water analyses and to incorporate seven additional MCs in an effort to capture data for more MC congeners in ambient waters. The major change to Method 545 for ambient water analyses was the addition of secondary ion transitions for each of the target analytes for confirmation purposes. Both methods have been ruggedly tested in bloom samples from multiple bodies of water, some with multiple sample locations and sampling days. For ambient water bloom samples spiked with MCs (>800 congener measurements), 97% of the measurements

  5. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Grinevsky, Sergey O.; Pozdniakov, Sergey P.; Yu, Jingjie; Dautova, Dina S.; Min, Leilei; Du, Chaoyang; Zhang, Yichi

    2014-11-01

    Shallow groundwater is primarily discharged via evapotranspiration (ETg) in arid and semi-arid riparian systems; however, the quantification of ETg remains a challenge in regional water resource assessments of such systems. In this study, the diagnostic indicators of groundwater evapotranspiration processes and the principles of applying the water table fluctuation (WTF) method to estimate ETg based on seasonal groundwater level changes were presented. These techniques were then used to investigate groundwater evapotranspiration processes at two sites dominated by phreatophytes (Tamarix ramosissima and Populus euphratica) within hyper-arid desert environments in northwestern China for the period 2010-2012. The results indicate that steady declines in the water table, which are commonly attributed to groundwater evapotranspiration, occurred at both sites during the growing season. Based on the proposed WTF method, the estimated ETg was 0.63-0.73 mm/d at the Tamarix ramosissima site and 1.89-2.33 mm/d at the Populus euphratica site during the summer months (June-August). Numerical simulations using a one-dimensional root water uptake model indicate that the seasonal variations in ETg at both sites were primarily dependent on the potential evaporation rates. Comparisons with previous studies on plant transpiration at similar sites in this area show that these results are reasonable. It is apparent that the WTF method can provide a simple and relatively inexpensive method of estimating ETg on a large scale in arid/semi-arid regions. However, there are significant uncertainties associated with time-dependent lateral flow rates, which creates a challenge when applying this method. In addition, the selection of calculation periods that show steady declines in the groundwater level can be somewhat subjective. To enhance the performance of the WTF method based on seasonal water table declines, further research on the estimation of lateral flow rates should be performed

  6. Application of counter-current chromatography as a new pretreatment method for the determination of polycyclic aromatic hydrocarbons in environmental water.

    PubMed

    Cao, Xueli; Yang, Chunlei; Pei, Hairun; Li, Xinghong; Xu, Xiaobai; Ito, Yoichiro

    2012-02-01

    Counter-current chromatography (CCC) was investigated as a new sample pretreatment method for the determination of trace polycyclic aromatic hydrocarbons (PAHs) in water environmental samples. The experiment was performed with a non-aqueous binary two-phase solvent system composed of n-heptane and acetonitrile. The CCC column was first filled with the upper stationary phase, and then a large volume of water sample was pumped into the column while the CCC column was rotated at 1600 rpm. Finally, the trace amounts of PAHs extracted and enriched in the stationary phase were eluted out by the lower mobile phase and determined by gas chromatography-flame ionization detector (GC-FID) or gas chromatography-mass spectrometry (GC-MS). The enrichment and cleanup of PAHs can be fulfilled online by this method with high recoveries (84.1-103.2%) and good reproducibility (RSDs: 4.9-12.2%) for 16 EPA PAHs under the optimized CCC pretreatment conditions. This method has been successfully applied to determine PAHs in lake water where 8 PAHs were detected in the concentration of 40.9-89.9 ng/L. The present method is extremely suitable for the preparation of large volume of environmental water sample for the determination of trace amounts of organic pollutants including PAHs as studied in this paper.

  7. A method to determine plant water source using transpired water

    NASA Astrophysics Data System (ADS)

    Menchaca, L. B.; Smith, B. M.; Connolly, J.; Conrad, M.; Emmett, B.

    2007-04-01

    A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree) and Genista monspessulana (shrub) using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris) switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  8. Method of treating waste water

    DOEpatents

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  9. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    NASA Astrophysics Data System (ADS)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non

  10. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 2: Retrieval method and applications (report version)

    NASA Technical Reports Server (NTRS)

    Olson, William S.

    1990-01-01

    A physical retrieval method for estimating precipitating water distributions and other geophysical parameters based upon measurements from the DMSP-F8 SSM/I is developed. Three unique features of the retrieval method are (1) sensor antenna patterns are explicitly included to accommodate varying channel resolution; (2) precipitation-brightness temperature relationships are quantified using the cloud ensemble/radiative parameterization; and (3) spatial constraints are imposed for certain background parameters, such as humidity, which vary more slowly in the horizontal than the cloud and precipitation water contents. The general framework of the method will facilitate the incorporation of measurements from the SSMJT, SSM/T-2 and geostationary infrared measurements, as well as information from conventional sources (e.g., radiosondes) or numerical forecast model fields.

  11. Application of a Developed Method for the Extraction of Triazines in Surface Waters and Storage Prior to Analysis to Seawaters of Galicia (Northwest Spain)

    PubMed Central

    Rodríguez-González, Noelia; Beceiro-González, Elisa; González-Castro, María José; Muniategui-Lorenzo, Soledad

    2013-01-01

    A simple method based on solid-phase extraction combined with liquid chromatography for simultaneous determination of nine triazine herbicides (ametryn, atrazine, cyanazine, prometryn, propazine, simazine, simetryn, terbuthylazine, and terbutryn) in surface water samples was developed and validated. Under optimized conditions, 50 mL of water sample was pumped through the Oasis HLB cartridge, and triazines were eluted with 3 mL acetone. Finally the extract was concentrated to dryness, reconstituted with 1 mL methanol : water (1 : 1) and injected into the HPLC-DAD system. The stability of the herbicides on the cartridges at −18 and 4°C was also evaluated, and the recoveries obtained after three weeks of storage were satisfactory for all compounds. The analytical features of the proposed method were satisfactory: repeatability and intermediate precision were <10% and recoveries in spiked river water and seawater samples were higher than 93% for all compounds studied. Limits of quantification (varied from 0.46 to 0.98 µg L−1) were adequately allowing the determination of these compounds at the levels requested by the 2008/105/EC Directive. Finally, this method was applied to the analysis of 50 seawater samples from Galicia (northwest Spain). PMID:24228007

  12. Ionomer-Membrane Water Processing Methods

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(TradeMark) over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  13. Development of a new seminested PCR method for detection of Legionella species and its application to surveillance of legionellae in hospital cooling tower water.

    PubMed Central

    Miyamoto, H; Yamamoto, H; Arima, K; Fujii, J; Maruta, K; Izu, K; Shiomori, T; Yoshida, S

    1997-01-01

    The presence of PCR inhibitors in water samples is well known and contributes to the fact that a practical PCR assay has not been developed for legionella surveillance. In this study, we devised a new seminested PCR assay for detection of Legionella spp. in water samples as a means of overriding the PCR inhibitors without loss of sensitivity. The seminested PCR assay utilized primers to amplify the 16S rRNA gene (LEG primers) of 39 Legionella spp. The assay was specific to legionellae, and the sensitivity was 1 fg of extracted Legionella DNA in laboratory examination. To evaluate the feasibility and sensitivity of the PCR assay in identifying the presence of legionellae, it was used to survey Legionella contamination in the water of 49 cooling towers of 32 hospitals. A commercially available EnviroAmp Legionella kit and a culture method were also used in the survey for comparison with the seminested PCR assay. The detection rates of legionellae in the samples were 91.8% (45 of 49) by the PCR assay and 79.5% (39 of 49) by the culture method. The EnviroAmp kit revealed that 30.6% of the water samples (15 of 49) contained inhibitors of the PCR amplification. However, the seminested PCR assay could produce the Legionella-specific DNA bands in 14 of the 15 samples. Although 8 of the 14 samples were positive in the first-step PCR, 6 of the 14 samples became positive in the second-step PCR. These results suggest that the effect of PCR inhibitors in samples, if any, can be reduced because of the dilution of the sample in the second-step PCR and that sensitivity of detection can be increased by the second-step PCR. Thus, the seminested PCR assay with LEG primers to amplify the 16S rRNA gene of 39 Legionella spp. was a practical and sensitive method to detect Legionella spp. in water samples. PMID:9212400

  14. Investigation of the matrix effects on a HPLC-ESI-MS/MS method and application for monitoring triazine, phenylurea and chloroacetanilide concentrations in fresh and estuarine waters.

    PubMed

    Mazzella, N; Delmas, F; Delest, B; Méchin, B; Madigou, C; Allenou, J-P; Gabellec, R; Caquet, Th

    2009-01-01

    In this work, the effects of matrix interferences on the analytical performance of a new multiresidue method based on off-line solid phase extraction followed by reversed-phase liquid chromatographic separation and electrospray triple quadrupole mass spectrometric detection were investigated. This technique allows the simultaneous determination of 30 triazines, phenylureas and chloroacetanilides, extracted from freshwaters, in 40 minutes. Quantifications were performed with the use of appropriate internal standards (i.e. atrazine D5, diuron D6 and metolachlor D6). The limits of quantification were from 1 to 32 ng L(-1) for the triazines, from 5 to 59 ng L(-1) for the phenylureas and from 13 to 54 ng L(-1) for the chloroacetanilides. The matrix effects were studied by spiking various waters (i.e. tap, river, pond and sea waters) with the chemicals of interest. The results showed that the samples with the highest conductivity (i.e. seawater) and the most abundant dissolved organic matter content (i.e. pond water) exhibited important matrix effects with signal suppressions and high imprecision, respectively. These matrix effects were strongly minimized by performing appropriate internal standardizations. Afterward, this analytical method was applied for analyzing environmental samples from either river or estuarine waters and for monitoring herbicide input in a freshwater-seawater interface.

  15. An SPE LC-MS/MS method for the analysis of human and veterinary chemical markers within surface waters: an environmental forensics application.

    PubMed

    Fenech, Cecilia; Nolan, Kieran; Rock, Luc; Morrissey, Anne

    2013-10-01

    In this study, the use of co-occurring discriminators of sewage and manure was assessed as a potential way to disentangle sewage and manure sources. A suite of human and veterinary derived chemical markers, which includes pharmaceuticals and compound such as food additives, has been identified for this purpose. The suite was selected in such a manner as to provide additional source characterisation, e.g. differentiating raw versus treated sewage inputs. An SPE-LC-MS/MS method was developed and validated for the determined suite of chemical markers with a detection limit of up to 50 pg L(-1). This represents one of the lowest limits of detection for pharmaceuticals reported in literature. To illustrate the suitability of the proposed method to differentiate sewage and manure inputs to surface water bodies, results from surface water samples collected at monitoring sites corresponding to specific land use types within Ireland are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Application of a fast and cost-effective in situ derivatization method prior to gas chromatography with mass spectrometry to monitor endocrine disruptors in water matrices.

    PubMed

    Melo, Armindo; Ferreira, Isabel M P L V O; Mansilha, Catarina

    2015-06-01

    This work deals with the optimization of a rapid, cost-effective, and eco-friendly gas chromatography with mass spectrometry method for the simultaneous determination of four endocrine disruptor compounds in water matrices: estrone, 17β-estradiol, 17α-ethinylestradiol, and bisphenol A, that are currently considered to be of main concern in the field of water policy and that could became candidates for future regulations. The method involves simultaneous derivatization and extraction of compounds by dispersive liquid-liquid microextraction followed by gas chromatography with mass spectrometry analysis. Derivatization and extraction parameters were optimized with the aid of experimental design approach. An excellent linear response was achieved for all analytes (r(2) ≥ 0.999). Limits of detection and quantification are 0.003-0.005 and 0.0094-0.0164 μg/L, respectively. Intraday precision ranged between 1.1 and 12.6%, whereas interday precision ranged between 0.5 and 14.7%. For accuracy, bias values varied between -15.0 and 13.7%. Recoveries at three concentration levels ranged from 86.4 to 118.2%. The proposed method can be applied to the routine analysis of groundwater, river, sea, tap, and mineral water samples with excellent sensitivity, precision, and accuracy.

  17. Application of high-speed counter-current chromatography as a new pretreatment method for analysis of polycyclic aromatic hydrocarbons in environmental water samples

    PubMed Central

    Cao, Xueli; Yang, Chunlei; Pei, Hairun; Li, Xinghong; Xu, Xiaobai; Ito, Yoichiro

    2011-01-01

    High-speed counter-current chromatography (HSCCC) was investigated as a new sample pretreatment method for the analysis of trace polycyclic aromatic hydrocarbons (PAHs) in water environmental samples. The experiment was performed with a nonaqueous binary two-phase solvent system composed of heptane-acetonitrile. The HSCCC column was first entirely filled with the upper stationary phase of the and a large volume of water sample was pumped into the column while the CCC column was rotated at 1600 rpm. Finally, the trace amount of PAHs extracted and enriched in the stationary phase were eluted out by the lower mobile phase. and analyzed by gas chromatography-flame ionization detector (GC-FID) or gas chromatography-mass spectrometry (GC-MS) after concentration. The enrichment and cleanup of PAHs can be fulfilled online by this methodwithhigh recoveries (84.1%–103.2%) and good reproducibility (RSDs 4.9–12.2%) for 16 EPA PAHs under the optimized HSCCC pretreatment conditions. This method has been successfully applied to determine PAHs in lake waterwhere 8 PAHs were detected in the concentration of 40.9–89.9 ng/L. The present method is extremely suitable in the preparation of large volume of environmental water sample for the determination of a trace amount of organic pollutants including PAHs as studied in this paper. PMID:22282420

  18. A calorimetric method to determine water activity

    NASA Astrophysics Data System (ADS)

    Björklund, Sebastian; Wadsö, Lars

    2011-11-01

    A calorimetric method to determine water activity covering the full range of the water activity scale is presented. A dry stream of nitrogen gas is passed either over the solution whose activity should be determined or left dry before it is saturated by bubbling through water in an isothermal calorimeter. The unknown activity is in principle determined by comparing the thermal power of vaporization related to the gas stream with unknown activity to that with zero activity. Except for three minor corrections (for pressure drop, non-perfect humidification, and evaporative cooling) the unknown water activity is calculated solely based on the water activity end-points zero and unity. Thus, there is no need for calibration with references with known water activities. The method has been evaluated at 30 °C by measuring the water activity of seven aqueous sodium chloride solutions ranging from 0.1 mol kg-1 to 3 mol kg-1 and seven saturated aqueous salt solutions (LiCl, MgCl2, NaBr, NaCl, KCl, KNO3, and K2SO4) with known water activities. The performance of the method was adequate over the complete water activity scale. At high water activities the performance was excellent, which is encouraging as many other methods used for water activity determination have limited performance at high water activities.

  19. Ozone in water treatment: Application and engineering

    SciTech Connect

    Langlais, B.; Reckhow, D.A.; Brink, D.R.

    1991-01-01

    This book is a cumulative effort between the American Water Works Association Research Foundation and Champagnie General des Eaux. It is designed to provide guidance in two areas: application of ozone to drinking water and appropriate system design and operation. It is geared for use by environmentalists, engineers, and water treatment plant personnel.

  20. Development, validation, and application of a method for selected avermectin determination in rural waters using high performance liquid chromatography and fluorescence detection.

    PubMed

    Lemos, Maria Augusta Travassos; Matos, Camila Alves; de Resende, Michele Fabri; Prado, Rachel Bardy; Donagemma, Raquel Andrade; Netto, Annibal Duarte Pereira

    2016-11-01

    Avermectins (AVM) are macrocyclic lactones used in livestock and agriculture. A quantitative method of high performance liquid chromatography with fluorescence detection for the determination of eprinomectin, abamectin, doramectin and ivermectin in rural water samples was developed and validated. The method was employed to study samples collected in the Pito Aceso River microbasin, located in the Bom Jardim municipality, Rio de Janeiro State, Brazil. Samples were extracted by solid phase extraction using a polymeric stationary phase, the eluted fraction was re-concentrated under a gentle N2 flow and derivatized to allow AVM determination using liquid chromatography with fluorescence detection. The excitation and emission wavelengths of the derivatives were 365 and 470nm, respectively, and a total chromatographic run of 12min was achieved. Very low limits of quantification (22-58ngL(-1)) were found after re-concentration using N2. Recovery values varied from 85.7% to 119.2% with standard deviations between 1.2% and 10.2%. The validated method was applied in the determination of AVM in 15 water samples collected in the Pito Aceso River microbasin, but most of them were free of AVM or showed only trace levels of these compounds, except for a sample that contained doramectin (9.11µgL(-1)). The method is suitable for routine analysis with satisfactory recovery, sensitivity, and selectivity.

  1. Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method. Their application to the determination of methylthiotriazine herbicides in river water.

    PubMed

    Sambe, Haruyo; Hoshina, Kaori; Haginaka, Jun

    2007-06-08

    Uniformly-sized, molecularly imprinted polymers (MIPs) for atrazine, ametryn and irgarol were prepared by a multi-step swelling and polymerization method using ethylene glycol dimethacrylate as a cross-linker and methacrylic acid (MAA), 2-(trifluoromethyl) acrylic acid (TFMAA) or 4-vinylpyridine either as a functional monomer or not. The MIP for atrazine prepared using MAA showed good molecular recognition abilities for chlorotriazine herbicides, while the MIPs for ametryn and irgarol prepared using TFMAA showed excellent molecular recognition abilities for methylthiotriazine herbicides. A restricted access media-molecularly imprinted polymer (RAM-MIP) for irgarol was prepared followed by in situ hydrophilic surface modification using glycerol dimethacrylate and glycerol monomethacrylate as hydrophilic monomers. The RAM-MIP was applied to selective pretreatment and enrichment of methylthiotriazine herbicides, simetryn, ametryn and prometryn, in river water, followed by their separation and UV detection via column-switching HPLC. The calibration graphs of these compounds showed good linearity in the range of 50-500 pg/mL (r > 0.999) with a 100 mL loading of a river water sample. The quantitation limits of simetryn, ametryn and prometryn were 50 pg/mL, and the detection limits were 25 pg/mL. The recoveries of simetryn, ametryn and prometryn at 50 pg/mL were 101%, 95.6% and 95.1%, respectively. This method was successfully applied for the simultaneous determination of simetryn, ametryn and prometryn in river water.

  2. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    PubMed

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  3. Hybrid approach for free energy calculations with high-level methods: application to the SN2 reaction of CHCl3 and OH- in water.

    PubMed

    Valiev, Marat; Garrett, Bruce C; Tsai, Ming-Kang; Kowalski, Karol; Kathmann, Shawn M; Schenter, Gregory K; Dupuis, Michel

    2007-08-07

    We present an approach to calculate the free energy profile along a condensed-phase reaction path based on high-level electronic structure methods for the reactive region. The bulk of statistical averaging is shifted toward less expensive descriptions by using a hierarchy of representations that includes molecular mechanics, density functional theory, and coupled cluster theories. As an application of this approach we study the reaction of CHCl3 with OH- in aqueous solution.

  4. Hybrid approach for free energy calculations with high-level methods: Application to the SN2 reaction of CHCl3 and OH- in water

    NASA Astrophysics Data System (ADS)

    Valiev, Marat; Garrett, Bruce C.; Tsai, Ming-Kang; Kowalski, Karol; Kathmann, Shawn M.; Schenter, Gregory K.; Dupuis, Michel

    2007-08-01

    We present an approach to calculate the free energy profile along a condensed-phase reaction path based on high-level electronic structure methods for the reactive region. The bulk of statistical averaging is shifted toward less expensive descriptions by using a hierarchy of representations that includes molecular mechanics, density functional theory, and coupled cluster theories. As an application of this approach we study the reaction of CHCl3 with OH- in aqueous solution.

  5. Domestic applications for aerospace waste and water management technologies

    NASA Technical Reports Server (NTRS)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  6. Application of zeolites for radium removal from mine water.

    PubMed

    Chałupnik, Stanisław; Franus, Wojciech; Wysocka, Małgorzata; Gzyl, Grzegorz

    2013-11-01

    For removal of radium from saline waters in Upper Silesian mines, several methods of purification have been developed. The most efficient one is based on application of barium chloride, which was implemented in full technical scale in two Polish coal mines several years ago. Very good results of purification have been achieved-the removal efficiency exceeding 95% of the initial activity. Another possibility for the removal of different ions from salty waters and brines is the application of zeolites. We found that technique as a very promising method for removal of not only radium isotopes from mine waters but also other ions (barium, iron, manganese). Treatment of several various water samples has been done to assess the removal efficiency for natural radionuclides. Preliminary results show very good effects for radium isotopes as well as for barium ions. In the paper, a short description of laboratory results of the purification of mine waters with application of synthetic zeolites is presented.

  7. An inverse method to derive surface fluxes from the closure of oceanic heat and water budgets: Application to the north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Caniaux, G.; Prieur, L.; Giordani, H.; Redelsperger, J.-L.

    2017-04-01

    The large amount of data collected during DeWEX, MOOSE, and HyMeX campaigns in the north-western Mediterranean in 2012-2013 allowed to implement an inverse method to solve the difficult problem of heat and water budget closure. The inverse method is based on the simulation of the observed heat and water budgets, strongly constrained by observations collected during the campaigns and on the deduction of adjusted surface fluxes. The inverse method uses a genetic algorithm that generates 50,000 simulations of a single-column model and optimizes some adjustable coefficients introduced in the surface fluxes. Finally, the single-column model forced by the adjusted fluxes during 1 year and over a test area of about 300 × 300 km2 simulates the daily mean satellite bulk SST with an accuracy/uncertainty of 0.011 ± 0.072°C, as well as daily mean SSS and residual buoyancy series deduced from wintertime analyses with an accuracy of 0.011 ± 0.008 and 0.03 ± 0.012 m2 s-2, respectively. The adjusted fluxes close the annual heat and rescaled water budgets by less than 5 W m-2. To our knowledge, this is the first time that such a flux data set is produced. It can thus be considered as a reference for the north-western Mediterranean and be used for estimating other flux data sets, for forcing regional models and for process studies. Compared with the adjusted fluxes, some operational numerical weather prediction models (ARPEGE, NCEP, ERA-INTERIM, ECMWF, and AROME), often used to force oceanic models, were evaluated: they are unable to retrieve the mean annual patterns and values.

  8. Fourier methods for turbomachinery applications

    NASA Astrophysics Data System (ADS)

    He, L.

    2010-11-01

    Rapid increase in computing power has made a huge difference in scales and complexities of the problems in turbomachinery that we can tackle by use of computational fluid dynamics (CFD). It is recognised, however, that there is always a need for developing efficient methods for applications to blade designs. In a design cycle, a large number of flow solutions are sought to interact iteratively or concurrently with various options, opportunities and constraints from other disciplines. This basic requirement for fast prediction methods in a multi-disciplinary design environment remains unchanged, regardless of computer speed. And it must be recognised that the multi-disciplinary nature of blading design increasingly influences outcomes of advanced gas turbine and aeroengine developments. Recently there has been considerable progress in the Fourier harmonic modelling method development for turbomachinery applications. The main driver is to develop efficient and accurate computational methodologies and working methods for prediction and analysis of unsteady effects on aerothermal performance (loading and efficiency) and aeroelasticity (blade vibration due to flutter and forced response) in turbomachinery. In this article, the developments and applications of this type of methods in the past 20 years or so are reviewed. The basic modelling assumptions and various forms of implementations for the temporal Fourier modelling approach are presented and discussed. Computational examples for realistic turbomachinery configurations/flow conditions are given to illustrate the validity and effectiveness of the approach. Although the major development has been in the temporal Fourier harmonic modelling, some recent progress in use of the spatial Fourier modelling is also described with demonstration examples.

  9. Assessing and comparing the total antioxidant capacity of commercial beverages: application to beers, wines, waters and soft drinks using TRAP, TEAC and FRAP methods.

    PubMed

    Queirós, Raquel B; Tafulo, Paula A R; Sales, M Goreti F

    2013-01-01

    This work measures and tries to compare the Antioxidant Capacity (AC) of 50 commercial beverages of different kinds: 6 wines, 12 beers, 18 soft drinks and 14 flavoured waters. Because there is no reference procedure established for this purpose, three different optical methods were used to analyse these samples: Total Radical trapping Antioxidant Parameter (TRAP), Trolox Equivalent Antioxidant Capacity (TEAC) and Ferric ion Reducing Antioxidant Parameter (FRAP). These methods differ on the chemical background and nature of redox system. The TRAP method involves the transfer of hydrogen atoms while TEAC and FRAP involves electron transfer reactions. The AC was also assessed against three antioxidants of reference, Ascorbic acid (AA), Gallic acid (GA) and 6-hydroxy-2,5,7,8-tetramethyl- 2-carboxylic acid (Trolox). The results obtained were analyzed statistically. Anova one-way tests were applied to all results and suggested that methods and standards exhibited significant statistical differences. The possible effect of sample features in the AC, such as gas, flavours, food colouring, sweeteners, acidity regulators, preservatives, stabilizers, vitamins, juice percentage, alcohol percentage, antioxidants and the colour was also investigated. The AC levels seemed to change with brand, kind of antioxidants added, and kind of flavour, depending on the sample. In general, higher ACs were obtained for FRAP as method, and beer for kind of sample, and the standard expressing the smaller AC values was GA.

  10. Development and application of novelty pretreatment method for the concurrent quantitation of eleven water-soluble B vitamins in ultrafiltrates after renal replacement therapy.

    PubMed

    Wirkus, Dorota; Jakubus, Aleksandra; Owczuk, Radosław; Stepnowski, Piotr; Paszkiewicz, Monika

    2017-02-01

    Continous renal replacement therapy (CRRT) is particularly recommended for septic shock patients in intensive care units. The CRRT technique used most frequently is high volume continuous veno-venous haemofiltration. It provides a high rate of clearance of uremic toxins and inflammatory cytokines. However, it should also be taken into account that substances important for homeostasis may be concurrently unintentionally removed. Accordingly, water-soluble vitamins can be removed during continuous renal replacement therapy, and the estimate of the loss is critical to ensure appropriate supplementation. The aim of this work was to develop a simple methodology for a purification step prior to the LC-MS/MS determination of water-soluble vitamins in ultrafiltrate samples. For this purpose, two types of resin and a mix of resins were used as sorbents for the purification step. Moreover, parameters such as the amount of resin and the extraction time were optimized. The LC-MS/MS method was developed and validated for final determination of 11 vitamins. The results demonstrated the high purification capability of DEAE Sephadex resin with recoveries between 65 and 101% for water-soluble vitamins from ultrafiltrate samples. An optimized method was applied to assess the loss of B-group vitamins in patients after 24h of renal replacement therapy. The loss of vitamins B2, B6 pyridoxamine, B6 pyridoxal, B7, B1, and B5 in ultrafiltrates was similar in all patients. In the native ultrafiltrates, vitamins B6 pyridoxine, B9 and B12 were not detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Superhydrophobic Cu2S@Cu2O film on copper surface fabricated by a facile chemical bath deposition method and its application in oil-water separation

    NASA Astrophysics Data System (ADS)

    Pi, Pihui; Hou, Kun; Zhou, Cailong; Li, Guidong; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Wang, Shuangfeng

    2017-02-01

    Cu2S and Cu2O composite (Cu2S@Cu2O) film with micro/nano binary structure was created on copper surface using the mixing solution of sodium thiosulphate and copper sulfate by a facile chemical bath deposition method. After modification with low-cost polydimethylsioxane (PDMS), the superhydrophobic Cu2S@Cu2O film was obtained. The as-prepared film shows outstanding water repellency with a water contact angle larger than 150° and long-term storage stability. The geometric morphology and chemical composition of the film were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), respectively. Moreover, the same method was used to fabricate superhydrophobic/superoleophilic copper mesh, and it could realize separation of various oily sewages with separation efficiency above 94%. This strategy has potential to fabricate the practical superhydrophobic Cu2S@Cu2O film on copper surface on a large scale due to its simplicity and low cost.

  12. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    USGS Publications Warehouse

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.

  13. Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry.

    PubMed

    Aminot, Yann; Litrico, Xavier; Chambolle, Mélodie; Arnaud, Christine; Pardon, Patrick; Budzindki, Hélène

    2015-11-01

    Comprehensive source and fate studies of pharmaceuticals in the environment require analytical methods able to quantify a wide range of molecules over various therapeutic classes, in aqueous and solid matrices. Considering this need, the development of an analytical method to determine 53 pharmaceuticals in aqueous phase and in solid matrices using a combination of microwave-assisted extraction, solid phase extraction, and liquid chromatography coupled with tandem mass spectrometry is reported. Method was successfully validated regarding linearity, repeatability, and overall protocol recovery. Method detection limits (MDLs) do not exceed 1 ng L(-1) for 40 molecules in aqueous matrices (6 ng L(-1) for the 13 remaining), while subnanogram per gram MDLs were reached for 38 molecules in solid phase (29 ng g(-1) for the 15 remaining). Losses due to preparative steps were assessed for the 32 analytes associated to their labeled homologue, revealing an average loss of 40 % during reconcentration, the most altering step. Presence of analytes in wastewater treatment plant (WWTP) effluent aqueous phase and suspended solids (SS) as well as in river water, SS, and sediments was then investigated on a periurban river located in the suburbs of Bordeaux, France, revealing a major contribution of WWTP effluent to the river contamination. Sorption on river SS exceeded 5 % of total concentration for amitriptyline, fluoxetine, imipramine, ritonavir, sildenafil, and propranolol and appeared to be submitted to a seasonal influence. Sediment contamination was lower than the one of SS, organic carbon content, and sediment fine element proportion was accountable for the highest measured concentrations.

  14. Conjugate gradient method - Electromagnetism applications

    NASA Astrophysics Data System (ADS)

    Mosig, Juan R.

    1987-10-01

    This paper presents a brief but rigorous description of the conjugate gradient technique as applied to the solution of algebraic linear systems with complex coefficients. The relationships between conjugate gradient techniques and other commonly used methods are established. A normalized algorithm is introduced which optimally exploits the computer capabilities. Its performance is compared with that of Gaussian elimination by numerical tests on Hilbert matrices of more than a thousand unknowns. As a practical application, the problem of electrostatic screening by a finite ground plane has been solved with this technique.

  15. A faster plant stem-water extraction method.

    PubMed

    Vendramini, Patricia F; Sternberg, Leonel da S L

    2007-01-01

    Oxygen and hydrogen isotope ratios of stem water have been used by several studies which relate the ecophysiology of plants to their water source. Undoubtedly, there are several other applications and research areas which could use this type of analysis. However, the most often used methods of extracting stem water are slow, limiting the rate of sampling and consequently preventing a deeper understanding of spatial and temporal plant water source use. We have developed a faster batch method of stem-water extraction and compare it with the most commonly used online method of stem-water extraction. Samples are sealed in 18 cm long ampoules having their extremities placed sample end in a heating block and the condensing end in a cooling block, and allowed to distill overnight. Up to 72 samples can be distilled overnight and sealed the next morning. The isotope ratios of water distilled by the batch method introduced here compared with those from the online method were in excellent agreement. In addition to being faster, this method does not need the monitoring of hot water baths and liquid nitrogen traps during distillation and does not require a complex vacuum system. Copyright (c) 2006 John Wiley & Sons, Ltd.

  16. Application of the high-temperature ratio method for evaluation of the depth distribution of dose equivalent in a water-filled phantom on board space station Mir.

    PubMed

    Berger, T; Hajek, M; Schöner, W; Fugger, M; Vana, N; Akatov, Y; Shurshakov, V; Arkhangelsky, V; Kartashov, D

    2002-01-01

    A water-filled tissue equivalent phantom with a diameter of 35 cm was developed at the Institute for Biomedical Problems. Moscow. Russia. It contains four channels perpendicular to each other, where dosemeters can be exposed at different depths. Between May 1997 and February 1999 the phantom was installed at three different locations on board the Mir space station. Thermoluminescence dosemeters (TLDs) were exposed at various depths inside the phantom either parallel or perpendicular to the hull of the spacecraft. The high-temperature ratio (HTR) method was used for the evaluation of the TLDs. The method was developed at the Atominstitute of the Austrian Universities. Vienna, Austria, and has already been used for measurements in mixed radiation fields on earth and in space with great success. It uses the changes of peak height ratios in LiF:Mg,Ti glow curves in dependence on the linear energy transfer (LET), and therefore allows determination of an 'averaged' LET as well as measurement of the absorbed dose. A mean quality factor and, subsequently, the dose equivalent can be calculated according to the Q(LETinfinity) relationship proposed by the ICRP. The small size of the LiF dosemeters means that the HTR method can be used to determine the gradient of absorbed dose and dose equivalent inside the tissue equivalent body.

  17. Monograph for using paleoflood data in Water Resources Applications

    USGS Publications Warehouse

    Swain, R.E.; Jarrett, R.D.

    2004-01-01

    The Environmental and Water Resources Institute (EWRI) Technical Committee on Surface Water Hydrology is sponsoring a Task Committee on Paleoflood Hydrology to prepare a monograph entitled, "Use of Paleoflood and Historical Data in Water Resources Applications." This paper introduces the subject of paleoflood hydrology and discusses the topics, which are expected to be included in the monograph. The procedure for preparing and reviewing the monograph will also be discussed. The paleoflood hydrology monograph will include a discussion of types of hydrologic and paleoflood data, paleostage indicators, flood chronology, modeling methods, interpretation issues, water resources applications and case studies, and research needs. Paleoflood data collection and analysis techniques will be presented, and various applications in water-resources investigations will be provided. An overview of several flood frequency analysis approaches, which consider historical and paleoflood data along with systematic streamflow records, will be presented. The monograph is scheduled for completion and publication in 2001. Copyright ASCE 2004.

  18. A Novel HPLC Method for the Concurrent Analysis and Quantitation of Seven Water-Soluble Vitamins in Biological Fluids (Plasma and Urine): A Validation Study and Application

    PubMed Central

    Grotzkyj Giorgi, Margherita; Howland, Kevin; Martin, Colin; Bonner, Adrian B.

    2012-01-01

    An HPLC method was developed and validated for the concurrent detection and quantitation of seven water-soluble vitamins (C, B1, B2, B5, B6, B9, B12) in biological matrices (plasma and urine). Separation was achieved at 30°C on a reversed-phase C18-A column using combined isocratic and linear gradient elution with a mobile phase consisting of 0.01% TFA aqueous and 100% methanol. Total run time was 35 minutes. Detection was performed with diode array set at 280 nm. Each vitamin was quantitatively determined at its maximum wavelength. Spectral comparison was used for peak identification in real samples (24 plasma and urine samples from abstinent alcohol-dependent males). Interday and intraday precision were <4% and <7%, respectively, for all vitamins. Recovery percentages ranged from 93% to 100%. PMID:22536136

  19. Development, validation, and application of a method for the GC-MS analysis of fipronil and three of its degradation products in samples of water, soil, and sediment.

    PubMed

    de Toffoli, Ana L; da Mata, Kamilla; Bisinoti, Márcia C; Moreira, Altair B

    2015-01-01

    A method for the identification and quantification of pesticide residues in water, soil, and sediment samples has been developed, validated, and applied for the analysis of real samples. The specificity was determined by the retention time and the confirmation and quantification of analyte ions. Linearity was demonstrated over the concentration range of 20 to 120 µg L(-1), and the correlation coefficients varied between 0.979 and 0.996, depending on the analytes. The recovery rates for all analytes in the studied matrix were between 86% and 112%. The intermediate precision and repeatability were determined at three concentration levels (40, 80, and 120 µg L(-1)), with the relative standard deviation for the intermediate precision between 1% and 5.3% and the repeatability varying between 2% and 13.4% for individual analytes. The limits of detection and quantification for fipronil, fipronil sulfide, fipronil-sulfone, and fipronil-desulfinyl were 6.2, 3.0, 6.6, and 4.0 ng L(-1) and 20.4, 9.0, 21.6, and 13.0 ng L(-1), respectively. The method developed was used in water, soil, and sediment samples containing 2.1 mg L(-1) and 1.2% and 5.3% of carbon, respectively. The recovery of pesticides in the environmental matrices varied from 88.26 to 109.63% for the lowest fortification level (40 and 100 µg kg(-1)), from 91.17 to 110.18% for the intermediate level (80 and 200 µg kg(-1)), and from 89.09 to 109.82% for the highest fortification level (120 and 300 µg kg(-1)). The relative standard deviation for the recovery of pesticides was under 15%.

  20. Coating carbon nanotubes with humic acid using an eco-friendly mechanochemical method: Application for Cu(II) ions removal from water and aquatic ecotoxicity.

    PubMed

    Côa, Francine; Strauss, Mathias; Clemente, Zaira; Rodrigues Neto, Laís L; Lopes, Josias R; Alencar, Rafael S; Souza Filho, Antônio G; Alves, Oswaldo L; Castro, Vera Lúcia S S; Barbieri, Edison; Martinez, Diego Stéfani T

    2017-12-31

    In this work, industrial grade multi-walled carbon nanotubes (MWCNT) were coated with humic acid (HA) for the first time by means of a milling process, which can be considered an eco-friendly mechanochemical method to prepare materials and composites. The HA-MWCNT hybrid material was characterized by atomic force microscopy (AFM), scanning electron microscopies (SEM and STEM), X-ray photoelectron spectroscopy (XPS), termogravimetric analysis (TGA), and Raman spectroscopy. STEM and AFM images demonstrated that the MWCNTs were efficiently coated by the humic acid, thus leading to an increase of 20% in the oxygen content at the nanotube surface as observed by the XPS data. After the milling process, the carbon nanotubes were shortened as unveiled by SEM images and the values of ID/IG intensity ratio increased due to shortening of the nanotubes and increasing in the number defects at the graphitic structure of carbon nanotubes walls. The analysis of TGA data showed that the quantity of the organic matter of HA on the nanotube surface was 25%. The HA coating was responsible to favor the dispersion of MWCNTs in ultrapure water (i.e. -42mV, zeta-potential value) and to improve their capacity for copper removal. HA-MWCNTs hybrid material adsorbed 2.5 times more Cu(II) ions than oxidized MWCNTs with HNO3, thus evidencing that it is a very efficient adsorbent material for removing copper ions from reconstituted water. The HA-MWCNTs hybrid material did not show acute ecotoxicity to the tested aquatic model organisms (Hydra attenuata, Daphnia magna, and Danio rerio embryos) up to the highest concentration evaluated (10mgL(-1)). The results allowed concluding that the mechanochemical method is effective to coat carbon nanotubes with humic acid, thus generating a functional hybrid material with low aquatic toxicity and great potential to be applied in environmental nanotechnologies such as the removal of heavy metal ions from water. Copyright © 2017 Elsevier B.V. All rights

  1. Hydrologic Applications of GRACE Terrestrial Water Storage Data

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Zaitchik, Benjamin F.; Li, Bailing; Bolten, John; Hourborg, Rasmus; Velicogna, Isabella; Famiglietti, Jay

    2009-01-01

    Gravimetry-based terrestrial water storage time series have great potential value for hydrological research and applications, because no other observing system can provide global maps of the integrated quantity of water stored on and below the land surface. However, these data are challenging to use because their spatial and temporal resolutions are low relative to other hydrological observations and because total terrestrial water storage is a measurement unfamiliar to hydrologists. In this presentation we will review techniques for temporal, horizontal, and vertical disaggregation of GRACE terrestrial water storage anomalies, including data assimilation and integration within a land surface model. We will then discuss initial results from three efforts to use the methods for water resources applications. These include drought monitoring across North America, water cycle assessment over the Middle East North African region, and groundwater depletion estimates for northern India.

  2. Hydrologic Applications of GRACE Terrestrial Water Storage Data

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Zaitchik, Benjamin F.; Li, Bailing; Bolten, John; Hourborg, Rasmus; Velicogna, Isabella; Famiglietti, Jay

    2009-01-01

    Gravimetry-based terrestrial water storage time series have great potential value for hydrological research and applications, because no other observing system can provide global maps of the integrated quantity of water stored on and below the land surface. However, these data are challenging to use because their spatial and temporal resolutions are low relative to other hydrological observations and because total terrestrial water storage is a measurement unfamiliar to hydrologists. In this presentation we will review techniques for temporal, horizontal, and vertical disaggregation of GRACE terrestrial water storage anomalies, including data assimilation and integration within a land surface model. We will then discuss initial results from three efforts to use the methods for water resources applications. These include drought monitoring across North America, water cycle assessment over the Middle East North African region, and groundwater depletion estimates for northern India.

  3. Application of carrier element free coprecipitation (CEFC) method for determination of Co(II), Cu(II) and Ni(II) ions in food and water samples.

    PubMed

    Serencam, Huseyin; Duran, Celal; Ozdes, Duygu; Bektas, Hakan

    2013-01-01

    A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples.

  4. [Pharmacoepidemiology: definition, methods and applications].

    PubMed

    Montastruc, Jean-Louis; Sommet, Agnès; Montastruc, François; Moulis, Guillaume; Bagheri, Haleh; Damase-michel, Christine; Lapeyre-mestre, Maryse

    2015-01-01

    Clinical evaluation of drugs before approval is based on the experimental design of clinical trial with randomization of drug exposure. Unfortunately, conclusions of clinical trials are necessarily limited to patients enrolled in the trial. It is therefore necessary to compare these experimental data from clinical trials with the real use of drugs in clinical practice. Pharmacoepidemiology is defined as the study in real conditions and on large populations, of use, effectiveness and risk of drugs. The methods and fields of application of pharmacoepidemiology are described. They allow to characterize conditions of use, misuse, clinical effectiveness, adverse drug reactions and risks of drugs. The development of pharmacoepidemiology should allow optimization of "rational use" of drugs.

  5. Application of the two-sample doubly labelled water method alters behaviour and affects estimates of energy expenditure in black-legged kittiwakes.

    PubMed

    Schultner, Jannik; Welcker, Jorg; Speakman, John R; Nordøy, Erling S; Gabrielsen, Geir W

    2010-09-01

    Despite the widespread use of the doubly labelled water (DLW) method in energetic studies of free-ranging animals, effects of the method on study animals are rarely assessed. We studied behavioural effects of two alternative DLW protocols. During two consecutive breeding seasons, 42 parent black-legged kittiwakes received either the commonly used two-sample (TS) or the less invasive single-sample (SS) DLW treatment. A third group served as a non-treated control. We evaluated the effect of treatment with respect to the time birds took to return to their nest after treatment and recaptures, and the nest attendance during DLW measurement periods. We found that TS kittiwakes took on average 20 times longer to return to their nest than SS kittiwakes after initial treatment, and nest attendance was reduced by about 40% relative to control birds. In contrast, nest attendance did not differ between control and SS kittiwakes. Estimates of energy expenditure of SS kittiwakes exceeded those of TS kittiwakes by 15%. This difference was probably caused by TS birds remaining inactive for extended time periods while at sea. Our results demonstrate that the common assumption that the TS DLW method has little impact on the behaviour of study subjects is in some circumstances fallacious. Estimates of energy expenditure derived by the SS approach may thus more accurately reflect unbiased rates of energy expenditure. However, the choice of protocol may be a trade-off between their impact on behaviour, and hence accuracy, and their differences in precision. Adopting procedures that minimize the impact of TS protocols may be useful.

  6. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: application to liquid argon and water.

    PubMed

    White, Ronald P; Meirovitch, Hagai

    2004-12-08

    The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy S and free energy F by analyzing Boltzmann samples obtained by Monte Carlo or molecular dynamics techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). At each step of the process the system is divided into two parts, the already treated molecules (the "past"), which are fixed, and the as yet unspecified (mobile) "future" molecules. Obtaining the TP exactly requires calculating partition functions over all positions of the future molecules in the presence of the frozen past, thus it is customary to invoke various approximations to best represent these quantities. In a recent publication [Proc. Natl. Acad. Sci. USA 101, 9235 (2004)] we developed a version of HS called complete HSMC, where each TP is calculated from an MC simulation involving all of the future molecules (the complete future); the method was applied very successfully to Lennard-Jones systems (liquid argon) and a box of TIP3P water molecules. In its basic implementation the method provides lower and upper bounds for F, where the latter can be evaluated only for relatively small systems. Here we introduce a new expression for an upper bound, which can be evaluated for larger systems. We also propose a new exact expression for F and verify its effectiveness. These free energy functionals lead to significantly improved accuracy (as applied to the liquid systems above) which is comparable to our thermodynamic integration results. We formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies. Additionally, several functionals are developed and shown to provide the free energy through the analysis of a single configuration.

  7. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography-mass spectrometry.

    PubMed

    Weigel, S; Bester, K; Hühnerfuss, H

    2001-03-30

    A method has been developed that allows the solid-phase extraction of microorganic compounds from large volumes of water (10 l) for non-target analysis of filtered seawater. The filtration-extraction system is operated with glass fibre filter candles and the polymeric styrene-divinylbenzene sorbent SDB-1 at flow-rates as high as 500 ml/min. Recovery studies carried out for a couple of model substances covering a wide range of polarity and chemical classes revealed a good performance of the method. Especially for polar compounds (log Kow 3.3-0.7) quantitative recovery was achieved. Limits of detection were between 0.1 and 0.7 ng/l in the full scan mode of the MS. The suitability of the method for the analysis of marine water samples is demonstrated by the non-target screening of water from the German Bight for the presence of organic contaminants. In the course of this screening a large variety of substances was identified including pesticides, industrial chemicals and pharmaceuticals. For some of the identified compounds their occurrence in marine ecosystems has not been reported before, such as dichloropyridines, carbamazepine, propyphenazone and caffeine.

  8. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities.

    PubMed

    Shelver, Weilin L; Hakk, Heldur; Larsen, Gerald L; DeSutter, Thomas M; Casey, Francis X M

    2010-02-19

    An analytical method was developed using ultra-high-pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in 6 min. Despite the rapidity of the assay the system was properly re-equilibrated in this time. No carryover was observed even after high analyte concentrations. The instrumental detection limit based on signal-to-noise ratio (S/N)>3, was below 1 pg/microL (5 pg on column) for all SAs except sulfachloropyridazine. Surface water, ground water, soil, and slurry manure contained in storage ponds in and around swine [Sus scrofa domesticus] rearing facilities were analyzed. Sample cleanup for ground water and surface water included using solid phase extraction (SPE) using Oasis hydrophilic-lipophilic balance (HLB) cartridges. The soil and slurry manure required tandem strong anion exchange (SAX) and HLB solid phase extraction cartridges for sample cleanup. With few exceptions, the recoveries ranged from 60 to 100% for all matrices. The minimum detectable levels were below 2.0 ng/L for water, 30 ng/L for slurry manure, and 45 ng/kg for soil except for sulfachloropyridazine. The coefficient of variation (CV) was within 20% for most of the compounds analyzed. Using this method, sulfamethazine concentrations of 2250-5060 ng/L, sulfamethoxazole concentrations of 108-1.47 x 10(6)ng/L, and sulfathiazole concentrations of 785-1700 ng/L were found in the slurry manure. Sulfadimethoxine (2.0-32 ng/L), sulfamethazine (2.0-5.1 ng/L), and sulfamethoxazole (20.5-43.0 ng/L) were found in surface water and ground water. In top soil (0-15 cm), sulfamethazine ranged 34.5-663 ng/kg dry weight in those locations that received slurry manure as a nutrient; no SAs were found in the soil depths between 46 and 61 cm. The speed makes the method practical for medium to high throughput applications. The sensitivity and positive analyte identification make the method suitable for the demanding requirements for

  9. Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method.

    PubMed

    Chatzisymeon, Efthalia; Droumpali, Ariadni; Mantzavinos, Dionissios; Venieri, Danae

    2011-03-02

    The disinfection efficiency of synthetic and real wastewater by means of UV-A and UV-C irradiation in the presence or absence of TiO(2) was investigated. A reference strain of Escherichia coli suspended in sterile 0.8% (w/v) NaCl aqueous solution was used as a synthetic wastewater, while real wastewater samples were collected from the outlet of the secondary treatment of a municipal wastewater treatment plant. E. coli inactivation was monitored both by the conventional culture technique and by the real-time PCR method. Culture method showed that UV-C irradiation (11 W lamp) achieved total E. coli inactivation of 100% within 3 min of photolytic treatment. On the other hand, UV-A (9 W lamp)/TiO(2); [TiO(2)]=200 mg L(-1) (i.e. best operating conditions) required 60 min to achieve total disinfection of the synthetic wastewater. Real time PCR revealed compatible results, regarding the better efficiency of UV-C. However, it showed different times of bacterial inactivation, probably due to the phenomenon of "viable but not culturable bacteria". Disinfection durability tests in the dark and under natural sunlight irradiation showed that there is cell repair when UV-C irradiation is used for synthetic wastewater disinfection. Regarding real wastewater it was observed that only UV-C irradiation was capable of totally inactivating E. coli population in short time. Comparing results obtained from both methods, real time PCR proved to be more reliable and accurate, concerning the bacterial detection and enumeration in aquatic samples after the application of UV irradiation.

  10. Metabolic connectivity: methods and applications.

    PubMed

    Yakushev, Igor; Drzezga, Alexander; Habeck, Christian

    2017-09-13

    Metabolic connectivity modelling aims to detect functionally interacting brain regions based on PET recordings with the glucose analogue [F]fluorodeoxyglucose (FDG). Here, we outline the most popular metabolic connectivity methods and summarize recent applications in clinical and basic neuroscience. Metabolic connectivity is modelled by various methods including a seed correlation, sparse inverse covariance estimation, independent component analysis and graph theory. Given its multivariate nature, metabolic connectivity possess added value relative to conventional univariate analyses of FDG-PET data. As such, metabolic connectivity provides valuable insights into pathophysiology and diagnosis of dementing, movement disorders, and epilepsy. Metabolic connectivity can also identify resting state networks resembling patterns of functional connectivity as derived from functional MRI data. Metabolic connectivity is a valuable concept in the fast-developing field of brain connectivity, at least as reasonable as functional connectivity of functional MRI. So far, the value of metabolic connectivity is best established in neurodegenerative disorders, but studies in other brain diseases as well as in the healthy state are emerging. Growing evidence indicates that metabolic connectivity may serve a marker of normal and pathological cognitive function. A relationship of metabolic connectivity with structural and functional connectivity is yet to be established.

  11. Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

    PubMed

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

  12. Behavior and Distribution of Heavy Metals Including Rare Earth Elements, Thorium, and Uranium in Sludge from Industry Water Treatment Plant and Recovery Method of Metals by Biosurfactants Application

    PubMed Central

    Gao, Lidi; Kano, Naoki; Sato, Yuichi; Li, Chong; Zhang, Shuang; Imaizumi, Hiroshi

    2012-01-01

    In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90–100% using a precipitation method with alkaline solution. PMID:22693485

  13. Development of a method for measuring water-soluble organics in the atmosphere: Application to isoprene and 2-methyl-3-buten-2-ol photochemistry

    NASA Astrophysics Data System (ADS)

    Spaulding, Reggie Sue

    2000-12-01

    Photooxidation of biogenic hydrocarbons contributes significantly to tropospheric ozone, secondary organic aerosol, and atmospheric free radical formation in urban and rural areas. A thorough understanding of reactions mechanisms for the most abundant biogenic hydrocarbons and the mixing ratios of their reaction products in the atmosphere is therefore essential for producing accurate photochemical models to predict formation of tropospheric pollutants. Two important biogenic hydrocarbons in western North America are isoprene and 2-methyl-3-buten-2-ol (MBO). First-, second-, and third-generation products from the reactions of isoprene and MBO with hydroxyl radicals in the atmosphere include multifunctional carbonyls that have been difficult to measure due to their high polarity and low mixing ratios. In this work an analytical method that relies on a mist sampler for collection of water-soluble species, O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine derivatization of carbonyl groups, and bis-(trimethylsilyl)trifluoroacetamide derivatization of -OH and -COOH groups was optimized. Derivatized compounds were identified and quantified by gas chromatography with ion trap mass spectrometry. Pentafluorobenzyl alcohol chemical ionization was essential for identifying atmospheric hydroxycarbonyls in the presence of other compounds that were not chromatographically resolved in an initial study, and in identifying the structure of and devising a quantification method for 2-hydroxy-2-methylpropanal (2-HMPR), an MBO photooxidation product for which an authentic standard is not available. Using the optimized method, isoprene and MBO photooxidation products, including glycolaldehyde, hydroxyacetone, 2-HMPR, glyoxal, and methylglyoxal, were collected at Blodgett Forest, CA, during August and September 2000. The overall collection efficiencies for these compounds in the mist sampler was ≥84%, atmospheric detection limits ranged from 1.7--99 pptv, mean field spike recoveries ranged

  14. Calculation of electron detachment energies for water cluster anions: an appraisal of electronic structure methods, with application to (H2O)20- AND (H2O)24-.

    PubMed

    Herbert, John M; Head-Gordon, Martin

    2005-06-16

    We present benchmark calculations of vertical electron detachment energies (VDEs) for various conformers of (H2O)n-, using both wave function and density functional methods, in sequences of increasingly diffuse Gaussian basis sets. For small clusters (n < or = 6), a systematic examination of VDE convergence reveals that it is possible to converge this quantity to within approximately 0.01 eV of the complete-basis limit, using a highly diffuse but otherwise economical Pople-style basis set of double-zeta quality, with 28 atom-centered basis functions per water molecule. Floating-center basis functions can be useful but are not required to obtain accurate VDEs. Second-order Møller-Plesset perturbation (MP2) theory suffices to obtain VDEs that are within 0.05 eV of the results from both experiment and coupled-cluster theory, and which always err toward underbinding the extra electron. In contrast to these consistent predictions, VDEs calculated using density functional theory (DFT) vary widely, according to the fraction of Hartree-Fock exchange in a given functional. Common functionals such as BLYP and B3LYP overestimate the VDE by 0.2-0.5 eV, whereas a variant of Becke's "half and half" functional is much closer to coupled-cluster predictions. Exploratory calculations for (H2O)20- and (H2O)24- cast considerable doubt on earlier calculations that were used to assign the photoelectron spectra of these species to particular cluster isomers.

  15. Water treatment: Chitosan associated with electrochemical methods

    NASA Astrophysics Data System (ADS)

    Tamiasso-Martinhon, Priscila; Marques Teixeira de Souza, João; Cruzeiro da Silva, Silvia Maria; Pellegrini Pessoa, Fernando Luiz; Sousa, Célia

    2017-04-01

    Pollution of water bodies due to the presence of toxic metals and organic compounds, bring out a series of environmental problems of public, government and social character. In addition, water pollution, has become the target and source of concern in many industrial sectors. Therefore, it is essential to develop technologies for treatment and purification of water. Chitosan is a natural product derived from chitin, extracted mainly from the shells of crustaceans. It is a low cost, renewable and biodegradable biopolymer of great socioeconomic and environmental importance. The classic treatment of wastewater containing metals involves physical chemistry processes of precipitation, ion exchange and electrochemistry. Electrochemical technology has been presented as the most promising methods for treating wastewater polluted with metals, colloids, dyes or oil in water emulsions; besides being used in removing organic compounds. Alternative methods like adsorption with biosorbents have been investigated. The great advantage of this latter over other techniques is the low generation of residues, easy recovery of metals and the possibility of reuse of the adsorbent. This article aimed to carry out an exploratory study, of bibliographical nature, on the use of chitosan in electrochemical methods for water treatment.

  16. Application of a stream-aquifer model to Monument Creek for development of a method to estimate transit losses for reusable water, El Paso County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Arnold, L. Rick

    2006-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 to (1) apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise the existing transit-loss accounting program for Fountain Creek to incorporate new water-management strategies and allow for incorporation of future changes in water-management strategies, and (4) integrate the two accounting programs into a single program with a Web-based user interface. The purpose of this report is to present the results of applying a stream-aquifer model to the Monument Creek study reach. More...

  17. Selective spectroscopic methods for water analysis

    SciTech Connect

    Vaidya, Bikas

    1997-06-24

    This dissertation explores in large part the development of a few types of spectroscopic methods in the analysis of water. Methods for the determination of some of the most important properties of water like pH, metal ion content, and chemical oxygen demand are investigated in detail. This report contains a general introduction to the subject and the conclusions. Four chapters and an appendix have been processed separately. They are: chromogenic and fluorogenic crown ether compounds for the selective extraction and determination of Hg(II); selective determination of cadmium in water using a chromogenic crown ether in a mixed micellar solution; reduction of chloride interference in chemical oxygen demand determination without using mercury salts; structural orientation patterns for a series of anthraquinone sulfonates adsorbed at an aminophenol thiolate monolayer chemisorbed at gold; and the role of chemically modified surfaces in the construction of miniaturized analytical instrumentation.

  18. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  19. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  20. Application of a real-space three-dimensional image reconstruction method in the structural analysis of noncrystalline biological macromolecules enveloped by water in coherent x-ray diffraction microscopy.

    PubMed

    Kodama, Wataru; Nakasako, Masayoshi

    2011-08-01

    Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.

  1. Applications II: Water Vapor and Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Demoz, Belay

    2004-01-01

    Contents include the following: 1. Introduction. A case for using lidars in atmospheric dynamics will be made. 2. Scales of motion. Will discuss atmospheric scales of motion and lidar role in probing this various events. 3. Examples. We will discuss applications of lidars into atmospheric dynamics using data from case studies that illustrate different atmospheric phenomenon. Concluding statement. Water Vapor and Atmospheric Dynamics.

  2. Storm Water Management Model Applications Manual

    EPA Science Inventory

    The EPA Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model that computes runoff quantity and quality from primarily urban areas. This manual is a practical application guide for new SWMM users who have already had some previous training in hydrolog...

  3. Water Polo Injuries and Training Methods.

    PubMed

    Spittler, Jack; Keeling, James

    Water polo is a unique team sport combining swimming sprints and eggbeater kicking, frequent overhead movements and throwing, and regular physical contact with minimal protective equipment. Accordingly, a wide variety of training methods attempt to enhance all of these skill sets. This usually includes some combination of aerobic/anaerobic fitness (via swimming), sport-specific skills, strengthening, and nutrition. In addition, injuries in water polo are somewhat diverse. Physical contact is responsible for the majority of acute injuries, most frequently being injuries to the head and face. The high prevalence of shoulder pain in water polo is likely related to increased shoulder mobility and subsequent instability and stress on shoulder structures, yet the underlying causation is not certain. The unique aspect of shoulder injuries occurring in water polo players is that they may be due to a combination of swimming-related overuse conditions, overhead throwing, and acute trauma-related conditions. Although there is generally minimal evidence-based information available, this article attempts to highlight the current knowledge that we have in regard to water polo injuries and training methods.

  4. Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

    USGS Publications Warehouse

    Bedinger, M.S.; Reed, J.E.; Wells, C.J.; Swafford, B.F.

    1970-01-01

    The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that

  5. Proposal of New Water Electrode Method Used for Short-time Testing Method of Water Treeing and Consideration on Temperature Effects of Water Tree Initiation and Propagation

    NASA Astrophysics Data System (ADS)

    Uehara, Hiroaki; Kudo, Katsutoshi; Ishikawa, Yoshihiro; Kanekawa, Teruo; Tsuboi, Yuichi; Ushiwata, Kodai; Yoshimitsu, Tetsuo

    Water treeing occurs when ac voltage is applied to electrical insulation system such as those in power cables and power apparatus. From a practical viewpoint, research on water treeing has been mostly performed under high-frequency ac voltage application. However, power cables and power apparatuses are also used under dc voltage application owing to progress in inverter technology. The inverter drive of a rotating electrical machine has spread and expanded for global warming prevention and maintenance improvement. An underwater motor is used in the water. In an underwater motor driven by the voltage of an inverter, it is necessary to consider the water treeing of motor insulation and connected cable insulation with a drive board. Thus far, the water electrode method that utilizes an ac voltage of high frequency has been used in conducting the accelerating experimental method of water treeing for a long time. On the other hand, an inverter with surge voltage generates an equivalent ac frequency by the application of a multifrequency pulse voltage similar to a pulse width modulation (PWM) control wave. Therefore, there is a possibility of committing a mistake in real-machine reliability evaluation because the initiation and propagation mechanisms are different from those in the case of a real-machine even if we can reproduce water treeing by increasing the basic frequency. In this paper, we investigated the new water electrode method and the temperature effects on water tree initiation and propagation. Furthermore, we compared the experimental results between 500Hz and 50Hz by using the new water electrode method from the view point of temperature.

  6. Applications of Monte Carlo Methods in Calculus.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.; Gordon, Florence S.

    1990-01-01

    Discusses the application of probabilistic ideas, especially Monte Carlo simulation, to calculus. Describes some applications using the Monte Carlo method: Riemann sums; maximizing and minimizing a function; mean value theorems; and testing conjectures. (YP)

  7. A method of measuring airborne acidity: its application for the determination of acid content on long-distance transported particles and in drainage water from spruces

    Treesearch

    Cyrill Brosset

    1976-01-01

    The acid properties of particles have been investigated by means of measuring the content of mainly strong acid in leaching solutions of particle samples and in drain water from trees. The measurements are based on Gran's plot and on a study of its curvature.

  8. Geotechnical Applications of the Self-Potential (SP) Method. Report 2. The Use of Self Potential to Detect Ground-Water Flow in Karst

    DTIC Science & Technology

    1989-05-01

    with Kilauea Volcano in Hawaii. 14. The streaming potentials produced by the motion of ground water under a pressure gradient through a porous media...topography. An i.xtreme example is the -2,693-mv anomaly found on Agadak Volcano in Alaska (Corwin and Hoover 1978) and the -1,600-mv anomaly associated

  9. Nanofiltration technology in water treatment and reuse: applications and costs.

    PubMed

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  10. Measurement of "total" microcystins using the MMPB/LC/MS/MS method, and application to HAB impacted surface waters-presentation

    EPA Science Inventory

    The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focus...

  11. Measurement of "total" microcystins using the MMPB/LC/MS/MS method, and application to HAB impacted surface waters-presentation

    EPA Science Inventory

    The detection and quantification of microcystins, a family of toxins associated with harmful algal blooms, is complicated by their structural diversity and a lack of commercially available analytical standards for method development. As a result, most detection methods have focus...

  12. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  13. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  14. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  15. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  16. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  17. Part I: temporal and spatial distribution of multiclass pesticide residues in lake waters of Northern Greece: application of an optimized SPE-UPLC-MS/MS pretreatment and analytical method.

    PubMed

    Kalogridi, Eleni-Chrysoula; Christophoridis, Christophoros; Bizani, Erasmia; Drimaropoulou, Garyfallia; Fytianos, Konstantinos

    2014-06-01

    The present work describes the application of an analytical procedure, utilizing ultra performance liquid chromatography (UPLC) coupled with mass spectrometry instrumentation, for the determination of 253 multiclass pesticides, classified in six different groups. Solid phase extraction was applied for the isolation and pre-concentration of target compounds in water samples. Surface waters of the lakes located in Northern Greece (Volvi, Doirani, and Kerkini), were collected in two time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methods. Spatial distribution of detected pesticides was visualized using interpolation methods and geographical information systems (GIS). Pesticides with maximum concentrations were amitrole, propoxur, simazine, chlorpyrifos, carbendazim, triazophos, disulfoton-sulfone, pyridaben, sebuthylazine, terbuthylazine, atrazine, atrazine-desethyl, bensulfuron-methyl, metobromuron, metribuzin, rotenone, pyriproxyfen, and rimsulfuron. In Lake Kerkini, mainly carbamates and triazines were determined at elevated concentrations, near the coastal point of the NW side of the lake. Seasonal variations were strong among the applied pesticide classes and determined concentrations, indicating the contribution of pesticide application patterns and rainfall. Lake Doirani exhibited organophosphate pesticides at higher concentrations mainly at coastal points, while triazines emerged as the main pollutant during spring sampling. Lake Volvi exhibited the highest pesticide concentrations, mostly triazines and ureas at the central part of the lake. The occurrence of extreme values and nonconstant seasonal variations indicated that the concentrations were increased disproportionately during the second sampling, as a result of the varying contribution of pollution sources right after the application period. In all cases, the total concentration of pesticides increased during the second sampling period.

  18. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, James E.; Fruchter, Jonathan S.; Gorby, Yuri A.; Cole, Charles R.; Cantrell, Kirk J.; Kaplan, Daniel I.

    1998-01-01

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II).

  19. Method of removing oxidized contaminants from water

    DOEpatents

    Amonette, J.E.; Fruchter, J.S.; Gorby, Y.A.; Cole, C.R.; Cantrell, K.J.; Kaplan, D.I.

    1998-07-21

    The present invention is a method for removing oxidized contaminant(s) from water. More specifically, the invention has the steps of contacting water containing the oxidized contaminant(s) with a layered aluminosilicate having Fe(II). The aluminosilicate may contain naturally occurring Fe(II), or the Fe(II) may be produced by reducing Fe(III) that is initially present. Reduction may be either by exposure to a chemical or biological reductant. Contacting the water containing oxidized contaminant(s) may be by (1) injection of Fe(II)-containing layered aluminosilicate, via a well, into a saturated zone where it is likely to intercept the contaminated water; (2) injection of contaminated water into a vessel containing the Fe(II)-bearing layered aluminosilicate; and (3) first reducing Fe(III) in the layered aluminosilicate to Fe(II) by injection of a biological or chemical reductant, into an aquifer or vessel having sufficient Fe(III)-bearing aluminosilicate to produce the necessary Fe(II). 8 figs.

  20. A New Method of Absorption-Phase Nanotomography for 3D Observation of Mineral-Organic-Water Textiles and its Application to Pristine Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Nakato, A.; Matsuno, J.; Sugimoto, M.; Uesugi, K.; Takeuchi, A.; Nakano, T.; Vaccaro, E.; Russel, S.; Nakamura-Messenger, K.; hide

    2017-01-01

    Pristine carbonaceous chondrites contain fine-grained matrix, which is composed largely of amorphous silicates, sub-micron silicate and sulfide crystals, and organic materials. They are regarded as primitive dust in the early Solar System that have suffered minimal alteration in their parent bodies. The matrix generally has different lithologies; some of them are unaltered but some are more or less aqueously altered. Their textures have been examined in 2D usually by FE-SEM/EDS, TEM/EDS, nano-SIMS and micro-XRD. Observation of their complex fine textures, such as spatial relation between different lithologies in 3D, is important for understanding aggregation and alteration processes. Synchrotron radiation (SR)-based X-ray tomography reveals 3D structures nondestructively with high spatial resolution of approximately greater than 100 nm. We have developed a new technique using absorption contrasts called "dual-energy tomography" (DET) to obtain 3D distribution of minerals at SPring-8, SR facility in Japan, and applied successfully to Itokawa particles. Phase and absorption contrast images can be simultaneously obtained in 3D by using "scanning-imaging x-ray microscopy" (SIXM) at SPring-8, which can discriminate between void, water and organic materials. We applied this technique combined with FIB micro-sampling to carbonaceous chondrites to search for primitive liquid water. In this study, we combined the DET and SIXM to obtain three dimensional submicron-scale association between minerals, organic materials and water and applied this to pristine carbonaceous chondrites.

  1. Application of a stream-aquifer model to Monument Creek for development of a method to estimate transit losses for reusable water, El Paso County, Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Arnold, L. Rick

    2006-01-01

    The U.S. Geological Survey, in cooperation with Colorado Springs Utilities, the Colorado Water Conservation Board, and the El Paso County Water Authority, began a study in 2004 to (1) apply a stream-aquifer model to Monument Creek, (2) use the results of the modeling to develop a transit-loss accounting program for Monument Creek, (3) revise the existing transit-loss accounting program for Fountain Creek to incorporate new water-management strategies and allow for incorporation of future changes in water-management strategies, and (4) integrate the two accounting programs into a single program with a Web-based user interface. The purpose of this report is to present the results of applying a stream-aquifer model to the Monument Creek study reach.Transit losses were estimated for reusable-water flows in Monument Creek that ranged from 1 to 200 cubic feet per second (ft3/s) and for native streamflows that ranged from 0 to 1,000 ft3/s. Transit losses were estimated for bank-storage, channel-storage, and evaporative losses. The same stream-aquifer model used in the previously completed (1988) Fountain Creek study was used in the Monument Creek study.Sixteen model nodes were established for the Monument Creek study reach, defining 15 subreaches. Channel length, aquifer length, and aquifer width for the subreaches were estimated from available topographic and geologic maps. Thickness of alluvial deposits and saturated thickness were estimated using lithologic and water-level data from about 100 wells and test holes in or near the Monument Creek study reach. Estimated average transmissivities for the subreaches ranged from 2,000 to 12,000 feet squared per day, and a uniform value of 0.20 was used for storage coefficient.Qualitative comparison of recorded and simulated streamflow at the downstream node for the calibration and verification simulations indicated that the two streamflows compared reasonably well. No adjustments were made to the model parameters. Differences

  2. Water Calibration Measurements for Neutron Radiography: Application to Water Content Quantification in Porous Media

    SciTech Connect

    Kang, Misun; Bilheux, Hassina Z; Voisin, Sophie; Cheng, Chu-lin; Perfect, Edmund; Horita, Juske; Warren, Jeffrey

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 2 mm when the water calibration cells were positioned close to the face of the detector / scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  3. Water calibration measurements for neutron radiography: Application to water content quantification in porous media

    NASA Astrophysics Data System (ADS)

    Kang, M.; Bilheux, H. Z.; Voisin, S.; Cheng, C. L.; Perfect, E.; Horita, J.; Warren, J. M.

    2013-04-01

    Using neutron radiography, the measurement of water thickness was performed using aluminum (Al) water calibration cells at the High Flux Isotope Reactor (HFIR) Cold-Guide (CG) 1D neutron imaging facility at Oak Ridge National Laboratory, Oak Ridge, TN, USA. Calibration of water thickness is an important step to accurately measure water contents in samples of interest. Neutron attenuation by water does not vary linearly with thickness mainly due to beam hardening and scattering effects. Transmission measurements for known water thicknesses in water calibration cells allow proper correction of the underestimation of water content due to these effects. As anticipated, strong scattering effects were observed for water thicknesses greater than 0.2 cm when the water calibration cells were positioned close to the face of the detector/scintillator (0 and 2.4 cm away, respectively). The water calibration cells were also positioned 24 cm away from the detector face. These measurements resulted in less scattering and this position (designated as the sample position) was used for the subsequent experimental determination of the neutron attenuation coefficient for water. Neutron radiographic images of moist Flint sand in rectangular and cylindrical containers acquired at the sample position were used to demonstrate the applicability of the water calibration. Cumulative changes in the water volumes within the sand columns during monotonic drainage determined by neutron radiography were compared with those recorded by direct reading from a burette connected to a hanging water column. In general, the neutron radiography data showed very good agreement with those obtained volumetrically using the hanging water-column method. These results allow extension of the calibration equation to the quantification of unknown water contents within other samples of porous media.

  4. Evaluated the adverse effects of cadmium and aluminum via drinking water to kidney disease patients: Application of a novel solid phase microextraction method.

    PubMed

    Panhwar, Abdul Haleem; Kazi, Tasneem Gul; Naeemullah; Afridi, Hassan Imran; Shah, Faheem; Arain, Mohammad Balal; Arain, Salma Aslam

    2016-04-01

    In present study aluminum (Al) and cadmium (Cd) were determined in ground water samples and assesses human health risks associated with elevated concentrations of toxic metals in dissolved form, using a novel solid phase microextraction (SPμE). Ground water sample (n=200) and biological sample (blood) of patients having chronic kidney disorders (CKD) along with healthy control subjects of same area (southern part of Pakistan) were collected. A simple system, including the micropipette tip packed with modified ionic liquid-activated carbon cloth (IL-ACC) coated with 8-hydroxyqunilone (8-HQ) attached to syringe. The analytes in water and acid digested blood samples were manually drawn for 2-10 cycles (drawing/discharging) at different pH range. The analytes sorbed on coated ACC were then desorbed with 2.0molL(-1) HNO3 in ethanol by drawing/discharging cycles for 1-5 times. The concentration of extracted analytes was determined by electrothermal atomic absorption spectrometer. The influence of different variables on the extraction efficiency of Cd and Al, were optimized. The Al and Cd concentrations in groundwater were found to be elevated than recommended limits by the World Health Organization. The urinary N-acetyl-h-glucosaminidase values were significantly higher in CKD patients as compared to refrent subjects (p<0.001). The significant variation in levels of Cd and Al were observed in blood samples of CKD patients than referents subjects (p<0.01). The strong positive correlation among Al and Cd levels in groundwater versus blood samples of CKD patients (r=0.82-0.85) p<0.01) was observed than those values calculated for referent subjects (r=0.425-0.536). Copyright © 2016 Elsevier B.V. All rights reserved.

  5. NASA Data for Water Resources Applications

    NASA Technical Reports Server (NTRS)

    Toll, David; Houser, Paul; Arsenault, Kristi; Entin, Jared

    2004-01-01

    Water Management Applications is one of twelve elements in the Earth Science Enterprise National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1) estimating water storage including snowpack and soil moisture, 2) modeling and predicting water fluxes such as evapotranspiration (ET), precipitation and river runoff, and 3) remote sensing of water quality, including both point source (e.g., turbidity and productivity) and non-point source (e.g., land cover conversion such as forest to agriculture yielding higher nutrient runoff). The objectives of the partnering cover three steps of: 1) Evaluation, 2) Verification and Validation, and 3) Benchmark Report. We are working with the U.S. federal agencies including the Environmental Protection Agency (EPA), the Bureau of Reclamation (USBR) and the Department of Agriculture (USDA). We are using several of their Decision Support Systems (DSS) tools. This includes the DSS support tools BASINS used by EPA, Riverware and AWARDS ET ToolBox by USBR and SWAT by USDA and EPA. Regional application sites using NASA data across the US. are currently being eliminated for the DSS tools. The current NASA data emphasized thus far are from the Land Data Assimilation Systems WAS) and MODIS satellite products. We are currently in the first two steps of evaluation and verification validation. Water Management Applications is one of twelve elements in the Earth Science Enterprise s National Applications Program. NASA Goddard Space Flight Center is supporting the Applications Program through partnering with other organizations to use NASA project results, such as from satellite instruments and Earth system models to enhance the organizations critical needs. The focus thus far has been: 1

  6. QSAR analysis for nano-sized layered manganese-calcium oxide in water oxidation: An application of chemometric methods in artificial photosynthesis.

    PubMed

    Shahbazy, Mohammad; Kompany-Zareh, Mohsen; Najafpour, Mohammad Mahdi

    2015-11-01

    Water oxidation is among the most important reactions in artificial photosynthesis, and nano-sized layered manganese-calcium oxides are efficient catalysts toward this reaction. Herein, a quantitative structure-activity relationship (QSAR) model was constructed to predict the catalytic activities of twenty manganese-calcium oxides toward water oxidation using multiple linear regression (MLR) and genetic algorithm (GA) for multivariate calibration and feature selection, respectively. Although there are eight controlled parameters during synthesizing of the desired catalysts including ripening time, temperature, manganese content, calcium content, potassium content, the ratio of calcium:manganese, the average manganese oxidation state and the surface of catalyst, by using GA only three of them (potassium content, the ratio of calcium:manganese and the average manganese oxidation state) were selected as the most effective parameters on catalytic activities of these compounds. The model's accuracy criteria such as R(2)test and Q(2)test in order to predict catalytic rate for external test set experiments; were equal to 0.941 and 0.906, respectively. Therefore, model reveals acceptable capability to anticipate the catalytic activity.

  7. Directional microwave applicator and methods

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)

    2008-01-01

    A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.

  8. A new method for application of the water-soluble dye SPADNS in a carbon paste electrode for determination of trace amounts of copper.

    PubMed

    Rohani, Tahereh; Taher, Mohammad Alu

    2008-01-01

    2-(P-sulfophenylazo)-1,8-dihydroxy-3,6-naphthalene disulfate (SPADNS) was adsorbed on surfactant modified zeolite type A by electrostatic interaction in the aqueous phase. The dye was strongly retained and not easily leached from the surfactant-modified zeolite matrix. This compound was incorporated into a carbon paste electrode for anodic stripping voltammetric determination of trace amounts of copper. The calibration plot was linear over the copper concentration range 2.0-800 microg/L. The detection limit was found to be 0.4 microg/L Cu(II), and for 5 successive determinations of 50 and 150 microg/L Cu(II) the relative standard deviations were 1.6 and 1.2%, respectively. The modified electrode prepared in this study could be used for the determination of Cu(II) in water samples and human hair with good results.

  9. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil.

    PubMed

    Sereshti, Hassan; Karimi, Maryam; Samadi, Soheila

    2009-01-09

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of Rose water constituents. The effective parameters such as volume of extraction and disperser solvents, temperature, and salt effect were inspected by a full factorial design to identify important parameters and their interactions. It showed that salt addition had no effect on the efficiency. Next, a central composite design was applied to obtain optimum point of the important parameters. The optimal condition was obtained as 37.0 microL for extractor, 0.42 mL for disperser and temperature for 48 degrees C. The main components that were extracted at the optimum point were benzeneethanol (24.87%), geraniol (23.07%), beta-citronellol (22.38%), nerol (8.48%), eugenol (5.98%) and linalool (5.62%).

  10. Application of zinc chloride precipitation method for rapid isolation and concentration of infectious Pectobacterium spp. and Dickeya spp. lytic bacteriophages from surface water and plant and soil extracts.

    PubMed

    Czajkowski, Robert; Ozymko, Zofia; Lojkowska, Ewa

    2016-01-01

    This is the first report describing precipitation of bacteriophage particles with zinc chloride as a method of choice to isolate infectious lytic bacteriophages against Pectobacterium spp. and Dickeya spp. from environmental samples. The isolated bacteriophages are ready to use to study various (ecological) aspects of bacteria-bacteriophage interactions. The method comprises the well-known precipitation of phages from aqueous extracts of the test material by addition of ZnCl2, resuscitation of bacteriophage particles in Ringer's buffer to remove the ZnCl2 excess and a soft agar overlay assay with the host bacterium to isolate infectious individual phage plaques. The method requires neither an enrichment step nor other steps (e. g., PEG precipitation, ultrafiltration, or ultracentrifugation) commonly used in other procedures and results in isolation of active viable bacteriophage particles.

  11. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  12. Economics of herbicide application methods in hardwoods

    Treesearch

    Gary W. Miller

    1988-01-01

    Forest managers can use the data presented here to determine the least-cost herbicide application method for precommercial thinning treatments in hardwood sapling stands. Herbicides used in managing immature hardwood stands must be applied ustng individual-tree methods: broadcast applications in hardwoods are not selective and may result in signtficant damage to...

  13. New methods of nitrate removal from water.

    PubMed

    Shrimali, M; Singh, K P

    2001-01-01

    Nitrate contamination in groundwater resources originates mainly from the excessive use of fertilisers and uncontrolled land discharges of treated wastewater. This can cause potential health hazards to infants and pregnant women, thus limiting the direct use of the groundwater resources for the human consumption in several parts of the world, including India. The conventional processes used to eliminate nitrate from water are ion exchange, reverse osmosis and electro-dialysis. The utility of these processes has been limited due to their expensive operation and subsequent disposal problem of the generated nitrate waste brine. This paper presents a comprehensive account of the methods/techniques used for the removal of nitrate ion from water during the last 10 years with special reference to the biological denitrification and fate of the metals in decontamination processes.

  14. Method of arsenic removal from water

    DOEpatents

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  15. Development of an UPLC-MS/MS Sulfonamide Multi-residue Method and It's Application to Water, Manure Slurry, and Soils from Swine Rearing Facilities

    USDA-ARS?s Scientific Manuscript database

    An analytical method was developed using ultra performance liquid chromatography-triple quadrupole-tandem mass spectrophotometry (UPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in six minutes. The instrumental detection limit based on signal-to-noise ratio (S/N) > 3, was below 1 pg/µL...

  16. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  17. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  18. 40 CFR 799.6756 - TSCA partition coefficient (n-octanol/water), generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../water), generator column method. 799.6756 Section 799.6756 Protection of Environment ENVIRONMENTAL... coefficient (n-octanol/water), generator column method. (a) Scope—(1) Applicability. This section is intended... liquid chromatographic (DCCLC) technique, a technique commonly referred to as the generator column method...

  19. Application of TDR to water level measurement

    NASA Astrophysics Data System (ADS)

    Thomsen, A.; Hansen, B.; Schelde, K.

    2000-09-01

    A specialised time domain reflectometry (TDR) probe for measuring water level in tanks collecting surface runoff was developed, calibrated and field-tested. The water level probe — in the form of a slightly modified soil moisture probe — was developed as part of a TDR measuring system designed for continuous monitoring of soil water content and surface runoff in plot studies of water erosion and sediment transport. A computer algorithm for the analysis of TDR traces from the new probe was developed and incorporated into existing software for automated acquisition and analysis of TDR data. Laboratory calibration showed that water level could be measured with sufficient accuracy (standard deviation <2 mm) for a range of applications in hydrology. Soil erosion is typically a short duration process closely linked to soil moisture content and rainfall intensity. A major benefit of integrating time critical measurements of surface runoff and soil moisture into a single system is the synchronisation of measurements. Measurements were made on a regular schedule except during rainfall events when the measuring rate depended on rainfall intensity. In a parallel calibration study it was shown that the performance of the TDR probe was comparable to a commercial ultrasonic liquid level sensor used for measuring runoff at an erosion site not instrumented for automated TDR measurements.

  20. APPLICATION OF RADON REDUCTION METHODS

    EPA Science Inventory

    The document is intended to aid homeowners and contractors in diagnosing and solving indoor radon problems. It will also be useful to State and Federal regulatory officials and many other persons who provide advice on the selection, design and operation of radon reduction methods...

  1. Application of ion-sensitive sensors in water quality monitoring.

    PubMed

    Winkler, S; Rieger, L; Saracevic, E; Pressl, A; Gruber, G

    2004-01-01

    Within the last years a trend towards in-situ monitoring can be observed, i.e. most new sensors for water quality monitoring are designed for direct installation in the medium, compact in size and use measurement principles which minimise maintenance demand. Ion-sensitive sensors (Ion-Sensitive-Electrode--ISE) are based on a well known measurement principle and recently some manufacturers have released probe types which are specially adapted for application in water quality monitoring. The function principle of ISE-sensors, their advantages, limitations and the different methods for sensor calibration are described. Experiences with ISE-sensors from applications in sewer networks, at different sampling points within wastewater treatment plants and for surface water monitoring are reported. An estimation of investment and operation costs in comparison to other sensor types is given.

  2. [Gene therapy. Methods and applications].

    PubMed

    Jonassen, T O; Grinde, B; Orstavik, I

    1994-04-10

    Modern techniques in molecular biology and cell biology will probably make gene therapy, i.e. therapeutic transfer of genes to the patient's cells, available for treatment of many genetic diseases, cancer, cardiovascular diseases and infectious diseases. For genetic diseases the treatment will involve the transfer of a functional copy of the defect gene. The strategy for treatment of cancer may include the transfer of genes that induce the death of cancer cells via toxic molecules, and genes that enhance the immune response to tumour cells. After several years of preclinical studies, the National Institutes of Health in the USA has, up to February 1994, approved 56 protocols for clinical trials in human gene therapy. Most of the protocols include use of viruses to aid gene delivery. This paper briefly reviews the scientific basis for gene therapy, and discusses some clinical applications of somatic gene therapy in humans.

  3. Water recycling system using thermopervaporation method

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Ashida, A.; Mitani, K.; Ebara, K.; Yamada, A.

    1986-01-01

    A water recycling system concept for the crew of the space station is presented. A thermopervaporation method is a new key technology used for the distillation process, utilizing a hydrophobic membrane. An experimental study of thermopervaporation revealed that the permeation depends on the gap between the membrane and the cooling surface in the condensation room: the steam diffusion occurs with gaps less than 5 mm while natural convection becomes dominant with gaps more than 5 mm. A brief discussion of the system operation is also described.

  4. Study of the toxicity of sulfamethoxazole and its degradation products in water by a bioluminescence method during application of the electro-Fenton treatment.

    PubMed

    Dirany, A; Efremova Aaron, S; Oturan, N; Sirés, I; Oturan, M A; Aaron, J J

    2011-04-01

    Sulfamethoxazole (SMX) is a synthetic antibiotic widely applied as a bacteriostatic drug to treat a number of diseases. SMX can persist in the environment for long periods of time because of its low biodegradability, which may result in various, direct and indirect, toxicological effects on the environment and on human health. Therefore, we have developed the electrochemical advanced oxidation process (AOP) "electro-Fenton" to degrade SMX in aqueous media. In this work, a detailed study of the evolution of toxicity of SMX and its degradation products in aqueous solutions, during treatment by the electro-Fenton AOP, is described, using the bioluminescence Microtox® method, based on the inhibition of luminescence of marine bacteria Vibrio fischeri. Samples were collected at various electrolysis times and analyzed by HPLC for quantifying the evolution of the degradation products, and their toxicity was measured by the Microtox® method. Our results demonstrated that the toxicity of SMX aqueous solutions varied considerably with the electrolysis time and the applied current intensity. This phenomenon could be explained by the formation and disappearance of several degradation products, including cyclic and/or aromatic intermediates, and short-chain acid carboxylic acids, having a toxicity different of the initial antibiotic. The curves of the % of bacterial luminescence inhibition vs. electrolysis time, corresponding to the evolution of the toxicity of the formed degradation products, were investigated and tentatively interpreted.

  5. Diet history: Method and applications.

    PubMed

    Morán Fagúndez, Luis Juan; Rivera Torres, Alejandra; González Sánchez, María Eugenia; de Torres Aured, Mari Lourdes; Pérez Rodrigo, Carmen; Irles Rocamora, José Antonio

    2015-02-26

    The diet history is a traditional method of analysis of food intake. In its traditional structure consists of three components that provide an overall information of the usual food consumption pattern of the individual and also detailed information on certain foods. The information is collected in an interview and requires highly experienced qualified interviewers. The quality of information depends largely on the skills of the interviewer. It is mostly used in clinical practice. It has also been used in studies of diet and health relationship to investigate the usual diet in the past. The high cost and long duration of the interview limit their usefulness in large epidemiological studies.

  6. Hybrid codes: Methods and applications

    SciTech Connect

    Winske, D. ); Omidi, N. )

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  7. Empirical Distributional Semantics: Methods and Biomedical Applications

    PubMed Central

    Cohen, Trevor; Widdows, Dominic

    2009-01-01

    Over the past fifteen years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed. PMID:19232399

  8. Empirical distributional semantics: methods and biomedical applications.

    PubMed

    Cohen, Trevor; Widdows, Dominic

    2009-04-01

    Over the past 15 years, a range of methods have been developed that are able to learn human-like estimates of the semantic relatedness between terms from the way in which these terms are distributed in a corpus of unannotated natural language text. These methods have also been evaluated in a number of applications in the cognitive science, computational linguistics and the information retrieval literatures. In this paper, we review the available methodologies for derivation of semantic relatedness from free text, as well as their evaluation in a variety of biomedical and other applications. Recent methodological developments, and their applicability to several existing applications are also discussed.

  9. Application of the GPS-RTK method to the determination of the location and influence of river plant communities on water movement and river bed morphology

    NASA Astrophysics Data System (ADS)

    Pachuta, K.; Pachuta, A.

    2003-04-01

    The river plants communities influence on small and middle river ecosystems through: o erosion level decreasing, o the bottom substrates stabilization, o the plant zone beside the rush zone forming, o middle and shallow river parts overgrowing, o shadowing the river bottom and algae growth reduction, o co-forming the communities with high visual values. River‘s communities with Phragmites australis, Elodea canadensis, Nuphar luteum and Sparganium simplex are the most common ones in upper Biebrza river (North-East Poland) catchment area. Considering this fact it becomes clear that intensity of Burreeds community overgrowing is very important in wide range of investigations. Reeds have a special value for the diversity of plant communities in the investigated area and for their share in river bed covering. The community ranges, vertical and horizontal differentiation of plant species, plant coverage and terrain shape has to be measured. The modern methods GPS, GPS real time points positioning - RTK, being used in geodetic works, would be very helpful in description and the estimation of this association.

  10. Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination. 1. Literature Survey

    DTIC Science & Technology

    2006-06-01

    4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination 1...report was authorized under the "Catalytic Enzyme-Based Methods for Water Treatment and Water Distribution System Decontamination" project funded by the...ENZYME-BASED METHODS FOR WATER TREATMENT AND WATER DISTRIBUTION SYSTEM DECONTAMINATION 1. LITERATURE SURVEY 1. INTRODUCTION Drinking water distribution

  11. An ANN application for water quality forecasting.

    PubMed

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  12. SU-E-T-46: Application of a Twin-Detector Method for the Determination of the Mean Photon Energy Em at Points of Measurement in a Water Phantom Surrounding a GammaMed HDR 192Ir Brachytherapy Source

    SciTech Connect

    Chofor, N; Poppe, B; Nebah, F; Harder, D

    2014-06-01

    Purpose: In a brachytherapy photon field in water the fluence-averaged mean photon energy Em at the point of measurement correlates with the radiation quality correction factor kQ of a non water-equivalent detector. To support the experimental assessment of Em, we show that the normalized signal ratio NSR of a pair of radiation detectors, an unshielded silicon diode and a diamond detector can serve to measure quantity Em in a water phantom at a Ir-192 unit. Methods: Photon fluence spectra were computed in EGSnrc based on a detailed model of the GammaMed source. Factor kQ was calculated as the ratio of the detector's spectrum-weighted responses under calibration conditions at a 60Co unit and under brachytherapy conditions at various radial distances from the source. The NSR was investigated for a pair of a p-type unshielded silicon diode 60012 and a synthetic single crystal diamond detector 60019 (both PTW Freiburg). Each detector was positioned according to its effective point of measurement, with its axis facing the source. Lateral signal profiles were scanned under complete scatter conditions, and the NSR was determined as the quotient of the signal ratio under application conditions x and that at position r-ref = 1 cm. Results: The radiation quality correction factor kQ shows a close correlation with the mean photon energy Em. The NSR of the diode/diamond pair changes by a factor of two from 0–18 cm from the source, while Em drops from 350 to 150 keV. Theoretical and measured NSR profiles agree by ± 2 % for points within 5 cm from the source. Conclusion: In the presence of the close correlation between radiation quality correction factor kQ and photon mean energy Em, the NSR provides a practical means of assessing Em under clinical conditions. Precise detector positioning is the major challenge.

  13. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  14. Assessment of Crop Water Requirement Methods for Annual Agricultural Water Allocation Planning

    NASA Astrophysics Data System (ADS)

    Aghdasi, F.; Sharifi, M. A.; van der Tol, C.

    2010-05-01

    The potential use of remote sensing in water resource and in particular in irrigation management has been widely acknowledged. However, in reality, operational applications of remote sensing in irrigation management are few. In this study, the applicability of the main available remote sensing based techniques of irrigation management is evaluated in a pilot area in Iran. The evaluated techniques include so called Crop Water Requirement "CWR" methods for the planning of annual water allocation in irrigated agriculture. A total of 40 years of historical weather data were classified into wet, normal, and dry years using a Standardised Precipitation Index (SPI). For each of these three classes the average CWR was calculated. Next, by applying Markov Chain Process to the time series of precipitation, the expected CWR for the forthcoming planning year was estimated. Using proper interpolation techniques the expected CWR at each station was converted to CWR map of the area, which was then used for annual water allocation planning. To estimate the crop water requirement, methods developed for the DEMETER project (DEMonstration of Earth observation Technologies in Routine irrigation advisory services) and Surface Energy Balance System "SEBS" algorithm were used, and their results were compared with conventional methods, including FAO-56 and lysimeter data amongst others. Use was made of both ASTER and MODIS images to determine crop water requirement at local and regional scales. Four methods of estimating crop coefficients were used: DEMETER Kc-NDVI, DEMETER Kc-analytical, FAO-56 and SEBS algorithm. Results showed that DEMETER (analytical approach) and FAO methods with lowest RMSE are more suitable methods for determination of crop coefficient than SEBS, which gives actual rather than potential evapotranspiration. The use of ASTER and MODIS images did not result in significantly different crop coefficients in the pilot area for the DEMETER analytical approach (α=0

  15. Comparative Analysis of Seepage Losses From Nighttime Water Level Changes and Water Balance Methods

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Shukla, S.; Wu, C.

    2013-12-01

    Several techniques including Darcy's theory of one and two dimensional groundwater flow, seepage meters, and water balance have been used in the past to estimate seepage from impoundments such as reservoirs, ponds, and constructed wetlands. These methods result in varying level of errors in seepage estimates depending on method and biogeophysical setting to which they are applied. In this study, we explore a simple yet effective method of estimating groundwater fluxes for two stormwater impoundments (SIs) and a partially drained wetland located in agricultural areas using diurnal changes in surface water levels inside these systems. Days with no inflow, outflow, and rainfall were selected to minimize the effect of the error associated water balance components on seepage estimation. Difference in water levels between 20:00 hrs and 5:00 hrs was calculated for the selected days. Only nighttime change was considered keeping in mind the fact that evapotranspiration is negligible during night and hence, the change in water levels can be attributed to seepage alone. Seepage from the analysis of night-time change in the water levels was compared to the estimates from the water balance method with seepage being the residual component of the balance. Results show that seepage constitutes a large part of total outflow from the impoundments (29% and 17% for SI1 during 2008-2009 and 2009-2010 respectively, 30% for SI2 during 2009-2010 and seepage was greater than the total surface water outflow from SI2 during 2010-2011). Accuracy of this method varied from 5% to 41% for first and 4% to 29% for the second SI. Considering that errors as high as 100% have been reported with the use of Darcy's approach, the errors from our method are lower. The lower errors combined with ease of application without using the hydraulic conductivity values makes our approach feasible for other similar systems. Improved seepage estimate from the proposed method will result in quantification of

  16. COMBINING METHODS FOR THE REDUCTION OF OXYCHLORINE RESIDUALS IN DRINKING WATER

    EPA Science Inventory

    Previous investigations have shown ferrous iron application to be an effective and economically feasible method of removing residual chlorine dioxide and chlorite iron from drinking water. This treatment, however, was not effective in reducing concentrqations of chlorate iron. ...

  17. COMBINING METHODS FOR THE REDUCTION OF OXYCHLORINE RESIDUALS IN DRINKING WATER

    EPA Science Inventory

    Previous investigations have shown ferrous iron application to be an effective and economically feasible method of removing residual chlorine dioxide and chlorite iron from drinking water. This treatment, however, was not effective in reducing concentrqations of chlorate iron. ...

  18. Methods for Environments and Contaminants: Drinking Water

    EPA Pesticide Factsheets

    EPA’s Safe Drinking Water Information System Federal Version (SDWIS/FED) includes information on populations served and violations of maximum contaminant levels or required treatment techniques by the nation’s 160,000 public water systems.

  19. Discontinuous Galerkin Methods: Theory, Computation and Applications

    SciTech Connect

    Cockburn, B.; Karniadakis, G. E.; Shu, C-W

    2000-12-31

    This volume contains a survey article for Discontinuous Galerkin Methods (DGM) by the editors as well as 16 papers by invited speakers and 32 papers by contributed speakers of the First International Symposium on Discontinuous Galerkin Methods. It covers theory, applications, and implementation aspects of DGM.

  20. Biomonitoring Methods for Drinking Water Protection

    DTIC Science & Technology

    2004-12-01

    aquatic biomonitor continuously monitors water at fixed facilities such as water treatment plants by identifying changes in fish ventilatory and...for use in rear areas and at fixed Army facilities such as water treatment plants . To decrease the size, weight, and logistic requirements of the...conjunction with one of the two sets of eight fish in the biomonitor at the Fort Detrick water treatment plant ; the other set of eight fish was exposed

  1. Methods for virus recovery in water

    USDA-ARS?s Scientific Manuscript database

    Food safety is intimately connected to water sanitary quality as water is used at almost every node in the food production process. Common contaminating pathogens in water are human enteric viruses, many of which are responsible for foodborne disease outbreaks in the United States and other high-inc...

  2. A summary of meteorological requirements for water vapor data and possible space shuttle applications

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The accuracy of water vapor measurement required by modelers and forecasters at a number of scales of motion is discussed. Direct and indirect methods for operational use in obtaining atmospheric water vapor data are reviewed along with meteorological applications of water vapor data obtained by a space shuttle laboratory lidar system.

  3. A new tritiated water measurement method with plastic scintillator pellets.

    PubMed

    Furuta, Etsuko; Iwasaki, Noriko; Kato, Yuka; Tomozoe, Yusuke

    2016-01-01

    A new tritiated water measurement method with plastic scintillator pellets (PS-pellets) by using a conventional liquid scintillation counter was developed. The PS-pellets used were 3 mm in both diameter and length. A low potassium glass vial was filled full with the pellets, and tritiated water was applied to the vial from 5 to 100 μl. Then, the sample solution was scattered in the interstices of the pellets in a vial. This method needs no liquid scintillator, so no liquid organic waste fluid is generated. The counting efficiency with the pellets was approximately 48 % when a 5 μl solution was used, which was higher than that of conventional measurement using liquid scintillator. The relationship between count rate and activity showed good linearity. The pellets were able to be used repeatedly, so few solid wastes are generated with this method. The PS-pellets are useful for tritiated water measurement; however, it is necessary to develop a new device which can be applied to a larger volume and measure low level concentration like an environmental application.

  4. Radiometric method for determining solubility of organic solvents in water

    SciTech Connect

    Lo, J.M.; Tseng, C.L.; Yang, J.Y.

    1986-06-01

    Cobalt-60 labeled cobalt(III) pyrrolidinecarbodithioate (/sup 60/Co(PDC)/sub 3/) has a peculiar stability during storage in organic solvent and when its organic solution is shaken with an aqueous solution containing different acids or ions. Using these characteristics, the authors have attempted to use /sup 60/Co(PDC)/sub 3/ as a radioagent for determining solubilities of various organic solvents in water. The radioagent was first dissolved in the organic solvent under investigation before pure water was added. The solution mixture was shaken vigorously in order to let the organic phase contact with water sufficiently. Some of the organic solvent would dissolve in water after shaking, resulting in volume reduction of the organic phase. However, the radioagent was found not to accompany the organic solvent molecules going into water; i.e., all the radioactivity of /sup 60/Co(PDC)/sub 3/ would be retained in the organic phase. Solubility of the organic solvent in water therefore can be calculated from the value of the volume change of the organic phase divided by the water volume. Direct measurement of a small change in volume of organic phase with high accuracy is generally very difficult; alternatively, the authors have measured the specific activities of /sup 60/Co(PDC)/sub 3/ (cpm/mL) in the original and the final organic solutions, and the counting results were used to estimate the decrease in volume of the organic phase. Several commonly used organic solvents were selected to test the applicability of the proposed radiometric method. The solubilities of the organic solvents selected for this study range from very small values (10/sup -4/) to relatively large values (10/sup -2/), 6 references, 1 table.

  5. Solid-phase extraction combined with high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis of pesticides in water: method performance and application in a reconnaissance survey of residues in drinking water in Greater Cairo, Egypt.

    PubMed

    Potter, Thomas L; Mohamed, Mahmoud A; Ali, Hannah

    2007-01-24

    Monitoring of water resources for pesticide residues is often needed to ensure that pesticide use does not adversely impact the quality of public water supplies or the environment. In many rural areas and throughout much of the developing world, monitoring is often constrained by lack of testing facilities; thus, collection of samples and shipment to centralized laboratories for analysis is required. The portability, ease of use, and potential to enhance analyte stability make solid-phase extraction (SPE) an attractive technique for handling water samples prior to their shipment. We describe performance of an SPE method targeting a structurally diverse mixture of 25 current-use pesticides and two common degradates in samples of raw and filtered drinking water collected in Greater Cairo, Egypt. SPE was completed in a field laboratory in Egypt, and cartridges were shipped to the United States for elution and high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry analysis. Quantitative and reproducible recovery of 23 of 27 compounds (average = 96%; percent relative standard deviation = 21%) from matrix spikes (1 microg L-1 per component) prepared in the field and from deionized water fortified similarly in the analytical laboratory was obtained. Concurrent analysis of unspiked samples identified four parent compounds and one degradate in drinking water samples. No significant differences were observed between raw and filtered samples. Residue levels in all cases were below drinking water and "harm to aquatic-life" thresholds, indicating that human and ecological risks of pesticide contamination were relatively small; however, the study was limited in scale and scope. Further monitoring is needed to define spatial and temporal variation in residue concentrations. The study has demonstrated the feasibility of performing studies of this type using SPE to extract and preserve samples in the field. The approach should be broadly

  6. Graphene doping methods and device applications.

    PubMed

    Oh, Jong Sik; Kim, Kyong Nam; Yeom, Geun Young

    2014-02-01

    Graphene has recently been studied as a promising material to replace and enhance conventional electronic materials in various fields such as electronics, photovoltaics, sensors, etc. However, for the electronic applications of graphene prepared by various techniques such as chemical vapor deposition, chemical exfoliation, mechanical exfoliation, etc., critical limitations are found due to the defects in the graphene in addition to the absence of a semiconducting band gap. For that, many researchers have investigated the doped graphene which is effective to tailor its electronic property and chemical reactivity. This work presents a review of the various graphene doping methods and their device applications. As doping methods, direct synthesis method and post treatment method could be categorized. Because the latter case has been widely investigated and used in various electronic applications, we will focus on the post treatment method. Post treatment method could be further classified into wet and dry doping methods. In the case of wet doping, acid treatment, metal chloride, and organic material coating are the methods used to functionalize graphene by using dip-coating, spin coating, etc. Electron charge transfer achieved from graphene to dopants or from dopants to graphene makes p-type or n-type graphenes, respectively, with sheet resistance reduction effect. In the case of dry doping, it can be further categorized into electrostatic field method, evaporation method, thermal treatment method, plasma treatment method, etc. These doping techniques modify Fermi energy level of graphene and functionalize the property of graphene. Finally, some perspectives and device applications of doped graphene are also briefly discussed.

  7. Laser based water equilibration method for d18O determination of water samples

    NASA Astrophysics Data System (ADS)

    Mandic, Magda; Smajgl, Danijela; Stoebener, Nils

    2017-04-01

    Determination of d18O with water equilibration method using mass spectrometers equipped with equilibration unit or Gas Bench is known already for many years. Now, with development of laser spectrometers this extends methods and possibilities to apply different technologies in laboratory but also in the field. The Thermo Scientific™ Delta Ray™ Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect and Teledyne Cetac ASX-7100 offers high precision and throughput of samples. It employs optical spectroscopy for continuous measurement of isotope ratio values and concentration of carbon dioxide in ambient air, and also for analysis of discrete samples from vials, syringes, bags, or other user-provided sample containers. Test measurements and conformation of precision and accuracy of method determination d18O in water samples were done in Thermo Fisher application laboratory with three lab standards, namely ANST, Ocean II and HBW. All laboratory standards were previously calibrated with international reference material VSMOW2 and SLAP2 to assure accuracy of the isotopic values of the water. With method that we present in this work achieved repeatability and accuracy are 0.16‰ and 0.71‰, respectively, which fulfill requirements of regulatory method for wine and must after equilibration with CO2.

  8. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... AGENCY 40 CFR Part 131 RIN 2040-AF33 Water Quality Standards; Withdrawal of Certain Federal Water Quality... certain human health and aquatic life water quality criteria applicable to waters of New Jersey, Puerto... establish numeric water quality criteria for 12 states and two Territories, including New Jersey, Puerto...

  9. Geophysical methods application in groundwater natural protection against pollution

    NASA Astrophysics Data System (ADS)

    Komatina, S. M.

    1994-02-01

    Natural protection against groundwater pollution mostly depends on water-bearing bed coverage with permeable rocks presenting a good or bad pollution intrusion barrier between the surface and subterranean water. Additional positive effects of polluted groundwater self-purification in these zones are visible. Natural protection from surface pollutants primarily depends on natural (geological) factors: (1) presence of poorly permeable rocks; (2) depth, lithology (grain-size distribution), and filtration features of rocks covering groundwater reservoirs; and (3) aquifer depth. In contrast to artesian aquifers, quantitative and qualitative evaluation for natural protection of intergranular aquifers with a free water surface is significantly complicated. In this case, the estimation is possible with the help of a specially developed statistical method, which requires the following elements referring to the zone of aeration: (1) poorly permeable strata depth; (2) filtration features; (3) groundwater level depth; and (4) lithology. For quantitative evaluation, it is necessary to know the time interval for pollution propagating from surface of the terrain to the free water surface. Describe access is particularly useful in the domain of zones of sanitary protection defined around the source of groundwater. This exploration method could be considerably rationalized by geophysical methods application. Various methods are useful, namely: electric mapping and sounding, self-potential method, seismic reflection and refraction methods, gravity and geomagnetic methods, the “turam” method, and different well-logging measurements (gamma ray, gammagamma, radioactivity log, and thermal log). In the paper, geophysical methods applictations in natural protection against groundwater pollution and appropriate critical analysis are presented. The results of this paper are based on the experience and application of geophysical methods to groundwater studies in Yugoslavia by the author.

  10. Electromagnetic Imaging Methods for Nondestructive Evaluation Applications

    PubMed Central

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions. PMID:22247693

  11. Electromagnetic imaging methods for nondestructive evaluation applications.

    PubMed

    Deng, Yiming; Liu, Xin

    2011-01-01

    Electromagnetic nondestructive tests are important and widely used within the field of nondestructive evaluation (NDE). The recent advances in sensing technology, hardware and software development dedicated to imaging and image processing, and material sciences have greatly expanded the application fields, sophisticated the systems design and made the potential of electromagnetic NDE imaging seemingly unlimited. This review provides a comprehensive summary of research works on electromagnetic imaging methods for NDE applications, followed by the summary and discussions on future directions.

  12. Community of Practice Applications from WaterNet: The NASA Water Cycle Solutions Network

    NASA Astrophysics Data System (ADS)

    Matthews, D.; Brilly, M.; Gregoric, G.; Polajnar, J.; Houser, P.; Rodell, M.; Lehning, M.

    2009-04-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. It addresses a means for enhancing the social and economic developments of nations by increased use of practical research products from the terrestrial water cycle for making informed decisions. This paper provides a summary of the Water Cycle Community of Practice (CoP) plans and examples of Land Surface Model (LSM) applications for extreme events - floods, droughts, and heavy snowstorms in Europe. It discusses the concept of NASA's solutions networks focusing on the WaterNet. It invites EGU teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team is developing WaterNet by engaging relevant NASA water cycle research and community-of-practice organizations, to develop what we term an "actionable database" that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base. Recognizing the many existing highly valuable water-related science and application networks in the US and EU, we focus the balance of our efforts on enabling their interoperability - facilitating access and communications among decision-makers and scientists. We present results of our initial focus on identification, collection, and analysis of the two end points, these being the NWRs and EWRs and water related DSTs. We

  13. Application of high energy chemistry methods for purification of water and air (on the basis of the materials of the I International Conference on Advanced Oxidation Technologies for Water and Air Remediation)

    SciTech Connect

    Pikaev, A.K.

    1995-01-01

    The I International Conference on Advanced Oxidation Technologies for Water and Air Remediation was held from June 25-30, 1994, in London (province of Ontario, Canada). Dr. H. Al-Ekabi (Canada) was the chairman of Organizing Committee. Over 350 specialists from Russia, USA, Canada, Japan, Germany, France, Italy, Great Britain, Poland, Switzerland, Holland, People`s Republic of China, Austria, Finland, South Korea, Spain, Hong Kong, Denmark, Taiwan, Belgium, and Iraq took part. During the conference there was also an exhibition, at which several companies demonstrated products which were related to the themes of the conference. About 200 invited and contributed reports and poster communications were presented, evaluated and discussed. There were also three panel discussions about governmental ecological programs, the transfer of oxidation technologies, etc.

  14. PRN 93-3: Labeling Statement Prohibiting Application to Water

    EPA Pesticide Factsheets

    This notice explaining the policy on label statement prohibiting pesticide application to water pertains only to the labeling statement on pesticide products. It does not address the term wetlands as defined with respect to the Clean Water Act.

  15. Study methods for disinfection water for injection

    NASA Astrophysics Data System (ADS)

    Grishkanich, Alexander; Zhevlakov, Alexander; Kascheev, Sergey; Polyakov, Vladimir; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    Experimental results presented in this study tends to explore viruses in the water for their further decontamination under the influence of laser radiation (λ=220-390 nm). Conducted a series of experiments to study the dependence of water quality from the effects of laser radiation. Correlation between degree of survival of viruses and power density. The results showed that all the analyzed samples of water is clearing from bacteria to 98%. Preliminary tests of the prototype laboratory system UFOVI has opened up new opportunities for water sterilizing.

  16. Substituted Ureas. Methods of Synthesis and Applications

    NASA Astrophysics Data System (ADS)

    Vishnyakova, T. P.; Golubeva, I. A.; Glebova, E. V.

    1985-03-01

    Systematic data on the method of synthesis of ureas by the interaction of compounds containing the amino-group with organic isocyanates, of amines and alkyl halides with alkali metal cyanates, and of primary and secondary amines with phosgene, carbon dioxide, urea, or nitrourea and by the carbonylation of amines are presented. The reactions involving the alkylation of urea and its interaction with various compounds containing functional groups are considered. The advantages and disadvantages of various methods are noted. The principal and practical applications of substituted ureas, including their applications as additives to organic materials, are discussed. The bibliography includes 314 references.

  17. Extending the applicability of multigrid methods

    SciTech Connect

    Brannick, J; Brezina, M; Falgout, R; Manteuffel, T; McCormick, S; Ruge, J; Sheehan, B; Xu, J; Zikatanov, L

    2006-09-25

    Multigrid methods are ideal for solving the increasingly large-scale problems that arise in numerical simulations of physical phenomena because of their potential for computational costs and memory requirements that scale linearly with the degrees of freedom. Unfortunately, they have been historically limited by their applicability to elliptic-type problems and the need for special handling in their implementation. In this paper, we present an overview of several recent theoretical and algorithmic advances made by the TOPS multigrid partners and their collaborators in extending applicability of multigrid methods. Specific examples that are presented include quantum chromodynamics, radiation transport, and electromagnetics.

  18. Analytical method for measuring cosmogenic 35S in natural waters

    DOE PAGES

    Uriostegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; ...

    2015-05-18

    Here, cosmogenic sulfur-35 in water as dissolved sulfate (35SO4) has successfully been used as an intrinsic hydrologic tracer in low-SO4, high-elevation basins. Its application in environmental waters containing high SO4 concentrations has been limited because only small amounts of SO4 can be analyzed using current liquid scintillation counting (LSC) techniques. We present a new analytical method for analyzing large amounts of BaSO4 for 35S. We quantify efficiency gains when suspending BaSO4 precipitate in Inta-Gel Plus cocktail, purify BaSO4 precipitate to remove dissolved organic matter, mitigate interference of radium-226 and its daughter products by selection of high purity barium chloride, andmore » optimize LSC counting parameters for 35S determination in larger masses of BaSO4. Using this improved procedure, we achieved counting efficiencies that are comparable to published LSC techniques despite a 10-fold increase in the SO4 sample load. 35SO4 was successfully measured in high SO4 surface waters and groundwaters containing low ratios of 35S activity to SO4 mass demonstrating that this new analytical method expands the analytical range of 35SO4 and broadens the utility of 35SO4 as an intrinsic tracer in hydrologic settings.« less

  19. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    flux in the subsurface is difficult, prompting investigators to pursue indirect methods. Geophysical approaches that exploit the coupled relation between heat and water transport provide an attractive class of methods that have become widely used in investigations of recharge. This appendix reviews the application of heat to the problem of recharge estimation. Its objective is to provide a fairly complete account of the theoretical underpinnings together with a comprehensive review of thermal methods in practice. Investigators began using subsurface temperatures to delineate recharge areas and infer directions of ground-water flow around the turn of the 20th century. During the 1960s, analytical and numerical solutions for simplified heat- and fluid-flow problems became available. These early solutions, though one-dimensional and otherwise restricted, provided a strong impetus for applying thermal methods to problems of liquid and vapor movement in systems ranging from soils to geothermal reservoirs. Today?s combination of fast processors, massive data-storage units, and efficient matrix techniques provide numerical solutions to complex, three-dimensional transport problems. These approaches allow researchers to take advantage of the considerable information content routinely achievable in high-accuracy temperature work.

  20. Hydroxylapatite nanoparticles: fabrication methods and medical applications

    PubMed Central

    Okada, Masahiro; Furuzono, Tsutomu

    2012-01-01

    Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4. PMID:27877527

  1. Hydroxylapatite nanoparticles: fabrication methods and medical applications

    NASA Astrophysics Data System (ADS)

    Okada, Masahiro; Furuzono, Tsutomu

    2012-12-01

    Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.

  2. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  3. Some Recent Applications of Nuclear Methods

    SciTech Connect

    Csikai, J.; Doczi, R.

    2005-11-21

    In this paper among the wide-ranging applications of nuclear methods the following topics were selected: a) Nuclear safeguards, illicit trafficking and demining; b) Bulk hydrogen analysis; c) Radiopharmaceuticals and related charged particle reactions; d) Accelerator transmutation of radioactive waste; e) Validation of nuclear data libraries by differential and integral measurements.

  4. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  5. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  6. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P [Montpelier, VT

    2011-05-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  7. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P.

    2010-06-15

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  8. Water turbine system and method of operation

    DOEpatents

    Costin, Daniel P [Montpelier, VT

    2009-02-10

    A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

  9. Recycled PET Nanofibers for Water Filtration Applications

    PubMed Central

    Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel

    2016-01-01

    Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380

  10. Human Health Water Quality Criteria and Methods for Toxics

    EPA Pesticide Factsheets

    Documents pertaining to Human Health Water Quality Criteria and Methods for Toxins. Includes 2015 Update for Water Quality Criteria, 2002 National Recommended Human Health Criteria, and 2000 EPA Methodology.

  11. EPA METHODS FOR VIRUS DETECTION IN WATER

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Members of the enterovirus group cause numerous diseases, including gastroenteritis, encephalitis, meningitis, myocard...

  12. EPA METHODS FOR VIRUS DETECTION IN WATER

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Members of the enterovirus group cause numerous diseases, including gastroenteritis, encephalitis, meningitis, myocard...

  13. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles

    PubMed Central

    2011-01-01

    Due to the vast importance of peptides in biological processes, there is an escalating need for synthetic peptides to be used in a wide variety of applications. However, the consumption of organic solvent is extremely large in chemical peptide syntheses because of the multiple condensation steps in organic solvents. That is, the current synthesis method is not environmentally friendly. From the viewpoint of green sustainable chemistry, we focused on developing an organic solvent-free synthetic method using water, an environmentally friendly solvent. Here we described in-water synthesis technology using water-dispersible protected amino acids. PMID:21867548

  14. Applications for remotely sensed evapotranspiration data in monitoring water quality, water use, and water security

    NASA Astrophysics Data System (ADS)

    Anderson, Martha; Hain, Christopher; Feng, Gao; Yang, Yun; Sun, Liang; Yang, Yang; Dulaney, Wayne; Sharifi, Amir; Kustas, William; Holmes, Thomas

    2017-04-01

    Across the globe there are ever-increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers that are being unsustainably depleted due to over-extraction, primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water quality, water use and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  15. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  16. Microwave thermography: principles, methods and clinical applications.

    PubMed

    Myers, P C; Sadowsky, N L; Barrett, A H

    1979-06-01

    We review the physical principles, method of operation, measurement limitations, and potential medical applications of microwave thermography. We present detailed results of a study of breast cancer detection at 1.3 and 3.3 GHz, including the dependence of detection rates on microwave frequency, time, tumor depth, and tumor size. At 1.3 GHz, microwave thermography detects breast cancer as well as infrared thermography (true-positive rate = 0.76 when true-negative rate = 0.63). When the two methods are combined, the true-positive rate increases by about 0.1 over that of either method alone.

  17. Satellite Geodesy—Foundations, Methods, and Applications

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    This text is an updated English translation of Satellitengeodasie, a book that was published in German in 1989. The text is the first in many years that attempts to cover the broad spectrum of methods, applications, and systems, both classical and current, that have developed in the field of satellite geodesy.The material is presented in a structure that follows the major observational methods used in satellite geodesy: classical techniques, Doppler, GPS, laser, altimetry, and special methods including satellite-to-satellite tracking, satellite radiometry, and VLBI. Before introducing these observational techniques in detail, the author provides the fundamentals on reference frames, time signal propagation, orbital mechanics and basic applications of satellite geodesy in positioning, gravity field modeling, navigation, marine geodesy, kinematics, and geodynamics. An excellent reference list completes the text.

  18. Water quality assessment in Qu River based on fuzzy water pollution index method.

    PubMed

    Li, Ranran; Zou, Zhihong; An, Yan

    2016-12-01

    A fuzzy improved water pollution index was proposed based on fuzzy inference system and water pollution index. This method can not only give a comprehensive water quality rank, but also describe the water quality situation with a quantitative value, which is convenient for the water quality comparison between the same ranks. This proposed method is used to assess water quality of Qu River in Sichuan, China. Data used in the assessment were collected from four monitoring stations from 2006 to 2010. The assessment results show that Qu River water quality presents a downward trend and the overall water quality in 2010 is the worst. The spatial variation indicates that water quality of Nanbashequ section is the pessimal. For the sake of comparison, fuzzy comprehensive evaluation and grey relational method were also employed to assess water quality of Qu River. The comparisons of these three approaches' assessment results show that the proposed method is reliable. Copyright © 2016. Published by Elsevier B.V.

  19. Evaluation of different field methods for measuring soil water infiltration

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water.

    PubMed

    Ens, Waldemar; Senner, Frank; Gygax, Benjamin; Schlotterbeck, Götz

    2014-05-01

    A new method for the simultaneous determination of iodated X-ray contrast media (ICM) and artificial sweeteners (AS) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) operated in positive and negative ionization switching mode was developed. The method was validated for surface, ground, and drinking water samples. In order to gain higher sensitivities, a 10-fold sample enrichment step using a Genevac EZ-2 plus centrifugal vacuum evaporator that provided excellent recoveries (90 ± 6 %) was selected for sample preparation. Limits of quantification below 10 ng/L were obtained for all compounds. Furthermore, sample preparation recoveries and matrix effects were investigated thoroughly for all matrix types. Considerable matrix effects were observed in surface water and could be compensated by the use of four stable isotope-labeled internal standards. Due to their persistence, fractions of diatrizoic acid, iopamidol, and acesulfame could pass the whole drinking water production process and were observed also in drinking water. To monitor the fate and occurrence of these compounds, the validated method was applied to samples from different stages of the drinking water production process of the Industrial Works of Basel (IWB). Diatrizoic acid was found as the most persistent compound which was eliminated by just 40 % during the whole drinking water treatment process, followed by iopamidol (80 % elimination) and acesulfame (85 % elimination). All other compounds were completely restrained and/or degraded by the soil and thus were not detected in groundwater. Additionally, a direct injection method without sample preparation achieving 3-20 ng/L limits of quantification was compared to the developed method.

  1. Field Deployable Method for Arsenic Speciation in Water.

    PubMed

    Voice, Thomas C; Flores Del Pino, Lisveth V; Havezov, Ivan; Long, David T

    2011-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance.The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78-112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  2. Field Deployable Method for Arsenic Speciation in Water

    PubMed Central

    Voice, Thomas C.; Flores del Pino, Lisveth V.; Havezov, Ivan; Long, David T.

    2010-01-01

    Contamination of drinking water supplies by arsenic is a world-wide problem. Total arsenic measurements are commonly used to investigate and regulate arsenic in water, but it is well understood that arsenic occurs in several chemical forms, and these exhibit different toxicities. It is problematic to use laboratory-based speciation techniques to assess exposure as it has been suggested that the distribution of species is not stable during transport in some types of samples. A method was developed in this study for the on-site speciation of the most toxic dissolved arsenic species: As (III), As (V), monomethylarsonic acid (MMA) and dimethylarsenic acid (DMA). Development criteria included ease of use under field conditions, applicable at levels of concern for drinking water, and analytical performance. The approach is based on selective retention of arsenic species on specific ion-exchange chromatography cartridges followed by selective elution and quantification using graphite furnace atomic absorption spectroscopy. Water samples can be delivered to a set of three cartridges using either syringes or peristaltic pumps. Species distribution is stable at this point, and the cartridges can be transported to the laboratory for elution and quantitative analysis. A set of ten replicate spiked samples of each compound, having concentrations between 1 and 60 µg/L, were analyzed. Arsenic recoveries ranged from 78–112 % and relative standard deviations were generally below 10%. Resolution between species was shown to be outstanding, with the only limitation being that the capacity for As (V) was limited to approximately 50 µg/L. This could be easily remedied by changes in either cartridge design, or the extraction procedure. Recoveries were similar for two spiked hard groundwater samples indicating that dissolved minerals are not likely to be problematic. These results suggest that this methodology can be use for analysis of the four primary arsenic species of concern in

  3. Structural sensitivity analysis: Methods, applications and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. The techniques include a finite difference step size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Some of the critical needs in the structural sensitivity area are indicated along with plans for dealing with some of those needs.

  4. Structural sensitivity analysis: Methods, applications, and needs

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Camarda, C. J.; Walsh, J. L.

    1984-01-01

    Some innovative techniques applicable to sensitivity analysis of discretized structural systems are reviewed. These techniques include a finite-difference step-size selection algorithm, a method for derivatives of iterative solutions, a Green's function technique for derivatives of transient response, a simultaneous calculation of temperatures and their derivatives, derivatives with respect to shape, and derivatives of optimum designs with respect to problem parameters. Computerized implementations of sensitivity analysis and applications of sensitivity derivatives are also discussed. Finally, some of the critical needs in the structural sensitivity area are indicated along with Langley plans for dealing with some of these needs.

  5. Thermochemical method for producing hydrogen from water

    SciTech Connect

    Fujii, K.; Kondo, W.; Kumagai, T.

    1980-02-12

    A closed system for obtaining hydrogen from water is provided by combining a first step of obtaining hydrogen by reacting water and ferrous halide, a second step of converting triiron tetraoxide produced as a by-product in the first step to ferrous sulfate, a third step of obtaining oxygen and by-products by thermally decomposing said ferrous sulfate, and a fourth step of returning said by-products by thermally decomposing said ferrous sulfate, and a fourth step of returning said by-products obtained in the third step to any of the previous steps.

  6. Discharges in Water and Applications to Wasted Water Treatment

    NASA Astrophysics Data System (ADS)

    Yamabe, Chobei; Yamashita, Takanori; Ihara, Satoshi

    Recently the electrical discharge in water has been used for the water treatment. In this study, various shape of electrodes were examined to observe and measure the electrical discharge phenomena in water. Both the Marx generator and the pulsed power generator were used to generate the discharge in water. The oscillation on the waveforms of both applied voltage and discharge current was observed using the pulsed power generator whose peak applied voltage was about 80-120 kV and its discharge repetition rate was about one pulse per thirty seconds although it wasn't observed on the waveforms in the practical use of the high voltage generator (peak applied voltage was about 30-40 kV) with high repetition rate of discharge (20-300 pulses per second). Bubbles were introduced into the discharge region of main electrode using the ejector and the generation of hydroxyl radicals (OH) was confirmed by the measurement of emission spectrum of discharge in water and the intensity of OH radicals increased with the ratio of G/L (where, G is gas flow rate and L is water flow rate). The hydrogen peroxide (H2O2) was also measured and this reactor system was applied for the de-color of water.

  7. Other Clean Water Act Test Methods: Biosolids

    EPA Pesticide Factsheets

    Methods for analysis of chemical pollutants in biosolids (municipal sewage sludge). These methods are not approved under 40 CFR Part 136, but may be of interest to regulated entities, permitting authorities and the public.

  8. Valuation of perspective application of lidar methods for sea monitoring

    NASA Astrophysics Data System (ADS)

    Aleshin, Igor V.; Goncharov, Vadim K.; Lyskov, Vladimir G.; Tsvetkov, Evgeny A.

    1997-02-01

    The materials of settlement valuations and experimental data about structures oil products discharging and depth its finding can be used for valuation of opportunity and conditions of application of air laser methods to detection and classification of oil pollution at operations of deposits of oil in shelf zone the theoretical estimations of opportunity realization of air LIDAR systems in view of oil distribution features in sea are adduced. It is shown that in processes of decomposition its' space structure changes, and the floating drops can be formed the optical contrast layers in waters near to the 'sea-atmosphere' interface. The estimations of optical systems permits to generalize about reality of development two-frequent LIDAR system, containing two channels, one of which measures the fluorescence of organic substances located in thicker water, and second- combinational scattering of light by molecules of water.

  9. Recent Applications of Neutron Imaging Methods

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Mannes, D.; Kaestner, A.; Grünzweig, C.

    The methodical progress in the field of neutron imaging is visible in general but on different levels in the particular labs. Consequently, the access to most suitable beam ports, the usage of advanced imaging detector systems and the professional image processing made the technique competitive to other non-destructive tools like X-ray imaging. Based on this performance gain and by new methodical approaches several new application fields came up - in addition to the already established ones. Accordingly, new image data are now mostly in the third dimension available in the format of tomography volumes. The radiography mode is still the basis of neutron imaging, but the extracted information from superimposed image data (like for a grating interferometer) enables completely new insights. In the consequence, many new applications were created.

  10. Extended applications of the vortex lattice method

    NASA Technical Reports Server (NTRS)

    Miranda, L. R.

    1976-01-01

    The application of the vortex lattice method to problems not usually dealt with by this technique is considered. It is shown that if the discrete vortex lattice is considered as an approximation to surface-distributed vorticity, then the concept of the generalized principal part of an integral yields a residual term to the vortex-induced velocity that renders the vortex lattice method valid for supersonic flow. Special schemes for simulating non-zero thickness lifting surfaces and fusiform bodies with vortex lattice elements are presented. Thickness effects of wing-like components are simulated by a double vortex lattice layer, and fusiform bodies are represented by a vortex grid arranged on a series of concentric cylindrical surfaces. Numerical considerations peculiar to the application of these techniques are briefly discussed.

  11. Simulating protein dynamics: Novel methods and applications

    NASA Astrophysics Data System (ADS)

    Vishal, V.

    This Ph.D dissertation describes several methodological advances in molecular dynamics (MD) simulations. Methods like Markov State Models can be used effectively in combination with distributed computing to obtain long time scale behavior from an ensemble of short simulations. Advanced computing architectures like Graphics Processors can be used to greatly extend the scope of MD. Applications of MD techniques to problems like Alzheimer's Disease and fundamental questions in protein dynamics are described.

  12. Nuclear data calculation methods for medical applications

    SciTech Connect

    Shubin, Yu.N.; Lunev, V.P.; Masterov, V.S.; Kurenkov, N.V.; Kulikov, E.V.

    1994-12-31

    Neutron deficient radionuclides play an important role in medicine, where they are used for diagnostic with Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPET). Using some reactions connected with the producing most widely used radioisotopes {sup 123}I, {sup 201}Tl, {sup 99}Tc as example we calculated reaction cross sections and discuss the possibilities of the models and codes and recent progress in the methods to predict nuclear data for medical and other applications in medium energy region.

  13. Probabilistic structural analysis methods and applications

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Wu, Y.-T.; Dias, B.; Rajagopal, K. R.

    1988-01-01

    An advanced algorithm for simulating the probabilistic distribution of structural responses due to statistical uncertainties in loads, geometry, material properties, and boundary conditions is reported. The method effectively combines an advanced algorithm for calculating probability levels for multivariate problems (fast probability integration) together with a general-purpose finite-element code for stress, vibration, and buckling analysis. Application is made to a space propulsion system turbine blade for which the geometry and material properties are treated as random variables.

  14. Harmony search method: theory and applications.

    PubMed

    Gao, X Z; Govindasamy, V; Xu, H; Wang, X; Zenger, K

    2015-01-01

    The Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem.

  15. Harmony Search Method: Theory and Applications

    PubMed Central

    Gao, X. Z.; Govindasamy, V.; Xu, H.; Wang, X.; Zenger, K.

    2015-01-01

    The Harmony Search (HS) method is an emerging metaheuristic optimization algorithm, which has been employed to cope with numerous challenging tasks during the past decade. In this paper, the essential theory and applications of the HS algorithm are first described and reviewed. Several typical variants of the original HS are next briefly explained. As an example of case study, a modified HS method inspired by the idea of Pareto-dominance-based ranking is also presented. It is further applied to handle a practical wind generator optimal design problem. PMID:25945083

  16. Experimental design methods for bioengineering applications.

    PubMed

    Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri

    2016-01-01

    Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.

  17. SARAL/Altika for inland water: current and potential applications

    NASA Astrophysics Data System (ADS)

    Tarpanelli, Angelica; Brocca, Luca; Barbetta, Silvia; Moramarco, Tommaso; Santos da Silva, Joécila; Calmant, Stephane

    2015-04-01

    Although representing less than 1% of the total amount of water on Earth the freshwater is essential for terrestrial life and human needs. Over one third of the world's population is not served by adequate supplies of clean water and for this reason freshwater wars are becoming one of the most pressing environmental issues exacerbating the already difficult tensions between the riparian nations. Notwithstanding the foregoing, we have surprisingly poor knowledge of the spatial and temporal dynamics of surface discharge. In-situ gauging networks quantify the instantaneous water volume in the main river channels but provide few information about the spatial dynamics of surface water extent, such as floodplain flows and the dynamics of wetlands. The growing reduction of hydrometric monitoring networks over the world, along with the inaccessibility of many remote areas and the difficulties for data sharing among developing countries feed the need to develop new procedures for river discharge estimation based on remote sensing technology. The major challenge in this case is the possibility of using Earth Observation data without ground measurements. Radar altimeters are a valuable tool to retrieve hydrological information from space such as water level of inland water. More than a decade of research on the application of radar altimetry has demonstrated its advantages also for monitoring continental water, providing global coverage and regular temporal sampling. The high accuracy of altimetry data provided by the latest spatial missions and the convincing results obtained in the previous applications suggest that these data may be employed for hydraulic/hydrological applications as well. If used in synergy with the modeling, the potential benefits of the altimetry measurements can grow significantly. The new SARAL French-Indian mission, providing improvements in terms of vertical accuracy and spatial resolution of the onboard altimeter Altika, can offer a great

  18. Exploiting interfacial water properties for desalination and purification applications.

    SciTech Connect

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo; Xomeritakis, George K.; Frankamp, Benjamin L.; Siepmann, J. Ilja; Cygan, Randall Timothy; Hartl, Monika A.; Travesset, Alex; Anderson, Joshua A.; Huber, Dale L.; Kissel, David J.; Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C.; McGrath, Matthew J.; Farrow, Darcie; Cecchi, Joseph L.; van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu; Zhu, Xiaoyang; Dunphy, Darren Robert; Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L.; Gerung, Henry; Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  19. Method for thermochemical decomposition of water

    DOEpatents

    Abraham, Bernard M.; Schreiner, Felix

    1977-01-11

    Water is thermochemically decomposed to produce hydrogen by the following sequence of reactions: KI, NH.sub.3, CO.sub. 2 and water in an organic solvent such as ethyl or propyl alcohol are reacted to produce KHCO 3 and NH.sub.4 I. The KHCO.sub.3 is thermally decomposed to K.sub.2 CO.sub.3, H.sub.2 O and CO.sub.2, while the NH.sub.4 I is reacted with Hg to produce HgI.sub.2, NH.sub.3 and H.sub.2. The K.sub.2 CO.sub.3 obtained by calcining KHCO.sub.3 is then reacted with HgI.sub.2 to produce Hg, KI, CO and O.sub.2. All products of the reaction are recycled except hydrogen and oxygen.

  20. Alternative cooling tower water treatment methods

    SciTech Connect

    Wilsey, C.A.

    1996-11-01

    The factors that contribute to proper water balance include total alkalinity, calcium hardness, and pH. In order to keep the cooling tower from scaling or corroding, a manipulation of these components is often necessary. This has traditionally been achieved with the use of chemicals, including but not limited to the following: acid, soda ash, sodium bicarbonate, calcium bicarbonate, algicide, and bactericide. Extensive research has shown that a balanced water system can also be achieved by using the proper combination of copper with a known halogen. Microbiologists have determined that a small amount of copper, acting as a supplement to chlorine at 0.4 ppm, has the same efficiency as 2.0 ppm free chlorine. Therefore, by using the following combination of components and procedures, the desired results can still be achieved: production of copper compound ions as a supplement to the chemical regimen; analysis and manipulation of make-up water; the use of copper as a coagulant for reduction of scale; copper as a supplemental bacterial disinfectant; and copper as an algicide.

  1. Application of water quality guidelines and water quantity calculations to decisions for beneficial use of treated water

    NASA Astrophysics Data System (ADS)

    Pham, Minh Phung T.; Castle, James W.; Rodgers, John H.

    2011-12-01

    Water reuse guidelines were compiled as a decision-analysis screening tool for application to potential water reuse for irrigation, livestock watering, aquaculture, and drinking. Data compiled from the literature for water reuses yielded guideline values for over 50 water quality parameters, including concentrations of inorganic and organic constituents as well as general water chemistry parameters. These water quality guidelines can be used to identify constituents of concern in water, to determine the levels to which the constituents must be treated for water reuse applications, and assess the suitability of treated water for reuse. An example is provided to illustrate the application of water quality guidelines for decision analysis. Water quantity analysis was also investigated, and water volumes required for producing 16 different crops in 15 countries were estimated as an example of applying water quantity in the decision-making process regarding the potential of water reuse. For each of the countries investigated, the crop that produces the greatest yield in terms of weight per water volume is tomatoes in Australia, Brazil, Italy, Japan, Saudi Arabia, Turkey, USA; sugarcane in Chad, India, Indonesia, Sudan; watermelons in China; lettuce in Egypt, Mexico; and onions (dry) in Russia.

  2. Complex admixtures of clathrate hydrates in a water desalination method

    DOEpatents

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  3. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  4. Welcome to Methods and Applications in Fluorescence

    NASA Astrophysics Data System (ADS)

    Birch, David; Mély, Yves; Wolfbeis, Otto S.

    2013-03-01

    On behalf of the Editorial Board of Methods and Applications in Fluorescence and IOP Publishing we are delighted to invite you to read the first articles in our new journal. Methods and Applications in Fluorescence is forged out of the renowned MAF conference series of the same name and we fully expect the natural synergy between the two to provide the ideal platform for moving the field of fluorescence forward. Our aim is for this new journal to reflect the truly global and diverse impact fluorescence is having across many disciplines and help fluorescence achieve its full potential. Just as MAF is the leading conference in fluorescence we are confident of the high impact of this new journal. Methods and Applications in Fluorescence has a distinguished Editorial Board that is drawn from the MAF conference Permanent Steering Committee. Together with the Editorial Board and the rest of the community, the journal will closely track the very latest developments in fluorescence while delivering a fair and constructive review process. We are very pleased that this journal is backed by the Institute of Physics, one of the world's premier learned societies. IOP Publishing has a wealth of experience in science publishing that dates back to 1874. It is a not-for-profit organization that publishes over 60 journals, many on multidisciplinary topics and many including seminal contributions from Nobel Laureates. Any funding surplus generated by IOP Publishing goes directly back into science through the Institute of Physics, thus helping to nurture science for future generations. We invite submissions as regular articles, review articles and technical notes within the scope of the journal, which includes all the major aspects of fluorescence. This covers both theory and experiment across spectroscopy, imaging, materials, labels, probes and sensors. The applications of fluorescence to emerging areas in bionanotechnology, nanotechnology and medicine are very much part of the

  5. Measuring Plant Water Status: A Simple Method for Investigative Laboratories.

    ERIC Educational Resources Information Center

    Mansfield, Donald H.; Anderson, Jay E.

    1980-01-01

    Describes a method suitable for quantitative studies of plant water status conducted by high school or college students and the calculation of the relative water content (RWC) of a plant. Materials, methods, procedures, and results are discussed, with sample data figures provided. (CS)

  6. Measuring Plant Water Status: A Simple Method for Investigative Laboratories.

    ERIC Educational Resources Information Center

    Mansfield, Donald H.; Anderson, Jay E.

    1980-01-01

    Describes a method suitable for quantitative studies of plant water status conducted by high school or college students and the calculation of the relative water content (RWC) of a plant. Materials, methods, procedures, and results are discussed, with sample data figures provided. (CS)

  7. Applicability and Limitations of Reliability Allocation Methods

    NASA Technical Reports Server (NTRS)

    Cruz, Jose A.

    2016-01-01

    Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.

  8. Cotton (Gossypium Hirsutum L.) response to pendimethalin formulation, timing, and method of application

    USDA-ARS?s Scientific Manuscript database

    Cotton growers are constantly seeking ways to reduce inputs. An alternative method to spraying pendimethalin herbicide with water as a method of field application is to coat it on fertilizers and then spread in tandem, reducing application cost by eliminating one trip across the field. Some concer...

  9. Controllability analysis as a pre-selection method for sensor placement in water distribution systems.

    PubMed

    Diao, Kegong; Rauch, Wolfgang

    2013-10-15

    Detection of contamination events in water distribution systems is a crucial task for maintaining water security. Online monitoring is considered as the most cost-effective technology to protect against the impacts of contaminant intrusions. Optimization methods for sensor placement enable automated sensor layout design based on hydraulic and water quality simulation. However, this approach results in an excessive computational burden. In this paper we outline the application of controllability analysis as preprocessing method for sensor placement. Based on case studies we demonstrate that the method decreases the number of decision variables for subsequent optimization dramatically to app. 30 to 40 percent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Disinfection of Water by Ultrasound: Application to Ballast Water Treatment

    DTIC Science & Technology

    2006-10-01

    Progress Series 176:253-262. Drake L., Ruiz G., Galil B., Mullady T., Friedmann D., and Dobbs F. (2002) Microbial ecology of ballast water during a...and B.S. Galil . 2001. Going to the source: role of the invasion pathway in determining potential invaders. Marine Ecology Progress Series 215:1-12

  11. Methods for determination of inorganic substances in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, Marvin J.; Friedman, Linda C.

    1989-01-01

    Chapter Al of the laboratory manual contains methods used by the U.S. Geological Survey to analyze samples of water, suspended sediments, and bottom material for their content of inorganic constituents. Included are methods for determining the concentration of dissolved constituents in water, the total recoverable and total of constituents in water-suspended sediment samples, and the recoverable and total concentrations of constituents in samples of bottom material. The introduction to the manual includes essential definitions and a brief discussion of the use of significant figures in calculating and reporting analytical results. Quality control in the water-analysis laboratory is discussed, including the accuracy and precision of analyses, the use of standard-reference water samples, and the operation of an effective quality-assurance program. Methods for sample preparation and pretreatment are given also. A brief discussion of the principles of the analytical techniques involved and their particular application to water and sediment analysis is presented. The analytical methods of these techniques are arranged alphabetically by constituent. For each method, the general topics covered are the application, the principle of the method, the interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data, when available. More than 126 methods are given for the determination of 70 inorganic constituents and physical properties of water, suspended sediment, and bottom material.

  12. 78 FR 57373 - Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-18

    ... Energy Regulatory Commission Appalachian Power Company; Notice of Application To Increase Water Withdraw and Construct Water Withdraw Facilty Pursuant to License Article 202 and Soliciting Comments, Motions... Filed: July 31, 2013. d. Applicant: Appalachian Power Company (licensee). e. Name of Project:...

  13. Aquifer water abundance evaluation using a fuzzy- comprehensive weighting method

    NASA Astrophysics Data System (ADS)

    Wei, Z.

    2016-08-01

    Aquifer water abundance evaluation is a highly relevant issue that has been researched for many years. Despite prior research, problems with the conventional evaluation method remain. This paper establishes an aquifer water abundance evaluation method that combines fuzzy evaluation with a comprehensive weighting method to overcome both the subjectivity and lack of conformity in determining weight by pure data analysis alone. First, this paper introduces the principle of a fuzzy-comprehensive weighting method. Second, the example of well field no. 3 (of a coalfield) is used to illustrate the method's process. The evaluation results show that this method is can more suitably meet the real requirements of aquifer water abundance assessment, leading to more precise and accurate evaluations. Ultimately, this paper provides a new method for aquifer water abundance evaluation.

  14. Application of a revised Water Poverty Index to target the water poor.

    PubMed

    Garriga, R Giné; Foguet, A Pérez

    2011-01-01

    The Water Poverty Index (WPI) has been recognized as a useful tool in policy analysis. The index integrates various physical, social and environmental aspects to enable more holistic assessment of water resources. However, soundness of this tool relies on two complementary aspects: (i) inadequate techniques employed in index construction would produce unreliable results, and (ii) poor dissemination of final outcome would reduce applicability of the index to influence policy-making. From a methodological point of view, a revised alternative to calculate the index was developed in a previous study. This paper is therefore concerned not with the method employed in index construction, but with how the composite can be applied to support decision-making processes. In particular, the paper examines different approaches to exploit the index as a policy tool. A number of alternatives to disseminate achieved results are presented. The implications of applying the composite at different spatial scales are highlighted. Turkana District, in Kenya has been selected as initial case study to test the applicability and validity of the index. The paper concludes that the WPI approach provides a relevant tool for guiding appropriate action and policy-making towards more equitable allocation of water resources.

  15. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of inorganic and organic constituents in water and fluvial sediments

    USGS Publications Warehouse

    Fishman, M. J.

    1993-01-01

    Methods to be used to analyze samples of water, suspended sediment and bottom material for their content of inorganic and organic constituents are presented. Technology continually changes, and so this laboratory manual includes new and revised methods for determining the concentration of dissolved constituents in water, whole water recoverable constituents in water-suspended sediment samples, and recoverable concentration of constit- uents in bottom material. For each method, the general topics covered are the application, the principle of the method, interferences, the apparatus and reagents required, a detailed description of the analytical procedure, reporting results, units and significant figures, and analytical precision data. Included in this manual are 30 methods.

  16. Industrial applications of laser methods profilometry

    SciTech Connect

    Doyle, J.L.

    1995-12-31

    Laser-based profilometry has evolved rapidly over the past ten years. During that period, QUEST Integrated Inc. has been actively involved in the development of systems for a wide variety of NDE applications. The measurement method is based on the principle of optical triangulation. The sensor includes a diode laser which generates the collimated laser beam that is projected orthogonally onto a target surface. Receiving optics, positioned at an oblique angle to the beam, image the reflected light onto a lateral-effect photodetector. Depending on the packaging constraints and resolution requirements, probes use either a single or dual-axis lateral-effect photodetector. As the target surface moves toward or away from the laser source, the imaged light moves across the photodetector in a predictable and repeatable manner. Since the laser beam can be focused to a ``footprint`` as small as a few microns in diameter, this method provides unparalleled spatial resolution. In addition, lateral effect photodetectors are composed or a single silicon element that provides almost infinite lateral resolution. This method was applied to two applications in this paper. The first was to locate and identify flows caused by pitting corrosion in steam generator tubes at nuclear power plants. The second was for inspection of gun tubes by the US army.

  17. Water Conservation Methods for U.S. Army Installations. Volume II. Irrigation Management.

    DTIC Science & Technology

    1983-04-01

    Iconstruction nt a"Am en inerngCorp. of Eginer Technical ReportN14 reseratrch Water Conservation and Reuse Guidelines t .. WAXER CONSERVATION METHODS FOR U.S...should be selected when natural landscaping is not applicable. ’-- 5. Innovative irrigation methods such as drip irrigation, wastewater reuse , and...Conservation and Reuse Guidelines." The applicable QCR is 6.27.20A. The OCE Technical Monitor was Walter Medding, DAEN-ECE-D. Dr. R. K. Jain is Chief

  18. A rapid, accurate and sensitive method with the new stable isotopic tags based on microwave-assisted dispersive liquid-liquid microextraction and its application to the determination of hydroxyl UV filters in environmental water samples.

    PubMed

    Li, Xiu; Chen, Guang; Liu, Jianjun; Liu, Yuxia; Zhao, Xianen; Cao, Ziping; Xia, Lian; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Wang, Hua; You, Jinmao

    2017-05-15

    A rapid, accurate and sensitive method, using the stable isotope labeling (SIL), microwave-assisted dispersive liquid-liquid micro extraction (MADLLME) and the ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), was developed and validated for the determination of hydroxyl UV Filters in environmental water samples. A pair of new isotopic tags D0-/D3-1-methylindole-3-acetic acid (D0-/D3-MIAA) is synthesized, with which a simple yet efficient pretreatment MADLLME-SIL is developed. Under the optimized conditions (80℃, 240W, 180s), the sample pretreatment including analyte extraction, pre-concentration and isotope labeling can be finished conveniently in only 9min. D0-/D3-MIAA labeling improves the chromatographic retention by strengthening the hydrophobicity and enhances the MS response for 3-4 orders of magnitude. Excellent linearity is established by the H/D ratios of 1/10-10/1 with the correlation coefficients >0.9990. The quite low detection limits (0.54-1.79ng/L) are achieved, ensuring the trace detection. This method is successfully applied to a series of environmental water samples. The recoveries (93.2%~103.5%) are significantly improved and the analysis time is largely reduced (<15min). The excellent sensitivity, accuracy, recovery, and efficiency demonstrate this MADLLME-SIL-LC-MS/MS method a superior alternative for the analysis of UV filters in water samples.

  19. Application of the organic on water reactions to prebiotic chemistry

    NASA Astrophysics Data System (ADS)

    Kolb, Vera M.

    2012-10-01

    The old view that prebiotic reactions in water are hampered by the low solubility of the organic compounds in water is now being revised due to the discoveries of the reactions "on water". These reactions occur in the heterogeneous system comprising of the organic compounds and water. Unexpectedly, such reactions are extremely efficient; they often give quantitative yields, and are accelerated in the presence of water as compared to the organic solvents. These "on water" reactions are not the same as the "in water" reactions, which occur in solution, and are thus homogenous. Examples of the "on water" reactions include Diels-Alder, Claisen, Passerini and Ugi reactions, among many others. Some of these reactions are multicomponent, but give a single product. We survey a selected number of the "on water" reactions, which have a potential prebiotic applications.

  20. Applications of nanotechnology in water and wastewater treatment.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Methods for determination of radioactive substances in water and fluvial sediments

    USGS Publications Warehouse

    Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.

    1977-01-01

    Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.

  2. Status and applications of echinoid (phylum echinodermata) toxicity test methods

    SciTech Connect

    Bay, S.; Burgess, R.; Nacci, D.

    1993-01-01

    The use of echinoderms for toxicity testing has focused primarily on sea urchins and sand dollars (Strongylocentrotus purpuratus, Arbacia punctulata, Lytechinus pictus, and Dendraster excentricus, for example). The status and relative sensitivity of various test methods are described. The most frequently used test methods consist of short-term exposures of sea urchin sperm or embryos; these tests can be easily conducted at all times of the year by using species with complementary spawning cycles or laboratory conditioned populations of a single species. Data from reference toxicant and effluent toxicity tests are summarized. Information on the precision and sensitivity of echinoid test methods are limited and preclude rigorous comparisons with other test methods. The available data indicate that the sensitivity and precision of these methods are comparable to short-term chronic methods for other marine invertebrates and fish. Recent application of the sperm test in toxicity identification evaluations (TIEs) and studies of effluent toxicity decay and sediment toxicity illustrate the versatility of this rapid (10 to 60 min exposure) test method. Embryo tests typically use a 48 to 96 h exposure period and measure the occurrence of embryo malformations. Most recent applications of the embryo test have been for the assessment of sediment elutriate toxicity. Adult echinoderms are not frequently used to assess effluent or receiving water toxicity. Recent studies have had success in using the adult life stage of urchins and sand dollars to assess the effects of contaminated sediment on growth, behavior, and bioaccumulation.

  3. [Application of helix water jet to parotid surgery].

    PubMed

    Zhang, Dong-Kun; Guo, Zhu-Ming; Zhang, Quan; Zeng, Zong-Yuan; Chen, Fu-Jin; Chen, Wen-Kuan; Li, Hao; Wang, Shun-Lan

    2008-01-01

    Dissecting the facial nerves safely is an important guarantee for the accomplishment of parotidectomy and reduction of postoperative complications. This study was to explore the application of helix water jet to parotidectomy. Clinical data of 43 patients with parotid tumors, who received operation with helix water jet from Feb. 2004 to Feb. 2005 at Cancer Center of Sun Yat-Sen University, were analyzed. Meanwhile, traditional techniques in parotidectomy was performed in 36 patients (control group). Duration of operation, postoperative drainage volume, postoperative hospitalization, and occurrence of postoperative complications, such as facial nerve dysfunction and salivary fistula, of the 2 groups were compared. The postoperative drainage volume was significantly lower in water jet group than in control group [(9.89+/-3.74) mL vs. (12.15+/-2.11) mL, P<0.05]. There were no significant differences in duration of operation [(90.28+/-25.30) min vs. (76.32+/-20.74) min, P>0.05], postoperative hospitalization [(6.39+/-1.38) days vs. (6.45+/-1.05) days, P>0.05] between the two groups. Of the 43 patients in water jet group, 6 (14.0%) had grade II facial nerve dysfunction and 1 (2.3%) had grade III facial nerve dysfunction; of the 36 patients in control group, 5 (13.9%) had grade II facial nerve dysfunction, 2 (5.6%) had grade III facial nerve dysfunction, 1 (2.8%) had grade IV facial nerve dysfunction and 1 (2.8%) had salivary fistula. There was no permanent facial nerve dysfunction occurred in both groups. There was no significant difference in the occurrence of complications between the two groups. Nine patients who retained nervus auricularis magnus suffered from slight numbness symptom of auricular lobule. Use of helix water jet in parotid surgery is safe and confers some advantages over conventional methods of parotid dissection.

  4. A water-activated pump for portable microfluidic applications.

    PubMed

    Good, Brian T; Bowman, Christopher N; Davis, Robert H

    2007-01-15

    An on-chip micropump for portable microfluidic applications was investigated using mathematical modeling and experimental testing. This micropump is activated by the addition of water, via a dropper, to ionic polymer particles that swell due to osmotic effects when wetted. The resulting particle volume increase deflects a membrane, forcing a separate fluid from an adjacent reservoir. The micropump components, along with the microfluidic components, are fabricated using the contact liquid photolithographic polymerization (CLiPP) method. The maximum flow rate achieved with this pump is 17 microL per minute per mg of dry polymer particles of 355-425 microm in diameter. The pump flow rate may be controlled by adjusting the particle size and amount, the membrane properties, and the channel dimensions. The experimental results demonstrate good agreement with an analytical model describing the particle swelling and its coupling with resistive forces from the bending membrane, viscous flow in the microchannel, and interfacial effects. Key features of this micropump are that it can be placed directly on a microdevice, and that it requires only a small amount of water and no external power supply to function. Therefore, this pumping system is useful for applications in which a highly portable device is required.

  5. The Heteroscedastic Method: Theory and Applications.

    DTIC Science & Technology

    1983-04-01

    be investigated" (e.g., p. 91 of Cochran and Cox (1957) or p. 46 of Section 27 of Juran , Gryna, and Bingham (1974)), no exact statistical pro- I...are ex- plictly allowed in this new theory. While the nature of the preference function is not a chief point of interest in this paper, this work holds...Decision Making - Methods and Applications, A State-of-the-Art Survey, Springer- Verlag Berlin Heidelberg, Germany. Juran , J. M., Gryna, F. M., Jr

  6. Comparison of Steady State Method and Transient Methods for Water Permeability Measurement in Low Permeability Rocks

    NASA Astrophysics Data System (ADS)

    Boulin, P. F.; Bretonnier, P.; Gland, N.

    2010-12-01

    Very low permeability geomaterials (order of nanoDarcy (10-21 m2)), such as clays rocks, are studied for many industrial applications such as production from unconventional reserves of oil and gas, CO2 geological storage and deep geological disposal of high-level long-lived nuclear wastes. For these last two applications, clay efficiency as barrier relies mainly on their very low permeability. Laboratory measurement of low permeability to water (below 10-19 m2) remains a technical challenge. Some authors argue that steady state methods are irrelevant due to the time required to stabilize water fluxes in such low permeability media. Most of the authors measuring low permeabilities use a transient technique called pulse decay. This study aims to compare objectively these different types of permeability tests performed on a single clay sample. For the steady state method, a high precision pump was used to impose a pressure gradient and to measure the small resulting water flow rate at steady state. We show that with a suitable set-up, the steady state method enables to measure a very low permeability of 8 10-22 m2 in a period of three days. For a comparable duration, the pulse decay test, most commonly used for such low permeability measurements, provides only an average estimate of the permeability. Permeability measurements by pulse decay require to perform simulations to interpret the pressure relaxation signals. Many uncertainties remain such as the determination of the reservoirs storage factor, micro leakage effect, or the determination of the initial pulse pressure. All these uncertainties have a very significant impact on the determination of sample permeability and specific storage. Opposite to the wide-spread idea that transient techniques are required to measure very low permeability, we show that direct steady state measurement of water permeability with suitable equipments can be much faster and more accurate than measurement by pulse decay, especially in

  7. Shallow Water Laser Bathymetry: Accomplishments and Applications

    DTIC Science & Technology

    2016-05-12

    laser sources and computer available COTS (commercial, off-t positive implications for future A reduced cost . Figure 1 Fort Pierce Inlet...production and bathymetric mapping capability in relatively shallow coastal waters. The potential of water- penetrating airborne laser radar to provide cost ...and development efforts worldwide over the past three decades. Currently ongoing and aimed at providing operational ALB tools, are the Optech

  8. Purifying contaminated water. [DOE patent application

    DOEpatents

    Daughton, C.G.

    1981-10-27

    Process is presented for removing biorefactory compounds from contaminated water (e.g., oil shale retort waste-water) by contacting same with fragmented raw oil shale. Biorefractory removal is enhanced by preactivating the oil shale with at least one member of the group of carboxylic acids, alcohols, aldehydes, ketones, ethers, amines, amides, sulfoxides, mixed ether-esters and nitriles. Further purification is obtained by stripping, followed by biodegradation and removal of the cells.

  9. Waste water recycling: toilet application. Final report

    SciTech Connect

    Soneson, S.; Soneson, J.

    1980-09-22

    Our conclusion is that for our small family of four, this recycling system is a success. As seen on pages 7 and 10, the system does save water, and, our biggest goal, our cesspool does no longer overflow. We are admittedly light users of water due to our habits over the years to save cesspool overflow. But it seems that heavy users would be heavy in all areas and that it would still even out. The only change for a larger family might be the use of a larger collection tank to handle the larger volume of water. Another recommendation would be to not connect the bathroom sink to the system. We are perfectly happy to have it the way it is, but it might be nice to have a recepticle in the bathroom for substances that shouldn't be recycled. And, in our case at least, the water accumulated by the sink did not help that much. We have already had a number of inquiries about our system and we think that in the future, with a dwindling water supply, that there will be even more interest. It just plain makes good sense not to flush with fresh clean water.

  10. Detection of coliform organisms in drinking water by radiometric method.

    PubMed

    Khurshid, S J; Bibi, S

    1991-07-01

    The radiometric method has been used for detection of coliform bacteria in water. The method is based on measuring the released metabolic 14CO2 from 14C-lactose in growth media containing coliform organisms incubated at 37 degrees C under continuous shaking. This rapid and sensitive radiometric method permits the detection of even single coliform organisms within 6 hours of incubation. Using this automated method, a total of 102 samples (in duplicate) collected from different areas in and around Rawalpindi and Islamabad were assessed for coliform bacteria. Of these 102 samples, 50 were tap water samples, 40 from wells and 6 each were from Rawal and Simly dams. About 47% and 67% tap water samples, while 62% and 74% well water samples were found unsatisfactory from around Islamabad and Rawalpindi areas, respectively. About 83% and 66% water samples from Rawal dam and Simly dam respectively were found to be unsatisfactory.

  11. Compositions and methods for removing arsenic in water

    DOEpatents

    Gadgil, Ashok Jagannth [El Cerrito, CA

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  12. Basic characteristics of the radio imaging method for biomedical applications.

    PubMed

    Hieda, I; Nam, K C; Takahashi, A

    2004-06-01

    The radio imaging method (RIM), a technology used practically for geophysical surveys, was applied to biomedical measurements. The characteristics of a subject between a pair of simple loop antennas were measured by using a feeble electromagnetic wave of low frequency. Water distribution inside the human body was expected to be measured, as well as the original method imaged mineral distributions. In geophysical surveys, finer resolution is provided than a wavelength of the electromagnetic wave. This was also expected for biomedical measurements. An acrylic water tank was used as a phantom of the abdominal portion of the human body, and basic measurements were performed with the phantom. The inner tank of the phantom, whose cross section was 6 x 8 cm, was detected by the method when the frequency was 54 MHz or the wavelength was nearly 6 m in free space. The resolution provided by the experiment suggested that the proposed method was effective even if the wavelength was longer than the dimensions of the targeted area. The advantage of the method is simplicity, economy and safety. The authors are looking for specific applications for example, a urination sensor or a vital monitor for in-home care, where the strong points of the method are suitable.

  13. Global Precipitation Measurement: Methods, Datasets and Applications

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco; Turk, Francis J.; Petersen, Walt; Hou, Arthur Y.; Garcia-Ortega, Eduardo; Machado, Luiz, A. T.; Angelis, Carlos F.; Salio, Paola; Kidd, Chris; Huffman, George J.; hide

    2011-01-01

    This paper reviews the many aspects of precipitation measurement that are relevant to providing an accurate global assessment of this important environmental parameter. Methods discussed include ground data, satellite estimates and numerical models. First, the methods for measuring, estimating, and modeling precipitation are discussed. Then, the most relevant datasets gathering precipitation information from those three sources are presented. The third part of the paper illustrates a number of the many applications of those measurements and databases. The aim of the paper is to organize the many links and feedbacks between precipitation measurement, estimation and modeling, indicating the uncertainties and limitations of each technique in order to identify areas requiring further attention, and to show the limits within which datasets can be used.

  14. New color segmentation method and its applications

    NASA Astrophysics Data System (ADS)

    Wang, Jian

    1999-01-01

    Segmentation is an important step in the early stage of image analysis. Color or multi-spectral image segmentation usually involves search and clustering techniques in a three or higher dimensional spectral space - an exercise which is considered computationally expensive. This paper presents a new color segmentation method for color image analysis with its application to plant leaf area measurement. A 3D histogram for an RGB color image is established basing on an octree data structure. The histogram represents the color distribution of the image in the RGB color space on which a 3D Gaussian filter is applied to smooth out small maxima of this distribution. The color space is then searched to find out al the major maxima. Around each maxima, a covering cube with a controlled side width is established. These maxima and covering cubes are considered to be potential color classes. Each cube may expand according to the value of surrounding neighbors. Once enough modes and their cover cubes have been found, a k-means clustering algorithm is used to classify these maxima into a predetermined number of classes. Then, the classified modes and the color covered by the cubes are used as training samples for a Bayes classifier which can be used to classify all the pixels in the image. A statistical relaxation method is then sued as a find segmentation. This method can either be supervised or unsupervised, depending on the different requirements of specific applications. The octree data structure significantly reduces the color space to be searched and consequently reduces computational cost. An extension of this method can also be applied to multi-spectral image analysis.

  15. Improvements to the DRASTIC ground-water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, Michael G.

    1999-01-01

    Ground-water vulnerability maps are designed to show areas of greatest potential for ground-water contamination on the basis of hydrogeologic and anthropogenic (human) factors. The maps are developed by using computer mapping hardware and software called a geographic information system (GIS) to combine data layers such as land use, soils, and depth to water. Usually, ground-water vulnerability is determined by assigning point ratings to the individual data layers and then adding the point ratings together when those layers are combined into a vulnerability map. Probably the most widely used ground-water vulnerability mapping method is DRASTIC, named for the seven factors considered in the method: Depth to water, net Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity of the aquifer (Aller and others, 1985, p. iv). The DRASTIC method has been used to develop ground-water vulnerability maps in many parts of the Nation; however, the effectiveness of the method has met with mixed success (Koterba and others, 1993, p. 513; U.S. Environmental Protection Agency, 1993; Barbash and Resek, 1996; Rupert, 1997). DRASTIC maps usually are not calibrated to measured contaminant concentrations. The DRASTIC ground-water vulnerability mapping method was improved by calibrating the point rating scheme to measured nitrite plus nitrate as nitrogen (NO2+NO3–N) concentrations in ground water on the basis of statistical correlations between NO2+NO3–N concentrations and land use, soils, and depth to water (Rupert, 1997). This report describes the calibration method developed by Rupert and summarizes the improvements in results of this method over those of the uncalibrated DRASTIC method applied by Rupert and others (1991) in the eastern Snake River Plain, Idaho.

  16. Remote sensing retrieval of water constituents in shallow coastal waters with applications to the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Marani, M.; Albertson, J. D.; Silvestri, S.

    2013-12-01

    Lagoons and estuaries worldwide are experiencing accelerated ecosystem degradation due to increased direct and indirect anthropogenic pressure. Monitoring the environmental state and trends in such environment would benefit from the use of remote sensing techniques, which can access a wide range of spatial and temporal scales. However, most remote sensors are not suitable for monitoring shallow and optically-complex waters, because of their low spatial and spectral-resolution and of the uncertainties associated with the contribution of the bottom sediment to the observed remote sensing signal. We apply here a remote sensing-based approach to mapping suspended sediment and chlorophyll concentrations in the shallow Venice lagoon, which integrates hyperspectral remote sensing data, a simplified radiative transfer model, and in-situ water quality measurements. First, we calibrate and validate the key parameters of the model, such as bottom albedo and absorption/backscattering coefficients of sediment, by comparing remote sensing derived water constituent concentrations with in-situ data. We then determine the statistics of those parameters, and the associated estimation uncertainty, by applying a bootstrapping technique. Finally, the lagoon-wide distribution of water constituent concentrations, and of the estimation uncertainty, is derived by inverting the model. The estimates are consistent with measured concentrations and their known optical properties, particularly for the suspended sediment concentrations, while chlorophyll concentration estimates remain more uncertain. Our analyses show that remote sensing methods can provide reliable water constituent concentrations at the system scale and that uncertainties become overwhelming only in particularly shallow areas (water depths indicatively lower than 1 m in the present application). Importantly, the joint use of radiative transfer models, in situ observations, and statistical techniques allows the production of

  17. Biological Treatment of Drinking Water: Applications, Advantages and Disadvantages

    EPA Science Inventory

    The fundamentals of biological treatment are presented to an audience of state drinking water regulators. The presentation covers definitions, applications, the basics of bacterial metabolism, a discussion of treatment options, and the impact that implementation of these options...

  18. Calibration of the DRASTIC ground water vulnerability mapping method

    USGS Publications Warehouse

    Rupert, M.G.

    2001-01-01

    Ground water vulnerability maps developed using the DRASTIC method have been produced in many parts of the world. Comparisons of those maps with actual ground water quality data have shown that the DRASTIC method is typically a poor predictor of ground water contamination. This study significantly improved the effectiveness of a modified DRASTIC ground water vulnerability map by calibrating the point rating schemes to actual ground water quality data by using nonparametric statistical techniques and a geographic information system. Calibration was performed by comparing data on nitrite plus nitrate as nitrogen (NO2 + NO3-N) concentrations in ground water to land-use, soils, and depth to first-encountered ground water data. These comparisons showed clear statistical differences between NO2 + NO3-N concentrations and the various categories. Ground water probability point ratings for NO2 + NO3-N contamination were developed from the results of these comparisons, and a probability map was produced. This ground water probability map was then correlated with an independent set of NO2 + NO3-N data to demonstrate its effectiveness in predicting elevated NO2 + NO3-N concentrations in ground water. This correlation demonstrated that the probability map was effective, but a vulnerability map produced with the uncalibrated DRASTIC method in the same area and using the same data layers was not effective. Considerable time and expense have been outlaid to develop ground water vulnerability maps with the DRASTIC method. This study demonstrates a cost-effective method to improve and verify the effectiveness of ground water vulnerability maps.

  19. Improved Correction Method for Water-Refracted Terrestrial Laser Scanning Data Acquired in the Mountain Channel

    NASA Astrophysics Data System (ADS)

    Miura, N.; Asano, Y.; Moribe, Y.

    2016-06-01

    Detailed information of underwater topography is required for better understanding and prediction of water and sediment transport in a mountain channel. Recent research showed promising utility of green-wavelength Terrestrial Laser Scanning (TLS) for measuring submerged stream-bed structure in fluvial environment. However, difficulty in acquiring reliable underwater data has been remained in the part of mountain channel where water surface has some gradient. Since horizontal water surface was a major premise for the existing water refraction correction method, significant error was resulted in such area. Therefore, this paper presents a modified method to correct water-refracted TLS data acquired over mountain channel with complex water-surface slope. Applicability of the modified method was validated using the field data and compared with the existing correction method and non-corrected data. The results showed that the modified method has much smaller error with RMSE value of 3 mm than the existing method (RMSE = 10 mm) and non-corrected data (RMSE = 23 mm). Presented method successfully corrected water-refracted TLS data acquired over sloped channel. This would enable us to quantitatively measure whole units of complex mountain channels, and help us to understand water dynamics better in the area.

  20. Sulphurous Mineral Waters: New Applications for Health

    PubMed Central

    Carbajo, Jose Manuel

    2017-01-01

    Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids. PMID:28484507

  1. The hypergraph regularity method and its applications

    PubMed Central

    Rödl, V.; Nagle, B.; Skokan, J.; Schacht, M.; Kohayakawa, Y.

    2005-01-01

    Szemerédi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, combinatorial geometry, combinatorial number theory, and theoretical computer science. Here, we report on recent advances in the regularity method for k-uniform hypergraphs, for arbitrary k ≥ 2. This method, purely combinatorial in nature, gives alternative proofs of density theorems originally due to E. Szemerédi, H. Furstenberg, and Y. Katznelson. Further results in extremal combinatorics also have been obtained with this approach. The two main components of the regularity method for k-uniform hypergraphs, the regularity lemma and the counting lemma, have been obtained recently: Rödl and Skokan (based on earlier work of Frankl and Rödl) generalized Szemerédi's regularity lemma to k-uniform hypergraphs, and Nagle, Rödl, and Schacht succeeded in proving a counting lemma accompanying the Rödl–Skokan hypergraph regularity lemma. The counting lemma is proved by reducing the counting problem to a simpler one previously investigated by Kohayakawa, Rödl, and Skokan. Similar results were obtained independently by W. T. Gowers, following a different approach. PMID:15919821

  2. Visualizing Water Molecules in Transmembrane Proteins Using Radiolytic Labeling Methods

    SciTech Connect

    Orban, T.; Gupta, S; Palczewski, K; Chance, M

    2010-01-01

    Essential to cells and their organelles, water is both shuttled to where it is needed and trapped within cellular compartments and structures. Moreover, ordered waters within protein structures often colocalize with strategically placed polar or charged groups critical for protein function, yet it is unclear if these ordered water molecules provide structural stabilization, mediate conformational changes in signaling, neutralize charged residues, or carry out a combination of all these functions. Structures of many integral membrane proteins, including G protein-coupled receptors (GPCRs), reveal the presence of ordered water molecules that may act like prosthetic groups in a manner quite unlike bulk water. Identification of 'ordered' waters within a crystalline protein structure requires sufficient occupancy of water to enable its detection in the protein's X-ray diffraction pattern, and thus, the observed waters likely represent a subset of tightly bound functional waters. In this review, we highlight recent studies that suggest the structures of ordered waters within GPCRs are as conserved (and thus as important) as conserved side chains. In addition, methods of radiolysis, coupled to structural mass spectrometry (protein footprinting), reveal dynamic changes in water structure that mediate transmembrane signaling. The idea of water as a prosthetic group mediating chemical reaction dynamics is not new in fields such as catalysis. However, the concept of water as a mediator of conformational dynamics in signaling is just emerging, because of advances in both crystallographic structure determination and new methods of protein footprinting. Although oil and water do not mix, understanding the roles of water is essential to understanding the function of membrane proteins.

  3. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  4. The Doubly Labeled Water Method for Measuring Human Energy Expenditure: Adaptations for Spaceflight

    NASA Technical Reports Server (NTRS)

    Schulz, Leslie O.

    1991-01-01

    It is essential to determine human energy requirements in space, and the doubly labeled water method has been identified as the most appropriate means of indirect calorimetry to meet this need. The method employs naturally occurring, stable isotopes of hydrogen (H-2, deuterium) and oxygen (O-18) which, after dosing, mix with body water. The deuterium is lost from the body as water while the O-18 is eliminated as both water and CO2. The difference between the two isotope elimination rates is therefore a measure of CO2 production and hence energy expenditure. Spaceflight will present a unique challenge to the application of the doubly labeled water method. Specifically, interpretation of doubly labeled water results assumes that the natural abundance or 'background' levels of the isotopes remain constant during the measurement interval. To address this issue, an equilibration model will be developed in an ongoing ground-based study. As energy requirements of women matched to counterparts in the Astronauts Corps are being determined by doubly labeled water, the baseline isotope concentration will be changed by consumption of 'simulated Shuttle water' which is artificially enriched. One group of subjects will be equilibrated on simulated Shuttle water prior to energy determinations by doubly labeled water while the others will consume simulated Shuttle water after dosing. This process will allow us to derive a prediction equation to mathematically model the effect of changing background isotope concentrations.

  5. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    DOEpatents

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  6. Applications of remote sensing to water resources

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Analyses were made of selected long-term (1985 and beyond) objectives, with the intent of determining if significant data-related problems would be encountered and to develop alternative solutions to any potential problems. One long-term objective selected for analysis was Water Availability Forecasting. A brief overview was scheduled in FY-77 of the objective -- primarily a fact-finding study to allow Data Management personnel to gain adequate background information to perform subsequent data system analyses. This report, includes discussions on some of the larger problems currently encountered in water measurement, the potential users of water availability forecasts, projected demands of users, current sensing accuracies, required parameter monitoring, status of forecasting modeling, and some measurement accuracies likely to be achievable by 1980 and 1990.

  7. Antimicrobial applications of water-dispersible magnetic nanoparticles in biomedicine.

    PubMed

    Huang, Keng-Shiang; Shieh, Dar-Bin; Yeh, Chen-Sheng; Wu, Ping-Ching; Cheng, Fong-Yu

    2014-01-01

    The increasing morbidity and mortality of infectious diseases is an increasing concern. Despite the continuous development and synthesis of new antimicrobial drugs, microbial pathogens are exhibiting increased multi-drug resistance. Nanomaterials display unique and well-defined physical and chemical properties including a very high surface area to volume ratio, and new approaches for antimicrobial therapies have attempted to combine nanomaterials and current antimicrobial drugs. Magnetic nanoparticles (MNPs) are characterized by biocompatibility, biodegradation, and safety for human ingestion. Iron oxide nanoparticles have been approved for human use by the US Food and Drug Administration (FDA). For biomedicine applications, MNPs require surface modification to become water-soluble and be stable enough to resist the effects of proteins and salts in the physiological environment. MNPs can combine various substrata, such as biomolecules and nanomaterials to generate new antimicrobial agents which combine antibacterial, antiviral, and antifungal properties. This can be accomplished through a series of surface modification methods. Because MNPs have unique superparamagnetic characteristics, they can be controlled and recycled by an external magnetic field.In addition, the antimicrobial activity of MNPs-based nanocomposites is superior to that of metallic nanoparticles. This paper reviews the recent literature on the use of MNP-based nanomaterials in antimicrobial applications in biomedicine. Antimicrobial applications mainly focus on inhibiting and killing bacteria and fungi and viruses inactivation. The synthesis, surface modification, and characteristics related to MNPs will also be briefly addressed.

  8. Future Directions of Electromagnetic Methods for Hydrocarbon Applications

    NASA Astrophysics Data System (ADS)

    Strack, K. M.

    2014-01-01

    For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will

  9. EPOC WATER INC. MICROFILTRATION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the EPOC Water, Inc. Microfiltration Technology and its applicability as a treatment technique for water contaminated with metals. oth the technical aspects arid the economics of this technology were examined. Operational data ...

  10. EPOC WATER INC. MICROFILTRATION TECHNOLOGY - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This document is an evaluation of the performance of the EPOC Water, Inc. Microfiltration Technology and its applicability as a treatment technique for water contaminated with metals. oth the technical aspects arid the economics of this technology were examined. Operational data ...

  11. Applications of spectroscopy to remote determination of water quality

    NASA Technical Reports Server (NTRS)

    Goldberg, M. C.; Weiner, E. R.

    1972-01-01

    The use of remote laser Raman and molecular spectroscopic techniques to measure water quality is examined. Measurements cover biological, chemical, and physical properties of the water. Experimental results show chemical properties are harder to obtain remotely than biological or physical properties and that molecular spectroscopy seems to be the best method for obtaining water quality data.

  12. Waste Water Treatment Apparatus and Methods

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    An improved draft tube spout fluid bed (DTSFB) mixing, handling, conveying, and treating apparatus and systems, and methods for operating are provided. The apparatus and systems can accept particulate material and pneumatically or hydraulically conveying the material to mix and/or treat the material. In addition to conveying apparatus, a collection and separation apparatus adapted to receive the conveyed particulate material is also provided. The collection apparatus may include an impaction plate against which the conveyed material is directed to improve mixing and/or treatment. The improved apparatus are characterized by means of controlling the operation of the pneumatic or hydraulic transfer to enhance the mixing and/or reacting by controlling the flow of fluids, for example, air, into and out of the apparatus. The disclosed apparatus may be used to mix particulate material, for example, mortar; react fluids with particulate material; coat particulate material, or simply convey particulate material.

  13. ISO standards on test methods for water radioactivity monitoring.

    PubMed

    Calmet, D; Ameon, R; Bombard, A; Forte, M; Fournier, M; Herranz, M; Jerome, S; Kwakman, P; Llaurado, M; Tokonami, S

    2013-11-01

    Water is vital to humans and each of us needs at least 1.5L of safe water a day to drink. Beginning as long ago as 1958 the World Health Organization (WHO) has published guidelines to help ensure water is safe to drink. Focused from the start on monitoring radionuclides in water, and continually cooperating with WHO, the International Standardization Organization (ISO) has been publishing standards on radioactivity test methods since 1978. As reliable, comparable and 'fit for purpose' results are an essential requirement for any public health decision based on radioactivity measurements, international standards of tested and validated radionuclide test methods are an important tool for production of such measurements. This paper presents the ISO standards already published that could be used as normative references by testing laboratories in charge of radioactivity monitoring of drinking water as well as those currently under drafting and the prospect of standardized fast test methods in response to a nuclear accident.

  14. Engineering water repellency in granular materials for ground applications

    NASA Astrophysics Data System (ADS)

    Lourenco, Sergio; Saulick, Yunesh; Zheng, Shuang; Kang, Hengyi; Liu, Deyun; Lin, Hongjie

    2017-04-01

    Synthetic water repellent granular materials are a novel technology for constructing water-tight barriers and fills that is both inexpensive and reliant on an abundant local resource - soils. Our research is verifying its stability, so that perceived risks to practical implementation are identified and alleviated. Current ground stabilization measures are intrusive and use concrete, steel, and glass fibres as reinforcement elements (e.g. soil nails), so more sustainable approaches that require fewer raw materials are strongly recommended. Synthetic water repellent granular materials, with persistent water repellency, have been tested for water harvesting and proposed as landfill and slope covers. By chemically, physically and biologically adjusting the magnitude of water repellency, they offer the unique advantage of controlling water infiltration and allow their deployment as semi-permeable or impermeable materials. Other advantages include (1) volumetric stability, (2) high air permeability and low water permeability, (3) suitability for flexible applications (permanent and temporary usage), (4) improved adhesion aggregate-bitumen in pavements. Application areas include hydraulic barriers (e.g. for engineered slopes and waste containment), pavements and other waterproofing systems. Chemical treatments to achieve water repellency include the use of waxes, oils and silicone polymers which affect the soil particles at sub-millimetric scales. To date, our research has been aimed at demonstrating their use as slope covers and establishing the chemical compounds that develop high and stable water repellency. Future work will determine the durability of the water repellent coatings and the mechanics and modelling of processes in such soils.

  15. Evaluation and implementation of a membrane filter method for Cronobacter detection in drinking water.

    PubMed

    Liu, Hui; Yang, Yuelian; Cui, Jinghua; Liu, Lanzheng; Liu, Huiyuan; Hu, Guangchun; Shi, Yuwen; Li, Jian

    2013-07-01

    A membrane filter (MF) method was evaluated for its suitability for qualitative and quantitative analyses of Cronobacter spp. in drinking water by pure strains of Cronobacter and non-Cronobacter, and samples spiked with chlorinated Cronobacter sakazakii ATCC 29544. The applicability was verified by the tests: for pure strains, the sensitivity and the specificity were both 100%; for spiked samples, the MF method recovered 82.8 ± 10.4% chlorinated ATCC 29544 cells. The MF method was also applied to screen Cronobacter spp. in drinking water samples from municipal water supplies on premises (MWSP) and small community water supplies on premises (SCWSP). The isolation rate of Cronobacter spp. from SCWSP samples was 31/114, which was significantly higher than that from MWSP samples which was 1/131. Besides, the study confirmed the possibility of using total coliform as an indicator of contamination level of Cronobacter spp. in drinking water, and the acquired correct positive rate was 96%.

  16. Improved methods for national water assessment, water resources contract: WR15249270

    USGS Publications Warehouse

    Thomas, Harold A.

    1981-01-01

    The purpose of our research is to develop methods to make National Water Assessment more useful in estimating water availability for economic growth and more helpful in determining the effect of water resource development upon the environmental quality of related land resources. There are serious questions pertaining to the 1975 Water Assessment and these amplify the significance of decisions made as to the planning and scheduling of the next assessment.

  17. [Three quantitative methods to continuously monitor Legionella in spring water].

    PubMed

    Yan, Ge-bin; Wang, Huan-xin; Qin, Tian; Zhou, Hai-jian; Li, Ma-chao; Xu, Ying; Zhao, Ming-qiang; Shao, Zhu-jun; Ren, Hong-yu

    2013-07-01

    To compare the detection effect of Legionella pollution in spring water by three methods, namely traditional plating method, fluorescent quantitation PCR method and ethidium monoazide (EMA) fluorescent quantitation PCR method. Every month (except May), we collected 11 water samples from the 5 selected hot spring pools in one hot spring resort in Beijing in 2011. A total of 121 water samples were collected, and then were detected by the above three methods qualitatively and quantitatively. In our study, the Legionella pollution rate was separately 74.4% (90/121), 100.0% (121/121) and 100.0% (121/121) by the above three methods. The quantitative value of Legionella in the 121 water samples detected by the three methods were around 0.10-216.00 colony-forming units (CFU)/ml, 1.47-1557.75 gene units (GU)/ml and 0.20-301.69 GU/ml, respectively. The median (25th and 75th percentiles) was 75.30 (32.51-192.10) GU/ml, 36.46 (16.08-91.21) GU/ml and 5.30 (0.00-33.70) CFU/ml, respectively. The difference in the quantitative value of Legionella detected by the three methods showed statistical significance (χ(2) = 187.900, P < 0.01). The quantitative value of Legionella detected by fluorescent quantitation PCR method was the highest, followed by the value Legionella detected by EMA-fluorescent quantitation PCR method and traditional plating method. The sensitivity of the PCR methods was higher than traditional plating method, in detecting Legionella pollution in spring water, especially the EMA- fluorescent quantitation PCR method, which was more suitable for detecting Legionella in water.

  18. Methods and applications in single molecule electronics

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua

    In recent years it has become possible to measure charge transport in a single molecule contacted to two metal electrodes. However, a thorough understanding of how a molecule behaves while contacted to two electrodes and how it interacts with its environment is still lacking. This thesis demonstrates various experimental methods for understanding and controlling charge transport in a single molecule junction and the application of these methods to various molecular systems to help elucidate the conduction mechanisms invoked. First, the conductance of DNA is examined in a controlled environment while varying the length, sequence, base-pair matching, bias, temperature, and electrochemical gate of the molecule. These studies show that the conductance of DNA is extremely sensitive to changes in length, sequence, and base-matching, but not as sensitive to temperature and electrochemical gate. Despite the variety of experimental methods applied, the subtleties of the conduction mechanism remain uncertain, and as such necessitate the development of additional tools for understanding the behavior of a single molecule junction. Next, the Conductance Screening Tool for Molecules (CSTM) is described. This is a new tool capable of creating 1000's of single molecules junctions in a matter of minutes. This tool has been used to study the conductance of alkanedithiols, molecules in an array, and single amino acid residues. This system allows for greater speed and flexibility in determining the conductance of a single molecule junction, and provides a capability for performing large-scale systematic studies of molecular systems to determine the conduction mechanism. Finally, an additional experimental method capable of extracting information about the interaction between a molecule and its environment is developed. Here, electron-phonon interactions in a single molecule contacted to two electrodes are studied. This method allows one to obtain a specific, chemical signature of a

  19. Ranking filter methods for concentrating pathogens in lake water

    USDA-ARS?s Scientific Manuscript database

    Accurately comparing filtration methods for concentrating waterborne pathogens is difficult because of two important water matrix effects on recovery measurements, the effect on PCR quantification and the effect on filter performance. Regarding the first effect, we show how to create a control water...

  20. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  1. River Pollution: Part II. Biological Methods for Assessing Water Quality.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1984-01-01

    Discusses methods used in the biological assessment of river quality and such indicators of clean and polluted waters as the Trent Biotic Index, Chandler Score System, and species diversity indexes. Includes a summary of a river classification scheme based on quality criteria related to water use. (JN)

  2. Evaluating online data of water quality changes in a pilot drinking water distribution system with multivariate data exploration methods.

    PubMed

    Mustonen, Satu M; Tissari, Soile; Huikko, Laura; Kolehmainen, Mikko; Lehtola, Markku J; Hirvonen, Arja

    2008-05-01

    The distribution of drinking water generates soft deposits and biofilms in the pipelines of distribution systems. Disturbances in water distribution can detach these deposits and biofilms and thus deteriorate the water quality. We studied the effects of simulated pressure shocks on the water quality with online analysers. The study was conducted with copper and composite plastic pipelines in a pilot distribution system. The online data gathered during the study was evaluated with Self-Organising Map (SOM) and Sammon's mapping, which are useful methods in exploring large amounts of multivariate data. The objective was to test the usefulness of these methods in pinpointing the abnormal water quality changes in the online data. The pressure shocks increased temporarily the number of particles, turbidity and electrical conductivity. SOM and Sammon's mapping were able to separate these situations from the normal data and thus make those visible. Therefore these methods make it possible to detect abrupt changes in water quality and thus to react rapidly to any disturbances in the system. These methods are useful in developing alert systems and predictive applications connected to online monitoring.

  3. AN IMPROVED METHOD FOR DETECTING VIRUSES IN WATER

    EPA Science Inventory

    Enteroviruses are important etiological agents of waterborne disease and are responsible for outbreaks of gastroenteritis. However, the prevalence and occurrence of these pathogens in raw drinking water sources is poorly understood. This is primarily due to the limited methods ...

  4. AN IMPROVED METHOD FOR DETECTING VIRUSES IN WATER

    EPA Science Inventory

    Enteroviruses are important etiological agents of waterborne disease and are responsible for outbreaks of gastroenteritis. However, the prevalence and occurrence of these pathogens in raw drinking water sources is poorly understood. This is primarily due to the limited methods ...

  5. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  6. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  7. A bootstrap method for estimating uncertainty of water quality trends

    USGS Publications Warehouse

    Hirsch, Robert M.; Archfield, Stacey A.; DeCicco, Laura

    2015-01-01

    Estimation of the direction and magnitude of trends in surface water quality remains a problem of great scientific and practical interest. The Weighted Regressions on Time, Discharge, and Season (WRTDS) method was recently introduced as an exploratory data analysis tool to provide flexible and robust estimates of water quality trends. This paper enhances the WRTDS method through the introduction of the WRTDS Bootstrap Test (WBT), an extension of WRTDS that quantifies the uncertainty in WRTDS-estimates of water quality trends and offers various ways to visualize and communicate these uncertainties. Monte Carlo experiments are applied to estimate the Type I error probabilities for this method. WBT is compared to other water-quality trend-testing methods appropriate for data sets of one to three decades in length with sampling frequencies of 6–24 observations per year. The software to conduct the test is in the EGRETci R-package.

  8. Application of minidisk infiltrometer to estimate soil water repellency

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Iovino, Massimo; Bagarello, Vincenzo; Mataix-Solera, Jorge; Lichner, Ľubomír

    2016-04-01

    Soil water repellency (SWR) reduces affinity of soils to water resulting in detrimental implication for plants growth as well as for hydrological processes. During the last decades, it has become clear that SWR is much more widespread than formerly thought, having been reported for a wide variety of soils, land uses and climatic conditions. The repellency index (RI), based on soil-water to soil-ethanol sorptivity ratio, was proposed to characterize subcritical SWR that is the situation where a low degree of repellency impedes infiltration but does not prevent it. The minidisk infiltrometer allows adequate field assessment of RI inherently scaled to account for soil physical properties other than hydrophobicity (e.g., the volume, connectivity and the geometry of pores) that directly influence the hydrological processes. There are however some issues that still need consideration. For example, use of a fixed time for both water and ethanol sorptivity estimation may lead to inaccurate RI values given that water infiltration could be negligible whereas ethanol sorptivity could be overestimated due to influence of gravity and lateral diffusion that rapidly come into play when the infiltration process is very fast. Moreover, water and ethanol sorptivity values need to be determined at different infiltration sites thus implying that a large number of replicated runs should be carried out to obtain a reliable estimate of RI for a given area. Minidisk infiltrometer tests, conducted under different initial soil moisture and management conditions in the experimental sites of Ciavolo, Trapani (Italy) and Javea, Alicante (East Spain), were used to investigate the best applicative procedure to estimate RI. In particular, different techniques to estimate the water, Sw, and ethanol, Se, sorptivities were compared including i) a fixed 1-min time interval, ii) the slope of early-time 1D infiltration equation and iii) the two-term transient 3D infiltration equation that explicitly

  9. Detection method for avian influenza viruses in water.

    PubMed

    Rönnqvist, Maria; Ziegler, Thedi; von Bonsdorff, Carl-Henrik; Maunula, Leena

    2012-03-01

    Recent events have shown that humans may become infected with some pathogenic avian influenza A viruses (AIV). Since soil and water, including lakes, rivers, and seashores, may be contaminated by AIV excreted by birds, effective methods are needed for monitoring water for emerging viruses. Combining water filtration with molecular methods such as PCR is a fast and effective way for detecting viruses. The objective of this study was to apply a convenient method for the detection of AIV in natural water samples. Distilled water and lake, river, and seawater were artificially contaminated with AIV (H5N3) and passed through a filter system. AIV was detected from filter membrane by real-time RT-PCR. The performance of Zetapor, SMWP, and Sartobind D5F membranes in recovering influenza viruses was first evaluated using contaminated distilled water. SWMP, which gave the highest virus recoveries, was then compared with a pre-filter combined GF/F filter membrane in a trial using natural water samples. In this study, the cellulose membrane SMWP was found to be practical for recovery of AIVs in water. Viral yields varied between 62.1 and 65.9% in distilled water and between 1 and 16.7% in natural water samples. The borosilicate glass membrane GF/F combined with pre-filter was also feasible in filtering natural water samples with viral yields from 1.98 to 7.33%. The methods described can be used for monitoring fresh and seawater samples for the presence of AIV and to determine the source of AIV transmission in an outbreak situation.

  10. Applications of Langevin and Molecular Dynamics methods

    NASA Astrophysics Data System (ADS)

    Lomdahl, P. S.

    Computer simulation of complex nonlinear and disordered phenomena from materials science is rapidly becoming an active and new area serving as a guide for experiments and for testing of theoretical concepts. This is especially true when novel massively parallel computer systems and techniques are used on these problems. In particular the Langevin dynamics simulation technique has proven useful in situations where the time evolution of a system in contact with a heat bath is to be studied. The traditional way to study systems in contact with a heat bath has been via the Monte Carlo method. While this method has indeed been used successfully in many applications, it has difficulty addressing true dynamical questions. Large systems of coupled stochastic ODE's (or Langevin equations) are commonly the end result of a theoretical description of higher dimensional nonlinear systems in contact with a heat bath. The coupling is often local in nature, because it reflects local interactions formulated on a lattice, the lattice for example represents the underlying discreteness of a substrate of atoms or discrete k-values in Fourier space. The fundamental unit of parallelism thus has a direct analog in the physical system the authors are interested in. In these lecture notes the authors illustrate the use of Langevin stochastic simulation techniques on a number of nonlinear problems from materials science and condensed matter physics that have attracted attention in recent years. First, the authors review the idea behind the fluctuation-dissipation theorem which forms that basis for the numerical Langevin stochastic simulation scheme. The authors then show applications of the technique to various problems from condensed matter and materials science.

  11. Transparent Bipolar Membrane for Water Splitting Applications.

    PubMed

    Chabi, Sakineh; Wright, Andrew G; Holdcroft, Steven; Freund, Michael S

    2017-08-16

    This study describes the use of a benzimidazolium-based anion exchange membrane for creating bipolar membranes and the assessment of their suitability for solar-driven water splitting. Bipolar membranes were prepared by laminating anion exchange membrane with Nafion NR-211 membrane without modification of the interface. Under acidic and basic conditions, proton and hydroxide ion conductivities of 103 and 102 mS cm(-1) were obtained for Nafion and benzimidazolium-based membranes, respectively. The fabricated bipolar membranes have an average thickness of 90 μm and show high transmittance, up to 75% of the visible light. The findings suggest that the two membranes create a sharp hydrophilic interface with a space charge region of only a few nanometers, thereby generating a large electric field at the interface that enhances water dissociation.

  12. [Toxicity tests and their application in safety assessment of water quality].

    PubMed

    Xu, Jian-Ying; Zhao, Chun-Tao; Wei, Dong-Bin

    2014-10-01

    The safety of water quality has important impacts not only on the health of ecological system, but also on the survival and development of human beings. The conventional assessment methods for water quality based on the concentration limits are not reliable. The toxicity tests can vividly reflect the whole adverse biological effects of multiple chemicals in water body, which has been regarded as a necessary supplement for conventional water quality assessment methods based on physicochemical parameters. Considering the chemical pollutants usually have various adverse biological effects, the ecotoxicity testing methods, including lethality, genotoxicity, endocrine disrupting effects, were classified according to the different toxicity types. Then, the potential applications of toxicity testing methods and corresponding evaluation indices in evaluating the toxicity characteristics of ambient water samples were discussed. Particularly, the safety assessment methods for water quality based on the toxicity tests, including potential toxicology, toxicity unit classification system, potential ecotoxic effect probe, and safety assessment of water quality based on toxicity test battery, were summarized. This paper not only systematically reviewed the progress of toxicity tests and their application in safety assessment of water quality, but also provided the scientific basis for the further development in the future.

  13. Near Term Application of Supercritical Water Technologies

    SciTech Connect

    Vogt, Bastian; Starflinger, Joerg; Schulenberg, Thomas

    2006-07-01

    A pressurized water reactor with a supercritical water primary loop is analyzed (PWR-SC) within this paper. It will be shown that the PWR-SC offers considerable advantages in the fields of safety, economy and efficiency compared with a conventional PWR design. A cycle analysis shows that the net plant efficiency increases by 2% compared to currently operated or built systems. In addition, the mass flow rate of the primary side is strongly decreased, which enables a reduction of the primary pump power by a factor of 4. In the secondary loop, the mass flow rate can be decreased by about 15%, which allows down-scaling of all secondary side components such as turbines, condensers and feed-water preheat systems as a consequence of the high core exit temperature. A coupled core analysis and a hot channel factor analysis are performed to demonstrate the promising safety features of the PWR-SC and to show the technical feasibility of such a system. (authors)

  14. METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR

    DOEpatents

    Vernon, H.C.

    1962-08-14

    A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

  15. Systems and Methods for Automated Water Detection Using Visible Sensors

    NASA Technical Reports Server (NTRS)

    Rankin, Arturo L. (Inventor); Matthies, Larry H. (Inventor); Bellutta, Paolo (Inventor)

    2016-01-01

    Systems and methods are disclosed that include automated machine vision that can utilize images of scenes captured by a 3D imaging system configured to image light within the visible light spectrum to detect water. One embodiment includes autonomously detecting water bodies within a scene including capturing at least one 3D image of a scene using a sensor system configured to detect visible light and to measure distance from points within the scene to the sensor system, and detecting water within the scene using a processor configured to detect regions within each of the at least one 3D images that possess at least one characteristic indicative of the presence of water.

  16. Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives.

    PubMed

    Hossain, Fahim; Perales-Perez, Oscar J; Hwang, Sangchul; Román, Félix

    2014-01-01

    Nanotechnology and its application is one of the rapidly developing sciences. As demand of fresh drinking water is increasing, nanotechnology can contribute noticeable development and improvement to water treatment process. Disinfection process is the last and most important step in water and wastewater treatment process. Some nanomaterials can be used as disinfectants due to their antimicrobial properties and reduce the possibility of harmful disinfection by-products (DBPs) formation during traditional disinfection process. A significant number of research efforts is done or going on to understand the mechanisms and enhance the efficiency of nanomaterials as antimicrobial agents, although it will take more time to understand the full potential of nanomaterials in this field. This review paper focuses on inactivation pathways of benign nanomaterials, their possible and probable application and limitations as disinfectants and future opportunities for their application in water cleaning processes.

  17. Development of a new microextraction method based on a dynamic single drop in a narrow-bore tube: application in extraction and preconcentration of some organic pollutants in well water and grape juice samples.

    PubMed

    Farajzadeh, Mir Ali; Djozan, Djavanshir; Khorram, Parisa

    2011-08-15

    A novel sample preparation technique, the microextraction method based on a dynamic single drop in a narrow-bore tube, coupled with gas chromatography-flame ionization detection (GC-FID) is presented in this paper. The most important features of this method are simplicity and high enrichment factors. In this method, a microdrop of an extraction solvent assisted by an air bubble was repeatedly passed through a narrow-bore closed end tube containing aqueous sample. It has been successfully used for the analysis of some pesticides as model analytes in aqueous samples. Parameters affecting the method's performance such as selection of extraction solvent type and volume, number of extractions, volume of aqueous sample (tube length), and salt effect were studied and optimized. Under the optimal conditions, the enrichment factors (EFs) for triazole pesticides were in the range of 141-214 and the limits of detection (LODs) were between 2 and 112 μg L(-1). The relative standard deviations (C=1000 μg L(-1), n=6) were obtained in the range of 2.9-4.5%. The recoveries obtained for the spiked well water and grape juice samples were between 71 and 106%. Low cost, relatively short sample preparation time and less solvent consumption are other advantages of the proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Ultrasonic method for measuring water holdup of low velocity and high-water-cut oil-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Zhao, An; Han, Yun-Feng; Ren, Ying-Yu; Zhai, Lu-Sheng; in, Ning-De

    2016-03-01

    Oil reservoirs with low permeability and porosity that are in the middle and late exploitation periods in China's onshore oil fields are mostly in the high-water-cut production stage. This stage is associated with severely non-uniform local-velocity flow profiles and dispersed-phase concentration (of oil droplets) in oil-water two-phase flow, which makes it difficult to measure water holdup in oil wells. In this study, we use an ultrasonic method based on a transmission-type sensor in oil-water two-phase flow to measure water holdup in low-velocity and high water-cut conditions. First, we optimize the excitation frequency of the ultrasonic sensor by calculating the sensitivity of the ultrasonic field using the finite element method for multiphysics coupling. Then we calculate the change trend of sound pressure level attenuation ratio with the increase in oil holdup to verify the feasibility of the employed diameter for the ultrasonic sensor. Based on the results, we then investigate the effects of oil-droplet diameter and distribution on the ultrasonic field. To further understand the measurement characteristics of the ultrasonic sensor, we perform a flow loop test on vertical upward oil-water two-phase flow and measure the responses of the optimized ultrasonic sensor. The results show that the ultrasonic sensor yields poor resolution for a dispersed oil slug in water flow (D OS/W flow), but the resolution is favorable for dispersed oil in water flow (D O/W flow) and very fine dispersed oil in water flow (VFD O/W flow). This research demonstrates the potential application of a pulsed-transmission ultrasonic method for measuring the fraction of individual components in oil-water two-phase flow with a low mixture velocity and high water cut.

  19. Method for computing the maximum water temperature in a fuel pool containing spent nuclear fuel

    SciTech Connect

    Singh, K.P.; Soler, A.I.; Gupta, J.P.

    1986-01-01

    A method is proposed for computing the upper bound on the local water temperature rise with respect to the bulk temperature in a spent fuel pool. The solution involves casting the continuity and momentum relationships in integral form in terms of the unknown velocity functions. The method of collocation is used to solve the problem. Computer application of this method shows it to be an efficient and cost-effective design tool.

  20. New methods of subcooled water recognition in dew point hygrometers

    NASA Astrophysics Data System (ADS)

    Weremczuk, Jerzy; Jachowicz, Ryszard

    2001-08-01

    Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.

  1. [Watershed water environment pollution models and their applications: a review].

    PubMed

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  2. Application of actinomycetes to soil to ameliorate water repellency.

    PubMed

    McKenna, F; El-Tarabily, K A; Petrie, S; Chen, C; Dell, B

    2002-01-01

    The aim of this study was to develop a novel isolation technique using a mixture of Bacillus and Streptomyces phages to selectively isolate wax-utilizing non-streptomycete actinomycetes effective in ameliorating water repellency in a problem soil. Phages added to a soil suspension reduced the dominance of Bacillus and Streptomyces isolates and significantly increased the number of non-streptomycete actinomycetes on isolation plates. Promising isolates, grown on a medium containing beeswax as sole carbon source, were selected for application to water repellent soil. Their addition significantly reduced water repellency. Phage application significantly increased the isolation of non-streptomycete actinomycetes. Wax-utilizing isolates were found to significantly reduce water repellency in a problem soil. The phage technique can be used for the routine isolation of non-streptomycete actinomycetes. Beeswax medium can be used to selectively isolate wax-utilizing micro-organisms with the potential to ameliorate water repellency in soil.

  3. Method of sealing an ultracapacitor substantially free of water

    DOEpatents

    Chapman-Irwin, Patricia; Feist, Thomas Paul

    2002-04-02

    A method of sealing an ultracapacitor substantially free of water is disclosed. The method includes providing a multilayer cell comprising two solid, non porous current collectors, separated by two porous electrodes with a separator between the two electrodes, sealing the cell with a reclosable hermetic closure. Water inside the closure is dissociated by an applied voltage to the cell and escapes in the form of hydrogen and oxygen when the closure is unmated, the closure is then mated to hermetically seal the cell which is substantially free of water.

  4. A simple method for locating the fresh water-salt water interface using pressure data.

    PubMed

    Kim, Kue-Young; Chon, Chul-Min; Park, Ki-Hwa

    2007-01-01

    Salt water intrusion is a key issue in dealing with exploitation, restoration, and management of fresh ground water in coastal aquifers. Constant monitoring of the fresh water-salt water interface is necessary for proper management of ground water resources. This study presents a simple method to estimate the depth of the fresh water-salt water interface in coastal aquifers using two sets of pressure data obtained from the fresh and saline zones within a single borehole. This method uses the density difference between fresh water and saline water and can practically be used at coastal aquifers that have a relatively sharp fresh water-salt water interface with a thin transition zone. The proposed method was applied to data collected from a coastal aquifer on Jeju Island, Korea, to estimate the variations in the depth of the interface. The interface varied with daily tidal fluctuations and heavy rainfall in the rainy season. The estimated depth of the interface showed a good agreement with the measured electrical conductivity profile.

  5. A discovery of an ultra-pure water detection method based on water mark

    NASA Astrophysics Data System (ADS)

    Cao, Hui-Wen; Jing, Yu-Peng; Zhao, Shi-Rui; Xu, Xin-Wei; Tian, He; Xin, Xin; Li, Xiao-Ning; Liu, Bo; Liu, Rui-Tao; Wang, Gang; Ge, Jie; Cai, Hua-Lin; Yang, Yi; Ren, Tian-Ling

    2015-02-01

    The purity evaluation of deionized (DI) water is highly desirable for VLSI or ULSI industry, as the traditional "reverse osmosis filter" cannot always meet the requirement towards the DI water. The filtered DI water may still contain many contaminations which are not up to the standard for the wet cleaning of wafer surface. A novel method is presented by analyzing the residues of a water droplet after the low-temperature evaporation. The contamination contained in the water will remain during the gasification. By analyzing the residual contamination's morphology, the purity of the DI water can be estimated by employing merely a 3D laser microscope. Compared to the traditional fluorescence detecting system for water quality monitoring, it is simpler and has a lower cost. The paper describes an excellent water detection method which is meaningful for preparing ultra-pure water. Experimental results have shown that the deionized distilled (DID) water can repeatedly get a higher purity using this detection method. The DID water can be applied to the wet cleaning of wafer surface, preparation of chemical reagents and many other aspects.

  6. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  7. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  8. Application of numerical methods to elasticity imaging.

    PubMed

    Castaneda, Benjamin; Ormachea, Juvenal; Rodríguez, Paul; Parker, Kevin J

    2013-03-01

    Elasticity imaging can be understood as the intersection of the study of biomechanical properties, imaging sciences, and physics. It was mainly motivated by the fact that pathological tissue presents an increased stiffness when compared to surrounding normal tissue. In the last two decades, research on elasticity imaging has been an international and interdisciplinary pursuit aiming to map the viscoelastic properties of tissue in order to provide clinically useful information. As a result, several modalities of elasticity imaging, mostly based on ultrasound but also on magnetic resonance imaging and optical coherence tomography, have been proposed and applied to a number of clinical applications: cancer diagnosis (prostate, breast, liver), hepatic cirrhosis, renal disease, thyroiditis, arterial plaque evaluation, wall stiffness in arteries, evaluation of thrombosis in veins, and many others. In this context, numerical methods are applied to solve forward and inverse problems implicit in the algorithms in order to estimate viscoelastic linear and nonlinear parameters, especially for quantitative elasticity imaging modalities. In this work, an introduction to elasticity imaging modalities is presented. The working principle of qualitative modalities (sonoelasticity, strain elastography, acoustic radiation force impulse) and quantitative modalities (Crawling Waves Sonoelastography, Spatially Modulated Ultrasound Radiation Force (SMURF), Supersonic Imaging) will be explained. Subsequently, the areas in which numerical methods can be applied to elasticity imaging are highlighted and discussed. Finally, we present a detailed example of applying total variation and AM-FM techniques to the estimation of elasticity.

  9. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  10. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  11. Root Causes of Component Failures Program: Methods and applications

    SciTech Connect

    Satterwhite, D G; Cadwallader, L C; Vesely, W E; Meale, B M

    1986-12-01

    This report contains information pertaining to definitions, methodologies, and applications of root cause analysis. Of specific interest, and highlighted throughout the discussion, are applications pertaining to current and future Nuclear Regulatory Commission (NRC) light water reactor safety programs. These applications are discussed in view of addressing specific program issues under NRC consideration and reflect current root cause analysis capabilities.

  12. Application of the urban water use model for urban water use management purposes.

    PubMed

    Costa Dos Santos, D; Benetti, A

    2014-01-01

    The aim of this work is to present an application of the urban water use (UWU) model, which is a support decision tool to define the best group of efficient water use measures for UWU management purposes. Therefore, the UWU was developed under integrated urban water management (IUWM) and strategic planning principles to promote a systemic approach for decision taking. The IUWM considers the interfaces between water service systems, while by strategic planning it is possible to elaborate a vision to be achieved in future scenarios. Specifically to define the best measure group of efficient water use, the UWU has many alternatives for these measures, which are based on water demand management, decentralized sanitation, ecological sanitation and sustainable urban drainage system philosophies. In this context, the UWU application presented was developed for Seara city, Santa Catarina State, Brazil. In this application a vision and five scenarios were built. The measure groups were composed by greywater systems, filterstrips, water saving devices in buildings, and water loss reduction in water supply systems and wastewater treatment system. In this context the UWU model was applied. The measure group that presented the highest effectiveness was based on the water demand management and decentralized sanitation strategies.

  13. Water demand forecasting: review of soft computing methods.

    PubMed

    Ghalehkhondabi, Iman; Ardjmand, Ehsan; Young, William A; Weckman, Gary R

    2017-07-01

    Demand forecasting plays a vital role in resource management for governments and private companies. Considering the scarcity of water and its inherent constraints, demand management and forecasting in this domain are critically important. Several soft computing techniques have been developed over the last few decades for water demand forecasting. This study focuses on soft computing methods of water consumption forecasting published between 2005 and 2015. These methods include artificial neural networks (ANNs), fuzzy and neuro-fuzzy models, support vector machines, metaheuristics, and system dynamics. Furthermore, it was discussed that while in short-term forecasting, ANNs have been superior in many cases, but it is still very difficult to pick a single method as the overall best. According to the literature, various methods and their hybrids are applied to water demand forecasting. However, it seems soft computing has a lot more to contribute to water demand forecasting. These contribution areas include, but are not limited, to various ANN architectures, unsupervised methods, deep learning, various metaheuristics, and ensemble methods. Moreover, it is found that soft computing methods are mainly used for short-term demand forecasting.

  14. Graphene from sugar and its application in water purification.

    PubMed

    Gupta, Soujit Sen; Sreeprasad, Theruvakkattil Sreenivasan; Maliyekkal, Shihabudheen Mundampra; Das, Sarit Kumar; Pradeep, Thalappil

    2012-08-01

    This paper describes a green method for the synthesis of graphenic material from cane sugar, a common disaccharide. A suitable methodology was introduced to immobilize this material on sand without the need of any binder, resulting in a composite, referred to as graphene sand composite (GSC). Raman spectroscopy confirmed that the material is indeed graphenic in nature, having G and D bands at 1597 and 1338 cm(-1), respectively. It effectively removes contaminants from water. Here, we use rhodamine 6G (R6G) as a model dye and chloropyrifos (CP) as a model pesticide to demonstrate this application. The spectroscopic and microscopic analyses coupled with adsorption experiments revealed that physical adsorption plays a dominant role in the adsorption process. Isotherm data in batch experiments show an adsorption capacity of 55 mg/g for R6G and 48 mg/g for CP, which are superior to that of activated carbon. The adsorbent can be easily regenerated using a suitable eluent. This quick and cost-effective technique for the into a commercial water filter with appropriate engineering.

  15. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples.This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for each method and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental investigations.

  16. 40 CFR 425.03 - Sulfide analytical methods and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Provisions § 425.03 Sulfide analytical methods and applicability. (a) The potassium ferricyanide titration... the potassium ferricyanide titration method for the determination of sulfide in wastewaters...

  17. Methods of geodiversity assessment and theirs application

    NASA Astrophysics Data System (ADS)

    Zwoliński, Zbigniew; Najwer, Alicja; Giardino, Marco

    2016-04-01

    The concept of geodiversity has rapidly gained the approval of scientists around the world (Wiedenbein 1993, Sharples 1993, Kiernan 1995, 1996, Dixon 1996, Eberhard 1997, Kostrzewski 1998, 2011, Gray 2004, 2008, 2013, Zwoliński 2004, Serrano, Ruiz- Flano 2007, Gordon et al. 2012). However, the problem recognition is still at an early stage, and in effect not explicitly understood and defined (Najwer, Zwoliński 2014). Nevertheless, despite widespread use of the concept, little progress has been made in its assessment and mapping. Less than the last decade can be observing investigation of methods for geodiversity assessment and its visualisation. Though, many have acknowledged the importance of geodiversity evaluation (Kozłowski 2004, Gray 2004, Reynard, Panizza 2005, Zouros 2007, Pereira et al. 2007, Hjort et al. 2015). Hitherto, only a few authors have undertaken that kind of methodological issues. Geodiversity maps are being created for a variety of purposes and therefore their methods are quite manifold. In the literature exists some examples of the geodiversity maps applications for the geotourism purpose, basing mainly on the geological diversity, in order to point the scale of the area's tourist attractiveness (Zwoliński 2010, Serrano and Gonzalez Trueba 2011, Zwoliński and Stachowiak 2012). In some studies, geodiversity maps were created and applied to investigate the spatial or genetic relationships with the richness of particular natural environmental components (Burnett et al. 1998, Silva 2004, Jačková, Romportl 2008, Hjort et al. 2012, 2015, Mazurek et al. 2015, Najwer et al. 2014). There are also a few examples of geodiversity assessment in order to geoconservation and efficient management and planning of the natural protected areas (Serrano and Gonzalez Trueba 2011, Pellitero et al. 2011, 2014, Jaskulska et al. 2013, Melelli 2014, Martinez-Grana et al. 2015). The most popular method of assessing the diversity of abiotic components of the natural

  18. Comparison of seven water quality assessment methods for the characterization and management of highly impaired river systems.

    PubMed

    Ji, Xiaoliang; Dahlgren, Randy A; Zhang, Minghua

    2016-01-01

    In the context of water resource management and pollution control, the characterization of water quality impairments and identification of dominant pollutants are of critical importance. In this study, water quality impairment was assessed on the basis of 7 hydrochemical variables that were monitored bimonthly at 17 sites in 2010 along the rural-suburban-urban portion of the Wen-Rui Tang River in eastern China. Seven methods were used to assess water quality in the river system. These methods included single-factor assessment, water quality grading, comprehensive pollution index, the Nemerow pollution index, principle component analysis, fuzzy comprehensive evaluation, and comprehensive water quality identification index. Our analysis showed that the comprehensive water quality identification index was the best method for assessing water quality in the Wen-Rui Tang River due to its ability to effectively characterize highly polluted waters with multiple impairments. Furthermore, a guideline for the applications of these methods was presented based on their characteristics and efficacy. Results indicated that the dominant pollutant impairing water quality was total nitrogen comprised mainly of ammonium. The temporal variation of water quality was closely related to precipitation as a result of dilution. The spatial variation of water quality was associated with anthropogenic influences (urban, industrial, and agriculture activities) and water flow direction (downstream segments experiencing cumulative effects of upstream inputs). These findings provide valuable information and guidance for water pollution control and water resource management in highly polluted surface waters with multiple water quality impairments in areas with rapid industrial growth and urbanization.

  19. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  20. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  1. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 33 2012-07-01 2012-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  2. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 33 2013-07-01 2013-07-01 false TSCA water solubility: Generator...: Generator column method. (a) Scope—(1) Applicability. This section is intended to meet the testing... the saturated solutions produced by the generator column. After extraction onto a chromatographic...

  3. Application of borehole geophysics to water-resources investigations

    USGS Publications Warehouse

    Keys, W.S.; MacCary, L.M.

    1971-01-01

    This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.

  4. A method for simulating transient ground-water recharge in deep water-table settings in central Florida by using a simple water-balance/transfer-function model

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2004-01-01

    A relatively simple method is needed that provides estimates of transient ground-water recharge in deep water-table settings that can be incorporated into other hydrologic models. Deep water-table settings are areas where the water table is below the reach of plant roots and virtually all water that is not lost to surface runoff, evaporation at land surface, or evapotranspiration in the root zone eventually becomes ground-water recharge. Areas in central Florida with a deep water table generally are high recharge areas; consequently, simulation of recharge in these areas is of particular interest to water-resource managers. Yet the complexities of meteorological variations and unsaturated flow processes make it difficult to estimate short-term recharge rates, thereby confounding calibration and predictive use of transient hydrologic models. A simple water-balance/transfer-function (WBTF) model was developed for simulating transient ground-water recharge in deep water-table settings. The WBTF model represents a one-dimensional column from the top of the vegetative canopy to the water table and consists of two components: (1) a water-balance module that simulates the water storage capacity of the vegetative canopy and root zone; and (2) a transfer-function module that simulates the traveltime of water as it percolates from the bottom of the root zone to the water table. Data requirements include two time series for the period of interest?precipitation (or precipitation minus surface runoff, if surface runoff is not negligible) and evapotranspiration?and values for five parameters that represent water storage capacity or soil-drainage characteristics. A limiting assumption of the WBTF model is that the percolation of water below the root zone is a linear process. That is, percolating water is assumed to have the same traveltime characteristics, experiencing the same delay and attenuation, as it moves through the unsaturated zone. This assumption is more accurate if

  5. Tectonic influences on ground water quality: insight from complementary methods.

    PubMed

    Earman, Sam; McPherson, Brian J O L; Phillips, Fred M; Ralser, Steve; Herrin, James M; Broska, James

    2008-01-01

    A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.

  6. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters.

    PubMed

    Bouvier-Capely, C; Bonthonneau, J P; Dadache, E; Rebière, F

    2014-01-01

    The general population is chronically exposed to uranium ((234)U, (235)U, and (238)U) and polonium ((210)Po) mainly through day-to-day food and beverage intake. The measurement of these naturally-occurring radionuclides in drinking water is important to assess their health impact. In this work the applicability of calix[6]arene-derivatives columns for uranium analysis in drinking water was investigated. A simple and effective method was proposed on a specific column called AQUALIX, for the separation and preconcentration of U from drinking water. This procedure is suitable for routine analysis and the analysis time is considerably shortened (around 4h) by combining the separation on AQUALIX with fast ICP-MS measurement. This new method was tested on different French bottled waters (still mineral water, sparkling mineral water, and spring water). Then, the case of simultaneous presence of uranium and polonium in water was considered due to interferences in alpha spectrometry measurement. A protocol was proposed using a first usual step of spontaneous deposition of polonium on silver disc in order to separate Po, followed by the uranium extraction on AQUALIX column before alpha spectrometry counting. © 2013 Published by Elsevier B.V.

  7. EPA Method 544: A Case Study in USEPA Drinking Water ...

    EPA Pesticide Factsheets

    The 1996 amendments to the Safe Drinking Water Act required the U.S. Environmental Protection Agency (USEPA) to establish a Drinking Water Contaminant Candidate List (CCL) of chemicals and microbes that the Agency will consider for future regulation. One of the key pieces of information that must be available in order to make a regulatory determination is nationwide occurrence data for the chemical contaminants under consideration. Historically, USEPA’s Office of Ground Water and Drinking Water has collected the necessary occurrence data under its Unregulated Contaminant Monitoring Regulations (UCMR). Thus, standardized and rugged methods that will produce data of sufficient quality for UCMR monitoring of chemicals and microbes on the CCL are needed. It is important that these standardized methods are accurate, precise and sensitive, as well as transferrable to laboratories participating in the UCMR. The key steps in EPA’s drinking water analytical method development process are 1) literature review, 2) instrumentation selection, 3) extraction optimization if necessary, 4) preservation selection, 5) testing in challenging drinking water matrices, 6) lowest concentration minimum reporting level determination, 7) sample holding time determination and 8) multi-laboratory verification. Typical data quality objectives (DQOs) are 70-130% recovery (accuracy) of the analyte from the water sample and <30% relative standard deviation (precision). This presentation wil

  8. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  9. Applications of thermal remote sensing to detailed ground water studies

    NASA Technical Reports Server (NTRS)

    Souto-Maior, J.

    1973-01-01

    Three possible applications of thermal (8-14 microns) remote sensing to detailed hydrogeologic studies are discussed in this paper: (1) the direct detection of seeps and springs, (2) the indirect evaluation of shallow ground water flow through its thermal effects on the land surface, and (3) the indirect location of small volumes of ground water inflow into surface water bodies. An investigation carried out with this purpose in an area containing a complex shallow ground water flow system indicates that the interpretation of the thermal imageries is complicated by many factors, among which the most important are: (1) altitude, angle of view, and thermal-spatial resolution of the sensor; (2) vegetation type, density, and vigor; (3) topography; (4) climatological and micrometeorological effects; (5) variation in soil type and soil moisture; (6) variation in volume and temperature of ground water inflow; (7) the hydraulic characteristics of the receiving water body, and (8) the presence of decaying organic material.

  10. Evaluation of alternative methods of supplemental recharge by storm-water basins on Long Island, New York

    USGS Publications Warehouse

    Aronson, D.A.

    1976-01-01

    Many of the more than 2,200 storm-water basins on Long Island, N.Y., having runoff and infiltration characteristics similar to those of a basin studied in North Massapequa are potential sites for returning large volumes of reclaimed water (highly treated waste water) to the ground-water reservoir. By use of a finite-difference method of calculation, formulas were devised to calculate changes in basin storage at various time intervals from the start of storm inflow, with and without addition of reclaimed water. The North Massapequa storm-water basin was the prototype design used to test several methods of water application. Calculations using various infiltration rates, storm durations, and storm-return periods indicate that several methods of applying reclaimed water to storm-water basins on Long Island would be feasible. (Woodard-USGS)

  11. Measuring Air-water Interfacial Area for Soils Using the Mass Balance Surfactant-tracer Method

    PubMed Central

    Araujo, Juliana B.; Mainhagu, Jon; Brusseau, Mark L.

    2015-01-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. PMID:25950136

  12. Measuring air-water interfacial area for soils using the mass balance surfactant-tracer method.

    PubMed

    Araujo, Juliana B; Mainhagu, Jon; Brusseau, Mark L

    2015-09-01

    There are several methods for conducting interfacial partitioning tracer tests to measure air-water interfacial area in porous media. One such approach is the mass balance surfactant tracer method. An advantage of the mass-balance method compared to other tracer-based methods is that a single test can produce multiple interfacial area measurements over a wide range of water saturations. The mass-balance method has been used to date only for glass beads or treated quartz sand. The purpose of this research is to investigate the effectiveness and implementability of the mass-balance method for application to more complex porous media. The results indicate that interfacial areas measured with the mass-balance method are consistent with values obtained with the miscible-displacement method. This includes results for a soil, for which solid-phase adsorption was a significant component of total tracer retention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. GROUND WATER PURGING AND SAMPLING METHODS: HISTORY VS. HYSTERIA

    EPA Science Inventory

    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  14. The Halliwick Method. "Water Freedom for the Handicapped."

    ERIC Educational Resources Information Center

    Grosse, Susan J.; Gildersleeve, Lisa A.

    The Halliwick Method originated in England where in 1949 James McMillan developed techniques for helping handicapped individuals become independent swimmers. Based on the adaptation of scientific and hydrodynamic principles to the behavior of the human body in water, the Halliwick Method emphasizes the goal of individual independence. Instruction…

  15. The Halliwick Method: Water Freedom for Individuals with Disabilities.

    ERIC Educational Resources Information Center

    Grosse, Susan J.

    This publication explains the Halliwick Method of swim instruction for people with disabilities. The Halliwick Method emphasizes independent functioning in the water, obtained through the development of control over body movements and establishing physical and psychological comfort. Containing over 75 photographs, including underwater shots, this…

  16. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application.

    PubMed

    Tlili, Ines; Caria, Giovanni; Ouddane, Baghdad; Ghorbel-Abid, Ibtissem; Ternane, Riadh; Trabelsi-Ayadi, Malika; Net, Sopheak

    2016-09-01

    Due to their widespread use in human and animal healthcare, antibiotics and other drug residues are ubiquitous in the aquatic environment. Given their potential impacts on ecosystem functioning and public health, the quantification of environmental drug residues has become a necessity. Various analysis techniques have been found to be suitable for reliable detection of such compounds. However, quantification can be difficult because these compounds are present at trace or ultra-trace levels. Consequently, the accuracy of environmental analyses depends on both the efficiency and the robustness of the extraction and quantification method. In this work, an off-line solid-phase extraction (SPE) combined with on-line SPE-LC-MS/MS was applied to the simultaneous extraction and quantification of 26 pharmaceutical products, including 18 antibiotics, dissolved in a water phase. Optimal conditions were determined and then applied to assess the contamination level of the targeted drug residues in water collected from four sites in Northern France: a river, the input and output of an aerated lagoon, and a wastewater treatment plant. Drug residues associated with suspended solid matter (SSM) were also quantified in this work using pressurized liquid extraction (PLE) combined with an on-line SPE-LC-MS/MS system in order to complete an assessment of the degree of total background pollution. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Serum proteomics of glioma: methods and applications.

    PubMed

    Somasundaram, Kumaravel; Nijaguna, Mamatha B; Kumar, Durairaj Mohan

    2009-10-01

    The prognosis of patients with glioblastoma, the most malignant adult glial brain tumor, remains poor in spite of advances in treatment procedures, including surgical resection, irradiation and chemotherapy. Genetic heterogeneity of glioblastoma warrants extensive studies in order to gain a thorough understanding of the biology of this tumor. While there have been several studies of global transcript profiling of glioma with the identification of gene signatures for diagnosis and disease management, translation into clinics is yet to happen. Serum biomarkers have the potential to revolutionize the process of cancer diagnosis, grading, prognostication and treatment response monitoring. Besides having the advantage that serum can be obtained through a less invasive procedure, it contains molecules at an extraordinary dynamic range of ten orders of magnitude in terms of their concentrations. While the conventional methods, such as 2DE, have been in use for many years, the ability to identify the proteins through mass spectrometry techniques such as MALDI-TOF led to an explosion of interest in proteomics. Relatively new high-throughput proteomics methods such as SELDI-TOF and protein microarrays are expected to hasten the process of serum biomarker discovery. This review will highlight the recent advances in the proteomics platform in discovering serum biomarkers and the current status of glioma serum markers. We aim to provide the principles and potential of the latest proteomic approaches and their applications in the biomarker discovery process. Besides providing a comprehensive list of available serum biomarkers of glioma, we will also propose how these markers will revolutionize the clinical management of glioma patients.

  18. A review of Central European methods for the biological estimation of water pollution levels*

    PubMed Central

    Bick, Hartmut

    1963-01-01

    With the increasing amount and variety of pollution of surface and other waters in the modern world, there is an increasing need for simple, rapid and reliable methods for assessing the degree of purity or contamination of water. Partly for historical reasons, chemical methods have been used more widely than biological ones, although the latter possess certain advantages not shared by the former. Much important work on the biological assessment of water pollution has been done in Central Europe, and the author of this paper reviews the more significant of the modern methods evolved there. Some are ecological, some physiological; and certain of them merit consideration as standardizable procedures, applicable over a wider range of waters than those for which they were developed. To this end it will be necessary to conduct carefully controlled field trials under varying climatic and other conditions. PMID:14058231

  19. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples. This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for eachmethod and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental samples.

  20. Methods and technologies to improve efficiency of water use

    NASA Astrophysics Data System (ADS)

    Evans, Robert G.; Sadler, E. John

    2008-07-01

    The competition for existing freshwater supplies will require a paradigmatic shift from maximizing productivity per unit of land area to maximizing productivity per unit of water consumed. This shift will, in turn, demand broad systems approaches that physically and biologically optimize irrigation relative to water delivery and application schemes, rainfall, critical growth stages, soil fertility, location, and weather. Water can be conserved at a watershed or regional level for other uses only if evaporation, transpiration, or both are reduced and unrecoverable losses to unusable sinks are minimized (e.g., salty groundwater or oceans). Agricultural advances will include implementation of crop location strategies, conversion to crops with higher economic value or productivity per unit of water consumed, and adoption of alternate drought-tolerant crops. Emerging computerized GPS-based precision irrigation technologies for self-propelled sprinklers and microirrigation systems will enable growers to apply water and agrochemicals more precisely and site specifically to match soil and plant status and needs as provided by wireless sensor networks. Agriculturalists will need to exercise flexibility in managing the rate, frequency, and duration of water supplies to successfully allocate limited water and other inputs to crops. The most effective means to conserve water appears to be through carefully managed deficit irrigation strategies that are supported by advanced irrigation system and flexible, state-of-the-art water delivery systems. Nonagricultural water users will need to exercise patience as tools reflecting the paradigmatic shift are actualized. Both groups will need to cooperate and compromise as they practice more conservative approaches to freshwater consumption.

  1. Antimicrobial applications of nanotechnology: methods and literature

    PubMed Central

    Seil, Justin T; Webster, Thomas J

    2012-01-01

    The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections) are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles), the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤100 nm) as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript. PMID:22745541

  2. Antimicrobial applications of nanotechnology: methods and literature.

    PubMed

    Seil, Justin T; Webster, Thomas J

    2012-01-01

    The need for novel antibiotics comes from the relatively high incidence of bacterial infection and the growing resistance of bacteria to conventional antibiotics. Consequently, new methods for reducing bacteria activity (and associated infections) are badly needed. Nanotechnology, the use of materials with dimensions on the atomic or molecular scale, has become increasingly utilized for medical applications and is of great interest as an approach to killing or reducing the activity of numerous microorganisms. While some natural antibacterial materials, such as zinc and silver, possess greater antibacterial properties as particle size is reduced into the nanometer regime (due to the increased surface to volume ratio of a given mass of particles), the physical structure of a nanoparticle itself and the way in which it interacts with and penetrates into bacteria appears to also provide unique bactericidal mechanisms. A variety of techniques to evaluate bacteria viability, each with unique advantages and disadvantages, has been established and must be understood in order to determine the effectiveness of nanoparticles (diameter ≤ 100 nm) as antimicrobial agents. In addition to addressing those techniques, a review of select literature and a summary of bacteriostatic and bactericidal mechanisms are covered in this manuscript.

  3. Innovative Methods and Applications in Mucoadhesion Research.

    PubMed

    Mackie, Alan R; Goycoolea, Francisco M; Menchicchi, Bianca; Caramella, Carla Marcella; Saporito, Francesca; Lee, Seunghwan; Stephansen, Karen; Chronakis, Ioannis S; Hiorth, Marianne; Adamczak, Malgorzata; Waldner, Max; Nielsen, Hanne Mørck; Marcelloni, Luciano

    2017-08-01

    The present review is aimed at elucidating relatively new aspects of mucoadhesion/mucus interaction and related phenomena that emerged from a Mucoadhesion workshop held in Munster on 2-3 September 2015 as a satellite event of the ICCC 13th-EUCHIS 12th. After a brief outline of the new issues, the focus is on mucus description, purification, and mucus/mucin characterization, all steps that are pivotal to the understanding of mucus related phenomena and the choice of the correct mucosal model for in vitro and ex vivo experiments, alternative bio/mucomimetic materials are also presented. Then a selection of preparative techniques and testing methods are described (at molecular as well as micro and macroscale) that may support the pharmaceutical development of mucus interactive systems and assist formulators in the scale-up and industrialization steps. Recent applications of mucoadhesive systems (including medical devices) intended for different routes of administration (oral, gastrointestinal, vaginal, nasal, ocular, and intravesical) and for the treatment of difficult to treat pathologies or the alleviation of symptoms are described. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Application of the response surface method to hydrological impact studies

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Alcamo, J.

    2009-04-01

    The new trend towards ensemble climate modelling systems and multi-model simulations for generating future climate projections leaves the impact modeller having to deal with a large number of future climate realizations. If analysed in the conventional way, this could lead to a great number of impact model simulations. Therefore, a systematic approach is required that enables a fast, consistent and objective assessment of potential future impacts. One approach is the response surface method. In this study, it is analysed in respect to its applicability to hydrological modelling. Explicitly, this study aims at assessing the impacts of climate change on water availability in several European catchments. The global hydrology model WaterGAP (Alcamo et al., 2003) is applied to generate response surfaces of average long-term standardized water availability to simultaneous changes in the key climate parameters temperature and precipitation. Temperature and precipitation cycles are hereby adjusted to follow a future average annual cycle as projected by 5 different RCMs for 2050. The risk of reaching an unacceptable state in 2050 under the IPCC A1B scenario is examined with different indicators relating to discharge, e.g. high flow, low flow and water quality indicators. Superimposing multi-model climate projections enables a water stress classification of the analysed basins. The results of this analysis provide a good overview of the sensitivity of European river basins towards climate change and allow assigning the basins to categories of different response surfaces. Overall, the degree of response differs between basins in the cold climates of Northern Europe and basins located in the rest of Europe. The degree of future water stress is highly influenced by the intensity of anthropogenic interference with the hydrological system as well as with the amplitude of projected climate changes. References: Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T

  5. Inactivation pathogenic microorganisms in water by laser methods

    NASA Astrophysics Data System (ADS)

    Iakovlev, Alexey; Grishkanich, Aleksandr; Kascheev, Sergey; Ruzankina, Julia; Afanasyev, Mikhail; Hafizov, Nail

    2017-02-01

    As a result of the research the following methods have been proposed for controlling harmful microorganisms: sterilization of water by laser radiation at wavelengths of 425 nm, 355 nm and 308 nm. The results of theoretical and experimental studies on the development and establishment of a system of ultraviolet disinfection of water for injection (UFOVI) intended for research sterilized water for injections. The pipe created a strong turbulent water flow. Performance irradiation laminar flow of 1.5 liters per second. Irradiation was carried out at three wavelengths 425 nm, 355 nm and 308 nm with energies semiconductor laser diode arrays to 4 MJ / cm3. Wavelength tuning implemented current in the range of 10 nm. For large capacities, we have developed a miniature solid state laser, which was used in fluid microorganisms inactivator. In the water treatment process breaks up to 98% of microbes, but can be left among pathogenic viruses destruction which requires special handling.

  6. Original isotopic composition of water in precipitation by different methods

    NASA Astrophysics Data System (ADS)

    Singh, B. P.

    2016-11-01

    Stable isotopes of 2H and 18O in precipitation are different globally and carry all information about water molecules movement in hydrosphere cycles. Isotopic composition is a function of temperature, relative humidity, and speed of evaporation at different latitudes, longitudes, and altitudes. On the basis of this, we observe local meteoric water line measurements in the plot of δ2H versus δ18O. It will be interesting to know the original isotopic composition (without any modification) in a transition from cloud down to earth in different environmental conditions. This had been done by plotting of slope versus intercept of Local Meteoric Water Line (LMWL) at different altitudes in different years of observations. Intercept of LMWL with Global Meteoric Water Line (GMWL) data taken from the hydrology frame work of Corsica was plotted and it was found that the isotopic composition of water in precipitation by all these methods is same.

  7. Water soluble polyhydroxyalkanoates: future materials for therapeutic applications.

    PubMed

    Li, Zibiao; Loh, Xian Jun

    2015-05-21

    Polyhydroxyalkanoates (PHAs) are excellent candidate biomaterials due to their exceptional biodegradability and biocompatibility. However, PHAs need to have tunable hydrophilicity, chemical functionalities, and appropriate hydrolytic stability to expand their therapeutic applications towards more advanced areas. In this Tutorial Review, we present the most recent progress in the synthetic strategies of PHA-based water soluble polymers, including the functionalisation of PHAs with polar functional groups and the block/graft copolymerization of PHAs with hydrophilic components in various polymeric architectures. These chemically modified water soluble PHAs have significant impact on materials engineering and show great value in the fulfilment of smart biomaterials in emerging areas. The applications of water soluble PHAs in controlled drug release, cancer therapy, DNA/siRNA delivery and tissue engineering in new aspects are discussed. In addition, water soluble PHA monomer production will be briefly introduced, with emphasis on its bio-significance in medical physiology and the therapeutic effect in the treatment of diseases.

  8. A method to extract soil water for stable isotope analysis

    USGS Publications Warehouse

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  9. Group methods of determining surfactants in water (review)

    SciTech Connect

    Subbotina, E.I.; Dedkov, Yu.M.

    1988-01-01

    In recent years new and promising methods for the determination of industrial surfactant waste migration and concentration in the hydrosphere have been developed. These methods include different forms of chromatography, ion selective electrode analysis, titration, and solvent extraction. This article reviews the application and usefulness of each of these methods in the analysis of various surfactants. The methods of chromatography reviewed include liquid column, thin layer, and ion exchange.

  10. Underwater plasma discharge and its water treatment applications

    NASA Astrophysics Data System (ADS)

    Ma, Sukhwal; Huh, Jin Young; Kim, Kangil; Hong, Yong Cheol; National Fusion Research Institute Team; Chonbuk National University Team; Kwangwoon University Team; NPAC Team

    2016-09-01

    In recent, the quality of water has been exacerbated by the influx of wastewater and water pollutants. There have been frequent occurrences of water blooms due to the eutrophication of river. Therefore, the needs for water treatment are increased through effective and environment-friendly method. In this work, we propose the plasma system to overcome the problems mentioned above using underwater discharge plasma. The underwater discharges are generated by capillary electrode, and have the advantages of low cost, high efficiency and eco-friendly processing. The proposed technologies can be suitable for eliminating cyanobacteria, decreasing the concentration of oil dissolved in water, and purifying wastewater. Cyanobacteria is killed directly by the underwater discharge and water-dissolved oil and heavy-metal wastewater are purified by coagulation effect, which may result from the chemical reactions of underwater plasma. Consequently, these technologies using underwater discharge can be alternative methods to replace the existing technologies.

  11. Method and apparatus for collaborative use of application program

    DOEpatents

    Dean, Craig D.

    1994-01-01

    Method and apparatus permitting the collaborative use of a computer application program simultaneously by multiple users at different stations. The method is useful with communication protocols having client/server control structures. The method of the invention requires only a sole executing copy of the application program and a sole executing copy of software comprising the invention. Users may collaboratively use a set of application programs by invoking for each desired application program one copy of software comprising the invention.

  12. Application of ``water only`` cyclone in Slovak steam coal preparation

    SciTech Connect

    Jakabsky, S.; Lovas, M.; Hredzak, S.

    1998-12-31

    The paper deals with the possibilities of water only cyclone application in steam coal preparation with the aim to decrease the ash content in coal and to increase the coal heating value. The steam coal of the three Slovak coal localities from the Upper Nitra Basin was subjected to separation in a hydrocyclone without using a heavy medium. The influence of pressure and solid particle concentration is described. The steam coal preparation scheme proposal including the water only cyclones is also introduced.

  13. Scalable Production Method for Graphene Oxide Water Vapor Separation Membranes

    SciTech Connect

    Fifield, Leonard S.; Shin, Yongsoon; Liu, Wei; Gotthold, David W.

    2016-01-01

    ABSTRACT

    Membranes for selective water vapor separation were assembled from graphene oxide suspension using techniques compatible with high volume industrial production. The large-diameter graphene oxide flake suspensions were synthesized from graphite materials via relatively efficient chemical oxidation steps with attention paid to maintaining flake size and achieving high graphene oxide concentrations. Graphene oxide membranes produced using scalable casting methods exhibited water vapor flux and water/nitrogen selectivity performance meeting or exceeding that of membranes produced using vacuum-assisted laboratory techniques. (PNNL-SA-117497)

  14. Application of pulsed photoacoustics in water at high pressure.

    PubMed

    Freeborn, S S; Hannigan, J; MacKenzie, H A

    1999-08-20

    The application of pulsed photoacoustics to the study of liquids at pressures of up to 350 bars is discussed. The design and development of an in-line sensor for the subsea monitoring of crude oil concentrations in water is reported. Crude oil detection sensitivities at parts per million concentrations were achieved with prototype instrumentation. A comparison of experimental results and a theoretical prediction of the pressure dependence of the pulsed photoacoustic response from water is outlined. The results demonstrate that existing models that describe pulsed photoacoustic generation in liquids are applicable to high-pressure conditions.

  15. Application of Pulsed Photoacoustics in Water at High Pressure

    NASA Astrophysics Data System (ADS)

    Freeborn, Scott S.; Hannigan, John; MacKenzie, Hugh A.

    1999-08-01

    The application of pulsed photoacoustics to the study of liquids at pressures of up to 350 bars is discussed. The design and development of an in-line sensor for the subsea monitoring of crude oil concentrations in water is reported. Crude oil detection sensitivities at parts per million concentrations were achieved with prototype instrumentation. A comparison of experimental results and a theoretical prediction of the pressure dependence of the pulsed photoacoustic response from water is outlined. The results demonstrate that existing models that describe pulsed photoacoustic generation in liquids are applicable to high-pressure conditions.

  16. Impact of artificial monolayer application on stored water quality at the air-water interface.

    PubMed

    Pittaway, P; Martínez-Alvarez, V; Hancock, N; Gallego-Elvira, B

    2015-01-01

    Evaporation mitigation has the potential to significantly improve water use efficiency, with repeat applications of artificial monolayer formulations the most cost-effective strategy for large water storages. Field investigations of the impact of artificial monolayers on water quality have been limited by wind and wave turbulence, and beaching. Two suspended covers differing in permeability to wind and light were used to attenuate wind turbulence, to favour the maintenance of a condensed monolayer at the air/water interface of a 10 m diameter tank. An octadecanol formulation was applied twice-weekly to one of two covered tanks, while a third clean water tank remained uncovered for the 14-week duration of the trial. Microlayer and subsurface water samples were extracted once a week to distinguish impacts associated with the installation of covers, from the impact of prolonged monolayer application. The monolayer was selectively toxic to some phytoplankton, but the toxicity of hydrocarbons leaching from a replacement liner had a greater impact. Monolayer application did not increase water temperature, humified dissolved organic matter, or the biochemical oxygen demand, and did not reduce dissolved oxygen. The impact of an octadecanol monolayer on water quality and the microlayer may not be as detrimental as previously considered.

  17. An improved PCA method with application to boiler leak detection.

    PubMed

    Sun, Xi; Marquez, Horacio J; Chen, Tongwen; Riaz, Muhammad

    2005-07-01

    Principal component analysis (PCA) is a popular fault detection technique. It has been widely used in process industries, especially in the chemical industry. In industrial applications, achieving a sensitive system capable of detecting incipient faults, which maintains the false alarm rate to a minimum, is a crucial issue. Although a lot of research has been focused on these issues for PCA-based fault detection and diagnosis methods, sensitivity of the fault detection scheme versus false alarm rate continues to be an important issue. In this paper, an improved PCA method is proposed to address this problem. In this method, a new data preprocessing scheme and a new fault detection scheme designed for Hotelling's T2 as well as the squared prediction error are developed. A dynamic PCA model is also developed for boiler leak detection. This new method is applied to boiler water/steam leak detection with real data from Syncrude Canada's utility plant in Fort McMurray, Canada. Our results demonstrate that the proposed method can effectively reduce false alarm rate, provide effective and correct leak alarms, and give early warning to operators.

  18. On Applicability of Formal Methods and Tools to Dependable Services

    NASA Astrophysics Data System (ADS)

    Ishikawa, Fuyuki; Honiden, Shinichi

    As a variety of digital services are provided through networks, more and more efforts are made to ensure dependability of software behavior implementing services. Formal methods and tools have been considered as promising means to support dependability in complex software systems during the development. On the other hand, there have been serious doubts on practical applicability of formal methods. This paper overviews the present state of formal methods and discusses their applicability, especially focusing on two representative methods (SPIN and B Method) and their recent industrial applications. This paper also discusses applications of formal methods to dependable networked software.

  19. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  20. Evaluation method for regional water cycle health based on nature-society water cycle theory

    NASA Astrophysics Data System (ADS)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial

  1. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  2. Calculation Methods and Conversions for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…

  3. Calculation Methods and Conversions for Pesticide Application.

    ERIC Educational Resources Information Center

    Cole, Herbert, Jr.

    This agriculture extension service publication from Pennsylvania State University consists of conversion tables and formulas for determining concentration and rate of application of pesticides. Contents include: (1) Area and volume conversions; (2) Important conversion formulae; (3) Conversions for rates of application; (4) Quantities of pesticide…

  4. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.

    PubMed

    Simpson, Catherine R; Nelson, Shad D; Stratmann, Jerry E; Ajwa, Husein A

    2010-06-01

    Metam-sodium (MS, sodium methyldithiocarbamate) has been identified as a promising alternative chemical to replace methyl bromide (MeBr) in soil preplant fumigation. One degradation product of MS in soil is the volatile gas methyl isothiocyanate (MITC) which controls soilborne pests. Inconsistent results associated with MS usage indicate that there is a need to determine cultural practices that increase pest control efficacy. Sealing the soil surface with water after MS application may be a sound method to reduce volatilization loss of MITC from soils and increase the contact time necessary for MITC to control pests. The objective of this research was to develop a preliminary soil surface water application amount that would potentially inhibit the off-gassing rate of MITC. Off-gassing rate was consistently reduced with increasing water seal application. The application of a 2.5-3.8 cm water seal provided significantly lower (71-74% reduction in MITC volatilization) total fumigant loss compared with no water seal. The most favorable reduction in MITC off-gassing was observed in the 2.5 cm water seal. This suggests that volatilization of MITC-generating compounds can be highly suppressed using adequate surface irrigation following chemical application in this soil type (sandy clay loam), based on preliminary bench-scale soil column studies. .

  5. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  6. Application of GIS in water distribution system assessment.

    PubMed

    Sargaonkar, Aabha; Islam, Raisul

    2009-10-01

    Water distribution system (WDS) is the most important component of water supply chain--supplying water from source to consumer. When supply system is poorly maintained, contaminants enter into the supply pipes through cracks and this leads to significant public health risk. Being underground, pipe condition assessment is a difficult task. In this paper, a case study is presented for assessment of pipe condition in a water distribution network of Moinbagh area in Hyderabad (India). The mathematical model-Pipe Condition Assessment (PCA) Model was used, which utilizes GIS based maps of water distribution network, sewer network, drains and soil as input in addition to data on physical properties of the network as well as operational parameters. The application of PCA identified that only 3% pipes in the network were in bad condition.

  7. General Characterization Methods for Photoelectrochemical Cells for Solar Water Splitting.

    PubMed

    Shi, Xinjian; Cai, Lili; Ma, Ming; Zheng, Xiaolin; Park, Jong Hyeok

    2015-10-12

    Photoelectrochemical (PEC) water splitting is a very promising technology that converts water into clean hydrogen fuel and oxygen by using solar light. However, the characterization methods for PEC cells are diverse and a systematic introduction to characterization methods for PEC cells has rarely been attempted. Unlike most other review articles that focus mainly on the material used for the working electrodes of PEC cells, this review introduces general characterization methods for PEC cells, including their basic configurations and methods for characterizing their performance under various conditions, regardless of the materials used. Detailed experimental operation procedures with theoretical information are provided for each characterization method. The PEC research area is rapidly expanding and more researchers are beginning to devote themselves to related work. Therefore, the content of this Minireview can provide entry-level knowledge to beginners in the area of PEC, which might accelerate progress in this area. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The water exchange method for colonoscopy-effect of coaching

    PubMed Central

    Cheung, R; Fan, RS; Fischer, LS; Friedland, S; Ho, SB; Hsieh, YH; Hung, I; Li, MK; Matsui, S; Mcquaid, KR; Ohning, G; Ojuri, A; Sato, T; Shergill, AK; Shoham, MA; Simons, TC; Walter, MH; Yen, A

    2012-01-01

    The growing popularity of water immersion is supported by its long history as an adjunct to air insufflation; after facilitating colonoscope passage, the infused water is conveniently removed during withdrawal. Water exchange, a modification of water immersion to minimize discomfort in scheduled unsedated patients in the U.S. is new. Even though it may be superior in reducing pain and increasing adenoma detection, the paradigm shift to complete exclusion of air during insertion necessitates removal of infused water containing residual feces, a step often perceived as laborious and time-consuming. The nuances are the efficient steps to remove infused water predominantly during insertion to maintain minimal distension and deliver salvage cleansing. Mastery of the novel maneuvers with practice returns insertion time towards baseline. In this observational study the impact of direct verbal coaching on the primary outcome of intention-to-treat cecal intubation was assessed. The results showed that 14 of 19 (74%) experienced colonoscopists achieved 100% intention-to-treat cecal intubation. Initiation of the examination with water exchange did not preclude completion when conversion to the more familiar air insufflation method was deemed necessary to achieve cecal intubation (total 98%). The overall intention-to-treat cecal intubation rate was 88%, 90% in male and 87% in female. Only 2.7% of bowel preparation was rated as poor during withdrawal. The mean volume of water infused and cecal intubation time was 1558 ml and 18 min, respectively. Direct coaching appears to facilitate understanding of the nuances of the water exchange method. Studies of individual learning curves are necessary. PMID:23805391

  9. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  10. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  11. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  12. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  13. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  14. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  15. 42 CFR 61.35 - Method of application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Method of application. 61.35 Section 61.35 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Service Fellowships § 61.35 Method of application. Application for a service fellowship shall...

  16. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  17. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  18. 42 CFR 61.6 - Method of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Method of application. 61.6 Section 61.6 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING FELLOWSHIPS Regular Fellowships § 61.6 Method of application. Application for a regular fellowship shall...

  19. Method for Estimating the Acoustic Pressure in Tissues Using Low-Amplitude Measurements in Water.

    PubMed

    Keravnou, Christina P; Izamis, Maria-Louisa; Averkiou, Michalakis A

    2015-11-01

    The aim of this study was to evaluate a simple, reliable and reproducible method for accuracy in estimating the acoustic pressure delivered in tissue exposed to ultrasound. Such a method would be useful for therapeutic applications of ultrasound with microbubbles, for example, sonoporation. The method is based on (i) low-amplitude water measurements that are easily made and do not suffer from non-linear propagation effects, and (ii) the attenuation coefficient of the tissue of interest. The range of validity of the extrapolation method for different attenuation and pressure values was evaluated with a non-linear propagation theoretical model. Depending on the specific tissue attenuation, the method produces good estimates of pressures in excess of 10 MPa. Ex vivo machine-perfused pig liver tissue was used to validate the method for source pressures up to 3.5 MPa. The method can be used to estimate the delivered pressure in vivo in diagnostic and therapeutic applications of ultrasound.

  20. Method for estimating water use and interbasin transfers of freshwater and wastewater in an urbanized basin

    USGS Publications Warehouse

    Horn, M.A.

    2000-01-01

    Techniques for management of drainage basins that use water budgets to balance available water resources with actual or anticipated water use require accurate and precise estimates of basin withdrawals, interbasin transfers of freshwater, unaccounted-for use, water use, consumptive use, inflow and infiltration, basin return flow, and interbasin transfers of wastewater. Frequently, interbasin transfers of freshwater and wastewater are not included in basin water budgets because they occur within public water-delivery and wastewater-collection systems. A new 10-step method was developed to improve estimates of inflow and infiltration and interbasin transfers using readily available statewide data. The accuracy and precision of water-use estimates determined by this method are improved through careful application of coefficients for small users and the use of metered values for large users. The method was developed and tested with data for the Ten Mile River Basin in southeastern Massachusetts. This report uses examples from the basin to illustrate each step of the method.

  1. NEOCHIM: An electrochemical method for environmental application

    USGS Publications Warehouse

    Leinz, R.W.; Hoover, D.B.; Meier, A.L.

    1999-01-01

    Ion migration and electroosmosis are the principal processes underlying electrokinetic remediation of hazardous wastes from soils. These processes are a response of charged species to an applied electrical current and they are accompanied by electrolysis of water at the electrodes through which the current is applied. Electrolysis results in the formation of OH- at the cathode and H+ at the anode. The current drives the OH- and H+ thus formed from the electrodes, through the soil and to the electrode of opposite charge. Introduction of OH- and H+ into the soil being treated modifies soil chemistry and can interfere with either the collection or immobilization of hazardous waste ions. The introduction of either OH- or H+ to the soil can be problematic to electrokinetic remediation but the problem caused by OH- has been the focus of most researchers. The problem has been addressed by flushing the OH- from the soil near the cathode or treating the soil with buffers. These treatments would apply as well to soils affected by H+. With the NEOCHIM technology, developed by the U.S. Geological Survey (USGS) for use as a sampling technique in exploration for buried ore deposits, OH- and H+ are retained in the inner compartment of two-compartment electrodes and are thus prevented from reaching the soil. This enables the extraction of cations and anions, including anionic forms of toxic metals such as HAsO42-. One of the principal attributes of NEOCHIM is the large volume of soil from which ions can be extracted. It is mathematically demonstrable that NEOCHIM extraction volumes can be orders of magnitude greater than volumes typically sampled in more conventional geochemical exploration methods or for environmental sampling. The technology may also be used to introduce selected ions into the soil that affect the solubility of ceratin ions present in the soil. Although field tests for mineral exploration have shown NEOCHIM extraction efficiencies of about 25-35%, laboratory

  2. A novel method for measuring polymer-water partition coefficients.

    PubMed

    Zhu, Tengyi; Jafvert, Chad T; Fu, Dafang; Hu, Yue

    2015-11-01

    Low density polyethylene (LDPE) often is used as the sorbent material in passive sampling devices to estimate the average temporal chemical concentration in water bodies or sediment pore water. To calculate water phase chemical concentrations from LDPE concentrations accurately, it is necessary to know the LDPE-water partition coefficients (KPE-w) of the chemicals of interest. However, even moderately hydrophobic chemicals have large KPE-w values, making direct measurement experimentally difficult. In this study we evaluated a simple three phase system from which KPE-w can be determined easily and accurately. In the method, chemical equilibrium distribution between LDPE and a surfactant micelle pseudo-phase is measured, with the ratio of these concentrations equal to the LDPE-micelle partition coefficient (KPE-mic). By employing sufficient mass of polymer and surfactant (Brij 30), the mass of chemical in the water phase remains negligible, albeit in equilibrium. In parallel, the micelle-water partition coefficient (Kmic-w) is determined experimentally. KPE-w is the product of KPE-mic and Kmic-w. The method was applied to measure values of KPE-w for 17 polycyclic aromatic hydrocarbons, 37 polychlorinated biphenyls, and 9 polybrominated diphenylethers. These values were compared to literature values. Mass fraction-based chemical activity coefficients (γ) were determined in each phase and showed that for each chemical, the micelles and LDPE had nearly identical affinity.

  3. Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.

    PubMed

    Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A

    2012-01-01

    Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.

  4. Methods of disinfection of the water system of dental units by water chlorination.

    PubMed

    Fiehn, N E; Henriksen, K

    1988-12-01

    The aim of the present study was to develop a simple disinfection method for reducing the content of bacteria in the water system of dental units to an acceptable level. The study was carried out at the Royal Dental College, Copenhagen, on 250 dental units. Samples of the cooling water supplying the ultrasonic scalers and of the water supplying the water glasses were obtained from eight different units representing different parts of the school. Disinfection of the water system was carried out by addition of chlorine to the pipe water near the institution's main water intake. The chlorination of the water was automatically regulated, and the installation was so flexible that the concentration of chlorine and the time and frequency of the chlorination could be varied. Different modes of chlorine dosage were examined. Before chlorination, the bacterial content in the water system of the units was about 10(4)-10(5) cfu/mL. It was found that an intermittent chlorination with 0.5-1 ppm chlorine for 10 minutes every day could reduce the normal bacterial counts in the water system to about a few hundred per mL.

  5. [Methods of disinfection of water systems in dental units by water chlorination].

    PubMed

    Fiehn, N E; Henriksen, K

    1989-01-01

    The aim of the present study was to develop a simple disinfection method to reduce the content of bacteria in the water system of dental units to an acceptable level. The study was carried out at the Royal Dental College, Copenhagen on 250 dental units. Samples of the cooling water to the ultrasonic scalers and of the water to the water glasses were obtained from eight different units representing different parts of the school. Disinfection of the water system was carried out by addition of chlorine to the pipe water near the main water intake to the institution. The chlorination af the water was automatically regulated, and the installation was so flexible that the concentration of chlorine and the time and frequency of the chlorination could be varied. Different modes of dosage of chlorine were examined. Before chlorination the bacterial content in the water system of the units was about 10(4)-10(5) c.f.u./ml. It was found that an intermittent chlorination with 0.5-1 ppm chlorine for 10 min. every day could normally reduce the bacterial counts in the water system to about a few hundreds per ml.

  6. Detection of Organic Compounds in Water by an Optical Absorbance Method

    PubMed Central

    Kim, Chihoon; Eom, Joo Beom; Jung, Soyoun; Ji, Taeksoo

    2016-01-01

    This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas. PMID:26742043

  7. 33 CFR 151.2035 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... approved ballast water management methods. 151.2035 Section 151.2035 Navigation and Navigable Waters COAST... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of... water management methods. (a) To discharge ballast water into waters of the United States, the...

  8. 33 CFR 151.2035 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... approved ballast water management methods. 151.2035 Section 151.2035 Navigation and Navigable Waters COAST... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of... water management methods. (a) To discharge ballast water into waters of the United States, the...

  9. 33 CFR 151.1512 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... approved ballast water management methods. 151.1512 Section 151.1512 Navigation and Navigable Waters COAST... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of... ballast water management methods. (a) In order to discharge ballast water into the waters of the...

  10. 33 CFR 151.1512 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... approved ballast water management methods. 151.1512 Section 151.1512 Navigation and Navigable Waters COAST... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of... ballast water management methods. (a) In order to discharge ballast water into the waters of the...

  11. 33 CFR 151.2035 - Implementation schedule for approved ballast water management methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... approved ballast water management methods. 151.2035 Section 151.2035 Navigation and Navigable Waters COAST... SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of... water management methods. (a) To discharge ballast water into waters of the United States, the master...

  12. One-Step Coating toward Multifunctional Applications: Oil/Water Mixtures and Emulsions Separation and Contaminants Adsorption.

    PubMed

    Cao, Yingze; Liu, Na; Zhang, Weifeng; Feng, Lin; Wei, Yen

    2016-02-10

    Here, a method that can simultaneously separate oil/water mixtures and remove water-soluble contaminants has been developed. Various substrates with different pore size were coated by polydopamine and polyethylenepolyamine codeposition films. The as-prepared materials were superhydrophilic and under-water superoleophobic. The materials can separate a range of different oil/water mixtures (including immiscible oil/water mixtures and surfactant-stabilized emulsions) in a single unit operation, with >99.6% separation efficiency and high fluxes. Copper ion and methyl blue can be effectively absorbed from water when it permeates through the materials. This method can be applied on organic and inorganic substrates and used in preparing large-scale product. Therefore, the simple and facile method has excellent potential in practical application and creates a new field for oil/water separation materials with multifunctional applications.

  13. Testing contamination source identification methods for water distribution networks

    DOE PAGES

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.; ...

    2016-04-01

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections,more » and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.« less

  14. Testing contamination source identification methods for water distribution networks

    SciTech Connect

    Seth, Arpan; Klise, Katherine A.; Siirola, John D.; Haxton, Terranna; Laird, Carl D.

    2016-04-01

    In the event of contamination in a water distribution network (WDN), source identification (SI) methods that analyze sensor data can be used to identify the source location(s). Knowledge of the source location and characteristics are important to inform contamination control and cleanup operations. Various SI strategies that have been developed by researchers differ in their underlying assumptions and solution techniques. The following manuscript presents a systematic procedure for testing and evaluating SI methods. The performance of these SI methods is affected by various factors including the size of WDN model, measurement error, modeling error, time and number of contaminant injections, and time and number of measurements. This paper includes test cases that vary these factors and evaluates three SI methods on the basis of accuracy and specificity. The tests are used to review and compare these different SI methods, highlighting their strengths in handling various identification scenarios. These SI methods and a testing framework that includes the test cases and analysis tools presented in this paper have been integrated into EPA’s Water Security Toolkit (WST), a suite of software tools to help researchers and others in the water industry evaluate and plan various response strategies in case of a contamination incident. Lastly, a set of recommendations are made for users to consider when working with different categories of SI methods.

  15. Method for rapid, high sensitivity tritiated water extraction

    SciTech Connect

    Failor, R.; Belovodsky, L.; Gaevoy, V.; Golubev, A.

    1997-04-20

    We have developed a thermal vacuum desorption process to rapidly extract water from environmental samples for tritium analysis. Thermal vacuum desorption allows for extraction of the moisture from the sample within a few hours in a form and quantity suitable for liquid scintillation counting and allows detection of tritium at the levels of <2 Bq/L of milk, <0.5 Bq/gm of vegetation, and < 0.5 Bq/gin of soil. We developed a prototype unit that can process batches of twenty or more samples within 24 hours. Early data shows that a high percentage of water is extracted reproducibly without enrichment or depletion of the tritium content. The quench coefficient of the extracted water is low allowing for accurate, direct liquid scintillation counting. Excellent comparison has been observed with results using freeze-dry lypholization as the water extraction method.

  16. Automatic Measurement of Water Levels by Using Image Identification Method in Open Channel

    NASA Astrophysics Data System (ADS)

    Chung Yang, Han; Xue Yang, Jia

    2014-05-01

    Water level data is indispensable to hydrology research, and it is important information for hydraulic engineering and overall utilization of water resources. The information of water level can be transmitted to management office by the network so that the management office may well understand whether the river level is exceeding the warning line. The existing water level measurement method can only present water levels in a form of data without any of images, the methods which make data just be a data and lack the sense of reality. Those images such as the rising or overflow of river level that the existing measurement method cannot obtain simultaneously. Therefore, this research employs a newly, improved method for water level measurement. Through the Video Surveillance System to record the images on site, an image of water surface will be snapped, and then the snapped image will be pre-processed and be compared with its altitude reference value to obtain a water level altitude value. With the ever-growing technology, the application scope of image identification is widely in increase. This research attempts to use image identification technology to analyze water level automatically. The image observation method used in this research is one of non-contact water level gage but it is quite different from other ones; the image observation method is cheap and the facilities can be set up beside an embankment of river or near the houses, thus the impact coming from external factors will be significantly reduced, and a real scene picture will be transmitted through wireless transmission. According to the dynamic water flow test held in an indoor experimental channel, the results of the research indicated that all of error levels of water level identification were less than 2% which meant the image identification could achieve identification result at different water levels. This new measurement method can offer instant river level figures and on-site video so that a

  17. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  18. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  19. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  20. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance...

  1. 40 CFR 18.6 - Method of Application.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GENERAL ENVIRONMENTAL PROTECTION RESEARCH FELLOWSHIPS AND SPECIAL RESEARCH CONSULTANTS FOR ENVIRONMENTAL PROTECTION § 18.6 Method of Application. Application for an Environmental Protection Research fellowship shall be made in accordance with...

  2. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    USDA-ARS?s Scientific Manuscript database

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  3. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Treesearch

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  4. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  5. An empirical method to determine inadequacy of dietary water.

    PubMed

    Armstrong, Lawrence E; Johnson, Evan C; McKenzie, Amy L; Muñoz, Colleen X

    2016-01-01

    The physiological regulation of total body water and fluid concentrations is complex and dynamic. The human daily water requirement varies because of differences in body size, dietary solute load, exercise, and activities. Although chronically concentrated urine increases the risk of renal diseases, an empirical method to determine inadequate daily water consumption has not been described for any demographic group; instead, statistical analyses are applied to estimate nutritional guidelines (i.e., adequate intake). This investigation describes a novel empirical method to determine the 24-h total fluid intake (TFI; TFI = water + beverages + moisture in food) and 24-h urine volume, which correspond to inadequate 24-h water intake (defined as urine osmolality of 800 mOsm/kg; U800). Healthy young women (mean ± standard deviation; age, 20 ± 2 y, mass, 60.8 ± 11.7 kg; n = 28) were observed for 7 consecutive days. A 24-h urine sample was analyzed for volume and osmolality. Diet records were analyzed to determine 24-h TFI. For these 28 healthy young women, the U800 corresponded to a TFI ≥2.4 L/d (≥39 mL/kg/d) and a urine volume ≥1.3 L/d. The U800 method could be employed to empirically determine 24-h TFI and 24-h urine volumes that correspond to inadequate water intake in diverse demographic groups, residents of specific geographic regions, and individuals who consume specialized diets or experience large daily water turnover. Because laboratory expertise and instrumentation are required, this technique provides greatest value in research and clinical settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fuzzy pricing for urban water resources: model construction and application.

    PubMed

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  7. Evaluation of super-water reducers for highway applications

    NASA Astrophysics Data System (ADS)

    Whiting, D.

    1981-03-01

    Super-water reducers were characterized and evaluated as potential candidates for production of low water to cement ratio, high strength concretes for highway construction applications. Admixtures were composed of either naphthalene or melamine sulfonated formaldehyde condensates. A mini-slump procedure was used to assess dosage requirements and behavior of workability with time of cement pastes. Required dosage was found to be a function of tricalcium aluminate content, alkali content, and fineness of the cement. Concretes exhibited high rates of slump loss when super-water reducers were used. The most promising area of application of these products appears to be in production of dense, high cement content concrete using mobile concrete mixer/transporters.

  8. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  9. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  10. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  11. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Development (OECD) Laboratory Intercomparison Testing, Part I, 1979, appeared to be dependent on the chemicals..., Guidelines for The Testing of Chemicals, OECD 105, Water Solubility (Column Elution Method—Shake Flask Method), OECD, Paris, France (1981). ...

  12. Application and Prospect of Big Data in Water Resources

    NASA Astrophysics Data System (ADS)

    Xi, Danchi; Xu, Xinyi

    2017-04-01

    Because of developed information technology and affordable data storage, we h ave entered the era of data explosion. The term "Big Data" and technology relate s to it has been created and commonly applied in many fields. However, academic studies just got attention on Big Data application in water resources recently. As a result, water resource Big Data technology has not been fully developed. This paper introduces the concept of Big Data and its key technologies, including the Hadoop system and MapReduce. In addition, this paper focuses on the significance of applying the big data in water resources and summarizing prior researches by others. Most studies in this field only set up theoretical frame, but we define the "Water Big Data" and explain its tridimensional properties which are time dimension, spatial dimension and intelligent dimension. Based on HBase, the classification system of Water Big Data is introduced: hydrology data, ecology data and socio-economic data. Then after analyzing the challenges in water resources management, a series of solutions using Big Data technologies such as data mining and web crawler, are proposed. Finally, the prospect of applying big data in water resources is discussed, it can be predicted that as Big Data technology keeps developing, "3D" (Data Driven Decision) will be utilized more in water resources management in the future.

  13. Application of Satellite Gravimetry for Water Resource Vulnerability Assessment

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew

    2012-01-01

    The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.

  14. Water jet: a promising method for cutting optical glass.

    PubMed

    Salinas-Luna, Javier; Machorro, Roberto; Camacho, Javier; Luna, Esteban; Nunez, Juan

    2006-05-20

    We present an alternative method for cutting optical glass. It works with a high-pressure fluid, carring abrasive powder. This technique offers some advantages over conventional methods that use diamond abrasive covered wires or disks. We make a critical comparison between those two techniques, characterizing cuts with interferometric, polarimetric, and Ronchi testing. The main feature of the water-jet technique is that it allows surface of any shape, already polished, to be cut safely.

  15. Water jet: a promising method for cutting optical glass

    NASA Astrophysics Data System (ADS)

    Salinas-Luna, Javier; Machorro, Roberto; Camacho, Javier; Luna, Esteban; Nunez, Juan

    2006-05-01

    We present an alternative method for cutting optical glass. It works with a high-pressure fluid, carring abrasive powder. This technique offers some advantages over conventional methods that use diamond abrasive covered wires or disks. We make a critical comparison between those two techniques, characterizing cuts with interferometric, polarimetric, and Ronchi testing. The main feature of the water-jet technique is that it allows surface of any shape, already polished, to be cut safely.

  16. Application of hydrodynamic cavitation in ballast water treatment.

    PubMed

    Cvetković, Martina; Kompare, Boris; Klemenčič, Aleksandra Krivograd

    2015-05-01

    Ballast water is, together with hull fouling and aquaculture, considered the most important factor of the worldwide transfer of invasive non-indigenous organisms in aquatic ecosystems and the most important factor in European Union. With the aim of preventing and halting the spread of the transfer of invasive organisms in aquatic ecosystems and also in accordance with IMO's International Convention for the Control and Management of Ships Ballast Water and Sediments, the systems for ballast water treatment, whose work includes, e.g. chemical treatment, ozonation and filtration, are used. Although hydrodynamic cavitation (HC) is used in many different areas, such as science and engineering, implied acoustics, biomedicine, botany, chemistry and hydraulics, the application of HC in ballast water treatment area remains insufficiently researched. This paper presents the first literature review that studies lab- and large-scale setups for ballast water treatment together with the type-approved systems currently available on the market that use HC as a step in their operation. This paper deals with the possible advantages and disadvantages of such systems, as well as their influence on the crew and marine environment. It also analyses perspectives on the further development and application of HC in ballast water treatment.

  17. A new spectral method using legendre wavelets for shallow water model in limited-area

    NASA Astrophysics Data System (ADS)

    Yin, Fukang; Song, Junqiang; Wu, Jianping; Cao, Xiaoqun

    2017-02-01

    This paper presents a new spectral method using Legendre wavelets (named LWSTCM), which complete the stepping in spectral space while deal with boundary conditions in grid-point space by collocation method, for the numerical solution of shallow water model in limited-area. In order to deal with the overlapping boundaries, some proper schemes are considered for exchanging the information on the boundaries between sub-domains. 1-D advection equation is used to analysis the exponential convergence property and error characteristics of LWSTCM. Finally, we study LWSTCM on 2-D shallow water equations for a more realistic application. The numerical results are compared with existing numerical solutions found in the literature and demonstrate the validity and applicability of the presented method.

  18. Determination of the Electronics Charge--Electrolysis of Water Method.

    ERIC Educational Resources Information Center

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  19. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...

  20. Screening Methods for Metal-Containing Nanoparticles in Water

    EPA Science Inventory

    Screening-level analysis of water for metal-containing nanoparticles is achieved with single particle-inductively coupled plasma mass spectrometry (SP-ICPMS). This method measures both the concentration of nanoparticles containing an analyte metal and the mass of the metal in eac...