Sample records for application visualization system

  1. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.

    PubMed

    Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-05-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.

  2. High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL

    PubMed Central

    Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus

    2016-01-01

    Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137

  3. Computer vision for general purpose visual inspection: a fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.

    In automatic visual industrial inspection, computer vision systems have been widely used. Such systems are often application specific, and therefore require domain knowledge in order to have a successful implementation. Since visual inspection can be viewed as a decision making process, it is argued that the integration of fuzzy logic analysis and computer vision systems provides a practical approach to general purpose visual inspection applications. This paper describes the development of an integrated fuzzy-rule-based automatic visual inspection system. Domain knowledge about a particular application is represented as a set of fuzzy rules. From the status of predefined fuzzy variables, the set of fuzzy rules are defuzzified to give the inspection results. A practical application where IC marks (often in the forms of English characters and a company logo) inspection is demonstrated, which shows a more consistent result as compared to a conventional thresholding method.

  4. Porting the AVS/Express scientific visualization software to Cray XT4.

    PubMed

    Leaver, George W; Turner, Martin J; Perrin, James S; Mummery, Paul M; Withers, Philip J

    2011-08-28

    Remote scientific visualization, where rendering services are provided by larger scale systems than are available on the desktop, is becoming increasingly important as dataset sizes increase beyond the capabilities of desktop workstations. Uptake of such services relies on access to suitable visualization applications and the ability to view the resulting visualization in a convenient form. We consider five rules from the e-Science community to meet these goals with the porting of a commercial visualization package to a large-scale system. The application uses message-passing interface (MPI) to distribute data among data processing and rendering processes. The use of MPI in such an interactive application is not compatible with restrictions imposed by the Cray system being considered. We present details, and performance analysis, of a new MPI proxy method that allows the application to run within the Cray environment yet still support MPI communication required by the application. Example use cases from materials science are considered.

  5. Simulating storage part of application with Simgrid

    NASA Astrophysics Data System (ADS)

    Wang, Cong

    2017-10-01

    Design of a file system simulation and visualization system, using simgrid API and visualization techniques to help users understanding and improving the file system portion of their application. The core of the simulator is the API provided by simgrid, cluefs tracks and catches the procedure of the I/O operation. Run the simulator simulating this application to generate the output visualization file, which can visualize the I/O action proportion and time series. Users can also change the parameters in the configuration file to change the parameters of the storage system such as reading and writing bandwidth, users can also adjust the storage strategy, test the performance, getting reference to be much easier to optimize the storage system. We have tested all the aspects of the simulator, the results suggest that the simulator performance can be believable.

  6. Architectural Visualization of C/C++ Source Code for Program Comprehension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panas, T; Epperly, T W; Quinlan, D

    2006-09-01

    Structural and behavioral visualization of large-scale legacy systems to aid program comprehension is still a major challenge. The challenge is even greater when applications are implemented in flexible and expressive languages such as C and C++. In this paper, we consider visualization of static and dynamic aspects of large-scale scientific C/C++ applications. For our investigation, we reuse and integrate specialized analysis and visualization tools. Furthermore, we present a novel layout algorithm that permits a compressive architectural view of a large-scale software system. Our layout is unique in that it allows traditional program visualizations, i.e., graph structures, to be seen inmore » relation to the application's file structure.« less

  7. Stereoscopic applications for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2007-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  8. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications

    PubMed Central

    Costa, Daniel G.; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-01

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field. PMID:28067777

  9. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    PubMed

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  10. Research on the framework and key technologies of panoramic visualization for smart distribution network

    NASA Astrophysics Data System (ADS)

    Du, Jian; Sheng, Wanxing; Lin, Tao; Lv, Guangxian

    2018-05-01

    Nowadays, the smart distribution network has made tremendous progress, and the business visualization becomes even more significant and indispensable. Based on the summarization of traditional visualization technologies and demands of smart distribution network, a panoramic visualization application is proposed in this paper. The overall architecture, integrated architecture and service architecture of panoramic visualization application is firstly presented. Then, the architecture design and main functions of panoramic visualization system are elaborated in depth. In addition, the key technologies related to the application is discussed briefly. At last, two typical visualization scenarios in smart distribution network, which are risk warning and fault self-healing, proves that the panoramic visualization application is valuable for the operation and maintenance of the distribution network.

  11. VHP - An environment for the remote visualization of heuristic processes

    NASA Technical Reports Server (NTRS)

    Crawford, Stuart L.; Leiner, Barry M.

    1991-01-01

    A software system called VHP is introduced which permits the visualization of heuristic algorithms on both resident and remote hardware platforms. The VHP is based on the DCF tool for interprocess communication and is applicable to remote algorithms which can be on different types of hardware and in languages other than VHP. The VHP system is of particular interest to systems in which the visualization of remote processes is required such as robotics for telescience applications.

  12. Tactical 3D Model Generation using Structure-From-Motion on Video from Unmanned Systems

    DTIC Science & Technology

    2015-04-01

    available SfM application known as VisualSFM .6,7 VisualSFM is an end-user, “off-the-shelf” implementation of SfM that is easy to configure and used for...most 3D model generation applications from imagery. While the usual interface with VisualSFM is through their graphical user interface (GUI), we will be...of our system.5 There are two types of 3D model generation available within VisualSFM ; sparse and dense reconstruction. Sparse reconstruction begins

  13. MEVA--An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices.

    PubMed

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results.

  14. MEVA - An Interactive Visualization Application for Validation of Multifaceted Meteorological Data with Multiple 3D Devices

    PubMed Central

    Helbig, Carolin; Bilke, Lars; Bauer, Hans-Stefan; Böttinger, Michael; Kolditz, Olaf

    2015-01-01

    Background To achieve more realistic simulations, meteorologists develop and use models with increasing spatial and temporal resolution. The analyzing, comparing, and visualizing of resulting simulations becomes more and more challenging due to the growing amounts and multifaceted character of the data. Various data sources, numerous variables and multiple simulations lead to a complex database. Although a variety of software exists suited for the visualization of meteorological data, none of them fulfills all of the typical domain-specific requirements: support for quasi-standard data formats and different grid types, standard visualization techniques for scalar and vector data, visualization of the context (e.g., topography) and other static data, support for multiple presentation devices used in modern sciences (e.g., virtual reality), a user-friendly interface, and suitability for cooperative work. Methods and Results Instead of attempting to develop yet another new visualization system to fulfill all possible needs in this application domain, our approach is to provide a flexible workflow that combines different existing state-of-the-art visualization software components in order to hide the complexity of 3D data visualization tools from the end user. To complete the workflow and to enable the domain scientists to interactively visualize their data without advanced skills in 3D visualization systems, we developed a lightweight custom visualization application (MEVA - multifaceted environmental data visualization application) that supports the most relevant visualization and interaction techniques and can be easily deployed. Specifically, our workflow combines a variety of different data abstraction methods provided by a state-of-the-art 3D visualization application with the interaction and presentation features of a computer-games engine. Our customized application includes solutions for the analysis of multirun data, specifically with respect to data uncertainty and differences between simulation runs. In an iterative development process, our easy-to-use application was developed in close cooperation with meteorologists and visualization experts. The usability of the application has been validated with user tests. We report on how this application supports the users to prove and disprove existing hypotheses and discover new insights. In addition, the application has been used at public events to communicate research results. PMID:25915061

  15. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  16. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  17. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Visual exhaust system inspection. 202... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations shall operate any motor vehicle of a type to which this regulation is applicable unless the exhaust system of...

  18. Interactive access and management for four-dimensional environmental data sets using McIDAS

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.; Tripoli, Gregory J.

    1991-01-01

    Significant accomplishments in the following areas are presented: (1) enhancements to the visualization of 5-D data sets (VIS-5D); (2) development of the visualization of global images (VIS-GI) application; (3) design of the Visualization for Algorithm Development (VIS-AD) System; and (4) numerical modeling applications. The focus of current research and future research plans is presented and the following topics are addressed: (1) further enhancements to VIS-5D; (2) generalization and enhancement of the VIS-GI application; (3) the implementation of the VIS-AD System; and (4) plans for modeling applications.

  19. Collaborative volume visualization with applications to underwater acoustic signal processing

    NASA Astrophysics Data System (ADS)

    Jarvis, Susan; Shane, Richard T.

    2000-08-01

    Distributed collaborative visualization systems represent a technology whose time has come. Researchers at the Fraunhofer Center for Research in Computer Graphics have been working in the areas of collaborative environments and high-end visualization systems for several years. The medical application. TeleInVivo, is an example of a system which marries visualization and collaboration. With TeleInvivo, users can exchange and collaboratively interact with volumetric data sets in geographically distributed locations. Since examination of many physical phenomena produce data that are naturally volumetric, the visualization frameworks used by TeleInVivo have been extended for non-medical applications. The system can now be made compatible with almost any dataset that can be expressed in terms of magnitudes within a 3D grid. Coupled with advances in telecommunications, telecollaborative visualization is now possible virtually anywhere. Expert data quality assurance and analysis can occur remotely and interactively without having to send all the experts into the field. Building upon this point-to-point concept of collaborative visualization, one can envision a larger pooling of resources to form a large overview of a region of interest from contributions of numerous distributed members.

  20. Molecular Dynamics Visualization (MDV): Stereoscopic 3D Display of Biomolecular Structure and Interactions Using the Unity Game Engine.

    PubMed

    Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L

    2018-06-21

    Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.

  1. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  2. Comprehensive visual field test & diagnosis system in support of astronaut health and performance

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; Clark, Jonathan B.; Reisman, Garrett E.; Tarbell, Mark A.

    Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.

  3. Visual Alert System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A visual alert system resulted from circuitry developed by Applied Cybernetics Systems for Langley as part of a space related telemetry system. James Campman, Applied Cybernetics president, left the company and founded Grace Industries, Inc. to manufacture security devices based on the Langley technology. His visual alert system combines visual and audible alerts for hearing impaired people. The company also manufactures an arson detection device called the electronic nose, and is currently researching additional applications of the NASA technology.

  4. Living Color Frame System: PC graphics tool for data visualization

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1993-01-01

    Living Color Frame System (LCFS) is a personal computer software tool for generating real-time graphics applications. It is highly applicable for a wide range of data visualization in virtual environment applications. Engineers often use computer graphics to enhance the interpretation of data under observation. These graphics become more complicated when 'run time' animations are required, such as found in many typical modern artificial intelligence and expert systems. Living Color Frame System solves many of these real-time graphics problems.

  5. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications.

  6. The Application of Current User Interface Technology to Interactive Wargaming Systems.

    DTIC Science & Technology

    1987-09-01

    components is essential to the Macintosh interface. Apple states that "Consistent visual communication is very powerful in delivering complex messages...interface. A visual interface uses visual objects as the basis of communication. "A visual communication object is some combination S. of text and...graphics used for communication under a system of inter- pretation, or visual language." The benefit of visual communication is V 45 "When humans are faced

  7. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 3 : use of scanning LiDAR in structural evaluation of bridges.

    DOT National Transportation Integrated Search

    2009-12-01

    This volume introduces several applications of remote bridge inspection technologies studied in : this Integrated Remote Sensing and Visualization (IRSV) study using ground-based LiDAR : systems. In particular, the application of terrestrial LiDAR fo...

  8. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  9. Interactive visualization of numerical simulation results: A tool for mission planning and data analysis

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Walker, R. J.; Ashour-Abdalla, M.

    1995-01-01

    We report on the development of an interactive system for visualizing and analyzing numerical simulation results. This system is based on visualization modules which use the Application Visualization System (AVS) and the NCAR graphics packages. Examples from recent simulations are presented to illustrate how these modules can be used for displaying and manipulating simulation results to facilitate their comparison with phenomenological model results and observations.

  10. Stereoscopic display of 3D models for design visualization

    NASA Astrophysics Data System (ADS)

    Gilson, Kevin J.

    2006-02-01

    Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.

  11. Forecasting and visualization of wildfires in a 3D geographical information system

    NASA Astrophysics Data System (ADS)

    Castrillón, M.; Jorge, P. A.; López, I. J.; Macías, A.; Martín, D.; Nebot, R. J.; Sabbagh, I.; Quintana, F. M.; Sánchez, J.; Sánchez, A. J.; Suárez, J. P.; Trujillo, A.

    2011-03-01

    This paper describes a wildfire forecasting application based on a 3D virtual environment and a fire simulation engine. A novel open-source framework is presented for the development of 3D graphics applications over large geographic areas, offering high performance 3D visualization and powerful interaction tools for the Geographic Information Systems (GIS) community. The application includes a remote module that allows simultaneous connections of several users for monitoring a real wildfire event. The system is able to make a realistic composition of what is really happening in the area of the wildfire with dynamic 3D objects and location of human and material resources in real time, providing a new perspective to analyze the wildfire information. The user is enabled to simulate and visualize the propagation of a fire on the terrain integrating at the same time spatial information on topography and vegetation types with weather and wind data. The application communicates with a remote web service that is in charge of the simulation task. The user may specify several parameters through a friendly interface before the application sends the information to the remote server responsible of carrying out the wildfire forecasting using the FARSITE simulation model. During the process, the server connects to different external resources to obtain up-to-date meteorological data. The client application implements a realistic 3D visualization of the fire evolution on the landscape. A Level Of Detail (LOD) strategy contributes to improve the performance of the visualization system.

  12. Real-time scalable visual analysis on mobile devices

    NASA Astrophysics Data System (ADS)

    Pattath, Avin; Ebert, David S.; May, Richard A.; Collins, Timothy F.; Pike, William

    2008-02-01

    Interactive visual presentation of information can help an analyst gain faster and better insight from data. When combined with situational or context information, visualization on mobile devices is invaluable to in-field responders and investigators. However, several challenges are posed by the form-factor of mobile devices in developing such systems. In this paper, we classify these challenges into two broad categories - issues in general mobile computing and issues specific to visual analysis on mobile devices. Using NetworkVis and Infostar as example systems, we illustrate some of the techniques that we employed to overcome many of the identified challenges. NetworkVis is an OpenVG-based real-time network monitoring and visualization system developed for Windows Mobile devices. Infostar is a flash-based interactive, real-time visualization application intended to provide attendees access to conference information. Linked time-synchronous visualization, stylus/button-based interactivity, vector graphics, overview-context techniques, details-on-demand and statistical information display are some of the highlights of these applications.

  13. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data

    PubMed Central

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-01-01

    Background Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. Results We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: . Conclusion MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine. PMID:17937818

  14. MindSeer: a portable and extensible tool for visualization of structural and functional neuroimaging data.

    PubMed

    Moore, Eider B; Poliakov, Andrew V; Lincoln, Peter; Brinkley, James F

    2007-10-15

    Three-dimensional (3-D) visualization of multimodality neuroimaging data provides a powerful technique for viewing the relationship between structure and function. A number of applications are available that include some aspect of 3-D visualization, including both free and commercial products. These applications range from highly specific programs for a single modality, to general purpose toolkits that include many image processing functions in addition to visualization. However, few if any of these combine both stand-alone and remote multi-modality visualization in an open source, portable and extensible tool that is easy to install and use, yet can be included as a component of a larger information system. We have developed a new open source multimodality 3-D visualization application, called MindSeer, that has these features: integrated and interactive 3-D volume and surface visualization, Java and Java3D for true cross-platform portability, one-click installation and startup, integrated data management to help organize large studies, extensibility through plugins, transparent remote visualization, and the ability to be integrated into larger information management systems. We describe the design and implementation of the system, as well as several case studies that demonstrate its utility. These case studies are available as tutorials or demos on the associated website: http://sig.biostr.washington.edu/projects/MindSeer. MindSeer provides a powerful visualization tool for multimodality neuroimaging data. Its architecture and unique features also allow it to be extended into other visualization domains within biomedicine.

  15. Cognitive approaches for patterns analysis and security applications

    NASA Astrophysics Data System (ADS)

    Ogiela, Marek R.; Ogiela, Lidia

    2017-08-01

    In this paper will be presented new opportunities for developing innovative solutions for semantic pattern classification and visual cryptography, which will base on cognitive and bio-inspired approaches. Such techniques can be used for evaluation of the meaning of analyzed patterns or encrypted information, and allow to involve such meaning into the classification task or encryption process. It also allows using some crypto-biometric solutions to extend personalized cryptography methodologies based on visual pattern analysis. In particular application of cognitive information systems for semantic analysis of different patterns will be presented, and also a novel application of such systems for visual secret sharing will be described. Visual shares for divided information can be created based on threshold procedure, which may be dependent on personal abilities to recognize some image details visible on divided images.

  16. Orientation-modulated attention effect on visual evoked potential: Application for PIN system using brain-computer interface.

    PubMed

    Wilaiprasitporn, Theerawit; Yagi, Tohru

    2015-01-01

    This research demonstrates the orientation-modulated attention effect on visual evoked potential. We combined this finding with our previous findings about the motion-modulated attention effect and used the result to develop novel visual stimuli for a personal identification number (PIN) application based on a brain-computer interface (BCI) framework. An electroencephalography amplifier with a single electrode channel was sufficient for our application. A computationally inexpensive algorithm and small datasets were used in processing. Seven healthy volunteers participated in experiments to measure offline performance. Mean accuracy was 83.3% at 13.9 bits/min. Encouraged by these results, we plan to continue developing the BCI-based personal identification application toward real-time systems.

  17. Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David E.; Haimes, Robert

    1999-01-01

    An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.

  18. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  19. VisIO: enabling interactive visualization of ultra-scale, time-series data via high-bandwidth distributed I/O systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Christopher J; Ahrens, James P; Wang, Jun

    2010-10-15

    Petascale simulations compute at resolutions ranging into billions of cells and write terabytes of data for visualization and analysis. Interactive visuaUzation of this time series is a desired step before starting a new run. The I/O subsystem and associated network often are a significant impediment to interactive visualization of time-varying data; as they are not configured or provisioned to provide necessary I/O read rates. In this paper, we propose a new I/O library for visualization applications: VisIO. Visualization applications commonly use N-to-N reads within their parallel enabled readers which provides an incentive for a shared-nothing approach to I/O, similar tomore » other data-intensive approaches such as Hadoop. However, unlike other data-intensive applications, visualization requires: (1) interactive performance for large data volumes, (2) compatibility with MPI and POSIX file system semantics for compatibility with existing infrastructure, and (3) use of existing file formats and their stipulated data partitioning rules. VisIO, provides a mechanism for using a non-POSIX distributed file system to provide linear scaling of 110 bandwidth. In addition, we introduce a novel scheduling algorithm that helps to co-locate visualization processes on nodes with the requested data. Testing using VisIO integrated into Para View was conducted using the Hadoop Distributed File System (HDFS) on TACC's Longhorn cluster. A representative dataset, VPIC, across 128 nodes showed a 64.4% read performance improvement compared to the provided Lustre installation. Also tested, was a dataset representing a global ocean salinity simulation that showed a 51.4% improvement in read performance over Lustre when using our VisIO system. VisIO, provides powerful high-performance I/O services to visualization applications, allowing for interactive performance with ultra-scale, time-series data.« less

  20. The Armed Forces Casualty Assistance Readiness Enhancement System (CARES): Design for Flexibility

    DTIC Science & Technology

    2006-06-01

    Special Form SQL Structured Query Language SSA Social Security Administration U USMA United States Military Academy V VB Visual Basic VBA Visual Basic for...of Abbreviations ................................................................... 26 Appendix B: Key VBA Macros and MS Excel Coding...internet portal, CARES Version 1.0 is a MS Excel spreadsheet application that contains a considerable number of Visual Basic for Applications ( VBA

  1. Industrial Inspection with Open Eyes: Advance with Machine Vision Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zheng; Ukida, H.; Niel, Kurt

    Machine vision systems have evolved significantly with the technology advances to tackle the challenges from modern manufacturing industry. A wide range of industrial inspection applications for quality control are benefiting from visual information captured by different types of cameras variously configured in a machine vision system. This chapter screens the state of the art in machine vision technologies in the light of hardware, software tools, and major algorithm advances for industrial inspection. The inspection beyond visual spectrum offers a significant complementary to the visual inspection. The combination with multiple technologies makes it possible for the inspection to achieve a bettermore » performance and efficiency in varied applications. The diversity of the applications demonstrates the great potential of machine vision systems for industry.« less

  2. Visual Simulation The Old Way

    NASA Astrophysics Data System (ADS)

    Gomes, Gary G.

    1986-05-01

    A cost effective and supportable color visual system has been developed to provide the necessary visual cues to United States Air Force B-52 bomber pilots training to become proficient at the task of inflight refueling. This camera model visual system approach is not suitable for all simulation applications, but provides a cost effective alternative to digital image generation systems when high fidelity of a single movable object is required. The system consists of a three axis gimballed KC-l35 tanker model, a range carriage mounted color augmented monochrome television camera, interface electronics, a color light valve projector and an infinity optics display system.

  3. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  4. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.

    PubMed

    Azizian, Mahdi; Khoshnam, Mahta; Najmaei, Nima; Patel, Rajni V

    2014-09-01

    Intra-operative imaging is widely used to provide visual feedback to a clinician when he/she performs a procedure. In visual servoing, surgical instruments and parts of tissue/body are tracked by processing the acquired images. This information is then used within a control loop to manoeuvre a robotic manipulator during a procedure. A comprehensive search of electronic databases was completed for the period 2000-2013 to provide a survey of the visual servoing applications in medical robotics. The focus is on medical applications where image-based tracking is used for closed-loop control of a robotic system. Detailed classification and comparative study of various contributions in visual servoing using endoscopic or direct visual images are presented and summarized in tables and diagrams. The main challenges in using visual servoing for medical robotic applications are identified and potential future directions are suggested. 'Supervised automation of medical robotics' is found to be a major trend in this field. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A knowledge based system for scientific data visualization

    NASA Technical Reports Server (NTRS)

    Senay, Hikmet; Ignatius, Eve

    1992-01-01

    A knowledge-based system, called visualization tool assistant (VISTA), which was developed to assist scientists in the design of scientific data visualization techniques, is described. The system derives its knowledge from several sources which provide information about data characteristics, visualization primitives, and effective visual perception. The design methodology employed by the system is based on a sequence of transformations which decomposes a data set into a set of data partitions, maps this set of partitions to visualization primitives, and combines these primitives into a composite visualization technique design. Although the primary function of the system is to generate an effective visualization technique design for a given data set by using principles of visual perception the system also allows users to interactively modify the design, and renders the resulting image using a variety of rendering algorithms. The current version of the system primarily supports visualization techniques having applicability in earth and space sciences, although it may easily be extended to include other techniques useful in other disciplines such as computational fluid dynamics, finite-element analysis and medical imaging.

  6. Robotic Attention Processing And Its Application To Visual Guidance

    NASA Astrophysics Data System (ADS)

    Barth, Matthew; Inoue, Hirochika

    1988-03-01

    This paper describes a method of real-time visual attention processing for robots performing visual guidance. This robot attention processing is based on a novel vision processor, the multi-window vision system that was developed at the University of Tokyo. The multi-window vision system is unique in that it only processes visual information inside local area windows. These local area windows are quite flexible in their ability to move anywhere on the visual screen, change their size and shape, and alter their pixel sampling rate. By using these windows for specific attention tasks, it is possible to perform high speed attention processing. The primary attention skills of detecting motion, tracking an object, and interpreting an image are all performed at high speed on the multi-window vision system. A basic robotic attention scheme using the attention skills was developed. The attention skills involved detection and tracking of salient visual features. The tracking and motion information thus obtained was utilized in producing the response to the visual stimulus. The response of the attention scheme was quick enough to be applicable to the real-time vision processing tasks of playing a video 'pong' game, and later using an automobile driving simulator. By detecting the motion of a 'ball' on a video screen and then tracking the movement, the attention scheme was able to control a 'paddle' in order to keep the ball in play. The response was faster than that of a human's, allowing the attention scheme to play the video game at higher speeds. Further, in the application to the driving simulator, the attention scheme was able to control both direction and velocity of a simulated vehicle following a lead car. These two applications show the potential of local visual processing in its use for robotic attention processing.

  7. Examining the Use of a Visual Analytics System for Sensemaking Tasks: Case Studies with Domain Experts.

    PubMed

    Kang, Youn-Ah; Stasko, J

    2012-12-01

    While the formal evaluation of systems in visual analytics is still relatively uncommon, particularly rare are case studies of prolonged system use by domain analysts working with their own data. Conducting case studies can be challenging, but it can be a particularly effective way to examine whether visual analytics systems are truly helping expert users to accomplish their goals. We studied the use of a visual analytics system for sensemaking tasks on documents by six analysts from a variety of domains. We describe their application of the system along with the benefits, issues, and problems that we uncovered. Findings from the studies identify features that visual analytics systems should emphasize as well as missing capabilities that should be addressed. These findings inform design implications for future systems.

  8. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications

    PubMed Central

    Kalinin, Alexandr A.; Palanimalai, Selvam; Dinov, Ivo D.

    2018-01-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis. PMID:29630069

  9. SOCRAT Platform Design: A Web Architecture for Interactive Visual Analytics Applications.

    PubMed

    Kalinin, Alexandr A; Palanimalai, Selvam; Dinov, Ivo D

    2017-04-01

    The modern web is a successful platform for large scale interactive web applications, including visualizations. However, there are no established design principles for building complex visual analytics (VA) web applications that could efficiently integrate visualizations with data management, computational transformation, hypothesis testing, and knowledge discovery. This imposes a time-consuming design and development process on many researchers and developers. To address these challenges, we consider the design requirements for the development of a module-based VA system architecture, adopting existing practices of large scale web application development. We present the preliminary design and implementation of an open-source platform for Statistics Online Computational Resource Analytical Toolbox (SOCRAT). This platform defines: (1) a specification for an architecture for building VA applications with multi-level modularity, and (2) methods for optimizing module interaction, re-usage, and extension. To demonstrate how this platform can be used to integrate a number of data management, interactive visualization, and analysis tools, we implement an example application for simple VA tasks including raw data input and representation, interactive visualization and analysis.

  10. Visualization and Analytics Software Tools for Peregrine System |

    Science.gov Websites

    R is a language and environment for statistical computing and graphics. Go to the R web site for System Visualization and Analytics Software Tools for Peregrine System Learn about the available visualization for OpenGL-based applications. For more information, please go to the FastX page. ParaView An open

  11. Development of a geographic visualization and communications systems (GVCS) for monitoring remote vehicles

    DOT National Transportation Integrated Search

    1998-03-30

    The purpose of this project is to integrate a variety of geographic information systems : capabilities and telecommunication technologies for potential use in geographic network and : visualization applications. The specific technical goals of the pr...

  12. External Visual Representations in Science Learning: The Case of Relations among System Components

    ERIC Educational Resources Information Center

    Eilam, Billie; Poyas, Yael

    2010-01-01

    How do external visual representations (e.g., graph, diagram) promote or constrain students' ability to identify system components and their interrelations, to reinforce a systemic view through the application of the STS approach? University students (N = 150) received information cards describing cellphones' communication system and its subsystem…

  13. Database integration for investigative data visualization with the Temporal Analysis System

    NASA Astrophysics Data System (ADS)

    Barth, Stephen W.

    1997-02-01

    This paper describes an effort to provide mechanisms for integration of existing law enforcement databases with the temporal analysis system (TAS) -- an application for analysis and visualization of military intelligence data. Such integration mechanisms are essential for bringing advanced military intelligence data handling software applications to bear on the analysis of data used in criminal investigations. Our approach involved applying a software application for intelligence message handling to the problem of data base conversion. This application provides mechanisms for distributed processing and delivery of converted data records to an end-user application. It also provides a flexible graphic user interface for development and customization in the field.

  14. Recent results in visual servoing

    NASA Astrophysics Data System (ADS)

    Chaumette, François

    2008-06-01

    Visual servoing techniques consist in using the data provided by a vision sensor in order to control the motions of a dynamic system. Such systems are usually robot arms, mobile robots, aerial robots,… but can also be virtual robots for applications in computer animation, or even a virtual camera for applications in computer vision and augmented reality. A large variety of positioning tasks, or mobile target tracking, can be implemented by controlling from one to all the degrees of freedom of the system. Whatever the sensor configuration, which can vary from one on-board camera on the robot end-effector to several free-standing cameras, a set of visual features has to be selected at best from the image measurements available, allowing to control the degrees of freedom desired. A control law has also to be designed so that these visual features reach a desired value, defining a correct realization of the task. With a vision sensor providing 2D measurements, potential visual features are numerous, since as well 2D data (coordinates of feature points in the image, moments, …) as 3D data provided by a localization algorithm exploiting the extracted 2D measurements can be considered. It is also possible to combine 2D and 3D visual features to take the advantages of each approach while avoiding their respective drawbacks. From the selected visual features, the behavior of the system will have particular properties as for stability, robustness with respect to noise or to calibration errors, robot 3D trajectory, etc. The talk will present the main basic aspects of visual servoing, as well as technical advances obtained recently in the field inside the Lagadic group at INRIA/INRISA Rennes. Several application results will be also described.

  15. Equalizer: a scalable parallel rendering framework.

    PubMed

    Eilemann, Stefan; Makhinya, Maxim; Pajarola, Renato

    2009-01-01

    Continuing improvements in CPU and GPU performances as well as increasing multi-core processor and cluster-based parallelism demand for flexible and scalable parallel rendering solutions that can exploit multipipe hardware accelerated graphics. In fact, to achieve interactive visualization, scalable rendering systems are essential to cope with the rapid growth of data sets. However, parallel rendering systems are non-trivial to develop and often only application specific implementations have been proposed. The task of developing a scalable parallel rendering framework is even more difficult if it should be generic to support various types of data and visualization applications, and at the same time work efficiently on a cluster with distributed graphics cards. In this paper we introduce a novel system called Equalizer, a toolkit for scalable parallel rendering based on OpenGL which provides an application programming interface (API) to develop scalable graphics applications for a wide range of systems ranging from large distributed visualization clusters and multi-processor multipipe graphics systems to single-processor single-pipe desktop machines. We describe the system architecture, the basic API, discuss its advantages over previous approaches, present example configurations and usage scenarios as well as scalability results.

  16. Visual Attention and Applications in Multimedia Technologies

    PubMed Central

    Le Callet, Patrick; Niebur, Ernst

    2013-01-01

    Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications. PMID:24489403

  17. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  18. Systems and Methods for Data Visualization Using Three-Dimensional Displays

    NASA Technical Reports Server (NTRS)

    Davidoff, Scott (Inventor); Djorgovski, Stanislav G. (Inventor); Estrada, Vicente (Inventor); Donalek, Ciro (Inventor)

    2017-01-01

    Data visualization systems and methods for generating 3D visualizations of a multidimensional data space are described. In one embodiment a 3D data visualization application directs a processing system to: load a set of multidimensional data points into a visualization table; create representations of a set of 3D objects corresponding to the set of data points; receive mappings of data dimensions to visualization attributes; determine the visualization attributes of the set of 3D objects based upon the selected mappings of data dimensions to 3D object attributes; update a visibility dimension in the visualization table for each of the plurality of 3D object to reflect the visibility of each 3D object based upon the selected mappings of data dimensions to visualization attributes; and interactively render 3D data visualizations of the 3D objects within the virtual space from viewpoints determined based upon received user input.

  19. Visual prosthesis wireless energy transfer system optimal modeling.

    PubMed

    Li, Xueping; Yang, Yuan; Gao, Yong

    2014-01-16

    Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling's more accuracy for the actual application. The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system's further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application.

  20. Visual prosthesis wireless energy transfer system optimal modeling

    PubMed Central

    2014-01-01

    Background Wireless energy transfer system is an effective way to solve the visual prosthesis energy supply problems, theoretical modeling of the system is the prerequisite to do optimal energy transfer system design. Methods On the basis of the ideal model of the wireless energy transfer system, according to visual prosthesis application condition, the system modeling is optimized. During the optimal modeling, taking planar spiral coils as the coupling devices between energy transmitter and receiver, the effect of the parasitic capacitance of the transfer coil is considered, and especially the concept of biological capacitance is proposed to consider the influence of biological tissue on the energy transfer efficiency, resulting in the optimal modeling’s more accuracy for the actual application. Results The simulation data of the optimal model in this paper is compared with that of the previous ideal model, the results show that under high frequency condition, the parasitic capacitance of inductance and biological capacitance considered in the optimal model could have great impact on the wireless energy transfer system. The further comparison with the experimental data verifies the validity and accuracy of the optimal model proposed in this paper. Conclusions The optimal model proposed in this paper has a higher theoretical guiding significance for the wireless energy transfer system’s further research, and provide a more precise model reference for solving the power supply problem in visual prosthesis clinical application. PMID:24428906

  1. Powerful Raman Lidar systems for atmospheric analysis and high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Avdikos, George

    2015-03-01

    In this paper the author presents modern commercial Raman Lidar systems which can be applied to high-energy physics experiments. Raymetrics is a world-leader in laser remote (lidar) sensing applications. Products series include lidar systems for various applications like atmospheric analysis, meteorology, and recently more operational applications including volcanic ash detection systems, visual rangers for application to airports etc.

  2. Prototype crawling robotics system for remote visual inspection of high-mast light poles.

    DOT National Transportation Integrated Search

    1997-01-01

    This report presents the results of a project to develop a crawling robotics system for the remote visual inspection of high-mast light poles in Virginia. The first priority of this study was to develop a simple robotics application that would reduce...

  3. Virtual Earth System Laboratory (VESL): A Virtual Research Environment for The Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Quinn, J. D.; Larour, E. Y.; Halkides, D. J.

    2017-12-01

    The Virtual Earth System Laboratory (VESL) is a Web application, under continued development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. As with any project of its size, we have encountered both successes and challenges during the course of development. Our principal point of success is the fact that VESL users can interact seamlessly with our earth science simulations within their own Web browser. Some of the challenges we have faced include retrofitting the VESL Web application to respond to touch gestures, reducing page load time (especially as the application has grown), and accounting for the differences between the various Web browsers and computing platforms.

  4. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    NASA Astrophysics Data System (ADS)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  5. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    PubMed

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  6. Autonomous facial recognition system inspired by human visual system based logarithmical image visualization technique

    NASA Astrophysics Data System (ADS)

    Wan, Qianwen; Panetta, Karen; Agaian, Sos

    2017-05-01

    Autonomous facial recognition system is widely used in real-life applications, such as homeland border security, law enforcement identification and authentication, and video-based surveillance analysis. Issues like low image quality, non-uniform illumination as well as variations in poses and facial expressions can impair the performance of recognition systems. To address the non-uniform illumination challenge, we present a novel robust autonomous facial recognition system inspired by the human visual system based, so called, logarithmical image visualization technique. In this paper, the proposed method, for the first time, utilizes the logarithmical image visualization technique coupled with the local binary pattern to perform discriminative feature extraction for facial recognition system. The Yale database, the Yale-B database and the ATT database are used for computer simulation accuracy and efficiency testing. The extensive computer simulation demonstrates the method's efficiency, accuracy, and robustness of illumination invariance for facial recognition.

  7. Development of a Visual System Interface to Support a Domain-Oriented Application Composition System

    DTIC Science & Technology

    1993-03-23

    Austin Texas, 1990. 25. Kang, Kyo C. and others. Feature-Oriented Domain Analysis ( FODA ) Feasibility Study. Tech- nical Report CMU/SEI-90-TR-21, Software...Validation and Analysis of the Architect Visual System. .. .. .. .. .... ....... 5-1 5.1 Validation Domain...5-2 5.3 Analysis .. .. .. .. .. .. .... .. .... .... .. .... .... .. ....... 5-2 5.3.1 The REFINE Environment

  8. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    NASA Astrophysics Data System (ADS)

    Ozana, Stepan; Pies, Martin; Docekal, Tomas

    2016-06-01

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a wide variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.

  9. Development of an in vivo visual robot system with a magnetic anchoring mechanism and a lens cleaning mechanism for laparoendoscopic single-site surgery (LESS).

    PubMed

    Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi

    2017-12-01

    Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Geowall: Investigations into low-cost stereo display technologies

    USGS Publications Warehouse

    Steinwand, Daniel R.; Davis, Brian; Weeks, Nathan

    2003-01-01

    Recently, the combination of new projection technology, fast, low-cost graphics cards, and Linux-powered personal computers has made it possible to provide a stereoprojection and stereoviewing system that is much more affordable than previous commercial solutions. These Geowall systems are low-cost visualization systems built with commodity off-the-shelf components, run on open-source (and other) operating systems, and using open-source applications software. In short, they are ?Beowulf-class? visualization systems that provide a cost-effective way for the U. S. Geological Survey to broaden participation in the visualization community and view stereoimagery and three-dimensional models2.

  11. A picture is worth a thousand words: helping students visualize a conceptual model.

    PubMed

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  12. Framework for Evaluating Loop Invariant Detection Games in Relation to Automated Dynamic Invariant Detectors

    DTIC Science & Technology

    2015-09-01

    Detectability ...............................................................................................37 Figure 20. Excel VBA Codes for Checker...National Vulnerability Database OS Operating System SQL Structured Query Language VC Verification Condition VBA Visual Basic for Applications...checks each of these assertions for detectability by Daikon. The checker is an Excel Visual Basic for Applications ( VBA ) script that checks the

  13. A Visual Tool for Computer Supported Learning: The Robot Motion Planning Example

    ERIC Educational Resources Information Center

    Elnagar, Ashraf; Lulu, Leena

    2007-01-01

    We introduce an effective computer aided learning visual tool (CALVT) to teach graph-based applications. We present the robot motion planning problem as an example of such applications. The proposed tool can be used to simulate and/or further to implement practical systems in different areas of computer science such as graphics, computational…

  14. The Use of Spatialized Speech in Auditory Interfaces for Computer Users Who Are Visually Impaired

    ERIC Educational Resources Information Center

    Sodnik, Jaka; Jakus, Grega; Tomazic, Saso

    2012-01-01

    Introduction: This article reports on a study that explored the benefits and drawbacks of using spatially positioned synthesized speech in auditory interfaces for computer users who are visually impaired (that is, are blind or have low vision). The study was a practical application of such systems--an enhanced word processing application compared…

  15. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    Vandam, Andries

    1995-01-01

    The main goal of this project is to develop novel and productive user interface techniques for creating and managing visualizations of computational fluid dynamics (CFD) datasets. We have implemented an application framework in which we can visualize computational fluid dynamics user interfaces. This UI technology allows users to interactively place visualization probes in a dataset and modify some of their parameters. We have also implemented a time-critical scheduling system which strives to maintain a constant frame-rate regardless of the number of visualization techniques. In the past year, we have published parts of this research at two conferences, the research annotation system at Visualization 1994, and the 3D user interface at UIST 1994. The real-time scheduling system has been submitted to SIGGRAPH 1995 conference. Copies of these documents are included with this report.

  16. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  17. Learning Visual Design through Hypermedia: Pathways to Visual Literacy.

    ERIC Educational Resources Information Center

    Lockee, Barbara; Hergert, Tom

    The interactive multimedia application described here attempts to provide learners and teachers with a common frame of reference for communicating about visual media. The system is based on a list of concepts related to composition, and illustrates those concepts with photographs, paintings, graphic designs, and motion picture scenes. The ability…

  18. A GUI visualization system for airborne lidar image data to reconstruct 3D city model

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2015-10-01

    A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.

  19. Component-Based Visualization System

    NASA Technical Reports Server (NTRS)

    Delgado, Francisco

    2005-01-01

    A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.

  20. Three-dimensional visualization and display technologies; Proceedings of the Meeting, Los Angeles, CA, Jan. 18-20, 1989

    NASA Technical Reports Server (NTRS)

    Robbins, Woodrow E. (Editor); Fisher, Scott S. (Editor)

    1989-01-01

    Special attention was given to problems of stereoscopic display devices, such as CAD for enhancement of the design process in visual arts, stereo-TV improvement of remote manipulator performance, a voice-controlled stereographic video camera system, and head-mounted displays and their low-cost design alternatives. Also discussed was a novel approach to chromostereoscopic microscopy, computer-generated barrier-strip autostereography and lenticular stereograms, and parallax barrier three-dimensional TV. Additional topics include processing and user interface isssues and visualization applications, including automated analysis and fliud flow topology, optical tomographic measusrements of mixing fluids, visualization of complex data, visualization environments, and visualization management systems.

  1. Scrambling for anonymous visual communications

    NASA Astrophysics Data System (ADS)

    Dufaux, Frederic; Ebrahimi, Touradj

    2005-08-01

    In this paper, we present a system for anonymous visual communications. Target application is an anonymous video chat. The system is identifying faces in the video sequence by means of face detection or skin detection. The corresponding regions are subsequently scrambled. We investigate several approaches for scrambling, either in the image-domain or in the transform-domain. Experiment results show the effectiveness of the proposed system.

  2. 6D Visualization of Multidimensional Data by Means of Cognitive Technology

    NASA Astrophysics Data System (ADS)

    Vitkovskiy, V.; Gorohov, V.; Komarinskiy, S.

    2010-12-01

    On the basis of the cognitive graphics concept, we worked out the SW-system for visualization and analysis. It allows to train and to aggravate intuition of researcher, to raise his interest and motivation to the creative, scientific cognition, to realize process of dialogue with the very problems simultaneously. The Space Hedgehog system is the next step in the cognitive means of the multidimensional data analyze. The technique and technology cognitive 6D visualization of the multidimensional data is developed on the basis of the cognitive visualization research and technology development. The Space Hedgehog system allows direct dynamic visualization of 6D objects. It is developed with use of experience of the program Space Walker creation and its applications.

  3. Engaging older adults in the visualization of sensor data facilitated by an open platform for connected devices.

    PubMed

    Bock, Christian; Demiris, George; Choi, Yong; Le, Thai; Thompson, Hilaire J; Samuel, Arjmand; Huang, Danny

    2016-03-11

    The use of smart home sensor systems is growing primarily due to the appeal of unobtrusively monitoring older adult health and wellness. However, integrating large-scale sensor systems within residential settings can be challenging when deployment takes place across multiple environments, requiring customization of applications, connection across various devices and effective visualization of complex longitudinal data. The objective of the study was to demonstrate the implementation of a smart home system using an open, extensible platform in a real-world setting and develop an application to visualize data real time. We deployed the open source Lab of Things platform in a house of 11 residents as a demonstration of feasibility over the course of 3 months. The system consisted of Aeon Labs Z-wave Door/Window sensors and an Aeon Labs Multi-sensor that collected data on motion, temperature, luminosity, and humidity. We applied a Rapid Iterative Testing and Evaluation approach towards designing a visualization interface engaging gerontological experts. We then conducted a survey with 19 older adult and caregiver stakeholders to inform further design revisions. Our initial visualization mockups consisted of a bar chart representing activity level over time. Family members felt comfortable using the application. Older adults however, indicated it would be difficult to learn to use the application, and had trouble identifying utility. A key for older adults was ensuring that the data collected could be utilized by their family members, physicians, or caregivers. The approach described in this work is generalizable towards future smart home deployments and can be a valuable guide for researchers to scale a study across multiple homes and connected devices, and to create personalized interfaces for end users.

  4. Comparative case study between D3 and highcharts on lustre data visualization

    NASA Astrophysics Data System (ADS)

    ElTayeby, Omar; John, Dwayne; Patel, Pragnesh; Simmerman, Scott

    2013-12-01

    One of the challenging tasks in visual analytics is to target clustered time-series data sets, since it is important for data analysts to discover patterns changing over time while keeping their focus on particular subsets. In order to leverage the humans ability to quickly visually perceive these patterns, multivariate features should be implemented according to the attributes available. However, a comparative case study has been done using JavaScript libraries to demonstrate the differences in capabilities of using them. A web-based application to monitor the Lustre file system for the systems administrators and the operation teams has been developed using D3 and Highcharts. Lustre file systems are responsible of managing Remote Procedure Calls (RPCs) which include input output (I/O) requests between clients and Object Storage Targets (OSTs). The objective of this application is to provide time-series visuals of these calls and storage patterns of users on Kraken, a University of Tennessee High Performance Computing (HPC) resource in Oak Ridge National Laboratory (ORNL).

  5. Integrating advanced visualization technology into the planetary Geoscience workflow

    NASA Astrophysics Data System (ADS)

    Huffman, John; Forsberg, Andrew; Loomis, Andrew; Head, James; Dickson, James; Fassett, Caleb

    2011-09-01

    Recent advances in computer visualization have allowed us to develop new tools for analyzing the data gathered during planetary missions, which is important, since these data sets have grown exponentially in recent years to tens of terabytes in size. As part of the Advanced Visualization in Solar System Exploration and Research (ADVISER) project, we utilize several advanced visualization techniques created specifically with planetary image data in mind. The Geoviewer application allows real-time active stereo display of images, which in aggregate have billions of pixels. The ADVISER desktop application platform allows fast three-dimensional visualization of planetary images overlain on digital terrain models. Both applications include tools for easy data ingest and real-time analysis in a programmatic manner. Incorporation of these tools into our everyday scientific workflow has proved important for scientific analysis, discussion, and publication, and enabled effective and exciting educational activities for students from high school through graduate school.

  6. SCSODC: Integrating Ocean Data for Visualization Sharing and Application

    NASA Astrophysics Data System (ADS)

    Xu, C.; Li, S.; Wang, D.; Xie, Q.

    2014-02-01

    The South China Sea Ocean Data Center (SCSODC) was founded in 2010 in order to improve collecting and managing of ocean data of the South China Sea Institute of Oceanology (SCSIO). The mission of SCSODC is to ensure the long term scientific stewardship of ocean data, information and products - collected through research groups, monitoring stations and observation cruises - and to facilitate the efficient use and distribution to possible users. However, data sharing and applications were limited due to the characteristics of distribution and heterogeneity that made it difficult to integrate the data. To surmount those difficulties, the Data Sharing System has been developed by the SCSODC using the most appropriate information management and information technology. The Data Sharing System uses open standards and tools to promote the capability to integrate ocean data and to interact with other data portals or users and includes a full range of processes such as data discovery, evaluation and access combining C/S and B/S mode. It provides a visualized management interface for the data managers and a transparent and seamless data access and application environment for users. Users are allowed to access data using the client software and to access interactive visualization application interface via a web browser. The architecture, key technologies and functionality of the system are discussed briefly in this paper. It is shown that the system of SCSODC is able to implement web visualization sharing and seamless access to ocean data in a distributed and heterogeneous environment.

  7. Development of the Macro Command Editing Executive System for Factory Workers-Oriented Programless Visual Inspection System

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Wakitani, Kouichi; Nakamura, Masatoshi; Kubo, Hiroyasu

    Because visual inspection systems are difficult to tune, they create many problems for the kaizen process. This results in increased development costs and time to assure that the inspection systems function properly. In order to improve inspection system development, we designed an easy-tuning system called a “Program-less” visual inspection system. The ROI macro command which consisted of eight kinds of shape recognition macro commands and decision, operation, control commands was built. Furthermore, the macro command editing executive system was developed by the operation of only the GUI without editing source program. The validity of the ROI macro command was proved by the application of 488 places.

  8. Multivariate Gradient Analysis for Evaluating and Visualizing a Learning System Platform for Computer Programming

    ERIC Educational Resources Information Center

    Mather, Richard

    2015-01-01

    This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…

  9. Use of a Mobile Application to Help Students Develop Skills Needed in Solving Force Equilibrium Problems

    ERIC Educational Resources Information Center

    Yang, Eunice

    2016-01-01

    This paper discusses the use of a free mobile engineering application (app) called Autodesk® ForceEffect™ to provide students assistance with spatial visualization of forces and more practice in solving/visualizing statics problems compared to the traditional pencil-and-paper method. ForceEffect analyzes static rigid-body systems using free-body…

  10. Comparison of L-system applications towards plant modelling, music rendering and score generation using visual language programming

    NASA Astrophysics Data System (ADS)

    Lim, Chen Kim; Tan, Kian Lam; Yusran, Hazwanni; Suppramaniam, Vicknesh

    2017-10-01

    Visual language or visual representation has been used in the past few years in order to express the knowledge in graphic. One of the important graphical elements is fractal and L-Systems is a mathematic-based grammatical model for modelling cell development and plant topology. From the plant model, L-Systems can be interpreted as music sound and score. In this paper, LSound which is a Visual Language Programming (VLP) framework has been developed to model plant to music sound and generate music score and vice versa. The objectives of this research has three folds: (i) To expand the grammar dictionary of L-Systems music based on visual programming, (ii) To design and produce a user-friendly and icon based visual language framework typically for L-Systems musical score generation which helps the basic learners in musical field and (iii) To generate music score from plant models and vice versa using L-Systems method. This research undergoes a four phases methodology where the plant is first modelled, then the music is interpreted, followed by the output of music sound through MIDI and finally score is generated. LSound is technically compared to other existing applications in the aspects of the capability of modelling the plant, rendering the music and generating the sound. It has been found that LSound is a flexible framework in which the plant can be easily altered through arrow-based programming and the music score can be altered through the music symbols and notes. This work encourages non-experts to understand L-Systems and music hand-in-hand.

  11. [Three-dimensional morphological modeling and visualization of wheat root system].

    PubMed

    Tan, Feng; Tang, Liang; Hu, Jun-Cheng; Jiang, Hai-Yan; Cao, Wei-Xing; Zhu, Yan

    2011-01-01

    Crop three-dimensional (3D) morphological modeling and visualization is an important part of digital plant study. This paper aimed to develop a 3D morphological model of wheat root system based on the parameters of wheat root morphological features, and to realize the visualization of wheat root growth. According to the framework of visualization technology for wheat root growth, a 3D visualization model of wheat root axis, including root axis growth model, branch geometric model, and root axis curve model, was developed firstly. Then, by integrating root topology, the corresponding pixel was determined, and the whole wheat root system was three-dimensionally re-constructed by using the morphological feature parameters in the root morphological model. Finally, based on the platform of OpenGL, and by integrating the technologies of texture mapping, lighting rendering, and collision detection, the 3D visualization of wheat root growth was realized. The 3D output of wheat root system from the model was vivid, which could realize the 3D root system visualization of different wheat cultivars under different water regimes and nitrogen application rates. This study could lay a technical foundation for further development of an integral visualization system of wheat plant.

  12. Comparing the quality of accessing medical literature using content-based visual and textual information retrieval

    NASA Astrophysics Data System (ADS)

    Müller, Henning; Kalpathy-Cramer, Jayashree; Kahn, Charles E., Jr.; Hersh, William

    2009-02-01

    Content-based visual information (or image) retrieval (CBIR) has been an extremely active research domain within medical imaging over the past ten years, with the goal of improving the management of visual medical information. Many technical solutions have been proposed, and application scenarios for image retrieval as well as image classification have been set up. However, in contrast to medical information retrieval using textual methods, visual retrieval has only rarely been applied in clinical practice. This is despite the large amount and variety of visual information produced in hospitals every day. This information overload imposes a significant burden upon clinicians, and CBIR technologies have the potential to help the situation. However, in order for CBIR to become an accepted clinical tool, it must demonstrate a higher level of technical maturity than it has to date. Since 2004, the ImageCLEF benchmark has included a task for the comparison of visual information retrieval algorithms for medical applications. In 2005, a task for medical image classification was introduced and both tasks have been run successfully for the past four years. These benchmarks allow an annual comparison of visual retrieval techniques based on the same data sets and the same query tasks, enabling the meaningful comparison of various retrieval techniques. The datasets used from 2004-2007 contained images and annotations from medical teaching files. In 2008, however, the dataset used was made up of 67,000 images (along with their associated figure captions and the full text of their corresponding articles) from two Radiological Society of North America (RSNA) scientific journals. This article describes the results of the medical image retrieval task of the ImageCLEF 2008 evaluation campaign. We compare the retrieval results of both visual and textual information retrieval systems from 15 research groups on the aforementioned data set. The results show clearly that, currently, visual retrieval alone does not achieve the performance necessary for real-world clinical applications. Most of the common visual retrieval techniques have a MAP (Mean Average Precision) of around 2-3%, which is much lower than that achieved using textual retrieval (MAP=29%). Advanced machine learning techniques, together with good training data, have been shown to improve the performance of visual retrieval systems in the past. Multimodal retrieval (basing retrieval on both visual and textual information) can achieve better results than purely visual, but only when carefully applied. In many cases, multimodal retrieval systems performed even worse than purely textual retrieval systems. On the other hand, some multimodal retrieval systems demonstrated significantly increased early precision, which has been shown to be a desirable behavior in real-world systems.

  13. A Future of Reversals: Dyslexic Talents in a World of Computer Visualization.

    ERIC Educational Resources Information Center

    West, Thomas G.

    1992-01-01

    This paper proposes that those traits which handicap visually oriented dyslexics in a verbally oriented educational system may confer advantages in new fields which rely on visual methods of analysis, especially those in computer applications. It is suggested that such traits also characterized Albert Einstein, Michael Faraday, James Maxwell, and…

  14. User Centered, Application Independent Visualization of National Airspace Data

    NASA Technical Reports Server (NTRS)

    Murphy, James R.; Hinton, Susan E.

    2011-01-01

    This paper describes an application independent software tool, IV4D, built to visualize animated and still 3D National Airspace System (NAS) data specifically for aeronautics engineers who research aggregate, as well as single, flight efficiencies and behavior. IV4D was origin ally developed in a joint effort between the National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (A FRL) to support the visualization of air traffic data from the Airspa ce Concept Evaluation System (ACES) simulation program. The three mai n challenges tackled by IV4D developers were: 1) determining how to d istill multiple NASA data formats into a few minimal dataset types; 2 ) creating an environment, consisting of a user interface, heuristic algorithms, and retained metadata, that facilitates easy setup and fa st visualization; and 3) maximizing the user?s ability to utilize the extended range of visualization available with AFRL?s existing 3D te chnologies. IV4D is currently being used by air traffic management re searchers at NASA?s Ames and Langley Research Centers to support data visualizations.

  15. Towards a visual modeling approach to designing microelectromechanical system transducers

    NASA Astrophysics Data System (ADS)

    Dewey, Allen; Srinivasan, Vijay; Icoz, Evrim

    1999-12-01

    In this paper, we address initial design capture and system conceptualization of microelectromechanical system transducers based on visual modeling and design. Visual modeling frames the task of generating hardware description language (analog and digital) component models in a manner similar to the task of generating software programming language applications. A structured topological design strategy is employed, whereby microelectromechanical foundry cell libraries are utilized to facilitate the design process of exploring candidate cells (topologies), varying key aspects of the transduction for each topology, and determining which topology best satisfies design requirements. Coupled-energy microelectromechanical system characterizations at a circuit level of abstraction are presented that are based on branch constitutive relations and an overall system of simultaneous differential and algebraic equations. The resulting design methodology is called visual integrated-microelectromechanical VHDL-AMS interactive design (VHDL-AMS is visual hardware design language for analog and mixed signal).

  16. An optimized web-based approach for collaborative stereoscopic medical visualization

    PubMed Central

    Kaspar, Mathias; Parsad, Nigel M; Silverstein, Jonathan C

    2013-01-01

    Objective Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. Materials and Methods Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. Results We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. Discussion The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. Conclusions Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization. PMID:23048008

  17. WebViz:A Web-based Collaborative Interactive Visualization System for large-Scale Data Sets

    NASA Astrophysics Data System (ADS)

    Yuen, D. A.; McArthur, E.; Weiss, R. M.; Zhou, J.; Yao, B.

    2010-12-01

    WebViz is a web-based application designed to conduct collaborative, interactive visualizations of large data sets for multiple users, allowing researchers situated all over the world to utilize the visualization services offered by the University of Minnesota’s Laboratory for Computational Sciences and Engineering (LCSE). This ongoing project has been built upon over the last 3 1/2 years .The motivation behind WebViz lies primarily with the need to parse through an increasing amount of data produced by the scientific community as a result of larger and faster multicore and massively parallel computers coming to the market, including the use of general purpose GPU computing. WebViz allows these large data sets to be visualized online by anyone with an account. The application allows users to save time and resources by visualizing data ‘on the fly’, wherever he or she may be located. By leveraging AJAX via the Google Web Toolkit (http://code.google.com/webtoolkit/), we are able to provide users with a remote, web portal to LCSE's (http://www.lcse.umn.edu) large-scale interactive visualization system already in place at the University of Minnesota. LCSE’s custom hierarchical volume rendering software provides high resolution visualizations on the order of 15 million pixels and has been employed for visualizing data primarily from simulations in astrophysics to geophysical fluid dynamics . In the current version of WebViz, we have implemented a highly extensible back-end framework built around HTTP "server push" technology. The web application is accessible via a variety of devices including netbooks, iPhones, and other web and javascript-enabled cell phones. Features in the current version include the ability for users to (1) securely login (2) launch multiple visualizations (3) conduct collaborative visualization sessions (4) delegate control aspects of a visualization to others and (5) engage in collaborative chats with other users within the user interface of the web application. These features are all in addition to a full range of essential visualization functions including 3-D camera and object orientation, position manipulation, time-stepping control, and custom color/alpha mapping.

  18. Natural Inspired Intelligent Visual Computing and Its Application to Viticulture.

    PubMed

    Ang, Li Minn; Seng, Kah Phooi; Ge, Feng Lu

    2017-05-23

    This paper presents an investigation of natural inspired intelligent computing and its corresponding application towards visual information processing systems for viticulture. The paper has three contributions: (1) a review of visual information processing applications for viticulture; (2) the development of natural inspired computing algorithms based on artificial immune system (AIS) techniques for grape berry detection; and (3) the application of the developed algorithms towards real-world grape berry images captured in natural conditions from vineyards in Australia. The AIS algorithms in (2) were developed based on a nature-inspired clonal selection algorithm (CSA) which is able to detect the arcs in the berry images with precision, based on a fitness model. The arcs detected are then extended to perform the multiple arcs and ring detectors information processing for the berry detection application. The performance of the developed algorithms were compared with traditional image processing algorithms like the circular Hough transform (CHT) and other well-known circle detection methods. The proposed AIS approach gave a Fscore of 0.71 compared with Fscores of 0.28 and 0.30 for the CHT and a parameter-free circle detection technique (RPCD) respectively.

  19. Modeling of Explorative Procedures for Remote Object Identification

    DTIC Science & Technology

    1991-09-01

    haptic sensory system and the simulated foveal component of the visual system. Eventually it will allow multiple applications in remote sensing and...superposition of sensory channels. The use of a force reflecting telemanipulator and computer simulated visual foveal component are the tools which...representation of human search models is achieved by using the proprioceptive component of the haptic sensory system and the simulated foveal component of the

  20. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  1. Discovering and visualizing indirect associations between biomedical concepts

    PubMed Central

    Tsuruoka, Yoshimasa; Miwa, Makoto; Hamamoto, Kaisei; Tsujii, Jun'ichi; Ananiadou, Sophia

    2011-01-01

    Motivation: Discovering useful associations between biomedical concepts has been one of the main goals in biomedical text-mining, and understanding their biomedical contexts is crucial in the discovery process. Hence, we need a text-mining system that helps users explore various types of (possibly hidden) associations in an easy and comprehensible manner. Results: This article describes FACTA+, a real-time text-mining system for finding and visualizing indirect associations between biomedical concepts from MEDLINE abstracts. The system can be used as a text search engine like PubMed with additional features to help users discover and visualize indirect associations between important biomedical concepts such as genes, diseases and chemical compounds. FACTA+ inherits all functionality from its predecessor, FACTA, and extends it by incorporating three new features: (i) detecting biomolecular events in text using a machine learning model, (ii) discovering hidden associations using co-occurrence statistics between concepts, and (iii) visualizing associations to improve the interpretability of the output. To the best of our knowledge, FACTA+ is the first real-time web application that offers the functionality of finding concepts involving biomolecular events and visualizing indirect associations of concepts with both their categories and importance. Availability: FACTA+ is available as a web application at http://refine1-nactem.mc.man.ac.uk/facta/, and its visualizer is available at http://refine1-nactem.mc.man.ac.uk/facta-visualizer/. Contact: tsuruoka@jaist.ac.jp PMID:21685059

  2. GLO-STIX: Graph-Level Operations for Specifying Techniques and Interactive eXploration

    PubMed Central

    Stolper, Charles D.; Kahng, Minsuk; Lin, Zhiyuan; Foerster, Florian; Goel, Aakash; Stasko, John; Chau, Duen Horng

    2015-01-01

    The field of graph visualization has produced a wealth of visualization techniques for accomplishing a variety of analysis tasks. Therefore analysts often rely on a suite of different techniques, and visual graph analysis application builders strive to provide this breadth of techniques. To provide a holistic model for specifying network visualization techniques (as opposed to considering each technique in isolation) we present the Graph-Level Operations (GLO) model. We describe a method for identifying GLOs and apply it to identify five classes of GLOs, which can be flexibly combined to re-create six canonical graph visualization techniques. We discuss advantages of the GLO model, including potentially discovering new, effective network visualization techniques and easing the engineering challenges of building multi-technique graph visualization applications. Finally, we implement the GLOs that we identified into the GLO-STIX prototype system that enables an analyst to interactively explore a graph by applying GLOs. PMID:26005315

  3. Case studies on design, simulation and visualization of control and measurement applications using REX control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozana, Stepan, E-mail: stepan.ozana@vsb.cz; Pies, Martin, E-mail: martin.pies@vsb.cz; Docekal, Tomas, E-mail: docekalt@email.cz

    REX Control System is a professional advanced tool for design and implementation of complex control systems that belongs to softPLC category. It covers the entire process starting from simulation of functionality of the application before deployment, through implementation on real-time target, towards analysis, diagnostics and visualization. Basically it consists of two parts: the development tools and the runtime system. It is also compatible with Simulink environment, and the way of implementation of control algorithm is very similar. The control scheme is finally compiled (using RexDraw utility) and uploaded into a chosen real-time target (using RexView utility). There is a widemore » variety of hardware platforms and real-time operating systems supported by REX Control System such as for example Windows Embedded, Linux, Linux/Xenomai deployed on SBC, IPC, PAC, Raspberry Pi and others with many I/O interfaces. It is modern system designed both for measurement and control applications, offering a lot of additional functions concerning data archiving, visualization based on HTML5, and communication standards. The paper will sum up possibilities of its use in educational process, focused on control of case studies of physical models with classical and advanced control algorithms.« less

  4. Application-Controlled Demand Paging for Out-of-Core Visualization

    NASA Technical Reports Server (NTRS)

    Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)

    1997-01-01

    In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.

  5. Helmet-mounted display systems for flight simulation

    NASA Technical Reports Server (NTRS)

    Haworth, Loren A.; Bucher, Nancy M.

    1989-01-01

    Simulation scientists are continually improving simulation technology with the goal of more closely replicating the physical environment of the real world. The presentation or display of visual information is one area in which recent technical improvements have been made that are fundamental to conducting simulated operations close to the terrain. Detailed and appropriate visual information is especially critical for nap-of-the-earth helicopter flight simulation where the pilot maintains an 'eyes-out' orientation to avoid obstructions and terrain. This paper describes visually coupled wide field of view helmet-mounted display (WFOVHMD) system technology as a viable visual presentation system for helicopter simulation. Tradeoffs associated with this mode of presentation as well as research and training applications are discussed.

  6. Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve; Ferrell, Bob; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels.

  7. Nebhydro: Sharing Geospatial Data to Supportwater Management in Nebraska

    NASA Astrophysics Data System (ADS)

    Kamble, B.; Irmak, A.; Hubbard, K.; Deogun, J.; Dvorak, B.

    2012-12-01

    Recent advances in web-enabled geographical technologies have the potential to make a dramatic impact on development of highly interactive spatial applications on the web for visualization of large-scale geospatial data by water resources and irrigation scientists. Spatial and point scale water resources data visualization are an emerging and challenging application domain. Query based visual explorations of geospatial hydrological data can play an important role in stimulating scientific hypotheses and seeking causal relationships among hydro variables. The Nebraska Hydrological Information System (NebHydro) utilizes ESRI's ArcGIS server technology to increase technological awareness among farmers, irrigation managers and policy makers. Web-based geospatial applications are an effective way to expose scientific hydrological datasets to the research community and the public. NebHydro uses Adobe Flex technology to offer an online visualization and data analysis system for presentation of social and economic data. Internet mapping services is an integrated product of GIS and Internet technologies; it is a favored solution to achieve the interoperability of GIS. The development of Internet based GIS services in the state of Nebraska showcases the benefits of sharing geospatial hydrological data among agencies, resource managers and policy makers. Geospatial hydrological Information (Evapotranspiration from Remote Sensing, vegetation indices (NDVI), USGS Stream gauge data, Climatic data etc.) is generally generated through model simulation (METRIC, SWAP, Linux, Python based scripting etc). Information is compiled into and stored within object oriented relational spatial databases using a geodatabase information model that supports the key data types needed by applications including features, relationships, networks, imagery, terrains, maps and layers. The system provides online access, querying, visualization, and analysis of the hydrological data from several sources at one place. The study indicates that internet GIS, developed using advanced technologies, provides valuable education potential to users in hydrology and irrigation engineering and suggests that such a system can support advanced hydrological data access and analysis tools to improve utility of data in operations. Keywords: Hydrological Information System, NebHydro, Water Management, data sharing, data visualization, ArcGIS server.

  8. ATS displays: A reasoning visualization tool for expert systems

    NASA Technical Reports Server (NTRS)

    Selig, William John; Johannes, James D.

    1990-01-01

    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.

  9. Application of local binary pattern and human visual Fibonacci texture features for classification different medical images

    NASA Astrophysics Data System (ADS)

    Sanghavi, Foram; Agaian, Sos

    2017-05-01

    The goal of this paper is to (a) test the nuclei based Computer Aided Cancer Detection system using Human Visual based system on the histopathology images and (b) Compare the results of the proposed system with the Local Binary Pattern and modified Fibonacci -p pattern systems. The system performance is evaluated using different parameters such as accuracy, specificity, sensitivity, positive predictive value, and negative predictive value on 251 prostate histopathology images. The accuracy of 96.69% was observed for cancer detection using the proposed human visual based system compared to 87.42% and 94.70% observed for Local Binary patterns and the modified Fibonacci p patterns.

  10. Noise Source Visualization Using a Digital Voice Recorder and Low-Cost Sensors

    PubMed Central

    Cho, Yong Thung

    2018-01-01

    Accurate sound visualization of noise sources is required for optimal noise control. Typically, noise measurement systems require microphones, an analog-digital converter, cables, a data acquisition system, etc., which may not be affordable for potential users. Also, many such systems are not highly portable and may not be convenient for travel. Handheld personal electronic devices such as smartphones and digital voice recorders with relatively lower costs and higher performance have become widely available recently. Even though such devices are highly portable, directly implementing them for noise measurement may lead to erroneous results since such equipment was originally designed for voice recording. In this study, external microphones were connected to a digital voice recorder to conduct measurements and the input received was processed for noise visualization. In this way, a low cost, compact sound visualization system was designed and introduced to visualize two actual noise sources for verification with different characteristics: an enclosed loud speaker and a small air compressor. Reasonable accuracy of noise visualization for these two sources was shown over a relatively wide frequency range. This very affordable and compact sound visualization system can be used for many actual noise visualization applications in addition to educational purposes. PMID:29614038

  11. Integration of visual and motion cues for flight simulator requirements and ride quality investigation

    NASA Technical Reports Server (NTRS)

    Young, L. R.

    1976-01-01

    Investigations for the improvement of flight simulators are reported. Topics include: visual cues in landing, comparison of linear and nonlinear washout filters using a model of the vestibular system, and visual vestibular interactions (yaw axis). An abstract is given for a thesis on the applications of human dynamic orientation models to motion simulation.

  12. Shallow Habitat Air Dive Series (SHAD I and II): The Effects on Visual Performance and Physiology

    DTIC Science & Technology

    1974-10-02

    APPLICATION Since the tests employed cover all the major, known visual symptoms of oxygen toxicity , the data indicate that man can live under...included a number of measures of visual physiology and visual performance, since many of the symptoms of oxygen toxicity involve the visual system. The...oxygen toxic - ity. Nitrogen narcosis, which normally occurs at 200 to 300 ft, is the lesser of the two problems for shaUow habitat divers, since

  13. A Nonlinear Model for Interactive Data Analysis and Visualization and an Implementation Using Progressive Computation for Massive Remote Climate Data Ensembles

    NASA Astrophysics Data System (ADS)

    Christensen, C.; Liu, S.; Scorzelli, G.; Lee, J. W.; Bremer, P. T.; Summa, B.; Pascucci, V.

    2017-12-01

    The creation, distribution, analysis, and visualization of large spatiotemporal datasets is a growing challenge for the study of climate and weather phenomena in which increasingly massive domains are utilized to resolve finer features, resulting in datasets that are simply too large to be effectively shared. Existing workflows typically consist of pipelines of independent processes that preclude many possible optimizations. As data sizes increase, these pipelines are difficult or impossible to execute interactively and instead simply run as large offline batch processes. Rather than limiting our conceptualization of such systems to pipelines (or dataflows), we propose a new model for interactive data analysis and visualization systems in which we comprehensively consider the processes involved from data inception through analysis and visualization in order to describe systems composed of these processes in a manner that facilitates interactive implementations of the entire system rather than of only a particular component. We demonstrate the application of this new model with the implementation of an interactive system that supports progressive execution of arbitrary user scripts for the analysis and visualization of massive, disparately located climate data ensembles. It is currently in operation as part of the Earth System Grid Federation server running at Lawrence Livermore National Lab, and accessible through both web-based and desktop clients. Our system facilitates interactive analysis and visualization of massive remote datasets up to petabytes in size, such as the 3.5 PB 7km NASA GEOS-5 Nature Run simulation, previously only possible offline or at reduced resolution. To support the community, we have enabled general distribution of our application using public frameworks including Docker and Anaconda.

  14. Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients.

    PubMed

    Wang, Jieqiong; Miao, Wen; Li, Jing; Li, Meng; Zhen, Zonglei; Sabel, Bernhard; Xian, Junfang; He, Huiguang

    2015-11-30

    The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. The automatic LGN segmentation is objective, efficient, valid and applicable. Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. GROTTO visualization for decision support

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.

    1998-08-01

    In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.

  16. New generation of 3D desktop computer interfaces

    NASA Astrophysics Data System (ADS)

    Skerjanc, Robert; Pastoor, Siegmund

    1997-05-01

    Today's computer interfaces use 2-D displays showing windows, icons and menus and support mouse interactions for handling programs and data files. The interface metaphor is that of a writing desk with (partly) overlapping sheets of documents placed on its top. Recent advances in the development of 3-D display technology give the opportunity to take the interface concept a radical stage further by breaking the design limits of the desktop metaphor. The major advantage of the envisioned 'application space' is, that it offers an additional, immediately perceptible dimension to clearly and constantly visualize the structure and current state of interrelations between documents, videos, application programs and networked systems. In this context, we describe the development of a visual operating system (VOS). Under VOS, applications appear as objects in 3-D space. Users can (graphically connect selected objects to enable communication between the respective applications. VOS includes a general concept of visual and object oriented programming for tasks ranging from, e.g., low-level programming up to high-level application configuration. In order to enable practical operation in an office or at home for many hours, the system should be very comfortable to use. Since typical 3-D equipment used, e.g., in virtual-reality applications (head-mounted displays, data gloves) is rather cumbersome and straining, we suggest to use off-head displays and contact-free interaction techniques. In this article, we introduce an autostereoscopic 3-D display and connected video based interaction techniques which allow viewpoint-depending imaging (by head tracking) and visually controlled modification of data objects and links (by gaze tracking, e.g., to pick, 3-D objects just by looking at them).

  17. A General Provincial Situation Visualization System Based on iPhone Operating System of Shandong Province

    NASA Astrophysics Data System (ADS)

    Ye, Z.; Xiang, H.

    2014-04-01

    The paper discusses the basic principles and the problem solutions during the design and implementation of the mobile GIS system, and base on the research result, we developed the General Provincial Situation Visualization System Based on iOS of Shandong Province. The system is developed in the Objective-C programming language, and use the ArcGIS Runtime SDK for IOS as the development tool to call the "World-map Shandong" services to implement the development of the General Provincial Situation Visualization System Based on iOS devices. The system is currently available for download in the Appstore and is chosen as the typical application case of ESRI China ArcGIS API for iOS.

  18. Image Analysis via Soft Computing: Prototype Applications at NASA KSC and Product Commercialization

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2011-01-01

    This slide presentation reviews the use of "soft computing" which differs from "hard computing" in that it is more tolerant of imprecision, partial truth, uncertainty, and approximation and its use in image analysis. Soft computing provides flexible information processing to handle real life ambiguous situations and achieve tractability, robustness low solution cost, and a closer resemblance to human decision making. Several systems are or have been developed: Fuzzy Reasoning Edge Detection (FRED), Fuzzy Reasoning Adaptive Thresholding (FRAT), Image enhancement techniques, and visual/pattern recognition. These systems are compared with examples that show the effectiveness of each. NASA applications that are reviewed are: Real-Time (RT) Anomaly Detection, Real-Time (RT) Moving Debris Detection and the Columbia Investigation. The RT anomaly detection reviewed the case of a damaged cable for the emergency egress system. The use of these techniques is further illustrated in the Columbia investigation with the location and detection of Foam debris. There are several applications in commercial usage: image enhancement, human screening and privacy protection, visual inspection, 3D heart visualization, tumor detections and x ray image enhancement.

  19. Web-based visualization of very large scientific astronomy imagery

    NASA Astrophysics Data System (ADS)

    Bertin, E.; Pillay, R.; Marmo, C.

    2015-04-01

    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Song

    CFD (Computational Fluid Dynamics) is a widely used technique in engineering design field. It uses mathematical methods to simulate and predict flow characteristics in a certain physical space. Since the numerical result of CFD computation is very hard to understand, VR (virtual reality) and data visualization techniques are introduced into CFD post-processing to improve the understandability and functionality of CFD computation. In many cases CFD datasets are very large (multi-gigabytes), and more and more interactions between user and the datasets are required. For the traditional VR application, the limitation of computing power is a major factor to prevent visualizing largemore » dataset effectively. This thesis presents a new system designing to speed up the traditional VR application by using parallel computing and distributed computing, and the idea of using hand held device to enhance the interaction between a user and VR CFD application as well. Techniques in different research areas including scientific visualization, parallel computing, distributed computing and graphical user interface designing are used in the development of the final system. As the result, the new system can flexibly be built on heterogeneous computing environment, dramatically shorten the computation time.« less

  1. Eye-movements and Voice as Interface Modalities to Computer Systems

    NASA Astrophysics Data System (ADS)

    Farid, Mohsen M.; Murtagh, Fionn D.

    2003-03-01

    We investigate the visual and vocal modalities of interaction with computer systems. We focus our attention on the integration of visual and vocal interface as possible replacement and/or additional modalities to enhance human-computer interaction. We present a new framework for employing eye gaze as a modality of interface. While voice commands, as means of interaction with computers, have been around for a number of years, integration of both the vocal interface and the visual interface, in terms of detecting user's eye movements through an eye-tracking device, is novel and promises to open the horizons for new applications where a hand-mouse interface provides little or no apparent support to the task to be accomplished. We present an array of applications to illustrate the new framework and eye-voice integration.

  2. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People

    PubMed Central

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  3. Construction of Blaze at the University of Illinois at Chicago: A Shared, High-Performance, Visual Computer for Next-Generation Cyberinfrastructure-Accelerated Scientific, Engineering, Medical and Public Policy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Maxine D.; Leigh, Jason

    2014-02-17

    The Blaze high-performance visual computing system serves the high-performance computing research and education needs of University of Illinois at Chicago (UIC). Blaze consists of a state-of-the-art, networked, computer cluster and ultra-high-resolution visualization system called CAVE2(TM) that is currently not available anywhere in Illinois. This system is connected via a high-speed 100-Gigabit network to the State of Illinois' I-WIRE optical network, as well as to national and international high speed networks, such as the Internet2, and the Global Lambda Integrated Facility. This enables Blaze to serve as an on-ramp to national cyberinfrastructure, such as the National Science Foundation’s Blue Waters petascalemore » computer at the National Center for Supercomputing Applications at the University of Illinois at Chicago and the Department of Energy’s Argonne Leadership Computing Facility (ALCF) at Argonne National Laboratory. DOE award # DE-SC005067, leveraged with NSF award #CNS-0959053 for “Development of the Next-Generation CAVE Virtual Environment (NG-CAVE),” enabled us to create a first-of-its-kind high-performance visual computing system. The UIC Electronic Visualization Laboratory (EVL) worked with two U.S. companies to advance their commercial products and maintain U.S. leadership in the global information technology economy. New applications are being enabled with the CAVE2/Blaze visual computing system that is advancing scientific research and education in the U.S. and globally, and help train the next-generation workforce.« less

  4. The SCHEIE Visual Field Grading System

    PubMed Central

    Sankar, Prithvi S.; O’Keefe, Laura; Choi, Daniel; Salowe, Rebecca; Miller-Ellis, Eydie; Lehman, Amanda; Addis, Victoria; Ramakrishnan, Meera; Natesh, Vikas; Whitehead, Gideon; Khachatryan, Naira; O’Brien, Joan

    2017-01-01

    Objective No method of grading visual field (VF) defects has been widely accepted throughout the glaucoma community. The SCHEIE (Systematic Classification of Humphrey visual fields-Easy Interpretation and Evaluation) grading system for glaucomatous visual fields was created to convey qualitative and quantitative information regarding visual field defects in an objective, reproducible, and easily applicable manner for research purposes. Methods The SCHEIE grading system is composed of a qualitative and quantitative score. The qualitative score consists of designation in one or more of the following categories: normal, central scotoma, paracentral scotoma, paracentral crescent, temporal quadrant, nasal quadrant, peripheral arcuate defect, expansive arcuate, or altitudinal defect. The quantitative component incorporates the Humphrey visual field index (VFI), location of visual defects for superior and inferior hemifields, and blind spot involvement. Accuracy and speed at grading using the qualitative and quantitative components was calculated for non-physician graders. Results Graders had a median accuracy of 96.67% for their qualitative scores and a median accuracy of 98.75% for their quantitative scores. Graders took a mean of 56 seconds per visual field to assign a qualitative score and 20 seconds per visual field to assign a quantitative score. Conclusion The SCHEIE grading system is a reproducible tool that combines qualitative and quantitative measurements to grade glaucomatous visual field defects. The system aims to standardize clinical staging and to make specific visual field defects more easily identifiable. Specific patterns of visual field loss may also be associated with genetic variants in future genetic analysis. PMID:28932621

  5. Visualizing planetary data by using 3D engines

    NASA Astrophysics Data System (ADS)

    Elgner, S.; Adeli, S.; Gwinner, K.; Preusker, F.; Kersten, E.; Matz, K.-D.; Roatsch, T.; Jaumann, R.; Oberst, J.

    2017-09-01

    We examined 3D gaming engines for their usefulness in visualizing large planetary image data sets. These tools allow us to include recent developments in the field of computer graphics in our scientific visualization systems and present data products interactively and in higher quality than before. We started to set up the first applications which will take use of virtual reality (VR) equipment.

  6. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.

    PubMed

    Piao, Jin-Chun; Kim, Shin-Dug

    2017-11-07

    Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

  7. Color visual simulation applications at the Defense Mapping Agency

    NASA Astrophysics Data System (ADS)

    Simley, J. D.

    1984-09-01

    The Defense Mapping Agency (DMA) produces the Digital Landmass System data base to provide culture and terrain data in support of numerous aircraft simulators. In order to conduct data base and simulation quality control and requirements analysis, DMA has developed the Sensor Image Simulator which can rapidly generate visual and radar static scene digital simulations. The use of color in visual simulation allows the clear portrayal of both landcover and terrain data, whereas the initial black and white capabilities were restricted in this role and thus found limited use. Color visual simulation has many uses in analysis to help determine the applicability of current and prototype data structures to better meet user requirements. Color visual simulation is also significant in quality control since anomalies can be more easily detected in natural appearing forms of the data. The realism and efficiency possible with advanced processing and display technology, along with accurate data, make color visual simulation a highly effective medium in the presentation of geographic information. As a result, digital visual simulation is finding increased potential as a special purpose cartographic product. These applications are discussed and related simulation examples are presented.

  8. Metadata Mapper: a web service for mapping data between independent visual analysis components, guided by perceptual rules

    NASA Astrophysics Data System (ADS)

    Rogowitz, Bernice E.; Matasci, Naim

    2011-03-01

    The explosion of online scientific data from experiments, simulations, and observations has given rise to an avalanche of algorithmic, visualization and imaging methods. There has also been enormous growth in the introduction of tools that provide interactive interfaces for exploring these data dynamically. Most systems, however, do not support the realtime exploration of patterns and relationships across tools and do not provide guidance on which colors, colormaps or visual metaphors will be most effective. In this paper, we introduce a general architecture for sharing metadata between applications and a "Metadata Mapper" component that allows the analyst to decide how metadata from one component should be represented in another, guided by perceptual rules. This system is designed to support "brushing [1]," in which highlighting a region of interest in one application automatically highlights corresponding values in another, allowing the scientist to develop insights from multiple sources. Our work builds on the component-based iPlant Cyberinfrastructure [2] and provides a general approach to supporting interactive, exploration across independent visualization and visual analysis components.

  9. A prototype system based on visual interactive SDM called VGC

    NASA Astrophysics Data System (ADS)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  10. Latency in Visionic Systems: Test Methods and Requirements

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Arthur, J. J., III; Williams, Steven P.; Kramer, Lynda J.

    2005-01-01

    A visionics device creates a pictorial representation of the external scene for the pilot. The ultimate objective of these systems may be to electronically generate a form of Visual Meteorological Conditions (VMC) to eliminate weather or time-of-day as an operational constraint and provide enhancement over actual visual conditions where eye-limiting resolution may be a limiting factor. Empirical evidence has shown that the total system delays or latencies including the imaging sensors and display systems, can critically degrade their utility, usability, and acceptability. Definitions and measurement techniques are offered herein as common test and evaluation methods for latency testing in visionics device applications. Based upon available data, very different latency requirements are indicated based upon the piloting task, the role in which the visionics device is used in this task, and the characteristics of the visionics cockpit display device including its resolution, field-of-regard, and field-of-view. The least stringent latency requirements will involve Head-Up Display (HUD) applications, where the visionics imagery provides situational information as a supplement to symbology guidance and command information. Conversely, the visionics system latency requirement for a large field-of-view Head-Worn Display application, providing a Virtual-VMC capability from which the pilot will derive visual guidance, will be the most stringent, having a value as low as 20 msec.

  11. Flow Visualization and Laser Velocimetry for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr. (Editor); Foughner, J. T., Jr. (Editor)

    1982-01-01

    The need for flow visualization and laser velocimetry were discussed. The purpose was threefold: (1) provide a state-of-the-art overview; (2) provide a forum for industry, universities, and government agencies to address problems in developing useful and productive flow visualization and laser velocimetry measurement techniques; and (3) provide discussion of recent developments and applications of flow visualization and laser velocimetry measurement techniques and instrumentation systems for wind tunnels including the 0.3-Meter Transonic Cryogenic Tunnel.

  12. Neutron radiographic viewing system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development and application of a neutron radiographic viewing system for use in nondestructive testing applications is considered. The system consists of a SEC vidicon camera, neutron image intensifier system, disc recorder, and TV readout. Neutron bombardment of the subject is recorded by an image converter and passed through an optical system into the SEC vidicon. The vidicon output may be stored, or processed for visual readout.

  13. Water tunnel flow visualization using a laser

    NASA Technical Reports Server (NTRS)

    Beckner, C.; Curry, R. E.

    1985-01-01

    Laser systems for flow visualization in water tunnels (similar to the vapor screen technique used in wind tunnels) can provide two-dimensional cross-sectional views of complex flow fields. This parametric study documents the practical application of the laser-enhanced visualization (LEV) technique to water tunnel testing. Aspects of the study include laser power levels, flow seeding (using flourescent dyes and embedded particulates), model preparation, and photographic techniques. The results of this study are discussed to provide potential users with basic information to aid in the design and setup of an LEV system.

  14. Design and application of BIM based digital sand table for construction management

    NASA Astrophysics Data System (ADS)

    Fuquan, JI; Jianqiang, LI; Weijia, LIU

    2018-05-01

    This paper explores the design and application of BIM based digital sand table for construction management. Aiming at the demands and features of construction management plan for bridge and tunnel engineering, the key functional features of digital sand table should include three-dimensional GIS, model navigation, virtual simulation, information layers, and data exchange, etc. That involving the technology of 3D visualization and 4D virtual simulation of BIM, breakdown structure of BIM model and project data, multi-dimensional information layers, and multi-source data acquisition and interaction. Totally, the digital sand table is a visual and virtual engineering information integrated terminal, under the unified data standard system. Also, the applications shall contain visual constructing scheme, virtual constructing schedule, and monitoring of construction, etc. Finally, the applicability of several basic software to the digital sand table is analyzed.

  15. Virtual Earth System Laboratory (VESL): Effective Visualization of Earth System Data and Process Simulations

    NASA Astrophysics Data System (ADS)

    Quinn, J. D.; Larour, E. Y.; Cheng, D. L. C.; Halkides, D. J.

    2016-12-01

    The Virtual Earth System Laboratory (VESL) is a Web-based tool, under development at the Jet Propulsion Laboratory and UC Irvine, for the visualization of Earth System data and process simulations. It contains features geared toward a range of applications, spanning research and outreach. It offers an intuitive user interface, in which model inputs are changed using sliders and other interactive components. Current capabilities include simulation of polar ice sheet responses to climate forcing, based on NASA's Ice Sheet System Model (ISSM). We believe that the visualization of data is most effective when tailored to the target audience, and that many of the best practices for modern Web design/development can be applied directly to the visualization of data: use of negative space, color schemes, typography, accessibility standards, tooltips, etc cetera. We present our prototype website, and invite input from potential users, including researchers, educators, and students.

  16. Applications of aerospace technology in industry: A technology transfer profile. Visual display systems

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The growth of common as well as emerging visual display technologies are surveyed. The major inference is that contemporary society is rapidly growing evermore reliant on visual display for a variety of purposes. Because of its unique mission requirements, the National Aeronautics and Space Administration has contributed in an important and specific way to the growth of visual display technology. These contributions are characterized by the use of computer-driven visual displays to provide an enormous amount of information concisely, rapidly and accurately.

  17. Plugin free remote visualization in the browser

    NASA Astrophysics Data System (ADS)

    Tamm, Georg; Slusallek, Philipp

    2015-01-01

    Today, users access information and rich media from anywhere using the web browser on their desktop computers, tablets or smartphones. But the web evolves beyond media delivery. Interactive graphics applications like visualization or gaming become feasible as browsers advance in the functionality they provide. However, to deliver large-scale visualization to thin clients like mobile devices, a dedicated server component is necessary. Ideally, the client runs directly within the browser the user is accustomed to, requiring no installation of a plugin or native application. In this paper, we present the state-of-the-art of technologies which enable plugin free remote rendering in the browser. Further, we describe a remote visualization system unifying these technologies. The system transfers rendering results to the client as images or as a video stream. We utilize the upcoming World Wide Web Consortium (W3C) conform Web Real-Time Communication (WebRTC) standard, and the Native Client (NaCl) technology built into Chrome, to deliver video with low latency.

  18. Digital fabrication of multi-material biomedical objects.

    PubMed

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  19. Software-codec-based full motion video conferencing on the PC using visual pattern image sequence coding

    NASA Astrophysics Data System (ADS)

    Barnett, Barry S.; Bovik, Alan C.

    1995-04-01

    This paper presents a real time full motion video conferencing system based on the Visual Pattern Image Sequence Coding (VPISC) software codec. The prototype system hardware is comprised of two personal computers, two camcorders, two frame grabbers, and an ethernet connection. The prototype system software has a simple structure. It runs under the Disk Operating System, and includes a user interface, a video I/O interface, an event driven network interface, and a free running or frame synchronous video codec that also acts as the controller for the video and network interfaces. Two video coders have been tested in this system. Simple implementations of Visual Pattern Image Coding and VPISC have both proven to support full motion video conferencing with good visual quality. Future work will concentrate on expanding this prototype to support the motion compensated version of VPISC, as well as encompassing point-to-point modem I/O and multiple network protocols. The application will be ported to multiple hardware platforms and operating systems. The motivation for developing this prototype system is to demonstrate the practicality of software based real time video codecs. Furthermore, software video codecs are not only cheaper, but are more flexible system solutions because they enable different computer platforms to exchange encoded video information without requiring on-board protocol compatible video codex hardware. Software based solutions enable true low cost video conferencing that fits the `open systems' model of interoperability that is so important for building portable hardware and software applications.

  20. LinkWinds: An Approach to Visual Data Analysis

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.

    1992-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration and analysis system resulting from a NASA/JPL program of research into graphical methods for rapidly accessing, displaying and analyzing large multivariate multidisciplinary datasets. It is an integrated multi-application execution environment allowing the dynamic interconnection of multiple windows containing visual displays and/or controls through a data-linking paradigm. This paradigm, which results in a system much like a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but provides a highly intuitive, easy to learn user interface on top of the traditional graphical user interface.

  1. a Three-Dimensional Simulation and Visualization System for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Qu, Y.; Cui, T.

    2017-08-01

    Nowadays UAVs has been widely used for large-scale surveying and mapping. Compared with manned aircraft, UAVs are more cost-effective and responsive. However, UAVs are usually more sensitive to wind condition, which greatly influences their positions and orientations. The flight height of a UAV is relative low, and the relief of the terrain may result in serious occlusions. Moreover, the observations acquired by the Position and Orientation System (POS) are usually less accurate than those acquired in manned aerial photogrammetry. All of these factors bring in uncertainties to UAV photogrammetry. To investigate these uncertainties, a three-dimensional simulation and visualization system has been developed. The system is demonstrated with flight plan evaluation, image matching, POS-supported direct georeferencing, and ortho-mosaicing. Experimental results show that the presented system is effective for flight plan evaluation. The generated image pairs are accurate and false matches can be effectively filtered. The presented system dynamically visualizes the results of direct georeferencing in three-dimensions, which is informative and effective for real-time target tracking and positioning. The dynamically generated orthomosaic can be used in emergency applications. The presented system has also been used for teaching theories and applications of UAV photogrammetry.

  2. Regional information guidance system based on hypermedia concept

    NASA Astrophysics Data System (ADS)

    Matoba, Hiroshi; Hara, Yoshinori; Kasahara, Yutako

    1990-08-01

    A regional information guidance system has been developed on an image workstation. Two main features of this system are hypermedia data structure and friendly visual interface realized by the full-color frame memory system. As the hypermedia data structure manages regional information such as maps, pictures and explanations of points of interest, users can retrieve those information one by one, next to next according to their interest change. For example, users can retrieve explanation of a picture through the link between pictures and text explanations. Users can also traverse from one document to another by using keywords as cross reference indices. The second feature is to utilize a full-color, high resolution and wide space frame memory for visual interface design. This frame memory system enables real-time operation of image data and natural scene representation. The system also provides half tone representing function which enables fade-in/out presentations. This fade-in/out functions used in displaying and erasing menu and image data, makes visual interface soft for human eyes. The system we have developed is a typical example of multimedia applications. We expect the image workstation will play an important role as a platform for multimedia applications.

  3. Designing an End-to-End System for Data Storage, Analysis, and Visualization for an Urban Environmental Observatory

    NASA Astrophysics Data System (ADS)

    McGuire, M. P.; Welty, C.; Gangopadhyay, A.; Karabatis, G.; Chen, Z.

    2006-05-01

    The urban environment is formed by complex interactions between natural and human dominated systems, the study of which requires the collection and analysis of very large datasets that span many disciplines. Recent advances in sensor technology and automated data collection have improved the ability to monitor urban environmental systems and are making the idea of an urban environmental observatory a reality. This in turn has created a number of potential challenges in data management and analysis. We present the design of an end-to-end system to store, analyze, and visualize data from a prototype urban environmental observatory based at the Baltimore Ecosystem Study, a National Science Foundation Long Term Ecological Research site (BES LTER). We first present an object-relational design of an operational database to store high resolution spatial datasets as well as data from sensor networks, archived data from the BES LTER, data from external sources such as USGS NWIS, EPA Storet, and metadata. The second component of the system design includes a spatiotemporal data warehouse consisting of a data staging plan and a multidimensional data model designed for the spatiotemporal analysis of monitoring data. The system design also includes applications for multi-resolution exploratory data analysis, multi-resolution data mining, and spatiotemporal visualization based on the spatiotemporal data warehouse. Also the system design includes interfaces with water quality models such as HSPF, SWMM, and SWAT, and applications for real-time sensor network visualization, data discovery, data download, QA/QC, and backup and recovery, all of which are based on the operational database. The system design includes both internet and workstation-based interfaces. Finally we present the design of a laboratory for spatiotemporal analysis and visualization as well as real-time monitoring of the sensor network.

  4. Review of ultraresolution (10-100 megapixel) visualization systems built by tiling commercial display components

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Haralson, David G.; Simpson, Matthew A.; Longo, Sam J.

    2002-08-01

    Ultra-resolution visualization systems are achieved by the technique of tiling many direct or project-view displays. During the past fews years, several such systems have been built from commercial electronics components (displays, computers, image generators, networks, communication links, and software). Civil applications driving this development have independently determined that they require images at 10-100 megapixel (Mpx) resolution to enable state-of-the-art research, engineering, design, stock exchanges, flight simulators, business information and enterprise control centers, education, art and entertainment. Military applications also press the art of the possible to improve the productivity of warfighters and lower the cost of providing for the national defense. The environment in some 80% of defense applications can be addressed by ruggedization of commercial components. This paper reviews the status of ultra-resolution systems based on commercial components and describes a vision for their integration into advanced yet affordable military command centers, simulator/trainers, and, eventually, crew stations in air, land, sea and space systems.

  5. A High-Speed, Real-Time Visualization and State Estimation Platform for Monitoring and Control of Electric Distribution Systems: Implementation and Field Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Gotseff, Peter; Giraldez, Julieta

    Continued deployment of renewable and distributed energy resources is fundamentally changing the way that electric distribution systems are controlled and operated; more sophisticated active system control and greater situational awareness are needed. Real-time measurements and distribution system state estimation (DSSE) techniques enable more sophisticated system control and, when combined with visualization applications, greater situational awareness. This paper presents a novel demonstration of a high-speed, real-time DSSE platform and related control and visualization functionalities, implemented using existing open-source software and distribution system monitoring hardware. Live scrolling strip charts of meter data and intuitive annotated map visualizations of the entire state (obtainedmore » via DSSE) of a real-world distribution circuit are shown. The DSSE implementation is validated to demonstrate provision of accurate voltage data. This platform allows for enhanced control and situational awareness using only a minimum quantity of distribution system measurement units and modest data and software infrastructure.« less

  6. A visualization system for CT based pulmonary fissure analysis

    NASA Astrophysics Data System (ADS)

    Pu, Jiantao; Zheng, Bin; Park, Sang Cheol

    2009-02-01

    In this study we describe a visualization system of pulmonary fissures depicted on CT images. The purpose is to provide clinicians with an intuitive perception of a patient's lung anatomy through an interactive examination of fissures, enhancing their understanding and accurate diagnosis of lung diseases. This system consists of four key components: (1) region-of-interest segmentation; (2) three-dimensional surface modeling; (3) fissure type classification; and (4) an interactive user interface, by which the extracted fissures are displayed flexibly in different space domains including image space, geometric space, and mixed space using simple toggling "on" and "off" operations. In this system, the different visualization modes allow users not only to examine the fissures themselves but also to analyze the relationship between fissures and their surrounding structures. In addition, the users can adjust thresholds interactively to visualize the fissure surface under different scanning and processing conditions. Such a visualization tool is expected to facilitate investigation of structures near the fissures and provide an efficient "visual aid" for other applications such as treatment planning and assessment of therapeutic efficacy as well as education of medical professionals.

  7. A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces

    PubMed Central

    Azorin-Lopez, Jorge; Fuster-Guillo, Andres; Saval-Calvo, Marcelo; Mora-Mora, Higinio; Garcia-Chamizo, Juan Manuel

    2017-01-01

    The use of visual information is a very well known input from different kinds of sensors. However, most of the perception problems are individually modeled and tackled. It is necessary to provide a general imaging model that allows us to parametrize different input systems as well as their problems and possible solutions. In this paper, we present an active vision model considering the imaging system as a whole (including camera, lighting system, object to be perceived) in order to propose solutions to automated visual systems that present problems that we perceive. As a concrete case study, we instantiate the model in a real application and still challenging problem: automated visual inspection. It is one of the most used quality control systems to detect defects on manufactured objects. However, it presents problems for specular products. We model these perception problems taking into account environmental conditions and camera parameters that allow a system to properly perceive the specific object characteristics to determine defects on surfaces. The validation of the model has been carried out using simulations providing an efficient way to perform a large set of tests (different environment conditions and camera parameters) as a previous step of experimentation in real manufacturing environments, which more complex in terms of instrumentation and more expensive. Results prove the success of the model application adjusting scale, viewpoint and lighting conditions to detect structural and color defects on specular surfaces. PMID:28640211

  8. Evaluating an immersive virtual environment prototyping and simulation system

    NASA Astrophysics Data System (ADS)

    Nemire, Kenneth

    1997-05-01

    An immersive virtual environment (IVE) modeling and simulation tool is being developed for designing advanced weapon and training systems. One unique feature of the tool is that the design, and not just visualization of the design is accomplished with the IVE tool. Acceptance of IVE tools requires comparisons with current commercial applications. In this pilot study, expert users of a popular desktop 3D graphics application performed identical modeling and simulation tasks using both the desktop and IVE applications. The IVE tool consisted of a head-mounted display, 3D spatialized sound, spatial trackers on head and hands, instrumented gloves, and a simulated speech recognition system. The results are preliminary because performance from only four users has been examined. When using the IVE system, users completed the tasks to criteria in less time than when using the desktop application. Subjective ratings of the visual displays in each system were similar. Ratings for the desktop controls were higher than for the IVE controls. Ratings of immersion and user enjoyment were higher for the IVE than for the desktop application. These results are particular remarkable because participants had used the desktop application regularly for three to five years and the prototype IVE tool for only three to six hours.

  9. Beyond the Renderer: Software Architecture for Parallel Graphics and Visualization

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1996-01-01

    As numerous implementations have demonstrated, software-based parallel rendering is an effective way to obtain the needed computational power for a variety of challenging applications in computer graphics and scientific visualization. To fully realize their potential, however, parallel renderers need to be integrated into a complete environment for generating, manipulating, and delivering visual data. We examine the structure and components of such an environment, including the programming and user interfaces, rendering engines, and image delivery systems. We consider some of the constraints imposed by real-world applications and discuss the problems and issues involved in bringing parallel rendering out of the lab and into production.

  10. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context

    PubMed Central

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-01-01

    Background Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. Results lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. Conclusion lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired. PMID:17877794

  11. Lightweight genome viewer: portable software for browsing genomics data in its chromosomal context.

    PubMed

    Faith, Jeremiah J; Olson, Andrew J; Gardner, Timothy S; Sachidanandam, Ravi

    2007-09-18

    Lightweight genome viewer (lwgv) is a web-based tool for visualization of sequence annotations in their chromosomal context. It performs most of the functions of larger genome browsers, while relying on standard flat-file formats and bypassing the database needs of most visualization tools. Visualization as an aide to discovery requires display of novel data in conjunction with static annotations in their chromosomal context. With database-based systems, displaying dynamic results requires temporary tables that need to be tracked for removal. lwgv simplifies the visualization of user-generated results on a local computer. The dynamic results of these analyses are written to transient files, which can import static content from a more permanent file. lwgv is currently used in many different applications, from whole genome browsers to single-gene RNAi design visualization, demonstrating its applicability in a large variety of contexts and scales. lwgv provides a lightweight alternative to large genome browsers for visualizing biological annotations and dynamic analyses in their chromosomal context. It is particularly suited for applications ranging from short sequences to medium-sized genomes when the creation and maintenance of a large software and database infrastructure is not necessary or desired.

  12. Indoor space 3D visual reconstruction using mobile cart with laser scanner and cameras

    NASA Astrophysics Data System (ADS)

    Gashongore, Prince Dukundane; Kawasue, Kikuhito; Yoshida, Kumiko; Aoki, Ryota

    2017-02-01

    Indoor space 3D visual reconstruction has many applications and, once done accurately, it enables people to conduct different indoor activities in an efficient manner. For example, an effective and efficient emergency rescue response can be accomplished in a fire disaster situation by using 3D visual information of a destroyed building. Therefore, an accurate Indoor Space 3D visual reconstruction system which can be operated in any given environment without GPS has been developed using a Human-Operated mobile cart equipped with a laser scanner, CCD camera, omnidirectional camera and a computer. By using the system, accurate indoor 3D Visual Data is reconstructed automatically. The obtained 3D data can be used for rescue operations, guiding blind or partially sighted persons and so forth.

  13. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levnajić, Zoran; Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106; Mezić, Igor

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone,more » and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.« less

  14. Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets.

    PubMed

    Levnajić, Zoran; Mezić, Igor

    2015-05-01

    We present an application and analysis of a visualization method for measure-preserving dynamical systems introduced by I. Mezić and A. Banaszuk [Physica D 197, 101 (2004)], based on frequency analysis and Koopman operator theory. This extends our earlier work on visualization of ergodic partition [Z. Levnajić and I. Mezić, Chaos 20, 033114 (2010)]. Our method employs the concept of Fourier time average [I. Mezić and A. Banaszuk, Physica D 197, 101 (2004)], and is realized as a computational algorithms for visualization of periodic and quasi-periodic sets in the phase space. The complement of periodic phase space partition contains chaotic zone, and we show how to identify it. The range of method's applicability is illustrated using well-known Chirikov standard map, while its potential in illuminating higher-dimensional dynamics is presented by studying the Froeschlé map and the Extended Standard Map.

  15. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2009-09-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  16. Realistic terrain visualization based on 3D virtual world technology

    NASA Astrophysics Data System (ADS)

    Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai

    2010-11-01

    The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.

  17. Non-Invasive Visualization and Quantitation of Cardiovascular Structure and Function.

    ERIC Educational Resources Information Center

    Ritman, E. L.; And Others

    1979-01-01

    Described is a new approach to investigative physiology based on computerized transaxial tomography, in which visualization and measurement of the internal structure of the cardiopulmonary system is possible without postmortem, biopsy, or vivisection procedures. Examples are given for application of the Dynamic Spatial Reconstructor (DSR). (CS)

  18. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  19. Computer-based visual communication in aphasia.

    PubMed

    Steele, R D; Weinrich, M; Wertz, R T; Kleczewska, M K; Carlson, G S

    1989-01-01

    The authors describe their recently developed Computer-aided VIsual Communication (C-VIC) system, and report results of single-subject experimental designs probing its use with five chronic, severely impaired aphasic individuals. Studies replicate earlier results obtained with a non-computerized system, demonstrate patient competence with the computer implementation, extend the system's utility, and identify promising areas of application. Results of the single-subject experimental designs clarify patients' learning, generalization, and retention patterns, and highlight areas of performance difficulties. Future directions for the project are indicated.

  20. Understanding the Picture Exchange Communication System and Its Application in Physical Education

    ERIC Educational Resources Information Center

    Green, Amanda; Sandt, Dawn

    2013-01-01

    This article presents the Picture Exchange Communication System (PECS) and its applications in physical education. The PECS is an appropriate communication intervention for students with autism who lack functional communication skills. It is often confused with other visual support strategies, so the authors delineate the six phases of PECS and…

  1. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  2. Software components for medical image visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Starreveld, Yves P.; Gobbi, David G.; Finnis, Kirk; Peters, Terence M.

    2001-05-01

    Purpose: The development of new applications in medical image visualization and surgical planning requires the completion of many common tasks such as image reading and re-sampling, segmentation, volume rendering, and surface display. Intra-operative use requires an interface to a tracking system and image registration, and the application requires basic, easy to understand user interface components. Rapid changes in computer and end-application hardware, as well as in operating systems and network environments make it desirable to have a hardware and operating system as an independent collection of reusable software components that can be assembled rapidly to prototype new applications. Methods: Using the OpenGL based Visualization Toolkit as a base, we have developed a set of components that implement the above mentioned tasks. The components are written in both C++ and Python, but all are accessible from Python, a byte compiled scripting language. The components have been used on the Red Hat Linux, Silicon Graphics Iris, Microsoft Windows, and Apple OS X platforms. Rigorous object-oriented software design methods have been applied to ensure hardware independence and a standard application programming interface (API). There are components to acquire, display, and register images from MRI, MRA, CT, Computed Rotational Angiography (CRA), Digital Subtraction Angiography (DSA), 2D and 3D ultrasound, video and physiological recordings. Interfaces to various tracking systems for intra-operative use have also been implemented. Results: The described components have been implemented and tested. To date they have been used to create image manipulation and viewing tools, a deep brain functional atlas, a 3D ultrasound acquisition and display platform, a prototype minimally invasive robotic coronary artery bypass graft planning system, a tracked neuro-endoscope guidance system and a frame-based stereotaxy neurosurgery planning tool. The frame-based stereotaxy module has been licensed and certified for use in a commercial image guidance system. Conclusions: It is feasible to encapsulate image manipulation and surgical guidance tasks in individual, reusable software modules. These modules allow for faster development of new applications. The strict application of object oriented software design methods allows individual components of such a system to make the transition from the research environment to a commercial one.

  3. Scalable data management, analysis and visualization (SDAV) Institute. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geveci, Berk

    The purpose of the SDAV institute is to provide tools and expertise in scientific data management, analysis, and visualization to DOE’s application scientists. Our goal is to actively work with application teams to assist them in achieving breakthrough science, and to provide technical solutions in the data management, analysis, and visualization regimes that are broadly used by the computational science community. Over the last 5 years members of our institute worked directly with application scientists and DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal. We also enhanced our tools based on inputmore » from scientists on their needs. Many of the applications we have been working with are based on connections with scientists established in previous years. However, we contacted additional scientists though our outreach activities, as well as engaging application teams running on leading DOE computing systems. Our approach is to employ an evolutionary development and deployment process: first considering the application of existing tools, followed by the customization necessary for each particular application, and then the deployment in real frameworks and infrastructures. The institute is organized into three areas, each with area leaders, who keep track of progress, engagement of application scientists, and results. The areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization. Kitware has been involved in the Visualization area. This report covers Kitware’s contributions over the last 5 years (February 2012 – February 2017). For details on the work performed by the SDAV institute as a whole, please see the SDAV final report.« less

  4. Visualizing SPH Cataclysmic Variable Accretion Disk Simulations with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Wood, Matthew A.

    2015-01-01

    We present innovative ways to use Blender, a 3D graphics package, to visualize smoothed particle hydrodynamics particle data of cataclysmic variable accretion disks. We focus on the methods of shape key data constructs to increasedata i/o and manipulation speed. The implementation of the methods outlined allow for compositing of the various visualization layers into a final animation. The viewing of the disk in 3D from different angles can allow for a visual analysisof the physical system and orbits. The techniques have a wide ranging set of applications in astronomical visualization,including both observation and theoretical data.

  5. An Avatar-Based Italian Sign Language Visualization System

    NASA Astrophysics Data System (ADS)

    Falletto, Andrea; Prinetto, Paolo; Tiotto, Gabriele

    In this paper, we present an experimental system that supports the translation from Italian to Italian Sign Language (ISL) of the deaf and its visualization through a virtual character. Our objective is to develop a complete platform useful for any application and reusable on several platforms including Web, Digital Television and offline text translation. The system relies on a database that stores both a corpus of Italian words and words coded in the ISL notation system. An interface for the insertion of data is implemented, that allows future extensions and integrations.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, W.

    Building something which could be called {open_quotes}virtual reality{close_quotes} (VR) is something of a challenge, particularly when nobody really seems to agree on a definition of VR. The author wanted to combine scientific visualization with VR, resulting in an environment useful for assisting scientific research. He demonstrates the combination of VR and scientific visualization in a prototype application. The VR application constructed consists of a dataflow based system for performing scientific visualization (AVS), extensions to the system to support VR input devices and a numerical simulation ported into the dataflow environment. The VR system includes two inexpensive, off-the-shelf VR devices andmore » some custom code. A working system was assembled with about two man-months of effort. The system allows the user to specify parameters for a chemical flooding simulation as well as some viewing parameters using VR input devices, as well as view the output using VR output devices. In chemical flooding, there is a subsurface region that contains chemicals which are to be removed. Secondary oil recovery and environmental remediation are typical applications of chemical flooding. The process assumes one or more injection wells, and one or more production wells. Chemicals or water are pumped into the ground, mobilizing and displacing hydrocarbons or contaminants. The placement of the production and injection wells, and other parameters of the wells, are the most important variables in the simulation.« less

  7. A framework for visualization of battlefield network behavior

    NASA Astrophysics Data System (ADS)

    Perzov, Yury; Yurcik, William

    2006-05-01

    An extensible network simulation application was developed to study wireless battlefield communications. The application monitors node mobility and depicts broadcast and unicast traffic as expanding rings and directed links. The network simulation was specially designed to support fault injection to show the impact of air strikes on disabling nodes. The application takes standard ns-2 trace files as an input and provides for performance data output in different graphical forms (histograms and x/y plots). Network visualization via animation of simulation output can be saved in AVI format that may serve as a basis for a real-time battlefield awareness system.

  8. Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory

    PubMed Central

    Vega, Julio; Perdices, Eduardo; Cañas, José M.

    2013-01-01

    Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333

  9. Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.

    PubMed

    Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min

    2013-12-01

    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.

  10. Text Stream Trend Analysis using Multiscale Visual Analytics with Applications to Social Media Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Beaver, Justin M; BogenII, Paul L.

    In this paper, we introduce a new visual analytics system, called Matisse, that allows exploration of global trends in textual information streams with specific application to social media platforms. Despite the potential for real-time situational awareness using these services, interactive analysis of such semi-structured textual information is a challenge due to the high-throughput and high-velocity properties. Matisse addresses these challenges through the following contributions: (1) robust stream data management, (2) automated sen- timent/emotion analytics, (3) inferential temporal, geospatial, and term-frequency visualizations, and (4) a flexible drill-down interaction scheme that progresses from macroscale to microscale views. In addition to describing thesemore » contributions, our work-in-progress paper concludes with a practical case study focused on the analysis of Twitter 1% sample stream information captured during the week of the Boston Marathon bombings.« less

  11. Technical parameters for specifying imagery requirements

    NASA Technical Reports Server (NTRS)

    Coan, Paul P.; Dunnette, Sheri J.

    1994-01-01

    Providing visual information acquired from remote events to various operators, researchers, and practitioners has become progressively more important as the application of special skills in alien or hazardous situations increases. To provide an understanding of the technical parameters required to specify imagery, we have identified, defined, and discussed seven salient characteristics of images: spatial resolution, linearity, luminance resolution, spectral discrimination, temporal discrimination, edge definition, and signal-to-noise ratio. We then describe a generalizing imaging system and identified how various parts of the system affect the image data. To emphasize the different applications of imagery, we have constrasted the common television system with the significant parameters of a televisual imaging system for technical applications. Finally, we have established a method by which the required visual information can be specified by describing certain technical parameters which are directly related to the information content of the imagery. This method requires the user to complete a form listing all pertinent data requirements for the imagery.

  12. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    NASA Astrophysics Data System (ADS)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim

    2014-09-01

    Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  13. The Hyperwall

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A. (Technical Monitor); Sandstrom, Timothy A.; Henze, Chris; Levit, Creon

    2003-01-01

    This paper presents the hyperwall, a visualization cluster that uses coordinated visualizations for interactive exploration of multidimensional data and simulations. The system strongly leverages the human eye-brain system with a generous 7x7 array offlat panel LCD screens powered by a beowulf clustel: With each screen backed by a workstation class PC, graphic and compute intensive applications can be applied to a broad range of data. Navigational tools are presented that allow for investigation of high dimensional spaces.

  14. Visual guidance of mobile platforms

    NASA Astrophysics Data System (ADS)

    Blissett, Rodney J.

    1993-12-01

    Two systems are described and results presented demonstrating aspects of real-time visual guidance of autonomous mobile platforms. The first approach incorporates prior knowledge in the form of rigid geometrical models linking visual references within the environment. The second approach is based on a continuous synthesis of information extracted from image tokens to generate a coarse-grained world model, from which potential obstacles are inferred. The use of these techniques in workplace applications is discussed.

  15. A Visual Analytics Approach for Station-Based Air Quality Data

    PubMed Central

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-01-01

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support. PMID:28029117

  16. A Visual Analytics Approach for Station-Based Air Quality Data.

    PubMed

    Du, Yi; Ma, Cuixia; Wu, Chao; Xu, Xiaowei; Guo, Yike; Zhou, Yuanchun; Li, Jianhui

    2016-12-24

    With the deployment of multi-modality and large-scale sensor networks for monitoring air quality, we are now able to collect large and multi-dimensional spatio-temporal datasets. For these sensed data, we present a comprehensive visual analysis approach for air quality analysis. This approach integrates several visual methods, such as map-based views, calendar views, and trends views, to assist the analysis. Among those visual methods, map-based visual methods are used to display the locations of interest, and the calendar and the trends views are used to discover the linear and periodical patterns. The system also provides various interaction tools to combine the map-based visualization, trends view, calendar view and multi-dimensional view. In addition, we propose a self-adaptive calendar-based controller that can flexibly adapt the changes of data size and granularity in trends view. Such a visual analytics system would facilitate big-data analysis in real applications, especially for decision making support.

  17. Astronaut Office Scheduling System Software

    NASA Technical Reports Server (NTRS)

    Brown, Estevancio

    2010-01-01

    AOSS is a highly efficient scheduling application that uses various tools to schedule astronauts weekly appointment information. This program represents an integration of many technologies into a single application to facilitate schedule sharing and management. It is a Windows-based application developed in Visual Basic. Because the NASA standard office automation load environment is Microsoft-based, Visual Basic provides AO SS developers with the ability to interact with Windows collaboration components by accessing objects models from applications like Outlook and Excel. This also gives developers the ability to create newly customizable components that perform specialized tasks pertaining to scheduling reporting inside the application. With this capability, AOSS can perform various asynchronous tasks, such as gathering/ sending/ managing astronauts schedule information directly to their Outlook calendars at any time.

  18. Development of image processing techniques for applications in flow visualization and analysis

    NASA Technical Reports Server (NTRS)

    Disimile, Peter J.; Shoe, Bridget; Toy, Norman; Savory, Eric; Tahouri, Bahman

    1991-01-01

    A comparison between two flow visualization studies of an axi-symmetric circular jet issuing into still fluid, using two different experimental techniques, is described. In the first case laser induced fluorescence is used to visualize the flow structure, whilst smoke is utilized in the second. Quantitative information was obtained from these visualized flow regimes using two different digital imaging systems. Results are presented of the rate at which the jet expands in the downstream direction and these compare favorably with the more established data.

  19. Computer programming for generating visual stimuli.

    PubMed

    Bukhari, Farhan; Kurylo, Daniel D

    2008-02-01

    Critical to vision research is the generation of visual displays with precise control over stimulus metrics. Generating stimuli often requires adapting commercial software or developing specialized software for specific research applications. In order to facilitate this process, we give here an overview that allows nonexpert users to generate and customize stimuli for vision research. We first give a review of relevant hardware and software considerations, to allow the selection of display hardware, operating system, programming language, and graphics packages most appropriate for specific research applications. We then describe the framework of a generic computer program that can be adapted for use with a broad range of experimental applications. Stimuli are generated in the context of trial events, allowing the display of text messages, the monitoring of subject responses and reaction times, and the inclusion of contingency algorithms. This approach allows direct control and management of computer-generated visual stimuli while utilizing the full capabilities of modern hardware and software systems. The flowchart and source code for the stimulus-generating program may be downloaded from www.psychonomic.org/archive.

  20. Sandia Engineering Analysis Code Access System v. 2.0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjaardema, Gregory D.

    The Sandia Engineering Analysis Code Access System (SEACAS) is a suite of preprocessing, post processing, translation, visualization, and utility applications supporting finite element analysis software using the Exodus database file format.

  1. Aural mapping of STEM concepts using literature mining

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Venkatesh

    Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.

  2. A Tool for the Analysis of Motion Picture Film or Video Tape.

    ERIC Educational Resources Information Center

    Ekman, Paul; Friesen, Wallace V.

    1969-01-01

    A visual information display and retrieval system (VID-R) is described for application to visual records. VID-R searches and retrieves events by time address (location) or by previously stored ovservations or measurements. Fields are labeled by writing discriminable binary addresses on the horizontal lines outside the normal viewing area. The…

  3. Visual management system and timber management application

    Treesearch

    Warren R. Bacon; Asa D. (Bud) Twombly

    1979-01-01

    This paper includes an illustration of a planning process to guide vegetation management throughout a travel route seen area and over the time period of a total management rotation (100-300 years). The process will produce direction on visual characteristics to be created and maintained within the biological potential and coordinated with associated re-source...

  4. Monitoring an Online Course with the GISMO Tool: A Case Study

    ERIC Educational Resources Information Center

    Mazza, Riccardo; Botturi, Luca

    2007-01-01

    This article presents GISMO, a novel, open source, graphic student-tracking tool integrated into Moodle. GISMO represents a further step in information visualization applied to education, and also a novelty in the field of learning management systems applications. The visualizations of the tool, its uses and the benefits it can bring are…

  5. Q Workshop: An Application of Q Methodology for Visualizing, Deliberating and Learning Contrasting Perspectives

    ERIC Educational Resources Information Center

    Yoshizawa, Go; Iwase, Mineyo; Okumoto, Motoko; Tahara, Keiichiro; Takahashi, Shingo

    2016-01-01

    A value-centered approach to science, technology and society (STS) education illuminates the need of reflexive and relational learning through communication and public engagement. Visualization is a key to represent and compare mental models such as assumptions, background theories and value systems that tacitly shape our own understanding,…

  6. Robotic system for the servicing of the orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Graham, Todd; Bennett, Richard; Dowling, Kevin; Manouchehri, Davoud; Cooper, Eric; Cowan, Cregg

    1994-01-01

    This paper describes the design and development of a mobile robotic system to process orbiter thermal protection system (TPS) tiles. This work was justified by a TPS automation study which identified tile rewaterproofing and visual inspection as excellent applications for robotic automation.

  7. The implementation of thermal image visualization by HDL based on pseudo-color

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Zhang, JiangLing

    2004-11-01

    The pseudo-color method which maps the sampled data to intuitive perception colors is a kind of powerful visualization way. And the all-around system of pseudo-color visualization, which includes the primary principle, model and HDL (Hardware Description Language) implementation for the thermal images, is expatiated on in the paper. The thermal images whose signal is modulated as video reflect the temperature distribution of measured object, so they have the speciality of mass and real-time. The solution to the intractable problem is as follows: First, the reasonable system, i.e. the combining of global pseudo-color visualization and local special area accurate measure, muse be adopted. Then, the HDL pseudo-color algorithms in SoC (System on Chip) carry out the system to ensure the real-time. Finally, the key HDL algorithms for direct gray levels connection coding, proportional gray levels map coding and enhanced gray levels map coding are presented, and its simulation results are showed. The pseudo-color visualization of thermal images implemented by HDL in the paper has effective application in the aspect of electric power equipment test and medical health diagnosis.

  8. Corridor One:An Integrated Distance Visualization Enuronments for SSI+ASCI Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher R. Johnson, Charles D. Hansen

    2001-10-29

    The goal of Corridor One: An Integrated Distance Visualization Environment for ASCI and SSI Application was to combine the forces of six leading edge laboratories working in the areas of visualization and distributed computing and high performance networking (Argonne National Laboratory, Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, University of Illinois, University of Utah and Princeton University) to develop and deploy the most advanced integrated distance visualization environment for large-scale scientific visualization and demonstrate it on applications relevant to the DOE SSI and ASCI programs. The Corridor One team brought world class expertise in parallel rendering, deep image basedmore » rendering, immersive environment technology, large-format multi-projector wall based displays, volume and surface visualization algorithms, collaboration tools and streaming media technology, network protocols for image transmission, high-performance networking, quality of service technology and distributed computing middleware. Our strategy was to build on the very successful teams that produced the I-WAY, ''Computational Grids'' and CAVE technology and to add these to the teams that have developed the fastest parallel visualizations systems and the most widely used networking infrastructure for multicast and distributed media. Unfortunately, just as we were getting going on the Corridor One project, DOE cut the program after the first year. As such, our final report consists of our progress during year one of the grant.« less

  9. Integrated Web-Based Access to and use of Satellite Remote Sensing Data for Improved Decision Making in Hydrologic Applications

    NASA Astrophysics Data System (ADS)

    Teng, W.; Chiu, L.; Kempler, S.; Liu, Z.; Nadeau, D.; Rui, H.

    2006-12-01

    Using NASA satellite remote sensing data from multiple sources for hydrologic applications can be a daunting task and requires a detailed understanding of the data's internal structure and physical implementation. Gaining this understanding and applying it to data reduction is a time-consuming task that must be undertaken before the core investigation can begin. In order to facilitate such investigations, the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has developed the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure or "Giovanni," which supports a family of Web interfaces (instances) that allow users to perform interactive visualization and analysis online without downloading any data. Two such Giovanni instances are particularly relevant to hydrologic applications: the Tropical Rainfall Measuring Mission (TRMM) Online Visualization and Analysis System (TOVAS) and the Agricultural Online Visualization and Analysis System (AOVAS), both highly popular and widely used for a variety of applications, including those related to several NASA Applications of National Priority, such as Agricultural Efficiency, Disaster Management, Ecological Forecasting, Homeland Security, and Public Health. Dynamic, context- sensitive Web services provided by TOVAS and AOVAS enable users to seamlessly access NASA data from within, and deeply integrate the data into, their local client environments. One example is between TOVAS and Florida International University's TerraFly, a Web-enabled system that serves a broad segment of the research and applications community, by facilitating access to various textual, remotely sensed, and vector data. Another example is between AOVAS and the U.S. Department of Agriculture Foreign Agricultural Service (USDA FAS)'s Crop Explorer, the primary decision support tool used by FAS to monitor the production, supply, and demand of agricultural commodities worldwide. AOVAS is also part of GES DISC's Agricultural Information System (AIS), which can operationally provide satellite remote sensing data products (e.g., near- real-time rainfall) and analysis services to agricultural users. AIS enables the remote, interoperable access to distributed data, by using the GrADS-Data Server (GDS) and the Open Geospatial Consortium (OGC)- compliant MapServer. The latter allows the access of AIS data from any OGC-compliant client, such as the Earth-Sun System Gateway (ESG) or Google Earth. The Giovanni system is evolving towards a Service- Oriented Architecture and is highly customizable (e.g., adding new products or services), thus availing the hydrologic applications user community of Giovanni's simple-to-use and powerful capabilities to improve decision-making.

  10. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  11. A generalized equation for the calculation of receptor noise limited colour distances in n-chromatic visual systems

    PubMed Central

    Clark, R. C.; Brebner, J. S.

    2017-01-01

    Researchers must assess similarities and differences in colour from an animal's eye view when investigating hypotheses in ecology, evolution and behaviour. Nervous systems generate colour perceptions by comparing the responses of different spectral classes of photoreceptor through colour opponent mechanisms, and the performance of these mechanisms is limited by photoreceptor noise. Accordingly, the receptor noise limited (RNL) colour distance model of Vorobyev and Osorio (Vorobyev & Osorio 1998 Proc. R. Soc. Lond. B 265, 351–358 (doi:10.1098/rspb.1998.0302)) generates predictions about the discriminability of colours that agree with behavioural data, and consequently it has found wide application in studies of animal colour vision. Vorobyev and Osorio (1998) provide equations to calculate RNL colour distances for animals with di-, tri- and tetrachromatic vision, which is adequate for many species. However, researchers may sometimes wish to compute RNL colour distances for potentially more complex colour visual systems. Thus, we derive a simple, single formula for the computation of RNL distance between two measurements of colour, equivalent to the published di-, tri- and tetrachromatic equations of Vorobyev and Osorio (1998), and valid for colour visual systems with any number of types of noisy photoreceptors. This formula will allow the easy application of this important colour visual model across the fields of ecology, evolution and behaviour. PMID:28989773

  12. Multimodal visualization interface for data management, self-learning and data presentation.

    PubMed

    Van Sint Jan, S; Demondion, X; Clapworthy, G; Louryan, S; Rooze, M; Cotten, A; Viceconti, M

    2006-10-01

    A multimodal visualization software, called the Data Manager (DM), has been developed to increase interdisciplinary communication around the topic of visualization and modeling of various aspects of the human anatomy. Numerous tools used in Radiology are integrated in the interface that runs on standard personal computers. The available tools, combined to hierarchical data management and custom layouts, allow analyzing of medical imaging data using advanced features outside radiological premises (for example, for patient review, conference presentation or tutorial preparation). The system is free, and based on an open-source software development architecture, and therefore updates of the system for custom applications are possible.

  13. Visualization of upconverting nanoparticles in strongly scattering media

    PubMed Central

    Khaydukov, E. V.; Semchishen, V. A.; Seminogov, V. N.; Nechaev, A. V.; Zvyagin, A. V.; Sokolov, V. I.; Akhmanov, A. S.; Panchenko, V. Ya.

    2014-01-01

    Optical visualization systems are needed in medical applications for determining the localization of deep-seated luminescent markers in biotissues. The spatial resolution of such systems is limited by the scattering of the tissues. We present a novel epi-luminescent technique, which allows a 1.8-fold increase in the lateral spatial resolution in determining the localization of markers lying deep in a scattering medium compared to the traditional visualization techniques. This goal is attained by using NaYF4:Yb3+Tm3+@NaYF4 core/shell nanoparticles and special optical fiber probe with combined channels for the excitation and detection of anti-Stokes luminescence signals. PMID:24940552

  14. Adaptive optics vision simulation and perceptual learning system based on a 35-element bimorph deformable mirror.

    PubMed

    Dai, Yun; Zhao, Lina; Xiao, Fei; Zhao, Haoxin; Bao, Hua; Zhou, Hong; Zhou, Yifeng; Zhang, Yudong

    2015-02-10

    An adaptive optics visual simulation combined with a perceptual learning (PL) system based on a 35-element bimorph deformable mirror (DM) was established. The larger stroke and smaller size of the bimorph DM made the system have larger aberration correction or superposition ability and be more compact. By simply modifying the control matrix or the reference matrix, select correction or superposition of aberrations was realized in real time similar to a conventional adaptive optics closed-loop correction. PL function was first integrated in addition to conventional adaptive optics visual simulation. PL training undertaken with high-order aberrations correction obviously improved the visual function of adult anisometropic amblyopia. The preliminary application of high-order aberrations correction with PL training on amblyopia treatment was being validated with a large scale population, which might have great potential in amblyopia treatment and visual performance maintenance.

  15. Visual interaction: models, systems, prototypes. The Pictorial Computing Laboratory at the University of Rome La Sapienza.

    PubMed

    Bottoni, Paolo; Cinque, Luigi; De Marsico, Maria; Levialdi, Stefano; Panizzi, Emanuele

    2006-06-01

    This paper reports on the research activities performed by the Pictorial Computing Laboratory at the University of Rome, La Sapienza, during the last 5 years. Such work, essentially is based on the study of humancomputer interaction, spans from metamodels of interaction down to prototypes of interactive systems for both synchronous multimedia communication and groupwork, annotation systems for web pages, also encompassing theoretical and practical issues of visual languages and environments also including pattern recognition algorithms. Some applications are also considered like e-learning and collaborative work.

  16. Low cost audiovisual playback and recording triggered by radio frequency identification using Raspberry Pi.

    PubMed

    Lendvai, Ádám Z; Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F; Moore, Ignacio T; Bonier, Frances

    2015-01-01

    Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists.

  17. Low cost audiovisual playback and recording triggered by radio frequency identification using Raspberry Pi

    PubMed Central

    Akçay, Çağlar; Weiss, Talia; Haussmann, Mark F.; Moore, Ignacio T.; Bonier, Frances

    2015-01-01

    Playbacks of visual or audio stimuli to wild animals is a widely used experimental tool in behavioral ecology. In many cases, however, playback experiments are constrained by observer limitations such as the time observers can be present, or the accuracy of observation. These problems are particularly apparent when playbacks are triggered by specific events, such as performing a specific behavior, or are targeted to specific individuals. We developed a low-cost automated playback/recording system, using two field-deployable devices: radio-frequency identification (RFID) readers and Raspberry Pi micro-computers. This system detects a specific passive integrated transponder (PIT) tag attached to an individual, and subsequently plays back the stimuli, or records audio or visual information. To demonstrate the utility of this system and to test one of its possible applications, we tagged female and male tree swallows (Tachycineta bicolor) from two box-nesting populations with PIT tags and carried out playbacks of nestling begging calls every time focal females entered the nestbox over a six-hour period. We show that the RFID-Raspberry Pi system presents a versatile, low-cost, field-deployable system that can be adapted for many audio and visual playback purposes. In addition, the set-up does not require programming knowledge, and it easily customized to many other applications, depending on the research questions. Here, we discuss the possible applications and limitations of the system. The low cost and the small learning curve of the RFID-Raspberry Pi system provides a powerful new tool to field biologists. PMID:25870771

  18. An interactive web application for the dissemination of human systems immunology data.

    PubMed

    Speake, Cate; Presnell, Scott; Domico, Kelly; Zeitner, Brad; Bjork, Anna; Anderson, David; Mason, Michael J; Whalen, Elizabeth; Vargas, Olivia; Popov, Dimitry; Rinchai, Darawan; Jourde-Chiche, Noemie; Chiche, Laurent; Quinn, Charlie; Chaussabel, Damien

    2015-06-19

    Systems immunology approaches have proven invaluable in translational research settings. The current rate at which large-scale datasets are generated presents unique challenges and opportunities. Mining aggregates of these datasets could accelerate the pace of discovery, but new solutions are needed to integrate the heterogeneous data types with the contextual information that is necessary for interpretation. In addition, enabling tools and technologies facilitating investigators' interaction with large-scale datasets must be developed in order to promote insight and foster knowledge discovery. State of the art application programming was employed to develop an interactive web application for browsing and visualizing large and complex datasets. A collection of human immune transcriptome datasets were loaded alongside contextual information about the samples. We provide a resource enabling interactive query and navigation of transcriptome datasets relevant to human immunology research. Detailed information about studies and samples are displayed dynamically; if desired the associated data can be downloaded. Custom interactive visualizations of the data can be shared via email or social media. This application can be used to browse context-rich systems-scale data within and across systems immunology studies. This resource is publicly available online at [Gene Expression Browser Landing Page ( https://gxb.benaroyaresearch.org/dm3/landing.gsp )]. The source code is also available openly [Gene Expression Browser Source Code ( https://github.com/BenaroyaResearch/gxbrowser )]. We have developed a data browsing and visualization application capable of navigating increasingly large and complex datasets generated in the context of immunological studies. This intuitive tool ensures that, whether taken individually or as a whole, such datasets generated at great effort and expense remain interpretable and a ready source of insight for years to come.

  19. Visualization of system dynamics using phasegrams

    PubMed Central

    Herbst, Christian T.; Herzel, Hanspeter; Švec, Jan G.; Wyman, Megan T.; Fitch, W. Tecumseh

    2013-01-01

    A new tool for visualization and analysis of system dynamics is introduced: the phasegram. Its application is illustrated with both classical nonlinear systems (logistic map and Lorenz system) and with biological voice signals. Phasegrams combine the advantages of sliding-window analysis (such as the spectrogram) with well-established visualization techniques from the domain of nonlinear dynamics. In a phasegram, time is mapped onto the x-axis, and various vibratory regimes, such as periodic oscillation, subharmonics or chaos, are identified within the generated graph by the number and stability of horizontal lines. A phasegram can be interpreted as a bifurcation diagram in time. In contrast to other analysis techniques, it can be automatically constructed from time-series data alone: no additional system parameter needs to be known. Phasegrams show great potential for signal classification and can act as the quantitative basis for further analysis of oscillating systems in many scientific fields, such as physics (particularly acoustics), biology or medicine. PMID:23697715

  20. Concept of Operations for Commercial and Business Aircraft Synthetic Vision Systems. 1.0

    NASA Technical Reports Server (NTRS)

    Williams Daniel M.; Waller, Marvin C.; Koelling, John H.; Burdette, Daniel W.; Capron, William R.; Barry, John S.; Gifford, Richard B.; Doyle, Thomas M.

    2001-01-01

    A concept of operations (CONOPS) for the Commercial and Business (CaB) aircraft synthetic vision systems (SVS) is described. The CaB SVS is expected to provide increased safety and operational benefits in normal and low visibility conditions. Providing operational benefits will promote SVS implementation in the Net, improve aviation safety, and assist in meeting the national aviation safety goal. SVS will enhance safety and enable consistent gate-to-gate aircraft operations in normal and low visibility conditions. The goal for developing SVS is to support operational minima as low as Category 3b in a variety of environments. For departure and ground operations, the SVS goal is to enable operations with a runway visual range of 300 feet. The system is an integrated display concept that provides a virtual visual environment. The SVS virtual visual environment is composed of three components: an enhanced intuitive view of the flight environment, hazard and obstacle defection and display, and precision navigation guidance. The virtual visual environment will support enhanced operations procedures during all phases of flight - ground operations, departure, en route, and arrival. The applications selected for emphasis in this document include low visibility departures and arrivals including parallel runway operations, and low visibility airport surface operations. These particular applications were selected because of significant potential benefits afforded by SVS.

  1. Simple Smartphone-Based Guiding System for Visually Impaired People

    PubMed Central

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-01-01

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811

  2. Simple Smartphone-Based Guiding System for Visually Impaired People.

    PubMed

    Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying

    2017-06-13

    Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.

  3. Novel Web-based Education Platforms for Information Communication utilizing Gamification, Virtual and Immersive Reality

    NASA Astrophysics Data System (ADS)

    Demir, I.

    2015-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.

  4. Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.

    PubMed

    Bouchard, Jean-François; Casanova, Christian; Cécyre, Bruno; Redmond, William John

    2016-01-01

    Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.

  5. Three-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Kim, Moon S.

    2006-05-01

    A three-color mixing application for food safety inspection is presented. It is shown that the chromaticness of the visual signal resulting from the three-color mixing achieved through our device is directly related to the three-band ratio of light intensity at three selected wavebands. An optical visual device using three-color mixing to implement the three-band ratio criterion is presented. Inspection through human vision assisted by an optical device that implements the three-band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical three-color mixing technique are given for the inspection of chicken carcasses with various diseases and for apples with fecal contamination. With proper selection of the three narrow wavebands, discrimination by chromaticness that has a direct relation with the three-band ratio can work very well. In particular, compared with the previously presented two-color mixing application, the conditions of chicken carcasses were more easily identified using the three-color mixing application. The novel three-color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  6. Towards automated visual flexible endoscope navigation.

    PubMed

    van der Stap, Nanda; van der Heijden, Ferdinand; Broeders, Ivo A M J

    2013-10-01

    The design of flexible endoscopes has not changed significantly in the past 50 years. A trend is observed towards a wider application of flexible endoscopes with an increasing role in complex intraluminal therapeutic procedures. The nonintuitive and nonergonomical steering mechanism now forms a barrier in the extension of flexible endoscope applications. Automating the navigation of endoscopes could be a solution for this problem. This paper summarizes the current state of the art in image-based navigation algorithms. The objectives are to find the most promising navigation system(s) to date and to indicate fields for further research. A systematic literature search was performed using three general search terms in two medical-technological literature databases. Papers were included according to the inclusion criteria. A total of 135 papers were analyzed. Ultimately, 26 were included. Navigation often is based on visual information, which means steering the endoscope using the images that the endoscope produces. Two main techniques are described: lumen centralization and visual odometry. Although the research results are promising, no successful, commercially available automated flexible endoscopy system exists to date. Automated systems that employ conventional flexible endoscopes show the most promising prospects in terms of cost and applicability. To produce such a system, the research focus should lie on finding low-cost mechatronics and technologically robust steering algorithms. Additional functionality and increased efficiency can be obtained through software development. The first priority is to find real-time, robust steering algorithms. These algorithms need to handle bubbles, motion blur, and other image artifacts without disrupting the steering process.

  7. A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.

    PubMed

    Pratesi, Andrea; Cecchi, Francesca; Beani, Elena; Sgandurra, Giuseppina; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo

    2015-09-07

    The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics. The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random. We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way. The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.

  8. Application of color mixing for safety and quality inspection of agricultural products

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin

    2005-11-01

    In this paper, color-mixing applications for food safety and quality was studied, including two-color mixing and three-color mixing. It was shown that the chromaticness of the visual signal resulting from two- or three-color mixing is directly related to the band ratio of light intensity at the two or three selected wavebands. An optical visual device using color mixing to implement the band ratio criterion was presented. Inspection through human vision assisted by an optical device that implements the band ratio criterion would offer flexibility and significant cost savings as compared to inspection with a multispectral machine vision system that implements the same criterion. Example applications of this optical color mixing technique were given for the inspection of chicken carcasses with various diseases and for the detection of chilling injury in cucumbers. Simulation results showed that discrimination by chromaticness that has a direct relation with band ratio can work very well with proper selection of the two or three narrow wavebands. This novel color mixing technique for visual inspection can be implemented on visual devices for a variety of applications, ranging from target detection to food safety inspection.

  9. Multispectral image analysis for object recognition and classification

    NASA Astrophysics Data System (ADS)

    Viau, C. R.; Payeur, P.; Cretu, A.-M.

    2016-05-01

    Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.

  10. A Space and Atmospheric Visualization Science System

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Blanchard, P.; Mankofsky, A.; Goodrich, C.; Kamins, D.; Kulkarni, R.; Mcnabb, D.; Moroh, M.

    1994-01-01

    SAVS (a Space and Atmospheric Visualization Science system) is an integrated system with user-friendly functionality that employs a 'push-button' software environment that mimics the logical scientific processes in data acquisition, reduction, analysis, and visualization. All of this is accomplished without requiring a detailed understanding of the methods, networks, and modules that link the tools and effectively execute the functions. This report describes SAVS and its components, followed by several applications based on generic research interests in interplanetary and magnetospheric physics (IMP/ISTP), active experiments in space (CRRES), and mission planning focused on the earth's thermospheric, ionospheric, and mesospheric domains (TIMED). The final chapters provide a user-oriented description of interface functionalities, hands-on operations, and customized modules, with details of the primary modules presented in the appendices. The overall intent of the report is to reflect the accomplishments of the three-year development effort and to introduce potential users to the power and utility of the integrated data acquisition, analysis, and visualization system.

  11. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  12. Client-side Medical Image Colorization in a Collaborative Environment.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2015-01-01

    The paper presents an application related to collaborative medicine using a browser based medical visualization system with focus on the medical image colorization process and the underlying open source web development technologies involved. Browser based systems allow physicians to share medical data with their remotely located counterparts or medical students, assisting them during patient diagnosis, treatment monitoring, surgery planning or for educational purposes. This approach brings forth the advantage of ubiquity. The system can be accessed from a any device, in order to process the images, assuring the independence towards having a specific proprietary operating system. The current work starts with processing of DICOM (Digital Imaging and Communications in Medicine) files and ends with the rendering of the resulting bitmap images on a HTML5 (fifth revision of the HyperText Markup Language) canvas element. The application improves the image visualization emphasizing different tissue densities.

  13. Microfluidic Model Porous Media: Fabrication and Applications.

    PubMed

    Anbari, Alimohammad; Chien, Hung-Ta; Datta, Sujit S; Deng, Wen; Weitz, David A; Fan, Jing

    2018-05-01

    Complex fluid flow in porous media is ubiquitous in many natural and industrial processes. Direct visualization of the fluid structure and flow dynamics is critical for understanding and eventually manipulating these processes. However, the opacity of realistic porous media makes such visualization very challenging. Micromodels, microfluidic model porous media systems, have been developed to address this challenge. They provide a transparent interconnected porous network that enables the optical visualization of the complex fluid flow occurring inside at the pore scale. In this Review, the materials and fabrication methods to make micromodels, the main research activities that are conducted with micromodels and their applications in petroleum, geologic, and environmental engineering, as well as in the food and wood industries, are discussed. The potential applications of micromodels in other areas are also discussed and the key issues that should be addressed in the near future are proposed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Transonic flow visualization using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bryanston-Cross, Peter J.

    1987-01-01

    An account is made of some of the applications of holographic interferometry to the visualization of transonic flows. In the case of the compressor shock visualization, the method is used regularly and has moved from being a research department invention to a design test tool. With the implementation of automatic processing and simple digitization systems, holographic vibrational analysis has also moved into routine nondestructive testing. The code verification interferograms were instructive, but the main turbomachinery interest is now in 3 dimensional flows. A major data interpretation effort will be required to compute tomographically the 3 dimensional flow around the leading or the trailing edges of a rotating blade row. The bolt on approach shows the potential application to current unsteady flows of interest. In particular that of the rotor passing and vortex interaction effects is experienced by the new generation of unducted fans. The turbocharger tests presents a new area for the application of holography.

  15. Study of a direct visualization display tool for space applications

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  16. A visual approach to efficient analysis and quantification of ductile iron and reinforced sprayed concrete.

    PubMed

    Fritz, Laura; Hadwiger, Markus; Geier, Georg; Pittino, Gerhard; Gröller, M Eduard

    2009-01-01

    This paper describes advanced volume visualization and quantification for applications in non-destructive testing (NDT), which results in novel and highly effective interactive workflows for NDT practitioners. We employ a visual approach to explore and quantify the features of interest, based on transfer functions in the parameter spaces of specific application scenarios. Examples are the orientations of fibres or the roundness of particles. The applicability and effectiveness of our approach is illustrated using two specific scenarios of high practical relevance. First, we discuss the analysis of Steel Fibre Reinforced Sprayed Concrete (SFRSpC). We investigate the orientations of the enclosed steel fibres and their distribution, depending on the concrete's application direction. This is a crucial step in assessing the material's behavior under mechanical stress, which is still in its infancy and therefore a hot topic in the building industry. The second application scenario is the designation of the microstructure of ductile cast irons with respect to the contained graphite. This corresponds to the requirements of the ISO standard 945-1, which deals with 2D metallographic samples. We illustrate how the necessary analysis steps can be carried out much more efficiently using our system for 3D volumes. Overall, we show that a visual approach with custom transfer functions in specific application domains offers significant benefits and has the potential of greatly improving and optimizing the workflows of domain scientists and engineers.

  17. Interactive visual optimization and analysis for RFID benchmarking.

    PubMed

    Wu, Yingcai; Chung, Ka-Kei; Qu, Huamin; Yuan, Xiaoru; Cheung, S C

    2009-01-01

    Radio frequency identification (RFID) is a powerful automatic remote identification technique that has wide applications. To facilitate RFID deployment, an RFID benchmarking instrument called aGate has been invented to identify the strengths and weaknesses of different RFID technologies in various environments. However, the data acquired by aGate are usually complex time varying multidimensional 3D volumetric data, which are extremely challenging for engineers to analyze. In this paper, we introduce a set of visualization techniques, namely, parallel coordinate plots, orientation plots, a visual history mechanism, and a 3D spatial viewer, to help RFID engineers analyze benchmark data visually and intuitively. With the techniques, we further introduce two workflow procedures (a visual optimization procedure for finding the optimum reader antenna configuration and a visual analysis procedure for comparing the performance and identifying the flaws of RFID devices) for the RFID benchmarking, with focus on the performance analysis of the aGate system. The usefulness and usability of the system are demonstrated in the user evaluation.

  18. Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data

    PubMed Central

    Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.

    2005-01-01

    The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787

  19. Analysis, Mining and Visualization Service at NCSA

    NASA Astrophysics Data System (ADS)

    Wilhelmson, R.; Cox, D.; Welge, M.

    2004-12-01

    NCSA's goal is to create a balanced system that fully supports high-end computing as well as: 1) high-end data management and analysis; 2) visualization of massive, highly complex data collections; 3) large databases; 4) geographically distributed Grid computing; and 5) collaboratories, all based on a secure computational environment and driven with workflow-based services. To this end NCSA has defined a new technology path that includes the integration and provision of cyberservices in support of data analysis, mining, and visualization. NCSA has begun to develop and apply a data mining system-NCSA Data-to-Knowledge (D2K)-in conjunction with both the application and research communities. NCSA D2K will enable the formation of model-based application workflows and visual programming interfaces for rapid data analysis. The Java-based D2K framework, which integrates analytical data mining methods with data management, data transformation, and information visualization tools, will be configurable from the cyberservices (web and grid services, tools, ..) viewpoint to solve a wide range of important data mining problems. This effort will use modules, such as a new classification methods for the detection of high-risk geoscience events, and existing D2K data management, machine learning, and information visualization modules. A D2K cyberservices interface will be developed to seamlessly connect client applications with remote back-end D2K servers, providing computational resources for data mining and integration with local or remote data stores. This work is being coordinated with SDSC's data and services efforts. The new NCSA Visualization embedded workflow environment (NVIEW) will be integrated with D2K functionality to tightly couple informatics and scientific visualization with the data analysis and management services. Visualization services will access and filter disparate data sources, simplifying tasks such as fusing related data from distinct sources into a coherent visual representation. This approach enables collaboration among geographically dispersed researchers via portals and front-end clients, and the coupling with data management services enables recording associations among datasets and building annotation systems into visualization tools and portals, giving scientists a persistent, shareable, virtual lab notebook. To facilitate provision of these cyberservices to the national community, NCSA will be providing a computational environment for large-scale data assimilation, analysis, mining, and visualization. This will be initially implemented on the new 512 processor shared memory SGI's recently purchased by NCSA. In addition to standard batch capabilities, NCSA will provide on-demand capabilities for those projects requiring rapid response (e.g., development of severe weather, earthquake events) for decision makers. It will also be used for non-sequential interactive analysis of data sets where it is important have access to large data volumes over space and time.

  20. [Retinotopic mapping of the human visual cortex with functional magnetic resonance imaging - basic principles, current developments and ophthalmological perspectives].

    PubMed

    Hoffmann, M B; Kaule, F; Grzeschik, R; Behrens-Baumann, W; Wolynski, B

    2011-07-01

    Since its initial introduction in the mid-1990 s, retinotopic mapping of the human visual cortex, based on functional magnetic resonance imaging (fMRI), has contributed greatly to our understanding of the human visual system. Multiple cortical visual field representations have been demonstrated and thus numerous visual areas identified. The organisation of specific areas has been detailed and the impact of pathophysiologies of the visual system on the cortical organisation uncovered. These results are based on investigations at a magnetic field strength of 3 Tesla or less. In a field-strength comparison between 3 and 7 Tesla, it was demonstrated that retinotopic mapping benefits from a magnetic field strength of 7 Tesla. Specifically, the visual areas can be mapped with high spatial resolution for a detailed analysis of the visual field maps. Applications of fMRI-based retinotopic mapping in ophthalmological research hold promise to further our understanding of plasticity in the human visual cortex. This is highlighted by pioneering studies in patients with macular dysfunction or misrouted optic nerves. © Georg Thieme Verlag KG Stuttgart · New York.

  1. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.

  2. Detection Progress of Selected Drugs in TLC

    PubMed Central

    Pyka, Alina

    2014-01-01

    This entry describes applications of known indicators and dyes as new visualizing reagents and various visualizing systems as well as photocatalytic reactions and bioautography method for the detection of bioactive compounds including drugs and compounds isolated from herbal extracts. Broadening index, detection index, characteristics of densitometric band, modified contrast index, limit of detection, densitometric visualizing index, and linearity range of detected compounds were used for the evaluation of visualizing effects of applied visualizing reagents. It was shown that visualizing effect depends on the chemical structure of the visualizing reagent, the structure of the substance detected, and the chromatographic adsorbent applied. The usefulness of densitometry to direct detection of some drugs was also shown. Quoted papers indicate the detection progress of selected drugs investigated by thin-layer chromatography (TLC). PMID:24551853

  3. Active training for amblyopia in adult rodents

    PubMed Central

    Sale, Alessandro; Berardi, Nicoletta

    2015-01-01

    Amblyopia is the most diffused form of visual function impairment affecting one eye, with a prevalence of 1–5% in the total world population. Amblyopia is usually caused by an early functional imbalance between the two eyes, deriving from anisometropia, strabismus, or congenital cataract, leading to severe deficits in visual acuity, contrast sensitivity and stereopsis. While amblyopia can be efficiently treated in children, it becomes irreversible in adults, as a result of a dramatic decline in visual cortex plasticity which occurs at the end of the critical period (CP) in the primary visual cortex. Notwithstanding this widely accepted dogma, recent evidence in animal models and in human patients have started to challenge this view, revealing a previously unsuspected possibility to enhance plasticity in the adult visual system and to achieve substantial visual function recovery. Among the new proposed intervention strategies, non invasive procedures based on environmental enrichment, physical exercise or visual perceptual learning (vPL) appear particularly promising in terms of future applicability in the clinical setting. In this survey, we will review recent literature concerning the application of these behavioral intervention strategies to the treatment of amblyopia, with a focus on possible underlying molecular and cellular mechanisms. PMID:26578911

  4. Falcon: A Temporal Visual Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.

    2016-09-05

    Flexible visible exploration of long, high-resolution time series from multiple sensor streams is a challenge in several domains. Falcon is a visual analytics approach that helps researchers acquire a deep understanding of patterns in log and imagery data. Falcon allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations with multiple levels of detail. These capabilities are applicable to the analysis of any quantitative time series.

  5. A risk-based coverage model for video surveillance camera control optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Hongzhou; Du, Zhiguo; Zhao, Xingtao; Li, Peiyue; Li, Dehua

    2015-12-01

    Visual surveillance system for law enforcement or police case investigation is different from traditional application, for it is designed to monitor pedestrians, vehicles or potential accidents. Visual surveillance risk is defined as uncertainty of visual information of targets and events monitored in present work and risk entropy is introduced to modeling the requirement of police surveillance task on quality and quantity of vide information. the prosed coverage model is applied to calculate the preset FoV position of PTZ camera.

  6. Application of the Analysis Phase of the Instructional System Development to the MK-105 Magnetic Minesweeping Mission of the MH-53E Helicopter.

    DTIC Science & Technology

    1987-09-01

    Visual Communication . Although this task is performed several times, the task is performed at different points during the mission. In addition, the...Perform visual communication Give thumbs-up signal when ready for takeoff; check lights on pri-fly B. Perform takeoff and Aircraft operating clear ship...FM c. Operate ICS 2. Perform visual communication 3. Operate IFF transponder B. Maintain mission and fuel logs C. Perform checklists 1. Perform AMCM

  7. Data management in Oceanography at SOCIB

    NASA Astrophysics Data System (ADS)

    Joaquin, Tintoré; March, David; Lora, Sebastian; Sebastian, Kristian; Frontera, Biel; Gómara, Sonia; Pau Beltran, Joan

    2014-05-01

    SOCIB, the Balearic Islands Coastal Ocean Observing and Forecasting System (http://www.socib.es), is a Marine Research Infrastructure, a multiplatform distributed and integrated system, a facility of facilities that extends from the nearshore to the open sea and provides free, open and quality control data. SOCIB is a facility o facilities and has three major infrastructure components: (1) a distributed multiplatform observing system, (2) a numerical forecasting system, and (3) a data management and visualization system. We present the spatial data infrastructure and applications developed at SOCIB. One of the major goals of the SOCIB Data Centre is to provide users with a system to locate and download the data of interest (near real-time and delayed mode) and to visualize and manage the information. Following SOCIB principles, data need to be (1) discoverable and accessible, (2) freely available, and (3) interoperable and standardized. In consequence, SOCIB Data Centre Facility is implementing a general data management system to guarantee international standards, quality assurance and interoperability. The combination of different sources and types of information requires appropriate methods to ingest, catalogue, display, and distribute this information. SOCIB Data Centre is responsible for directing the different stages of data management, ranging from data acquisition to its distribution and visualization through web applications. The system implemented relies on open source solutions. In other words, the data life cycle relies in the following stages: • Acquisition: The data managed by SOCIB mostly come from its own observation platforms, numerical models or information generated from the activities in the SIAS Division. • Processing: Applications developed at SOCIB to deal with all collected platform data performing data calibration, derivation, quality control and standardization. • Archival: Storage in netCDF and spatial databases. • Distribution: Data web services using Thredds, Geoserver and RESTful own services. • Catalogue: Metadata is provided through the ncISO plugin in Thredds and Geonetwork. • Visualization: web and mobile applications to present SOCIB data to different user profiles. SOCIB data services and applications have been developed to provide response to science and society needs (eg. European initiatives such as Emodnet or Copernicus), by targeting different user profiles (eg. researchers, technicians, policy and decision makers, educators, students, and society in general). For example, SOCIB has developed applications to: 1) allow researchers and technicians to access oceanographic information; 2) provide decision support for oil spills response; 3) disseminate information about the coastal state for tourists and recreational users; 4) present coastal research in educational programs; and 5) offer easy and fast access to marine information through mobile devices. In conclusion, the organizational and conceptual structure of SOCIB's Data Centre and the components developed provide an example of marine information systems within the framework of new ocean observatories and/or marine research infrastructures.

  8. Illustrative visualization of 3D city models

    NASA Astrophysics Data System (ADS)

    Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian

    2005-03-01

    This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.

  9. 3D Orbit Visualization for Earth-Observing Missions

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph C.; Plesea, Lucian; Chafin, Brian G.; Weiss, Barry H.

    2011-01-01

    This software visualizes orbit paths for the Orbiting Carbon Observatory (OCO), but was designed to be general and applicable to any Earth-observing mission. The software uses the Google Earth user interface to provide a visual mechanism to explore spacecraft orbit paths, ground footprint locations, and local cloud cover conditions. In addition, a drill-down capability allows for users to point and click on a particular observation frame to pop up ancillary information such as data product filenames and directory paths, latitude, longitude, time stamp, column-average dry air mole fraction of carbon dioxide, and solar zenith angle. This software can be integrated with the ground data system for any Earth-observing mission to automatically generate daily orbit path data products in Google Earth KML format. These KML data products can be directly loaded into the Google Earth application for interactive 3D visualization of the orbit paths for each mission day. Each time the application runs, the daily orbit paths are encapsulated in a KML file for each mission day since the last time the application ran. Alternatively, the daily KML for a specified mission day may be generated. The application automatically extracts the spacecraft position and ground footprint geometry as a function of time from a daily Level 1B data product created and archived by the mission s ground data system software. In addition, ancillary data, such as the column-averaged dry air mole fraction of carbon dioxide and solar zenith angle, are automatically extracted from a Level 2 mission data product. Zoom, pan, and rotate capability are provided through the standard Google Earth interface. Cloud cover is indicated with an image layer from the MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Aqua satellite, which is automatically retrieved from JPL s OnEarth Web service.

  10. Flight Simulator Visual-Display Delay Compensation

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis

    1981-01-01

    A piloted aircraft can be viewed as a closed-loop man-machine control system. When a simulator pilot is performing a precision maneuver, a delay in the visual display of aircraft response to pilot-control input decreases the stability of the pilot-aircraft system. The less stable system is more difficult to control precisely. Pilot dynamic response and performance change as the pilot attempts to compensate for the decrease in system stability. The changes in pilot dynamic response and performance bias the simulation results by influencing the pilot's rating of the handling qualities of the simulated aircraft. The study reported here evaluated an approach to visual-display delay compensation. The objective of the compensation was to minimize delay-induced change in pilot performance and workload, The compensation was effective. Because the compensation design approach is based on well-established control-system design principles, prospects are favorable for successful application of the approach in other simulations.

  11. Application of the Sumudu Transform to Discrete Dynamic Systems

    ERIC Educational Resources Information Center

    Asiru, Muniru Aderemi

    2003-01-01

    The Sumudu transform is an integral transform introduced to solve differential equations and control engineering problems. The transform possesses many interesting properties that make visualization easier and application has been demonstrated in the solution of partial differential equations, integral equations, integro-differential equations and…

  12. Web-Based Visual Analytics for Social Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Best, Daniel M.; Bruce, Joseph R.; Dowson, Scott T.

    Social media provides a rich source of data that reflects current trends and public opinion on a multitude of topics. The data can be harvested from Twitter, Facebook, Blogs, and other social applications. The high rate of adoption of social media has created a domain that has an ever expanding volume of data that make it difficult to use the raw data for analysis. Information visual analytics is key in drawing out features of interest in social media. The Scalable Reasoning System is an application that couples a back end server performing analysis algorithms and an intuitive front end visualizationmore » to allow for investigation. We provide a componentized system that can be rapidly adapted to customer needs such that the information they are most interested in is brought to their attention through the application. To this end, we have developed a social media application for use by emergency operations for the city of Seattle to show current weather and traffic trends which is important for their tasks.« less

  13. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  14. Visualization for Molecular Dynamics Simulation of Gas and Metal Surface Interaction

    NASA Astrophysics Data System (ADS)

    Puzyrkov, D.; Polyakov, S.; Podryga, V.

    2016-02-01

    The development of methods, algorithms and applications for visualization of molecular dynamics simulation outputs is discussed. The visual analysis of the results of such calculations is a complex and actual problem especially in case of the large scale simulations. To solve this challenging task it is necessary to decide on: 1) what data parameters to render, 2) what type of visualization to choose, 3) what development tools to use. In the present work an attempt to answer these questions was made. For visualization it was offered to draw particles in the corresponding 3D coordinates and also their velocity vectors, trajectories and volume density in the form of isosurfaces or fog. We tested the way of post-processing and visualization based on the Python language with use of additional libraries. Also parallel software was developed that allows processing large volumes of data in the 3D regions of the examined system. This software gives the opportunity to achieve desired results that are obtained in parallel with the calculations, and at the end to collect discrete received frames into a video file. The software package "Enthought Mayavi2" was used as the tool for visualization. This visualization application gave us the opportunity to study the interaction of a gas with a metal surface and to closely observe the adsorption effect.

  15. Enhancing online timeline visualizations with events and images

    NASA Astrophysics Data System (ADS)

    Pandya, Abhishek; Mulye, Aniket; Teoh, Soon Tee

    2011-01-01

    The use of timeline to visualize time-series data is one of the most intuitive and commonly used methods, and is used for widely-used applications such as stock market data visualization, and tracking of poll data of election candidates over time. While useful, these timeline visualizations are lacking in contextual information of events which are related or cause changes in the data. We have developed a system that enhances timeline visualization with display of relevant news events and their corresponding images, so that users can not only see the changes in the data, but also understand the reasons behind the changes. We have also conducted a user study to test the effectiveness of our ideas.

  16. Advances in visual representation of molecular potentials.

    PubMed

    Du, Qi-Shi; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-06-01

    The recent advances in visual representations of molecular properties in 3D space are summarized, and their applications in molecular modeling study and rational drug design are introduced. The visual representation methods provide us with detailed insights into protein-ligand interactions, and hence can play a major role in elucidating the structure or reactivity of a biomolecular system. Three newly developed computation and visualization methods for studying the physical and chemical properties of molecules are introduced, including their electrostatic potential, lipophilicity potential and excess chemical potential. The newest application examples of visual representations in structure-based rational drug are presented. The 3D electrostatic potentials, calculated using the empirical method (EM-ESP), in which the classical Coulomb equation and traditional atomic partial changes are discarded, are highly consistent with the results by the higher level quantum chemical method. The 3D lipophilicity potentials, computed by the heuristic molecular lipophilicity potential method based on the principles of quantum mechanics and statistical mechanics, are more accurate and reliable than those by using the traditional empirical methods. The 3D excess chemical potentials, derived by the reference interaction site model-hypernetted chain theory, provide a new tool for computational chemistry and molecular modeling. For structure-based drug design, the visual representations of molecular properties will play a significant role in practical applications. It is anticipated that the new advances in computational chemistry will stimulate the development of molecular modeling methods, further enriching the visual representation techniques for rational drug design, as well as other relevant fields in life science.

  17. Vision Science and Adaptive Optics, The State of the Field

    PubMed Central

    Marcos, Susana; Werner, John S.; Burns, Stephen A; Merigan, William H.; Artal, Pablo; Atchison, David A.; Hampson, Karen M.; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S.; Doble, Nathan; Dubis, Adam M.; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T.; Paques, Michel; Smithson, Hannah E.; Young, Laura K.; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C.

    2017-01-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. PMID:28212982

  18. The Use of a Tactile-Vision Sensory Substitution System as an Augmentative Tool for Individuals with Visual Impairments

    ERIC Educational Resources Information Center

    Williams, Michael D.; Ray, Christopher T.; Griffith, Jennifer; De l'Aune, William

    2011-01-01

    The promise of novel technological strategies and solutions to assist persons with visual impairments (that is, those who are blind or have low vision) is frequently discussed and held to be widely beneficial in countless applications and daily activities. One such approach involving a tactile-vision sensory substitution modality as a mechanism to…

  19. Continuous whole-system monitoring toward rapid understanding of production HPC applications and systems

    DOE PAGES

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim; ...

    2016-05-18

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  20. CasCADe: A Novel 4D Visualization System for Virtual Construction Planning.

    PubMed

    Ivson, Paulo; Nascimento, Daniel; Celes, Waldemar; Barbosa, Simone Dj

    2018-01-01

    Building Information Modeling (BIM) provides an integrated 3D environment to manage large-scale engineering projects. The Architecture, Engineering and Construction (AEC) industry explores 4D visualizations over these datasets for virtual construction planning. However, existing solutions lack adequate visual mechanisms to inspect the underlying schedule and make inconsistencies readily apparent. The goal of this paper is to apply best practices of information visualization to improve 4D analysis of construction plans. We first present a review of previous work that identifies common use cases and limitations. We then consulted with AEC professionals to specify the main design requirements for such applications. These guided the development of CasCADe, a novel 4D visualization system where task sequencing and spatio-temporal simultaneity are immediately apparent. This unique framework enables the combination of diverse analytical features to create an information-rich analysis environment. We also describe how engineering collaborators used CasCADe to review the real-world construction plans of an Oil & Gas process plant. The system made evident schedule uncertainties, identified work-space conflicts and helped analyze other constructability issues. The results and contributions of this paper suggest new avenues for future research in information visualization for the AEC industry.

  1. Person and gesture tracking with smart stereo cameras

    NASA Astrophysics Data System (ADS)

    Gordon, Gaile; Chen, Xiangrong; Buck, Ron

    2008-02-01

    Physical security increasingly involves sophisticated, real-time visual tracking of a person's location inside a given environment, often in conjunction with biometrics and other security-related technologies. However, demanding real-world conditions like crowded rooms, changes in lighting and physical obstructions have proved incredibly challenging for 2D computer vision technology. In contrast, 3D imaging technology is not affected by constant changes in lighting and apparent color, and thus allows tracking accuracy to be maintained in dynamically lit environments. In addition, person tracking with a 3D stereo camera can provide the location and movement of each individual very precisely, even in a very crowded environment. 3D vision only requires that the subject be partially visible to a single stereo camera to be correctly tracked; multiple cameras are used to extend the system's operational footprint, and to contend with heavy occlusion. A successful person tracking system, must not only perform visual analysis robustly, but also be small, cheap and consume relatively little power. The TYZX Embedded 3D Vision systems are perfectly suited to provide the low power, small footprint, and low cost points required by these types of volume applications. Several security-focused organizations, including the U.S Government, have deployed TYZX 3D stereo vision systems in security applications. 3D image data is also advantageous in the related application area of gesture tracking. Visual (uninstrumented) tracking of natural hand gestures and movement provides new opportunities for interactive control including: video gaming, location based entertainment, and interactive displays. 2D images have been used to extract the location of hands within a plane, but 3D hand location enables a much broader range of interactive applications. In this paper, we provide some background on the TYZX smart stereo cameras platform, describe the person tracking and gesture tracking systems implemented on this platform, and discuss some deployed applications.

  2. Bio-inspired display of polarization information using selected visual cues

    NASA Astrophysics Data System (ADS)

    Yemelyanov, Konstantin M.; Lin, Shih-Schon; Luis, William Q.; Pugh, Edward N., Jr.; Engheta, Nader

    2003-12-01

    For imaging systems the polarization of electromagnetic waves carries much potentially useful information about such features of the world as the surface shape, material contents, local curvature of objects, as well as about the relative locations of the source, object and imaging system. The imaging system of the human eye however, is "polarization-blind", and cannot utilize the polarization of light without the aid of an artificial, polarization-sensitive instrument. Therefore, polarization information captured by a man-made polarimetric imaging system must be displayed to a human observer in the form of visual cues that are naturally processed by the human visual system, while essentially preserving the other important non-polarization information (such as spectral and intensity information) in an image. In other words, some forms of sensory substitution are needed for representing polarization "signals" without affecting other visual information such as color and brightness. We are investigating several bio-inspired representational methodologies for mapping polarization information into visual cues readily perceived by the human visual system, and determining which mappings are most suitable for specific applications such as object detection, navigation, sensing, scene classifications, and surface deformation. The visual cues and strategies we are exploring are the use of coherently moving dots superimposed on image to represent various range of polarization signals, overlaying textures with spatial and/or temporal signatures to segregate regions of image with differing polarization, modulating luminance and/or color contrast of scenes in terms of certain aspects of polarization values, and fusing polarization images into intensity-only images. In this talk, we will present samples of our findings in this area.

  3. STAR: an integrated solution to management and visualization of sequencing data.

    PubMed

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W; Ecker, Joseph R; Millar, A Harvey; Ren, Bing; Wang, Wei

    2013-12-15

    Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser.

  4. Program Helps Generate And Manage Graphics

    NASA Technical Reports Server (NTRS)

    Truong, L. V.

    1994-01-01

    Living Color Frame Maker (LCFM) computer program generates computer-graphics frames. Graphical frames saved as text files, in readable and disclosed format, easily retrieved and manipulated by user programs for wide range of real-time visual information applications. LCFM implemented in frame-based expert system for visual aids in management of systems. Monitoring, diagnosis, and/or control, diagrams of circuits or systems brought to "life" by use of designated video colors and intensities to symbolize status of hardware components (via real-time feedback from sensors). Status of systems can be displayed. Written in C++ using Borland C++ 2.0 compiler for IBM PC-series computers and compatible computers running MS-DOS.

  5. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  6. The Tactile Vision Substitution System: Applications in Education and Employment

    ERIC Educational Resources Information Center

    Scadden, Lawrence A.

    1974-01-01

    The Tactile Vision Substitution System converts the visual image from a narrow-angle television camera to a tactual image on a 5-inch square, 100-point display of vibrators placed against the abdomen of the blind person. (Author)

  7. Connected vehicle applications for adaptive overhead lighting (on-demand lighting) : final research report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Virginia Tech Transportation Institute (VTTI) has developed an on-demand roadway lighting : system and has tested the systems effect on driver visual performance. On-demand roadway : lighting can dramatically reduce energy usage while maintain...

  8. Scientific Visualization Made Easy for the Scientist

    NASA Astrophysics Data System (ADS)

    Westerhoff, M.; Henderson, B.

    2002-12-01

    amirar is an application program used in creating 3D visualizations and geometric models of 3D image data sets from various application areas, e.g. medicine, biology, biochemistry, chemistry, physics, and engineering. It has demonstrated significant adoption in the market place since becoming commercially available in 2000. The rapid adoption has expanded the features being requested by the user base and broadened the scope of the amira product offering. The amira product offering includes amira Standard, amiraDevT, used to extend the product capabilities by users, amiraMolT, used for molecular visualization, amiraDeconvT, used to improve quality of image data, and amiraVRT, used in immersive VR environments. amira allows the user to construct a visualization tailored to his or her needs without requiring any programming knowledge. It also allows 3D objects to be represented as grids suitable for numerical simulations, notably as triangular surfaces and volumetric tetrahedral grids. The amira application also provides methods to generate such grids from voxel data representing an image volume, and it includes a general-purpose interactive 3D viewer. amiraDev provides an application-programming interface (API) that allows the user to add new components by C++ programming. amira supports many import formats including a 'raw' format allowing immediate access to your native uniform data sets. amira uses the power and speed of the OpenGLr and Open InventorT graphics libraries and 3D graphics accelerators to allow you to access over 145 modules, enabling you to process, probe, analyze and visualize your data. The amiraMolT extension adds powerful tools for molecular visualization to the existing amira platform. amiraMolT contains support for standard molecular file formats, tools for visualization and analysis of static molecules as well as molecular trajectories (time series). amiraDeconv adds tools for the deconvolution of 3D microscopic images. Deconvolution is the process of increasing image quality and resolution by computationally compensating artifacts of the recording process. amiraDeconv supports 3D wide field microscopy as well as 3D confocal microscopy. It offers both non-blind and blind image deconvolution algorithms. Non-blind deconvolution uses an individual measured point spread function, while non-blind algorithms work on the basis of only a few recording parameters (like numerical aperture or zoom factor). amiraVR is a specialized and extended version of the amira visualization system which is dedicated for use in immersive installations, such as large-screen stereoscopic projections, CAVEr or Holobenchr systems. Among others, it supports multi-threaded multi-pipe rendering, head-tracking, advanced 3D interaction concepts, and 3D menus allowing interaction with any amira object in the same way as on the desktop. With its unique set of features, amiraVR represents both a VR (Virtual Reality) ready application for scientific and medical visualization in immersive environments, and a development platform that allows building VR applications.

  9. Quality labeled faces in the wild (QLFW): a database for studying face recognition in real-world environments

    NASA Astrophysics Data System (ADS)

    Karam, Lina J.; Zhu, Tong

    2015-03-01

    The varying quality of face images is an important challenge that limits the effectiveness of face recognition technology when applied in real-world applications. Existing face image databases do not consider the effect of distortions that commonly occur in real-world environments. This database (QLFW) represents an initial attempt to provide a set of labeled face images spanning the wide range of quality, from no perceived impairment to strong perceived impairment for face detection and face recognition applications. Types of impairment include JPEG2000 compression, JPEG compression, additive white noise, Gaussian blur and contrast change. Subjective experiments are conducted to assess the perceived visual quality of faces under different levels and types of distortions and also to assess the human recognition performance under the considered distortions. One goal of this work is to enable automated performance evaluation of face recognition technologies in the presence of different types and levels of visual distortions. This will consequently enable the development of face recognition systems that can operate reliably on real-world visual content in the presence of real-world visual distortions. Another goal is to enable the development and assessment of visual quality metrics for face images and for face detection and recognition applications.

  10. A web-based solution to visualize operational monitoring data in the Trigger and Data Acquisition system of the ATLAS experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Avolio, G.; D'Ascanio, M.; Lehmann-Miotto, G.; Soloviev, I.

    2017-10-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS detector at the Large Hadron Collider at CERN is composed of a large number of distributed hardware and software components (about 3000 computers and more than 25000 applications) which, in a coordinated manner, provide the data-taking functionality of the overall system. During data taking runs, a huge flow of operational data is produced in order to constantly monitor the system and allow proper detection of anomalies or misbehaviours. In the ATLAS trigger and data acquisition system, operational data are archived and made available to applications by the P-BEAST (Persistent Back-End for the Atlas Information System of TDAQ) service, implementing a custom time-series database. The possibility to efficiently visualize both realtime and historical operational data is a great asset facilitating both online identification of problems and post-mortem analysis. This paper will present a web-based solution developed to achieve such a goal: the solution leverages the flexibility of the P-BEAST archiver to retrieve data, and exploits the versatility of the Grafana dashboard builder to offer a very rich user experience. Additionally, particular attention will be given to the way some technical challenges (like the efficient visualization of a huge amount of data and the integration of the P-BEAST data source in Grafana) have been faced and solved.

  11. Lsiviewer 2.0 - a Client-Oriented Online Visualization Tool for Geospatial Vector Data

    NASA Astrophysics Data System (ADS)

    Manikanta, K.; Rajan, K. S.

    2017-09-01

    Geospatial data visualization systems have been predominantly through applications that are installed and run in a desktop environment. Over the last decade, with the advent of web technologies and its adoption by Geospatial community, the server-client model for data handling, data rendering and visualization respectively has been the most prevalent approach in Web-GIS. While the client devices have become functionally more powerful over the recent years, the above model has largely ignored it and is still in a mode of serverdominant computing paradigm. In this paper, an attempt has been made to develop and demonstrate LSIViewer - a simple, easy-to-use and robust online geospatial data visualisation system for the user's own data that harness the client's capabilities for data rendering and user-interactive styling, with a reduced load on the server. The developed system can support multiple geospatial vector formats and can be integrated with other web-based systems like WMS, WFS, etc. The technology stack used to build this system is Node.js on the server side and HTML5 Canvas and JavaScript on the client side. Various tests run on a range of vector datasets, upto 35 MB, showed that the time taken to render the vector data using LSIViewer is comparable to a desktop GIS application, QGIS, over an identical system.

  12. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2017-12-01

    We present the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal. This allows for the dissemination of data, simulation of physical processes, and promotion of climate literacy. The current iteration leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. Moreover, the portal allows for real time visualization and editing of models, cloud based computational simulation, and downloads of relevant data. This allows for faster publication in peer-reviewed journals and adaption of results for educational applications. Through application of this concept to multiple aspects of the Earth System, VESL is able to broaden data applications in the geosciences and beyond. At this stage, we still seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL. As we plan its expansion, we aim to achieve more rapid communication and presentation of scientific results.

  13. Dual-Layer Video Encryption using RSA Algorithm

    NASA Astrophysics Data System (ADS)

    Chadha, Aman; Mallik, Sushmit; Chadha, Ankit; Johar, Ravdeep; Mani Roja, M.

    2015-04-01

    This paper proposes a video encryption algorithm using RSA and Pseudo Noise (PN) sequence, aimed at applications requiring sensitive video information transfers. The system is primarily designed to work with files encoded using the Audio Video Interleaved (AVI) codec, although it can be easily ported for use with Moving Picture Experts Group (MPEG) encoded files. The audio and video components of the source separately undergo two layers of encryption to ensure a reasonable level of security. Encryption of the video component involves applying the RSA algorithm followed by the PN-based encryption. Similarly, the audio component is first encrypted using PN and further subjected to encryption using the Discrete Cosine Transform. Combining these techniques, an efficient system, invulnerable to security breaches and attacks with favorable values of parameters such as encryption/decryption speed, encryption/decryption ratio and visual degradation; has been put forth. For applications requiring encryption of sensitive data wherein stringent security requirements are of prime concern, the system is found to yield negligible similarities in visual perception between the original and the encrypted video sequence. For applications wherein visual similarity is not of major concern, we limit the encryption task to a single level of encryption which is accomplished by using RSA, thereby quickening the encryption process. Although some similarity between the original and encrypted video is observed in this case, it is not enough to comprehend the happenings in the video.

  14. Application of advanced computing techniques to the analysis and display of space science measurements

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lapolla, M. V.; Horblit, B.

    1995-01-01

    A prototype system has been developed to aid the experimental space scientist in the display and analysis of spaceborne data acquired from direct measurement sensors in orbit. We explored the implementation of a rule-based environment for semi-automatic generation of visualizations that assist the domain scientist in exploring one's data. The goal has been to enable rapid generation of visualizations which enhance the scientist's ability to thoroughly mine his data. Transferring the task of visualization generation from the human programmer to the computer produced a rapid prototyping environment for visualizations. The visualization and analysis environment has been tested against a set of data obtained from the Hot Plasma Composition Experiment on the AMPTE/CCE satellite creating new visualizations which provided new insight into the data.

  15. [Development and application of emergency medical information management system].

    PubMed

    Wang, Fang; Zhu, Baofeng; Chen, Jianrong; Wang, Jian; Gu, Chaoli; Liu, Buyun

    2011-03-01

    To meet the needs of clinical practice of rescuing critical illness and develop the information management system of the emergency medicine. Microsoft Visual FoxPro, which is one of Microsoft's visual programming tool, is used to develop computer-aided system included the information management system of the emergency medicine. The system mainly consists of the module of statistic analysis, the module of quality control of emergency rescue, the module of flow path of emergency rescue, the module of nursing care in emergency rescue, and the module of rescue training. It can realize the system management of emergency medicine and,process and analyze the emergency statistical data. This system is practical. It can optimize emergency clinical pathway, and meet the needs of clinical rescue.

  16. Style grammars for interactive visualization of architecture.

    PubMed

    Aliaga, Daniel G; Rosen, Paul A; Bekins, Daniel R

    2007-01-01

    Interactive visualization of architecture provides a way to quickly visualize existing or novel buildings and structures. Such applications require both fast rendering and an effortless input regimen for creating and changing architecture using high-level editing operations that automatically fill in the necessary details. Procedural modeling and synthesis is a powerful paradigm that yields high data amplification and can be coupled with fast-rendering techniques to quickly generate plausible details of a scene without much or any user interaction. Previously, forward generating procedural methods have been proposed where a procedure is explicitly created to generate particular content. In this paper, we present our work in inverse procedural modeling of buildings and describe how to use an extracted repertoire of building grammars to facilitate the visualization and quick modification of architectural structures and buildings. We demonstrate an interactive application where the user draws simple building blocks and, using our system, can automatically complete the building "in the style of" other buildings using view-dependent texture mapping or nonphotorealistic rendering techniques. Our system supports an arbitrary number of building grammars created from user subdivided building models and captured photographs. Using only edit, copy, and paste metaphors, the entire building styles can be altered and transferred from one building to another in a few operations, enhancing the ability to modify an existing architectural structure or to visualize a novel building in the style of the others.

  17. Interactive Design and Visualization of Branched Covering Spaces.

    PubMed

    Roy, Lawrence; Kumar, Prashant; Golbabaei, Sanaz; Zhang, Yue; Zhang, Eugene

    2018-01-01

    Branched covering spaces are a mathematical concept which originates from complex analysis and topology and has applications in tensor field topology and geometry remeshing. Given a manifold surface and an -way rotational symmetry field, a branched covering space is a manifold surface that has an -to-1 map to the original surface except at the ramification points, which correspond to the singularities in the rotational symmetry field. Understanding the notion and mathematical properties of branched covering spaces is important to researchers in tensor field visualization and geometry processing, and their application areas. In this paper, we provide a framework to interactively design and visualize the branched covering space (BCS) of an input mesh surface and a rotational symmetry field defined on it. In our framework, the user can visualize not only the BCSs but also their construction process. In addition, our system allows the user to design the geometric realization of the BCS using mesh deformation techniques as well as connecting tubes. This enables the user to verify important facts about BCSs such as that they are manifold surfaces around singularities, as well as the Riemann-Hurwitz formula which relates the Euler characteristic of the BCS to that of the original mesh. Our system is evaluated by student researchers in scientific visualization and geometry processing as well as faculty members in mathematics at our university who teach topology. We include their evaluations and feedback in the paper.

  18. A distributed analysis and visualization system for model and observational data

    NASA Technical Reports Server (NTRS)

    Wilhelmson, Robert B.

    1994-01-01

    Software was developed with NASA support to aid in the analysis and display of the massive amounts of data generated from satellites, observational field programs, and from model simulations. This software was developed in the context of the PATHFINDER (Probing ATmospHeric Flows in an Interactive and Distributed EnviRonment) Project. The overall aim of this project is to create a flexible, modular, and distributed environment for data handling, modeling simulations, data analysis, and visualization of atmospheric and fluid flows. Software completed with NASA support includes GEMPAK analysis, data handling, and display modules for which collaborators at NASA had primary responsibility, and prototype software modules for three-dimensional interactive and distributed control and display as well as data handling, for which NSCA was responsible. Overall process control was handled through a scientific and visualization application builder from Silicon Graphics known as the Iris Explorer. In addition, the GEMPAK related work (GEMVIS) was also ported to the Advanced Visualization System (AVS) application builder. Many modules were developed to enhance those already available in Iris Explorer including HDF file support, improved visualization and display, simple lattice math, and the handling of metadata through development of a new grid datatype. Complete source and runtime binaries along with on-line documentation is available via the World Wide Web at: http://redrock.ncsa.uiuc.edu/ PATHFINDER/pathre12/top/top.html.

  19. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  20. Visual just noticeable differences

    NASA Astrophysics Data System (ADS)

    Nankivil, Derek; Chen, Minghan; Wooley, C. Benjamin

    2018-02-01

    A visual just noticeable difference (VJND) is the amount of change in either an image (e.g. a photographic print) or in vision (e.g. due to a change in refractive power of a vision correction device or visually coupled optical system) that is just noticeable when compared with the prior state. Numerous theoretical and clinical studies have been performed to determine the amount of change in various visual inputs (power, spherical aberration, astigmatism, etc.) that result in a just noticeable visual change. Each of these approaches, in defining a VJND, relies on the comparison of two visual stimuli. The first stimulus is the nominal or baseline state and the second is the perturbed state that results in a VJND. Using this commonality, we converted each result to the change in the area of the modulation transfer function (AMTF) to provide a more fundamental understanding of what results in a VJND. We performed an analysis of the wavefront criteria from basic optics, the image quality metrics, and clinical studies testing various visual inputs, showing that fractional changes in AMTF resulting in one VJND range from 0.025 to 0.075. In addition, cycloplegia appears to desensitize the human visual system so that a much larger change in the retinal image is required to give a VJND. This finding may be of great import for clinical vision tests. Finally, we present applications of the VJND model for the determination of threshold ocular aberrations and manufacturing tolerances of visually coupled optical systems.

  1. Vivaldi: A Domain-Specific Language for Volume Processing and Visualization on Distributed Heterogeneous Systems.

    PubMed

    Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki

    2014-12-01

    As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.

  2. An Immersive VR System for Sports Education

    NASA Astrophysics Data System (ADS)

    Song, Peng; Xu, Shuhong; Fong, Wee Teck; Chin, Ching Ling; Chua, Gim Guan; Huang, Zhiyong

    The development of new technologies has undoubtedly promoted the advances of modern education, among which Virtual Reality (VR) technologies have made the education more visually accessible for students. However, classroom education has been the focus of VR applications whereas not much research has been done in promoting sports education using VR technologies. In this paper, an immersive VR system is designed and implemented to create a more intuitive and visual way of teaching tennis. A scalable system architecture is proposed in addition to the hardware setup layout, which can be used for various immersive interactive applications such as architecture walkthroughs, military training simulations, other sports game simulations, interactive theaters, and telepresent exhibitions. Realistic interaction experience is achieved through accurate and robust hybrid tracking technology, while the virtual human opponent is animated in real time using shader-based skin deformation. Potential future extensions are also discussed to improve the teaching/learning experience.

  3. Visualization of Vgi Data Through the New NASA Web World Wind Virtual Globe

    NASA Astrophysics Data System (ADS)

    Brovelli, M. A.; Kilsedar, C. E.; Zamboni, G.

    2016-06-01

    GeoWeb 2.0, laying the foundations of Volunteered Geographic Information (VGI) systems, has led to platforms where users can contribute to the geographic knowledge that is open to access. Moreover, as a result of the advancements in 3D visualization, virtual globes able to visualize geographic data even on browsers emerged. However the integration of VGI systems and virtual globes has not been fully realized. The study presented aims to visualize volunteered data in 3D, considering also the ease of use aspects for general public, using Free and Open Source Software (FOSS). The new Application Programming Interface (API) of NASA, Web World Wind, written in JavaScript and based on Web Graphics Library (WebGL) is cross-platform and cross-browser, so that the virtual globe created using this API can be accessible through any WebGL supported browser on different operating systems and devices, as a result not requiring any installation or configuration on the client-side, making the collected data more usable to users, which is not the case with the World Wind for Java as installation and configuration of the Java Virtual Machine (JVM) is required. Furthermore, the data collected through various VGI platforms might be in different formats, stored in a traditional relational database or in a NoSQL database. The project developed aims to visualize and query data collected through Open Data Kit (ODK) platform and a cross-platform application, where data is stored in a relational PostgreSQL and NoSQL CouchDB databases respectively.

  4. An integrated GIS application system for soil moisture data assimilation

    NASA Astrophysics Data System (ADS)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  5. Programs Visualize Earth and Space for Interactive Education

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Kevin Hussey and others at the Jet Propulsion Laboratory produced web applications to visualize all of the spacecraft in orbit around Earth and in the Solar System. Hussey worked with Milwaukee, Wisconsin-based The Elumenati to rewrite the programs, and after licensing them, the company started offering a version that can be viewed on spheres and dome theaters for schools, museums, science centers, and other institutions.

  6. Imaging System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1100C Virtual Window is based on technology developed under NASA Small Business Innovation (SBIR) contracts to Ames Research Center. For example, under one contract Dimension Technologies, Inc. developed a large autostereoscopic display for scientific visualization applications. The Virtual Window employs an innovative illumination system to deliver the depth and color of true 3D imaging. Its applications include surgery and Magnetic Resonance Imaging scans, viewing for teleoperated robots, training, and in aviation cockpit displays.

  7. Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience

    PubMed Central

    Avery, Robert A.; Rajjoub, Raneem D.; Trimboli-Heidler, Carmelina; Waldman, Amy T.

    2015-01-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. PMID:25803824

  8. Applications of optical coherence tomography in pediatric clinical neuroscience.

    PubMed

    Avery, Robert A; Rajjoub, Raneem D; Trimboli-Heidler, Carmelina; Waldman, Amy T

    2015-04-01

    For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve-the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions. Georg Thieme Verlag KG Stuttgart · New York.

  9. Web-Based Geographic Information System Tool for Accessing Hanford Site Environmental Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Triplett, Mark B.; Seiple, Timothy E.; Watson, David J.

    Data volume, complexity, and access issues pose severe challenges for analysts, regulators and stakeholders attempting to efficiently use legacy data to support decision making at the U.S. Department of Energy’s (DOE) Hanford Site. DOE has partnered with the Pacific Northwest National Laboratory (PNNL) on the PHOENIX (PNNL-Hanford Online Environmental Information System) project, which seeks to address data access, transparency, and integration challenges at Hanford to provide effective decision support. PHOENIX is a family of spatially-enabled web applications providing quick access to decades of valuable scientific data and insight through intuitive query, visualization, and analysis tools. PHOENIX realizes broad, public accessibilitymore » by relying only on ubiquitous web-browsers, eliminating the need for specialized software. It accommodates a wide range of users with intuitive user interfaces that require little or no training to quickly obtain and visualize data. Currently, PHOENIX is actively hosting three applications focused on groundwater monitoring, groundwater clean-up performance reporting, and in-tank monitoring. PHOENIX-based applications are being used to streamline investigative and analytical processes at Hanford, saving time and money. But more importantly, by integrating previously isolated datasets and developing relevant visualization and analysis tools, PHOENIX applications are enabling DOE to discover new correlations hidden in legacy data, allowing them to more effectively address complex issues at Hanford.« less

  10. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation

    PubMed Central

    Zambon, Flavia T.; Erpen, Lígia; Soriano, Leonardo; Grosser, Jude

    2018-01-01

    The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree. PMID:29293649

  11. A computer graphics system for visualizing spacecraft in orbit

    NASA Technical Reports Server (NTRS)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  12. On the use of Augmented Reality techniques in learning and interpretation of cardiologic data.

    PubMed

    Lamounier, Edgard; Bucioli, Arthur; Cardoso, Alexandre; Andrade, Adriano; Soares, Alcimar

    2010-01-01

    Augmented Reality is a technology which provides people with more intuitive ways of interaction and visualization, close to those in real world. The amount of applications using Augmented Reality is growing every day, and results can be already seen in several fields such as Education, Training, Entertainment and Medicine. The system proposed in this article intends to provide a friendly and intuitive interface based on Augmented Reality for heart beating evaluation and visualization. Cardiologic data is loaded from several distinct sources: simple standards of heart beating frequencies (for example situations like running or sleeping), files of heart beating signals, scanned electrocardiographs and real time data acquisition of patient's heart beating. All this data is processed to produce visualization within Augmented Reality environments. The results obtained in this research have shown that the developed system is able to simplify the understanding of concepts about heart beating and its functioning. Furthermore, the system can help health professionals in the task of retrieving, processing and converting data from all the sources handled by the system, with the support of an edition and visualization mode.

  13. Complete scanpaths analysis toolbox.

    PubMed

    Augustyniak, Piotr; Mikrut, Zbigniew

    2006-01-01

    This paper presents a complete open software environment for control, data processing and assessment of visual experiments. Visual experiments are widely used in research on human perception physiology and the results are applicable to various visual information-based man-machine interfacing, human-emulated automatic visual systems or scanpath-based learning of perceptual habits. The toolbox is designed for Matlab platform and supports infra-red reflection-based eyetracker in calibration and scanpath analysis modes. Toolbox procedures are organized in three layers: the lower one, communicating with the eyetracker output file, the middle detecting scanpath events on a physiological background and the one upper consisting of experiment schedule scripts, statistics and summaries. Several examples of visual experiments carried out with use of the presented toolbox complete the paper.

  14. Conceptual design study of a visual system for a rotorcraft simulator and some advances in platform motion utilization

    NASA Technical Reports Server (NTRS)

    Sinacori, J. B.

    1980-01-01

    A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.

  15. An amodal shared resource model of language-mediated visual attention

    PubMed Central

    Smith, Alastair C.; Monaghan, Padraic; Huettig, Falk

    2013-01-01

    Language-mediated visual attention describes the interaction of two fundamental components of the human cognitive system, language and vision. Within this paper we present an amodal shared resource model of language-mediated visual attention that offers a description of the information and processes involved in this complex multimodal behavior and a potential explanation for how this ability is acquired. We demonstrate that the model is not only sufficient to account for the experimental effects of Visual World Paradigm studies but also that these effects are emergent properties of the architecture of the model itself, rather than requiring separate information processing channels or modular processing systems. The model provides an explicit description of the connection between the modality-specific input from language and vision and the distribution of eye gaze in language-mediated visual attention. The paper concludes by discussing future applications for the model, specifically its potential for investigating the factors driving observed individual differences in language-mediated eye gaze. PMID:23966967

  16. Improvements and Additions to NASA Near Real-Time Earth Imagery

    NASA Technical Reports Server (NTRS)

    Cechini, Matthew; Boller, Ryan; Baynes, Kathleen; Schmaltz, Jeffrey; DeLuca, Alexandar; King, Jerome; Thompson, Charles; Roberts, Joe; Rodriguez, Joshua; Gunnoe, Taylor; hide

    2016-01-01

    For many years, the NASA Global Imagery Browse Services (GIBS) has worked closely with the Land, Atmosphere Near real-time Capability for EOS (Earth Observing System) (LANCE) system to provide near real-time imagery visualizations of AIRS (Atmospheric Infrared Sounder), MLS (Microwave Limb Sounder), MODIS (Moderate Resolution Imaging Spectrometer), OMI (Ozone Monitoring Instrument), and recently VIIRS (Visible Infrared Imaging Radiometer Suite) science parameters. These visualizations are readily available through standard web services and the NASA Worldview client. Access to near real-time imagery provides a critical capability to GIBS and Worldview users. GIBS continues to focus on improving its commitment to providing near real-time imagery for end-user applications. The focus of this presentation will be the following completed or planned GIBS system and imagery enhancements relating to near real-time imagery visualization.

  17. Vision science and adaptive optics, the state of the field.

    PubMed

    Marcos, Susana; Werner, John S; Burns, Stephen A; Merigan, William H; Artal, Pablo; Atchison, David A; Hampson, Karen M; Legras, Richard; Lundstrom, Linda; Yoon, Geungyoung; Carroll, Joseph; Choi, Stacey S; Doble, Nathan; Dubis, Adam M; Dubra, Alfredo; Elsner, Ann; Jonnal, Ravi; Miller, Donald T; Paques, Michel; Smithson, Hannah E; Young, Laura K; Zhang, Yuhua; Campbell, Melanie; Hunter, Jennifer; Metha, Andrew; Palczewska, Grazyna; Schallek, Jesse; Sincich, Lawrence C

    2017-03-01

    Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked about how the visual system is organized. The editors of this feature issue have posed a series of question to scientists involved in using adaptive optics in vision science. The questions are focused on three main areas. In the first we investigate the use of adaptive optics for psychophysical measurements of visual system function and for improving the optics of the eye. In the second, we look at the applications and impact of adaptive optics on retinal imaging and its promise for basic and applied research. In the third, we explore how adaptive optics is being used to improve our understanding of the neurophysiology of the visual system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  19. Application of total distributed control system in car-body inspection

    NASA Astrophysics Data System (ADS)

    Yang, Xueyou; Ren, Dahai; Wang, Zhong; Ye, Shenghua; Lu, Hongbo; Duan, Jilin

    1996-08-01

    An application of distributed control system in Autocar-body Visual Inspection Station is presented in the paper, a distributed control system using PC as the host processor and single-chip microcomputer as the slave controller is proposed. In this paper, the physical interface of the control network and the relevant hardware are introduced. Meanwhile, a minute research on data communication is performed, relevant protocols on data framing, instruction codes and channel access methods have been laid down and part of related software is presented.

  20. Detecting Visually Observable Disease Symptoms from Faces.

    PubMed

    Wang, Kuan; Luo, Jiebo

    2016-12-01

    Recent years have witnessed an increasing interest in the application of machine learning to clinical informatics and healthcare systems. A significant amount of research has been done on healthcare systems based on supervised learning. In this study, we present a generalized solution to detect visually observable symptoms on faces using semi-supervised anomaly detection combined with machine vision algorithms. We rely on the disease-related statistical facts to detect abnormalities and classify them into multiple categories to narrow down the possible medical reasons of detecting. Our method is in contrast with most existing approaches, which are limited by the availability of labeled training data required for supervised learning, and therefore offers the major advantage of flagging any unusual and visually observable symptoms.

  1. Visualization of ocean forecast in BYTHOS

    NASA Astrophysics Data System (ADS)

    Zhuk, E.; Zodiatis, G.; Nikolaidis, A.; Stylianou, S.; Karaolia, A.

    2016-08-01

    The Cyprus Oceanography Center has been constantly searching for new ideas for developing and implementing innovative methods and new developments concerning the use of Information Systems in Oceanography, to suit both the Center's monitoring and forecasting products. Within the frame of this scope two major online managing and visualizing data systems have been developed and utilized, those of CYCOFOS and BYTHOS. The Cyprus Coastal Ocean Forecasting and Observing System - CYCOFOS provides a variety of operational predictions such as ultra high, high and medium resolution ocean forecasts in the Levantine Basin, offshore and coastal sea state forecasts in the Mediterranean and Black Sea, tide forecasting in the Mediterranean, ocean remote sensing in the Eastern Mediterranean and coastal and offshore monitoring. As a rich internet application, BYTHOS enables scientists to search, visualize and download oceanographic data online and in real time. The recent improving of BYTHOS system is the extension with access and visualization of CYCOFOS data and overlay forecast fields and observing data. The CYCOFOS data are stored at OPENDAP Server in netCDF format. To search, process and visualize it the php and python scripts were developed. Data visualization is achieved through Mapserver. The BYTHOS forecast access interface allows to search necessary forecasting field by recognizing type, parameter, region, level and time. Also it provides opportunity to overlay different forecast and observing data that can be used for complex analyze of sea basin aspects.

  2. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss

    PubMed Central

    Nys, Julie; Scheyltjens, Isabelle; Arckens, Lutgarde

    2015-01-01

    The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research. PMID:25972788

  3. Rethinking Visual Analytics for Streaming Data Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris

    In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less

  4. Automated visual inspection system based on HAVNET architecture

    NASA Astrophysics Data System (ADS)

    Burkett, K.; Ozbayoglu, Murat A.; Dagli, Cihan H.

    1994-10-01

    In this study, the HAusdorff-Voronoi NETwork (HAVNET) developed at the UMR Smart Engineering Systems Lab is tested in the recognition of mounted circuit components commonly used in printed circuit board assembly systems. The automated visual inspection system used consists of a CCD camera, a neural network based image processing software and a data acquisition card connected to a PC. The experiments are run in the Smart Engineering Systems Lab in the Engineering Management Dept. of the University of Missouri-Rolla. The performance analysis shows that the vision system is capable of recognizing different components under uncontrolled lighting conditions without being effected by rotation or scale differences. The results obtained are promising and the system can be used in real manufacturing environments. Currently the system is being customized for a specific manufacturing application.

  5. Visual tracking strategies for intelligent vehicle highway systems

    NASA Astrophysics Data System (ADS)

    Smith, Christopher E.; Papanikolopoulos, Nikolaos P.; Brandt, Scott A.; Richards, Charles

    1995-01-01

    The complexity and congestion of current transportation systems often produce traffic situations that jeopardize the safety of the people involved. These situations vary from maintaining a safe distance behind a leading vehicle to safely allowing a pedestrian to cross a busy street. Environmental sensing plays a critical role in virtually all of these situations. Of the sensors available, vision sensors provide information that is richer and more complete than other sensors, making them a logical choice for a multisensor transportation system. In this paper we present robust techniques for intelligent vehicle-highway applications where computer vision plays a crucial role. In particular, we demonstrate that the controlled active vision framework can be utilized to provide a visual sensing modality to a traffic advisory system in order to increase the overall safety margin in a variety of common traffic situations. We have selected two application examples, vehicle tracking and pedestrian tracking, to demonstrate that the framework can provide precisely the type of information required to effectively manage the given situation.

  6. Infrared image enhancement using H(infinity) bounds for surveillance applications.

    PubMed

    Qidwai, Uvais

    2008-08-01

    In this paper, two algorithms have been presented to enhance the infrared (IR) images. Using the autoregressive moving average model structure and H(infinity) optimal bounds, the image pixels are mapped from the IR pixel space into normal optical image space, thus enhancing the IR image for improved visual quality. Although H(infinity)-based system identification algorithms are very common now, they are not quite suitable for real-time applications owing to their complexity. However, many variants of such algorithms are possible that can overcome this constraint. Two such algorithms have been developed and implemented in this paper. Theoretical and algorithmic results show remarkable enhancement in the acquired images. This will help in enhancing the visual quality of IR images for surveillance applications.

  7. Visualization of CDA laboratory reports and long term trends as a possible EHR application for patients and physicians.

    PubMed

    Obenaus, Manuel; Burgsteiner, Harald

    2014-01-01

    To increase the patient's acceptance of electronic health records and understanding for their laboratory findings a web application was developed which presents all parameters and possible deviations of standard values in a clear way and visualizes the time based trend of all recorded parameters graphically. Documents corresponding to the Clinical document architecture (CDA) R2 laboratory reports standard and a rapid prototyping framework called Groovy on Grails were used. This work shows, that it is possible to create a useful, standards based tool for patients and physicians with comparatively few resources - an application that could be in similar form a part of an electronic Health Record (EHR) system like the Austrian electronic Health Record (ELGA).

  8. The NetLogger Toolkit V2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunter, Dan; Lee, Jason; Stoufer, Martin

    2003-03-28

    The NetLogger Toolkit is designed to monitor, under actual operating conditions, the behavior of all the elements of the application-to-application communication path in order to determine exactly where time is spent within a complex system Using NetLogger, distnbuted application components are modified to produce timestamped logs of "interesting" events at all the critical points of the distributed system Events from each component are correlated, which allov^ one to characterize the performance of all aspects of the system and network in detail. The NetLogger Toolkit itself consists of four components an API and library of functions to simplify the generation ofmore » application-level event logs, a set of tools for collecting and sorting log files, an event archive system, and a tool for visualization and analysis of the log files In order to instrument an application to produce event logs, the application developer inserts calls to the NetLogger API at all the critical points in the code, then links the application with the NetLogger library All the tools in the NetLogger Toolkit share a common log format, and assume the existence of accurate and synchronized system clocks NetLogger messages can be logged using an easy-to-read text based format based on the lETF-proposed ULM format, or a binary format that can still be used through the same API but that is several times faster and smaller, with performance comparable or better than binary message formats such as MPI, XDR, SDDF-Binary, and PBIO. The NetLogger binary format is both highly efficient and self-describing, thus optimized for the dynamic message construction and parsing of application instrumentation. NetLogger includes an "activation" API that allows NetLogger logging to be turned on, off, or modified by changing an external file This IS useful for activating logging in daemons/services (e g GndFTP server). The NetLogger reliability API provides the ability to specify backup logging locations and penodically try to reconnect broken TCP pipe. A typical use for this is to store data on local disk while net is down. An event archiver can log one or more incoming NetLogger streams to a local disk file (netlogd) or to a mySQL database (netarchd). We have found exploratory, visual analysis of the log event data to be the most useful means of determining the causes of performance anomalies The NetLogger Visualization tool, niv, has been developed to provide a flexible and interactive graphical representation of system-level and application-level events.« less

  9. Qualitative GIS and the Visualization of Narrative Activity Space Data

    PubMed Central

    Mennis, Jeremy; Mason, Michael J.; Cao, Yinghui

    2012-01-01

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals’ activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups. PMID:26190932

  10. Qualitative GIS and the Visualization of Narrative Activity Space Data.

    PubMed

    Mennis, Jeremy; Mason, Michael J; Cao, Yinghui

    Qualitative activity space data, i.e. qualitative data associated with the routine locations and activities of individuals, are recognized as increasingly useful by researchers in the social and health sciences for investigating the influence of environment on human behavior. However, there has been little research on techniques for exploring qualitative activity space data. This research illustrates the theoretical principles of combining qualitative and quantitative data and methodologies within the context of GIS, using visualization as the means of inquiry. Through the use of a prototype implementation of a visualization system for qualitative activity space data, and its application in a case study of urban youth, we show how these theoretical methodological principles are realized in applied research. The visualization system uses a variety of visual variables to simultaneously depict multiple qualitative and quantitative attributes of individuals' activity spaces. The visualization is applied to explore the activity spaces of a sample of urban youth participating in a study on the geographic and social contexts of adolescent substance use. Examples demonstrate how the visualization may be used to explore individual activity spaces to generate hypotheses, investigate statistical outliers, and explore activity space patterns among subject subgroups.

  11. A practical VEP-based brain-computer interface.

    PubMed

    Wang, Yijun; Wang, Ruiping; Gao, Xiaorong; Hong, Bo; Gao, Shangkai

    2006-06-01

    This paper introduces the development of a practical brain-computer interface at Tsinghua University. The system uses frequency-coded steady-state visual evoked potentials to determine the gaze direction of the user. To ensure more universal applicability of the system, approaches for reducing user variation on system performance have been proposed. The information transfer rate (ITR) has been evaluated both in the laboratory and at the Rehabilitation Center of China, respectively. The system has been proved to be applicable to > 90% of people with a high ITR in living environments.

  12. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    PubMed Central

    Smart, Ken; Du, Jia; Li, Li; Wang, David; Leslie, Keith; Ji, Fan; Li, Xiang Dong; Zeng, Da Zhang

    2016-01-01

    A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode. PMID:27110791

  13. Digital diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Heinonen, Tomi; Kuismin, Raimo; Jormalainen, Raimo; Dastidar, Prasun; Frey, Harry; Eskola, Hannu

    2001-08-01

    The popularity of digital imaging devices and PACS installations has increased during the last years. Still, images are analyzed and diagnosed using conventional techniques. Our research group begun to study the requirements for digital image diagnostic methods to be applied together with PACS systems. The research was focused on various image analysis procedures (e.g., segmentation, volumetry, 3D visualization, image fusion, anatomic atlas, etc.) that could be useful in medical diagnosis. We have developed Image Analysis software (www.medimag.net) to enable several image-processing applications in medical diagnosis, such as volumetry, multimodal visualization, and 3D visualizations. We have also developed a commercial scalable image archive system (ActaServer, supports DICOM) based on component technology (www.acta.fi), and several telemedicine applications. All the software and systems operate in NT environment and are in clinical use in several hospitals. The analysis software have been applied in clinical work and utilized in numerous patient cases (500 patients). This method has been used in the diagnosis, therapy and follow-up in various diseases of the central nervous system (CNS), respiratory system (RS) and human reproductive system (HRS). In many of these diseases e.g. Systemic Lupus Erythematosus (CNS), nasal airways diseases (RS) and ovarian tumors (HRS), these methods have been used for the first time in clinical work. According to our results, digital diagnosis improves diagnostic capabilities, and together with PACS installations it will become standard tool during the next decade by enabling more accurate diagnosis and patient follow-up.

  14. A simple and sensitive method to measure timing accuracy.

    PubMed

    De Clercq, Armand; Crombez, Geert; Buysse, Ann; Roeyers, Herbert

    2003-02-01

    Timing accuracy in presenting experimental stimuli (visual information on a PC or on a TV) and responding (keyboard presses and mouse signals) is of importance in several experimental paradigms. In this article, a simple system for measuring timing accuracy is described. The system uses two PCs (at least Pentium II, 200 MHz), a photocell, and an amplifier. No additional boards and timing hardware are needed. The first PC, a SlavePC, monitors the keyboard presses or mouse signals from the PC under test and uses a photocell that is placed in front of the screen to detect the appearance of visual stimuli on the display. The software consists of a small program running on the SlavePC. The SlavePC is connected through a serial line with a second PC. This MasterPC controls the SlavePC through an ActiveX control, which is used in a Visual Basic program. The accuracy of our system was investigated by using a similar setup of a SlavePC and a MasterPC to generate pulses and by using a pulse generator card. These tests revealed that our system has a 0.01-msec accuracy. As an illustration, the reaction time accuracy of INQUISIT for a few applications was tested using our system. It was found that in those applications that we investigated, INQUISIT measures reaction times from keyboard presses with millisecond accuracy.

  15. Moving to higher ground: The dynamic field theory and the dynamics of visual cognition

    PubMed Central

    Johnson, Jeffrey S.; Spencer, John P.; Schöner, Gregor

    2009-01-01

    In the present report, we describe a new dynamic field theory that captures the dynamics of visuo-spatial cognition. This theory grew out of the dynamic systems approach to motor control and development, and is grounded in neural principles. The initial application of dynamic field theory to issues in visuo-spatial cognition extended concepts of the motor approach to decision making in a sensori-motor context, and, more recently, to the dynamics of spatial cognition. Here we extend these concepts still further to address topics in visual cognition, including visual working memory for non-spatial object properties, the processes that underlie change detection, and the ‘binding problem’ in vision. In each case, we demonstrate that the general principles of the dynamic field approach can unify findings in the literature and generate novel predictions. We contend that the application of these concepts to visual cognition avoids the pitfalls of reductionist approaches in cognitive science, and points toward a formal integration of brains, bodies, and behavior. PMID:19173013

  16. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-12-21

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybrid-dimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies – Three.js, D3.js and PHP – as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  17. Web-based hybrid-dimensional Visualization and Exploration of Cytological Localization Scenarios.

    PubMed

    Kovanci, Gökhan; Ghaffar, Mehmood; Sommer, Björn

    2016-10-01

    The CELLmicrocosmos 4.2 PathwayIntegration (CmPI) is a tool which provides hybriddimensional visualization and analysis of intracellular protein and gene localizations in the context of a virtual 3D environment. This tool is developed based on Java/Java3D/JOGL and provides a standalone application compatible to all relevant operating systems. However, it requires Java and the local installation of the software. Here we present the prototype of an alternative web-based visualization approach, using Three.js and D3.js. In this way it is possible to visualize and explore CmPI-generated localization scenarios including networks mapped to 3D cell components by just providing a URL to a collaboration partner. This publication describes the integration of the different technologies - Three.js, D3.js and PHP - as well as an application case: a localization scenario of the citrate cycle. The CmPI web viewer is available at: http://CmPIweb.CELLmicrocosmos.org.

  18. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the facemore » of the ever increasing size and complexity of HPC systems.« less

  19. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  20. Mobile device geo-localization and object visualization in sensor networks

    NASA Astrophysics Data System (ADS)

    Lemaire, Simon; Bodensteiner, Christoph; Arens, Michael

    2014-10-01

    In this paper we present a method to visualize geo-referenced objects on modern smartphones using a multi- functional application design. The application applies different localization and visualization methods including the smartphone camera image. The presented application copes well with different scenarios. A generic application work flow and augmented reality visualization techniques are described. The feasibility of the approach is experimentally validated using an online desktop selection application in a network with a modern of-the-shelf smartphone. Applications are widespread and include for instance crisis and disaster management or military applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agelastos, Anthony; Allan, Benjamin; Brandt, Jim

    A detailed understanding of HPC applications’ resource needs and their complex interactions with each other and HPC platform resources are critical to achieving scalability and performance. Such understanding has been difficult to achieve because typical application profiling tools do not capture the behaviors of codes under the potentially wide spectrum of actual production conditions and because typical monitoring tools do not capture system resource usage information with high enough fidelity to gain sufficient insight into application performance and demands. In this paper we present both system and application profiling results based on data obtained through synchronized system wide monitoring onmore » a production HPC cluster at Sandia National Laboratories (SNL). We demonstrate analytic and visualization techniques that we are using to characterize application and system resource usage under production conditions for better understanding of application resource needs. Furthermore, our goals are to improve application performance (through understanding application-to-resource mapping and system throughput) and to ensure that future system capabilities match their intended workloads.« less

  2. Link Winds: A visual data analysis system and its application to the atmospheric ozone depletion problem

    NASA Technical Reports Server (NTRS)

    Jacobson, Allan S.; Berkin, Andrew L.

    1995-01-01

    The Linked Windows Interactive Data System (LinkWinds) is a prototype visual data exploration system resulting from a NASA Jet Propulsion Laboratory (JPL) program of research into the application of graphical methods for rapidly accessing, displaying, and analyzing large multi variate multidisciplinary data sets. Running under UNIX it is an integrated multi-application executing environment using a data-linking paradigm to dynamically interconnect and control multiple windows containing a variety of displays and manipulators. This paradigm, resulting in a system similar to a graphical spreadsheet, is not only a powerful method for organizing large amounts of data for analysis, but leads to a highly intuitive, easy-to-learn user interface. It provides great flexibility in rapidly interacting with large masses of complex data to detect trends, correlations, and anomalies. The system, containing an expanding suite of non-domain-specific applications, provides for the ingestion of a variety of data base formats and hard -copy output of all displays. Remote networked workstations running LinkWinds may be interconnected, providing a multiuser science environment (MUSE) for collaborative data exploration by a distributed science team. The system is being developed in close collaboration with investigators in a variety of science disciplines using both archived and real-time data. It is currently being used to support the Microwave Limb Sounder (MLS) in orbit aboard the Upper Atmosphere Research Satellite (UARS). This paper describes the application of LinkWinds to this data to rapidly detect features, such as the ozone hole configuration, and to analyze correlations between chemical constituents of the atmosphere.

  3. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    PubMed

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  4. Development of a 3D WebGIS System for Retrieving and Visualizing CityGML Data Based on their Geometric and Semantic Characteristics by Using Free and Open Source Technology

    NASA Astrophysics Data System (ADS)

    Pispidikis, I.; Dimopoulou, E.

    2016-10-01

    CityGML is considered as an optimal standard for representing 3D city models. However, international experience has shown that visualization of the latter is quite difficult to be implemented on the web, due to the large size of data and the complexity of CityGML. As a result, in the context of this paper, a 3D WebGIS application is developed in order to successfully retrieve and visualize CityGML data in accordance with their respective geometric and semantic characteristics. Furthermore, the available web technologies and the architecture of WebGIS systems are investigated, as provided by international experience, in order to be utilized in the most appropriate way for the purposes of this paper. Specifically, a PostgreSQL/ PostGIS Database is used, in compliance with the 3DCityDB schema. At Server tier, Apache HTTP Server and GeoServer are utilized, while a Server Side programming language PHP is used. At Client tier, which implemented the interface of the application, the following technologies were used: JQuery, AJAX, JavaScript, HTML5, WebGL and Ol3-Cesium. Finally, it is worth mentioning that the application's primary objectives are a user-friendly interface and a fully open source development.

  5. The Effect of Multispectral Image Fusion Enhancement on Human Efficiency

    DTIC Science & Technology

    2017-03-20

    human visual system by applying a technique commonly used in visual percep- tion research : ideal observer analysis. Using this approach, we establish...applications, analytic tech- niques, and procedural methods used across studies. This paper uses ideal observer analysis to establish a frame- work that allows...augmented similarly to incorpo- rate research involving more complex stimulus content. Additionally, the ideal observer can be adapted for a number of

  6. Web mapping system for complex processing and visualization of environmental geospatial datasets

    NASA Astrophysics Data System (ADS)

    Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor

    2016-04-01

    Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.

  7. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    NASA Technical Reports Server (NTRS)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion Laboratory in the joint development of a Tropical Cyclone Integrated Data Exchange and Analysis System (TC IDEAS) which will serve as a web portal for access to tropical cyclone data, visualizations and model output.

  8. Localization of MEG human brain responses to retinotopic visual stimuli with contrasting source reconstruction approaches

    PubMed Central

    Cicmil, Nela; Bridge, Holly; Parker, Andrew J.; Woolrich, Mark W.; Krug, Kristine

    2014-01-01

    Magnetoencephalography (MEG) allows the physiological recording of human brain activity at high temporal resolution. However, spatial localization of the source of the MEG signal is an ill-posed problem as the signal alone cannot constrain a unique solution and additional prior assumptions must be enforced. An adequate source reconstruction method for investigating the human visual system should place the sources of early visual activity in known locations in the occipital cortex. We localized sources of retinotopic MEG signals from the human brain with contrasting reconstruction approaches (minimum norm, multiple sparse priors, and beamformer) and compared these to the visual retinotopic map obtained with fMRI in the same individuals. When reconstructing brain responses to visual stimuli that differed by angular position, we found reliable localization to the appropriate retinotopic visual field quadrant by a minimum norm approach and by beamforming. Retinotopic map eccentricity in accordance with the fMRI map could not consistently be localized using an annular stimulus with any reconstruction method, but confining eccentricity stimuli to one visual field quadrant resulted in significant improvement with the minimum norm. These results inform the application of source analysis approaches for future MEG studies of the visual system, and indicate some current limits on localization accuracy of MEG signals. PMID:24904268

  9. Information technology aided exploration of system design spaces

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Kalafat, Selcuk

    2004-01-01

    We report on a practical application of information technology techniques to aid system engineers effectively explore large design spaces. We make use of heuristic search, visualization and data mining, the combination of which we have implemented wtihin a risk management tool in use at JPL and NASA.

  10. STAR: an integrated solution to management and visualization of sequencing data

    PubMed Central

    Wang, Tao; Liu, Jie; Shen, Li; Tonti-Filippini, Julian; Zhu, Yun; Jia, Haiyang; Lister, Ryan; Whitaker, John W.; Ecker, Joseph R.; Millar, A. Harvey; Ren, Bing; Wang, Wei

    2013-01-01

    Motivation: Easily visualization of complex data features is a necessary step to conduct studies on next-generation sequencing (NGS) data. We developed STAR, an integrated web application that enables online management, visualization and track-based analysis of NGS data. Results: STAR is a multilayer web service system. On the client side, STAR leverages JavaScript, HTML5 Canvas and asynchronous communications to deliver a smoothly scrolling desktop-like graphical user interface with a suite of in-browser analysis tools that range from providing simple track configuration controls to sophisticated feature detection within datasets. On the server side, STAR supports private session state retention via an account management system and provides data management modules that enable collection, visualization and analysis of third-party sequencing data from the public domain with over thousands of tracks hosted to date. Overall, STAR represents a next-generation data exploration solution to match the requirements of NGS data, enabling both intuitive visualization and dynamic analysis of data. Availability and implementation: STAR browser system is freely available on the web at http://wanglab.ucsd.edu/star/browser and https://github.com/angell1117/STAR-genome-browser. Contact: wei-wang@ucsd.edu PMID:24078702

  11. Identification of real-time diagnostic measures of visual distraction with an automatic eye-tracking system.

    PubMed

    Zhang, Harry; Smith, Matthew R H; Witt, Gerald J

    2006-01-01

    This study was conducted to identify eye glance measures that are diagnostic of visual distraction. Visual distraction degrades performance, but real-time diagnostic measures have not been identified. In a driving simulator, 14 participants responded to a lead vehicle braking at -2 or -2.7 m/s2 periodically while reading a varying number of words (6-15 words every 13 s) on peripheral displays (with diagonal eccentricities of 24 degrees, 43 degrees, and 75 degrees). As the number of words and display eccentricity increased, total glance duration and reaction time increased and driving performance suffered. Correlation coefficients between several glance measures and reaction time or performance variables were reliably high, indicating that these glance measures are diagnostic of visual distraction. It is predicted that for every 25% increase in total glance duration, reaction time is increased by 0.39 s and standard deviation of lane position is increased by 0.06 m. Potential applications of this research include assessing visual distraction in real time, delivering advisories to distracted drivers to reorient their attention to driving, and using distraction information to adapt forward collision and lane departure warning systems to enhance system effectiveness.

  12. Plasticity and stability of visual field maps in adult primary visual cortex

    PubMed Central

    Wandell, Brian A.; Smirnakis, Stelios M.

    2010-01-01

    Preface It is important to understand the balance between cortical plasticity and stability in various systems and spatial scales in the adult brain. We review measurements of adult plasticity in primary visual cortex (V1), a structure that has a key role in distributing visual information. There are claims of plasticity at multiple spatial scales in adult V1, but many inconsistencies in the data raise questions about the extent and nature of such plasticity. Understanding is further limited by a lack of quantitative models to guide the interpretation of the data. These problems limit efforts to translate research findings about adult cortical plasticity into significant clinical, educational and policy applications. PMID:19904279

  13. Mobile cosmetics advisor: an imaging based mobile service

    NASA Astrophysics Data System (ADS)

    Bhatti, Nina; Baker, Harlyn; Chao, Hui; Clearwater, Scott; Harville, Mike; Jain, Jhilmil; Lyons, Nic; Marguier, Joanna; Schettino, John; Süsstrunk, Sabine

    2010-01-01

    Selecting cosmetics requires visual information and often benefits from the assessments of a cosmetics expert. In this paper we present a unique mobile imaging application that enables women to use their cell phones to get immediate expert advice when selecting personal cosmetic products. We derive the visual information from analysis of camera phone images, and provide the judgment of the cosmetics specialist through use of an expert system. The result is a new paradigm for mobile interactions-image-based information services exploiting the ubiquity of camera phones. The application is designed to work with any handset over any cellular carrier using commonly available MMS and SMS features. Targeted at the unsophisticated consumer, it must be quick and easy to use, not requiring download capabilities or preplanning. Thus, all application processing occurs in the back-end system and not on the handset itself. We present the imaging pipeline technology and a comparison of the services' accuracy with respect to human experts.

  14. Animation of multi-flexible body systems and its use in control system design

    NASA Technical Reports Server (NTRS)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  15. Hierarchical event selection for video storyboards with a case study on snooker video visualization.

    PubMed

    Parry, Matthew L; Legg, Philip A; Chung, David H S; Griffiths, Iwan W; Chen, Min

    2011-12-01

    Video storyboard, which is a form of video visualization, summarizes the major events in a video using illustrative visualization. There are three main technical challenges in creating a video storyboard, (a) event classification, (b) event selection and (c) event illustration. Among these challenges, (a) is highly application-dependent and requires a significant amount of application specific semantics to be encoded in a system or manually specified by users. This paper focuses on challenges (b) and (c). In particular, we present a framework for hierarchical event representation, and an importance-based selection algorithm for supporting the creation of a video storyboard from a video. We consider the storyboard to be an event summarization for the whole video, whilst each individual illustration on the board is also an event summarization but for a smaller time window. We utilized a 3D visualization template for depicting and annotating events in illustrations. To demonstrate the concepts and algorithms developed, we use Snooker video visualization as a case study, because it has a concrete and agreeable set of semantic definitions for events and can make use of existing techniques of event detection and 3D reconstruction in a reliable manner. Nevertheless, most of our concepts and algorithms developed for challenges (b) and (c) can be applied to other application areas. © 2010 IEEE

  16. Two-color mixing for classifying agricultural products for safety and quality

    NASA Astrophysics Data System (ADS)

    Ding, Fujian; Chen, Yud-Ren; Chao, Kuanglin; Chan, Diane E.

    2006-02-01

    We show that the chromaticness of the visual signal that results from the two-color mixing achieved through an optically enhanced binocular device is directly related to the band ratio of light intensity at the two selected wavebands. A technique that implements the band-ratio criterion in a visual device by using two-color mixing is presented here. The device will allow inspectors to identify targets visually in accordance with a two-wavelength band ratio. It is a method of inspection by human vision assisted by an optical device, which offers greater flexibility and better cost savings than a multispectral machine vision system that implements the band-ratio criterion. With proper selection of the two narrow wavebands, discrimination by chromaticness that is directly related to the band ratio can work well. An example application of this technique for the inspection of carcasses chickens of afficted with various diseases is given. An optimal pair of wavelengths of 454 and 578 nm was selected to optimize differences in saturation and hue in CIE LUV color space among different types of target. Another example application, for the detection of chilling injury in cucumbers, is given, here the selected wavelength pair was 504 and 652 nm. The novel two-color mixing technique for visual inspection can be included in visual devices for various applications, ranging from target detection to food safety inspection.

  17. Knowledge Interaction Design for Creative Knowledge Work

    NASA Astrophysics Data System (ADS)

    Nakakoji, Kumiyo; Yamamoto, Yasuhiro

    This paper describes our approach for the development of application systems for creative knowledge work, particularly for early stages of information design tasks. Being a cognitive tool serving as a means of externalization, an application system affects how the user is engaged in the creative process through its visual interaction design. Knowledge interaction design described in this paper is a framework where a set of application systems for different information design domains are developed based on an interaction model, which is designed for a particular model of a thinking process. We have developed two sets of application systems using the knowledge interaction design framework: one includes systems for linear information design, such as writing, movie-editing, and video-analysis; the other includes systems for network information design, such as file-system navigation and hypertext authoring. Our experience shows that the resulting systems encourage users to follow a certain cognitive path through graceful user experience.

  18. Video as a technology for interpersonal communications: a new perspective

    NASA Astrophysics Data System (ADS)

    Whittaker, Steve

    1995-03-01

    Some of the most challenging multimedia applications have involved real- time conferencing, using audio and video to support interpersonal communication. Here we re-examine assumptions about the role, importance and implementation of video information in such systems. Rather than focussing on novel technologies, we present evaluation data relevant to both the classes of real-time multimedia applications we should develop and their design and implementation. Evaluations of videoconferencing systems show that previous work has overestimated the importance of video at the expense of audio. This has strong implications for the implementation of bandwidth allocation and synchronization. Furthermore our recent studies of workplace interaction show that prior work has neglected another potentially vital function of visual information: in assessing the communication availability of others. In this new class of application, rather than providing a supplement to audio information, visual information is used to promote the opportunistic communications that are prevalent in face-to-face settings. We discuss early experiments with such connection applications and identify outstanding design and implementation issues. Finally we examine a different class of application 'video-as-data', where the video image is used to transmit information about the work objects themselves, rather than information about interactants.

  19. Virtual surgery in a (tele-)radiology framework.

    PubMed

    Glombitza, G; Evers, H; Hassfeld, S; Engelmann, U; Meinzer, H P

    1999-09-01

    This paper presents telemedicine as an extension of a teleradiology framework through tools for virtual surgery. To classify the described methods and applications, the research field of virtual reality (VR) is broadly reviewed. Differences with respect to technical equipment, methodological requirements and areas of application are pointed out. Desktop VR, augmented reality, and virtual reality are differentiated and discussed in some typical contexts of diagnostic support, surgical planning, therapeutic procedures, simulation and training. Visualization techniques are compared as a prerequisite for virtual reality and assigned to distinct levels of immersion. The advantage of a hybrid visualization kernel is emphasized with respect to the desktop VR applications that are subsequently shown. Moreover, software design aspects are considered by outlining functional openness in the architecture of the host system. Here, a teleradiology workstation was extended by dedicated tools for surgical planning through a plug-in mechanism. Examples of recent areas of application are introduced such as liver tumor resection planning, diagnostic support in heart surgery, and craniofacial surgery planning. In the future, surgical planning systems will become more important. They will benefit from improvements in image acquisition and communication, new image processing approaches, and techniques for data presentation. This will facilitate preoperative planning and intraoperative applications.

  20. Application of Least-Squares Adjustment Technique to Geometric Camera Calibration and Photogrammetric Flow Visualization

    NASA Technical Reports Server (NTRS)

    Chen, Fang-Jenq

    1997-01-01

    Flow visualization produces data in the form of two-dimensional images. If the optical components of a camera system are perfect, the transformation equations between the two-dimensional image and the three-dimensional object space are linear and easy to solve. However, real camera lenses introduce nonlinear distortions that affect the accuracy of transformation unless proper corrections are applied. An iterative least-squares adjustment algorithm is developed to solve the nonlinear transformation equations incorporated with distortion corrections. Experimental applications demonstrate that a relative precision on the order of 40,000 is achievable without tedious laboratory calibrations of the camera.

  1. Tangible interactive system for document browsing and visualisation of multimedia data

    NASA Astrophysics Data System (ADS)

    Rytsar, Yuriy; Voloshynovskiy, Sviatoslav; Koval, Oleksiy; Deguillaume, Frederic; Topak, Emre; Startchik, Sergei; Pun, Thierry

    2006-01-01

    In this paper we introduce and develop a framework for document interactive navigation in multimodal databases. First, we analyze the main open issues of existing multimodal interfaces and then discuss two applications that include interaction with documents in several human environments, i.e., the so-called smart rooms. Second, we propose a system set-up dedicated to the efficient navigation in the printed documents. This set-up is based on the fusion of data from several modalities that include images and text. Both modalities can be used as cover data for hidden indexes using data-hiding technologies as well as source data for robust visual hashing. The particularities of the proposed robust visual hashing are described in the paper. Finally, we address two practical applications of smart rooms for tourism and education and demonstrate the advantages of the proposed solution.

  2. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO.

    PubMed

    Hernandez-Vicen, Juan; Martinez, Santiago; Garcia-Haro, Juan Miguel; Balaguer, Carlos

    2018-03-25

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid.

  3. Correction of Visual Perception Based on Neuro-Fuzzy Learning for the Humanoid Robot TEO

    PubMed Central

    2018-01-01

    New applications related to robotic manipulation or transportation tasks, with or without physical grasping, are continuously being developed. To perform these activities, the robot takes advantage of different kinds of perceptions. One of the key perceptions in robotics is vision. However, some problems related to image processing makes the application of visual information within robot control algorithms difficult. Camera-based systems have inherent errors that affect the quality and reliability of the information obtained. The need of correcting image distortion slows down image parameter computing, which decreases performance of control algorithms. In this paper, a new approach to correcting several sources of visual distortions on images in only one computing step is proposed. The goal of this system/algorithm is the computation of the tilt angle of an object transported by a robot, minimizing image inherent errors and increasing computing speed. After capturing the image, the computer system extracts the angle using a Fuzzy filter that corrects at the same time all possible distortions, obtaining the real angle in only one processing step. This filter has been developed by the means of Neuro-Fuzzy learning techniques, using datasets with information obtained from real experiments. In this way, the computing time has been decreased and the performance of the application has been improved. The resulting algorithm has been tried out experimentally in robot transportation tasks in the humanoid robot TEO (Task Environment Operator) from the University Carlos III of Madrid. PMID:29587392

  4. The role of the research simulator in the systems development of rotorcraft

    NASA Technical Reports Server (NTRS)

    Statler, I. C.; Deel, A.

    1981-01-01

    The potential application of the research simulator to future rotorcraft systems design, development, product improvement evaluations, and safety analysis is examined. Current simulation capabilities for fixed-wing aircraft are reviewed and the requirements of a rotorcraft simulator are defined. The visual system components, vertical motion simulator, cab, and computation system for a research simulator under development are described.

  5. Visual Analysis of Cloud Computing Performance Using Behavioral Lines.

    PubMed

    Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu

    2016-02-29

    Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.

  6. Vibrotactile Feedbacks System for Assisting the Physically Impaired Persons for Easy Navigation

    NASA Astrophysics Data System (ADS)

    Safa, M.; Geetha, G.; Elakkiya, U.; Saranya, D.

    2018-04-01

    NAYAN architecture is for a visually impaired person to help for navigation. As well known, all visually impaired people desperately requires special requirements even to access services like the public transportation. This prototype system is a portable device; it is so easy to carry in any conduction to travel through a familiar and unfamiliar environment. The system consists of GPS receiver and it can get NEMA data through the satellite and it is provided to user's Smartphone through Arduino board. This application uses two vibrotactile feedbacks that will be placed in the left and right shoulder for vibration feedback, which gives information about the current location. The ultrasonic sensor is used for obstacle detection which is found in front of the visually impaired person. The Bluetooth modules connected with Arduino board is to send information to the user's mobile phone which it receives from GPS.

  7. Human visual system-based color image steganography using the contourlet transform

    NASA Astrophysics Data System (ADS)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  8. New apparatus of single particle trap system for aerosol visualization

    NASA Astrophysics Data System (ADS)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  9. Geographic Information System (GIS) Applications at a Multi-Site Community College.

    ERIC Educational Resources Information Center

    Pottle, Laura

    This report presents the Front Range Community College (FRCC) (Colorado) Office of Institutional Research's recent expansion of its data analysis and reporting capabilities to include a geographic information system (GIS). Utilizing ArcView GIS software, the college is better able to visualize institutional and environmental data. They have…

  10. Exploring the Decision Landscape: Integration of Human and Natural Systems Using the Driver-Pressure-State-Impact-Response Framework and Dynamic Web Application

    EPA Science Inventory

    Making decisions to increase community or regional sustainability requires a comprehensive understanding of the linkages between environmental, social, and economic systems. We present a visualization tool that can improve decision processes and improve interdisciplinary research...

  11. Aesthetics, Usefulness and Performance in User--Search-Engine Interaction

    ERIC Educational Resources Information Center

    Katz, Adi

    2010-01-01

    Issues of visual appeal have become an integral part of designing interactive systems. Interface aesthetics may form users' attitudes towards computer applications and information technology. Aesthetics can affect user satisfaction, and influence their willingness to buy or adopt a system. This study follows previous studies that found that users…

  12. Software Tools on the Peregrine System | High-Performance Computing | NREL

    Science.gov Websites

    Debugger or performance analysis Tool for understanding the behavior of MPI applications. Intel VTune environment for statistical computing and graphics. VirtualGL/TurboVNC Visualization and analytics Remote Tools on the Peregrine System Software Tools on the Peregrine System NREL has a variety of

  13. Enhancing radiological volumes with symbolic anatomy using image fusion and collaborative virtual reality.

    PubMed

    Silverstein, Jonathan C; Dech, Fred; Kouchoukos, Philip L

    2004-01-01

    Radiological volumes are typically reviewed by surgeons using cross-sections and iso-surface reconstructions. Applications that combine collaborative stereo volume visualization with symbolic anatomic information and data fusions would expand surgeons' capabilities in interpretation of data and in planning treatment. Such an application has not been seen clinically. We are developing methods to systematically combine symbolic anatomy (term hierarchies and iso-surface atlases) with patient data using data fusion. We describe our progress toward integrating these methods into our collaborative virtual reality application. The fully combined application will be a feature-rich stereo collaborative volume visualization environment for use by surgeons in which DICOM datasets will self-report underlying anatomy with visual feedback. Using hierarchical navigation of SNOMED-CT anatomic terms integrated with our existing Tele-immersive DICOM-based volumetric rendering application, we will display polygonal representations of anatomic systems on the fly from menus that query a database. The methods and tools involved in this application development are SNOMED-CT, DICOM, VISIBLE HUMAN, volumetric fusion and C++ on a Tele-immersive platform. This application will allow us to identify structures and display polygonal representations from atlas data overlaid with the volume rendering. First, atlas data is automatically translated, rotated, and scaled to the patient data during loading using a public domain volumetric fusion algorithm. This generates a modified symbolic representation of the underlying canonical anatomy. Then, through the use of collision detection or intersection testing of various transparent polygonal representations, the polygonal structures are highlighted into the volumetric representation while the SNOMED names are displayed. Thus, structural names and polygonal models are associated with the visualized DICOM data. This novel juxtaposition of information promises to expand surgeons' abilities to interpret images and plan treatment.

  14. A Hydrogen Leak Detection System for Aerospace and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Makel, D. B.; Jansa, E. D.; Patterson, G.; Cova, P. J.; Liu, C. C.; Wu, Q. H.; Powers, W. T.

    1995-01-01

    Leaks on the space shuttle while on the launch pad have generated interest in hydrogen leak monitoring technology. Microfabricated hydrogen sensors are being fabricated at Case Western Reserve University (CWRU) and tested at NASA Lewis Research Center (LeRC). These sensors have been integrated into hardware and software designed by Aerojet. This complete system allows for multipoint leak monitoring designed to provide leak source and magnitude information in real time. The monitoring system processes data from the hydrogen sensors and presents the operator with a visual indication of the leak location and magnitude. Although the leak monitoring system was designed for hydrogen propulsion systems, the possible applications of this monitoring system are wide ranged. This system is in operation in an automotive application which requires high sensitivity to hydrogen.

  15. Power Grid Maintenance Scheduling Intelligence Arrangement Supporting System Based on Power Flow Forecasting

    NASA Astrophysics Data System (ADS)

    Xie, Chang; Wen, Jing; Liu, Wenying; Wang, Jiaming

    With the development of intelligent dispatching, the intelligence level of network control center full-service urgent need to raise. As an important daily work of network control center, the application of maintenance scheduling intelligent arrangement to achieve high-quality and safety operation of power grid is very important. By analyzing the shortages of the traditional maintenance scheduling software, this paper designs a power grid maintenance scheduling intelligence arrangement supporting system based on power flow forecasting, which uses the advanced technologies in maintenance scheduling, such as artificial intelligence, online security checking, intelligent visualization techniques. It implements the online security checking of maintenance scheduling based on power flow forecasting and power flow adjusting based on visualization, in order to make the maintenance scheduling arrangement moreintelligent and visual.

  16. OIPAV: an integrated software system for ophthalmic image processing, analysis and visualization

    NASA Astrophysics Data System (ADS)

    Zhang, Lichun; Xiang, Dehui; Jin, Chao; Shi, Fei; Yu, Kai; Chen, Xinjian

    2018-03-01

    OIPAV (Ophthalmic Images Processing, Analysis and Visualization) is a cross-platform software which is specially oriented to ophthalmic images. It provides a wide range of functionalities including data I/O, image processing, interaction, ophthalmic diseases detection, data analysis and visualization to help researchers and clinicians deal with various ophthalmic images such as optical coherence tomography (OCT) images and color photo of fundus, etc. It enables users to easily access to different ophthalmic image data manufactured from different imaging devices, facilitate workflows of processing ophthalmic images and improve quantitative evaluations. In this paper, we will present the system design and functional modules of the platform and demonstrate various applications. With a satisfying function scalability and expandability, we believe that the software can be widely applied in ophthalmology field.

  17. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  18. Eddy Current System for Material Inspection and Flaw Visualization

    NASA Technical Reports Server (NTRS)

    Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.

    2007-01-01

    Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.

  19. An electrocorticographic BCI using code-based VEP for control in video applications: a single-subject study

    PubMed Central

    Kapeller, Christoph; Kamada, Kyousuke; Ogawa, Hiroshi; Prueckl, Robert; Scharinger, Josef; Guger, Christoph

    2014-01-01

    A brain-computer-interface (BCI) allows the user to control a device or software with brain activity. Many BCIs rely on visual stimuli with constant stimulation cycles that elicit steady-state visual evoked potentials (SSVEP) in the electroencephalogram (EEG). This EEG response can be generated with a LED or a computer screen flashing at a constant frequency, and similar EEG activity can be elicited with pseudo-random stimulation sequences on a screen (code-based BCI). Using electrocorticography (ECoG) instead of EEG promises higher spatial and temporal resolution and leads to more dominant evoked potentials due to visual stimulation. This work is focused on BCIs based on visual evoked potentials (VEP) and its capability as a continuous control interface for augmentation of video applications. One 35 year old female subject with implanted subdural grids participated in the study. The task was to select one out of four visual targets, while each was flickering with a code sequence. After a calibration run including 200 code sequences, a linear classifier was used during an evaluation run to identify the selected visual target based on the generated code-based VEPs over 20 trials. Multiple ECoG buffer lengths were tested and the subject reached a mean online classification accuracy of 99.21% for a window length of 3.15 s. Finally, the subject performed an unsupervised free run in combination with visual feedback of the current selection. Additionally, an algorithm was implemented that allowed to suppress false positive selections and this allowed the subject to start and stop the BCI at any time. The code-based BCI system attained very high online accuracy, which makes this approach very promising for control applications where a continuous control signal is needed. PMID:25147509

  20. WEB-GIS Decision Support System for CO2 storage

    NASA Astrophysics Data System (ADS)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module, and (4) a risk assessment module. The Database component is build by using the PostgreSQL and PostGIS open source technology. The visualization module allows the user to view data of CO2 injection sites in different ways: (1) geospatial visualization, (2) table view, (3) 3D visualization. The analysis module will allow the user to perform certain analysis like Injectivity, Containment and Capacity analysis. The Risk Assessment module focus on the site risk matrix approach. The Guidelines module contains the methodologies of CO2 injection and storage into deep saline aquifers guidelines.

  1. Design of Training Systems, Phase II-A Report. An Educational Technology Assessment Model (ETAM)

    DTIC Science & Technology

    1975-07-01

    34format" for the perceptual tasks. This is applicable to auditory as well as visual tasks. Student Participation in Learning Route. When a student enters...skill formats Skill training 05.05 Vehicle properties Instructional functions: Type of stimulus presented to student visual auditory ...Subtask 05.05. For example, a trainer to identify and interpret auditory signals would not be represented in the above list. Trainers in the vehicle

  2. An Integrated Intranet and Dynamic Database Application for the Security Manager at Naval Postgraduate School

    DTIC Science & Technology

    2002-09-01

    Basic for Applications ( VBA ) 6.0 as macros may not be supported in 8 future versions of Access. Access 2000 offers Internet- related features for...security features from Microsoft’s SQL Server. [1] 3. System Requirements Access 2000 is a resource-intensive application as are all Office 2000...1] • Modules – Functions and procedures written in the Visual Basic for Applications ( VBA ) programming language. The capabilities of modules

  3. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  4. Integration of Geographical Information Systems and Geophysical Applications with Distributed Computing Technologies.

    NASA Astrophysics Data System (ADS)

    Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.

    2005-12-01

    We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.

  5. On the efficacy of cinema, or what the visual system did not evolve to do

    NASA Technical Reports Server (NTRS)

    Cutting, James E.

    1989-01-01

    Spatial displays, and a constraint that they do not place on the use of spatial instruments are discussed. Much of the work done in visual perception by psychologists and by computer scientists has concerned displays that show the motion of rigid objects. Typically, if one assumes that objects are rigid, one can then proceed to understand how the constant shape of the object can be perceived (or computed) as it moves through space. The author maintains that photographs and cinema are visual displays that are also powerful forms of art. Their efficacy, in part, stems from the fact that, although viewpoint is constrained when composing them, it is not nearly so constrained when viewing them. It is obvious, according to the author, that human visual systems did not evolve to watch movies or look at photographs. Thus, what photographs and movies present must be allowed in the rule-governed system under which vision evolved. Machine-vision algorithms, to be applicable to human vision, should show the same types of tolerance.

  6. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data.

    PubMed

    Barre, Arnaud; Armand, Stéphane

    2014-04-01

    C3D file format is widely used in the biomechanical field by companies and laboratories to store motion capture systems data. However, few software packages can visualize and modify the integrality of the data in the C3D file. Our objective was to develop an open-source and multi-platform framework to read, write, modify and visualize data from any motion analysis systems using standard (C3D) and proprietary file formats (used by many companies producing motion capture systems). The Biomechanical ToolKit (BTK) was developed to provide cost-effective and efficient tools for the biomechanical community to easily deal with motion analysis data. A large panel of operations is available to read, modify and process data through C++ API, bindings for high-level languages (Matlab, Octave, and Python), and standalone application (Mokka). All these tools are open-source and cross-platform and run on all major operating systems (Windows, Linux, MacOS X). Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. A novel visual pipework inspection system

    NASA Astrophysics Data System (ADS)

    Summan, Rahul; Jackson, William; Dobie, Gordon; MacLeod, Charles; Mineo, Carmelo; West, Graeme; Offin, Douglas; Bolton, Gary; Marshall, Stephen; Lille, Alexandre

    2018-04-01

    The interior visual inspection of pipelines in the nuclear industry is a safety critical activity conducted during outages to ensure the continued safe and reliable operation of plant. Typically, the video output by a manually deployed probe is viewed by an operator looking to identify and localize surface defects such as corrosion, erosion and pitting. However, it is very challenging to estimate the nature and extent of defects by viewing a large structure through a relatively small field of view. This work describes a new visual inspection system employing photogrammetry using a fisheye camera and a structured light system to map the internal geometry of pipelines by generating a photorealistic, geometrically accurate surface model. The error of the system output was evaluated through comparison to a ground truth laser scan (ATOS GOM Triple Scan) of a nuclear grade split pipe sample (stainless steel 304L, 80mm internal diameter) containing defects representative of the application - the error was found to be submillimeter across the sample.

  8. Visualization of tandem repeat mutagenesis in Bacillus subtilis.

    PubMed

    Dormeyer, Miriam; Lentes, Sabine; Ballin, Patrick; Wilkens, Markus; Klumpp, Stefan; Kohlheyer, Dietrich; Stannek, Lorena; Grünberger, Alexander; Commichau, Fabian M

    2018-03-01

    Mutations are crucial for the emergence and evolution of proteins with novel functions, and thus for the diversity of life. Tandem repeats (TRs) are mutational hot spots that are present in the genomes of all organisms. Understanding the molecular mechanism underlying TR mutagenesis at the level of single cells requires the development of mutation reporter systems. Here, we present a mutation reporter system that is suitable to visualize mutagenesis of TRs occurring in single cells of the Gram-positive model bacterium Bacillus subtilis using microfluidic single-cell cultivation. The system allows measuring the elimination of TR units due to growth rate recovery. The cultivation of bacteria carrying the mutation reporter system in microfluidic chambers allowed us for the first time to visualize the emergence of a specific mutation at the level of single cells. The application of the mutation reporter system in combination with microfluidics might be helpful to elucidate the molecular mechanism underlying TR (in)stability in bacteria. Moreover, the mutation reporter system might be useful to assess whether mutations occur in response to nutrient starvation. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Computational Technique for Teaching Mathematics (CTTM): Visualizing the Polynomial's Resultant

    ERIC Educational Resources Information Center

    Alves, Francisco Regis Vieira

    2015-01-01

    We find several applications of the Dynamic System Geogebra--DSG related predominantly to the basic mathematical concepts at the context of the learning and teaching in Brasil. However, all these works were developed in the basic level of Mathematics. On the other hand, we discuss and explore, with DSG's help, some applications of the polynomial's…

  10. The Development and Evaluation of Color Display Systems for Airborne Applications. Phase 1. Fundamental Visual, Perceptual, and Display System Considerations

    DTIC Science & Technology

    1985-07-18

    Element Predictions 28 2.1.1.2-9 CIELUV Color Difference Derivation Graphically Described In a Three-Dimensional Rectangular Coordinate System 31...in CIE 1976 Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Color...Difference Estimates 145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes

  11. Measuring and Predicting Tag Importance for Image Retrieval.

    PubMed

    Li, Shangwen; Purushotham, Sanjay; Chen, Chen; Ren, Yuzhuo; Kuo, C-C Jay

    2017-12-01

    Textual data such as tags, sentence descriptions are combined with visual cues to reduce the semantic gap for image retrieval applications in today's Multimodal Image Retrieval (MIR) systems. However, all tags are treated as equally important in these systems, which may result in misalignment between visual and textual modalities during MIR training. This will further lead to degenerated retrieval performance at query time. To address this issue, we investigate the problem of tag importance prediction, where the goal is to automatically predict the tag importance and use it in image retrieval. To achieve this, we first propose a method to measure the relative importance of object and scene tags from image sentence descriptions. Using this as the ground truth, we present a tag importance prediction model to jointly exploit visual, semantic and context cues. The Structural Support Vector Machine (SSVM) formulation is adopted to ensure efficient training of the prediction model. Then, the Canonical Correlation Analysis (CCA) is employed to learn the relation between the image visual feature and tag importance to obtain robust retrieval performance. Experimental results on three real-world datasets show a significant performance improvement of the proposed MIR with Tag Importance Prediction (MIR/TIP) system over other MIR systems.

  12. A prototype feature system for feature retrieval using relationships

    USGS Publications Warehouse

    Choi, J.; Usery, E.L.

    2009-01-01

    Using a feature data model, geographic phenomena can be represented effectively by integrating space, theme, and time. This paper extends and implements a feature data model that supports query and visualization of geographic features using their non-spatial and temporal relationships. A prototype feature-oriented geographic information system (FOGIS) is then developed and storage of features named Feature Database is designed. Buildings from the U.S. Marine Corps Base, Camp Lejeune, North Carolina and subways in Chicago, Illinois are used to test the developed system. The results of the applications show the strength of the feature data model and the developed system 'FOGIS' when they utilize non-spatial and temporal relationships in order to retrieve and visualize individual features.

  13. Implementation of an oblique-sectioning visualization tool for line-of-sight stereotactic neurosurgical navigation using the AVW toolkit

    NASA Astrophysics Data System (ADS)

    Bates, Lisa M.; Hanson, Dennis P.; Kall, Bruce A.; Meyer, Frederic B.; Robb, Richard A.

    1998-06-01

    An important clinical application of biomedical imaging and visualization techniques is provision of image guided neurosurgical planning and navigation techniques using interactive computer display systems in the operating room. Current systems provide interactive display of orthogonal images and 3D surface or volume renderings integrated with and guided by the location of a surgical probe. However, structures in the 'line-of-sight' path which lead to the surgical target cannot be directly visualized, presenting difficulty in obtaining full understanding of the 3D volumetric anatomic relationships necessary for effective neurosurgical navigation below the cortical surface. Complex vascular relationships and histologic boundaries like those found in artereovenous malformations (AVM's) also contribute to the difficulty in determining optimal approaches prior to actual surgical intervention. These difficulties demonstrate the need for interactive oblique imaging methods to provide 'line-of-sight' visualization. Capabilities for 'line-of- sight' interactive oblique sectioning are present in several current neurosurgical navigation systems. However, our implementation is novel, in that it utilizes a completely independent software toolkit, AVW (A Visualization Workshop) developed at the Mayo Biomedical Imaging Resource, integrated with a current neurosurgical navigation system, the COMPASS stereotactic system at Mayo Foundation. The toolkit is a comprehensive, C-callable imaging toolkit containing over 500 optimized imaging functions and structures. The powerful functionality and versatility of the AVW imaging toolkit provided facile integration and implementation of desired interactive oblique sectioning using a finite set of functions. The implementation of the AVW-based code resulted in higher-level functions for complete 'line-of-sight' visualization.

  14. Dynamic optical projection of acquired luminescence for aiding oncologic surgery

    NASA Astrophysics Data System (ADS)

    Sarder, Pinaki; Gullicksrud, Kyle; Mondal, Suman; Sudlow, Gail P.; Achilefu, Samuel; Akers, Walter J.

    2013-12-01

    Optical imaging enables real-time visualization of intrinsic and exogenous contrast within biological tissues. Applications in human medicine have demonstrated the power of fluorescence imaging to enhance visualization in dermatology, endoscopic procedures, and open surgery. Although few optical contrast agents are available for human medicine at this time, fluorescence imaging is proving to be a powerful tool in guiding medical procedures. Recently, intraoperative detection of fluorescent molecular probes that target cell-surface receptors has been reported for improvement in oncologic surgery in humans. We have developed a novel system, optical projection of acquired luminescence (OPAL), to further enhance real-time guidance of open oncologic surgery. In this method, collected fluorescence intensity maps are projected onto the imaged surface rather than via wall-mounted display monitor. To demonstrate proof-of-principle for OPAL applications in oncologic surgery, lymphatic transport of indocyanine green was visualized in live mice for intraoperative identification of sentinel lymph nodes. Subsequently, peritoneal tumors in a murine model of breast cancer metastasis were identified using OPAL after systemic administration of a tumor-selective fluorescent molecular probe. These initial results clearly show that OPAL can enhance adoption and ease-of-use of fluorescence imaging in oncologic procedures relative to existing state-of-the-art intraoperative imaging systems.

  15. Solid object visualization of 3D ultrasound data

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas R.; Bailey, Michael J.

    2000-04-01

    Visualization of volumetric medical data is challenging. Rapid-prototyping (RP) equipment producing solid object prototype models of computer generated structures is directly applicable to visualization of medical anatomic data. The purpose of this study was to develop methods for transferring 3D Ultrasound (3DUS) data to RP equipment for visualization of patient anatomy. 3DUS data were acquired using research and clinical scanning systems. Scaling information was preserved and the data were segmented using threshold and local operators to extract features of interest, converted from voxel raster coordinate format to a set of polygons representing an iso-surface and transferred to the RP machine to create a solid 3D object. Fabrication required 30 to 60 minutes depending on object size and complexity. After creation the model could be touched and viewed. A '3D visualization hardcopy device' has advantages for conveying spatial relations compared to visualization using computer display systems. The hardcopy model may be used for teaching or therapy planning. Objects may be produced at the exact dimension of the original object or scaled up (or down) to facilitate matching the viewers reference frame more optimally. RP models represent a useful means of communicating important information in a tangible fashion to patients and physicians.

  16. Design of a Braille Learning Application for Visually Impaired Students in Bangladesh.

    PubMed

    Nahar, Lutfun; Jaafar, Azizah; Ahamed, Eistiak; Kaish, A B M A

    2015-01-01

    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.

  17. Classification of cognitive systems dedicated to data sharing

    NASA Astrophysics Data System (ADS)

    Ogiela, Lidia; Ogiela, Marek R.

    2017-08-01

    In this paper will be presented classification of new cognitive information systems dedicated to cryptographic data splitting and sharing processes. Cognitive processes of semantic data analysis and interpretation, will be used to describe new classes of intelligent information and vision systems. In addition, cryptographic data splitting algorithms and cryptographic threshold schemes will be used to improve processes of secure and efficient information management with application of such cognitive systems. The utility of the proposed cognitive sharing procedures and distributed data sharing algorithms will be also presented. A few possible application of cognitive approaches for visual information management and encryption will be also described.

  18. Visual gate for brain-computer interfaces.

    PubMed

    Dias, N S; Jacinto, L R; Mendes, P M; Correia, J H

    2009-01-01

    Brain-Computer Interfaces (BCI) based on event related potentials (ERP) have been successfully developed for applications like virtual spellers and navigation systems. This study tests the use of visual stimuli unbalanced in the subject's field of view to simultaneously cue mental imagery tasks (left vs. right hand movement) and detect subject attention. The responses to unbalanced cues were compared with the responses to balanced cues in terms of classification accuracy. Subject specific ERP spatial filters were calculated for optimal group separation. The unbalanced cues appear to enhance early ERPs related to cue visuospatial processing that improved the classification accuracy (as low as 6%) of ERPs in response to left vs. right cues soon (150-200 ms) after the cue presentation. This work suggests that such visual interface may be of interest in BCI applications as a gate mechanism for attention estimation and validation of control decisions.

  19. Review of intraoperative optical coherence tomography: technology and applications [Invited

    PubMed Central

    Carrasco-Zevallos, Oscar M.; Viehland, Christian; Keller, Brenton; Draelos, Mark; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2017-01-01

    During microsurgery, en face imaging of the surgical field through the operating microscope limits the surgeon’s depth perception and visualization of instruments and sub-surface anatomy. Surgical procedures outside microsurgery, such as breast tumor resections, may also benefit from visualization of the sub-surface tissue structures. The widespread clinical adoption of optical coherence tomography (OCT) in ophthalmology and its growing prominence in other fields, such as cancer imaging, has motivated the development of intraoperative OCT for real-time tomographic visualization of surgical interventions. This article reviews key technological developments in intraoperative OCT and their applications in human surgery. We focus on handheld OCT probes, microscope-integrated OCT systems, and OCT-guided laser treatment platforms designed for intraoperative use. Moreover, we discuss intraoperative OCT adjuncts and processing techniques currently under development to optimize the surgical feedback derivable from OCT data. Lastly, we survey salient clinical studies of intraoperative OCT for human surgery. PMID:28663853

  20. Fine-grained visual marine vessel classification for coastal surveillance and defense applications

    NASA Astrophysics Data System (ADS)

    Solmaz, Berkan; Gundogdu, Erhan; Karaman, Kaan; Yücesoy, Veysel; Koç, Aykut

    2017-10-01

    The need for capabilities of automated visual content analysis has substantially increased due to presence of large number of images captured by surveillance cameras. With a focus on development of practical methods for extracting effective visual data representations, deep neural network based representations have received great attention due to their success in visual categorization of generic images. For fine-grained image categorization, a closely related yet a more challenging research problem compared to generic image categorization due to high visual similarities within subgroups, diverse applications were developed such as classifying images of vehicles, birds, food and plants. Here, we propose the use of deep neural network based representations for categorizing and identifying marine vessels for defense and security applications. First, we gather a large number of marine vessel images via online sources grouping them into four coarse categories; naval, civil, commercial and service vessels. Next, we subgroup naval vessels into fine categories such as corvettes, frigates and submarines. For distinguishing images, we extract state-of-the-art deep visual representations and train support-vector-machines. Furthermore, we fine tune deep representations for marine vessel images. Experiments address two scenarios, classification and verification of naval marine vessels. Classification experiment aims coarse categorization, as well as learning models of fine categories. Verification experiment embroils identification of specific naval vessels by revealing if a pair of images belongs to identical marine vessels by the help of learnt deep representations. Obtaining promising performance, we believe these presented capabilities would be essential components of future coastal and on-board surveillance systems.

  1. The efficacy of a novel mobile phone application for goldmann ptosis visual field interpretation.

    PubMed

    Maamari, Robi N; D'Ambrosio, Michael V; Joseph, Jeffrey M; Tao, Jeremiah P

    2014-01-01

    To evaluate the efficacy of a novel mobile phone application that calculates superior visual field defects on Goldmann visual field charts. Experimental study in which the mobile phone application and 14 oculoplastic surgeons interpreted the superior visual field defect in 10 Goldmann charts. Percent error of the mobile phone application and the oculoplastic surgeons' estimates were calculated compared with computer software computation of the actual defects. Precision and time efficiency of the application were evaluated by processing the same Goldmann visual field chart 10 repeated times. The mobile phone application was associated with a mean percent error of 1.98% (95% confidence interval[CI], 0.87%-3.10%) in superior visual field defect calculation. The average mean percent error of the oculoplastic surgeons' visual estimates was 19.75% (95% CI, 14.39%-25.11%). Oculoplastic surgeons, on average, underestimated the defect in all 10 Goldmann charts. There was high interobserver variance among oculoplastic surgeons. The percent error of the 10 repeated measurements on a single chart was 0.93% (95% CI, 0.40%-1.46%). The average time to process 1 chart was 12.9 seconds (95% CI, 10.9-15.0 seconds). The mobile phone application was highly accurate, precise, and time-efficient in calculating the percent superior visual field defect using Goldmann charts. Oculoplastic surgeon visual interpretations were highly inaccurate, highly variable, and usually underestimated the field vision loss.

  2. RGB-D SLAM Combining Visual Odometry and Extended Information Filter

    PubMed Central

    Zhang, Heng; Liu, Yanli; Tan, Jindong; Xiong, Naixue

    2015-01-01

    In this paper, we present a novel RGB-D SLAM system based on visual odometry and an extended information filter, which does not require any other sensors or odometry. In contrast to the graph optimization approaches, this is more suitable for online applications. A visual dead reckoning algorithm based on visual residuals is devised, which is used to estimate motion control input. In addition, we use a novel descriptor called binary robust appearance and normals descriptor (BRAND) to extract features from the RGB-D frame and use them as landmarks. Furthermore, considering both the 3D positions and the BRAND descriptors of the landmarks, our observation model avoids explicit data association between the observations and the map by marginalizing the observation likelihood over all possible associations. Experimental validation is provided, which compares the proposed RGB-D SLAM algorithm with just RGB-D visual odometry and a graph-based RGB-D SLAM algorithm using the publicly-available RGB-D dataset. The results of the experiments demonstrate that our system is quicker than the graph-based RGB-D SLAM algorithm. PMID:26263990

  3. Modulation of visualized electrical field

    NASA Astrophysics Data System (ADS)

    Chuang, Chin-Jung; Wu, Chi-Chung; Wang, Yi-Ting; Huang, Shiuan-Hau

    2015-10-01

    Polarization is an important concept of electromagnetism, and polarizers were traditionally applied to demonstrate this concept in a laboratory. We set up a optical system with the optical component "axis finder" to visualize the polarization direction immediately. The light phenomena, such as birefringence, circular polarization, and Brewster's angle, can be examined polarization visually. In addition, the principle of different waveplate and optical axis can be presented in a straightforward approach. By means of image analysis, the great precision of polarizing direction can be measured up to 0.01 degree. Modulated polarized light is applied to a few optical devices, like Liquid-crystal display. It is marvelous to trace the light polarization between the backlight module, polarizer, and panel. As seeing is believing, the visualized electrical field allows educators to teach polarization in a smooth and strikingly manifest manner. Without any polarizer and analyzer, we examine the rotary power of different concentration syrup, presenting the relationship with polarization change. We also demonstrate the wide application of polarization light in modern life, and examine the principle through this visualized electrical field system.

  4. Obstacle Characterization in a Geocrowdsourced Accessibility System

    NASA Astrophysics Data System (ADS)

    Qin, H.; Aburizaiza, A. O.; Rice, R. M.; Paez, F.; Rice, M. T.

    2015-08-01

    Transitory obstacles - random, short-lived and unpredictable objects - are difficult to capture in any traditional mapping system, yet they have significant negative impacts on the accessibility of mobility- and visually-impaired individuals. These transitory obstacles include sidewalk obstructions, construction detours, and poor surface conditions. To identify these obstacles and assist the navigation of mobility- and visually- impaired individuals, crowdsourced mapping applications have been developed to harvest and analyze the volunteered obstacles reports from local students, faculty, staff, and residents. In this paper, we introduce a training program designed and implemented for recruiting and motivating contributors to participate in our geocrowdsourced accessibility system, and explore the quality of geocrowdsourced data with a comparative analysis methodology.

  5. Distributed augmented reality with 3-D lung dynamics--a planning tool concept.

    PubMed

    Hamza-Lup, Felix G; Santhanam, Anand P; Imielińska, Celina; Meeks, Sanford L; Rolland, Jannick P

    2007-01-01

    Augmented reality (AR) systems add visual information to the world by using advanced display techniques. The advances in miniaturization and reduced hardware costs make some of these systems feasible for applications in a wide set of fields. We present a potential component of the cyber infrastructure for the operating room of the future: a distributed AR-based software-hardware system that allows real-time visualization of three-dimensional (3-D) lung dynamics superimposed directly on the patient's body. Several emergency events (e.g., closed and tension pneumothorax) and surgical procedures related to lung (e.g., lung transplantation, lung volume reduction surgery, surgical treatment of lung infections, lung cancer surgery) could benefit from the proposed prototype.

  6. Multimission Telemetry Visualization (MTV) system: A mission applications project from JPL's Multimedia Communications Laboratory

    NASA Technical Reports Server (NTRS)

    Koeberlein, Ernest, III; Pender, Shaw Exum

    1994-01-01

    This paper describes the Multimission Telemetry Visualization (MTV) data acquisition/distribution system. MTV was developed by JPL's Multimedia Communications Laboratory (MCL) and designed to process and display digital, real-time, science and engineering data from JPL's Mission Control Center. The MTV system can be accessed using UNIX workstations and PC's over common datacom and telecom networks from worldwide locations. It is designed to lower data distribution costs while increasing data analysis functionality by integrating low-cost, off-the-shelf desktop hardware and software. MTV is expected to significantly lower the cost of real-time data display, processing, distribution, and allow for greater spacecraft safety and mission data access.

  7. Enhanced Vision for All-Weather Operations Under NextGen

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Kramer, Lynda J.; Williams, Steven P.

    2010-01-01

    Recent research in Synthetic/Enhanced Vision technology is analyzed with respect to existing Category II/III performance and certification guidance. The goal is to start the development of performance-based vision systems technology requirements to support future all-weather operations and the NextGen goal of Equivalent Visual Operations. This work shows that existing criteria to operate in Category III weather and visibility are not directly applicable since, unlike today, the primary reference for maneuvering the airplane is based on what the pilot sees visually through the "vision system." New criteria are consequently needed. Several possible criteria are discussed, but more importantly, the factors associated with landing system performance using automatic and manual landings are delineated.

  8. MarsSI: Martian surface data processing information system

    NASA Astrophysics Data System (ADS)

    Quantin-Nataf, C.; Lozac'h, L.; Thollot, P.; Loizeau, D.; Bultel, B.; Fernando, J.; Allemand, P.; Dubuffet, F.; Poulet, F.; Ody, A.; Clenet, H.; Leyrat, C.; Harrisson, S.

    2018-01-01

    MarsSI (Acronym for Mars System of Information, https://emars.univ-lyon1.fr/MarsSI/, is a web Geographic Information System application which helps managing and processing martian orbital data. The MarsSI facility is part of the web portal called PSUP (Planetary SUrface Portal) developed by the Observatories of Paris Sud (OSUPS) and Lyon (OSUL) to provide users with efficient and easy access to data products dedicated to the martian surface. The portal proposes 1) the management and processing of data thanks to MarsSI and 2) the visualization and merging of high level (imagery, spectral, and topographic) products and catalogs via a web-based user interface (MarsVisu). The portal PSUP as well as the facility MarsVisu is detailed in a companion paper (Poulet et al., 2018). The purpose of this paper is to describe the facility MarsSI. From this application, users are able to easily and rapidly select observations, process raw data via automatic pipelines, and get back final products which can be visualized under Geographic Information Systems. Moreover, MarsSI also contains an automatic stereo-restitution pipeline in order to produce Digital Terrain Models (DTM) on demand from HiRISE (High Resolution Imaging Science Experiment) or CTX (Context Camera) pair-images. This application is funded by the European Union's Seventh Framework Programme (FP7/2007-2013) (ERC project eMars, No. 280168) and has been developed in the scope of Mars, but the design is applicable to any other planetary body of the solar system.

  9. Single-camera visual odometry to track a surgical X-ray C-arm base.

    PubMed

    Esfandiari, Hooman; Lichti, Derek; Anglin, Carolyn

    2017-12-01

    This study provides a framework for a single-camera odometry system for localizing a surgical C-arm base. An application-specific monocular visual odometry system (a downward-looking consumer-grade camera rigidly attached to the C-arm base) is proposed in this research. The cumulative dead-reckoning estimation of the base is extracted based on frame-to-frame homography estimation. Optical-flow results are utilized to feed the odometry. Online positional and orientation parameters are then reported. Positional accuracy of better than 2% (of the total traveled distance) for most of the cases and 4% for all the cases studied and angular accuracy of better than 2% (of absolute cumulative changes in orientation) were achieved with this method. This study provides a robust and accurate tracking framework that not only can be integrated with the current C-arm joint-tracking system (i.e. TC-arm) but also is capable of being employed for similar applications in other fields (e.g. robotics).

  10. High Accuracy Monocular SFM and Scale Correction for Autonomous Driving.

    PubMed

    Song, Shiyu; Chandraker, Manmohan; Guest, Clark C

    2016-04-01

    We present a real-time monocular visual odometry system that achieves high accuracy in real-world autonomous driving applications. First, we demonstrate robust monocular SFM that exploits multithreading to handle driving scenes with large motions and rapidly changing imagery. To correct for scale drift, we use known height of the camera from the ground plane. Our second contribution is a novel data-driven mechanism for cue combination that allows highly accurate ground plane estimation by adapting observation covariances of multiple cues, such as sparse feature matching and dense inter-frame stereo, based on their relative confidences inferred from visual data on a per-frame basis. Finally, we demonstrate extensive benchmark performance and comparisons on the challenging KITTI dataset, achieving accuracy comparable to stereo and exceeding prior monocular systems. Our SFM system is optimized to output pose within 50 ms in the worst case, while average case operation is over 30 fps. Our framework also significantly boosts the accuracy of applications like object localization that rely on the ground plane.

  11. Tackling the challenges of fully immersive head-mounted AR devices

    NASA Astrophysics Data System (ADS)

    Singer, Wolfgang; Hillenbrand, Matthias; Münz, Holger

    2017-11-01

    The optical requirements of fully immersive head mounted AR devices are inherently determined by the human visual system. The etendue of the visual system is large. As a consequence, the requirements for fully immersive head-mounted AR devices exceeds almost any high end optical system. Two promising solutions to achieve the large etendue and their challenges are discussed. Head-mounted augmented reality devices have been developed for decades - mostly for application within aircrafts and in combination with a heavy and bulky helmet. The established head-up displays for applications within automotive vehicles typically utilize similar techniques. Recently, there is the vision of eyeglasses with included augmentation, offering a large field of view, and being unobtrusively all-day wearable. There seems to be no simple solution to reach the functional performance requirements. Known technical solutions paths seem to be a dead-end, and some seem to offer promising perspectives, however with severe limitations. As an alternative, unobtrusively all-day wearable devices with a significantly smaller field of view are already possible.

  12. Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.

    2001-01-01

    Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.

  13. Anterior-segment imaging for assessment of glaucoma

    PubMed Central

    Ursea, Roxana; Silverman, Ronald H

    2010-01-01

    This article summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) and optical coherence tomography (OCT) for assessment of the anterior segment in glaucoma. UBM systems use frequencies ranging from approximately 35 to 80 MHz, as compared with typical 10-MHz systems used for general-purpose ophthalmic imaging. OCT systems use low-coherence, near-infrared light to provide detailed images of anterior segment structures at resolutions exceeding that of UBM. Both technologies allow visualization of the iridocorneal angle and, thus, can contribute to the diagnosis and management of glaucoma. OCT systems are advantageous, being noncontact proceedures and providing finer resolution than UBM, but UBM systems are superior for the visualization of retroiridal structures, including the ciliary body, posterior chamber and zonules, which can provide crucial diagnostic information for the assessment of glaucoma. PMID:20305726

  14. Automated Measurement of Visual Acuity in Pediatric Ophthalmic Patients Using Principles of Game Design and Tablet Computers.

    PubMed

    Aslam, Tariq M; Tahir, Humza J; Parry, Neil R A; Murray, Ian J; Kwak, Kun; Heyes, Richard; Salleh, Mahani M; Czanner, Gabriela; Ashworth, Jane

    2016-10-01

    To report on the utility of a computer tablet-based method for automated testing of visual acuity in children based on the principles of game design. We describe the testing procedure and present repeatability as well as agreement of the score with accepted visual acuity measures. Reliability and validity study. Setting: Manchester Royal Eye Hospital Pediatric Ophthalmology Outpatients Department. Total of 112 sequentially recruited patients. For each patient 1 eye was tested with the Mobile Assessment of Vision by intERactIve Computer for Children (MAVERIC-C) system, consisting of a software application running on a computer tablet, housed in a bespoke viewing chamber. The application elicited touch screen responses using a game design to encourage compliance and automatically acquire visual acuity scores of participating patients. Acuity was then assessed by an examiner with a standard chart-based near ETDRS acuity test before the MAVERIC-C assessment was repeated. Reliability of MAVERIC-C near visual acuity score and agreement of MAVERIC-C score with near ETDRS chart for visual acuity. Altogether, 106 children (95%) completed the MAVERIC-C system without assistance. The vision scores demonstrated satisfactory reliability, with test-retest VA scores having a mean difference of 0.001 (SD ±0.136) and limits of agreement of 2 SD (LOA) of ±0.267. Comparison with the near EDTRS chart showed agreement with a mean difference of -0.0879 (±0.106) with LOA of ±0.208. This study demonstrates promising utility for software using a game design to enable automated testing of acuity in children with ophthalmic disease in an objective and accurate manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Urban photogrammetric data base for multi-purpose cadastral-based information systems: the Riyadh city case

    NASA Astrophysics Data System (ADS)

    Al-garni, Abdullah M.

    Urban information systems are economic resources that can benefit decision makers in the planning, development, and management of urban projects and resources. In this research, a conceptual model-based prototype Urban Geographic Information System (UGIS) is developed. The base maps used in developing the system and acquiring visual attributes are obtained from aerial photographs. The system is a multi-purpose parcel-based one that can serve many urban applications such as public utilities, health centres, schools, population estimation, road engineering and maintenance, and many others. A modern region in the capital city of Saudi Arabia is used for the study. The developed model is operational for one urban application (population estimation) and is tested for that particular application. The results showed that the system has a satisfactory accuracy and that it may well be promising for other similar urban applications in countries with similar demographic and social characteristics.

  16. Web-based visual analysis for high-throughput genomics

    PubMed Central

    2013-01-01

    Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618

  17. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    PubMed

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  18. A software module for implementing auditory and visual feedback on a video-based eye tracking system

    NASA Astrophysics Data System (ADS)

    Rosanlall, Bharat; Gertner, Izidor; Geri, George A.; Arrington, Karl F.

    2016-05-01

    We describe here the design and implementation of a software module that provides both auditory and visual feedback of the eye position measured by a commercially available eye tracking system. The present audio-visual feedback module (AVFM) serves as an extension to the Arrington Research ViewPoint EyeTracker, but it can be easily modified for use with other similar systems. Two modes of audio feedback and one mode of visual feedback are provided in reference to a circular area-of-interest (AOI). Auditory feedback can be either a click tone emitted when the user's gaze point enters or leaves the AOI, or a sinusoidal waveform with frequency inversely proportional to the distance from the gaze point to the center of the AOI. Visual feedback is in the form of a small circular light patch that is presented whenever the gaze-point is within the AOI. The AVFM processes data that are sent to a dynamic-link library by the EyeTracker. The AVFM's multithreaded implementation also allows real-time data collection (1 kHz sampling rate) and graphics processing that allow display of the current/past gaze-points as well as the AOI. The feedback provided by the AVFM described here has applications in military target acquisition and personnel training, as well as in visual experimentation, clinical research, marketing research, and sports training.

  19. Visual fatigue modeling for stereoscopic video shot based on camera motion

    NASA Astrophysics Data System (ADS)

    Shi, Guozhong; Sang, Xinzhu; Yu, Xunbo; Liu, Yangdong; Liu, Jing

    2014-11-01

    As three-dimensional television (3-DTV) and 3-D movie become popular, the discomfort of visual feeling limits further applications of 3D display technology. The cause of visual discomfort from stereoscopic video conflicts between accommodation and convergence, excessive binocular parallax, fast motion of objects and so on. Here, a novel method for evaluating visual fatigue is demonstrated. Influence factors including spatial structure, motion scale and comfortable zone are analyzed. According to the human visual system (HVS), people only need to converge their eyes to the specific objects for static cameras and background. Relative motion should be considered for different camera conditions determining different factor coefficients and weights. Compared with the traditional visual fatigue prediction model, a novel visual fatigue predicting model is presented. Visual fatigue degree is predicted using multiple linear regression method combining with the subjective evaluation. Consequently, each factor can reflect the characteristics of the scene, and the total visual fatigue score can be indicated according to the proposed algorithm. Compared with conventional algorithms which ignored the status of the camera, our approach exhibits reliable performance in terms of correlation with subjective test results.

  20. Converting a fluorescence spectrophotometer into a three-channel colorimeter for color vision research

    NASA Astrophysics Data System (ADS)

    Pardo, P. J.; Pérez, A. L.; Suero, M. I.

    2004-01-01

    An old fluorescence spectrophotometer was recycled to make a three-channel colorimeter. The various modifications involved in its design and implementation are described. An optical system was added that allows the fusion of two visual stimuli coming from the two monochromators of the spectrofluorimeter. Each of these stimuli has a wavelength and bandwidth control, and a third visual stimulus may be taken from a monochromator, a cathode ray tube, a thin film transistor screen, or any other light source. This freedom in the choice of source of the third chromatic channel, together with the characteristics of the visual stimuli from the spectrofluorimeter, give this design a great versatility in its application to novel visual experiments on color vision.

  1. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  2. Ovis: A Framework for Visual Analysis of Ocean Forecast Ensembles.

    PubMed

    Höllt, Thomas; Magdy, Ahmed; Zhan, Peng; Chen, Guoning; Gopalakrishnan, Ganesh; Hoteit, Ibrahim; Hansen, Charles D; Hadwiger, Markus

    2014-08-01

    We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea.

  3. VRML and Collaborative Environments: New Tools for Networked Visualization

    NASA Astrophysics Data System (ADS)

    Crutcher, R. M.; Plante, R. L.; Rajlich, P.

    We present two new applications that engage the network as a tool for astronomical research and/or education. The first is a VRML server which allows users over the Web to interactively create three-dimensional visualizations of FITS images contained in the NCSA Astronomy Digital Image Library (ADIL). The server's Web interface allows users to select images from the ADIL, fill in processing parameters, and create renderings featuring isosurfaces, slices, contours, and annotations; the often extensive computations are carried out on an NCSA SGI supercomputer server without the user having an individual account on the system. The user can then download the 3D visualizations as VRML files, which may be rotated and manipulated locally on virtually any class of computer. The second application is the ADILBrowser, a part of the NCSA Horizon Image Data Browser Java package. ADILBrowser allows a group of participants to browse images from the ADIL within a collaborative session. The collaborative environment is provided by the NCSA Habanero package which includes text and audio chat tools and a white board. The ADILBrowser is just an example of a collaborative tool that can be built with the Horizon and Habanero packages. The classes provided by these packages can be assembled to create custom collaborative applications that visualize data either from local disk or from anywhere on the network.

  4. Planning, Implementation and Optimization of Future space Missions using an Immersive Visualization Environement (IVE) Machine

    NASA Astrophysics Data System (ADS)

    Harris, E.

    Planning, Implementation and Optimization of Future Space Missions using an Immersive Visualization Environment (IVE) Machine E. N. Harris, Lockheed Martin Space Systems, Denver, CO and George.W. Morgenthaler, U. of Colorado at Boulder History: A team of 3-D engineering visualization experts at the Lockheed Martin Space Systems Company have developed innovative virtual prototyping simulation solutions for ground processing and real-time visualization of design and planning of aerospace missions over the past 6 years. At the University of Colorado, a team of 3-D visualization experts are developing the science of 3-D visualization and immersive visualization at the newly founded BP Center for Visualization, which began operations in October, 2001. (See IAF/IAA-01-13.2.09, "The Use of 3-D Immersive Visualization Environments (IVEs) to Plan Space Missions," G. A. Dorn and G. W. Morgenthaler.) Progressing from Today's 3-D Engineering Simulations to Tomorrow's 3-D IVE Mission Planning, Simulation and Optimization Techniques: 3-D (IVEs) and visualization simulation tools can be combined for efficient planning and design engineering of future aerospace exploration and commercial missions. This technology is currently being developed and will be demonstrated by Lockheed Martin in the (IVE) at the BP Center using virtual simulation for clearance checks, collision detection, ergonomics and reach-ability analyses to develop fabrication and processing flows for spacecraft and launch vehicle ground support operations and to optimize mission architecture and vehicle design subject to realistic constraints. Demonstrations: Immediate aerospace applications to be demonstrated include developing streamlined processing flows for Reusable Space Transportation Systems and Atlas Launch Vehicle operations and Mars Polar Lander visual work instructions. Long-range goals include future international human and robotic space exploration missions such as the development of a Mars Reconnaissance Orbiter and Lunar Base construction scenarios. Innovative solutions utilizing Immersive Visualization provide the key to streamlining the mission planning and optimizing engineering design phases of future aerospace missions.

  5. VANLO - Interactive visual exploration of aligned biological networks

    PubMed Central

    Brasch, Steffen; Linsen, Lars; Fuellen, Georg

    2009-01-01

    Background Protein-protein interaction (PPI) is fundamental to many biological processes. In the course of evolution, biological networks such as protein-protein interaction networks have developed. Biological networks of different species can be aligned by finding instances (e.g. proteins) with the same common ancestor in the evolutionary process, so-called orthologs. For a better understanding of the evolution of biological networks, such aligned networks have to be explored. Visualization can play a key role in making the various relationships transparent. Results We present a novel visualization system for aligned biological networks in 3D space that naturally embeds existing 2D layouts. In addition to displaying the intra-network connectivities, we also provide insight into how the individual networks relate to each other by placing aligned entities on top of each other in separate layers. We optimize the layout of the entire alignment graph in a global fashion that takes into account inter- as well as intra-network relationships. The layout algorithm includes a step of merging aligned networks into one graph, laying out the graph with respect to application-specific requirements, splitting the merged graph again into individual networks, and displaying the network alignment in layers. In addition to representing the data in a static way, we also provide different interaction techniques to explore the data with respect to application-specific tasks. Conclusion Our system provides an intuitive global understanding of aligned PPI networks and it allows the investigation of key biological questions. We evaluate our system by applying it to real-world examples documenting how our system can be used to investigate the data with respect to these key questions. Our tool VANLO (Visualization of Aligned Networks with Layout Optimization) can be accessed at . PMID:19821976

  6. NASA's Global Imagery Browse Services - Technologies for Visualizing Earth Science Data

    NASA Astrophysics Data System (ADS)

    Cechini, M. F.; Boller, R. A.; Baynes, K.; Schmaltz, J. E.; Thompson, C. K.; Roberts, J. T.; Rodriguez, J.; Wong, M. M.; King, B. A.; King, J.; De Luca, A. P.; Pressley, N. N.

    2017-12-01

    For more than 20 years, the NASA Earth Observing System (EOS) has collected earth science data for thousands of scientific parameters now totaling nearly 15 Petabytes of data. In 2013, NASA's Global Imagery Browse Services (GIBS) formed its vision to "transform how end users interact and discover [EOS] data through visualizations." This vision included leveraging scientific and community best practices and standards to provide a scalable, compliant, and authoritative source for EOS earth science data visualizations. Since that time, GIBS has grown quickly and now services millions of daily requests for over 500 imagery layers representing hundreds of earth science parameters to a broad community of users. For many of these parameters, visualizations are available within hours of acquisition from the satellite. For others, visualizations are available for the entire mission of the satellite. The GIBS system is built upon the OnEarth and MRF open source software projects, which are provided by the GIBS team. This software facilitates standards-based access for compliance with existing GIS tools. The GIBS imagery layers are predominantly rasterized images represented in two-dimensional coordinate systems, though multiple projections are supported. The OnEarth software also supports the GIBS ingest pipeline to facilitate low latency updates to new or updated visualizations. This presentation will focus on the following topics: Overview of GIBS visualizations and user community Current benefits and limitations of the OnEarth and MRF software projects and related standards GIBS access methods and their in/compatibilities with existing GIS libraries and applications Considerations for visualization accuracy and understandability Future plans for more advanced visualization concepts including Vertical Profiles and Vector-Based Representations Future plans for Amazon Web Service support and deployments

  7. VESL: The Virtual Earth Sheet Laboratory for Ice Sheet Modeling and Visualization

    NASA Astrophysics Data System (ADS)

    Cheng, D. L. C.; Larour, E. Y.; Quinn, J. D.; Halkides, D. J.

    2016-12-01

    We introduce the Virtual Earth System Laboratory (VESL), a scientific modeling and visualization tool delivered through an integrated web portal for dissemination of data, simulation of physical processes, and promotion of climate literacy. The current prototype leverages NASA's Ice Sheet System Model (ISSM), a state-of-the-art polar ice sheet dynamics model developed at the Jet Propulsion Lab and UC Irvine. We utilize the Emscripten source-to-source compiler to convert the C/C++ ISSM engine core to JavaScript, and bundled pre/post-processing JS scripts to be compatible with the existing ISSM Python/Matlab API. Researchers using VESL will be able to effectively present their work for public dissemination with little-to-no additional post-processing. This will allow for faster publication in peer-reviewed journals and adaption of results for educational applications. Through future application of this concept to multiple aspects of the Earth System, VESL has the potential to broaden data applications in the geosciences and beyond. At this stage, we seek feedback from the greater scientific and public outreach communities regarding the ease of use and feature set of VESL, as we plan its expansion, and aim to achieve more rapid communication and presentation of scientific results.

  8. Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    NASA Technical Reports Server (NTRS)

    Becker, Friedhelm; Yu, Yung H.

    1987-01-01

    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.

  9. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    PubMed

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  10. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  11. Game engines and immersive displays

    NASA Astrophysics Data System (ADS)

    Chang, Benjamin; Destefano, Marc

    2014-02-01

    While virtual reality and digital games share many core technologies, the programming environments, toolkits, and workflows for developing games and VR environments are often distinct. VR toolkits designed for applications in visualization and simulation often have a different feature set or design philosophy than game engines, while popular game engines often lack support for VR hardware. Extending a game engine to support systems such as the CAVE gives developers a unified development environment and the ability to easily port projects, but involves challenges beyond just adding stereo 3D visuals. In this paper we outline the issues involved in adapting a game engine for use with an immersive display system including stereoscopy, tracking, and clustering, and present example implementation details using Unity3D. We discuss application development and workflow approaches including camera management, rendering synchronization, GUI design, and issues specific to Unity3D, and present examples of projects created for a multi-wall, clustered, stereoscopic display.

  12. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiroshi; Timossi, Chris

    2006-10-19

    Mono is an independent implementation of the .NET Frameworkby Novell that runs on multiple operating systems (including Windows,Linux and Macintosh) and allows any .NET compatible application to rununmodified. For instance Mono can run programs with graphical userinterfaces (GUI) developed with the C# language on Windows with VisualStudio (a full port of WinForm for Mono is in progress). We present theresults of tests we performed to evaluate the portability of our controlssystem .NET applications from MS Windows to Linux.

  13. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  14. Hospital Information Systems for Clinical and Research Applications: A Survey of the Issues

    DTIC Science & Technology

    1983-06-01

    potentials for auditory and visual nervous system activity) is being used intensively in the field of neurophysiology (27, 108, 109). In addition, the high...user group: this provides a community of enlightened users who can share ideas and experiences. (NOTE: NCHSR support ended January 1, 1983.) .Masor

  15. NED-2: A decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  16. NED-2: a decision support system for integrated forest ecosystem management

    Treesearch

    Mark J. Twery; Peter D. Knopp; Scott A. Thomasma; H. Michael Rauscher; Donald E. Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mayukh Dass; Hajime Uchiyama; Astrid Glende; Robin E. Hoffman

    2005-01-01

    NED-2 is a Windows-based system designed to improve project-level planning and decision making by providing useful and scientifically sound information to natural resource managers. Resources currently addressed include visual quality, ecology, forest health, timber, water, and wildlife. NED-2 expands on previous versions of NED applications by integrating treatment...

  17. Exploring the Decision Landscape: Integration and Display of Ecosystem Services & Indicators Using the Driver-Pressure-State-Impact-Response Framework and Dynamic Web Application

    EPA Science Inventory

    Making decisions to increase community or regional sustainability requires a comprehensive understanding of the linkages between environmental, social, and economic systems. We present a visualization tool that can improve decision processes by enhancing understanding of system c...

  18. Investigation of hydrodynamic characteristics of laminar flow condition around sphere using PIV system

    NASA Astrophysics Data System (ADS)

    Abed, A. H.; Shcheklein, S. E.

    2018-05-01

    This paper aims to determine the hydrodynamic characteristics of flow around the sphere in unsteady state condition. An experimental test-rig was designed and constructed for this purpose with the application of an adjusted laser optics system. It is based on the technology of pulsed particle visualization of micro tracers in the cross section per unit time interval. Visualization with Particle Image Velocimetry (PIV-system) is used to study the properties of the flow such as its structure. The PIV-system is the most accepted technique allowed one to measure the instantaneous velocity distribution in fluid applications. In this experimental study, o-ring is used to simulate turbulence on the sphere surface and creates very high-level fluctuations, which creates the flow undergoing a laminar-to-turbulent transition. This transition leads to a delay of the separation point of flow from the sphere surface causing a significant reduction in the drag coefficient, reaching 45%. New results obtained can be useful in the development of numerical validation as well as in design processes.

  19. Human visual system-based smoking event detection

    NASA Astrophysics Data System (ADS)

    Odetallah, Amjad D.; Agaian, Sos S.

    2012-06-01

    Human action (e.g. smoking, eating, and phoning) analysis is an important task in various application domains like video surveillance, video retrieval, human-computer interaction systems, and so on. Smoke detection is a crucial task in many video surveillance applications and could have a great impact to raise the level of safety of urban areas, public parks, airplanes, hospitals, schools and others. The detection task is challenging since there is no prior knowledge about the object's shape, texture and color. In addition, its visual features will change under different lighting and weather conditions. This paper presents a new scheme of a system for detecting human smoking events, or small smoke, in a sequence of images. In developed system, motion detection and background subtraction are combined with motion-region-saving, skin-based image segmentation, and smoke-based image segmentation to capture potential smoke regions which are further analyzed to decide on the occurrence of smoking events. Experimental results show the effectiveness of the proposed approach. As well, the developed method is capable of detecting the small smoking events of uncertain actions with various cigarette sizes, colors, and shapes.

  20. 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

    NASA Astrophysics Data System (ADS)

    Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

    2018-04-01

    Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

  1. 3D-Monitoring Big Geo Data on a seaport infrastructure based on FIWARE

    NASA Astrophysics Data System (ADS)

    Fernández, Pablo; Suárez, José Pablo; Trujillo, Agustín; Domínguez, Conrado; Santana, José Miguel

    2018-03-01

    Many organizations of all kinds are using new technologies to assist the acquisition and analysis of data. Seaports are a good example of this trend. Seaports generate data regarding the management of marine traffic and other elements, as well as environmental conditions given by meteorological sensors and buoys. However, this enormous amount of data, also known as Big Data, is useless without a proper system to organize, analyze and visualize it. SmartPort is an online platform for the visualization and management of a seaport data that has been built as a GIS application. This work offers a Rich Internet Application that allows the user to visualize and manage the different sources of information produced in a port environment. The Big Data management is based on the FIWARE platform, as well as "The Internet of Things" solutions for the data acquisition. At the same time, Glob3 Mobile (G3M) framework has been used for the development of map requirements. In this way, SmartPort supports 3D visualization of the ports scenery and its data sources.

  2. Efficient Multi-Concept Visual Classifier Adaptation in Changing Environments

    DTIC Science & Technology

    2016-09-01

    yet to be discussed in existing supervised multi-concept visual perception systems used in robotics applications.1,5–7 Anno - tation of images is...Autonomous robot navigation in highly populated pedestrian zones. J Field Robotics. 2015;32(4):565–589. 3. Milella A, Reina G, Underwood J . A self...learning framework for statistical ground classification using RADAR and monocular vision. J Field Robotics. 2015;32(1):20–41. 4. Manjanna S, Dudek G

  3. [Audio-visual communication in the history of psychiatry].

    PubMed

    Farina, B; Remoli, V; Russo, F

    1993-12-01

    The authors analyse the evolution of visual communication in the history of psychiatry. From the 18th century oil paintings to the first dagherrotic prints until the cinematography and the modern audiovisual systems they observed an increasing diffusion of the new communication techniques in psychiatry, and described the use of the different techniques in psychiatric practice. The article ends with a brief review of the current applications of the audiovisual in therapy, training, teaching, and research.

  4. Human factors guidelines for applications of 3D perspectives: a literature review

    NASA Astrophysics Data System (ADS)

    Dixon, Sharon; Fitzhugh, Elisabeth; Aleva, Denise

    2009-05-01

    Once considered too processing-intense for general utility, application of the third dimension to convey complex information is facilitated by the recent proliferation of technological advancements in computer processing, 3D displays, and 3D perspective (2.5D) renderings within a 2D medium. The profusion of complex and rapidly-changing dynamic information being conveyed in operational environments has elevated interest in possible military applications of 3D technologies. 3D can be a powerful mechanism for clearer information portrayal, facilitating rapid and accurate identification of key elements essential to mission performance and operator safety. However, implementation of 3D within legacy systems can be costly, making integration prohibitive. Therefore, identifying which tasks may benefit from 3D or 2.5D versus simple 2D visualizations is critical. Unfortunately, there is no "bible" of human factors guidelines for usability optimization of 2D, 2.5D, or 3D visualizations nor for determining which display best serves a particular application. Establishing such guidelines would provide an invaluable tool for designers and operators. Defining issues common to each will enhance design effectiveness. This paper presents the results of an extensive review of open source literature addressing 3D information displays, with particular emphasis on comparison of true 3D with 2D and 2.5D representations and their utility for military tasks. Seventy-five papers are summarized, highlighting militarily relevant applications of 3D visualizations and 2.5D perspective renderings. Based on these findings, human factors guidelines for when and how to use these visualizations, along with recommendations for further research are discussed.

  5. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII.

  6. Photons, clocks, and consciousness

    NASA Technical Reports Server (NTRS)

    Brainard, George C.; Hanifin, John P.

    2005-01-01

    Light profoundly impacts human consciousness through the stimulation of the visual system and powerfully regulates the human circadian system, which, in turn, has a broad regulatory impact on virtually all tissues in the body. For more than 25 years, the techniques of action spectroscopy have yielded insights into the wavelength sensitivity of circadian input in humans and other mammalian species. The seminal discovery of melanopsin, the photopigment in intrinsically photosensitive retinal ganglion cells, has provided a significant turning point for understanding human circadian phototransduction. Action spectra in humans show that the peak wavelength sensitivity for this newly discovered sensory system is within the blue portion of the spectrum. This is fundamentally different from the three-cone photopic visual system, as well as the individual rod and cone photoreceptor peaks. Studies on rodents, nonhuman primates, and humans indicate that despite having a different wavelength fingerprint, these classic visual photoreceptors still provide an element of input to the circadian system. These findings open the door to innovations in light therapy for circadian and affective disorders, as well as possible architectural light applications.

  7. Volcanic Gas Emissions Mapping Using a Mass Spectrometer System

    NASA Technical Reports Server (NTRS)

    Griffin, Timothy P.; Diaz, J. Andres

    2008-01-01

    The visualization of hazardous gaseous emissions at volcanoes using in-situ mass spectrometry (MS) is a key step towards a better comprehension of the geophysical phenomena surrounding eruptive activity. In-Situ gas data consisting of helium, carbon dioxide, sulfur dioxide, and other gas species, were acquired with an MS system. MS and global position system (GPS) data were plotted on ground imagery, topography, and remote sensing data collected by a host of instruments during the second Costa Rica Airborne Research and Technology Applications (CARTA) mission This combination of gas and imaging data allowed 3-dimensional (3-D) visualization of the volcanic plume end the mapping of gas concentration at several volcanic structures and urban areas This combined set of data has demonstrated a better tool to assess hazardous conditions by visualizing and modeling of possible scenarios of volcanic activity. The MS system is used for in-situ measurement of three-dimensional gas concentrations at different volcanic locations with three different transportation platforms, aircraft, auto, and hand carried. The demonstration for urban contamination mapping is also presented as another possible use for the MS system.

  8. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  9. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruebel, Oliver

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research coveredmore » in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle acceleration, physicists model LWFAs computationally. The datasets produced by LWFA simulations are (i) extremely large, (ii) of varying spatial and temporal resolution, (iii) heterogeneous, and (iv) high-dimensional, making analysis and knowledge discovery from complex LWFA simulation data a challenging task. To address these challenges this thesis describes the integration of the visualization system VisIt and the state-of-the-art index/query system FastBit, enabling interactive visual exploration of extremely large three-dimensional particle datasets. Researchers are especially interested in beams of high-energy particles formed during the course of a simulation. This thesis describes novel methods for automatic detection and analysis of particle beams enabling a more accurate and efficient data analysis process. By integrating these automated analysis methods with visualization, this research enables more accurate, efficient, and effective analysis of LWFA simulation data than previously possible.« less

  10. A review of flight simulation techniques

    NASA Astrophysics Data System (ADS)

    Baarspul, Max

    After a brief historical review of the evolution of flight simulation techniques, this paper first deals with the main areas of flight simulator applications. Next, it describes the main components of a piloted flight simulator. Because of the presence of the pilot-in-the-loop, the digital computer driving the simulator must solve the aircraft equations of motion in ‘real-time’. Solutions to meet the high required computer power of todays modern flight simulator are elaborated. The physical similarity between aircraft and simulator in cockpit layout, flight instruments, flying controls etc., is discussed, based on the equipment and environmental cue fidelity required for training and research simulators. Visual systems play an increasingly important role in piloted flight simulation. The visual systems now available and most widely used are described, where image generators and display devices will be distinguished. The characteristics of out-of-the-window visual simulation systems pertaining to the perceptual capabilities of human vision are discussed. Faithful reproduction of aircraft motion requires large travel, velocity and acceleration capabilities of the motion system. Different types and applications of motion systems in e.g. airline training and research are described. The principles of motion cue generation, based on the characteristics of the non-visual human motion sensors, are described. The complete motion system, consisting of the hardware and the motion drive software, is discussed. The principles of mathematical modelling of the aerodynamic, flight control, propulsion, landing gear and environmental characteristics of the aircraft are reviewed. An example of the identification of an aircraft mathematical model, based on flight and taxi tests, is presented. Finally, the paper deals with the hardware and software integration of the flight simulator components and the testing and acceptance of the complete flight simulator. Examples of the so-called ‘Computer Generated Checkout’ and ‘Proof of Match’ are presented. The concluding remarks briefly summarize the status of flight simulator technology and consider possibilities for future research.

  11. The Tools, Approaches and Applications of Visual Literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria

    ERIC Educational Resources Information Center

    Ecoma, Victor

    2016-01-01

    The paper reflects upon the tools, approaches and applications of visual literacy in the Visual Arts Department of Cross River University of Technology, Calabar, Nigeria. The objective of the discourse is to examine how the visual arts training and practice equip students with skills in visual literacy through methods of production, materials and…

  12. Data Visualization Challenges and Opportunities in User-Oriented Application Development

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2015-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  13. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets containing the same object in different LoD may be combined and integrated. In this study GIS tools used for 3D modeling issues were examined. In this context, the availability of the GIS tools for obtaining different LoDs of CityGML standard. Additionally a 3D GIS application that covers a small part of the city of Istanbul was implemented for communicating the thematic information rather than photorealistic visualization by using 3D model. An abstract model was created by using a commercial GIS software modeling tools and the results of the implementation were also presented in the study.

  14. Applications of Advanced Experimental Methodologies to AWAVS Training Research. Final Report, May 1977-July 1978.

    ERIC Educational Resources Information Center

    Simon, Charles W.

    A major part of the Naval Training Equipment Center's Aviation Wide Angle Visual System (AWAVS) program involves behavioral research to provide a basis for establishing design criteria for flight trainers. As part of the task of defining the purpose and approach of this program, the applications of advanced experimental methods are explained and…

  15. Fast I/O for Massively Parallel Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew T.

    1996-01-01

    The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.

  16. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  17. Distributed visualization framework architecture

    NASA Astrophysics Data System (ADS)

    Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger

    2010-01-01

    An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.

  18. An automated miniaturized Haploscope for testing binocular visual function

    NASA Technical Reports Server (NTRS)

    Decker, T. A.; Williams, R. E.; Kuether, C. L.; Wyman-Cornsweet, D.

    1976-01-01

    A computer-controlled binocular vision testing device has been developed as one part of a system designed for NASA to test the vision of astronauts during spaceflight. The device, called the Mark III Haploscope, utilizes semi-automated psychophysical test procedures to measure visual acuity, stereopsis, phorias, fixation disparity and accommodation/convergence relationships. All tests are self-administered, yield quantitative data and may be used repeatedly without subject memorization. Future applications of this programmable, compact device include its use as a clinical instrument to perform routine eye examinations or vision screening, and as a research tool to examine the effects of environment or work-cycle upon visual function.

  19. Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    PubMed Central

    Garcia, Gabriel J.; Corrales, Juan A.; Pomares, Jorge; Torres, Fernando

    2009-01-01

    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors. PMID:22303146

  20. Using the application visualization system to view HALOE three-dimensional satellite data

    NASA Technical Reports Server (NTRS)

    Luo, Mingzhao; Schiano, Allen V. R.; Russell, James M., III; Gordley, Larry L.; Stone, Kenneth A.; Cicerone, Ralph J.

    1995-01-01

    The Application Visualization System (AVS) is used to view a three-dimensional data field containing the volume mixing ratios of a chemical species in the middle atmosphere obtained by the Halogen Occultation Experiment (HALOE) aboard the Upper Atmosphere Research Satellite (UARS). Since launch in September 1991, HALOE has been collecting data on approximately 30 sunrise/sunset events in two narrow latitude bands each day. The vertical volume mixing ratio profiles are retrieved for eight species for each event. The accumulated data for approximately 30 days cover most of the globe (limited by sunlit latitudes), and this monthly data block can be described as the volume mixing ratio of a specific species in the atmosphere as a function of latitude, longitude, and height. The data were remapped using linear interpolation for pressure levels and Gaussian weighted binning from sampling locations to a three-dimensional grid. An AVS network is constructed that allows for viewing the three-dimensional field with rendered slices at constant latitudes, longitudes or pressure levels. Discussions are given on the advantages and some disadvantages learned about from experiences applying AVS to visualize HALOE three dimensional data.

  1. An efficient visualization method for analyzing biometric data

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; McGonagle, Mike; Yates, J. Harlan; Henning, Ronda; Hackett, Jay

    2013-05-01

    We introduce a novel application for biometric data analysis. This technology can be used as part of a unique and systematic approach designed to augment existing processing chains. Our system provides image quality control and analysis capabilities. We show how analysis and efficient visualization are used as part of an automated process. The goal of this system is to provide a unified platform for the analysis of biometric images that reduce manual effort and increase the likelihood of a match being brought to an examiner's attention from either a manual or lights-out application. We discuss the functionality of FeatureSCOPE™ which provides an efficient tool for feature analysis and quality control of biometric extracted features. Biometric databases must be checked for accuracy for a large volume of data attributes. Our solution accelerates review of features by a factor of up to 100 times. Review of qualitative results and cost reduction is shown by using efficient parallel visual review for quality control. Our process automatically sorts and filters features for examination, and packs these into a condensed view. An analyst can then rapidly page through screens of features and flag and annotate outliers as necessary.

  2. Introduction to the Space Weather Monitoring System at KASI

    NASA Astrophysics Data System (ADS)

    Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.

    2014-05-01

    We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.

  3. Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application

    NASA Astrophysics Data System (ADS)

    Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.

    2013-12-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.

  4. (Computer) Vision without Sight

    PubMed Central

    Manduchi, Roberto; Coughlan, James

    2012-01-01

    Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563

  5. An inexpensive Arduino-based LED stimulator system for vision research.

    PubMed

    Teikari, Petteri; Najjar, Raymond P; Malkki, Hemi; Knoblauch, Kenneth; Dumortier, Dominique; Gronfier, Claude; Cooper, Howard M

    2012-11-15

    Light emitting diodes (LEDs) are being used increasingly as light sources in life sciences applications such as in vision research, fluorescence microscopy and in brain-computer interfacing. Here we present an inexpensive but effective visual stimulator based on light emitting diodes (LEDs) and open-source Arduino microcontroller prototyping platform. The main design goal of our system was to use off-the-shelf and open-source components as much as possible, and to reduce design complexity allowing use of the system to end-users without advanced electronics skills. The main core of the system is a USB-connected Arduino microcontroller platform designed initially with a specific emphasis on the ease-of-use creating interactive physical computing environments. The pulse-width modulation (PWM) signal of Arduino was used to drive LEDs allowing linear light intensity control. The visual stimulator was demonstrated in applications such as murine pupillometry, rodent models for cognitive research, and heterochromatic flicker photometry in human psychophysics. These examples illustrate some of the possible applications that can be easily implemented and that are advantageous for students, educational purposes and universities with limited resources. The LED stimulator system was developed as an open-source project. Software interface was developed using Python with simplified examples provided for Matlab and LabVIEW. Source code and hardware information are distributed under the GNU General Public Licence (GPL, version 3). Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Designing integrated computational biology pipelines visually.

    PubMed

    Jamil, Hasan M

    2013-01-01

    The long-term cost of developing and maintaining a computational pipeline that depends upon data integration and sophisticated workflow logic is too high to even contemplate "what if" or ad hoc type queries. In this paper, we introduce a novel application building interface for computational biology research, called VizBuilder, by leveraging a recent query language called BioFlow for life sciences databases. Using VizBuilder, it is now possible to develop ad hoc complex computational biology applications at throw away costs. The underlying query language supports data integration and workflow construction almost transparently and fully automatically, using a best effort approach. Users express their application by drawing it with VizBuilder icons and connecting them in a meaningful way. Completed applications are compiled and translated as BioFlow queries for execution by the data management system LifeDB, for which VizBuilder serves as a front end. We discuss VizBuilder features and functionalities in the context of a real life application after we briefly introduce BioFlow. The architecture and design principles of VizBuilder are also discussed. Finally, we outline future extensions of VizBuilder. To our knowledge, VizBuilder is a unique system that allows visually designing computational biology pipelines involving distributed and heterogeneous resources in an ad hoc manner.

  7. Fiber-optic-based laser vapor screen flow visualization system for aerodynamic research in larger scale subsonic and transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Inenaga, Andrew S.

    1994-01-01

    Laser vapor screen (LVS) flow visualization systems that are fiber-optic based were developed and installed for aerodynamic research in the Langley 8-Foot Transonic Pressure Tunnel and the Langley 7- by 10-Foot High Speed Tunnel. Fiber optics are used to deliver the laser beam through the plenum shell that surrounds the test section of each facility and to the light-sheet-generating optics positioned in the ceiling window of the test section. Water is injected into the wind tunnel diffuser section to increase the relative humidity and promote condensation of the water vapor in the flow field about the model. The condensed water vapor is then illuminated with an intense sheet of laser light to reveal features of the flow field. The plenum shells are optically sealed; therefore, video-based systems are used to observe and document the flow field. Operational experience shows that the fiber-optic-based systems provide safe, reliable, and high-quality off-surface flow visualization in smaller and larger scale subsonic and transonic wind tunnels. The design, the installation, and the application of the Langley Research Center (LaRC) LVS flow visualization systems in larger scale wind tunnels are highlighted. The efficiency of the fiber optic LVS systems and their insensitivity to wind tunnel vibration, the tunnel operating temperature and pressure variations, and the airborne contaminants are discussed.

  8. Mobile collaborative medical display system.

    PubMed

    Park, Sanghun; Kim, Wontae; Ihm, Insung

    2008-03-01

    Because of recent advances in wireless communication technologies, the world of mobile computing is flourishing with a variety of applications. In this study, we present an integrated architecture for a personal digital assistant (PDA)-based mobile medical display system that supports collaborative work between remote users. We aim to develop a system that enables users in different regions to share a working environment for collaborative visualization with the potential for exploring huge medical datasets. Our system consists of three major components: mobile client, gateway, and parallel rendering server. The mobile client serves as a front end and enables users to choose the visualization and control parameters interactively and cooperatively. The gateway handles requests and responses between mobile clients and the rendering server for efficient communication. Through the gateway, it is possible to share working environments between users, allowing them to work together in computer supported cooperative work (CSCW) mode. Finally, the parallel rendering server is responsible for performing heavy visualization tasks. Our experience indicates that some features currently available to our mobile clients for collaborative scientific visualization are limited due to the poor performance of mobile devices and the low bandwidth of wireless connections. However, as mobile devices and wireless network systems are experiencing considerable elevation in their capabilities, we believe that our methodology will be utilized effectively in building quite responsive, useful mobile collaborative medical systems in the very near future.

  9. The Application of the Montage Image Mosaic Engine To The Visualization Of Astronomical Images

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Good, J. C.

    2017-05-01

    The Montage Image Mosaic Engine was designed as a scalable toolkit, written in C for performance and portability across *nix platforms, that assembles FITS images into mosaics. This code is freely available and has been widely used in the astronomy and IT communities for research, product generation, and for developing next-generation cyber-infrastructure. Recently, it has begun finding applicability in the field of visualization. This development has come about because the toolkit design allows easy integration into scalable systems that process data for subsequent visualization in a browser or client. The toolkit it includes a visualization tool suitable for automation and for integration into Python: mViewer creates, with a single command, complex multi-color images overlaid with coordinate displays, labels, and observation footprints, and includes an adaptive image histogram equalization method that preserves the structure of a stretched image over its dynamic range. The Montage toolkit contains functionality originally developed to support the creation and management of mosaics, but which also offers value to visualization: a background rectification algorithm that reveals the faint structure in an image; and tools for creating cutout and downsampled versions of large images. Version 5 of Montage offers support for visualizing data written in HEALPix sky-tessellation scheme, and functionality for processing and organizing images to comply with the TOAST sky-tessellation scheme required for consumption by the World Wide Telescope (WWT). Four online tutorials allow readers to reproduce and extend all the visualizations presented in this paper.

  10. Low-cost digital dynamic visualization system

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Sajan, M. R.

    1995-05-01

    High speed photographic systems like the image rotation camera, the Cranz Schardin camera and the drum camera are typically used for recording and visualization of dynamic events in stress analysis, fluid mechanics, etc. All these systems are fairly expensive and generally not simple to use. Furthermore they are all based on photographic film recording systems requiring time consuming and tedious wet processing of the films. Currently digital cameras are replacing to certain extent the conventional cameras for static experiments. Recently, there is lot of interest in developing and modifying CCD architectures and recording arrangements for dynamic scene analysis. Herein we report the use of a CCD camera operating in the Time Delay and Integration (TDI) mode for digitally recording dynamic scenes. Applications in solid as well as fluid impact problems are presented.

  11. Design and control of active vision based mechanisms for intelligent robots

    NASA Technical Reports Server (NTRS)

    Wu, Liwei; Marefat, Michael M.

    1994-01-01

    In this paper, we propose a design of an active vision system for intelligent robot application purposes. The system has the degrees of freedom of pan, tilt, vergence, camera height adjustment, and baseline adjustment with a hierarchical control system structure. Based on this vision system, we discuss two problems involved in the binocular gaze stabilization process: fixation point selection and vergence disparity extraction. A hierarchical approach to determining point of fixation from potential gaze targets using evaluation function representing human visual behavior to outside stimuli is suggested. We also characterize different visual tasks in two cameras for vergence control purposes, and a phase-based method based on binarized images to extract vergence disparity for vergence control is presented. A control algorithm for vergence control is discussed.

  12. Planning, implementation and optimization of future space missions using an immersive visualization environment (IVE) machine

    NASA Astrophysics Data System (ADS)

    Nathan Harris, E.; Morgenthaler, George W.

    2004-07-01

    Beginning in 1995, a team of 3-D engineering visualization experts assembled at the Lockheed Martin Space Systems Company and began to develop innovative virtual prototyping simulation tools for performing ground processing and real-time visualization of design and planning of aerospace missions. At the University of Colorado, a team of 3-D visualization experts also began developing the science of 3-D visualization and immersive visualization at the newly founded British Petroleum (BP) Center for visualization, which began operations in October, 2001. BP acquired ARCO in the year 2000 and awarded the 3-D flexible IVE developed by ARCO (beginning in 1990) to the University of Colorado, CU, the winner in a competition among 6 Universities. CU then hired Dr. G. Dorn, the leader of the ARCO team as Center Director, and the other experts to apply 3-D immersive visualization to aerospace and to other University Research fields, while continuing research on surface interpretation of seismic data and 3-D volumes. This paper recounts further progress and outlines plans in Aerospace applications at Lockheed Martin and CU.

  13. An intelligent interactive visual database management system for Space Shuttle closeout image management

    NASA Technical Reports Server (NTRS)

    Ragusa, James M.; Orwig, Gary; Gilliam, Michael; Blacklock, David; Shaykhian, Ali

    1994-01-01

    Status is given of an applications investigation on the potential for using an expert system shell for classification and retrieval of high resolution, digital, color space shuttle closeout photography. This NASA funded activity has focused on the use of integrated information technologies to intelligently classify and retrieve still imagery from a large, electronically stored collection. A space shuttle processing problem is identified, a working prototype system is described, and commercial applications are identified. A conclusion reached is that the developed system has distinct advantages over the present manual system and cost efficiencies will result as the system is implemented. Further, commercial potential exists for this integrated technology.

  14. How visualization layout relates to locus of control and other personality factors.

    PubMed

    Ziemkiewicz, Caroline; Ottley, Alvitta; Crouser, R Jordan; Yauilla, Ashley Rye; Su, Sara L; Ribarsky, William; Chang, Remco

    2013-07-01

    Existing research suggests that individual personality differences are correlated with a user's speed and accuracy in solving problems with different types of complex visualization systems. We extend this research by isolating factors in personality traits as well as in the visualizations that could have contributed to the observed correlation. We focus on a personality trait known as "locus of control” (LOC), which represents a person's tendency to see themselves as controlled by or in control of external events. To isolate variables of the visualization design, we control extraneous factors such as color, interaction, and labeling. We conduct a user study with four visualizations that gradually shift from a list metaphor to a containment metaphor and compare the participants' speed, accuracy, and preference with their locus of control and other personality factors. Our findings demonstrate that there is indeed a correlation between the two: participants with an internal locus of control perform more poorly with visualizations that employ a containment metaphor, while those with an external locus of control perform well with such visualizations. These results provide evidence for the externalization theory of visualization. Finally, we propose applications of these findings to adaptive visual analytics and visualization evaluation.

  15. The visual white matter: The application of diffusion MRI and fiber tractography to vision science

    PubMed Central

    Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco

    2017-01-01

    Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374

  16. Intraoperative adaptation and visualization of preoperative risk analyses for oncologic liver surgery

    NASA Astrophysics Data System (ADS)

    Hansen, Christian; Schlichting, Stefan; Zidowitz, Stephan; Köhn, Alexander; Hindennach, Milo; Kleemann, Markus; Peitgen, Heinz-Otto

    2008-03-01

    Tumor resections from the liver are complex surgical interventions. With recent planning software, risk analyses based on individual liver anatomy can be carried out preoperatively. However, additional tumors within the liver are frequently detected during oncological interventions using intraoperative ultrasound. These tumors are not visible in preoperative data and their existence may require changes to the resection strategy. We propose a novel method that allows an intraoperative risk analysis adaptation by merging newly detected tumors with a preoperative risk analysis. To determine the exact positions and sizes of these tumors we make use of a navigated ultrasound-system. A fast communication protocol enables our application to exchange crucial data with this navigation system during an intervention. A further motivation for our work is to improve the visual presentation of a moving ultrasound plane within a complex 3D planning model including vascular systems, tumors, and organ surfaces. In case the ultrasound plane is located inside the liver, occlusion of the ultrasound plane by the planning model is an inevitable problem for the applied visualization technique. Our system allows the surgeon to focus on the ultrasound image while perceiving context-relevant planning information. To improve orientation ability and distance perception, we include additional depth cues by applying new illustrative visualization algorithms. Preliminary evaluations confirm that in case of intraoperatively detected tumors a risk analysis adaptation is beneficial for precise liver surgery. Our new GPU-based visualization approach provides the surgeon with a simultaneous visualization of planning models and navigated 2D ultrasound data while minimizing occlusion problems.

  17. A Unique Photon Bombardment System for Space Applications

    NASA Technical Reports Server (NTRS)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  18. Reversible fastener clamp load monitor with continuous visual or remote readout

    NASA Astrophysics Data System (ADS)

    Hodge, Malcolm H.; Kausel, Theodore C., Jr.; Begley, Matthew R.

    1998-03-01

    SIMS has developed a simple means for detecting and monitoring both absolute and relative clamp load, or bolt tension, in fastener systems. More than twenty-five percent of automotive failures are known to be due to undetected loss of fastener clamp load. While the equivalent aerospace maintenance statistics are not known, the average automobile has 3,500 fasteners while a Boeing 747 has closer to one million. It is therefore anticipated that the new SensaBolt clamp load tracking system could find wide applications in the aerospace arena. We describe a visually-evident and retrofitted clamp load monitoring design which is based on the differential joint substrate compression at, and immediately adjacent to, the fastener location. This intrinsically-accurate indicator does not necessarily require alteration in either the bolt or nut geometries, thereby facilitating product introduction and retrofit in aging aircraft applications. In addition, SensaBolt's sole reliance on substrate compression renders it more accurate then torque wrench or turn-of-nut techniques. Readout may be accomplished by any of three principal methods: for those applications with ease of access to the sensor, loss of tension can be determined by direct visual inspection. Application of a standard wrench can then be made to restore the fastener's proper tightness, per the SensaBolt indicators. In those instances where line-of-sight is unimpeded and more formal inspection is desired, the SensaBolt may be interrogated by a laser scanner bar code reader. Finally, SensaBolt may be addressed by the SIMS fiber optic harness for those instances where full-time remote interrogation is desired.

  19. Apply or Die: On the Role and Assessment of Application Papers in Visualization

    DOE PAGES

    Weber, Gunther H.; Carpendale, Sheelagh; Ebert, David; ...

    2017-04-26

    Application-oriented papers provide an important way to invigorate and cross-pollinate the visualization field, but the exact criteria for judging an application paper's merit remain an open question. This article builds on a panel at the 2016 IEEE Visualization Conference entitled "Application Papers: What Are They, and How Should They Be Evaluated?" that sought to gain a better understanding of prevalent views in the visualization community. This article surveys current trends that favor application papers, reviews the benefits and contributions of this paper type, and discusses their assessment in the review process. It concludes with recommendations to ensure that the visualizationmore » community is more inclusive to application papers.« less

  20. Apply or Die: On the Role and Assessment of Application Papers in Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Gunther H.; Carpendale, Sheelagh; Ebert, David

    Application-oriented papers provide an important way to invigorate and cross-pollinate the visualization field, but the exact criteria for judging an application paper's merit remain an open question. This article builds on a panel at the 2016 IEEE Visualization Conference entitled "Application Papers: What Are They, and How Should They Be Evaluated?" that sought to gain a better understanding of prevalent views in the visualization community. This article surveys current trends that favor application papers, reviews the benefits and contributions of this paper type, and discusses their assessment in the review process. It concludes with recommendations to ensure that the visualizationmore » community is more inclusive to application papers.« less

  1. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.

    PubMed

    Yu, Yi-Hsin; Lu, Shao-Wei; Chuang, Chun-Hsiang; King, Jung-Tai; Chang, Che-Lun; Chen, Shi-An; Chen, Sheng-Fu; Lin, Chin-Teng

    2016-07-01

    Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.

  2. Vertical Launch System Loadout Planner

    DTIC Science & Technology

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  3. Three-dimensional user interfaces for scientific visualization

    NASA Technical Reports Server (NTRS)

    VanDam, Andries (Principal Investigator)

    1996-01-01

    The focus of this grant was to experiment with novel user interfaces for scientific visualization applications using both desktop and virtual reality (VR) systems, and thus to advance the state of the art of user interface technology for this domain. This technology has been transferred to NASA via periodic status reports and papers relating to this grant that have been published in conference proceedings. This final report summarizes the research completed over the past three years, and subsumes all prior reports.

  4. Compact sensitive instrument for direct ultrasonic visualization of defects.

    PubMed

    Bar-Cohen, Y; Ben-Joseph, B; Harnik, E

    1978-12-01

    A simple ultrasonic imaging cell based on the confocal combination of a plano-concave lens and a concave spherical mirror is described. When used in conjunction with a stroboscopic schlieren visualization system, it has the main attributes of a practical nondestructive testing instrument: it is compact, relatively inexpensive, and simple to operate; its sensitivity is fair, resolution and fidelity are good; it has a fairly large field of view and a test piece can be readily scanned. The scope of its applicability is described and discussed.

  5. Automatic delineation and 3D visualization of the human ventricular system using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Hatfield, Fraser N.; Dehmeshki, Jamshid

    1998-09-01

    Neurosurgery is an extremely specialized area of medical practice, requiring many years of training. It has been suggested that virtual reality models of the complex structures within the brain may aid in the training of neurosurgeons as well as playing an important role in the preparation for surgery. This paper focuses on the application of a probabilistic neural network to the automatic segmentation of the ventricles from magnetic resonance images of the brain, and their three dimensional visualization.

  6. Free-Electron Laser (FEL) Utilization in Space Applications (Ship-Borne Pointing Accuracy, Deep-Space Communications, and Orbital Debris Tracking)

    DTIC Science & Technology

    2011-12-01

    Network STK Satellite Tool Kit WFOV Wide-Field-of-View xv ACKNOWLEDGMENTS I would like to first and foremost thank the Lord, Jesus Christ, our...frequencies in FSK is easily visualized . Table 5.1 details the phase difference between each state as the number of represented states is increased...assist in visualizing the phase separation when adding additional phases to the system. Each of the rows from Table 5.1 is displayed in Figure 5.10

  7. Visualization of Proton and Electron Transfer Processes of a Biochemical Reaction by μSR

    NASA Astrophysics Data System (ADS)

    Kiyotani, Tamiko; Kobayashi, Masayoshi; Tanaka, Ichiro; Niimura, Nobuo

    For the last several years, we have discussed and conducted experiments toward realization of visualization of electron and proton transfer process in an enzyme reaction using muon. As the first step for exploring the useful application of the μSR for the biological system, which is "μSR in Biology". A first μSR experiment on biochemical reaction was conducted using the complex of a digestive enzyme, a kind of serine-protease and the inhibitor at J-PARC and PSI.

  8. Visual Power Data Files for Equal Employment Opportunity (EEO)

    EPA Pesticide Factsheets

    The Visual Powerfiles for EEO is an information management and reporting system designed to meet Federal requirements for the agency's Equal Employment Opportunity (EEO) function in accordance with several civil rights laws and regulations. EPA OCR is responsible for monitoring and evaluating the effectiveness of affirmative programs, conducting workforce ad hoc anlysis and summaries for data related to applicant flow, new hires, promotions, awards, training, disciplinary actions, and selection procedures., and developing plans and actions for an annual Management Directive 715.

  9. Visual Perceptual Learning and Models.

    PubMed

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  10. Wireless physiological monitoring and ocular tracking: 3D calibration in a fully-immersive virtual health care environment.

    PubMed

    Zhang, Lelin; Chi, Yu Mike; Edelstein, Eve; Schulze, Jurgen; Gramann, Klaus; Velasquez, Alvaro; Cauwenberghs, Gert; Macagno, Eduardo

    2010-01-01

    Wireless physiological/neurological monitoring in virtual reality (VR) offers a unique opportunity for unobtrusively quantifying human responses to precisely controlled and readily modulated VR representations of health care environments. Here we present such a wireless, light-weight head-mounted system for measuring electrooculogram (EOG) and electroencephalogram (EEG) activity in human subjects interacting with and navigating in the Calit2 StarCAVE, a five-sided immersive 3-D visualization VR environment. The system can be easily expanded to include other measurements, such as cardiac activity and galvanic skin responses. We demonstrate the capacity of the system to track focus of gaze in 3-D and report a novel calibration procedure for estimating eye movements from responses to the presentation of a set of dynamic visual cues in the StarCAVE. We discuss cyber and clinical applications that include a 3-D cursor for visual navigation in VR interactive environments, and the monitoring of neurological and ocular dysfunction in vision/attention disorders.

  11. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications

    NASA Astrophysics Data System (ADS)

    Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin

    2012-08-01

    This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.

  12. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; hide

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more efficiently plan, prepare and execute missions, as well as to playback and review past mission data. To paraphrase the old television commercial RTMM doesn t make the airborne science, it makes the airborne science easier.

  13. Monitoring wildlife-vehicle collisions in the information age: how smartphones can improve data collection.

    PubMed

    Olson, Daniel D; Bissonette, John A; Cramer, Patricia C; Green, Ashley D; Davis, Scott T; Jackson, Patrick J; Coster, Daniel C

    2014-01-01

    Currently there is a critical need for accurate and standardized wildlife-vehicle collision data, because it is the underpinning of mitigation projects that protect both drivers and wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude requires an efficient data collection system. Presently there is no widely adopted system that is both efficient and accurate. Our objective was to develop and test an integrated smartphone-based system for reporting wildlife-vehicle collision data. The WVC Reporter system we developed consisted of a mobile web application for data collection, a database for centralized storage of data, and a desktop web application for viewing data. The smartphones that we tested for use with the application produced accurate locations (median error = 4.6-5.2 m), and reduced location error 99% versus reporting only the highway/marker. Additionally, mean times for data entry using the mobile web application (22.0-26.5 s) were substantially shorter than using the pen/paper method (52 s). We also found the pen/paper method had a data entry error rate of 10% and those errors were virtually eliminated using the mobile web application. During the first year of use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application improved access to WVC data and allowed users to easily visualize wildlife-vehicle collision patterns at multiple scales. The WVC Reporter integrated several modern technologies into a seamless method for collecting, managing, and using WVC data. As a result, the system increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The development costs for the system were minor relative to the potential benefits of having spatially accurate and temporally current wildlife-vehicle collision data.

  14. Monitoring Wildlife-Vehicle Collisions in the Information Age: How Smartphones Can Improve Data Collection

    PubMed Central

    Olson, Daniel D.; Bissonette, John A.; Cramer, Patricia C.; Green, Ashley D.; Davis, Scott T.; Jackson, Patrick J.; Coster, Daniel C.

    2014-01-01

    Background Currently there is a critical need for accurate and standardized wildlife-vehicle collision data, because it is the underpinning of mitigation projects that protect both drivers and wildlife. Gathering data can be challenging because wildlife-vehicle collisions occur over broad areas, during all seasons of the year, and in large numbers. Collecting data of this magnitude requires an efficient data collection system. Presently there is no widely adopted system that is both efficient and accurate. Methodology/Principal Findings Our objective was to develop and test an integrated smartphone-based system for reporting wildlife-vehicle collision data. The WVC Reporter system we developed consisted of a mobile web application for data collection, a database for centralized storage of data, and a desktop web application for viewing data. The smartphones that we tested for use with the application produced accurate locations (median error = 4.6–5.2 m), and reduced location error 99% versus reporting only the highway/marker. Additionally, mean times for data entry using the mobile web application (22.0–26.5 s) were substantially shorter than using the pen/paper method (52 s). We also found the pen/paper method had a data entry error rate of 10% and those errors were virtually eliminated using the mobile web application. During the first year of use, 6,822 animal carcasses were reported using WVC Reporter. The desktop web application improved access to WVC data and allowed users to easily visualize wildlife-vehicle collision patterns at multiple scales. Conclusions/Significance The WVC Reporter integrated several modern technologies into a seamless method for collecting, managing, and using WVC data. As a result, the system increased efficiency in reporting, improved accuracy, and enhanced visualization of data. The development costs for the system were minor relative to the potential benefits of having spatially accurate and temporally current wildlife-vehicle collision data. PMID:24897502

  15. Analysis and visualization of intracardiac electrograms in diagnosis and research: Concept and application of KaPAVIE.

    PubMed

    Oesterlein, Tobias Georg; Schmid, Jochen; Bauer, Silvio; Jadidi, Amir; Schmitt, Claus; Dössel, Olaf; Luik, Armin

    2016-04-01

    Progress in biomedical engineering has improved the hardware available for diagnosis and treatment of cardiac arrhythmias. But although huge amounts of intracardiac electrograms (EGMs) can be acquired during electrophysiological examinations, there is still a lack of software aiding diagnosis. The development of novel algorithms for the automated analysis of EGMs has proven difficult, due to the highly interdisciplinary nature of this task and hampered data access in clinical systems. Thus we developed a software platform, which allows rapid implementation of new algorithms, verification of their functionality and suitable visualization for discussion in the clinical environment. A software for visualization was developed in Qt5 and C++ utilizing the class library of VTK. The algorithms for signal analysis were implemented in MATLAB. Clinical data for analysis was exported from electroanatomical mapping systems. The visualization software KaPAVIE (Karlsruhe Platform for Analysis and Visualization of Intracardiac Electrograms) was implemented and tested on several clinical datasets. Both common and novel algorithms were implemented which address important clinical questions in diagnosis of different arrhythmias. It proved useful in discussions with clinicians due to its interactive and user-friendly design. Time after export from the clinical mapping system to visualization is below 5min. KaPAVIE(2) is a powerful platform for the development of novel algorithms in the clinical environment. Simultaneous and interactive visualization of measured EGM data and the results of analysis will aid diagnosis and help understanding the underlying mechanisms of complex arrhythmias like atrial fibrillation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. NOAA's Science On a Sphere Education Program: Application of a Scientific Visualization System to Teach Earth System Science and Improve our Understanding About Creating Effective Visualizations

    NASA Astrophysics Data System (ADS)

    McDougall, C.; McLaughlin, J.

    2008-12-01

    NOAA has developed several programs aimed at facilitating the use of earth system science data and data visualizations by formal and informal educators. One of them, Science On a Sphere, a visualization display tool and system that uses networked LCD projectors to display animated global datasets onto the outside of a suspended, 1.7-meter diameter opaque sphere, enables science centers, museums, and universities to display real-time and current earth system science data. NOAA's Office of Education has provided grants to such education institutions to develop exhibits featuring Science On a Sphere (SOS) and create content for and evaluate audience impact. Currently, 20 public education institutions have permanent Science On a Sphere exhibits and 6 more will be installed soon. These institutions and others that are working to create and evaluate content for this system work collaboratively as a network to improve our collective knowledge about how to create educationally effective visualizations. Network members include other federal agencies, such as, NASA and the Dept. of Energy, and major museums such as Smithsonian and American Museum of Natural History, as well as a variety of mid-sized and small museums and universities. Although the audiences in these institutions vary widely in their scientific awareness and understanding, we find there are misconceptions and lack of familiarity with viewing visualizations that are common among the audiences. Through evaluations performed in these institutions we continue to evolve our understanding of how to create content that is understandable by those with minimal scientific literacy. The findings from our network will be presented including the importance of providing context, real-world connections and imagery to accompany the visualizations and the need for audience orientation before the visualizations are viewed. Additionally, we will review the publicly accessible virtual library housing over 200 datasets for SOS and any other real or virtual globe. These datasets represent contributions from NOAA, NASA, Dept. of Energy, and the public institutions that are displaying the spheres.

  17. Development of a Prototype Detailing Management System for the Civil Engineer Corps

    DTIC Science & Technology

    2002-09-01

    73 Figure 30. Associate Members To Billets SQL Statement...American Standard Code for Information Interchange EMPRS Electronic Military Personnel Record System VBA Visual Basic for Applications SDLC...capturing keystrokes or carrying out a series of actions when opening an Access database. In the place of macros, VBA should be used because of its

  18. Virtual Display Design and Evaluation of Clothing: A Design Process Support System

    ERIC Educational Resources Information Center

    Zhang, Xue-Fang; Huang, Ren-Qun

    2014-01-01

    This paper proposes a new computer-aided educational system for clothing visual merchandising and display. It aims to provide an operating environment that supports the various stages of display design in a user-friendly and intuitive manner. First, this paper provides a brief introduction to current software applications in the field of…

  19. Visual attitude propagation for small satellites

    NASA Astrophysics Data System (ADS)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. The stellar gyroscope is a technology demonstration experiment on KySat-2, a 1-Unit CubeSat being developed in Kentucky that is in line to launch with the NASA ELaNa CubeSat Launch Initiative. It has also been adopted by industry as a sensor for CubeSat Attitude Determination and Control Systems (ADCS). KEYWORDS: Small Satellites, Attitude Determination, Egomotion Estimation, RANSAC, Image Processing.

  20. Exploring U.S Cropland - A Web Service based Cropland Data Layer Visualization, Dissemination and Querying System (Invited)

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Han, W.; di, L.

    2010-12-01

    The National Agricultural Statistics Service (NASS) of the USDA produces the Cropland Data Layer (CDL) product, which is a raster-formatted, geo-referenced, U.S. crop specific land cover classification. These digital data layers are widely used for a variety of applications by universities, research institutions, government agencies, and private industry in climate change studies, environmental ecosystem studies, bioenergy production & transportation planning, environmental health research and agricultural production decision making. The CDL is also used internally by NASS for crop acreage and yield estimation. Like most geospatial data products, the CDL product is only available by CD/DVD delivery or online bulk file downloading via the National Research Conservation Research (NRCS) Geospatial Data Gateway (external users) or in a printed paper map format. There is no online geospatial information access and dissemination, no crop visualization & browsing, no geospatial query capability, nor online analytics. To facilitate the application of this data layer and to help disseminating the data, a web-service based CDL interactive map visualization, dissemination, querying system is proposed. It uses Web service based service oriented architecture, adopts open standard geospatial information science technology and OGC specifications and standards, and re-uses functions/algorithms from GeoBrain Technology (George Mason University developed). This system provides capabilities of on-line geospatial crop information access, query and on-line analytics via interactive maps. It disseminates all data to the decision makers and users via real time retrieval, processing and publishing over the web through standards-based geospatial web services. A CDL region of interest can also be exported directly to Google Earth for mashup or downloaded for use with other desktop application. This web service based system greatly improves equal-accessibility, interoperability, usability, and data visualization, facilitates crop geospatial information usage, and enables US cropland online exploring capability without any client-side software installation. It also greatly reduces the need for paper map and analysis report printing and media usages, and thus enhances low-carbon Agro-geoinformation dissemination for decision support.

  1. Overview: The Design, Adoption, and Analysis of a Visual Document Mining Tool for Investigative Journalists.

    PubMed

    Brehmer, Matthew; Ingram, Stephen; Stray, Jonathan; Munzner, Tamara

    2014-12-01

    For an investigative journalist, a large collection of documents obtained from a Freedom of Information Act request or a leak is both a blessing and a curse: such material may contain multiple newsworthy stories, but it can be difficult and time consuming to find relevant documents. Standard text search is useful, but even if the search target is known it may not be possible to formulate an effective query. In addition, summarization is an important non-search task. We present Overview, an application for the systematic analysis of large document collections based on document clustering, visualization, and tagging. This work contributes to the small set of design studies which evaluate a visualization system "in the wild", and we report on six case studies where Overview was voluntarily used by self-initiated journalists to produce published stories. We find that the frequently-used language of "exploring" a document collection is both too vague and too narrow to capture how journalists actually used our application. Our iterative process, including multiple rounds of deployment and observations of real world usage, led to a much more specific characterization of tasks. We analyze and justify the visual encoding and interaction techniques used in Overview's design with respect to our final task abstractions, and propose generalizable lessons for visualization design methodology.

  2. Visualizing the spinal neuronal dynamics of locomotion

    NASA Astrophysics Data System (ADS)

    Subramanian, Kalpathi R.; Bashor, D. P.; Miller, M. T.; Foster, J. A.

    2004-06-01

    Modern imaging and simulation techniques have enhanced system-level understanding of neural function. In this article, we present an application of interactive visualization to understanding neuronal dynamics causing locomotion of a single hip joint, based on pattern generator output of the spinal cord. Our earlier work visualized cell-level responses of multiple neuronal populations. However, the spatial relationships were abstract, making communication with colleagues difficult. We propose two approaches to overcome this: (1) building a 3D anatomical model of the spinal cord with neurons distributed inside, animated by the simulation and (2) adding limb movements predicted by neuronal activity. The new system was tested using a cat walking central pattern generator driving a pair of opposed spinal motoneuron pools. Output of opposing motoneuron pools was combined into a single metric, called "Net Neural Drive", which generated angular limb movement in proportion to its magnitude. Net neural drive constitutes a new description of limb movement control. The combination of spatial and temporal information in the visualizations elegantly conveys the neural activity of the output elements (motoneurons), as well as the resulting movement. The new system encompasses five biological levels of organization from ion channels to observed behavior. The system is easily scalable, and provides an efficient interactive platform for rapid hypothesis testing.

  3. Rocinante, a virtual collaborative visualizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, M.J.; Ice, L.G.

    1996-12-31

    With the goal of improving the ability of people around the world to share the development and use of intelligent systems, Sandia National Laboratories` Intelligent Systems and Robotics Center is developing new Virtual Collaborative Engineering (VCE) and Virtual Collaborative Control (VCC) technologies. A key area of VCE and VCC research is in shared visualization of virtual environments. This paper describes a Virtual Collaborative Visualizer (VCV), named Rocinante, that Sandia developed for VCE and VCC applications. Rocinante allows multiple participants to simultaneously view dynamic geometrically-defined environments. Each viewer can exclude extraneous detail or include additional information in the scene as desired.more » Shared information can be saved and later replayed in a stand-alone mode. Rocinante automatically scales visualization requirements with computer system capabilities. Models with 30,000 polygons and 4 Megabytes of texture display at 12 to 15 frames per second (fps) on an SGI Onyx and at 3 to 8 fps (without texture) on Indigo 2 Extreme computers. In its networked mode, Rocinante synchronizes its local geometric model with remote simulators and sensory systems by monitoring data transmitted through UDP packets. Rocinante`s scalability and performance make it an ideal VCC tool. Users throughout the country can monitor robot motions and the thinking behind their motion planners and simulators.« less

  4. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papka, M.; Messina, P.; Coffey, R.

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursormore » to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to implement those algorithms. The Data Analytics and Visualization Team lends expertise in tools and methods for high-performance, post-processing of large datasets, interactive data exploration, batch visualization, and production visualization. The Operations Team ensures that system hardware and software work reliably and optimally; system tools are matched to the unique system architectures and scale of ALCF resources; the entire system software stack works smoothly together; and I/O performance issues, bug fixes, and requests for system software are addressed. The User Services and Outreach Team offers frontline services and support to existing and potential ALCF users. The team also provides marketing and outreach to users, DOE, and the broader community.« less

  5. Energetically optimal travel across terrain: visualizations and a new metric of geographic distance with anthropological applications

    NASA Astrophysics Data System (ADS)

    Wood, Brian M.; Wood, Zoë J.

    2006-01-01

    We present a visualization and computation tool for modeling the caloric cost of pedestrian travel across three dimensional terrains. This tool is being used in ongoing archaeological research that analyzes how costs of locomotion affect the spatial distribution of trails and artifacts across archaeological landscapes. Throughout human history, traveling by foot has been the most common form of transportation, and therefore analyses of pedestrian travel costs are important for understanding prehistoric patterns of resource acquisition, migration, trade, and political interaction. Traditionally, archaeologists have measured geographic proximity based on "as the crow flies" distance. We propose new methods for terrain visualization and analysis based on measuring paths of least caloric expense, calculated using well established metabolic equations. Our approach provides a human centered metric of geographic closeness, and overcomes significant limitations of available Geographic Information System (GIS) software. We demonstrate such path computations and visualizations applied to archaeological research questions. Our system includes tools to visualize: energetic cost surfaces, comparisons of the elevation profiles of shortest paths versus least cost paths, and the display of paths of least caloric effort on Digital Elevation Models (DEMs). These analysis tools can be applied to calculate and visualize 1) likely locations of prehistoric trails and 2) expected ratios of raw material types to be recovered at archaeological sites.

  6. A generalized 3D framework for visualization of planetary data.

    NASA Astrophysics Data System (ADS)

    Larsen, K. W.; De Wolfe, A. W.; Putnam, B.; Lindholm, D. M.; Nguyen, D.

    2016-12-01

    As the volume and variety of data returned from planetary exploration missions continues to expand, new tools and technologies are needed to explore the data and answer questions about the formation and evolution of the solar system. We have developed a 3D visualization framework that enables the exploration of planetary data from multiple instruments on the MAVEN mission to Mars. This framework not only provides the opportunity for cross-instrument visualization, but is extended to include model data as well, helping to bridge the gap between theory and observation. This is made possible through the use of new web technologies, namely LATIS, a data server that can stream data and spacecraft ephemerides to a web browser, and Cesium, a Javascript library for 3D globes. The common visualization framework we have developed is flexible and modular so that it can easily be adapted for additional missions. In addition to demonstrating the combined data and modeling capabilities of the system for the MAVEN mission, we will display the first ever near real-time `QuickLook', interactive, 4D data visualization for the Magnetospheric Multiscale Mission (MMS). In this application, data from all four spacecraft can be manipulated and visualized as soon as the data is ingested into the MMS Science Data Center, less than one day after collection.

  7. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  8. Expanding imaging capabilities for microfluidics: applicability of darkfield internal reflection illumination (DIRI) to observations in microfluidics.

    PubMed

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics.

  9. Venus Quadrangle Geological Mapping: Use of Geoscience Data Visualization Systems in Mapping and Training

    NASA Technical Reports Server (NTRS)

    Head, James W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Kumar, P. Senthil

    2008-01-01

    We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping [1,2]. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping [3]. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment," or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks [e.g., 4].

  10. Image Analysis via Fuzzy-Reasoning Approach: Prototype Applications at NASA

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steven J.

    2004-01-01

    A set of imaging techniques based on Fuzzy Reasoning (FR) approach was built for NASA at Kennedy Space Center (KSC) to perform complex real-time visual-related safety prototype tasks, such as detection and tracking of moving Foreign Objects Debris (FOD) during the NASA Space Shuttle liftoff and visual anomaly detection on slidewires used in the emergency egress system for Space Shuttle at the launch pad. The system has also proved its prospective in enhancing X-ray images used to screen hard-covered items leading to a better visualization. The system capability was used as well during the imaging analysis of the Space Shuttle Columbia accident. These FR-based imaging techniques include novel proprietary adaptive image segmentation, image edge extraction, and image enhancement. Probabilistic Neural Network (PNN) scheme available from NeuroShell(TM) Classifier and optimized via Genetic Algorithm (GA) was also used along with this set of novel imaging techniques to add powerful learning and image classification capabilities. Prototype applications built using these techniques have received NASA Space Awards, including a Board Action Award, and are currently being filed for patents by NASA; they are being offered for commercialization through the Research Triangle Institute (RTI), an internationally recognized corporation in scientific research and technology development. Companies from different fields, including security, medical, text digitalization, and aerospace, are currently in the process of licensing these technologies from NASA.

  11. Advancements to Visualization Control System (VCS, part of UV-CDAT), a Visualization Package Designed for Climate Scientists

    NASA Astrophysics Data System (ADS)

    Lipsa, D.; Chaudhary, A.; Williams, D. N.; Doutriaux, C.; Jhaveri, S.

    2017-12-01

    Climate Data Analysis Tools (UV-CDAT, https://uvcdat.llnl.gov) is a data analysis and visualization software package developed at Lawrence Livermore National Laboratory and designed for climate scientists. Core components of UV-CDAT include: 1) Community Data Management System (CDMS) which provides I/O support and a data model for climate data;2) CDAT Utilities (GenUtil) that processes data using spatial and temporal averaging and statistic functions; and 3) Visualization Control System (VCS) for interactive visualization of the data. VCS is a Python visualization package primarily built for climate scientists, however, because of its generality and breadth of functionality, it can be a useful tool to other scientific applications. VCS provides 1D, 2D and 3D visualization functions such as scatter plot and line graphs for 1d data, boxfill, meshfill, isofill, isoline for 2d scalar data, vector glyphs and streamlines for 2d vector data and 3d_scalar and 3d_vector for 3d data. Specifically for climate data our plotting routines include projections, Skew-T plots and Taylor diagrams. While VCS provided a user-friendly API, the previous implementation of VCS relied on slow performing vector graphics (Cairo) backend which is suitable for smaller dataset and non-interactive graphics. LLNL and Kitware team has added a new backend to VCS that uses the Visualization Toolkit (VTK) as its visualization backend. VTK is one of the most popular open source, multi-platform scientific visualization library written in C++. Its use of OpenGL and pipeline processing architecture results in a high performant VCS library. Its multitude of available data formats and visualization algorithms results in easy adoption of new visualization methods and new data formats in VCS. In this presentation, we describe recent contributions to VCS that includes new visualization plots, continuous integration testing using Conda and CircleCI, tutorials and examples using Jupyter notebooks as well as upgrades that we are planning in the near future which will improve its ease of use and reliability and extend its capabilities.

  12. Image gathering and restoration - Information and visual quality

    NASA Technical Reports Server (NTRS)

    Mccormick, Judith A.; Alter-Gartenberg, Rachel; Huck, Friedrich O.

    1989-01-01

    A method is investigated for optimizing the end-to-end performance of image gathering and restoration for visual quality. To achieve this objective, one must inevitably confront the problems that the visual quality of restored images depends on perceptual rather than mathematical considerations and that these considerations vary with the target, the application, and the observer. The method adopted in this paper is to optimize image gathering informationally and to restore images interactively to obtain the visually preferred trade-off among fidelity resolution, sharpness, and clarity. The results demonstrate that this method leads to significant improvements in the visual quality obtained by the traditional digital processing methods. These traditional methods allow a significant loss of visual quality to occur because they treat the design of the image-gathering system and the formulation of the image-restoration algorithm as two separate tasks and fail to account for the transformations between the continuous and the discrete representations in image gathering and reconstruction.

  13. Hypothesis exploration with visualization of variance

    PubMed Central

    2014-01-01

    Background The Consortium for Neuropsychiatric Phenomics (CNP) at UCLA was an investigation into the biological bases of traits such as memory and response inhibition phenotypes—to explore whether they are linked to syndromes including ADHD, Bipolar disorder, and Schizophrenia. An aim of the consortium was in moving from traditional categorical approaches for psychiatric syndromes towards more quantitative approaches based on large-scale analysis of the space of human variation. It represented an application of phenomics—wide-scale, systematic study of phenotypes—to neuropsychiatry research. Results This paper reports on a system for exploration of hypotheses in data obtained from the LA2K, LA3C, and LA5C studies in CNP. ViVA is a system for exploratory data analysis using novel mathematical models and methods for visualization of variance. An example of these methods is called VISOVA, a combination of visualization and analysis of variance, with the flavor of exploration associated with ANOVA in biomedical hypothesis generation. It permits visual identification of phenotype profiles—patterns of values across phenotypes—that characterize groups. Visualization enables screening and refinement of hypotheses about variance structure of sets of phenotypes. Conclusions The ViVA system was designed for exploration of neuropsychiatric hypotheses by interdisciplinary teams. Automated visualization in ViVA supports ‘natural selection’ on a pool of hypotheses, and permits deeper understanding of the statistical architecture of the data. Large-scale perspective of this kind could lead to better neuropsychiatric diagnostics. PMID:25097666

  14. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  15. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 2 : applications of LiDAR technology in structural evaluation under normal traffic operation and post blast loading.

    DOT National Transportation Integrated Search

    2012-03-01

    This report focused on two potential applications of terrestrial LiDAR scans on highway : bridges: 1) vehicle crossing effects measured by3-D, terrestrial LiDAR scans of highway bridges : measuring clearance distance; and 2) bridge post-blast geometr...

  16. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  17. Concept, design and analysis of a large format autostereoscopic display system

    NASA Astrophysics Data System (ADS)

    Knocke, F.; de Jongh, R.; Frömel, M.

    2005-09-01

    Autostereoscopic display devices with large visual field are of importance in a number of applications such as computer aided design projects, technical education, and military command systems. Typical requirements for such systems are, aside from the large visual field, a large viewing zone, a high level of image brightness, and an extended depth of field. Additional appliances such as specialized eyeglasses or head-trackers are disadvantageous for the aforementioned applications. We report on the design and prototyping of an autostereoscopic display system on the basis of projection-type one-step unidirectional holography. The prototype consists of a hologram holder, an illumination unit, and a special direction-selective screen. Reconstruction light is provided by a 2W frequency-doubled Nd:YVO4 laser. The production of stereoscopic hologram stripes on photopolymer is carried out on a special origination setup. The prototype has a screen size of 180cm × 90cm and provides a visual field of 29° when viewed from 3.6 meters. Due to the coherent reconstruction, a depth of field of several meters is achievable. Up to 18 hologram stripes can be arranged on the holder to permit a rapid switch between a series of motifs or views. Both computer generated image sequences and digital camera photos may serve as input frames. However, a comprehensive pre-distortion must be performed in order to account for optical distortion and several other geometrical factors. The corresponding computations are briefly summarized below. The performance of the system is analyzed, aspects of beam-shaping and mechanical design are discussed and photographs of early reconstructions are presented.

  18. Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maniccia, Dorene A.; Rizzo, Patricia; Kim, James

    In December of 2013, the U.S. Department of Energy’s SSL R&D Program released a Funding Opportunity Announcement (FOA), that for the first time, contained opportunities for comprehensive application-specific system development. The FOA included opportunities for two applications, one of which was a Patient Room. Philips Lighting Research North America, submitted a proposal for the Patient Room application, and was selected for the complete project award. The award amount was for $497,127, with a Philips Research co-funding commitment 165,709 dollars. The total project value was 662,836 dollars. This project sought to redefine lighting for the patient room application. The goal wasmore » to deliver an innovative LED patient suite (patient room and bathroom) lighting system solution that was 40% more energy-efficient than traditional fluorescent incumbent technologies, and would meet all the visual and non-visual needs of patients, caregivers and visitors, and improve the patient experience. State-of-the-art multichannel LED platforms and control technologies that would provide spectral tuning and become part of an intelligent, connected lighting system drove the solution. The project was scoped into four main task areas that included a) System Concept Creation, b) Identification of the Luminaire Portfolio, c) Development of the Connected Lighting Infrastructure, and d) System Performance Validation. Each of the four main tasks were completed and validated extensively over the course the 2 ½ year project. The system concept was created by first developing a lighting design that demonstrated best practices for patient room lighting – illuminance and uniformity for task performance, reduced glare, and convenient controls, in addition to giving patients control over the lighting in their environment. A framework was defined to deliver circadian support via software behaviors. Through that process luminaires were identified from the Philips portfolio that were adaptable – by their form, dimensions, and optical materials – to mix multicolor LED platforms uniformly and deliver target design lumen levels. The Blue Sky luminaire was selected for the patient bed area to give the illusion of skylight while providing white light on the patient bed. Luminaires used existing 2-channel tunable white LED boards, and newly developed 4-channel LED boards. Red-Orange, Blue, Green, and Blue-shifted Yellow LED chips were selected based on spectral characteristics and their ability to produce high quality white light. 4-channel Power over Ethernet (PoE) drivers were developed and firmware written so they would communicate with both 2- and 4-channel boards. These components formed the backbone of the connected lighting infrastructure. Software, flexible and nuanced in its complexity, was written to set behaviors for myriad lighting scenes in the room throughout the 24 hour day – and all could be overridden by manual controls. This included a dynamic tunable white program, three color changing automatic programs that simulated degrees of sunrise to sunset palettes, and an amber night lighting system that offered visual cues for postural stability to minimize the risk of falls. All programs were carefully designed to provide visual comfort for all occupants, support critical task performance for staff, and to support the patient’s 24hr rhythms. A full scale mockup room was constructed in the Philips Cambridge Lab. The lighting system was installed, tested and functionality demonstrated to ensure smooth operation of system components – luminaires, drivers, PoE switches, wall controls, patient remote, and daylight and occupancy sensors. How did the system perform? It met visual criteria, confirmed by calculations, simulations and measurements in the field. It met non-visual criteria, confirmed by setting circadian stimulus (CS) targets and performing calculations using the calculator developed by the Lighting Research Center. Finally, human factors validation studies were conducted to gain insight from real end users in the healthcare profession; surveys were administered, data analyzed, and audio comments captured. The general consensus was positive, with requests to pilot the system in their hospitals. The importance of the research completed under this grant is that it allowed the exploration and development of a unique lighting system, one that would deliver a blend of visual and non-visual criteria in patient room design for today’s healthcare environment. The research investigated the area of multichannel LED technology, multichannel Power over Ethernet (PoE) drivers and their integration with automatic and manual controls as a system – uncovering and meeting challenges along the way. It married visual needs of patients and staff with support for 24 hour rhythms, placing value on the wellbeing of the patient – while successfully saving energy over incumbent technologies. Indications are that the market is ready and willing to invest – multiple healthcare facilities are in line to pilot this system, recognizing its value beyond energy to patient and staff well-being. Its value to the public can best be expressed by a patient support coordinator who, after spending several hours in the room being immersed in the lighting, analyzing all its features, commented: “This re-writes lighting for healthcare”.« less

  19. Design and Development of a Web-Based Self-Monitoring System to Support Wellness Coaching.

    PubMed

    Zarei, Reza; Kuo, Alex

    2017-01-01

    We analyzed, designed and deployed a web-based, self-monitoring system to support wellness coaching. A wellness coach can plan for clients' exercise and diet through the system and is able to monitor the changes in body dimensions and body composition that the client reports. The system can also visualize the client's data in form of graphs for both the client and the coach. Both parties can also communicate through the messaging feature embedded in the application. A reminder system is also incorporated into the system and sends reminder messages to the clients when their reporting is due. The web-based self-monitoring application uses Oracle 11g XE as the backend database and Application Express 4.2 as user interface development tool. The system allowed users to access, update and modify data through web browser anytime, anywhere, and on any device.

  20. Musculoskeletal-see-through mirror: computational modeling and algorithm for whole-body muscle activity visualization in real time.

    PubMed

    Murai, Akihiko; Kurosaki, Kosuke; Yamane, Katsu; Nakamura, Yoshihiko

    2010-12-01

    In this paper, we present a system that estimates and visualizes muscle tensions in real time using optical motion capture and electromyography (EMG). The system overlays rendered musculoskeletal human model on top of a live video image of the subject. The subject therefore has an impression that he/she sees the muscles with tension information through the cloth and skin. The main technical challenge lies in real-time estimation of muscle tension. Since existing algorithms using mathematical optimization to distribute joint torques to muscle tensions are too slow for our purpose, we develop a new algorithm that computes a reasonable approximation of muscle tensions based on the internal connections between muscles known as neuronal binding. The algorithm can estimate the tensions of 274 muscles in only 16 ms, and the whole visualization system runs at about 15 fps. The developed system is applied to assisting sport training, and the user case studies show its usefulness. Possible applications include interfaces for assisting rehabilitation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Falcon: Visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing

    DOE PAGES

    Steed, Chad A.; Halsey, William; Dehoff, Ryan; ...

    2017-02-16

    Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less

  2. Falcon: Visual analysis of large, irregularly sampled, and multivariate time series data in additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A.; Halsey, William; Dehoff, Ryan

    Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is critical for realizing the full potential of large-scale 3D printers. Here, we propose a visual analytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns in log and imagery data collected by 3D printers. Our specific goals include discovering patterns related to defects and system performance issues, optimizing build configurations to avoid defects, and increasing production efficiency. We introduce Falcon, a new visual analytics system thatmore » allows users to interactively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, detailed views, and unique segmented time series visualizations, all with adjustable scale options. To illustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. The techniques described are applicable to the analysis of any quantitative time series, though the focus of this paper is on additive manufacturing.« less

  3. A low-cost, portable, micro-controlled device for multi-channel LED visual stimulation.

    PubMed

    Pinto, Marcos Antonio da Silva; de Souza, John Kennedy Schettino; Baron, Jerome; Tierra-Criollo, Carlos Julio

    2011-04-15

    Light emitting diodes (LEDs) are extensively used as light sources to investigate visual and visually related function and dysfunction. Here, we describe the design of a compact, low-cost, stand-alone LED-based system that enables the configuration, storage and presentation of elaborate visual stimulation paradigms. The core functionality of this system is provided by a microcontroller whose ultra-low power consumption makes it well suited for long lasting battery applications. The effective use of hardware resources is managed by multi-layered architecture software that provides an intuitive and user-friendly interface. In the configuration mode, different stimulation sequences can be created and memorized for ten channels, independently. LED-driving current output can be set either as continuous or pulse modulated, up to 500 Hz, by duty cycle adjustments. In run mode, multiple-channel stimulus sequences are automatically applied according to the pre-programmed protocol. Steady state visual evoked potentials were successfully recorded in five subjects with no visible electromagnetic interferences from the stimulator, demonstrating the efficacy of combining our prototyped equipment with electrophysiological techniques. Finally, we discuss a number of possible improvements for future development of our project. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  5. The application of the unified modeling language in object-oriented analysis of healthcare information systems.

    PubMed

    Aggarwal, Vinod

    2002-10-01

    This paper concerns itself with the beneficial effects of the Unified Modeling Language (UML), a nonproprietary object modeling standard, in specifying, visualizing, constructing, documenting, and communicating the model of a healthcare information system from the user's perspective. The author outlines the process of object-oriented analysis (OOA) using the UML and illustrates this with healthcare examples to demonstrate the practicality of application of the UML by healthcare personnel to real-world information system problems. The UML will accelerate advanced uses of object-orientation such as reuse technology, resulting in significantly higher software productivity. The UML is also applicable in the context of a component paradigm that promises to enhance the capabilities of healthcare information systems and simplify their management and maintenance.

  6. Utilizing the EUVE Innovative Technology Testbed to Reduce Operations Cost for Present and Future Orbiting Mission

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report summarizes work done under Cooperative Agreement (CA) on the following testbed projects: TERRIERS - The development of the ground systems to support the TERRIERS satellite mission at Boston University (BU). HSTS - The application of ARC's Heuristic Scheduling Testbed System (HSTS) to the EUVE satellite mission. SELMON - The application of NASA's Jet Propulsion Laboratory's (JPL) Selective Monitoring (SELMON) system to the EUVE satellite mission. EVE - The development of the EUVE Virtual Environment (EVE), a prototype three-dimensional (3-D) visualization environment for the EUVE satellite and its sensors, instruments, and communications antennae. FIDO - The development of the Fault-Induced Document Officer (FIDO) system, a prototype application to respond to anomalous conditions by automatically searching for, retrieving, and displaying relevant documentation for an operators use.

  7. High Performance Real-Time Visualization of Voluminous Scientific Data Through the NOAA Earth Information System (NEIS).

    NASA Astrophysics Data System (ADS)

    Stewart, J.; Hackathorn, E. J.; Joyce, J.; Smith, J. S.

    2014-12-01

    Within our community data volume is rapidly expanding. These data have limited value if one cannot interact or visualize the data in a timely manner. The scientific community needs the ability to dynamically visualize, analyze, and interact with these data along with other environmental data in real-time regardless of the physical location or data format. Within the National Oceanic Atmospheric Administration's (NOAA's), the Earth System Research Laboratory (ESRL) is actively developing the NOAA Earth Information System (NEIS). Previously, the NEIS team investigated methods of data discovery and interoperability. The recent focus shifted to high performance real-time visualization allowing NEIS to bring massive amounts of 4-D data, including output from weather forecast models as well as data from different observations (surface obs, upper air, etc...) in one place. Our server side architecture provides a real-time stream processing system which utilizes server based NVIDIA Graphical Processing Units (GPU's) for data processing, wavelet based compression, and other preparation techniques for visualization, allows NEIS to minimize the bandwidth and latency for data delivery to end-users. Client side, users interact with NEIS services through the visualization application developed at ESRL called TerraViz. Terraviz is developed using the Unity game engine and takes advantage of the GPU's allowing a user to interact with large data sets in real time that might not have been possible before. Through these technologies, the NEIS team has improved accessibility to 'Big Data' along with providing tools allowing novel visualization and seamless integration of data across time and space regardless of data size, physical location, or data format. These capabilities provide the ability to see the global interactions and their importance for weather prediction. Additionally, they allow greater access than currently exists helping to foster scientific collaboration and new ideas. This presentation will provide an update of the recent enhancements of the NEIS architecture and visualization capabilities, challenges faced, as well as ongoing research activities related to this project.

  8. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  9. Novel approach to multispectral image compression on the Internet

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqiu; Jin, Jesse S.

    2000-10-01

    Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.

  10. Conjunctive Coding of Complex Object Features

    PubMed Central

    Erez, Jonathan; Cusack, Rhodri; Kendall, William; Barense, Morgan D.

    2016-01-01

    Critical to perceiving an object is the ability to bind its constituent features into a cohesive representation, yet the manner by which the visual system integrates object features to yield a unified percept remains unknown. Here, we present a novel application of multivoxel pattern analysis of neuroimaging data that allows a direct investigation of whether neural representations integrate object features into a whole that is different from the sum of its parts. We found that patterns of activity throughout the ventral visual stream (VVS), extending anteriorly into the perirhinal cortex (PRC), discriminated between the same features combined into different objects. Despite this sensitivity to the unique conjunctions of features comprising objects, activity in regions of the VVS, again extending into the PRC, was invariant to the viewpoints from which the conjunctions were presented. These results suggest that the manner in which our visual system processes complex objects depends on the explicit coding of the conjunctions of features comprising them. PMID:25921583

  11. Use of tangential visual symbols to increase the long-term learning process: applications of linkage in teaching pharmacological principles of addiction.

    PubMed

    Giannini, A J; Giannini, J N; Condon, M

    2000-07-01

    Medieval and Renaissance teaching techniques using linkage between course content and tangentially related visual symbols were applied to the teaching of the pharmacological principles of addiction. Forty medical students randomly divided into two blinded groups viewed a lecture. One lecture was supplemented by symbolic slides, and the second was not. Students who viewed symbolic slides had significantly higher scores in a written 15-question multiple-choice test 30 days after the lecture. These results were consistent with learning and semiotic models. These models hypothesize a linkage between conceptual content and perception of visual symbols that thereby increases conceptual retention. Recent neurochemical research supports the existence of a linkage between two chemically distinct memory systems. Simultaneous stimulation of both chemical systems by teaching formats similar to those employed in the study can augment neurochemical signaling in the neocortex.

  12. Advanced Visualization of Experimental Data in Real Time Using LiveView3D

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2006-01-01

    LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed.

  13. Discovery regarding visual neuron adaptation applicable to robot use

    NASA Astrophysics Data System (ADS)

    Korepanov, S.

    1985-06-01

    Scientists of the USSR Academy of Sciences' Institute of Higher Nervous Activity and Neurophysiology discovered a mechanism of light adaptation by organs of vision to changes in the brightness of light. Studies of the reaction of the visual center of the cerebral cortex showed that neurons in it are arranged in different ways: some, which are call classic neurons, have a fairly stable spatial orientation, while that of others is variable. It was found that vision operates chiefly on the basis of classic neurons in all conditions of illumination. Neurons of the second type are activated during sharp fluctuations of illumination. These neurons momentarily assume the orientation of the classic ones, thus serving as a kind of back-up for the primary system of the brain's visual center. Results of these studies will aid medical specialists in their practical work, as well as developers of image-recognition systems for new-generation robots.

  14. Realistic realtime illumination of complex environment for immersive systems. A case study: the Parthenon

    NASA Astrophysics Data System (ADS)

    Callieri, M.; Debevec, P.; Pair, J.; Scopigno, R.

    2005-06-01

    Offine rendering techniques have nowadays reached an astonishing level of realism but paying the cost of a long computational time. The new generation of programmable graphic hardware, on the other hand, gives the possibility to implement in realtime some of the visual effects previously available only for cinematographic production. In a collaboration between the Visual Computing Lab (ISTI-CNR) with the Institute for Creative Technologies of the University of Southern California, has been developed a realtime demo that replicate a sequence from the short movie "The Parthenon" presented at Siggraph 2004. The application is designed to run on an immersive reality system, making possible for a user to perceive the virtual environment with a cinematographic visual quality. In this paper we present the principal ideas of the project, discussing design issues and technical solution used for the realtime demo.

  15. Integrating segmentation methods from the Insight Toolkit into a visualization application.

    PubMed

    Martin, Ken; Ibáñez, Luis; Avila, Lisa; Barré, Sébastien; Kaspersen, Jon H

    2005-12-01

    The Insight Toolkit (ITK) initiative from the National Library of Medicine has provided a suite of state-of-the-art segmentation and registration algorithms ideally suited to volume visualization and analysis. A volume visualization application that effectively utilizes these algorithms provides many benefits: it allows access to ITK functionality for non-programmers, it creates a vehicle for sharing and comparing segmentation techniques, and it serves as a visual debugger for algorithm developers. This paper describes the integration of image processing functionalities provided by the ITK into VolView, a visualization application for high performance volume rendering. A free version of this visualization application is publicly available and is available in the online version of this paper. The process for developing ITK plugins for VolView according to the publicly available API is described in detail, and an application of ITK VolView plugins to the segmentation of Abdominal Aortic Aneurysms (AAAs) is presented. The source code of the ITK plugins is also publicly available and it is included in the online version.

  16. Integration of today's digital state with tomorrow's visual environment

    NASA Astrophysics Data System (ADS)

    Fritsche, Dennis R.; Liu, Victor; Markandey, Vishal; Heimbuch, Scott

    1996-03-01

    New developments in visual communication technologies, and the increasingly digital nature of the industry infrastructure as a whole, are converging to enable new visual environments with an enhanced visual component in interaction, entertainment, and education. New applications and markets can be created, but this depends on the ability of the visual communications industry to provide market solutions that are cost effective and user friendly. Industry-wide cooperation in the development of integrated, open architecture applications enables the realization of such market solutions. This paper describes the work being done by Texas Instruments, in the development of its Digital Light ProcessingTM technology, to support the development of new visual communications technologies and applications.

  17. PsychVACS: a system for asynchronous telepsychiatry.

    PubMed

    Odor, Alberto; Yellowlees, Peter; Hilty, Donald; Parish, Michelle Burke; Nafiz, Najia; Iosif, Ana-Maria

    2011-05-01

    To describe the technical development of an asynchronous telepsychiatry application, the Psychiatric Video Archiving and Communication System. A client-server application was developed in Visual Basic.Net with Microsoft(®) SQL database as the backend. It includes the capability of storing video-recorded psychiatric interviews and manages the workflow of the system with automated messaging. Psychiatric Video Archiving and Communication System has been used to conduct the first ever series of asynchronous telepsychiatry consultations worldwide. A review of the software application and the process as part of this project has led to a number of improvements that are being implemented in the next version, which is being written in Java. This is the first description of the use of video recorded data in an asynchronous telemedicine application. Primary care providers and consulting psychiatrists have found it easy to work with and a valuable resource to increase the availability of psychiatric consultation in remote rural locations.

  18. Intelligent imaging systems for automotive applications

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Huang, Yingping; Fu, Shan

    2004-03-01

    In common with many other application areas, visual signals are becoming an increasingly important information source for many automotive applications. For several years CCD cameras have been used as research tools for a range of automotive applications. Infrared cameras, RADAR and LIDAR are other types of imaging sensors that have also been widely investigated for use in cars. This paper will describe work in this field performed in C2VIP over the last decade - starting with Night Vision Systems and looking at various other Advanced Driver Assistance Systems. Emerging from this experience, we make the following observations which are crucial for "intelligent" imaging systems: 1. Careful arrangement of sensor array. 2. Dynamic-Self-Calibration. 3. Networking and processing. 4. Fusion with other imaging sensors, both at the image level and the feature level, provides much more flexibility and reliability in complex situations. We will discuss how these problems can be addressed and what are the outstanding issues.

  19. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  20. Toward a Scalable Visualization System for Network Traffic Monitoring

    NASA Astrophysics Data System (ADS)

    Malécot, Erwan Le; Kohara, Masayoshi; Hori, Yoshiaki; Sakurai, Kouichi

    With the multiplication of attacks against computer networks, system administrators are required to monitor carefully the traffic exchanged by the networks they manage. However, that monitoring task is increasingly laborious because of the augmentation of the amount of data to analyze. And that trend is going to intensify with the explosion of the number of devices connected to computer networks along with the global rise of the available network bandwidth. So system administrators now heavily rely on automated tools to assist them and simplify the analysis of the data. Yet, these tools provide limited support and, most of the time, require highly skilled operators. Recently, some research teams have started to study the application of visualization techniques to the analysis of network traffic data. We believe that this original approach can also allow system administrators to deal with the large amount of data they have to process. In this paper, we introduce a tool for network traffic monitoring using visualization techniques that we developed in order to assist the system administrators of our corporate network. We explain how we designed the tool and some of the choices we made regarding the visualization techniques to use. The resulting tool proposes two linked representations of the network traffic and activity, one in 2D and the other in 3D. As 2D and 3D visualization techniques have different assets, we resulted in combining them in our tool to take advantage of their complementarity. We finally tested our tool in order to evaluate the accuracy of our approach.

Top