Sample records for applications require fast

  1. 46 CFR 12.617 - Requirements to qualify for an STCW endorsement in proficiency in fast rescue boats.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... proficiency in fast rescue boats. 12.617 Section 12.617 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Endorsements § 12.617 Requirements to qualify for an STCW endorsement in proficiency in fast rescue boats. (a) To qualify for an STCW endorsement in proficiency in fast rescue boats, an applicant must— (1) Be not...

  2. 46 CFR 12.613 - Requirements to qualify for an STCW endorsement in proficiency in survival craft and rescue boats...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... proficiency in survival craft and rescue boats other than fast rescue boats (PSC). 12.613 Section 12.613... STCW endorsement in proficiency in survival craft and rescue boats other than fast rescue boats (PSC... fast rescue boats (PSC), the applicant must— (1) Be at least 18 years of age; (2) Meet the requirements...

  3. eFAST for Pneumothorax: Real-Life Application in an Urban Level 1 Center by Trauma Team Members.

    PubMed

    Maximus, Steven; Figueroa, Cesar; Whealon, Matthew; Pham, Jacqueline; Kuncir, Eric; Barrios, Cristobal

    2018-02-01

    The focused assessment with sonography for trauma (FAST) examination has become the standard of care for rapid evaluation of trauma patients. Extended FAST (eFAST) is the use of ultrasonography for the detection of pneumothorax (PTX). The exact sensitivity and specificity of eFAST detecting traumatic PTX during practical "real-life" application is yet to be investigated. This is a retrospective review of all trauma patients with a diagnosis of PTX, who were treated at a large level 1 urban trauma center from March 2013 through July 2014. Charts were reviewed for results of imaging, which included eFAST, chest X-ray, and CT scan. The requirement of tube thoracostomy and mechanism of injury were also analyzed. A total of 369 patients with a diagnosis of PTX were identified. A total of 69 patients were excluded, as eFAST was either not performed or not documented, leaving 300 patients identified with PTX. A total of 113 patients had clinically significant PTX (37.6%), requiring immediate tube thoracostomy placement. eFAST yielded a positive diagnosis of PTX in 19 patients (16.8%), and all were clinically significant, requiring tube thoracostomy. Chest X-ray detected clinically significant PTX in 105 patients (92.9%). The literature on the utility of eFAST for PTX in trauma is variable. Our data show that although specific for clinically significant traumatic PTX, it has poor sensitivity when performed by clinicians with variable levels of ultrasound training. We conclude that CT is still the gold standard in detecting PTX, and clinicians performing eFAST should have adequate training.

  4. Evaluation and application of a fast module in a PLC based interlock and control system

    NASA Astrophysics Data System (ADS)

    Zaera-Sanz, M.

    2009-08-01

    The LHC Beam Interlock system requires a controller performing a simple matrix function to collect the different beam dump requests. To satisfy the expected safety level of the Interlock, the system should be robust and reliable. The PLC is a promising candidate to fulfil both aspects but too slow to meet the expected response time which is of the order of μseconds. Siemens has introduced a ``so called'' fast module (FM352-5 Boolean Processor). It provides independent and extremely fast control of a process within a larger control system using an onboard processor, a Field Programmable Gate Array (FPGA), to execute code in parallel which results in extremely fast scan times. It is interesting to investigate its features and to evaluate it as a possible candidate for the beam interlock system. This paper publishes the results of this study. As well, this paper could be useful for other applications requiring fast processing using a PLC.

  5. Application of simplified Complexity Theory concepts for healthcare social systems to explain the implementation of evidence into practice.

    PubMed

    Chandler, Jacqueline; Rycroft-Malone, Jo; Hawkes, Claire; Noyes, Jane

    2016-02-01

    To examine the application of core concepts from Complexity Theory to explain the findings from a process evaluation undertaken in a trial evaluating implementation strategies for recommendations about reducing surgical fasting times. The proliferation of evidence-based guidance requires a greater focus on its implementation. Theory is required to explain the complex processes across the multiple healthcare organizational levels. This social healthcare context involves the interaction between professionals, patients and the organizational systems in care delivery. Complexity Theory may provide an explanatory framework to explain the complexities inherent in implementation in social healthcare contexts. A secondary thematic analysis of qualitative process evaluation data informed by Complexity Theory. Seminal texts applying Complexity Theory to the social context were annotated, key concepts extracted and core Complexity Theory concepts identified. These core concepts were applied as a theoretical lens to provide an explanation of themes from a process evaluation of a trial evaluating the implementation of strategies to reduce surgical fasting times. Sampled substantive texts provided a representative spread of theoretical development and application of Complexity Theory from late 1990's-2013 in social science, healthcare, management and philosophy. Five Complexity Theory core concepts extracted were 'self-organization', 'interaction', 'emergence', 'system history' and 'temporality'. Application of these concepts suggests routine surgical fasting practice is habituated in the social healthcare system and therefore it cannot easily be reversed. A reduction to fasting times requires an incentivised new approach to emerge in the surgical system's priority of completing the operating list. The application of Complexity Theory provides a useful explanation for resistance to change fasting practice. Its utility in implementation research warrants further attention and evaluation. © 2015 John Wiley & Sons Ltd.

  6. Precision and Fast Wavelength Tuning of a Dynamically Phase-Locked Widely-Tunable Laser

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Chen, Jeffrey R.; Wu, Stewart T.

    2012-01-01

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a 40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than 40 s upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  7. Fast Computation and Assessment Methods in Power System Analysis

    NASA Astrophysics Data System (ADS)

    Nagata, Masaki

    Power system analysis is essential for efficient and reliable power system operation and control. Recently, online security assessment system has become of importance, as more efficient use of power networks is eagerly required. In this article, fast power system analysis techniques such as contingency screening, parallel processing and intelligent systems application are briefly surveyed from the view point of their application to online dynamic security assessment.

  8. Qualification of Simulation Software for Safety Assessment of Sodium Cooled Fast Reactors. Requirements and Recommendations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Pointer, William David; Sieger, Matt

    2016-04-01

    The goal of this review is to enable application of codes or software packages for safety assessment of advanced sodium-cooled fast reactor (SFR) designs. To address near-term programmatic needs, the authors have focused on two objectives. First, the authors have focused on identification of requirements for software QA that must be satisfied to enable the application of software to future safety analyses. Second, the authors have collected best practices applied by other code development teams to minimize cost and time of initial code qualification activities and to recommend a path to the stated goal.

  9. Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser.

    PubMed

    Numata, Kenji; Chen, Jeffrey R; Wu, Stewart T

    2012-06-18

    We report a precision and fast wavelength tuning technique demonstrated for a digital-supermode distributed Bragg reflector laser. The laser was dynamically offset-locked to a frequency-stabilized master laser using an optical phase-locked loop, enabling precision fast tuning to and from any frequencies within a ~40-GHz tuning range. The offset frequency noise was suppressed to the statically offset-locked level in less than ~40 μs upon each frequency switch, allowing the laser to retain the absolute frequency stability of the master laser. This technique satisfies stringent requirements for gas sensing lidars and enables other applications that require such well-controlled precision fast tuning.

  10. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  11. Development of a probabilistic analysis methodology for structural reliability estimation

    NASA Technical Reports Server (NTRS)

    Torng, T. Y.; Wu, Y.-T.

    1991-01-01

    The novel probabilistic analysis method for assessment of structural reliability presented, which combines fast-convolution with an efficient structural reliability analysis, can after identifying the most important point of a limit state proceed to establish a quadratic-performance function. It then transforms the quadratic function into a linear one, and applies fast convolution. The method is applicable to problems requiring computer-intensive structural analysis. Five illustrative examples of the method's application are given.

  12. Neutron spectrum measurements using proton recoil proportional counters: results of measurements of leakage spectra for the Little Boy assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, E.F.; Yule, T.J.

    1984-01-01

    Measurements of degraded fission-neutron spectra using recoil proportional counters are done routinely for studies involving fast reactor mockups. The same techniques are applicable to measurements of neutron spectra required for personnel dosimetry in fast neutron environments. A brief discussion of current applications of these methods together with the results of a measurement made on the LITTLE BOY assembly at Los Alamos are here described.

  13. The value of decision models: Using ecologically based invasive plant management as an example

    USDA-ARS?s Scientific Manuscript database

    Humans have both fast and slow thought processes which influence our judgment and decision-making. The fast system is intuitive and valuable for decisions which do not require multiple steps or the application of logic or statistics. However, many decisions in natural resources are complex and req...

  14. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-06-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  15. Fast and slow light generated by surface plasmon wave and gold grating coupling effects

    NASA Astrophysics Data System (ADS)

    Amiri, Iraj S.; Ariannejad, M. M.; Tajdidzadeh, M.; Sorger, Volker J.; Ling, Xi; Yupapin, P.

    2018-01-01

    We present here the results of a simulation of the effect of gold and graphene coatings on silicon micro-ring resonators. We studied the effect of different radii of graphene on the time delay, from which one an interesting aspect of light pulse behaviors, such as fast light, was numerically investigated. The obtained results indicate that the time delay can be varied, which is in good agreement with theoretical predictions. Fast and slow light pulse trains can be obtained by modifying the throughput port, which forms the gold grating length. The temporal gaps between the fast and slow light in the used graphene and gold are 140 and 168 fs, respectively, which can be tuned by varying the radius or grating length. The obtained results show that such a device may be useful in applications requiring fast and slow light pulse train pairs, such as optical switching, sensors, communications, and security applications.

  16. Fast I/O for Massively Parallel Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew T.

    1996-01-01

    The two primary goals for this report were the design, contruction and modeling of parallel disk arrays for scientific visualization and animation, and a study of the IO requirements of highly parallel applications. In addition, further work in parallel display systems required to project and animate the very high-resolution frames resulting from our supercomputing simulations in ocean circulation and compressible gas dynamics.

  17. Engineering Design of ITER Prototype Fast Plant System Controller

    NASA Astrophysics Data System (ADS)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and archiving.

  18. Silicon-Germanium Fast Packet Switch Developed for Communications Satellites

    NASA Technical Reports Server (NTRS)

    Quintana, Jorge A.

    1999-01-01

    Emerging multimedia applications and future satellite systems will require high-speed switching networks to accommodate high data-rate traffic among thousands of potential users. This will require advanced switching devices to enable communication between satellites. The NASA Lewis Research Center has been working closely with industry to develop a state-of-the-art fast packet switch (FPS) to fulfill this requirement. Recently, the Satellite Industry Task Force identified the need for high-capacity onboard processing switching components as one of the "grand challenges" for the satellite industry in the 21st century. In response to this challenge, future generations of onboard processing satellites will require low power and low mass components to enable transmission of services in the 100 gigabit (1011 bits) per second (Gbps) range.

  19. Teaching the Concept of Gibbs Energy Minimization through Its Application to Phase-Equilibrium Calculation

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noe¨l; Berger, Etienne; Coniglio, Lucie; Lemaitre, Ce´cile; Meimaroglou, Dimitrios; Warth, Vale´rie

    2016-01-01

    Robust and fast methods for chemical or multiphase equilibrium calculation are routinely needed by chemical-process engineers working on sizing or simulation aspects. Yet, while industrial applications essentially require calculation tools capable of discriminating between stable and nonstable states and converging to nontrivial solutions,…

  20. Fast and Adaptive Lossless On-Board Hyperspectral Data Compression System for Space Applications

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Bakhshi, Alireza; Keymeulen, Didier; Klimesh, Matthew

    2009-01-01

    Efficient on-board lossless hyperspectral data compression reduces the data volume necessary to meet NASA and DoD limited downlink capabilities. The techniques also improves signature extraction, object recognition and feature classification capabilities by providing exact reconstructed data on constrained downlink resources. At JPL a novel, adaptive and predictive technique for lossless compression of hyperspectral data was recently developed. This technique uses an adaptive filtering method and achieves a combination of low complexity and compression effectiveness that far exceeds state-of-the-art techniques currently in use. The JPL-developed 'Fast Lossless' algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. It is of low computational complexity and thus well-suited for implementation in hardware, which makes it practical for flight implementations of pushbroom instruments. A prototype of the compressor (and decompressor) of the algorithm is available in software, but this implementation may not meet speed and real-time requirements of some space applications. Hardware acceleration provides performance improvements of 10x-100x vs. the software implementation (about 1M samples/sec on a Pentium IV machine). This paper describes a hardware implementation of the JPL-developed 'Fast Lossless' compression algorithm on a Field Programmable Gate Array (FPGA). The FPGA implementation targets the current state of the art FPGAs (Xilinx Virtex IV and V families) and compresses one sample every clock cycle to provide a fast and practical real-time solution for Space applications.

  1. Fast-responding liquid crystal light-valve technology for color-sequential display applications

    NASA Astrophysics Data System (ADS)

    Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.

    1996-04-01

    A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.

  2. Fast widely-tunable single-frequency 2-micron laser for remote-sensing applications

    NASA Astrophysics Data System (ADS)

    Henderson, Sammy W.; Hale, Charley P.

    2017-08-01

    We are developing a family of fast, widely-tunable cw diode-pumped single frequency solid-state lasers, called Swift. The Swift laser architecture is compatible with operation using many different solid-state laser crystals for operation at various emission lines between 1 and 2.1 micron. The initial prototype Swift laser using a Tm,Ho:YLF laser crystal near 2.05 micron wavelength achieved over 100 mW of single frequency cw output power, up to 50 GHz-wide, fast, mode-hop-free piezoelectric tunability, and 100 kHz/ms frequency stability. For the Tm,Ho:YLF laser material, the fast 50 GHz tuning range can be centered at any wavelength from 2047-2059 nm using appropriate intracavity spectral filters. The frequency stability and power are sufficient to serve as the local oscillator (LO) laser in long-range coherent wind-measuring lidar systems, as well as a frequency-agile master oscillator (MO) or injection-seed source for larger pulsed transmitter lasers. The rapid and wide frequency tunablity meets the requirements for integrated-path or range-resolved differential absorption lidar or applications where targets with significantly different line of sight velocities (Doppler shifts) must be tracked. Initial demonstration of an even more compact version of the Swift is also described which requires less prime power and produces less waste heat.

  3. A FAST POLYNOMIAL TRANSFORM PROGRAM WITH A MODULARIZED STRUCTURE

    NASA Technical Reports Server (NTRS)

    Truong, T. K.

    1994-01-01

    This program utilizes a fast polynomial transformation (FPT) algorithm applicable to two-dimensional mathematical convolutions. Two-dimensional convolution has many applications, particularly in image processing. Two-dimensional cyclic convolutions can be converted to a one-dimensional convolution in a polynomial ring. Traditional FPT methods decompose the one-dimensional cyclic polynomial into polynomial convolutions of different lengths. This program will decompose a cyclic polynomial into polynomial convolutions of the same length. Thus, only FPTs and Fast Fourier Transforms of the same length are required. This modular approach can save computational resources. To further enhance its appeal, the program is written in the transportable 'C' language. The steps in the algorithm are: 1) formulate the modulus reduction equations, 2) calculate the polynomial transforms, 3) multiply the transforms using a generalized fast Fourier transformation, 4) compute the inverse polynomial transforms, and 5) reconstruct the final matrices using the Chinese remainder theorem. Input to this program is comprised of the row and column dimensions and the initial two matrices. The matrices are printed out at all steps, ending with the final reconstruction. This program is written in 'C' for batch execution and has been implemented on the IBM PC series of computers under DOS with a central memory requirement of approximately 18K of 8 bit bytes. This program was developed in 1986.

  4. 77 FR 38771 - Prospective Grant of Exclusive Patent License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... embodied in U.S. Patent Application No. 13/346,999 titled ``Chirped-Pulse Terahertz Spectroscopy for... Terahertz spectroscopy methods that are fast and have excellent spectral resolution and that do not require...

  5. Application of space periodic variation of light polarization in imaging polarimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drobczynski, Slawomir; Kasprzak, Henryk

    The application of space periodic variation of light polarization for measurement and calculation of the distribution of the phase retardation between two eigenwaves propagating inside a linearly birefringent media and the distribution of the azimuth angle of the first eigenvector is described. The measuring method proposed does not require any mechanical movements or rotations of any optical elements. Application of a liquid crystal (LC) modulator instead of a quarter-wave plate gives an opportunity to introduce the required phase shift. The space periodic modulation of the polarization of light is achieved by the use of a Wollaston prism placed inside themore » path of the light beam. Then a fast Fourier transform is used for further calculations. The number of measurements of the light intensity at the output of the system is minimized to two. These assumptions make the proposed method very fast, which is especially important in measurements of the objects with optical anisotropy that is changing in time.« less

  6. A compact, multichannel, and low noise arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govorkov, S.; Ivanov, B. I.; Novosibirsk State Technical University, K.Marx-Ave. 20, Novosibirsk 630092

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analogmore » compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.« less

  7. FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1994-01-01

    FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.

  8. On the application of a fast polynomial transform and the Chinese remainder theorem to compute a two-dimensional convolution

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Lipes, R.; Reed, I. S.; Wu, C.

    1980-01-01

    A fast algorithm is developed to compute two dimensional convolutions of an array of d sub 1 X d sub 2 complex number points, where d sub 2 = 2(M) and d sub 1 = 2(m-r+) for some 1 or = r or = m. This algorithm requires fewer multiplications and about the same number of additions as the conventional fast fourier transform method for computing the two dimensional convolution. It also has the advantage that the operation of transposing the matrix of data can be avoided.

  9. Trace gas retrieval for limb DOAS under changing atmospheric conditions: The X-gas scaling method vs optimal estimation

    NASA Astrophysics Data System (ADS)

    Hueneke, Tilman; Grossmann, Katja; Knecht, Matthias; Raecke, Rasmus; Stutz, Jochen; Werner, Bodo; Pfeilsticker, Klaus

    2016-04-01

    Changing atmospheric conditions during DOAS measurements from fast moving aircraft platforms pose a challenge for trace gas retrievals. Traditional inversion techniques to retrieve trace gas concentrations from limb scattered UV/vis spectroscopy, like optimal estimation, require a-priori information on Mie extinction (e.g., aerosol concentration and cloud cover) and albedo, which determine the atmospheric radiative transfer. In contrast to satellite applications, cloud filters can not be applied because they would strongly reduce the usable amount of expensively gathered measurement data. In contrast to ground-based MAX-DOAS applications, an aerosol retrieval based on O4 is not able to constrain the radiative transfer in air-borne applications due to the rapidly decreasing amount of O4 with altitude. Furthermore, the assumption of a constant cloud cover is not valid for fast moving aircrafts, thus requiring 2D or even 3D treatment of the radiative transfer. Therefore, traditional techniques are not applicable for most of the data gathered by fast moving aircraft platforms. In order to circumvent these limitations, we have been developing the so-called X-gas scaling method. By utilising a proxy gas X (e.g. O3, O4, …), whose concentration is either a priori known or simultaneously in-situ measured as well as remotely measured, an effective absorption length for the target gas is inferred. In this presentation, we discuss the strengths and weaknesses of the novel approach along with some sample cases. A particular strength of the X-gas scaling method is its insensitivity towards the aerosol abundance and cloud cover as well as wavelength dependent effects, whereas its sensitivity towards the profiles of both gases requires a priori information on their shapes.

  10. Artificial intelligence applications of fast optical memory access

    NASA Astrophysics Data System (ADS)

    Henshaw, P. D.; Todtenkopf, A. B.

    The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).

  11. A fast Fourier transform on multipoles (FFTM) algorithm for solving Helmholtz equation in acoustics analysis.

    PubMed

    Ong, Eng Teo; Lee, Heow Pueh; Lim, Kian Meng

    2004-09-01

    This article presents a fast algorithm for the efficient solution of the Helmholtz equation. The method is based on the translation theory of the multipole expansions. Here, the speedup comes from the convolution nature of the translation operators, which can be evaluated rapidly using fast Fourier transform algorithms. Also, the computations of the translation operators are accelerated by using the recursive formulas developed recently by Gumerov and Duraiswami [SIAM J. Sci. Comput. 25, 1344-1381(2003)]. It is demonstrated that the algorithm can produce good accuracy with a relatively low order of expansion. Efficiency analyses of the algorithm reveal that it has computational complexities of O(Na), where a ranges from 1.05 to 1.24. However, this method requires substantially more memory to store the translation operators as compared to the fast multipole method. Hence, despite its simplicity in implementation, this memory requirement issue may limit the application of this algorithm to solving very large-scale problems.

  12. An FMM-FFT Accelerated SIE Simulator for Analyzing EM Wave Propagation in Mine Environments Loaded With Conductors

    PubMed Central

    Sheng, Weitian; Zhou, Chenming; Liu, Yang; Bagci, Hakan; Michielssen, Eric

    2018-01-01

    A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements. The memory requirement is further reduced by compressing large data structures via singular value and Tucker decompositions. The efficiency, accuracy, and real-world applicability of the simulator are demonstrated through characterization of EM wave propagation in electrically large mine tunnels/galleries loaded with conducting cables and mine carts. PMID:29726545

  13. Evaluation of noise and blur effects with SIRT-FISTA-TV reconstruction algorithm: Application to fast environmental transmission electron tomography.

    PubMed

    Banjak, Hussein; Grenier, Thomas; Epicier, Thierry; Koneti, Siddardha; Roiban, Lucian; Gay, Anne-Sophie; Magnin, Isabelle; Peyrin, Françoise; Maxim, Voichita

    2018-06-01

    Fast tomography in Environmental Transmission Electron Microscopy (ETEM) is of a great interest for in situ experiments where it allows to observe 3D real-time evolution of nanomaterials under operating conditions. In this context, we are working on speeding up the acquisition step to a few seconds mainly with applications on nanocatalysts. In order to accomplish such rapid acquisitions of the required tilt series of projections, a modern 4K high-speed camera is used, that can capture up to 100 images per second in a 2K binning mode. However, due to the fast rotation of the sample during the tilt procedure, noise and blur effects may occur in many projections which in turn would lead to poor quality reconstructions. Blurred projections make classical reconstruction algorithms inappropriate and require the use of prior information. In this work, a regularized algebraic reconstruction algorithm named SIRT-FISTA-TV is proposed. The performance of this algorithm using blurred data is studied by means of a numerical blur introduced into simulated images series to mimic possible mechanical instabilities/drifts during fast acquisitions. We also present reconstruction results from noisy data to show the robustness of the algorithm to noise. Finally, we show reconstructions with experimental datasets and we demonstrate the interest of fast tomography with an ultra-fast acquisition performed under environmental conditions, i.e. gas and temperature, in the ETEM. Compared to classically used SIRT and SART approaches, our proposed SIRT-FISTA-TV reconstruction algorithm provides higher quality tomograms allowing easier segmentation of the reconstructed volume for a better final processing and analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Singular perturbations and time scales in the design of digital flight control systems

    NASA Technical Reports Server (NTRS)

    Naidu, Desineni S.; Price, Douglas B.

    1988-01-01

    The results are presented of application of the methodology of Singular Perturbations and Time Scales (SPATS) to the control of digital flight systems. A block diagonalization method is described to decouple a full order, two time (slow and fast) scale, discrete control system into reduced order slow and fast subsystems. Basic properties and numerical aspects of the method are discussed. A composite, closed-loop, suboptimal control system is constructed as the sum of the slow and fast optimal feedback controls. The application of this technique to an aircraft model shows close agreement between the exact solutions and the decoupled (or composite) solutions. The main advantage of the method is the considerable reduction in the overall computational requirements for the evaluation of optimal guidance and control laws. The significance of the results is that it can be used for real time, onboard simulation. A brief survey is also presented of digital flight systems.

  15. Tissue Characterization with Quantitative High-Resolution Magic Angle Spinning Chemical Exchange Saturation Transfer Z-Spectroscopy.

    PubMed

    Zhou, Iris Yuwen; Fuss, Taylor L; Igarashi, Takahiro; Jiang, Weiping; Zhou, Xin; Cheng, Leo L; Sun, Phillip Zhe

    2016-11-01

    Chemical exchange saturation transfer (CEST) provides sensitive magnetic resonance (MR) contrast for probing dilute compounds via exchangeable protons, serving as an emerging molecular imaging methodology. CEST Z-spectrum is often acquired by sweeping radiofrequency saturation around bulk water resonance, offset by offset, to detect CEST effects at characteristic chemical shift offsets, which requires prolonged acquisition time. Herein, combining high-resolution magic angle spinning (HRMAS) with concurrent application of gradient and rf saturation to achieve fast Z-spectral acquisition, we demonstrated the feasibility of fast quantitative HRMAS CEST Z-spectroscopy. The concept was validated with phantoms, which showed excellent agreement with results obtained from conventional HRMAS MR spectroscopy (MRS). We further utilized the HRMAS Z-spectroscopy for fast ex vivo quantification of ischemic injury with rodent brain tissues after ischemic stroke. This method allows rapid and quantitative CEST characterization of biological tissues and shows potential for a host of biomedical applications.

  16. Real-time monitoring of CO2 storage sites: Application to Illinois Basin-Decatur Project

    USGS Publications Warehouse

    Picard, G.; Berard, T.; Chabora, E.; Marsteller, S.; Greenberg, S.; Finley, R.J.; Rinck, U.; Greenaway, R.; Champagnon, C.; Davard, J.

    2011-01-01

    Optimization of carbon dioxide (CO2) storage operations for efficiency and safety requires use of monitoring techniques and implementation of control protocols. The monitoring techniques consist of permanent sensors and tools deployed for measurement campaigns. Large amounts of data are thus generated. These data must be managed and integrated for interpretation at different time scales. A fast interpretation loop involves combining continuous measurements from permanent sensors as they are collected to enable a rapid response to detected events; a slower loop requires combining large datasets gathered over longer operational periods from all techniques. The purpose of this paper is twofold. First, it presents an analysis of the monitoring objectives to be performed in the slow and fast interpretation loops. Second, it describes the implementation of the fast interpretation loop with a real-time monitoring system at the Illinois Basin-Decatur Project (IBDP) in Illinois, USA. ?? 2011 Published by Elsevier Ltd.

  17. A software framework for developing measurement applications under variable requirements.

    PubMed

    Arpaia, Pasquale; Buzio, Marco; Fiscarelli, Lucio; Inglese, Vitaliano

    2012-11-01

    A framework for easily developing software for measurement and test applications under highly and fast-varying requirements is proposed. The framework allows the software quality, in terms of flexibility, usability, and maintainability, to be maximized. Furthermore, the development effort is reduced and finalized, by relieving the test engineer of development details. The framework can be configured for satisfying a large set of measurement applications in a generic field for an industrial test division, a test laboratory, or a research center. As an experimental case study, the design, the implementation, and the assessment inside the application to a measurement scenario of magnet testing at the European Organization for Nuclear Research is reported.

  18. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

    PubMed

    Wang, Yonggang; Song, Yanfang; Xia, Yongyao

    2016-10-24

    Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

  19. SALUTE Grid Application using Message-Oriented Middleware

    NASA Astrophysics Data System (ADS)

    Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.

    2009-10-01

    Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.

  20. A new Lagrangian random choice method for steady two-dimensional supersonic/hypersonic flow

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Hui, W. H.

    1991-01-01

    Glimm's (1965) random choice method has been successfully applied to compute steady two-dimensional supersonic/hypersonic flow using a new Lagrangian formulation. The method is easy to program, fast to execute, yet it is very accurate and robust. It requires no grid generation, resolves slipline and shock discontinuities crisply, can handle boundary conditions most easily, and is applicable to hypersonic as well as supersonic flow. It represents an accurate and fast alternative to the existing Eulerian methods. Many computed examples are given.

  1. Fast steering mirror for laser communication

    NASA Astrophysics Data System (ADS)

    Langenbach, Harald; Schmid, Manfred

    2005-07-01

    Future multimedia satellites require communication at large bandwidth which can be achieved by means of optical communication links. TESAT Spacecom is currently developing a Laser Communication Terminal (LCT) for such applications under DLR contract. EADS Astrium is developing and building the mechanisms for Pointing, Acquisition and Tracking (PAT) of the laser beam between two Laser Communication Terminals. Based on this development work the development of mechanism H/W to be flown on TerraSar X is currently under way. After a short description of the general arrangement of the Mechanisms inside the LCT, the paper describes the design of the fast steering mirrors (FSM) reflecting the critical requirements and the solutions how to achieve them.

  2. Practice Guideline Recommendations on Perioperative Fasting: A Systematic Review.

    PubMed

    Lambert, Eva; Carey, Sharon

    2016-11-01

    Traditionally, perioperative fasting consisted of being nil by mouth (NBM) from midnight before surgery and fasting postoperatively until recovery of bowel function. These outdated practices persist despite emerging evidence revealing that excessive fasting results in negative outcomes and delayed recovery. Various evidence-based, multimodal, enhanced recovery protocols incorporating minimized perioperative fasting have arisen to improve patient outcomes and streamline recovery, but implementation remains limited. This article aims to review current fasting guidelines, assess their quality, summarize relevant recommendations, and identify gaps in evidence. A systematic literature search of Medline and CINAHL and a manual search of relevant websites identified guidelines containing suitable grading systems and fasting recommendations. Guideline quality was assessed using the Appraisal of Guidelines Research and Evaluation (AGREE) tool. Grading systems were standardized to the American Society for Parenteral and Enteral Nutrition format and recommendations summarized based on grading and guideline quality. Nineteen guidelines were included. Rigor of development scores ranged from 29%-95%, with only 8 guidelines explicitly declaring the use of systematic methodology. Applicability scores were lowest, averaging 32%. Ten recommendation types were extracted and summarized. Strong and consistent evidence exists for the minimization of perioperative fasting, for a 2-hour preoperative fast after clear fluids, and for early recommencement of oral food and fluid intake postoperatively. This article presents several high-level recommendations ready for immediate implementation, while poorly graded and inconsistent recommendations reveal key areas for future research. Meanwhile, guideline quality requires improvement, especially regarding rigor of development and applicability, through systematic methodology, reporting transparency, and implementation strategies. © 2015 American Society for Parenteral and Enteral Nutrition.

  3. Improved frequency/voltage converters for fast quartz crystal microbalance applications.

    PubMed

    Torres, R; García, J V; Arnau, A; Perrot, H; Kim, L To Thi; Gabrielli, C

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1 kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10 mVHz, for a frequency shift resolution of 0.1 Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5 to 10 MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  4. Improved frequency/voltage converters for fast quartz crystal microbalance applications

    NASA Astrophysics Data System (ADS)

    Torres, R.; García, J. V.; Arnau, A.; Perrot, H.; Kim, L. To Thi; Gabrielli, C.

    2008-04-01

    The monitoring of frequency changes in fast quartz crystal microbalance (QCM) applications is a real challenge in today's instrumentation. In these applications, such as ac electrogravimetry, small frequency shifts, in the order of tens of hertz, around the resonance of the sensor can occur up to a frequency modulation of 1kHz. These frequency changes have to be monitored very accurately both in magnitude and phase. Phase-locked loop techniques can be used for obtaining a high performance frequency/voltage converter which can provide reliable measurements. Sensitivity higher than 10mV/Hz, for a frequency shift resolution of 0.1Hz, with very low distortion in tracking both the magnitude and phase of the frequency variations around the resonance frequency of the sensor are required specifications. Moreover, the resonance frequency can vary in a broad frequency range from 5to10MHz in typical QCM sensors, which introduces an additional difficulty. A new frequency-voltage conversion system based on a double tuning analog-digital phase-locked loop is proposed. The reported electronic characterization and experimental results obtained with conducting polymers prove its reliability for ac-electrogravimetry measurements and, in general, for fast QCM applications.

  5. Application of Fast Multipole Methods to the NASA Fast Scattering Code

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Tinetti, Ana F.

    2008-01-01

    The NASA Fast Scattering Code (FSC) is a versatile noise prediction program designed to conduct aeroacoustic noise reduction studies. The equivalent source method is used to solve an exterior Helmholtz boundary value problem with an impedance type boundary condition. The solution process in FSC v2.0 requires direct manipulation of a large, dense system of linear equations, limiting the applicability of the code to small scales and/or moderate excitation frequencies. Recent advances in the use of Fast Multipole Methods (FMM) for solving scattering problems, coupled with sparse linear algebra techniques, suggest that a substantial reduction in computer resource utilization over conventional solution approaches can be obtained. Implementation of the single level FMM (SLFMM) and a variant of the Conjugate Gradient Method (CGM) into the FSC is discussed in this paper. The culmination of this effort, FSC v3.0, was used to generate solutions for three configurations of interest. Benchmarking against previously obtained simulations indicate that a twenty-fold reduction in computational memory and up to a four-fold reduction in computer time have been achieved on a single processor.

  6. Efficient Computation Of Manipulator Inertia Matrix

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Improved method for computation of manipulator inertia matrix developed, based on concept of spatial inertia of composite rigid body. Required for implementation of advanced dynamic-control schemes as well as dynamic simulation of manipulator motion. Motivated by increasing demand for fast algorithms to provide real-time control and simulation capability and, particularly, need for faster-than-real-time simulation capability, required in many anticipated space teleoperation applications.

  7. A Comparison of Fast-Spectrum and Moderated Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Poston, David I.

    2005-02-01

    The reactor neutron spectrum is one of the fundamental design choices for any fission reactor, but the implications of using a moderated spectrum are vastly different for space reactors as opposed to terrestrial reactors. In addition, the pros and cons of neutron spectra are significantly different among many of the envisioned space power applications. This paper begins with a discussion of the neutronic differences between fast-spectrum and moderated space reactors. This is followed by a discussion of the pros and cons of fast-spectrum and moderated space reactors separated into three areas—technical risk, performance, and safety/safeguards. A mix of quantitative and qualitative arguments is presented, and some conclusions generally can be made regarding neutron spectrum and space power application. In most cases, a fast-spectrum system appears to be the better alternative (mostly because of simplicity and higher potential operating temperatures); however, in some cases, such as a low-power (<100-kWt) surface reactor, a moderated spectrum could provide a better approach. In all cases, the determination of which spectrum is preferred is a strong function of the metrics provided by the "customer"— i.e., if a certain level of performance is required, it could provide a different solution than if a certain level of safeguards is required (which in some cases could produce a null solution). The views expressed in this document are those of the author and do not necessarily reflect agreement by the Government.

  8. Application of a fast sorting algorithm to the assignment of mass spectrometric cross-linking data.

    PubMed

    Petrotchenko, Evgeniy V; Borchers, Christoph H

    2014-09-01

    Cross-linking combined with MS involves enzymatic digestion of cross-linked proteins and identifying cross-linked peptides. Assignment of cross-linked peptide masses requires a search of all possible binary combinations of peptides from the cross-linked proteins' sequences, which becomes impractical with increasing complexity of the protein system and/or if digestion enzyme specificity is relaxed. Here, we describe the application of a fast sorting algorithm to search large sequence databases for cross-linked peptide assignments based on mass. This same algorithm has been used previously for assigning disulfide-bridged peptides (Choi et al., ), but has not previously been applied to cross-linking studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Design of an efficient framework for fast prototyping of customized human-computer interfaces and virtual environments for rehabilitation.

    PubMed

    Avola, Danilo; Spezialetti, Matteo; Placidi, Giuseppe

    2013-06-01

    Rehabilitation is often required after stroke, surgery, or degenerative diseases. It has to be specific for each patient and can be easily calibrated if assisted by human-computer interfaces and virtual reality. Recognition and tracking of different human body landmarks represent the basic features for the design of the next generation of human-computer interfaces. The most advanced systems for capturing human gestures are focused on vision-based techniques which, on the one hand, may require compromises from real-time and spatial precision and, on the other hand, ensure natural interaction experience. The integration of vision-based interfaces with thematic virtual environments encourages the development of novel applications and services regarding rehabilitation activities. The algorithmic processes involved during gesture recognition activity, as well as the characteristics of the virtual environments, can be developed with different levels of accuracy. This paper describes the architectural aspects of a framework supporting real-time vision-based gesture recognition and virtual environments for fast prototyping of customized exercises for rehabilitation purposes. The goal is to provide the therapist with a tool for fast implementation and modification of specific rehabilitation exercises for specific patients, during functional recovery. Pilot examples of designed applications and preliminary system evaluation are reported and discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. 75 FR 58417 - Agency Information Collection Activities: Application-Alternative Inspection Services (SENTRI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Activities: Application-- Alternative Inspection Services (SENTRI Application and FAST Commercial Driver... including the SENTRI Application (CBP Form 823S) and the FAST Commercial Driver Application (CBP Form 823F.... Title: Application--Alternative Inspection Services including the SENTRI application and the FAST...

  11. Hardware accelerator of convolution with exponential function for image processing applications

    NASA Astrophysics Data System (ADS)

    Panchenko, Ivan; Bucha, Victor

    2015-12-01

    In this paper we describe a Hardware Accelerator (HWA) for fast recursive approximation of separable convolution with exponential function. This filter can be used in many Image Processing (IP) applications, e.g. depth-dependent image blur, image enhancement and disparity estimation. We have adopted this filter RTL implementation to provide maximum throughput in constrains of required memory bandwidth and hardware resources to provide a power-efficient VLSI implementation.

  12. Software Models Impact Stresses

    NASA Technical Reports Server (NTRS)

    Hanshaw, Timothy C.; Roy, Dipankar; Toyooka, Mark

    1991-01-01

    Generalized Impact Stress Software designed to assist engineers in predicting stresses caused by variety of impacts. Program straightforward, simple to implement on personal computers, "user friendly", and handles variety of boundary conditions applied to struck body being analyzed. Applications include mathematical modeling of motions and transient stresses of spacecraft, analysis of slamming of piston, of fast valve shutoffs, and play of rotating bearing assembly. Provides fast and inexpensive analytical tool for analysis of stresses and reduces dependency on expensive impact tests. Written in FORTRAN 77. Requires use of commercial software package PLOT88.

  13. Investigation of fast initialization of spacecraft bubble memory systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  14. Fast-acting sprinkler system design considerations for propellant manufacture

    NASA Astrophysics Data System (ADS)

    Matthews, A. L.; Crable, J. M.; Kristoff, P. T.

    1984-08-01

    Fast-acting sprinkler systems for detection and suppression of fires in propellant operations, which require activation in the millisecond range in order to be effective, can be easily defeated unless particular attention is paid to design and maintenance details. Of primary consideration are detector selection and placement in processes to minimize the effect of environmental influences. Also important are nozzle placement, water flow density, water supply pressure, and pattern and sloping of piping. When all of these design criteria are properly implemented, water application can occur within 100 ms of fire detection.

  15. Growth of Acousto-Optic Crystals for Applications in Infrared Region of Spectrum

    DTIC Science & Technology

    2005-04-30

    Acousto - optic (AO) modulators, deflectors, filters offer convenience, reliability, compact size and fast speed in regulation of optical beams. So far...extremely low acousto - optic figure of merit, which automatically results in high requirements on driving electric power and poor diffraction efficiency. It

  16. Fast space-varying convolution using matrix source coding with applications to camera stray light reduction.

    PubMed

    Wei, Jianing; Bouman, Charles A; Allebach, Jan P

    2014-05-01

    Many imaging applications require the implementation of space-varying convolution for accurate restoration and reconstruction of images. Here, we use the term space-varying convolution to refer to linear operators whose impulse response has slow spatial variation. In addition, these space-varying convolution operators are often dense, so direct implementation of the convolution operator is typically computationally impractical. One such example is the problem of stray light reduction in digital cameras, which requires the implementation of a dense space-varying deconvolution operator. However, other inverse problems, such as iterative tomographic reconstruction, can also depend on the implementation of dense space-varying convolution. While space-invariant convolution can be efficiently implemented with the fast Fourier transform, this approach does not work for space-varying operators. So direct convolution is often the only option for implementing space-varying convolution. In this paper, we develop a general approach to the efficient implementation of space-varying convolution, and demonstrate its use in the application of stray light reduction. Our approach, which we call matrix source coding, is based on lossy source coding of the dense space-varying convolution matrix. Importantly, by coding the transformation matrix, we not only reduce the memory required to store it; we also dramatically reduce the computation required to implement matrix-vector products. Our algorithm is able to reduce computation by approximately factoring the dense space-varying convolution operator into a product of sparse transforms. Experimental results show that our method can dramatically reduce the computation required for stray light reduction while maintaining high accuracy.

  17. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids

    PubMed Central

    Hesford, Andrew J.; Waag, Robert C.

    2010-01-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased. PMID:20835366

  18. The fast multipole method and Fourier convolution for the solution of acoustic scattering on regular volumetric grids

    NASA Astrophysics Data System (ADS)

    Hesford, Andrew J.; Waag, Robert C.

    2010-10-01

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  19. The Fast Multipole Method and Fourier Convolution for the Solution of Acoustic Scattering on Regular Volumetric Grids.

    PubMed

    Hesford, Andrew J; Waag, Robert C

    2010-10-20

    The fast multipole method (FMM) is applied to the solution of large-scale, three-dimensional acoustic scattering problems involving inhomogeneous objects defined on a regular grid. The grid arrangement is especially well suited to applications in which the scattering geometry is not known a priori and is reconstructed on a regular grid using iterative inverse scattering algorithms or other imaging techniques. The regular structure of unknown scattering elements facilitates a dramatic reduction in the amount of storage and computation required for the FMM, both of which scale linearly with the number of scattering elements. In particular, the use of fast Fourier transforms to compute Green's function convolutions required for neighboring interactions lowers the often-significant cost of finest-level FMM computations and helps mitigate the dependence of FMM cost on finest-level box size. Numerical results demonstrate the efficiency of the composite method as the number of scattering elements in each finest-level box is increased.

  20. 75 FR 38821 - Agency Information Collection Activities: Application-Alternative Inspection Services (SENTRI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Activities: Application-- Alternative Inspection Services (SENTRI Application and FAST Commercial Driver... Form 823S) and the FAST Commercial Driver Application (CBP Form 823F). This request for comment is...: Application--Alternative Inspection Services including the SENTRI Application and the FAST Commercial Driver...

  1. Scalloping minimization in deep Si etching on Unaxis DSE tools

    NASA Astrophysics Data System (ADS)

    Lai, Shouliang; Johnson, Dave J.; Westerman, Russ J.; Nolan, John J.; Purser, David; Devre, Mike

    2003-01-01

    Sidewall smoothness is often a critical requirement for many MEMS devices, such as microfludic devices, chemical, biological and optical transducers, while fast silicon etch rate is another. For such applications, the time division multiplex (TDM) etch processes, so-called "Bosch" processes are widely employed. However, in the conventional TDM processes, rough sidewalls result due to scallop formation. To date, the amplitude of the scalloping has been directly linked to the silicon etch rate. At Unaxis USA Inc., we have developed a proprietary fast gas switching technique that is effective for scalloping minimization in deep silicon etching processes. In this technique, process cycle times can be reduced from several seconds to as little as a fraction of second. Scallop amplitudes can be reduced with shorter process cycles. More importantly, as the scallop amplitude is progressively reduced, the silicon etch rate can be maintained relatively constant at high values. An optimized experiment has shown that at etch rate in excess of 7 μm/min, scallops with length of 116 nm and depth of 35 nm were obtained. The fast gas switching approach offers an ideal manufacturing solution for MEMS applications where extremely smooth sidewall and fast etch rate are crucial.

  2. Dynamic Ureas with Fast and pH-Independent Hydrolytic Kinetics.

    PubMed

    Cai, Kaimin; Ying, Hanze; Cheng, Jianjun

    2018-05-23

    Low cost, high performance hydrolysable polymers are of great importance in biomedical applications and materials industries. While many applications require materials to have a degradation profile insensitive to external pH to achieve consistent release profiles under varying conditions, hydrolysable chemistry techniques developed so far have pH-dependent hydrolytic kinetics. This work reports the design and synthesis of a new type of hydrolysable polymer that has identical hydrolysis kinetics from pH 3 to 11. The unprecedented pH independent hydrolytic kinetics of the aryl ureas were shown to be related to the dynamic bond dissociation controlled hydrolysis mechanism; the resulting hindered poly(aryl urea) can be degraded with a hydrolysis half-life of 10 min in solution. More importantly, these fast degradable hindered aromatic polyureas can be easily prepared by addition polymerization from commercially available monomers and are resistant to hydrolysis in solid form for months under ambient storage conditions. The combined features of good stability in solid state and fast hydrolysis at various pH values is unprecedented in polyurea material, and will have implications for materials design and applications, such as sacrificial coatings and biomaterials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  4. Smaller, Lower-Power Fast-Neutron Scintillation Detectors

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish; Blaes, Brent

    2008-01-01

    Scintillation-based fast-neutron detectors that are smaller and less power-hungry than mainstream scintillation-based fast-neutron detectors are undergoing development. There are numerous applications for such detectors in monitoring fast-neutron fluxes from nuclear reactors, nuclear materials, and natural sources, both on Earth and in outer space. A particularly important terrestrial application for small, low-power, portable fast-neutron detectors lies in the requirement to scan for nuclear materials in cargo and baggage arriving at international transportation facilities. The present development of miniature, low-power scintillation-based fast-neutron detectors exploits recent advances in the fabrication of avalanche photodiodes (APDs). Basically, such a detector includes a plastic scintillator, typically between 300 and 400 m thick with very thin silver mirror coating on all its faces except the one bonded to an APD. All photons generated from scintillation are thus internally reflected and eventually directed to the APD. This design affords not only compactness but also tight optical coupling for utilization of a relatively large proportion of the scintillation light. The combination of this tight coupling and the avalanche-multiplication gain (typically between 750 and 1,000) of the APD is expected to have enough sensitivity to enable monitoring of a fast-neutron flux as small as 1,000 cm(exp -2)s(exp -1). Moreover, pulse-height analysis can be expected to provide information on the kinetic energies of incident neutrons. It has been estimated that a complete, fully developed fast-neutron detector of this type, would be characterized by linear dimensions of the order of 10 cm or less, a mass of no more than about 0.5 kg, and a power demand of no more than a few watts.

  5. Fast-SG: an alignment-free algorithm for hybrid assembly.

    PubMed

    Di Genova, Alex; Ruz, Gonzalo A; Sagot, Marie-France; Maass, Alejandro

    2018-05-01

    Long-read sequencing technologies are the ultimate solution for genome repeats, allowing near reference-level reconstructions of large genomes. However, long-read de novo assembly pipelines are computationally intense and require a considerable amount of coverage, thereby hindering their broad application to the assembly of large genomes. Alternatively, hybrid assembly methods that combine short- and long-read sequencing technologies can reduce the time and cost required to produce de novo assemblies of large genomes. Here, we propose a new method, called Fast-SG, that uses a new ultrafast alignment-free algorithm specifically designed for constructing a scaffolding graph using light-weight data structures. Fast-SG can construct the graph from either short or long reads. This allows the reuse of efficient algorithms designed for short-read data and permits the definition of novel modular hybrid assembly pipelines. Using comprehensive standard datasets and benchmarks, we show how Fast-SG outperforms the state-of-the-art short-read aligners when building the scaffoldinggraph and can be used to extract linking information from either raw or error-corrected long reads. We also show how a hybrid assembly approach using Fast-SG with shallow long-read coverage (5X) and moderate computational resources can produce long-range and accurate reconstructions of the genomes of Arabidopsis thaliana (Ler-0) and human (NA12878). Fast-SG opens a door to achieve accurate hybrid long-range reconstructions of large genomes with low effort, high portability, and low cost.

  6. Conditions Database for the Belle II Experiment

    NASA Astrophysics Data System (ADS)

    Wood, L.; Elsethagen, T.; Schram, M.; Stephan, E.

    2017-10-01

    The Belle II experiment at KEK is preparing for first collisions in 2017. Processing the large amounts of data that will be produced will require conditions data to be readily available to systems worldwide in a fast and efficient manner that is straightforward for both the user and maintainer. The Belle II conditions database was designed with a straightforward goal: make it as easily maintainable as possible. To this end, HEP-specific software tools were avoided as much as possible and industry standard tools used instead. HTTP REST services were selected as the application interface, which provide a high-level interface to users through the use of standard libraries such as curl. The application interface itself is written in Java and runs in an embedded Payara-Micro Java EE application server. Scalability at the application interface is provided by use of Hazelcast, an open source In-Memory Data Grid (IMDG) providing distributed in-memory computing and supporting the creation and clustering of new application interface instances as demand increases. The IMDG provides fast and efficient access to conditions data via in-memory caching.

  7. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  8. An exterior Poisson solver using fast direct methods and boundary integral equations with applications to nonlinear potential flow

    NASA Technical Reports Server (NTRS)

    Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.

    1986-01-01

    A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.

  9. How Fast Does a Building Fall?

    ERIC Educational Resources Information Center

    Denny, Mark

    2010-01-01

    In this paper, the time required for a tower block to collapse is calculated. The tower collapses progressively, with one floor falling onto the floor below, causing it to fall. The rate of collapse is found to be not much slower than freefall. The calculation is an engaging and relevant application of Newton's laws, suitable for undergraduate…

  10. High resolution frequency analysis techniques with application to the redshift experiment

    NASA Technical Reports Server (NTRS)

    Decher, R.; Teuber, D.

    1975-01-01

    High resolution frequency analysis methods, with application to the gravitational probe redshift experiment, are discussed. For this experiment a resolution of .00001 Hz is required to measure a slowly varying, low frequency signal of approximately 1 Hz. Major building blocks include fast Fourier transform, discrete Fourier transform, Lagrange interpolation, golden section search, and adaptive matched filter technique. Accuracy, resolution, and computer effort of these methods are investigated, including test runs on an IBM 360/65 computer.

  11. Floor Covering and Surface Identification for Assistive Mobile Robotic Real-Time Room Localization Application

    PubMed Central

    Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben

    2013-01-01

    Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification. PMID:24351647

  12. Floor covering and surface identification for assistive mobile robotic real-time room localization application.

    PubMed

    Gillham, Michael; Howells, Gareth; Spurgeon, Sarah; McElroy, Ben

    2013-12-17

    Assistive robotic applications require systems capable of interaction in the human world, a workspace which is highly dynamic and not always predictable. Mobile assistive devices face the additional and complex problem of when and if intervention should occur; therefore before any trajectory assistance is given, the robotic device must know where it is in real-time, without unnecessary disruption or delay to the user requirements. In this paper, we demonstrate a novel robust method for determining room identification from floor features in a real-time computational frame for autonomous and assistive robotics in the human environment. We utilize two inexpensive sensors: an optical mouse sensor for straightforward and rapid, texture or pattern sampling, and a four color photodiode light sensor for fast color determination. We show how data relating floor texture and color obtained from typical dynamic human environments, using these two sensors, compares favorably with data obtained from a standard webcam. We show that suitable data can be extracted from these two sensors at a rate 16 times faster than a standard webcam, and that these data are in a form which can be rapidly processed using readily available classification techniques, suitable for real-time system application. We achieved a 95% correct classification accuracy identifying 133 rooms' flooring from 35 classes, suitable for fast coarse global room localization application, boundary crossing detection, and additionally some degree of surface type identification.

  13. Deterministic Ethernet for Space Applications

    NASA Astrophysics Data System (ADS)

    Fidi, C.; Wolff, B.

    2015-09-01

    Typical spacecraft systems are distributed to be able to achieve the required reliability and availability targets of the mission. However the requirements on these systems are different for launchers, satellites, human space flight and exploration missions. Launchers require typically high reliability with very short mission times whereas satellites or space exploration missions require very high availability at very long mission times. Comparing a distributed system of launchers with satellites it shows very fast reaction times in launchers versus much slower once in satellite applications. Human space flight missions are maybe most challenging concerning reliability and availability since human lives are involved and the mission times can be very long e.g. ISS. Also the reaction times of these vehicles can get challenging during mission scenarios like landing or re-entry leading to very fast control loops. In these different applications more and more autonomous functions are required to fulfil the needs of current and future missions. This autonomously leads to new requirements with respect to increase performance, determinism, reliability and availability. On the other hand side the pressure on reducing costs of electronic components in space applications is increasing, leading to the use of more and more COTS components especially for launchers and LEO satellites. This requires a technology which is able to provide a cost competitive solution for both the high reliable and available deep-space as well as the low cost “new space” markets. Future spacecraft communication standards therefore have to be much more flexible, scalable and modular to be able to deal with these upcoming challenges. The only way to fulfill these requirements is, if they are based on open standards which are used cross industry leading to a reduction of the lifecycle costs and an increase in performance. The use of a communication network that fulfills these requirements will be essential for such spacecraft’s to allow the use in launcher, satellite, human space flight and exploration missions. Using one technology and the related infrastructure for these different applications will lead to a significant reduction of complexity and would moreover lead to significant savings in size weight and power while increasing the performance of the overall system. The paper focuses on the use of the TTEthernet technology for launchers, satellites and human spaceflight and will demonstrate the scalability of the technology for the different applications. The data used is derived from the ESA TRP 7594 on “Reliable High-Speed Data Bus/Network for Safety-Oriented Missions”.

  14. Pre-Licensing Evaluation of Legacy SFR Metallic Fuel Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yacout, A. M.; Billone, M. C.

    2016-09-16

    The US sodium cooled fast reactor (SFR) metallic fuel performance data that are of interest to advanced fast reactors applications, can be attributed mostly to the Integral Fast Reactor (IFR) program between 1984 and 1994. Metallic fuel data collected prior to the IFR program were associated with types of fuel that are not of interest to future advanced reactors deployment (e.g., previous U-Fissium alloy fuel). The IFR fuels data were collected from irradiation of U-Zr based fuel alloy, with and without Pu additions, and clad in different types of steels, including HT9, D9, and 316 stainless-steel. Different types of datamore » were generated during the program, and were based on the requirements associated with the DOE Advanced Liquid Metal Cooled Reactor (ALMR) program.« less

  15. Advanced space power PEM fuel cell systems

    NASA Technical Reports Server (NTRS)

    Vanderborgh, N. E.; Hedstrom, J.; Huff, J. R.

    1989-01-01

    A model showing mass and heat transfer in proton exchange membrane (PEM) single cells is presented. For space applications, stack operation requiring combined water and thermal management is needed. Advanced hardware designs able to combine these two techniques are available. Test results are shown for membrane materials which can operate with sufficiently fast diffusive water transport to sustain current densities of 300 ma per square centimeter. Higher power density levels are predicted to require active water removal.

  16. Development of a fusion approach selection tool

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Zeng, Y.

    2015-06-01

    During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.

  17. A new approach for fast indexing of hyperspectral image data for knowledge retrieval and mining

    NASA Astrophysics Data System (ADS)

    Clowers, Robert; Dua, Sumeet

    2005-11-01

    Multispectral sensors produce images with a few relatively broad wavelength bands. Hyperspectral remote sensors, on the other hand, collect image data simultaneously in dozens or hundreds of narrow and adjacent spectral bands. These measurements make it possible to derive a continuous spectrum for each image cell, generating an image cube across multiple spectral components. Hyperspectral imaging has sound applications in a variety of areas such as mineral exploration, hazardous waste remediation, mapping habitat, invasive vegetation, eco system monitoring, hazardous gas detection, mineral detection, soil degradation, and climate change. This image has a strong potential for transforming the imaging paradigms associated with several design and manufacturing processes. In this paper, we describe a novel approach for fast indexing of multi-dimensional hyperspectral image data, especially for data mining applications. The index exploits the spectral and spatial relationships embedded in these image sets. The index will be employed for knowledge retrieval applications that require fast information interpretation approaches. The index can also be deployed in real-time mission-critical domains, as it is shown to exhibit speed with high degrees of dimensionality associated with the data. The strength of this index in terms of degree of false dismissals and false alarms will also be demonstrated. The paper will highlight some common applications of this imaging computational paradigm and will conclude with directions for future improvement and investigation.

  18. Managing Algorithmic Skeleton Nesting Requirements in Realistic Image Processing Applications: The Case of the SKiPPER-II Parallel Programming Environment's Operating Model

    NASA Astrophysics Data System (ADS)

    Coudarcher, Rémi; Duculty, Florent; Serot, Jocelyn; Jurie, Frédéric; Derutin, Jean-Pierre; Dhome, Michel

    2005-12-01

    SKiPPER is a SKeleton-based Parallel Programming EnviRonment being developed since 1996 and running at LASMEA Laboratory, the Blaise-Pascal University, France. The main goal of the project was to demonstrate the applicability of skeleton-based parallel programming techniques to the fast prototyping of reactive vision applications. This paper deals with the special features embedded in the latest version of the project: algorithmic skeleton nesting capabilities and a fully dynamic operating model. Throughout the case study of a complete and realistic image processing application, in which we have pointed out the requirement for skeleton nesting, we are presenting the operating model of this feature. The work described here is one of the few reported experiments showing the application of skeleton nesting facilities for the parallelisation of a realistic application, especially in the area of image processing. The image processing application we have chosen is a 3D face-tracking algorithm from appearance.

  19. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series

    NASA Astrophysics Data System (ADS)

    Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth

    2017-12-01

    The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.

  20. A fast marching algorithm for the factored eikonal equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less

  1. Fast Responding Oxygen Sensor For Respiratorial Analysis

    NASA Astrophysics Data System (ADS)

    Karpf, Hellfried H.; Kroneis, H. W.; Marsoner, Hermann J.; Metzler, H.; Gravenstein, N.

    1990-02-01

    Breath-by-breath monitoring of the partial pressure of oxygen is the main interest for the development of a fast responding optical oxygen sensor. Monitoring the P02 finds its main interest in critical care, in artificial respiration, in breath by breath determination of respiratorial coefficients and in pulmonarial examinations. The requirements arising from these and similar applications are high precision, high long term stability, and time constants in the range of less than 0.1 sec. In order to cope with these requirements, we investigated different possibilities of fast P02-measurements by means of optical sensors based on fluorescence quenching. The experimental set up is simple: a rigid transparent layer is coated with a thin layer of an hydrophobic polymer which has a high permeability for oxygen. The oxygen sensitive indicator material is embedded into this polymer. An experimental set up showed time constants of 30 milliseconds. The lifetime is in the range of several months. Testing of our test equipment by an independent working group resulted in surprisingly good correlation with data obtained by mass spectroscopy.

  2. A “dry and wet hybrid” lithography technique for multilevel replication templates: Applications to microfluidic neuron culture and two-phase global mixing

    PubMed Central

    Paul, Debjani; Saias, Laure; Pedinotti, Jean-Cedric; Chabert, Max; Magnifico, Sebastien; Pallandre, Antoine; De Lambert, Bertrand; Houdayer, Claude; Brugg, Bernard; Peyrin, Jean-Michel; Viovy, Jean-Louis

    2011-01-01

    A broad range of microfluidic applications, ranging from cell culture to protein crystallization, requires multilevel devices with different heights and feature sizes (from micrometers to millimeters). While state-of-the-art direct-writing techniques have been developed for creating complex three-dimensional shapes, replication molding from a multilevel template is still the preferred method for fast prototyping of microfluidic devices in the laboratory. Here, we report on a “dry and wet hybrid” technique to fabricate multilevel replication molds by combining SU-8 lithography with a dry film resist (Ordyl). We show that the two lithography protocols are chemically compatible with each other. Finally, we demonstrate the hybrid technique in two different microfluidic applications: (1) a neuron culture device with compartmentalization of different elements of a neuron and (2) a two-phase (gas-liquid) global micromixer for fast mixing of a small amount of a viscous liquid into a larger volume of a less viscous liquid. PMID:21559239

  3. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  4. Improved-Bandwidth Transimpedance Amplifier

    NASA Technical Reports Server (NTRS)

    Chapsky, Jacob

    2009-01-01

    The widest available operational amplifier, with the best voltage and current noise characteristics, is considered for transimpedance amplifier (TIA) applications where wide bandwidth is required to handle fast rising input signals (as for time-of-flight measurement cases). The added amplifier inside the TIA feedback loop can be configured to have slightly lower voltage gain than the bandwidth reduction factor.

  5. Designing Collaborative E-Learning Environments Based upon Semantic Wiki: From Design Models to Application Scenarios

    ERIC Educational Resources Information Center

    Li, Yanyan; Dong, Mingkai; Huang, Ronghuai

    2011-01-01

    The knowledge society requires life-long learning and flexible learning environment that enables fast, just-in-time and relevant learning, aiding the development of communities of knowledge, linking learners and practitioners with experts. Based upon semantic wiki, a combination of wiki and Semantic Web technology, this paper designs and develops…

  6. Development of FAST.Farm: A New Multiphysics Engineering Tool for Wind Farm Design and Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    2017-01-01

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  7. Fast Dynamical Coupling Enhances Frequency Adaptation of Oscillators for Robotic Locomotion Control

    PubMed Central

    Nachstedt, Timo; Tetzlaff, Christian; Manoonpong, Poramate

    2017-01-01

    Rhythmic neural signals serve as basis of many brain processes, in particular of locomotion control and generation of rhythmic movements. It has been found that specific neural circuits, named central pattern generators (CPGs), are able to autonomously produce such rhythmic activities. In order to tune, shape and coordinate the produced rhythmic activity, CPGs require sensory feedback, i.e., external signals. Nonlinear oscillators are a standard model of CPGs and are used in various robotic applications. A special class of nonlinear oscillators are adaptive frequency oscillators (AFOs). AFOs are able to adapt their frequency toward the frequency of an external periodic signal and to keep this learned frequency once the external signal vanishes. AFOs have been successfully used, for instance, for resonant tuning of robotic locomotion control. However, the choice of parameters for a standard AFO is characterized by a trade-off between the speed of the adaptation and its precision and, additionally, is strongly dependent on the range of frequencies the AFO is confronted with. As a result, AFOs are typically tuned such that they require a comparably long time for their adaptation. To overcome the problem, here, we improve the standard AFO by introducing a novel adaptation mechanism based on dynamical coupling strengths. The dynamical adaptation mechanism enhances both the speed and precision of the frequency adaptation. In contrast to standard AFOs, in this system, the interplay of dynamics on short and long time scales enables fast as well as precise adaptation of the oscillator for a wide range of frequencies. Amongst others, a very natural implementation of this mechanism is in terms of neural networks. The proposed system enables robotic applications which require fast retuning of locomotion control in order to react to environmental changes or conditions. PMID:28377710

  8. Introduction to Remote Sensing Image Registration

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline

    2017-01-01

    For many applications, accurate and fast image registration of large amounts of multi-source data is the first necessary step before subsequent processing and integration. Image registration is defined by several steps and each step can be approached by various methods which all present diverse advantages and drawbacks depending on the type of data, the type of applications, the a prior information known about the data and the type of accuracy that is required. This paper will first present a general overview of remote sensing image registration and then will go over a few specific methods and their applications

  9. High performance MPEG-audio decoder IC

    NASA Technical Reports Server (NTRS)

    Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.

    1993-01-01

    The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.

  10. A Fast and Effective Pyridine-Free Method for the Determination of Hydroxyl Value of Hydroxyl-Terminated Polybutadiene and Other Hydroxy Compounds

    NASA Astrophysics Data System (ADS)

    Alex, Ancy Smitha; Kumar, Vijendra; Sekkar, V.; Bandyopadhyay, G. G.

    2017-07-01

    Hydroxyl-terminated polybutadiene (HTPB) is the workhorse propellant binder for launch vehicle and missile applications. Accurate determination of the hydroxyl value (OHV) of HTPB is crucial for tailoring the ultimate mechanical and ballistic properties of the propellant derived. This article describes a fast and effective methodology free of pyridine based on acetic anhydride, N-methyl imidazole, and toluene for the determination of OHV of nonpolar polymers like HTPB and other hydroxyl compounds. This method gives accurate and reproducible results comparable to standard methods and is superior to existing methods in terms of user friendliness, efficiency, and time requirement.

  11. A fast discrete S-transform for biomedical signal processing.

    PubMed

    Brown, Robert A; Frayne, Richard

    2008-01-01

    Determining the frequency content of a signal is a basic operation in signal and image processing. The S-transform provides both the true frequency and globally referenced phase measurements characteristic of the Fourier transform and also generates local spectra, as does the wavelet transform. Due to this combination, the S-transform has been successfully demonstrated in a variety of biomedical signal and image processing tasks. However, the computational demands of the S-transform have limited its application in medicine to this point in time. This abstract introduces the fast S-transform, a more efficient discrete implementation of the classic S-transform with dramatically reduced computational requirements.

  12. Data Acquisition System for Silicon Ultra Fast Cameras for Electron and Gamma Sources in Medical Applications (sucima Imager)

    NASA Astrophysics Data System (ADS)

    Czermak, A.; Zalewska, A.; Dulny, B.; Sowicki, B.; Jastrząb, M.; Nowak, L.

    2004-07-01

    The needs for real time monitoring of the hadrontherapy beam intensity and profile as well as requirements for the fast dosimetry using Monolithic Active Pixel Sensors (MAPS) forced the SUCIMA collaboration to the design of the unique Data Acquisition System (DAQ SUCIMA Imager). The DAQ system has been developed on one of the most advanced XILINX Field Programmable Gate Array chip - VERTEX II. The dedicated multifunctional electronic board for the detector's analogue signals capture, their parallel digital processing and final data compression as well as transmission through the high speed USB 2.0 port has been prototyped and tested.

  13. Carbon nanotubes and nanowires for biological sensing

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ng, Hou Tee; Chen, Hua

    2005-01-01

    This chapter reviews the recent development in biological sensing using nanotechnologies based on carbon nanotubes and various nanowires. These 1D materials have shown unique properties that are efficient in interacting with biomolecules of similar dimensions, i.e., on a nanometer scale. Various aspects including synthesis, materials properties, device fabrication, biofunctionalization, and biological sensing applications of such materials are reviewed. The potential of such integrated nanobiosensors in providing ultrahigh sensitivity, fast response, and high-degree multiplex detection, yet with minimum sample requirements is demonstrated. This chapter is intended to provide comprehensive updated information for people from a variety of backgrounds but with common interests in the fast-moving interdisciplinary field of nanobiotechnology.

  14. Fast Micromethod: Determination of DNA Integrity in Cell Suspensions and in Solid Tissues.

    PubMed

    Bihari, Nevenka

    2017-01-01

    The Fast Micromethod is a rapid and convenient microplate procedure for the determination of DNA integrity in cell suspensions and in solid tissues. The procedure is based on the ability of fluorochromes to preferentially interact with double-stranded DNA in alkaline conditions. Rapid sample lysis is followed by denaturation at high pH during 15 min. Only 30 ng of DNA from cell suspensions or tissue homogenates per single well are required for the analyses. The whole analysis is performed within 3 h or less (for one 96-well microplate).The Fast Micromethod is broadly used in biology and medicine. Its applications range from environmental pollution tests in marine invertebrates to the analysis of biopsy samples in cancer patients to detect DNA alterations caused by irradiation or chemotherapy.The procedure presented here describes the Fast Micromethod applied for the determination of DNA integrity in cell suspensions (HeLa cells) and solid tissues (mussel gills).

  15. INFFTM: Fast evaluation of 3d Fourier series in MATLAB with an application to quantum vortex reconnections

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Zuccher, Simone

    2017-04-01

    Although Fourier series approximation is ubiquitous in computational physics owing to the Fast Fourier Transform (FFT) algorithm, efficient techniques for the fast evaluation of a three-dimensional truncated Fourier series at a set of arbitrary points are quite rare, especially in MATLAB language. Here we employ the Nonequispaced Fast Fourier Transform (NFFT, by J. Keiner, S. Kunis, and D. Potts), a C library designed for this purpose, and provide a Matlab® and GNU Octave interface that makes NFFT easily available to the Numerical Analysis community. We test the effectiveness of our package in the framework of quantum vortex reconnections, where pseudospectral Fourier methods are commonly used and local high resolution is required in the post-processing stage. We show that the efficient evaluation of a truncated Fourier series at arbitrary points provides excellent results at a computational cost much smaller than carrying out a numerical simulation of the problem on a sufficiently fine regular grid that can reproduce comparable details of the reconnecting vortices.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonkman, Jason; Annoni, Jennifer; Hayman, Greg

    This paper presents the development of FAST.Farm, a new multiphysics tool applicable to engineering problems in research and industry involving wind farm performance and cost optimization that is needed to address the current underperformance, failures, and expenses plaguing the wind industry. Achieving wind cost-of-energy targets - which requires improvements in wind farm performance and reliability, together with reduced uncertainty and expenditures - has been eluded by the complicated nature of the wind farm design problem, especially the sophisticated interaction between atmospheric phenomena and wake dynamics and array effects. FAST.Farm aims to balance the need for accurate modeling of the relevantmore » physics for predicting power performance and loads while maintaining low computational cost to support a highly iterative and probabilistic design process and system-wide optimization. FAST.Farm makes use of FAST to model the aero-hydro-servo-elastics of distinct turbines in the wind farm, and it is based on some of the principles of the Dynamic Wake Meandering (DWM) model, but avoids many of the limitations of existing DWM implementations.« less

  17. A laser-induced repetitive fast neutron source applied for gold activation analysis

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 105 n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He4 nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T3.

  18. A laser-induced repetitive fast neutron source applied for gold activation analysis.

    PubMed

    Lee, Sungman; Park, Sangsoon; Lee, Kitae; Cha, Hyungki

    2012-12-01

    A laser-induced repetitively operated fast neutron source was developed for applications in laser-driven nuclear physics research. The developed neutron source, which has a neutron yield of approximately 4 × 10(5) n/pulse and can be operated up to a pulse repetition rate of 10 Hz, was applied for a gold activation analysis. Relatively strong delayed gamma spectra of the activated gold were measured at 333 keV and 355 keV, and proved the possibility of the neutron source for activation analyses. In addition, the nuclear reactions responsible for the measured gamma spectra of gold were elucidated by the 14 MeV fast neutrons resulting from the D(t,n)He(4) nuclear reaction, for which the required tritium originated from the primary fusion reaction, D(d,p)T(3).

  19. A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities.

    PubMed

    Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S

    2018-05-25

    Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  20. Advanced aerosense display interfaces

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Meyer, Frederick M.

    1998-09-01

    High-resolution display technologies are being developed to meet the ever-increasing demand for realistic detail. The requirement for evermore visual information exceeds the capacity of fielded aerospace display interfaces. In this paper we begin an exploration of display interfaces and evolving aerospace requirements. Current and evolving standards for avionics, commercial, and flat panel displays are summarized and compared to near term goals for military and aerospace applications. Aerospace and military applications prior to 2005 up to UXGA and digital HDTV resolution can be met by using commercial interface standard developments. Advanced aerospace requirements require yet higher resolutions (2560 X 2048 color pixels, 5120 X 4096 color pixels at 85 Hz, etc.) and necessitate the initiation of discussion herein of an 'ultra digital interface standard (UDIS)' which includes 'smart interface' features such as large memory and blazingly fast resizing microcomputer. Interface capacity, IT, increased about 105 from 1973 to 1998; 102 more is needed for UDIS.

  1. Flow visualization by mobile phone cameras

    NASA Astrophysics Data System (ADS)

    Cierpka, Christian; Hain, Rainer; Buchmann, Nicolas A.

    2016-06-01

    Mobile smart phones were completely changing people's communication within the last ten years. However, these devices do not only offer communication through different channels but also devices and applications for fun and recreation. In this respect, mobile phone cameras include now relatively fast (up to 240 Hz) cameras to capture high-speed videos of sport events or other fast processes. The article therefore explores the possibility to make use of this development and the wide spread availability of these cameras in the terms of velocity measurements for industrial or technical applications and fluid dynamics education in high schools and at universities. The requirements for a simplistic PIV (particle image velocimetry) system are discussed. A model experiment of a free water jet was used to prove the concept and shed some light on the achievable quality and determine bottle necks by comparing the results obtained with a mobile phone camera with data taken by a high-speed camera suited for scientific experiments.

  2. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    PubMed

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Fast image interpolation for motion estimation using graphics hardware

    NASA Astrophysics Data System (ADS)

    Kelly, Francis; Kokaram, Anil

    2004-05-01

    Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.

  4. Fast cooldown coaxial pulse tube microcooler

    NASA Astrophysics Data System (ADS)

    Nast, T.; Olson, J. R.; Champagne, P.; Roth, E.; Kaldas, G.; Saito, E.; Loung, V.; McCay, B. S.; Kenton, A. C.; Dobbins, C. L.

    2016-05-01

    We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of ~300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes-- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.

  5. Fast cool-down coaxial pulse tube microcooler

    NASA Astrophysics Data System (ADS)

    Nast, T.; Olson, J. R.; Champagne, P.; Roth, E.; Kaldas, G.; Saito, E.; Loung, V.; McCay, B. S.; Kenton, A. C.; Dobbins, C. L.

    2016-09-01

    We report the development and initial testing of the Lockheed Martin first-article, single-stage, compact, coaxial, Fast Cooldown Pulse Tube Microcryocooler (FC-PTM). The new cryocooler supports cooling requirements for emerging large, high operating temperature (105-150K) infrared focal plane array sensors with nominal cooling loads of 300 mW @105K @293K ambient. This is a sequel development that builds on our inline and coaxial pulse tube microcryocoolers reported at CEC 20137, ICC188,9, and CEC201510. The new FC-PTM and the prior units all share our long life space technology attributes, which typically have 10 year life requirements1. The new prototype microcryocooler builds on the previous development by incorporating cold head design improvements in two key areas: 1) reduced cool-down time and 2) novel repackaging that greatly reduces envelope. The new coldhead and Dewar were significantly redesigned from the earlier versions in order to achieve a cooldown time of 2-3 minutes- a projected requirement for tactical applications. A design approach was devised to reduce the cold head length from 115mm to 55mm, while at the same time reducing cooldown time. We present new FC-PTM performance test measurements with comparisons to our previous pulse-tube microcryocooler measurements and design predictions. The FC-PTM exhibits attractive small size, volume, weight, power and cost (SWaP-C) features with sufficient cooling capacity over required ambient conditions that apply to an increasing variety of space and tactical applications.

  6. Eddy covariance measurements with a new fast-response, enclosed-path analyzer: Spectral characteristics and cross-system comparisons

    Treesearch

    K. Novick; J. Walker; W.S. Chan; A. Schmidt; C. Sobek; J.M. Vose

    2013-01-01

    A new class of enclosed path gas analyzers suitable for eddy covariance applications combines the advantages of traditional closed-path systems (small density corrections, good performance in poor weather) and open-path systems (good spectral response, low power requirements), and permits estimates of instantaneous gas mixing ratio. Here, the extent to which these...

  7. Mobility and Cloud: Operating in Intermittent, Austere Network Conditions

    DTIC Science & Technology

    2014-09-01

    consume information, and are connected to cloud-based servers over wired or wireless network connections. For mobile clients, this connection, by...near future. In addition to intermittent connectivity issues, many wireless networks introduce additional delay due to excessive buffering. This can...requirements, commercial cloud applications have grown at a fast rate. Similar to other mobile systems, navy ships connected over wireless networks

  8. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    PubMed

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  9. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    PubMed Central

    Díez, Jorge A.; Catalán, José M.; Blanco, Andrea; García-Perez, José V.; Badesa, Francisco J.

    2018-01-01

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range. PMID:29414861

  10. SVGA and XGA active matrix microdisplays for head-mounted applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Bolotski, Michael; Brown, Imani L.

    2000-03-01

    The MicroDisplay Corporation's liquid crystal on silicon (LCOS) display devices are based on the union of several technologies with the extreme integration capability of conventionally fabricated CMOS substrates. The fast liquid crystal operation modes and new scalable high-performance pixel addressing architectures presented in this paper enable substantially improved color, contrast, and brightness while still satisfying the optical, packaging, and power requirements of portable applications. The entire suite of MicroDisplay's technologies was devised to create a line of mixed-signal application-specific integrated circuits (ASICs) in single-chip display systems. Mixed-signal circuits can integrate computing, memory, and communication circuitry on the same substrate as the display drivers and pixel array for a multifunctional complete system-on-a-chip. System-on-a-chip benefits also include reduced head supported weight requirements through the elimination of off-chip drive electronics.

  11. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  12. The application of the unmanned aerial vehicle remote sensing technology in the FAST project construction

    NASA Astrophysics Data System (ADS)

    Zhu, Boqin

    2015-08-01

    The purpose of using unmanned aerial vehicle (UAV) remote sensing application in Five-hundred-meter aperture spherical telescope (FAST) project is to dynamically record the construction process with high resolution image, monitor the environmental impact, and provide services for local environmental protection and the reserve immigrants. This paper introduces the use of UAV remote sensing system and the course design and implementation for the FAST site. Through the analysis of the time series data, we found that: (1) since the year 2012, the project has been widely carried out; (2) till 2013, the internal project begun to take shape;(3) engineering excavation scope was kept stable in 2014, and the initial scale of the FAST engineering construction has emerged as in the meantime, the vegetation recovery went well on the bare soil area; (4) in 2015, none environmental problems caused by engineering construction and other engineering geological disaster were found in the work area through the image interpretation of UAV images. This paper also suggested that the UAV technology need some improvements to fulfill the requirements of surveying and mapping specification., including a new data acquisition and processing measures assigned with the background of highly diverse elevation, usage of telephoto camera, hierarchical photography with different flying height, and adjustment with terrain using the joint empty three settlement method.

  13. Optimization of a HOT LWIR HgCdTe Photodiode for Fast Response and High Detectivity in Zero-Bias Operation Mode

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Kębłowski, A.; Madejczyk, P.; Martyniuk, P.; Piotrowski, J.; Gawron, W.; Grodecki, K.; Jóźwikowski, K.; Rutkowski, J.

    2017-10-01

    Fast response is an important property of infrared detectors for many applications. Currently, high-temperature long-wavelength infrared HgCdTe heterostructure photodiodes exhibit subnanosecond time constants while operating under reverse bias. However, nonequilibrium devices exhibit excessive low-frequency 1/ f noise that extends up to MHz range, representing a severe obstacle to their widespread application. Present efforts are focused on zero-bias operation of photodiodes. Unfortunately, the time constant of unbiased photodiodes is still at the level of several nanoseconds. We present herein a theoretical investigation of device design for improved response time and detectivity of long-wavelength infrared HgCdTe photodiodes operating at 230 K in zero-bias mode. The calculation results show that highly doped p-type HgCdTe is the absorber material of choice for fast photodiodes due to its high electron diffusion coefficient. The detectivity of such a device can also be optimized by using absorber doping of N A = 1 × 1017 cm-3. Reduction of the thickness is yet another approach to improve the device response. Time constant below 1 ns is achieved for an unbiased photodiode with absorber thickness below 4 μm. A tradeoff between the contradictory requirements of achieving high detectivity and fast response time is expected in an optically immersed photodiode with very small active area.

  14. High H⁻ ionic conductivity in barium hydride.

    PubMed

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  15. FAST (Faceted Application of Subject Terminology) Users: Summary and Case Studies

    ERIC Educational Resources Information Center

    Mixter, Jeffrey; Childress, Eric R.

    2013-01-01

    Over the past ten years, various organizations, both public and private, have expressed interest in implementing the Faceted Application of Subject Terminology (FAST) in their cataloging workflows. As interest in FAST has grown, so too has interest in knowing how FAST is being used and by whom. Since 2002 eighteen institutions in six countries…

  16. A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications.

    PubMed

    Serra, M; Pereiro, I; Yamada, A; Viovy, J-L; Descroix, S; Ferraro, D

    2017-02-14

    The sealing of microfluidic devices remains a complex and time-consuming process requiring specific equipment and protocols: a universal method is thus highly desirable. We propose here the use of a commercially available sealing tape as a robust, versatile, reversible solution, compatible with cell and molecular biology protocols, and requiring only the application of manually achievable pressures. The performance of the seal was tested with regards to the most commonly used chip materials. For most materials, the bonding resisted 5 bars at room temperature and 1 bar at 95 °C. This method should find numerous uses, ranging from fast prototyping in the laboratory to implementation in low technology environments or industrial production.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.

    Cosmological perturbation theory is a powerful tool to predict the statistics of large-scale structure in the weakly non-linear regime, but even at 1-loop order it results in computationally expensive mode-coupling integrals. Here we present a fast algorithm for computing 1-loop power spectra of quantities that depend on the observer's orientation, thereby generalizing the FAST-PT framework (McEwen et al., 2016) that was originally developed for scalars such as the matter density. This algorithm works for an arbitrary input power spectrum and substantially reduces the time required for numerical evaluation. We apply the algorithm to four examples: intrinsic alignments of galaxies inmore » the tidal torque model; the Ostriker-Vishniac effect; the secondary CMB polarization due to baryon flows; and the 1-loop matter power spectrum in redshift space. Code implementing this algorithm and these applications is publicly available at https://github.com/JoeMcEwen/FAST-PT.« less

  18. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere

    NASA Technical Reports Server (NTRS)

    Gorski, K. M.; Hivon, Eric; Banday, A. J.; Wandelt, Benjamin D.; Hansen, Frode K.; Reinecke, Mstvos; Bartelmann, Matthia

    2005-01-01

    HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.

  19. Modelling and Simulation on Multibody Dynamics for Vehicular Cold Launch Systems Based on Subsystem Synthesis Method

    NASA Astrophysics Data System (ADS)

    Panyun, YAN; Guozhu, LIANG; Yongzhi, LU; Zhihui, QI; Xingdou, GAO

    2017-12-01

    The fast simulation of the vehicular cold launch system (VCLS) in the launch process is an essential requirement for practical engineering applications. In particular, a general and fast simulation model of the VCLS will help the designer to obtain the optimum scheme in the initial design phase. For these purposes, a system-level fast simulation model was established for the VCLS based on the subsystem synthesis method. Moreover, a comparison of the load of a seven-axis VCLS on the rigid ground through both theoretical calculations and experiments was carried out. It was found that the error of the load of the rear left outrigger is less than 7.1%, and the error of the total load of all the outriggers is less than 2.8%. Moreover, time taken for completion of the simulation model is only 9.5 min, which is 5% of the time taken by conventional algorithms.

  20. 46 CFR 15.404 - Requirements for serving onboard a vessel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... rescue boats other than fast rescue boats (PSC). (f) Lifeboatman-limited. Every person assigned duties... boats other than lifeboats and fast rescue boats—limited (PSC—limited). (g) Fast rescue boats. Every person engaged or employed in a position requiring proficiency in fast rescue boats must hold an...

  1. Applications of variable focus liquid lenses for curvature wave-front sensors in astronomy

    NASA Astrophysics Data System (ADS)

    Fuentes-Fernández, J.; Cuevas, S.; Alvarez-Nuñez, L. C.; Watson, A. M.

    2014-08-01

    Curvature wavefront sensors obtain the wave-front aberrations from two defocused intensity images at each side of the pupil plane. Typically, when high modulation speeds are required, as it is the case with Adaptive Optics, that defocusing is done with a fast vibrating membrane mirror. We propose an alternative defocusing mechanism based on an electrowetting variable focus liquid lens. The use of such lenses may perform the required focus modulation without the need of extra moving parts, reducing the overall size of the system.

  2. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications

    NASA Astrophysics Data System (ADS)

    Mu, Jiuke; Hou, Chengyi; Zhu, Bingjie; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong

    2015-03-01

    Mechanical actuators driven by water that respond to multiple stimuli, exhibit fast responses and large deformations, and generate high stress have potential in artificial muscles, motors, and generators. Meeting all these requirements in a single device remains a challenge. We report a graphene monolayer paper that undergoes reversible deformation. Its graphene oxide cells wrinkle and extend in response to water desorption and absorption, respectively. Its fast (~0.3 s), powerful (>100 MPa output stress, 7.5 × 105 N kg-1 unit mass force), and controllable actuation can be triggered by moisture, heat, and light. The graphene monolayer paper has potential in artificial muscles, robotic hands, and electromagnetic-free generators.

  3. Energy-resolved fast neutron resonance radiography at CSNS

    NASA Astrophysics Data System (ADS)

    Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng

    2018-05-01

    The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.

  4. Electrocoagulation improving bone cement use in middle-ear surgery: short-term and middle-term results.

    PubMed

    Galy-Bernadoy, C; Akkari, M; Mondain, M; Uziel, A; Venail, F

    2016-12-01

    Bone cement is used for ossicular chain repair and revision stapes surgery. Its efficient use requires cautious removal of mucosa from the ossicles. This paper reports a technique for easy, fast and safe removal of this mucosa prior to cement application. It consists of the application of monopolar electrocoagulation on the ossicles prior to bone cement application. The outcomes of six cases of revision stapes surgery and seven cases of partial ossiculoplasty, conducted between 2007 and 2012 using this new technique, were evaluated. Intra-operative reports and audiometric data were collected. During the last assessment, reconstruction using bone cement resulted in mean post-operative air-bone gaps of 4.1 ± 6.5 dB in revision stapes surgery cases and 5.7 ± 5.5 dB in partial ossiculoplasty cases, reflecting a significant hearing improvement (p = 0.03). No complications were observed. Electrocoagulation allows the removal of mucosa from the ossicles in an easy, fast and safe manner, enabling the use of bone cement for ossicular chain reconstruction.

  5. Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications

    PubMed Central

    Gabrielli, A.

    2014-01-01

    Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588

  6. GPU applications for data processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vladymyrov, Mykhailo, E-mail: mykhailo.vladymyrov@cern.ch; Aleksandrov, Andrey; INFN sezione di Napoli, I-80125 Napoli

    2015-12-31

    Modern experiments that use nuclear photoemulsion imply fast and efficient data acquisition from the emulsion can be performed. The new approaches in developing scanning systems require real-time processing of large amount of data. Methods that use Graphical Processing Unit (GPU) computing power for emulsion data processing are presented here. It is shown how the GPU-accelerated emulsion processing helped us to rise the scanning speed by factor of nine.

  7. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis

    DOE PAGES

    Ruffing, Anne M.; Jensen, Travis J.; Strickland, Lucas M.

    2016-11-10

    Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. Here, this study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis.

  8. Genetic tools for advancement of Synechococcus sp. PCC 7002 as a cyanobacterial chassis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruffing, Anne M.; Jensen, Travis J.; Strickland, Lucas M.

    Successful implementation of modified cyanobacteria as hosts for industrial applications requires the development of a cyanobacterial chassis. The cyanobacterium Synechococcus sp. PCC 7002 embodies key attributes for an industrial host, including a fast growth rate and high salt, light, and temperature tolerances. Here, this study addresses key limitations in the advancement of Synechococcus sp. PCC 7002 as an industrial chassis.

  9. Fast and Focused: Accelerated Degree Programs Keep Students Locked in on Learning. Lumina Foundation Focus™. Fall 2013

    ERIC Educational Resources Information Center

    Giegerich, Steve

    2013-01-01

    Employers point to a large and growing "skills gap," saying thousands of jobs are already going unfilled because applicants lack the skills and knowledge they need. Forecasters say that, by the end of this decade, two-thirds of all jobs will require some form of high-quality postsecondary credential such as a degree or certificate. The…

  10. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    PubMed

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language (VHDL) and validated using an Field-Programmable Gate Array (FPGA) implementation.

  11. Fasting launches CRTC to facilitate long-term memory formation in Drosophila.

    PubMed

    Hirano, Yukinori; Masuda, Tomoko; Naganos, Shintaro; Matsuno, Motomi; Ueno, Kohei; Miyashita, Tomoyuki; Horiuchi, Junjiro; Saitoe, Minoru

    2013-01-25

    Canonical aversive long-term memory (LTM) formation in Drosophila requires multiple spaced trainings, whereas appetitive LTM can be formed after a single training. Appetitive LTM requires fasting prior to training, which increases motivation for food intake. However, we found that fasting facilitated LTM formation in general; aversive LTM formation also occurred after single-cycle training when mild fasting was applied before training. Both fasting-dependent LTM (fLTM) and spaced training-dependent LTM (spLTM) required protein synthesis and cyclic adenosine monophosphate response element-binding protein (CREB) activity. However, spLTM required CREB activity in two neural populations--mushroom body and DAL neurons--whereas fLTM required CREB activity only in mushroom body neurons. fLTM uses the CREB coactivator CRTC, whereas spLTM uses the coactivator CBP. Thus, flies use distinct LTM machinery depending on their hunger state.

  12. User-friendly InSAR Data Products: Fast and Simple Timeseries (FAST) Processing

    NASA Astrophysics Data System (ADS)

    Zebker, H. A.

    2017-12-01

    Interferometric Synthetic Aperture Radar (InSAR) methods provide high resolution maps of surface deformation applicable to many scientific, engineering and management studies. Despite its utility, the specialized skills and computer resources required for InSAR analysis remain as barriers for truly widespread use of the technique. Reduction of radar scenes to maps of temporal deformation evolution requires not only detailed metadata describing the exact radar and surface acquisition geometries, but also a software package that can combine these for the specific scenes of interest. Furthermore, the radar range-Doppler radar coordinate system itself is confusing, so that many users find it hard to incorporate even useful products in their customary analyses. And finally, the sheer data volume needed to represent interferogram time series makes InSAR analysis challenging for many analysis systems. We show here that it is possible to deliver radar data products to users that address all of these difficulties, so that the data acquired by large, modern satellite systems are ready to use in more natural coordinates, without requiring further processing, and in as small volume as possible.

  13. Ti-Sb-Te alloy: a candidate for fast and long-life phase-change memory.

    PubMed

    Xia, Mengjiao; Zhu, Min; Wang, Yuchan; Song, Zhitang; Rao, Feng; Wu, Liangcai; Cheng, Yan; Song, Sannian

    2015-04-15

    Phase-change memory (PCM) has great potential for numerous attractive applications on the premise of its high-device performances, which still need to be improved by employing a material with good overall phase-change properties. In respect to fast speed and high endurance, the Ti-Sb-Te alloy seems to be a promising candidate. Here, Ti-doped Sb2Te3 (TST) materials with different Ti concentrations have been systematically studied with the goal of finding the most suitable composition for PCM applications. The thermal stability of TST is improved dramatically with increasing Ti content. The small density change of T0.32Sb2Te3 (2.24%), further reduced to 1.37% for T0.56Sb2Te3, would greatly avoid the voids generated at phase-change layer/electrode interface in a PCM device. Meanwhile, the exponentially diminished grain size (from ∼200 nm to ∼12 nm), resulting from doping more and more Ti, enhances the adhesion between phase-change film and substrate. Tests of TST-based PCM cells have demonstrated a fast switching rate of ∼10 ns. Furthermore, because of the lower thermal conductivities of TST materials, compared with Sb2Te3-based PCM cells, T0.32Sb2Te3-based ones exhibit lower required pulse voltages for Reset operation, which largely decreases by ∼50% for T0.43Sb2Te3-based ones. Nevertheless, the operation voltages for T0.56Sb2Te3-based cells dramatically increase, which may be due to the phase separation after doping excessive Ti. Finally, considering the decreased resistance ratio, TixSb2Te3 alloy with x around 0.43 is proved to be a highly promising candidate for fast and long-life PCM applications.

  14. Research on the Application of Fast-steering Mirror in Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.

    2017-07-01

    For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.

  15. How to design 13C para-hydrogen-induced polarization experiments for MRI applications.

    PubMed

    Reineri, Francesca; Viale, Alessandra; Dastrù, Walter; Gobetto, Roberto; Aime, Silvio

    2011-01-01

    The application of hyperpolarization techniques for MRI purposes is gathering increasing attention, especially for nuclei such as (13)C or (129)Xe. Among the different proposed methods, ParaHydrogen Induced Polarization requires relatively cheap equipment. The setup of an MRI experiment by means of parahydrogen requires the application of skills and methodologies that derive from different fields of knowledge. The basic theory and a practical insight of this method are presented here. Parahydrogenation of alkynes, having a labelled (13)CO group adjacent to the triple bond, catalyzed by Rh(I) complexes containing a chelating phosphine, represents the best choice for producing and maintaining high heteronuclear polarization effect. In order to transform anti-phase into in-phase (net) (13)C polarization for MRI application it is necessary to set up the described magnetic field cycle procedure. In vitro and in vivo images have been acquired using fast imaging sequences (RARE and trueFISP). Copyright © 2010 John Wiley & Sons, Ltd.

  16. Fast, Large-Area, Wide-Bandgap UV Photodetector for Cherenkov Light Detection

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.

    2013-01-01

    Due to limited resources available for power and space for payloads, miniaturizing and integrating instrumentation is a high priority for addressing the challenges of manned and unmanned deep space missions to high Earth orbit (HEO), near Earth objects (NEOs), Lunar and Martian orbits and surfaces, and outer planetary systems, as well as improvements to high-altitude aircraft safety. New, robust, and compact detectors allow future instrumentation packages more options in satisfying specific mission goals. A solid-state ultraviolet (UV) detector was developed with a theoretical fast response time and large detection area intended for application to Cherenkov detectors. The detector is based on the wide-bandgap semiconductor zinc oxide (ZnO), which in a bridge circuit can detect small, fast pulses of UV light like those required for Cherenkov detectors. The goal is to replace the role of photomultiplier tubes in Cherenkov detectors with these solid-state devices, saving on size, weight, and required power. For improving detection geometry, a spherical detector to measure high atomic number and energy (HZE) ions from any direction has been patented as part of a larger space radiation detector system. The detector will require the development of solid-state UV photodetectors fast enough (2 ns response time or better) to detect the shockwave of Cherenkov light emitted as the ions pass through a quartz, sapphire, or acrylic ball. The detector must be small enough to fit in the detector system structure, but have an active area large enough to capture enough Cherenkov light from the sphere. The detector is fabricated on bulk single-crystal undoped ZnO. Inter - digitated finger electrodes and contact pads are patterned via photolithography, and formed by sputtered metal of silver, platinum, or other high-conductivity metal.

  17. Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.

    2012-01-01

    Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.

  18. Experimental and numerical investigation of the Fast-SAGD process

    NASA Astrophysics Data System (ADS)

    Shin, Hyundon

    The SAGD process has been tested in the field, and is now in a commercial stage in Western Canadian oil sands areas. The Fast-SAGD method can partly solve the drilling difficulty and reduce costs in a SAGD operation requiring paired parallel wells one above the other. This method also enhances the thermal efficiency in the reservoir. In this research, the reservoir parameters and operating conditions for the SAGD and Fast-SAGD processes are investigated by numerical simulation in the three Alberta oil sands areas. Scaled physical model experiments, which are operated by an automated process control system, are conducted under high temperature and high pressure conditions. The results of the study indicate that the shallow Athabasca-type reservoir, which is thick with high permeability (high kxh), is a good candidate for SAGD application, whereas Cold Lake- and Peace River-type reservoirs, which are thin with low permeability, are not as good candidates for conventional SAGD implementation. The simulation results indicate improved energy efficiency and productivity in most cases for the Fast-SAGD process; in those cases, the project economics were enhanced compared to the SAGD process. Both Cold Lake- and Peace River-type reservoirs are good candidates for a Fast-SAGD application rather than a conventional SAGD application. This new process demonstrates improved efficiency and lower costs for extracting heavy oil from these important reservoirs. A new economic indicator, called simple thermal efficiency parameter (STEP), was developed and validated to evaluate the performance of a SAGD project. STEP is based on cumulative steam-oil ratio (CSOR), calendar day oil rate (CDOR) and recovery factor (RF) for the time prior to the steam-oil ratio (SOR) attaining 4. STEP can be used as a financial metric quantitatively as well as qualitatively for this type of thermal project. An automated process control system was set-up and validated, and has the capability of controlling and handling steam injection processes like the steam-assisted gravity drainage process. The results of these preliminary experiments showed the overall cumulative oil production to be larger in the Fast-SAGD case, but end-point CSOR to be lower in the SAGD case. History matching results indicated that the steam quality was as low as 0.3 in the SAGD experiments, and even lower in the Fast-SAGD experiments after starting the CSS.

  19. The focused abdominal sonography for trauma examination can reliably identify patients with significant intra-abdominal hemorrhage in life-threatening pelvic fractures.

    PubMed

    Christian, Nicole Townsend; Burlew, Clay Cothren; Moore, Ernest E; Geddes, Andrea E; Wagenaar, Amy E; Fox, Charles J; Pieracci, Fredric M

    2018-06-01

    The focused abdominal sonography for trauma (FAST) examination has been reported to be unreliable in pelvic fracture patients. Additionally, given the advent of new therapeutic interventions, such as resuscitative endovascular balloon occlusion of the aorta (REBOA), rapid identification of intra-abdominal hemorrhage compared with Zone III hemorrhage may guide different therapeutic strategies. We hypothesized that FAST is reliable for detecting clinically significant intra-abdominal hemorrhage in the face of complex pelvic fractures. Our pelvic fracture database of all hemodynamically unstable patients requiring intervention from January 1, 2005, to July 1, 2015, was reviewed. The FAST examination was compared with operative and computed tomography (CT) scan findings. Confirmatory evaluation for FAST(-) patients was considered positive if therapeutic intervention was required. During the study period, 81 patients in refractory shock with FAST imaging in our emergency department (ED) underwent pelvic packing. Mean age was 45 ± 2 years and Injury Severity Score was 50 ± 1.5. The FAST examination was negative in 53 patients; 52 patients did not require operative intervention for abdominal bleeding while one patient required splenectomy. The FAST examination was positive in 28 patients; 26 had findings confirmed by CT or laparotomy while two patients did not have intra-abdominal hemorrhage on further evaluation. The sensitivity and specificity for FAST in this population was 96% and 96%, respectively, positive predictive value was 93%, and negative predictive value was 98%. The false-negative and -positive rates for FAST were 2% and 7%. Focused abdominal sonography for trauma examination reliably identifies clinically significant hemoperitoneum in life-threatening, pelvic fracture related hemorrhage. The incidence of a false-negative FAST in this unstable pelvic fracture population was 2%. FAST results may be used when determining the role of REBOA in these multisystem trauma patients and requires further study. REBOA placement should be considered in hemodynamically unstable pelvic fracture patients who are FAST(-), while laparotomy should be used in FAST(+) patients. Therapeutic, level IV.

  20. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  1. N-(2-Ethylhexyl)carbazole: A New Fluorophore Highly Suitable as a Monomolecular Liquid Scintillator.

    PubMed

    Montbarbon, Eva; Sguerra, Fabien; Bertrand, Guillaume H V; Magnier, Élodie; Coulon, Romain; Pansu, Robert B; Hamel, Matthieu

    2016-08-16

    The synthesis, photophysical properties, and applications in scintillation counting of N-(2-ethylhexyl)carbazole (EHCz) are reported. This molecule displays all of the required characteristics for an efficient liquid scintillator (emission wavelength, scintillation yield), and can be used without any extra fluorophores. Thus, its scintillation properties are discussed, as well as its fast neutron/gamma discrimination. For the latter application, the material is compared with the traditional liquid scintillator BC-501 A, and other liquid fluorescent molecules classically used as scintillation solvents, such as xylene, pseudocumene (PC), linear alkylbenzenes (LAB), diisopropylnaphthalene (DIN), 1-methylnaphthalene (1-MeNapht), and 4-isopropylbiphenyl (iPrBiph). For the first time, an excimeric form of a molecule has been advantageously used in scintillation counting. A moderate discrimination between fast neutrons and gamma rays was observed in bulk EHCz, with an apparent neutron/gamma discrimination potential half of that of BC-501 A. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements

    NASA Astrophysics Data System (ADS)

    Sarradj, Ennes

    2010-04-01

    Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.

  3. Direct Torque Control of a Small Wind Turbine with a Sliding-Mode Speed Controller

    NASA Astrophysics Data System (ADS)

    Sri Lal Senanayaka, Jagath; Karimi, Hamid Reza; Robbersmyr, Kjell G.

    2016-09-01

    In this paper. the method of direct torque control in the presence of a sliding-mode speed controller is proposed for a small wind turbine being used in water heating applications. This concept and control system design can be expanded to grid connected or off-grid applications. Direct torque control of electrical machines has shown several advantages including very fast dynamics torque control over field-oriented control. Moreover. the torque and flux controllers in the direct torque control algorithms are based on hvsteretic controllers which are nonlinear. In the presence of a sliding-mode speed control. a nonlinear control system can be constructed which is matched for AC/DC conversion of the converter that gives fast responses with low overshoots. The main control objectives of the proposed small wind turbine can be maximum power point tracking and soft-stall power control. This small wind turbine consists of permanent magnet synchronous generator and external wind speed. and rotor speed measurements are not required for the system. However. a sensor is needed to detect the rated wind speed overpass events to activate proper speed references for the wind turbine. Based on the low-cost design requirement of small wind turbines. an available wind speed sensor can be modified. or a new sensor can be designed to get the required measurement. The simulation results will be provided to illustrate the excellent performance of the closed-loop control system in entire wind speed range (4-25 m/s).

  4. Solar photovoltaic power system for a radio station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, B. E.

    1980-12-01

    Under sponsorship of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has developed a concept for a small photovoltaic power system. Of simple construction, the system uses low-cost, prefabricated, transportable units for easy, fast installation and requires minimal site preparation. The first application of this experimental system began operation in August 1979 at daytime AM radio station WNBO in Bryan, Ohio. The project was jointly undertaken by the Laboratory and the radio station. The photovoltaic system described holds promise for a wide range of applications and economic feasibility by the mid- to late-1980s.

  5. Holographic optical disc

    NASA Astrophysics Data System (ADS)

    Zhou, Gan; An, Xin; Pu, Allen; Psaltis, Demetri; Mok, Fai H.

    1999-11-01

    The holographic disc is a high capacity, disk-based data storage device that can provide the performance for next generation mass data storage needs. With a projected capacity approaching 1 terabit on a single 12 cm platter, the holographic disc has the potential to become a highly efficient storage hardware for data warehousing applications. The high readout rate of holographic disc makes it especially suitable for generating multiple, high bandwidth data streams such as required for network server computers. Multimedia applications such as interactive video and HDTV can also potentially benefit from the high capacity and fast data access of holographic memory.

  6. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  7. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    PubMed Central

    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  8. Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

    2013-09-01

    Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

  9. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    PubMed

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  10. Effect of fasting ramadan in diabetes control status - application of extensive diabetes education, serum creatinine with HbA1c statistical ANOVA and regression models to prevent hypoglycemia.

    PubMed

    Aziz, Kamran M A

    2013-09-01

    Ramadan fasting is an obligatory duty for Muslims. Unique physiologic and metabolic changes occur during fasting which requires adjustments of diabetes medications. Although challenging, successful fasting can be accomplished if pre-Ramadan extensive education is provided to the patients. Current research was conducted to study effective Ramadan fasting with different OHAs/insulins without significant risk of hypoglycemia in terms of HbA1c reductions after Ramadan. ANOVA model was used to assess HbA1c levels among different education statuses. Serum creatinine was used to measure renal functions. Pre-Ramadan diabetes education with alteration of therapy and dosage adjustments for OHAs/insulin was done. Regression models for HbA1c before Ramadan with FBS before sunset were also synthesized as a tool to prevent hypoglycemia and successful Ramadan fasting in future. Out of 1046 patients, 998 patients fasted successfully without any episodes of hypoglycemia. 48 patients (4.58%) experienced hypoglycemia. Χ(2) Test for CRD/CKD with hypoglycemia was also significant (p-value < 0.001). Significant associations and linear regression were found for HbA1c and sunset FBS; RBS post-dawn with RBS mid-day and FBS at sunset. The proposed regression models of this study can be used as a guide in future for Ramadan diabetes management. Some relevant patents are also outlined in this paper.

  11. On the utility of antiprotons as drivers for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Orth, Charles D.; Tabak, Max

    2004-10-01

    In contrast to the large mass, complexity and recirculating power of conventional drivers for inertial confinement fusion (ICF), antiproton annihilation offers a specific energy of 90 MJ µg-1 and thus a unique form of energy packaging and delivery. In principle, antiproton drivers could provide a profound reduction in system mass for advanced space propulsion by ICF. We examine the physics underlying the use of antiprotons ( \\bar{p} ) to drive various classes of high-yield ICF targets by the methods of volumetric ignition, hotspot ignition and fast ignition. The useable fraction of annihilation deposition energy is determined for both \\bar{p} -driven ablative compression and \\bar{p} -driven fast ignition, in association with zero- and one-dimensional target burn models. Thereby, we deduce scaling laws for the number of injected antiprotons required per capsule, together with timing and focal spot requirements. The kinetic energy of the injected antiproton beam required to penetrate to the desired annihilation point is always small relative to the deposited annihilation energy. We show that heavy metal seeding of the fuel and/or ablator is required to optimize local deposition of annihilation energy and determine that a minimum of ~3 × 1015 injected antiprotons will be required to achieve high yield (several hundred megajoules) in any target configuration. Target gains—i.e. fusion yields divided by the available p- \\bar{p} annihilation energy from the injected antiprotons ( 1.88\\,GeV/\\bar{p} )—range from ~3 for volumetric ignition targets to ~600 for fast ignition targets. Antiproton-driven ICF is a speculative concept, and the handling of antiprotons and their required injection precision—temporally and spatially—will present significant technical challenges. The storage and manipulation of low-energy antiprotons, particularly in the form of antihydrogen, is a science in its infancy and a large scale-up of antiproton production over present supply methods would be required to embark on a serious R&D programme for this application.

  12. KMC 2: fast and resource-frugal k-mer counting.

    PubMed

    Deorowicz, Sebastian; Kokot, Marek; Grabowski, Szymon; Debudaj-Grabysz, Agnieszka

    2015-05-15

    Building the histogram of occurrences of every k-symbol long substring of nucleotide data is a standard step in many bioinformatics applications, known under the name of k-mer counting. Its applications include developing de Bruijn graph genome assemblers, fast multiple sequence alignment and repeat detection. The tremendous amounts of NGS data require fast algorithms for k-mer counting, preferably using moderate amounts of memory. We present a novel method for k-mer counting, on large datasets about twice faster than the strongest competitors (Jellyfish 2, KMC 1), using about 12 GB (or less) of RAM. Our disk-based method bears some resemblance to MSPKmerCounter, yet replacing the original minimizers with signatures (a carefully selected subset of all minimizers) and using (k, x)-mers allows to significantly reduce the I/O and a highly parallel overall architecture allows to achieve unprecedented processing speeds. For example, KMC 2 counts the 28-mers of a human reads collection with 44-fold coverage (106 GB of compressed size) in about 20 min, on a 6-core Intel i7 PC with an solid-state disk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Covariance generation and uncertainty propagation for thermal and fast neutron induced fission yields

    NASA Astrophysics Data System (ADS)

    Terranova, Nicholas; Serot, Olivier; Archier, Pascal; De Saint Jean, Cyrille; Sumini, Marco

    2017-09-01

    Fission product yields (FY) are fundamental nuclear data for several applications, including decay heat, shielding, dosimetry, burn-up calculations. To be safe and sustainable, modern and future nuclear systems require accurate knowledge on reactor parameters, with reduced margins of uncertainty. Present nuclear data libraries for FY do not provide consistent and complete uncertainty information which are limited, in many cases, to only variances. In the present work we propose a methodology to evaluate covariance matrices for thermal and fast neutron induced fission yields. The semi-empirical models adopted to evaluate the JEFF-3.1.1 FY library have been used in the Generalized Least Square Method available in CONRAD (COde for Nuclear Reaction Analysis and Data assimilation) to generate covariance matrices for several fissioning systems such as the thermal fission of U235, Pu239 and Pu241 and the fast fission of U238, Pu239 and Pu240. The impact of such covariances on nuclear applications has been estimated using deterministic and Monte Carlo uncertainty propagation techniques. We studied the effects on decay heat and reactivity loss uncertainty estimation for simplified test case geometries, such as PWR and SFR pin-cells. The impact on existing nuclear reactors, such as the Jules Horowitz Reactor under construction at CEA-Cadarache, has also been considered.

  14. biobambam: tools for read pair collation based algorithms on BAM files

    PubMed Central

    2014-01-01

    Background Sequence alignment data is often ordered by coordinate (id of the reference sequence plus position on the sequence where the fragment was mapped) when stored in BAM files, as this simplifies the extraction of variants between the mapped data and the reference or of variants within the mapped data. In this order paired reads are usually separated in the file, which complicates some other applications like duplicate marking or conversion to the FastQ format which require to access the full information of the pairs. Results In this paper we introduce biobambam, a set of tools based on the efficient collation of alignments in BAM files by read name. The employed collation algorithm avoids time and space consuming sorting of alignments by read name where this is possible without using more than a specified amount of main memory. Using this algorithm tasks like duplicate marking in BAM files and conversion of BAM files to the FastQ format can be performed very efficiently with limited resources. We also make the collation algorithm available in the form of an API for other projects. This API is part of the libmaus package. Conclusions In comparison with previous approaches to problems involving the collation of alignments by read name like the BAM to FastQ or duplication marking utilities our approach can often perform an equivalent task more efficiently in terms of the required main memory and run-time. Our BAM to FastQ conversion is faster than all widely known alternatives including Picard and bamUtil. Our duplicate marking is about as fast as the closest competitor bamUtil for small data sets and faster than all known alternatives on large and complex data sets.

  15. [CMACPAR an modified parallel neuro-controller for control processes].

    PubMed

    Ramos, E; Surós, R

    1999-01-01

    CMACPAR is a Parallel Neurocontroller oriented to real time systems as for example Control Processes. Its characteristics are mainly a fast learning algorithm, a reduced number of calculations, great generalization capacity, local learning and intrinsic parallelism. This type of neurocontroller is used in real time applications required by refineries, hydroelectric centers, factories, etc. In this work we present the analysis and the parallel implementation of a modified scheme of the Cerebellar Model CMAC for the n-dimensional space projection using a mean granularity parallel neurocontroller. The proposed memory management allows for a significant memory reduction in training time and required memory size.

  16. Program Processes Thermocouple Readings

    NASA Technical Reports Server (NTRS)

    Quave, Christine A.; Nail, William, III

    1995-01-01

    Digital Signal Processor for Thermocouples (DART) computer program implements precise and fast method of converting voltage to temperature for large-temperature-range thermocouple applications. Written using LabVIEW software. DART available only as object code for use on Macintosh II FX or higher-series computers running System 7.0 or later and IBM PC-series and compatible computers running Microsoft Windows 3.1. Macintosh version of DART (SSC-00032) requires LabVIEW 2.2.1 or 3.0 for execution. IBM PC version (SSC-00031) requires LabVIEW 3.0 for Windows 3.1. LabVIEW software product of National Instruments and not included with program.

  17. Optical sensors in water monitoring

    NASA Astrophysics Data System (ADS)

    Gauglitz, Guenter

    2007-07-01

    An upcoming problem in Europe is the protection of water resources and control of water quality. Coastal areas, rivers, ground water, wetlands, and especially drinking water require permanent monitoring to avoid pollution by small organic molecules or especially endocrine disrupting compounds. Biosensors have demonstrated the proof-of-principle of immunochemistry for these applications. It turns out that especially optical methods based on fluorescence detection can be successfully used for the development of fast, sensitive, cost-effective, and easy-to-use analytical systems meeting the requirements given by European Community Directives and national legislation. Results obtained with the RIANA and AWACSS systems are discussed here.

  18. Future Data Communication Architectures for Safety Critical Aircraft Cabin Systems

    NASA Astrophysics Data System (ADS)

    Berkhahn, Sven-Olaf

    2012-05-01

    The cabin of modern aircraft is subject to increasing demands for fast reconfiguration and hence flexibility. These demands require studies for new network architectures and technologies of the electronic cabin systems, which consider also weight and cost reductions as well as safety constraints. Two major approaches are in consideration to reduce the complex and heavy wiring harness: the usage of a so called hybrid data bus technology, which enables the common usage of the same data bus for several electronic cabin systems with different safety and security requirements and the application of wireless data transfer technologies for electronic cabin systems.

  19. Application of a Self-Actuating Shutdown System (SASS) to a Gas-Cooled Fast Reactor (GCFR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germer, J.H.; Peterson, L.F.; Kluck, A.L.

    1980-09-01

    The application of a SASS (Self-Actuated Shutdown System) to a GCFR (Gas-Cooled Fast Reactor) is compared with similar systems designed for an LMFBR (Liquid Metal Fast Breeder Reactor). A comparison of three basic SASS concepts is given: hydrostatic holdup, fluidic control, and magnetic holdup.

  20. Surface-enhanced FAST CARS: en route to quantum nano-biophotonics

    NASA Astrophysics Data System (ADS)

    Voronine, Dmitri V.; Zhang, Zhenrong; Sokolov, Alexei V.; Scully, Marlan O.

    2018-02-01

    Quantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.

  1. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control

    NASA Astrophysics Data System (ADS)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel

    2015-02-01

    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  2. Fast and economic immobilization methods described for non-commercial Pseudomonas lipases

    PubMed Central

    2014-01-01

    Background There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite®545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI.3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I.3, requiring a refolding step, was poorly immobilized on all supports tested (best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes. PMID:24755191

  3. Temperature measurements on fast-rotating objects using a thermographic camera with an optomechanical image derotator

    NASA Astrophysics Data System (ADS)

    Altmann, Bettina; Pape, Christian; Reithmeier, Eduard

    2017-08-01

    Increasing requirements concerning the quality and lifetime of machine components in industrial and automotive applications require comprehensive investigations of the components in conditions close to the application. Irregularities in heating of mechanical parts reveal regions with increased loading of pressure, draft or friction. In the long run this leads to damage and total failure of the machine. Thermographic measurements of rotating objects, e.g., rolling bearings, brakes, and clutches provide an approach to investigate those defects. However, it is challenging to measure fast-rotating objects accurately. Currently one contact-free approach is performing stroboscopic measurements using an infrared sensor. The data acquisition is triggered so that the image is taken once per revolution. This leads to a huge loss of information on the majority of the movement and to motion blur. The objective of this research is showing the potential of using an optomechanical image derotator together with a thermographic camera. The derotator follows the rotation of the measurement object so that quasi-stationary thermal images during motion can be acquired by the infrared sensor. Unlike conventional derotators which use a glass prism to achieve this effect, the derotator within this work is equipped with a sophisticated reflector assembly. These reflectors are made of aluminum to transfer infrared radiation emitted by the rotating object. Because of the resulting stationary thermal image, the operation can be monitored continuously even for fast-rotating objects. The field of view can also be set to a small off-axis region of interest which then can be investigated with higher resolution or frame rate. To depict the potential of this approach, thermographic measurements on a rolling bearings in different operating states are presented.

  4. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  5. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens

    PubMed Central

    Grewe, Benjamin F.; Voigt, Fabian F.; van ’t Hoff, Marcel; Helmchen, Fritjof

    2011-01-01

    Functional two-photon Ca2+-imaging is a versatile tool to study the dynamics of neuronal populations in brain slices and living animals. However, population imaging is typically restricted to a single two-dimensional image plane. By introducing an electrically tunable lens into the excitation path of a two-photon microscope we were able to realize fast axial focus shifts within 15 ms. The maximum axial scan range was 0.7 mm employing a 40x NA0.8 water immersion objective, plenty for typically required ranges of 0.2–0.3 mm. By combining the axial scanning method with 2D acousto-optic frame scanning and random-access scanning, we measured neuronal population activity of about 40 neurons across two imaging planes separated by 40 μm and achieved scan rates up to 20–30 Hz. The method presented is easily applicable and allows upgrading of existing two-photon microscopes for fast 3D scanning. PMID:21750778

  6. Fast frequency acquisition via adaptive least squares algorithm

    NASA Technical Reports Server (NTRS)

    Kumar, R.

    1986-01-01

    A new least squares algorithm is proposed and investigated for fast frequency and phase acquisition of sinusoids in the presence of noise. This algorithm is a special case of more general, adaptive parameter-estimation techniques. The advantages of the algorithms are their conceptual simplicity, flexibility and applicability to general situations. For example, the frequency to be acquired can be time varying, and the noise can be nonGaussian, nonstationary and colored. As the proposed algorithm can be made recursive in the number of observations, it is not necessary to have a priori knowledge of the received signal-to-noise ratio or to specify the measurement time. This would be required for batch processing techniques, such as the fast Fourier transform (FFT). The proposed algorithm improves the frequency estimate on a recursive basis as more and more observations are obtained. When the algorithm is applied in real time, it has the extra advantage that the observations need not be stored. The algorithm also yields a real time confidence measure as to the accuracy of the estimator.

  7. Fast and Epsilon-Optimal Discretized Pursuit Learning Automata.

    PubMed

    Zhang, JunQi; Wang, Cheng; Zhou, MengChu

    2015-10-01

    Learning automata (LA) are powerful tools for reinforcement learning. A discretized pursuit LA is the most popular one among them. During an iteration its operation consists of three basic phases: 1) selecting the next action; 2) finding the optimal estimated action; and 3) updating the state probability. However, when the number of actions is large, the learning becomes extremely slow because there are too many updates to be made at each iteration. The increased updates are mostly from phases 1 and 3. A new fast discretized pursuit LA with assured ε -optimality is proposed to perform both phases 1 and 3 with the computational complexity independent of the number of actions. Apart from its low computational complexity, it achieves faster convergence speed than the classical one when operating in stationary environments. This paper can promote the applications of LA toward the large-scale-action oriented area that requires efficient reinforcement learning tools with assured ε -optimality, fast convergence speed, and low computational complexity for each iteration.

  8. Motorization of a surgical microscope for intra-operative navigation and intuitive control.

    PubMed

    Finke, M; Schweikard, A

    2010-09-01

    During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are < 1 mm and vibrations caused by automatic movements fade away in about 1 s. The robotic system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.

  9. Design and realization of a new agorithm of calculating the absolute positon angle based on the incremental encoder

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Yang, Yong-qing; Li, Zhi-guo; Han, Jun-feng; Wei, Yu; Jing, Feng

    2018-02-01

    Aiming at the shortage of the incremental encoder with simple process to change along the count "in the presence of repeatability and anti disturbance ability, combined with its application in a large project in the country, designed an electromechanical switch for generating zero, zero crossing signal. A mechanical zero electric and zero coordinate transformation model is given to meet the path optimality, single, fast and accurate requirements of adaptive fast change algorithm, the proposed algorithm can effectively solve the contradiction between the accuracy and the change of the time change. A test platform is built to verify the effectiveness and robustness of the proposed algorithm. The experimental data show that the effect of the algorithm accuracy is not influenced by the change of the speed of change, change the error of only 0.0013. Meet too fast, the change of system accuracy, and repeated experiments show that this algorithm has high robustness.

  10. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  11. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  12. Examples of design and achievement of vision systems for mobile robotics applications

    NASA Astrophysics Data System (ADS)

    Bonnin, Patrick J.; Cabaret, Laurent; Raulet, Ludovic; Hugel, Vincent; Blazevic, Pierre; M'Sirdi, Nacer K.; Coiffet, Philippe

    2000-10-01

    Our goal is to design and to achieve a multiple purpose vision system for various robotics applications : wheeled robots (like cars for autonomous driving), legged robots (six, four (SONY's AIBO) legged robots, and humanoid), flying robots (to inspect bridges for example) in various conditions : indoor or outdoor. Considering that the constraints depend on the application, we propose an edge segmentation implemented either in software, or in hardware using CPLDs (ASICs or FPGAs could be used too). After discussing the criteria of our choice, we propose a chain of image processing operators constituting an edge segmentation. Although this chain is quite simple and very fast to perform, results appear satisfactory. We proposed a software implementation of it. Its temporal optimization is based on : its implementation under the pixel data flow programming model, the gathering of local processing when it is possible, the simplification of computations, and the use of fast access data structures. Then, we describe a first dedicated hardware implementation of the first part, which requires 9CPLS in this low cost version. It is technically possible, but more expensive, to implement these algorithms using only a signle FPGA.

  13. FSH: fast spaced seed hashing exploiting adjacent hashes.

    PubMed

    Girotto, Samuele; Comin, Matteo; Pizzi, Cinzia

    2018-01-01

    Patterns with wildcards in specified positions, namely spaced seeds , are increasingly used instead of k -mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of k -mers can be rapidly computed by exploiting the large overlap between consecutive k -mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing. The method proposed in this paper, fast spaced-seed hashing (FSH), exploits the similarity of the hash values of spaced seeds computed at adjacent positions in the input sequence. In our experiments we compute the hash for each positions of metagenomics reads from several datasets, with respect to different spaced seeds. We also propose a generalized version of the algorithm for the simultaneous computation of multiple spaced seeds hashing. In the experiments, our algorithm can compute the hashing values of spaced seeds with a speedup, with respect to the traditional approach, between 1.6[Formula: see text] to 5.3[Formula: see text], depending on the structure of the spaced seed. Spaced seed hashing is a routine task for several bioinformatics application. FSH allows to perform this task efficiently and raise the question of whether other hashing can be exploited to further improve the speed up. This has the potential of major impact in the field, making spaced seed applications not only accurate, but also faster and more efficient. The software FSH is freely available for academic use at: https://bitbucket.org/samu661/fsh/overview.

  14. AfterQC: automatic filtering, trimming, error removing and quality control for fastq data.

    PubMed

    Chen, Shifu; Huang, Tanxiao; Zhou, Yanqing; Han, Yue; Xu, Mingyan; Gu, Jia

    2017-03-14

    Some applications, especially those clinical applications requiring high accuracy of sequencing data, usually have to face the troubles caused by unavoidable sequencing errors. Several tools have been proposed to profile the sequencing quality, but few of them can quantify or correct the sequencing errors. This unmet requirement motivated us to develop AfterQC, a tool with functions to profile sequencing errors and correct most of them, plus highly automated quality control and data filtering features. Different from most tools, AfterQC analyses the overlapping of paired sequences for pair-end sequencing data. Based on overlapping analysis, AfterQC can detect and cut adapters, and furthermore it gives a novel function to correct wrong bases in the overlapping regions. Another new feature is to detect and visualise sequencing bubbles, which can be commonly found on the flowcell lanes and may raise sequencing errors. Besides normal per cycle quality and base content plotting, AfterQC also provides features like polyX (a long sub-sequence of a same base X) filtering, automatic trimming and K-MER based strand bias profiling. For each single or pair of FastQ files, AfterQC filters out bad reads, detects and eliminates sequencer's bubble effects, trims reads at front and tail, detects the sequencing errors and corrects part of them, and finally outputs clean data and generates HTML reports with interactive figures. AfterQC can run in batch mode with multiprocess support, it can run with a single FastQ file, a single pair of FastQ files (for pair-end sequencing), or a folder for all included FastQ files to be processed automatically. Based on overlapping analysis, AfterQC can estimate the sequencing error rate and profile the error transform distribution. The results of our error profiling tests show that the error distribution is highly platform dependent. Much more than just another new quality control (QC) tool, AfterQC is able to perform quality control, data filtering, error profiling and base correction automatically. Experimental results show that AfterQC can help to eliminate the sequencing errors for pair-end sequencing data to provide much cleaner outputs, and consequently help to reduce the false-positive variants, especially for the low-frequency somatic mutations. While providing rich configurable options, AfterQC can detect and set all the options automatically and require no argument in most cases.

  15. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  16. Parallel workflow manager for non-parallel bioinformatic applications to solve large-scale biological problems on a supercomputer.

    PubMed

    Suplatov, Dmitry; Popova, Nina; Zhumatiy, Sergey; Voevodin, Vladimir; Švedas, Vytas

    2016-04-01

    Rapid expansion of online resources providing access to genomic, structural, and functional information associated with biological macromolecules opens an opportunity to gain a deeper understanding of the mechanisms of biological processes due to systematic analysis of large datasets. This, however, requires novel strategies to optimally utilize computer processing power. Some methods in bioinformatics and molecular modeling require extensive computational resources. Other algorithms have fast implementations which take at most several hours to analyze a common input on a modern desktop station, however, due to multiple invocations for a large number of subtasks the full task requires a significant computing power. Therefore, an efficient computational solution to large-scale biological problems requires both a wise parallel implementation of resource-hungry methods as well as a smart workflow to manage multiple invocations of relatively fast algorithms. In this work, a new computer software mpiWrapper has been developed to accommodate non-parallel implementations of scientific algorithms within the parallel supercomputing environment. The Message Passing Interface has been implemented to exchange information between nodes. Two specialized threads - one for task management and communication, and another for subtask execution - are invoked on each processing unit to avoid deadlock while using blocking calls to MPI. The mpiWrapper can be used to launch all conventional Linux applications without the need to modify their original source codes and supports resubmission of subtasks on node failure. We show that this approach can be used to process huge amounts of biological data efficiently by running non-parallel programs in parallel mode on a supercomputer. The C++ source code and documentation are available from http://biokinet.belozersky.msu.ru/mpiWrapper .

  17. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids.

    PubMed

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm(2) area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10(-1) to 4 × 10(-3) copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings.

  18. Picoliter Well Array Chip-Based Digital Recombinase Polymerase Amplification for Absolute Quantification of Nucleic Acids

    PubMed Central

    Li, Zhao; Liu, Yong; Wei, Qingquan; Liu, Yuanjie; Liu, Wenwen; Zhang, Xuelian; Yu, Yude

    2016-01-01

    Absolute, precise quantification methods expand the scope of nucleic acids research and have many practical applications. Digital polymerase chain reaction (dPCR) is a powerful method for nucleic acid detection and absolute quantification. However, it requires thermal cycling and accurate temperature control, which are difficult in resource-limited conditions. Accordingly, isothermal methods, such as recombinase polymerase amplification (RPA), are more attractive. We developed a picoliter well array (PWA) chip with 27,000 consistently sized picoliter reactions (314 pL) for isothermal DNA quantification using digital RPA (dRPA) at 39°C. Sample loading using a scraping liquid blade was simple, fast, and required small reagent volumes (i.e., <20 μL). Passivating the chip surface using a methoxy-PEG-silane agent effectively eliminated cross-contamination during dRPA. Our creative optical design enabled wide-field fluorescence imaging in situ and both end-point and real-time analyses of picoliter wells in a 6-cm2 area. It was not necessary to use scan shooting and stitch serial small images together. Using this method, we quantified serial dilutions of a Listeria monocytogenes gDNA stock solution from 9 × 10-1 to 4 × 10-3 copies per well with an average error of less than 11% (N = 15). Overall dRPA-on-chip processing required less than 30 min, which was a 4-fold decrease compared to dPCR, requiring approximately 2 h. dRPA on the PWA chip provides a simple and highly sensitive method to quantify nucleic acids without thermal cycling or precise micropump/microvalve control. It has applications in fast field analysis and critical clinical diagnostics under resource-limited settings. PMID:27074005

  19. K-space data processing for magnetic resonance elastography (MRE).

    PubMed

    Corbin, Nadège; Breton, Elodie; de Mathelin, Michel; Vappou, Jonathan

    2017-04-01

    Magnetic resonance elastography (MRE) requires substantial data processing based on phase image reconstruction, wave enhancement, and inverse problem solving. The objective of this study is to propose a new, fast MRE method based on MR raw data processing, particularly adapted to applications requiring fast MRE measurement or high elastogram update rate. The proposed method allows measuring tissue elasticity directly from raw data without prior phase image reconstruction and without phase unwrapping. Experimental feasibility is assessed both in a gelatin phantom and in the liver of a porcine model in vivo. Elastograms are reconstructed with the raw MRE method and compared to those obtained using conventional MRE. In a third experiment, changes in elasticity are monitored in real-time in a gelatin phantom during its solidification by using both conventional MRE and raw MRE. The raw MRE method shows promising results by providing similar elasticity values to the ones obtained with conventional MRE methods while decreasing the number of processing steps and circumventing the delicate step of phase unwrapping. Limitations of the proposed method are the influence of the magnitude on the elastogram and the requirement for a minimum number of phase offsets. This study demonstrates the feasibility of directly reconstructing elastograms from raw data.

  20. Integrated Life-Cycle Framework for Maintenance, Monitoring and Reliability of Naval Ship Structures

    DTIC Science & Technology

    2012-08-15

    number of times, a fast and accurate method for analyzing the ship hull is required. In order to obtain this required computational speed and accuracy...Naval Engineers Fleet Maintenance & Modernization Symposium (FMMS 2011) [8] and the Eleventh International Conference on Fast Sea Transportation ( FAST ...probabilistic strength of the ship hull. First, a novel deterministic method for the fast and accurate calculation of the strength of the ship hull is

  1. The Fleet Application for Scheduling and Tracking (FAST) Management Website

    NASA Technical Reports Server (NTRS)

    Marrero-Perez, Radames J.

    2014-01-01

    The FAST application was designed to replace the paper and pen method of checking out and checking in GSA Vehicles at KSC. By innovating from a paper and pen based checkout system to a fully digital one, not only the resources wasted by printing the checkout forms have been reduced, but it also reduces significantly the time that users and fleet managers need to interact with the system as well as improving the record accuracy for each vehicle. The vehicle information is pulled from a centralized database server in the SPSDL. In an attempt to add a new feature to the FAST application, the author of this report (alongside the FAST developers) has been designing and developing the FAST Management Website. The GSA fleet managers had to rely on the FAST developers in order to add new vehicles, edit vehicles and previous transactions, or for generating vehicles reports. By providing an easy-to-use FAST Management Website portal, the GSA fleet managers are now able to easily move vehicles, edit records, and print reports.

  2. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Licata, M.; Joyce, M. J.

    2018-02-01

    The potential of a combined and simultaneous fast-neutron/γ-ray computed tomography technique using Monte Carlo simulations is described. This technique is applied on the basis of a hypothetical tomography system comprising an isotopic radiation source (americium-beryllium) and a number (13) of organic scintillation detectors for the production and detection of both fast neutrons and γ rays, respectively. Via a combination of γ-ray and fast neutron tomography the potential is demonstrated to discern nuclear materials, such as compounds comprising plutonium and uranium, from substances that are used widely for neutron moderation and shielding. This discrimination is achieved on the basis of the difference in the attenuation characteristics of these substances. Discrimination of a variety of nuclear material compounds from shielding/moderating substances (the latter comprising lead or polyethylene for example) is shown to be challenging when using either γ-ray or neutron tomography in isolation of one another. Much-improved contrast is obtained for a combination of these tomographic modalities. This method has potential applications for in-situ, non-destructive assessments in nuclear security, safeguards, waste management and related requirements in the nuclear industry.

  3. Fast software-based volume rendering using multimedia instructions on PC platforms and its application to virtual endoscopy

    NASA Astrophysics Data System (ADS)

    Mori, Kensaku; Suenaga, Yasuhito; Toriwaki, Jun-ichiro

    2003-05-01

    This paper describes a software-based fast volume rendering (VolR) method on a PC platform by using multimedia instructions, such as SIMD instructions, which are currently available in PCs' CPUs. This method achieves fast rendering speed through highly optimizing software rather than an improved rendering algorithm. In volume rendering using a ray casting method, the system requires fast execution of the following processes: (a) interpolation of voxel or color values at sample points, (b) computation of normal vectors (gray-level gradient vectors), (c) calculation of shaded values obtained by dot-products of normal vectors and light source direction vectors, (d) memory access to a huge area, and (e) efficient ray skipping at translucent regions. The proposed software implements these fundamental processes in volume rending by using special instruction sets for multimedia processing. The proposed software can generate virtual endoscopic images of a 3-D volume of 512x512x489 voxel size by volume rendering with perspective projection, specular reflection, and on-the-fly normal vector computation on a conventional PC without any special hardware at thirteen frames per second. Semi-translucent display is also possible.

  4. High-performance flat data center network architecture based on scalable and flow-controlled optical switching system

    NASA Astrophysics Data System (ADS)

    Calabretta, Nicola; Miao, Wang; Dorren, Harm

    2016-03-01

    Traffic in data centers networks (DCNs) is steadily growing to support various applications and virtualization technologies. Multi-tenancy enabling efficient resource utilization is considered as a key requirement for the next generation DCs resulting from the growing demands for services and applications. Virtualization mechanisms and technologies can leverage statistical multiplexing and fast switch reconfiguration to further extend the DC efficiency and agility. We present a novel high performance flat DCN employing bufferless and distributed fast (sub-microsecond) optical switches with wavelength, space, and time switching operation. The fast optical switches can enhance the performance of the DCNs by providing large-capacity switching capability and efficiently sharing the data plane resources by exploiting statistical multiplexing. Benefiting from the Software-Defined Networking (SDN) control of the optical switches, virtual DCNs can be flexibly created and reconfigured by the DCN provider. Numerical and experimental investigations of the DCN based on the fast optical switches show the successful setup of virtual network slices for intra-data center interconnections. Experimental results to assess the DCN performance in terms of latency and packet loss show less than 10^-5 packet loss and 640ns end-to-end latency with 0.4 load and 16- packet size buffer. Numerical investigation on the performance of the systems when the port number of the optical switch is scaled to 32x32 system indicate that more than 1000 ToRs each with Terabit/s interface can be interconnected providing a Petabit/s capacity. The roadmap to photonic integration of large port optical switches will be also presented.

  5. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  6. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the fast pyrolysis biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the fastmore » pyrolysis biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the fast pyrolysis biorefinery to understand the air permitting requirements.« less

  8. Magnetic Flux Compression Using Detonation Plasma Armatures and Superconductor Stators: Integrated Propulsion and Power Applications

    NASA Technical Reports Server (NTRS)

    Litchford, Ron; Robertson, Tony; Hawk, Clark; Turner, Matt; Koelfgen, Syri

    1999-01-01

    This presentation discusses the use of magnetic flux compression for space flight applications as a propulsion and other power applications. The qualities of this technology that make it suitable for spaceflight propulsion and power, are that it has high power density, it can give multimegawatt energy bursts, and terawatt power bursts, it can produce the pulse power for low impedance dense plasma devices (e.g., pulse fusion drivers), and it can produce direct thrust. The issues of a metal vs plasma armature are discussed, and the requirements for high energy output, and fast pulse rise time requires a high speed armature. The plasma armature enables repetitive firing capabilities. The issues concerning the high temperature superconductor stator are also discussed. The concept of the radial mode pulse power generator is described. The proposed research strategy combines the use of computational modeling (i.e., magnetohydrodynamic computations, and finite element modeling) and laboratory experiments to create a demonstration device.

  9. Preface of "The Second Symposium on Border Zones Between Experimental and Numerical Application Including Solution Approaches By Extensions of Standard Numerical Methods"

    NASA Astrophysics Data System (ADS)

    Ortleb, Sigrun; Seidel, Christian

    2017-07-01

    In this second symposium at the limits of experimental and numerical methods, recent research is presented on practically relevant problems. Presentations discuss experimental investigation as well as numerical methods with a strong focus on application. In addition, problems are identified which require a hybrid experimental-numerical approach. Topics include fast explicit diffusion applied to a geothermal energy storage tank, noise in experimental measurements of electrical quantities, thermal fluid structure interaction, tensegrity structures, experimental and numerical methods for Chladni figures, optimized construction of hydroelectric power stations, experimental and numerical limits in the investigation of rain-wind induced vibrations as well as the application of exponential integrators in a domain-based IMEX setting.

  10. Scientific Programming Using Java: A Remote Sensing Example

    NASA Technical Reports Server (NTRS)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  11. Do smartphone applications in healthcare require a governance and legal framework? It depends on the application!

    PubMed

    Charani, Esmita; Castro-Sánchez, Enrique; Moore, Luke S P; Holmes, Alison

    2014-02-14

    The fast pace of technological improvement and the rapid development and adoption of healthcare applications present crucial challenges for clinicians, users and policy makers. Some of the most pressing dilemmas include the need to ensure the safety of applications and establish their cost-effectiveness while engaging patients and users to optimize their integration into health decision-making. Healthcare organizations need to consider the risk of fragmenting clinical practice within the organization as a result of too many apps being developed or used, as well as mechanisms for app integration into the wider electronic health records through development of governance framework for their use. The impact of app use on the interactions between clinicians and patients needs to be explored, together with the skills required for both groups to benefit from the use of apps. Although healthcare and academic institutions should support the improvements offered by technological advances, they must strive to do so within robust governance frameworks, after sound evaluation of clinical outcomes and examination of potential unintended consequences.

  12. Media processors using a new microsystem architecture designed for the Internet era

    NASA Astrophysics Data System (ADS)

    Wyland, David C.

    1999-12-01

    The demands of digital image processing, communications and multimedia applications are growing more rapidly than traditional design methods can fulfill them. Previously, only custom hardware designs could provide the performance required to meet the demands of these applications. However, hardware design has reached a crisis point. Hardware design can no longer deliver a product with the required performance and cost in a reasonable time for a reasonable risk. Software based designs running on conventional processors can deliver working designs in a reasonable time and with low risk but cannot meet the performance requirements. What is needed is a media processing approach that combines very high performance, a simple programming model, complete programmability, short time to market and scalability. The Universal Micro System (UMS) is a solution to these problems. The UMS is a completely programmable (including I/O) system on a chip that combines hardware performance with the fast time to market, low cost and low risk of software designs.

  13. The Baldwin-Lomax model for separated and wake flows using the entropy envelope concept

    NASA Technical Reports Server (NTRS)

    Brock, J. S.; Ng, W. F.

    1992-01-01

    Implementation of the Baldwin-Lomax algebraic turbulence model is difficult and ambiguous within flows characterized by strong viscous-inviscid interactions and flow separations. A new method of implementation is proposed which uses an entropy envelope concept and is demonstrated to ensure the proper evaluation of modeling parameters. The method is simple, computationally fast, and applicable to both wake and boundary layer flows. The method is general, making it applicable to any turbulence model which requires the automated determination of the proper maxima of a vorticity-based function. The new method is evalulated within two test cases involving strong viscous-inviscid interaction.

  14. A survey of GPU-based acceleration techniques in MRI reconstructions

    PubMed Central

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou

    2018-01-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community. PMID:29675361

  15. A survey of GPU-based acceleration techniques in MRI reconstructions.

    PubMed

    Wang, Haifeng; Peng, Hanchuan; Chang, Yuchou; Liang, Dong

    2018-03-01

    Image reconstruction in magnetic resonance imaging (MRI) clinical applications has become increasingly more complicated. However, diagnostic and treatment require very fast computational procedure. Modern competitive platforms of graphics processing unit (GPU) have been used to make high-performance parallel computations available, and attractive to common consumers for computing massively parallel reconstruction problems at commodity price. GPUs have also become more and more important for reconstruction computations, especially when deep learning starts to be applied into MRI reconstruction. The motivation of this survey is to review the image reconstruction schemes of GPU computing for MRI applications and provide a summary reference for researchers in MRI community.

  16. Simple performance evaluation of pulsed spontaneous parametric down-conversion sources for quantum communications.

    PubMed

    Smirr, Jean-Loup; Guilbaud, Sylvain; Ghalbouni, Joe; Frey, Robert; Diamanti, Eleni; Alléaume, Romain; Zaquine, Isabelle

    2011-01-17

    Fast characterization of pulsed spontaneous parametric down conversion (SPDC) sources is important for applications in quantum information processing and communications. We propose a simple method to perform this task, which only requires measuring the counts on the two output channels and the coincidences between them, as well as modeling the filter used to reduce the source bandwidth. The proposed method is experimentally tested and used for a complete evaluation of SPDC sources (pair emission probability, total losses, and fidelity) of various bandwidths. This method can find applications in the setting up of SPDC sources and in the continuous verification of the quality of quantum communication links.

  17. Editorial

    NASA Astrophysics Data System (ADS)

    Bruzzi, Mara; Cartiglia, Nicolo; Pace, Emanuele; Talamonti, Cinzia

    2015-10-01

    The 10th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) was held in Florence, at Dipartimento di Fisica ed Astronomia on October 8-10, 2014. It has been aimed at discussing frontier research activities in several application fields as nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference concern performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), ultra-fast silicon detectors design and manufacturing, high-band gap semiconductor detectors, novel semiconductor-based devices for medical applications, radiation damage issues in semiconductors and related radiation-hardening technologies.

  18. Hydrogen storage with trilithium aluminum hexahydride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nathaniel, T.A.

    1998-05-14

    Fuel cells have good potential to replace batteries for many applications requiring moderate, portable electric power. Applications being researched can range from cellular telephones and radios to power generators for large camps. The primary advantages of fuel cells include high power density, low temperature operation, silent operation, no poisonous exhausts, high electric efficiency, and fast start-up capability. While many commercial industries are just beginning to look at the opportunities fuel cells present, the space program has driven the development of fuel cell technology. The paper discusses the status of the fuel cell and in particular, the technology for hydrogen storagemore » for fuel cell use.« less

  19. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.

    PubMed

    Wear, Keith A

    2013-04-01

    The presence of two longitudinal waves in poroelastic media is predicted by Biot's theory and has been confirmed experimentally in through-transmission measurements in cancellous bone. Estimation of attenuation coefficients and velocities of the two waves is challenging when the two waves overlap in time. The modified least squares Prony's (MLSP) method in conjuction with curve-fitting (MLSP + CF) is tested using simulations based on published values for fast and slow wave attenuation coefficients and velocities in cancellous bone from several studies in bovine femur, human femur, and human calcaneus. The search algorithm is accelerated by exploiting correlations among search parameters. The performance of the algorithm is evaluated as a function of signal-to-noise ratio (SNR). For a typical experimental SNR (40 dB), the root-mean-square errors (RMSEs) for one example (human femur) with fast and slow waves separated by approximately half of a pulse duration were 1 m/s (slow wave velocity), 4 m/s (fast wave velocity), 0.4 dB/cm MHz (slow wave attenuation slope), and 1.7 dB/cm MHz (fast wave attenuation slope). The MLSP + CF method is fast (requiring less than 2 s at SNR = 40 dB on a consumer-grade notebook computer) and is flexible with respect to the functional form of the parametric model for the transmission coefficient. The MLSP + CF method provides sufficient accuracy and precision for many applications such that experimental error is a greater limiting factor than estimation error.

  20. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2π phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55μm and 10.6 μm, spatial light modulator in the MWIR (3~5μm) band, dynamic scene projectors for infrared seekers in the LWIR (8~12μm) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2π phase change at MWIR and response time less than 5 ms.

  1. An evaluation of independent component analyses with an application to resting-state fMRI

    PubMed Central

    Matteson, David S.; Ruppert, David; Eloyan, Ani; Caffo, Brian S.

    2013-01-01

    Summary We examine differences between independent component analyses (ICAs) arising from different as-sumptions, measures of dependence, and starting points of the algorithms. ICA is a popular method with diverse applications including artifact removal in electrophysiology data, feature extraction in microarray data, and identifying brain networks in functional magnetic resonance imaging (fMRI). ICA can be viewed as a generalization of principal component analysis (PCA) that takes into account higher-order cross-correlations. Whereas the PCA solution is unique, there are many ICA methods–whose solutions may differ. Infomax, FastICA, and JADE are commonly applied to fMRI studies, with FastICA being arguably the most popular. Hastie and Tibshirani (2003) demonstrated that ProDenICA outperformed FastICA in simulations with two components. We introduce the application of ProDenICA to simulations with more components and to fMRI data. ProDenICA was more accurate in simulations, and we identified differences between biologically meaningful ICs from ProDenICA versus other methods in the fMRI analysis. ICA methods require nonconvex optimization, yet current practices do not recognize the importance of, nor adequately address sensitivity to, initial values. We found that local optima led to dramatically different estimates in both simulations and group ICA of fMRI, and we provide evidence that the global optimum from ProDenICA is the best estimate. We applied a modification of the Hungarian (Kuhn-Munkres) algorithm to match ICs from multiple estimates, thereby gaining novel insights into how brain networks vary in their sensitivity to initial values and ICA method. PMID:24350655

  2. Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments

    DTIC Science & Technology

    2014-12-18

    expensive travel and on-site visits. Different applications require models of different complexities, both with and without furniture geometry. The...environment and to localize the system in the environment over time. The datasets shown in this paper were generated by a backpack -mounted system that uses 2D...voxel is found to intersect the line segment from a scanner to a corresponding scan point. If a laser passes through a voxel, that voxel is considered

  3. Electronic hardware design of electrical capacitance tomography systems.

    PubMed

    Saied, I; Meribout, M

    2016-06-28

    Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).

  4. 77 FR 18718 - Petroleum Reduction and Alternative Fuel Consumption Requirements for Federal Fleets

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Statistical Tool Web-based reporting system (FAST) for FY 2005. Moreover, section 438.102(b) would require... reflected in FY 2005 FAST data, or (2) the lesser of (a) five percent of total Federal fleet vehicle fuel... event that the Federal fleet's alternative fuel use value for FY 2005 submitted through FAST did not...

  5. Experimental Measurements of Concentration Fluctuations and Scales in a Dispersing Plume in the Atmospheric Surface Layer Obtained Using a Very Fast Response Concentration Detector

    DTIC Science & Technology

    2016-06-14

    Very Fast Response Concentration Detector EUGENE YEE Defence Research Establishment Suffield, Medicine Hat, Alberta, Canada R. CHAN AND P. R...hazards posed by the release of highly toxic or flammable gases to an un- derstanding of fast nonlinear physicochemical pro- cesses required for the...e.g., Gifford 1959; Csanady 1967; Chatwin 1982), fast -response concentration sensors required for the measurement and characterization of the

  6. Finite element strategies to satisfy clinical and engineering requirements in the field of percutaneous valves.

    PubMed

    Capelli, Claudio; Biglino, Giovanni; Petrini, Lorenza; Migliavacca, Francesco; Cosentino, Daria; Bonhoeffer, Philipp; Taylor, Andrew M; Schievano, Silvia

    2012-12-01

    Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients' suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.

  7. Complexity reduction in the H.264/AVC using highly adaptive fast mode decision based on macroblock motion activity

    NASA Astrophysics Data System (ADS)

    Abdellah, Skoudarli; Mokhtar, Nibouche; Amina, Serir

    2015-11-01

    The H.264/AVC video coding standard is used in a wide range of applications from video conferencing to high-definition television according to its high compression efficiency. This efficiency is mainly acquired from the newly allowed prediction schemes including variable block modes. However, these schemes require a high complexity to select the optimal mode. Consequently, complexity reduction in the H.264/AVC encoder has recently become a very challenging task in the video compression domain, especially when implementing the encoder in real-time applications. Fast mode decision algorithms play an important role in reducing the overall complexity of the encoder. In this paper, we propose an adaptive fast intermode algorithm based on motion activity, temporal stationarity, and spatial homogeneity. This algorithm predicts the motion activity of the current macroblock from its neighboring blocks and identifies temporal stationary regions and spatially homogeneous regions using adaptive threshold values based on content video features. Extensive experimental work has been done in high profile, and results show that the proposed source-coding algorithm effectively reduces the computational complexity by 53.18% on average compared with the reference software encoder, while maintaining the high-coding efficiency of H.264/AVC by incurring only 0.097 dB in total peak signal-to-noise ratio and 0.228% increment on the total bit rate.

  8. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  9. 76 FR 6369 - Changes To Implement the Prioritized Examination Track (Track I) of the Enhanced Examination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-04

    ... (Track I), providing fast examination for applicants desiring it, upon payment of the applicable fee and... examiners or supervisory patent examiners, specialized examiner training for fast track processing...

  10. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  11. ARYANA: Aligning Reads by Yet Another Approach.

    PubMed

    Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi

    2014-01-01

    Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.

  12. To fast, or not to fast before chemotherapy, that is the question.

    PubMed

    Caccialanza, Riccardo; Cereda, Emanuele; De Lorenzo, Francesco; Farina, Gabriella; Pedrazzoli, Paolo

    2018-03-27

    Fasting in disease prevention and treatment has recently become a popular topic, particularly in the context of oncology. Unfortunately, the growing attention paid by the media has created a background of speculations and ambiguous messages. The attitude towards the role of fasting in cancer patients should be very cautious, as the risk of malnutrition/sarcopenia and disinformation may be associated with this approach. Whether the results obtained by fasting in the cellular and animal models can be transferred to cancer patients is still to be ascertained. At the moment, more preclinical studies are required to determine in which cancers, at which stage, and in what combinations fasting, fasting-mimicking diets or caloric restriction mimetics may prove effective. So, despite the "rumors" of marketing and media, nowadays fasting and calorie restriction around CT represent only a promising intuition, which requires proper efforts and time to be validated by evidence-based clinical data.

  13. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

    PubMed Central

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors. PMID:27997930

  14. VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators.

    PubMed

    Tlelo-Cuautle, Esteban; Quintas-Valles, Antonio de Jesus; de la Fraga, Luis Gerardo; Rangel-Magdaleno, Jose de Jesus

    2016-01-01

    Nowadays, chaos generators are an attractive field for research and the challenge is their realization for the development of engineering applications. From more than three decades ago, chaotic oscillators have been designed using discrete electronic devices, very few with integrated circuit technology, and in this work we propose the use of field-programmable gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be expert on programming with very-high-speed integrated circuits hardware description language (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast prototyping from high-level programming using Python. The cases of study are three kinds of chaos generators based on piecewise-linear (PWL) functions that can be systematically augmented to generate even and odd number of scrolls. We introduce new algorithms for the VHDL description of PWL functions like saturated functions series, negative slopes and sawtooth. The generated VHDL-code is portable, reusable and open source to be synthesized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll attractors.

  15. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  16. Fast interrupt platform for extended DOS

    NASA Technical Reports Server (NTRS)

    Duryea, T. W.

    1995-01-01

    Extended DOS offers the unique combination of a simple operating system which allows direct access to the interrupt tables, 32 bit protected mode access to 4096 MByte address space, and the use of industry standard C compilers. The drawback is that fast interrupt handling requires both 32 bit and 16 bit versions of each real-time process interrupt handler to avoid mode switches on the interrupts. A set of tools has been developed which automates the process of transforming the output of a standard 32 bit C compiler to 16 bit interrupt code which directly handles the real mode interrupts. The entire process compiles one set of source code via a make file, which boosts productivity by making the management of the compile-link cycle very simple. The software components are in the form of classes written mostly in C. A foreground process written as a conventional application which can use the standard C libraries can communicate with the background real-time classes via a message passing mechanism. The platform thus enables the integration of high performance real-time processing into a conventional application framework.

  17. Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip

    PubMed Central

    Dai, Zhengfei; Xu, Lei; Duan, Guotao; Li, Tie; Zhang, Hongwen; Li, Yue; Wang, Yi; Wang, Yuelin; Cai, Weiping

    2013-01-01

    The chemiresistive thin film gas sensors with fast response, high sensitivity, low power consumption and mass-produced potency, have been expected for practical application. It requires both sensitive materials, especially exquisite nanomaterials, and efficient substrate chip for heating and electrical addressing. However, it is challenging to achieve repeatable microstructures across the films and low power consumption of substrate chip. Here we presented a new sensor structure via the fusion of metal-oxide nanoporous films and micro-electro-mechanical systems (MEMS)-based sensing chip. An interdigital-electrodes (IDEs) and microheater integrated MEMS structure is designed and employed as substrate chip to in-situ fabricate colloidal monolayer template-induced metal-oxide (egg. SnO2) nanoporous sensing films. This fused sensor demonstrates mW-level low power, ultrafast response (~1 s), and parts-per-billion lever detection for ethanol gas. Due to the controllable template strategy and mass-production potential, such micro/nano fused high-performance gas sensors will be next-generation key miniaturized/integrated devices for advanced practical applications. PMID:23591580

  18. Si-strip photon counting detectors for contrast-enhanced spectral mammography

    NASA Astrophysics Data System (ADS)

    Chen, Buxin; Reiser, Ingrid; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasi; Chen, Chin-Tu; Iwanczyk, Jan S.; Barber, William C.

    2015-08-01

    We report on the development of silicon strip detectors for energy-resolved clinical mammography. Typically, X-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a-Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting Si strip detectors. The required performance for mammography in terms of the output count rate, spatial resolution, and dynamic range must be obtained with sufficient field of view for the application, thus requiring the tiling of pixel arrays and particular scanning techniques. Room temperature Si strip detector, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the X-ray energy ranges of the application. We present our methods and results from the optimization of Si-strip detectors for contrast enhanced spectral mammography. We describe the method being developed for quantifying iodine contrast using the energy-resolved detector with fixed thresholds. We demonstrate the feasibility of the method by scanning an iodine phantom with clinically relevant contrast levels.

  19. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  20. Some practical universal noiseless coding techniques, part 2

    NASA Technical Reports Server (NTRS)

    Rice, R. F.; Lee, J. J.

    1983-01-01

    This report is an extension of earlier work (Part 1) which provided practical adaptive techniques for the efficient noiseless coding of a broad class of data sources characterized by only partially known and varying statistics (JPL Publication 79-22). The results here, while still claiming such general applicability, focus primarily on the noiseless coding of image data. A fairly complete and self-contained treatment is provided. Particular emphasis is given to the requirements of the forthcoming Voyager II encounters of Uranus and Neptune. Performance evaluations are supported both graphically and pictorially. Expanded definitions of the algorithms in Part 1 yield a computationally improved set of options for applications requiring efficient performance at entropies above 4 bits/sample. These expanded definitions include as an important subset, a somewhat less efficient but extremely simple "FAST' compressor which will be used at the Voyager Uranus encounter. Additionally, options are provided which enhance performance when atypical data spikes may be present.

  1. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  2. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; ...

    2015-12-11

    Here, table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~10 12 V m –1) and magnetic (~10 4 T)more » fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  3. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  4. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  5. Applicability of UV laser-induced solid-state fluorescence spectroscopy for characterization of solid dosage forms.

    PubMed

    Woltmann, Eva; Meyer, Hans; Weigel, Diana; Pritzke, Heinz; Posch, Tjorben N; Kler, Pablo A; Schürmann, Klaus; Roscher, Jörg; Huhn, Carolin

    2014-10-01

    High production output of solid pharmaceutical formulations requires fast methods to ensure their quality. Likewise, fast analytical procedures are required in forensic sciences, for example at customs, to substantiate an initial suspicion. We here present the design and the optimization of an instrumental setup for rapid and non-invasive characterization of tablets by laser-induced fluorescence spectroscopy (with a UV-laser (λ ex = 266 nm) as excitation source) in reflection geometry. The setup was first validated with regard to repeatability, bleaching phenomena, and sensitivity. The effect on the spectra by the physical and chemical properties of the samples, e.g. their hardness, homogeneity, chemical composition, and granule grain size of the uncompressed material, using a series of tablets, manufactured in accordance with design of experiments, was investigated. Investigation of tablets with regard to homogeneity, especially, is extremely important in pharmaceutical production processes. We demonstrate that multiplicative scatter correction is an appropriate tool for data preprocessing of fluorescence spectra. Tablets with different physical and chemical characteristics can be discriminated well from their fluorescence spectra by subjecting the results to principal component analysis.

  6. Fast non-interferometric iterative phase retrieval for holographic data storage.

    PubMed

    Lin, Xiao; Huang, Yong; Shimura, Tsutomu; Fujimura, Ryushi; Tanaka, Yoshito; Endo, Masao; Nishimoto, Hajimu; Liu, Jinpeng; Li, Yang; Liu, Ying; Tan, Xiaodi

    2017-12-11

    Fast non-interferometric phase retrieval is a very important technique for phase-encoded holographic data storage and other phase based applications due to its advantage of easy implementation, simple system setup, and robust noise tolerance. Here we present an iterative non-interferometric phase retrieval for 4-level phase encoded holographic data storage based on an iterative Fourier transform algorithm and known portion of the encoded data, which increases the storage code rate to two-times that of an amplitude based method. Only a single image at the Fourier plane of the beam is captured for the iterative reconstruction. Since beam intensity at the Fourier plane of the reconstructed beam is more concentrated than the reconstructed beam itself, the requirement of diffractive efficiency of the recording media is reduced, which will improve the dynamic range of recording media significantly. The phase retrieval only requires 10 iterations to achieve a less than 5% phase data error rate, which is successfully demonstrated by recording and reconstructing a test image data experimentally. We believe our method will further advance the holographic data storage technique in the era of big data.

  7. A fast collocation method for a variable-coefficient nonlocal diffusion model

    NASA Astrophysics Data System (ADS)

    Wang, Che; Wang, Hong

    2017-02-01

    We develop a fast collocation scheme for a variable-coefficient nonlocal diffusion model, for which a numerical discretization would yield a dense stiffness matrix. The development of the fast method is achieved by carefully handling the variable coefficients appearing inside the singular integral operator and exploiting the structure of the dense stiffness matrix. The resulting fast method reduces the computational work from O (N3) required by a commonly used direct solver to O (Nlog ⁡ N) per iteration and the memory requirement from O (N2) to O (N). Furthermore, the fast method reduces the computational work of assembling the stiffness matrix from O (N2) to O (N). Numerical results are presented to show the utility of the fast method.

  8. Asthma Inhalers: Which One's Right for You?

    MedlinePlus

    ... medication in these inhalers by breathing in a deep, fast breath. There are multiple-dose devices, which ... and convenient to carry. Doesn't require a deep, fast, inhaled breath. Doesn't require a deep, ...

  9. Intermittent fasting and cardiovascular disease: current evidence and unresolved questions.

    PubMed

    Tinsley, Grant M; Horne, Benjamin D

    2018-01-01

    Intermittent fasting has produced a variety of beneficial health effects in animal models, although high-quality research in humans has been limited. This special report examines current evidences for intermittent fasting in humans, discusses issues that require further examination, and recommends new research that can improve the knowledge base in this emerging research area. While potentially useful for health improvement, intermittent fasting requires further study prior to widespread implementation for health purposes. Randomized, longer-term studies are needed to determine whether using intermittent fasting as a lifestyle rather than a diet is feasible and beneficial for the health of some members of the human population.

  10. A MATLAB Library for Rapid Prototyping of Wireless Communications Algorithms with the Universal Software Radio Peripheral (USRP) Radio Family

    DTIC Science & Technology

    2013-06-01

    Radio is a software development toolkit that provides signal processing blocks to drive the SDR. GNU Radio has many strong points – it is actively...maintained with a large user base, new capabilities are constantly being added, and compiled C code is fast for many real-time applications such as...programming interface (API) makes learning the architecture a daunting task, even for the experienced software developer. This requirement poses many

  11. Performance Monitoring and Assessment of Neuro-Adaptive Controllers for Aerospace Applications Using a Bayesian Approach

    NASA Technical Reports Server (NTRS)

    Gupta, Pramod; Guenther, Kurt; Hodgkinson, John; Jacklin, Stephen; Richard, Michael; Schumann, Johann; Soares, Fola

    2005-01-01

    Modern exploration missions require modern control systems-control systems that can handle catastrophic changes in the system's behavior, compensate for slow deterioration in sustained operations, and support fast system ID. Adaptive controllers, based upon Neural Networks have these capabilities, but they can only be used safely if proper verification & validation (V&V) can be done. In this paper we present our V & V approach and simulation result within NASA's Intelligent Flight Control Systems (IFCS).

  12. Application of principal component analysis to multispectral imaging data for evaluation of pigmented skin lesions

    NASA Astrophysics Data System (ADS)

    Jakovels, Dainis; Lihacova, Ilze; Kuzmina, Ilona; Spigulis, Janis

    2013-11-01

    Non-invasive and fast primary diagnostics of pigmented skin lesions is required due to frequent incidence of skin cancer - melanoma. Diagnostic potential of principal component analysis (PCA) for distant skin melanoma recognition is discussed. Processing of the measured clinical multi-spectral images (31 melanomas and 94 nonmalignant pigmented lesions) in the wavelength range of 450-950 nm by means of PCA resulted in 87 % sensitivity and 78 % specificity for separation between malignant melanomas and pigmented nevi.

  13. Invariant Tori in the Secular Motions of the Three-body Planetary Systems

    NASA Astrophysics Data System (ADS)

    Locatelli, Ugo; Giorgilli, Antonio

    We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun-Jupiter-Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

  14. Fast Fractional Cascading and Its Applications

    DTIC Science & Technology

    2003-08-01

    the list associated with a tree node will require O(log log n)time, which negates the e ect of the \\fattened" tree. Only in some special cases, such...2]) in constant time, we have shown in [21] that we can handle theso-called 3-sided two dimensional range queries e ciently. Brie y, a point (a; b...which, when modi edappropriately, can be used to handle the orthogonal segment intersection problem e ciently.His modi cation of the vertical adjacency

  15. Pseudo-Random Number Generator Based on Coupled Map Lattices

    NASA Astrophysics Data System (ADS)

    Lü, Huaping; Wang, Shihong; Hu, Gang

    A one-way coupled chaotic map lattice is used for generating pseudo-random numbers. It is shown that with suitable cooperative applications of both chaotic and conventional approaches, the output of the spatiotemporally chaotic system can easily meet the practical requirements of random numbers, i.e., excellent random statistical properties, long periodicity of computer realizations, and fast speed of random number generations. This pseudo-random number generator system can be used as ideal synchronous and self-synchronizing stream cipher systems for secure communications.

  16. Fast state transfer in a Λ-system: a shortcut-to-adiabaticity approach to robust and resource optimized control

    NASA Astrophysics Data System (ADS)

    Mortensen, Henrik Lund; Sørensen, Jens Jakob W. H.; Mølmer, Klaus; Sherson, Jacob Friis

    2018-02-01

    We propose an efficient strategy to find optimal control functions for state-to-state quantum control problems. Our procedure first chooses an input state trajectory, that can realize the desired transformation by adiabatic variation of the system Hamiltonian. The shortcut-to-adiabaticity formalism then provides a control Hamiltonian that realizes the reference trajectory exactly but on a finite time scale. As the final state is achieved with certainty, we define a cost functional that incorporates the resource requirements and a perturbative expression for robustness. We optimize this functional by systematically varying the reference trajectory. We demonstrate the method by application to population transfer in a laser driven three-level Λ-system, where we find solutions that are fast and robust against perturbations while maintaining a low peak laser power.

  17. Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, E G; Hickman, B C; Lee, B S

    2002-06-24

    The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less

  18. Shear mode ER transfer function for robotic applications

    NASA Astrophysics Data System (ADS)

    Tan, K. P.; Stanway, R.; Bullough, W. A.

    2005-06-01

    Electro-rheological (ER) fluids are becoming popular in modern industrial applications. The advantage of employing ER devices is due to the ease of energizing the ER fluids at fast speeds of response. One innovation in ER applications could be in the positioning control of the robotic arm using an ER clutch. In order to actuate the manipulator, the ER output torque response is required. However, the behaviour of this ER torque response at different input conditions is not clearly understood. Therefore, in this paper, a sample study of the ER output torque is conducted. The ER output torque responses at different input parameters are studied carefully for the establishment of an appropriate ER transfer function in shear mode. This transfer function will serve as an important feature in future ER-actuated robot arm's control process.

  19. Simple and ultra-fast recognition and quantitation of compounded monoclonal antibodies: Application to flow injection analysis combined to UV spectroscopy and matching method.

    PubMed

    Jaccoulet, E; Schweitzer-Chaput, A; Toussaint, B; Prognon, P; Caudron, E

    2018-09-01

    Compounding of monoclonal antibody (mAbs) constantly increases in hospital. Quality control (QC) of the compounded mAbs based on quantification and identification is required to prevent potential errors and fast method is needed to manage outpatient chemotherapy administration. A simple and ultra-fast (less than 30 s) method using flow injection analysis associated to least square matching method issued from the analyzer software was performed and evaluated for the routine hospital QC of three compounded mAbs: bevacizumab, infliximab and rituximab. The method was evaluated through qualitative and quantitative parameters. Preliminary analysis of the UV absorption and second derivative spectra of the mAbs allowed us to adapt analytical conditions according to the therapeutic range of the mAbs. In terms of quantitative QC, linearity, accuracy and precision were assessed as specified in ICH guidelines. Very satisfactory recovery was achieved and the RSD (%) of the intermediate precision were less than 1.1%. Qualitative analytical parameters were also evaluated in terms of specificity, sensitivity and global precision through a matrix of confusion. Results showed to be concentration and mAbs dependant and excellent (100%) specificity and sensitivity were reached within specific concentration range. Finally, routine application on "real life" samples (n = 209) from different batch of the three mAbs complied with the specifications of the quality control i.e. excellent identification (100%) and ± 15% of targeting concentration belonging to the calibration range. The successful use of the combination of second derivative spectroscopy and partial least square matching method demonstrated the interest of FIA for the ultra-fast QC of mAbs after compounding using matching method. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: implications for the analgesic effects of 830 nm laser.

    PubMed

    Chow, Roberta T; David, Monique A; Armati, Patricia J

    2007-03-01

    We report the formation of 830 nm (cw) laser-induced, reversible axonal varicosities, using immunostaining with beta-tubulin, in small and medium diameter, TRPV-1 positive, cultured rat DRG neurons. Laser also induced a progressive and statistically significant decrease (p<0.005) in MMP in mitochondria in and between static axonal varicosities. In cell bodies of the neuron, the decrease in MMP was also statistically significant (p<0.05), but the decrease occurred more slowly. Importantly we also report for the first time that 830 nm (cw) laser blocked fast axonal flow, imaged in real time using confocal laser microscopy and JC-1 as mitotracker. Control neurons in parallel cultures remained unaffected with no varicosity formation and no change in MMP. Mitochondrial movement was continuous and measured along the axons at a rate of 0.8 microm/s (range 0.5-2 microm/s), consistent with fast axonal flow. Photoacceptors in the mitochondrial membrane absorb laser and mediate the transduction of laser energy into electrochemical changes, initiating a secondary cascade of intracellular events. In neurons, this results in a decrease in MMP with a concurrent decrease in available ATP required for nerve function, including maintenance of microtubules and molecular motors, dyneins and kinesins, responsible for fast axonal flow. Laser-induced neural blockade is a consequence of such changes and provide a mechanism for a neural basis of laser-induced pain relief. The repeated application of laser in a clinical setting modulates nociception and reduces pain. The application of laser therapy for chronic pain may provide a non-drug alternative for the management of chronic pain.

  1. Ambulance Clinical Triage for Acute Stroke Treatment: Paramedic Triage Algorithm for Large Vessel Occlusion.

    PubMed

    Zhao, Henry; Pesavento, Lauren; Coote, Skye; Rodrigues, Edrich; Salvaris, Patrick; Smith, Karen; Bernard, Stephen; Stephenson, Michael; Churilov, Leonid; Yassi, Nawaf; Davis, Stephen M; Campbell, Bruce C V

    2018-04-01

    Clinical triage scales for prehospital recognition of large vessel occlusion (LVO) are limited by low specificity when applied by paramedics. We created the 3-step ambulance clinical triage for acute stroke treatment (ACT-FAST) as the first algorithmic LVO identification tool, designed to improve specificity by recognizing only severe clinical syndromes and optimizing paramedic usability and reliability. The ACT-FAST algorithm consists of (1) unilateral arm drift to stretcher <10 seconds, (2) severe language deficit (if right arm is weak) or gaze deviation/hemineglect assessed by simple shoulder tap test (if left arm is weak), and (3) eligibility and stroke mimic screen. ACT-FAST examination steps were retrospectively validated, and then prospectively validated by paramedics transporting culturally and linguistically diverse patients with suspected stroke in the emergency department, for the identification of internal carotid or proximal middle cerebral artery occlusion. The diagnostic performance of the full ACT-FAST algorithm was then validated for patients accepted for thrombectomy. In retrospective (n=565) and prospective paramedic (n=104) validation, ACT-FAST displayed higher overall accuracy and specificity, when compared with existing LVO triage scales. Agreement of ACT-FAST between paramedics and doctors was excellent (κ=0.91; 95% confidence interval, 0.79-1.0). The full ACT-FAST algorithm (n=60) assessed by paramedics showed high overall accuracy (91.7%), sensitivity (85.7%), specificity (93.5%), and positive predictive value (80%) for recognition of endovascular-eligible LVO. The 3-step ACT-FAST algorithm shows higher specificity and reliability than existing scales for clinical LVO recognition, despite requiring just 2 examination steps. The inclusion of an eligibility step allowed recognition of endovascular-eligible patients with high accuracy. Using a sequential algorithmic approach eliminates scoring confusion and reduces assessment time. Future studies will test whether field application of ACT-FAST by paramedics to bypass suspected patients with LVO directly to endovascular-capable centers can reduce delays to endovascular thrombectomy. © 2018 American Heart Association, Inc.

  2. Prosthetic component segmentation with blur compensation: a fast method for 3D fluoroscopy.

    PubMed

    Tarroni, Giacomo; Tersi, Luca; Corsi, Cristiana; Stagni, Rita

    2012-06-01

    A new method for prosthetic component segmentation from fluoroscopic images is presented. The hybrid approach we propose combines diffusion filtering, region growing and level-set techniques without exploiting any a priori knowledge of the analyzed geometry. The method was evaluated on a synthetic dataset including 270 images of knee and hip prosthesis merged to real fluoroscopic data simulating different conditions of blurring and illumination gradient. The performance of the method was assessed by comparing estimated contours to references using different metrics. Results showed that the segmentation procedure is fast, accurate, independent on the operator as well as on the specific geometrical characteristics of the prosthetic component, and able to compensate for amount of blurring and illumination gradient. Importantly, the method allows a strong reduction of required user interaction time when compared to traditional segmentation techniques. Its effectiveness and robustness in different image conditions, together with simplicity and fast implementation, make this prosthetic component segmentation procedure promising and suitable for multiple clinical applications including assessment of in vivo joint kinematics in a variety of cases.

  3. Implementation and characterization of active feed-forward for deterministic linear optics quantum computing

    NASA Astrophysics Data System (ADS)

    Böhi, P.; Prevedel, R.; Jennewein, T.; Stefanov, A.; Tiefenbacher, F.; Zeilinger, A.

    2007-12-01

    In general, quantum computer architectures which are based on the dynamical evolution of quantum states, also require the processing of classical information, obtained by measurements of the actual qubits that make up the computer. This classical processing involves fast, active adaptation of subsequent measurements and real-time error correction (feed-forward), so that quantum gates and algorithms can be executed in a deterministic and hence error-free fashion. This is also true in the linear optical regime, where the quantum information is stored in the polarization state of photons. The adaptation of the photon’s polarization can be achieved in a very fast manner by employing electro-optical modulators, which change the polarization of a trespassing photon upon appliance of a high voltage. In this paper we discuss techniques for implementing fast, active feed-forward at the single photon level and we present their application in the context of photonic quantum computing. This includes the working principles and the characterization of the EOMs as well as a description of the switching logics, both of which allow quantum computation at an unprecedented speed.

  4. A thermodynamically based definition of fast verses slow heating in secondary explosives

    NASA Astrophysics Data System (ADS)

    Henson, Bryan; Smilowitz, Laura

    2013-06-01

    The thermal response of energetic materials is often categorized according to the rate of heating as either fast or slow, e.g. slow cook-off. Such categorizations have most often followed some operational rationale, without a material based definition. We have spent several years demonstrating that for the energetic material octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) a single mechanism of thermal response reproduces times to ignition independent of rate or means of heating over the entire range of thermal response. HMX is unique in that bulk melting is rarely observed in either thermal ignition or combustion. We have recently discovered a means of expressing this mechanism for HMX in a reduced form applicable to many secondary explosives. We will show that with this mechanism a natural definition of fast versus slow rates of heating emerges, related to the rate of melting, and we use this to illustrate why HMX does not exhibit melting, and why a number of other secondary explosives do, and require the two separate categories.

  5. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  6. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  7. Sparsity-based fast CGH generation using layer-based approach for 3D point cloud model

    NASA Astrophysics Data System (ADS)

    Kim, Hak Gu; Jeong, Hyunwook; Ro, Yong Man

    2017-03-01

    Computer generated hologram (CGH) is becoming increasingly important for a 3-D display in various applications including virtual reality. In the CGH, holographic fringe patterns are generated by numerically calculating them on computer simulation systems. However, a heavy computational cost is required to calculate the complex amplitude on CGH plane for all points of 3D objects. This paper proposes a new fast CGH generation based on the sparsity of CGH for 3D point cloud model. The aim of the proposed method is to significantly reduce computational complexity while maintaining the quality of the holographic fringe patterns. To that end, we present a new layer-based approach for calculating the complex amplitude distribution on the CGH plane by using sparse FFT (sFFT). We observe the CGH of a layer of 3D objects is sparse so that dominant CGH is rapidly generated from a small set of signals by sFFT. Experimental results have shown that the proposed method is one order of magnitude faster than recently reported fast CGH generation.

  8. 76 FR 20679 - Agency Information Collection Activities; Proposed Collection; Comment Request; Guidance for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ...: Fast Track Drug Development Programs: Designation, Development, and Application Review AGENCY: Food and... licenses for fast track designation as provided in the guidance for industry on fast track drug development... appropriate, and other forms of information technology. Guidance for Industry: Fast Track Drug Development...

  9. Coarse-to-fine deep neural network for fast pedestrian detection

    NASA Astrophysics Data System (ADS)

    Li, Yaobin; Yang, Xinmei; Cao, Lijun

    2017-11-01

    Pedestrian detection belongs to a category of object detection is a key issue in the field of video surveillance and automatic driving. Although recent object detection methods, such as Fast/Faster RCNN, have achieved excellent performance, it is difficult to meet real-time requirements and limits the application in real scenarios. A coarse-to-fine deep neural network for fast pedestrian detection is proposed in this paper. Two-stage approach is presented to realize fine trade-off between accuracy and speed. In the coarse stage, we train a fast deep convolution neural network to generate most pedestrian candidates at the cost of a number of false positives. The detector can cover the majority of scales, sizes, and occlusions of pedestrians. After that, a classification network is introduced to refine the pedestrian candidates generated from the previous stage. Refining through classification network, most of false detections will be excluded easily and the final pedestrian predictions with bounding box and confidence score are produced. Competitive results have been achieved on INRIA dataset in terms of accuracy, especially the method can achieve real-time detection that is faster than the previous leading methods. The effectiveness of coarse-to-fine approach to detect pedestrians is verified, and the accuracy and stability are also improved.

  10. Distinct mechanisms explain the control of reach speed planning: evidence from a race model framework.

    PubMed

    Venkataratamani, Prasanna Venkhatesh; Murthy, Aditya

    2018-05-16

    Previous studies have investigated the computational architecture underlying the voluntary control of reach movements that demands a change in position or direction of movement planning. Here we used a novel task, where subjects either had to increase or decrease the movement speed according to a change in target color that occurred randomly during a trial. The applicability of different race models to such a speed redirect task was assessed. We found that the predictions of an independent race model that instantiated an abort and re-plan strategy was consistent with all aspects of performance in the fast to slow speed condition. The results from modeling indicated a peculiar asymmetry, in that while the fast to slow speed change required inhibition, none of the standard race models were able to explain how movements changed from slow to fast speeds. Interestingly, a weighted averaging model that simulated the gradual merge of two kinematic plans explained behavior in the slow to fast speed task. In summary, our work shows how a race model framework can provide an understanding of how the brain controls of different aspects of reach movement planning and help distinguish between an abort and re-plan strategy from merging of plans.

  11. Fast steering and quick positioning of large field-of-regard, two-axis, four-gimbaled sight

    NASA Astrophysics Data System (ADS)

    Ansari, Zahir Ahmed; Nigam, Madhav Ji; Kumar, Avnish

    2017-07-01

    Fast steering and quick positioning are prime requirements of the current electro-optical tracking system to achieve quick target acquisition. A scheme has been proposed for realizing these features using two-axis, four-gimbaled sight. For steering the line of sight in the stabilization mode, outer gimbal is slaved to the gyro stabilized inner gimbal. Typically, the inner gimbals have direct drives and outer gimbals have geared drives, which result in a mismatch in the acceleration capability of their servo loops. This limits the allowable control bandwidth for the inner gimbal. However, to achieve high stabilization accuracy, high bandwidth control loops are essential. This contradictory requirement has been addressed by designing a suitable command conditioning module for the inner gimbals. Also, large line-of-sight freedom in pitch axis is required to provide a wide area surveillance capacity for airborne application. This leads to a loss of freedom along the yaw axis as the pitch angle goes beyond 70 deg or so. This is addressed by making the outer gimbal master after certain pitch angle. Moreover, a mounting scheme for gyro has been proposed to accomplish yaw axis stabilization for 110-deg pitch angle movement with a single two-axis gyro.

  12. A hardware implementation of the discrete Pascal transform for image processing

    NASA Astrophysics Data System (ADS)

    Goodman, Thomas J.; Aburdene, Maurice F.

    2006-02-01

    The discrete Pascal transform is a polynomial transform with applications in pattern recognition, digital filtering, and digital image processing. It already has been shown that the Pascal transform matrix can be decomposed into a product of binary matrices. Such a factorization leads to a fast and efficient hardware implementation without the use of multipliers, which consume large amounts of hardware. We recently developed a field-programmable gate array (FPGA) implementation to compute the Pascal transform. Our goal was to demonstrate the computational efficiency of the transform while keeping hardware requirements at a minimum. Images are uploaded into memory from a remote computer prior to processing, and the transform coefficients can be offloaded from the FPGA board for analysis. Design techniques like as-soon-as-possible scheduling and adder sharing allowed us to develop a fast and efficient system. An eight-point, one-dimensional transform completes in 13 clock cycles and requires only four adders. An 8x8 two-dimensional transform completes in 240 cycles and requires only a top-level controller in addition to the one-dimensional transform hardware. Finally, through minor modifications to the controller, the transform operations can be pipelined to achieve 100% utilization of the four adders, allowing one eight-point transform to complete every seven clock cycles.

  13. A "three-in-one" sample preparation method for simultaneous determination of B-group water-soluble vitamins in infant formula using VitaFast(®) kits.

    PubMed

    Zhang, Heng; Lan, Fang; Shi, Yupeng; Wan, Zhi-Gang; Yue, Zhen-Feng; Fan, Fang; Lin, Yan-Kui; Tang, Mu-Jin; Lv, Jing-Zhang; Xiao, Tan; Yi, Changqing

    2014-06-15

    VitaFast(®) test kits designed for the microbiological assay in microtiter plate format can be applied to quantitative determination of B-group water-soluble vitamins such as vitamin B12, folic acid and biotin, et al. Compared to traditional microbiological methods, VitaFast(®) kits significantly reduce sample processing time and provide greater reliability, higher productivity and better accuracy. Recently, simultaneous determination of vitamin B12, folic acid and biotin in one sample is urgently required when evaluating the quality of infant formulae in our practical work. However, the present sample preparation protocols which are developed for individual test systems, are incompatible with simultaneous determination of several analytes. To solve this problem, a novel "three-in-one" sample preparation method is herein developed for simultaneous determination of B-group water-soluble vitamins using VitaFast(®) kits. The performance of this novel "three-in-one" sample preparation method was systematically evaluated through comparing with individual sample preparation protocols. The experimental results of the assays which employed "three-in-one" sample preparation method were in good agreement with those obtained from conventional VitaFast(®) extraction methods, indicating that the proposed "three-in-one" sample preparation method is applicable to the present three VitaFast(®) vitamin test systems, thus offering a promising alternative for the three independent sample preparation methods. The proposed new sample preparation method will significantly improve the efficiency of infant formulae inspection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  15. Bacteriophage vehicles for phage display: biology, mechanism, and application.

    PubMed

    Ebrahimizadeh, Walead; Rajabibazl, Masoumeh

    2014-08-01

    The phage display technique is a powerful tool for selection of various biological agents. This technique allows construction of large libraries from the antibody repertoire of different hosts and provides a fast and high-throughput selection method. Specific antibodies can be isolated based on distinctive characteristics from a library consisting of millions of members. These features made phage display technology preferred method for antibody selection and engineering. There are several phage display methods available and each has its unique merits and application. Selection of appropriate display technique requires basic knowledge of available methods and their mechanism. In this review, we describe different phage display techniques, available bacteriophage vehicles, and their mechanism.

  16. Real-time image mosaicing for medical applications.

    PubMed

    Loewke, Kevin E; Camarillo, David B; Jobst, Christopher A; Salisbury, J Kenneth

    2007-01-01

    In this paper we describe the development of a robotically-assisted image mosaicing system for medical applications. The processing occurs in real-time due to a fast initial image alignment provided by robotic position sensing. Near-field imaging, defined by relatively large camera motion, requires translations as well as pan and tilt orientations to be measured. To capture these measurements we use 5-d.o.f. sensing along with a hand-eye calibration to account for sensor offset. This sensor-based approach speeds up the mosaicing, eliminates cumulative errors, and readily handles arbitrary camera motions. Our results have produced visually satisfactory mosaics on a dental model but can be extended to other medical images.

  17. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    PubMed Central

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  18. Nuclear electric propulsion stage requirements and description

    NASA Technical Reports Server (NTRS)

    Mondt, J. F.; Peelgren, M. L.; Nakashima, A. M.; Nsieh, T. M.; Phillips, W. M.; Kikin, G. M.

    1974-01-01

    The application of a nuclear electric propulsion (NEP) stage in the exploration of near-earth, cometary, and planetary space was discussed. The NEP stage is powered by a liquid-metal-cooled, fast spectrum thermionic reactor capable of providing 120 kWe for 20,000 hours. This power is used to drive a number of mercury ion bombardment thrusters with specific impulse in the range of 4000-5000 seconds. The NEP description, characteristics, and functional requirements are discussed. These requirements are based on a set of five coordinate missions, which are described in detail. These five missions are a representative part of a larger set of missions used as a basic for an advanced propulsion comparison study. Additionally, the NEP stage development plan and test program is outlined and a schedule presented.

  19. 18 CFR 385.206 - Complaints (Rule 206).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... electronic media as specified by the Secretary. (11) Explain with respect to requests for Fast Track... before an ALJ; (h) Fast Track processing. (1) The Commission may resolve complaints using Fast Track procedures if the complaint requires expeditious resolution. Fast Track procedures may include expedited...

  20. 18 CFR 385.206 - Complaints (Rule 206).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... electronic media as specified by the Secretary. (11) Explain with respect to requests for Fast Track... before an ALJ; (h) Fast Track processing. (1) The Commission may resolve complaints using Fast Track procedures if the complaint requires expeditious resolution. Fast Track procedures may include expedited...

  1. 18 CFR 385.206 - Complaints (Rule 206).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic media as specified by the Secretary. (11) Explain with respect to requests for Fast Track... before an ALJ; (h) Fast Track processing. (1) The Commission may resolve complaints using Fast Track procedures if the complaint requires expeditious resolution. Fast Track procedures may include expedited...

  2. Nutrition labeling and value size pricing at fast-food restaurants: a consumer perspective.

    PubMed

    O'Dougherty, Maureen; Harnack, Lisa J; French, Simone A; Story, Mary; Oakes, J Michael; Jeffery, Robert W

    2006-01-01

    This pilot study examined nutrition-related attitudes that may affect food choices at fast-food restaurants, including consumer attitudes toward nutrition labeling of fast foods and elimination of value size pricing. A convenience sample of 79 fast-food restaurant patrons aged 16 and above (78.5% white, 55% female, mean age 41.2 [17.1]) selected meals from fast-food restaurant menus that varied as to whether nutrition information was provided and value pricing included and completed a survey and interview on nutrition-related attitudes. Only 57.9% of participants rated nutrition as important when buying fast food. Almost two thirds (62%) supported a law requiring nutrition labeling on restaurant menus. One third (34%) supported a law requiring restaurants to offer lower prices on smaller instead of bigger-sized portions. This convenience sample of fast-food patrons supported nutrition labels on menus. More research is needed with larger samples on whether point-of-purchase nutrition labeling at fast-food restaurants raises perceived importance of nutrition when eating out.

  3. The Generic Resolution Advisor and Conflict Evaluator (GRACE) for Detect-And-Avoid (DAA) Systems

    NASA Technical Reports Server (NTRS)

    Abramson, Michael; Refai, Mohamad; Santiago, Confesor

    2017-01-01

    The paper describes the Generic Resolution Advisor and Conflict Evaluator (GRACE), a novel alerting and guidance algorithm that combines flexibility, robustness, and computational efficiency. GRACE is "generic" in that it makes no assumptions regarding temporal or spatial scales, aircraft performance, or its sensor and communication systems. Accordingly, GRACE is well suited to research applications where alerting and guidance is a central feature and requirements are fluid involving a wide range of aviation technologies. GRACE has been used at NASA in a number of real-time and fast-time experiments supporting evolving requirements of DAA research, including parametric studies, NAS-wide simulations, human-in-the-loop experiments, and live flight tests.

  4. Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Kelaita, Paul G.; Mccabe, R. Kevin; Merritt, Fergus J.; Plessel, Todd C.; Sandstrom, Timothy A.; West, John T.

    1993-01-01

    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described.

  5. Limiting factors for carbon based chemical double layer capacitors

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.

    1993-01-01

    The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.

  6. HodDB: Design and Analysis of a Query Processor for Brick.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fierro, Gabriel; Culler, David

    Brick is a recently proposed metadata schema and ontology for describing building components and the relationships between them. It represents buildings as directed labeled graphs using the RDF data model. Using the SPARQL query language, building-agnostic applications query a Brick graph to discover the set of resources and relationships they require to operate. Latency-sensitive applications, such as user interfaces, demand response and modelpredictive control, require fast queries — conventionally less than 100ms. We benchmark a set of popular open-source and commercial SPARQL databases against three real Brick models using seven application queries and find that none of them meet thismore » performance target. This lack of performance can be attributed to design decisions that optimize for queries over large graphs consisting of billions of triples, but give poor spatial locality and join performance on the small dense graphs typical of Brick. We present the design and evaluation of HodDB, a RDF/SPARQL database for Brick built over a node-based index structure. HodDB performs Brick queries 3-700x faster than leading SPARQL databases and consistently meets the 100ms threshold, enabling the portability of important latency-sensitive building applications.« less

  7. Multipurpose neutron generators based on the radio frequency quadrupole linear accelerator

    NASA Astrophysics Data System (ADS)

    Hamm, Robert W.

    2000-12-01

    Neutron generators based on the Radio Frequency Quadrupole accelerator are now used for a variety of applications. These compact linear accelerators can produce from 108 to more than 1013 neutrons/second using either proton or deuteron beams to bombard beryllium targets. They exhibit long lifetimes at full output, as there is little target or beam degradation. Since they do not use radioactive materials, licensing requirements are less stringent than for isotopic sources or tritium sealed tube generators. The light weight and compact size of these robust systems make them transportable. The low divergence output beam from the RFQ also allows use of a remote target, which can reduce the seize of the shielding and moderator. The RFQ linac can be designed with a wide range of output beam energy and used with other targets such as lithium and deuterium to produce a neutron spectrum tailored to a specific application. These pulsed systems are well-suited for applications requiring a high peak neutron flux, including activation analysis of very short-lived reaction products. They can replace conventional sources in non-destructive testing applications such as thermal or fast neutron radiography, and can also be used for cancer therapy.

  8. Combined inverse-forward artificial neural networks for fast and accurate estimation of the diffusion coefficients of cartilage based on multi-physics models.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Weinans, Harrie; Zadpoor, Amir A

    2016-09-06

    Analytical and numerical methods have been used to extract essential engineering parameters such as elastic modulus, Poisson׳s ratio, permeability and diffusion coefficient from experimental data in various types of biological tissues. The major limitation associated with analytical techniques is that they are often only applicable to problems with simplified assumptions. Numerical multi-physics methods, on the other hand, enable minimizing the simplified assumptions but require substantial computational expertise, which is not always available. In this paper, we propose a novel approach that combines inverse and forward artificial neural networks (ANNs) which enables fast and accurate estimation of the diffusion coefficient of cartilage without any need for computational modeling. In this approach, an inverse ANN is trained using our multi-zone biphasic-solute finite-bath computational model of diffusion in cartilage to estimate the diffusion coefficient of the various zones of cartilage given the concentration-time curves. Robust estimation of the diffusion coefficients, however, requires introducing certain levels of stochastic variations during the training process. Determining the required level of stochastic variation is performed by coupling the inverse ANN with a forward ANN that receives the diffusion coefficient as input and returns the concentration-time curve as output. Combined together, forward-inverse ANNs enable computationally inexperienced users to obtain accurate and fast estimation of the diffusion coefficients of cartilage zones. The diffusion coefficients estimated using the proposed approach are compared with those determined using direct scanning of the parameter space as the optimization approach. It has been shown that both approaches yield comparable results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Evaluation of nonlinear structural dynamic responses using a fast-running spring-mass formulation

    NASA Astrophysics Data System (ADS)

    Benjamin, A. S.; Altman, B. S.; Gruda, J. D.

    In today's world, accurate finite-element simulations of large nonlinear systems may require meshes composed of hundreds of thousands of degrees of freedom. Even with today's fast computers and the promise of ever-faster ones in the future, central processing unit (CPU) expenditures for such problems could be measured in days. Many contemporary engineering problems, such as those found in risk assessment, probabilistic structural analysis, and structural design optimization, cannot tolerate the cost or turnaround time for such CPU-intensive analyses, because these applications require a large number of cases to be run with different inputs. For many risk assessment applications, analysts would prefer running times to be measurable in minutes. There is therefore a need for approximation methods which can solve such problems far more efficiently than the very detailed methods and yet maintain an acceptable degree of accuracy. For this purpose, we have been working on two methods of approximation: neural networks and spring-mass models. This paper presents our work and results to date for spring-mass modeling and analysis, since we are further along in this area than in the neural network formulation. It describes the physical and numerical models contained in a code we developed called STRESS, which stands for 'Spring-mass Transient Response Evaluation for structural Systems'. The paper also presents results for a demonstration problem, and compares these with results obtained for the same problem using PRONTO3D, a state-of-the-art finite element code which was also developed at Sandia.

  10. Preprocessing of A-scan GPR data based on energy features

    NASA Astrophysics Data System (ADS)

    Dogan, Mesut; Turhan-Sayan, Gonul

    2016-05-01

    There is an increasing demand for noninvasive real-time detection and classification of buried objects in various civil and military applications. The problem of detection and annihilation of landmines is particularly important due to strong safety concerns. The requirement for a fast real-time decision process is as important as the requirements for high detection rates and low false alarm rates. In this paper, we introduce and demonstrate a computationally simple, timeefficient, energy-based preprocessing approach that can be used in ground penetrating radar (GPR) applications to eliminate reflections from the air-ground boundary and to locate the buried objects, simultaneously, at one easy step. The instantaneous power signals, the total energy values and the cumulative energy curves are extracted from the A-scan GPR data. The cumulative energy curves, in particular, are shown to be useful to detect the presence and location of buried objects in a fast and simple way while preserving the spectral content of the original A-scan data for further steps of physics-based target classification. The proposed method is demonstrated using the GPR data collected at the facilities of IPA Defense, Ankara at outdoor test lanes. Cylindrically shaped plastic containers were buried in fine-medium sand to simulate buried landmines. These plastic containers were half-filled by ammonium nitrate including metal pins. Results of this pilot study are demonstrated to be highly promising to motivate further research for the use of energy-based preprocessing features in landmine detection problem.

  11. The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome

    NASA Astrophysics Data System (ADS)

    Beaujuge, P. M.; Ellinger, S.; Reynolds, J. R.

    2008-10-01

    In the context of the fast-growing demand for innovative high-performance display technologies, the perspective of manufacturing low-cost functional materials that can be easily processed over large areas or finely printed into individual pixels, while being mechanically deformable, has motivated the development of novel electronically active organic components fulfilling the requirements for flexible displays and portable applications. Among all technologies relying on a low-power stimulated optical change, non-emissive organic electrochromic devices (ECDs) offer the advantage of being operational under a wide range of viewing angles and lighting conditions spanning direct sunlight as desired for various applications including signage, information tags and electronic paper. Combining mechanical flexibility, high contrast ratios and fast response times, along with colour tunability through structural control, polymeric electrochromes constitute the most attractive organic electronics for tomorrow's reflective/transmissive ECDs and displays. Although red, blue and most recently green electrochromic polymers (ECPs) required for additive primary colour space were investigated, attempts to make saturated black ECPs have not been reported, probably owing to the complexity of designing materials absorbing effectively over the whole visible spectrum. Here, we report on the use of the donor-acceptor approach to make the first neutral-state black polymeric electrochrome. Processable black-to-transmissive ECPs promise to affect the development of both reflective and transmissive ECDs by providing lower fabrication and processing costs through printing, spraying and coating methods, along with good scalability when compared with their traditional inorganic counterparts.

  12. Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces

    NASA Astrophysics Data System (ADS)

    Hu, Huan; Siu, Vince S.; Gifford, Stacey M.; Kim, Sungcheol; Lu, Minhua; Meyer, Pablo; Stolovitzky, Gustavo A.

    2017-12-01

    The recently discovered bactericidal properties of nanostructures on wings of insects such as cicadas and dragonflies have inspired the development of similar nanostructured surfaces for antibacterial applications. Since most antibacterial applications require nanostructures covering a considerable amount of area, a practical fabrication method needs to be cost-effective and scalable. However, most reported nanofabrication methods require either expensive equipment or a high temperature process, limiting cost efficiency and scalability. Here, we report a simple, fast, low-cost, and scalable antibacterial surface nanofabrication methodology. Our method is based on metal-assisted chemical etching that only requires etching a single crystal silicon substrate in a mixture of silver nitrate and hydrofluoric acid for several minutes. We experimentally studied the effects of etching time on the morphology of the silicon nanospikes and the bactericidal properties of the resulting surface. We discovered that 6 minutes of etching results in a surface containing silicon nanospikes with optimal geometry. The bactericidal properties of the silicon nanospikes were supported by bacterial plating results, fluorescence images, and scanning electron microscopy images.

  13. Pharmacokinetic Studies in Healthy Subjects for the Development of an Extended-Release Tablet Formulation of Guaifenesin: A 505(b)(2) New Drug Application Approval.

    PubMed

    Vilson, Lineau; Owen, Joel S

    2013-01-01

    Guaifenesin is an expectorant used to improve mucociliary clearance (MCC) and relieve chest congestion from upper respiratory tract infections. Immediate-release (IR) guaifenesin requires dosing every 4 hours to maintain efficacy because of the drug's short half-life. Extended-release (ER) guaifenesin has been developed to prolong efficacy and reduce dosing frequency. As part of the 505(b)(2) new drug application (NDA), the pharmacokinetics (PK) of an ER bi-layer tablet formulation of guaifenesin (Mucinex®) and bioequivalence to an over-the-counter (OTC) monograph IR formulation were evaluated in healthy subjects. In one study, subjects received 1,200 mg ER guaifenesin every 12 hours or 400 mg IR guaifenesin every 4 hours for 6 days. Steady-state exposures were equivalent between the two products, as demonstrated by AUC and Cmax . In another study, subjects received a single dose of 600 mg (fasted) or 1,200 mg (fasted or fed) ER bi-layer tablet formulations. AUC and Cmax were equivalent between both states for the 1,200 mg ER dose. However, Tmax of 1,200 mg ER guaifenesin was later in the fed than the fasted state. ER guaifenesin is bioequivalent to corresponding OTC monograph doses of IR guaifenesin. ER guaifenesin offers a convenient 12-hour dosing alternative to 4-hour dosing of IR guaifenesin. © The Author(s) 2013.

  14. Requirements for transportation of fast pyrolysis bio-oil in Finland

    NASA Astrophysics Data System (ADS)

    Karhunen, Antti; Laihanen, Mika; Ranta, Tapio

    2016-11-01

    The purpose of this paper is to discuss the requirements and challenges of pyrolysis oil's transportation in Finland. Pyrolysis oil is a new type of renewable liquid fuel that can be utilised in applications such as heat and electricity production. It has never been transported on a large scale in Finland. Possible options are transport by road, rail and waterway. The most significant requirements in its transportation are created by acidity and high density of pyrolysis oil, which impose requirements for the materials and transport equipment. The study described here shows that constant domestic transportation of pyrolysis oil is most reasonably operated with tank trucks. Rail-based transport may have potential for domestic fixed routes, and transport by water could be utilised in exporting. All transportation methods have limitations and advantages relative to each other. Ultimately, the production site and end-user's locations will determine the most suitable transport method.

  15. Fast Ordered Sampling of DNA Sequence Variants.

    PubMed

    Greenberg, Anthony J

    2018-05-04

    Explosive growth in the amount of genomic data is matched by increasing power of consumer-grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop machines if we can generate representative samples from large data sets. I describe a fast and memory-efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a method to quickly estimate genome-wide patterns of linkage disequilibrium (LD) decay with distance. I provide open-source software that samples loci from several variant format files, a separate program that performs LD decay estimates, and a C++ library that lets developers incorporate these methods into their own projects. Copyright © 2018 Greenberg.

  16. Non-adiabatic molecular dynamics investigation of photoionization state formation and lifetime in Mn²⁺-doped ZnO quantum dots.

    PubMed

    Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong

    2014-09-07

    The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.

  17. Fast Modeling of Binding Affinities by Means of Superposing Significant Interaction Rules (SSIR) Method

    PubMed Central

    Besalú, Emili

    2016-01-01

    The Superposing Significant Interaction Rules (SSIR) method is described. It is a general combinatorial and symbolic procedure able to rank compounds belonging to combinatorial analogue series. The procedure generates structure-activity relationship (SAR) models and also serves as an inverse SAR tool. The method is fast and can deal with large databases. SSIR operates from statistical significances calculated from the available library of compounds and according to the previously attached molecular labels of interest or non-interest. The required symbolic codification allows dealing with almost any combinatorial data set, even in a confidential manner, if desired. The application example categorizes molecules as binding or non-binding, and consensus ranking SAR models are generated from training and two distinct cross-validation methods: leave-one-out and balanced leave-two-out (BL2O), the latter being suited for the treatment of binary properties. PMID:27240346

  18. A method for the fast estimation of a battery entropy-variation high-resolution curve - Application on a commercial LiFePO4/graphite cell

    NASA Astrophysics Data System (ADS)

    Damay, Nicolas; Forgez, Christophe; Bichat, Marie-Pierre; Friedrich, Guy

    2016-11-01

    The entropy-variation of a battery is responsible for heat generation or consumption during operation and its prior measurement is mandatory for developing a thermal model. It is generally done through the potentiometric method which is considered as a reference. However, it requires several days or weeks to get a look-up table with a 5 or 10% SoC (State of Charge) resolution. In this study, a calorimetric method based on the inversion of a thermal model is proposed for the fast estimation of a nearly continuous curve of entropy-variation. This is achieved by separating the heats produced while charging and discharging the battery. The entropy-variation is then deduced from the extracted entropic heat. The proposed method is validated by comparing the results obtained with several current rates to measurements made with the potentiometric method.

  19. Ferroelectric Based High Power Components for L-Band Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Jing, Chunguang; Kostin, Roman

    2018-01-16

    We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less

  20. A fast and accurate frequency estimation algorithm for sinusoidal signal with harmonic components

    NASA Astrophysics Data System (ADS)

    Hu, Jinghua; Pan, Mengchun; Zeng, Zhidun; Hu, Jiafei; Chen, Dixiang; Tian, Wugang; Zhao, Jianqiang; Du, Qingfa

    2016-10-01

    Frequency estimation is a fundamental problem in many applications, such as traditional vibration measurement, power system supervision, and microelectromechanical system sensors control. In this paper, a fast and accurate frequency estimation algorithm is proposed to deal with low efficiency problem in traditional methods. The proposed algorithm consists of coarse and fine frequency estimation steps, and we demonstrate that it is more efficient than conventional searching methods to achieve coarse frequency estimation (location peak of FFT amplitude) by applying modified zero-crossing technique. Thus, the proposed estimation algorithm requires less hardware and software sources and can achieve even higher efficiency when the experimental data increase. Experimental results with modulated magnetic signal show that the root mean square error of frequency estimation is below 0.032 Hz with the proposed algorithm, which has lower computational complexity and better global performance than conventional frequency estimation methods.

  1. Frog: The fast & realistic OpenGL event displayer

    NASA Astrophysics Data System (ADS)

    Quertenmont, Loïc

    2010-04-01

    FROG [1] [2] is a generic framework dedicated to visualisation of events in high energy physics experiment. It is suitable to any particular physics experiment or detector design. The code is light (< 3 MB) and fast (browsing time ~ 20 events per second for a large High Energy Physics experiment) and can run on various operating systems, as its object-oriented structure (C++) relies on the cross-platform OpenGL[3] and Glut [4] libraries. Moreover, Frog does not require installation of heavy third party libraries for the visualisation. This documents describes the features and principles of Frog version 1.106, its working scheme and numerous functionalities such as: 3D and 2D visualisation, graphical user interface, mouse interface, configuration files, production of pictures of various format, integration of personal objects, etc. Finally the application of FROG for physic experiment/environement, such as Gastof, CMS, ILD, Delphes will be presented for illustration.

  2. Reducing microwave absorption with fast frequency modulation.

    PubMed

    Qin, Juehang; Hubler, A

    2017-05-01

    We study the response of a two-level quantum system to a chirp signal, using both numerical and analytical methods. The numerical method is based on numerical solutions of the Schrödinger solution of the two-level system, while the analytical method is based on an approximate solution of the same equations. We find that when two-level systems are perturbed by a chirp signal, the peak population of the initially unpopulated state exhibits a high sensitivity to frequency modulation rate. We also find that the aforementioned sensitivity depends on the strength of the forcing, and weaker forcings result in a higher sensitivity, where the frequency modulation rate required to produce the same reduction in peak population would be lower. We discuss potential applications of this result in the field of microwave power transmission, as it shows applying fast frequency modulation to transmitted microwaves used for power transmission could decrease unintended absorption of microwaves by organic tissue.

  3. Improved Magnetron Stability and Reduced Noise in Efficient Transmitters for Superconducting Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazakevich, G.; Johnson, R.; Lebedev, V.

    State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less

  4. Ultrafast Method for the Analysis of Fluorescence Lifetime Imaging Microscopy Data Based on the Laguerre Expansion Technique

    PubMed Central

    Jo, Javier A.; Fang, Qiyin; Marcu, Laura

    2007-01-01

    We report a new deconvolution method for fluorescence lifetime imaging microscopy (FLIM) based on the Laguerre expansion technique. The performance of this method was tested on synthetic and real FLIM images. The following interesting properties of this technique were demonstrated. 1) The fluorescence intensity decay can be estimated simultaneously for all pixels, without a priori assumption of the decay functional form. 2) The computation speed is extremely fast, performing at least two orders of magnitude faster than current algorithms. 3) The estimated maps of Laguerre expansion coefficients provide a new domain for representing FLIM information. 4) The number of images required for the analysis is relatively small, allowing reduction of the acquisition time. These findings indicate that the developed Laguerre expansion technique for FLIM analysis represents a robust and extremely fast deconvolution method that enables practical applications of FLIM in medicine, biology, biochemistry, and chemistry. PMID:19444338

  5. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  6. Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators

    NASA Astrophysics Data System (ADS)

    Ponomarenko, Sergei A.; Surin, Nikolay M.; Borshchev, Oleg V.; Luponosov, Yuriy N.; Akimov, Dmitry Y.; Alexandrov, Ivan S.; Burenkov, Alexander A.; Kovalenko, Alexey G.; Stekhanov, Viktor N.; Kleymyuk, Elena A.; Gritsenko, Oleg T.; Cherkaev, Georgiy V.; Kechek'yan, Alexander S.; Serenko, Olga A.; Muzafarov, Aziz M.

    2014-10-01

    Organic luminophores are widely used in various optoelectronic devices, which serve for photonics, nuclear and particle physics, quantum electronics, medical diagnostics and many other fields of science and technology. Improving their spectral-luminescent characteristics for particular technical requirements of the devices is a challenging task. Here we show a new concept to universal solution of this problem by creation of nanostructured organosilicon luminophores (NOLs), which are a particular type of dendritic molecular antennas. They combine the best properties of organic luminophores and inorganic quantum dots: high absorption cross-section, excellent photoluminescence quantum yield, fast luminescence decay time and good processability. A NOL consists of two types of covalently bonded via silicon atoms organic luminophores with efficient Förster energy transfer between them. Using NOLs in plastic scintillators, widely utilized for radiation detection and in elementary particles discoveries, led to a breakthrough in their efficiency, which combines both high light output and fast decay time. Moreover, for the first time plastic scintillators, which emit light in the desired wavelength region ranging from 370 to 700 nm, have been created. We anticipate further applications of NOLs as working elements of pulsed dye lasers in photonics, optoelectronics and as fluorescent labels in biology and medical diagnostics.

  7. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2.

    PubMed

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users.

  8. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2

    PubMed Central

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. Availability PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users. PMID:26339154

  9. The development of GPU-based parallel PRNG for Monte Carlo applications in CUDA Fortran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargaran, Hamed, E-mail: h-kargaran@sbu.ac.ir; Minuchehr, Abdolhamid; Zolfaghari, Ahmad

    The implementation of Monte Carlo simulation on the CUDA Fortran requires a fast random number generation with good statistical properties on GPU. In this study, a GPU-based parallel pseudo random number generator (GPPRNG) have been proposed to use in high performance computing systems. According to the type of GPU memory usage, GPU scheme is divided into two work modes including GLOBAL-MODE and SHARED-MODE. To generate parallel random numbers based on the independent sequence method, the combination of middle-square method and chaotic map along with the Xorshift PRNG have been employed. Implementation of our developed PPRNG on a single GPU showedmore » a speedup of 150x and 470x (with respect to the speed of PRNG on a single CPU core) for GLOBAL-MODE and SHARED-MODE, respectively. To evaluate the accuracy of our developed GPPRNG, its performance was compared to that of some other commercially available PPRNGs such as MATLAB, FORTRAN and Miller-Park algorithm through employing the specific standard tests. The results of this comparison showed that the developed GPPRNG in this study can be used as a fast and accurate tool for computational science applications.« less

  10. Application of Cross-Correlation Greens Function Along With FDTD for Fast Computation of Envelope Correlation Coefficient Over Wideband for MIMO Antennas

    NASA Astrophysics Data System (ADS)

    Sarkar, Debdeep; Srivastava, Kumar Vaibhav

    2017-02-01

    In this paper, the concept of cross-correlation Green's functions (CGF) is used in conjunction with the finite difference time domain (FDTD) technique for calculation of envelope correlation coefficient (ECC) of any arbitrary MIMO antenna system over wide frequency band. Both frequency-domain (FD) and time-domain (TD) post-processing techniques are proposed for possible application with this FDTD-CGF scheme. The FDTD-CGF time-domain (FDTD-CGF-TD) scheme utilizes time-domain signal processing methods and exhibits significant reduction in ECC computation time as compared to the FDTD-CGF frequency domain (FDTD-CGF-FD) scheme, for high frequency-resolution requirements. The proposed FDTD-CGF based schemes can be applied for accurate and fast prediction of wideband ECC response, instead of the conventional scattering parameter based techniques which have several limitations. Numerical examples of the proposed FDTD-CGF techniques are provided for two-element MIMO systems involving thin-wire half-wavelength dipoles in parallel side-by-side as well as orthogonal arrangements. The results obtained from the FDTD-CGF techniques are compared with results from commercial electromagnetic solver Ansys HFSS, to verify the validity of proposed approach.

  11. 46 CFR 12.10-9 - Endorsement for proficiency in fast rescue boats.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Endorsement for proficiency in fast rescue boats. 12.10... SEAMEN REQUIREMENTS FOR RATING ENDORSEMENTS Lifeboatman § 12.10-9 Endorsement for proficiency in fast rescue boats. (a) Each person engaged or employed as a lifeboatman proficient in fast rescue boats must...

  12. 46 CFR 12.10-9 - Endorsement for proficiency in fast rescue boats.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Endorsement for proficiency in fast rescue boats. 12.10... SEAMEN REQUIREMENTS FOR RATING ENDORSEMENTS Lifeboatman § 12.10-9 Endorsement for proficiency in fast rescue boats. (a) Each person engaged or employed as a lifeboatman proficient in fast rescue boats must...

  13. 46 CFR 12.10-9 - Endorsement for proficiency in fast rescue boats.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Endorsement for proficiency in fast rescue boats. 12.10... SEAMEN REQUIREMENTS FOR RATING ENDORSEMENTS Lifeboatman § 12.10-9 Endorsement for proficiency in fast rescue boats. (a) Each person engaged or employed as a lifeboatman proficient in fast rescue boats must...

  14. 46 CFR 12.10-9 - Endorsement for proficiency in fast rescue boats.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Endorsement for proficiency in fast rescue boats. 12.10... SEAMEN REQUIREMENTS FOR RATING ENDORSEMENTS Lifeboatman § 12.10-9 Endorsement for proficiency in fast rescue boats. (a) Each person engaged or employed as a lifeboatman proficient in fast rescue boats must...

  15. 78 FR 60284 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-01

    ... OMB Review; Comment Request Title: Federally Assisted State Transmitted (FAST) Levy. OMB No.: New... proposing a new information collection using the Federally Assisted State Transmitted Levy (FAST Levy) application. FAST Levy is a centralized, secure and automated method of collecting and disseminating...

  16. Recent developments in fast kurtosis imaging

    NASA Astrophysics Data System (ADS)

    Hansen, Brian; Jespersen, Sune N.

    2017-09-01

    Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast DKI methods, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications.

  17. Fast Cooling and Vitrification of Aqueous Solutions for Cryopreservation

    NASA Astrophysics Data System (ADS)

    Warkentin, Matt; Husseini, Naji; Berejnov, Viatcheslav; Thorne, Robert

    2006-03-01

    In many applications, a small volume of aqueous solution must be cooled at a rate sufficient to produce amorphous solid water. Two prominent examples include flash-freezing of protein crystals for X-ray data collection and freezing of cells (i.e. spermatozoa) for cryopreservation. The cooling rate required to vitrify pure water (˜10^6 K/s) is unattainable for volumes that might contain cells or protein crystals, but the required rate can be reduced by adding cryoprotectants. We report the first measurements of the critical concentration required to produce a vitrified sample as a function of the sample's volume, the cryogen into which the sample is plunged, and the temperature of the cryogen, for a wide range of cryoprotectants. These experiments have broad practical consequences for cryopreservation, and provide insight into the physics of glass formation in aqueous systems.

  18. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events

    PubMed Central

    Saylor, Rachel A.; Lunte, Susan M.

    2015-01-01

    Microdialysis is a powerful sampling technique that enables monitoring of dynamic processes in vitro and in vivo. The combination of microdialysis with chromatographic or electrophoretic methods yields along with selective detection methods yields a “separation-based sensor” capable of monitoring multiple analytes in near real time. Analysis of microdialysis samples requires techniques that are fast (<1 min), have low volume requirements (nL–pL), and, ideally, can be employed on-line. Microchip electrophoresis fulfills these requirements and also permits the possibility of integrating sample preparation and manipulation with detection strategies directly on-chip. Microdialysis coupled to microchip electrophoresis has been employed for monitoring biological events in vivo and in vitro. This review discusses technical considerations for coupling microdialysis sampling and microchip electrophoresis, including various interface designs, and current applications in the field. PMID:25637011

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faidy, C.

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  20. Gas leak detection in infrared video with background modeling

    NASA Astrophysics Data System (ADS)

    Zeng, Xiaoxia; Huang, Likun

    2018-03-01

    Background modeling plays an important role in the task of gas detection based on infrared video. VIBE algorithm is a widely used background modeling algorithm in recent years. However, the processing speed of the VIBE algorithm sometimes cannot meet the requirements of some real time detection applications. Therefore, based on the traditional VIBE algorithm, we propose a fast prospect model and optimize the results by combining the connected domain algorithm and the nine-spaces algorithm in the following processing steps. Experiments show the effectiveness of the proposed method.

  1. Real-Time Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.; Cameron, Kelly B.; Owsley, Patrick A.

    1994-01-01

    Generic Reed-Solomon decoder fast enough to correct errors in real time in practical applications designed to be implemented in fewer and smaller very-large-scale integrated, VLSI, circuit chips. Configured to operate in pipelined manner. One outstanding aspect of decoder design is that Euclid multiplier and divider modules contain Galoisfield multipliers configured as combinational-logic cells. Operates at speeds greater than older multipliers. Cellular configuration highly regular and requires little interconnection area, making it ideal for implementation in extraordinarily dense VLSI circuitry. Flight electronics single chip version of this technology implemented and available.

  2. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  3. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  4. Photothermal Nanocomposite Hydrogel Actuator with Electric-Field-Induced Gradient and Oriented Structure.

    PubMed

    Yang, Yang; Tan, Yun; Wang, Xionglei; An, Wenli; Xu, Shimei; Liao, Wang; Wang, Yuzhong

    2018-03-07

    Recent research of hydrogel actuators is still not sophisticated enough to meet the requirement of fast, reversible, complex, and robust reconfiguration. Here, we present a new kind of poly( N-isopropylacrylamide)/graphene oxide gradient hydrogel by utilizing direct current electric field to induce gradient and oriented distribution of graphene oxide into poly( N-isopropylacrylamide) hydrogel. Upon near-infrared light irradiation, the hydrogel exhibited excellent comprehensive actuation performance as a result of directional bending deformation, promising great potential in the application of soft actuators and optomechanical system.

  5. Super-resolution Doppler beam sharpening method using fast iterative adaptive approach-based spectral estimation

    NASA Astrophysics Data System (ADS)

    Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu

    2018-01-01

    Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.

  6. The effectiveness of robotic training depends on motor task characteristics.

    PubMed

    Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert

    2017-12-01

    Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.

  7. Determinants of fast-food consumption. An application of the Theory of Planned Behaviour.

    PubMed

    Dunn, Kirsten I; Mohr, Philip; Wilson, Carlene J; Wittert, Gary A

    2011-10-01

    This study applied and extended the Theory of Planned Behaviour (TPB; Ajzen, 1988) in an examination of the variables influencing fast-food consumption in an Australian sample. Four hundred and four participants responded to items measuring TPB constructs and retrospective and prospective measures of fast-food consumption. Additional independent variables included: Consideration of Future Consequences (Strathman, Gleicher, Boninger, & Edwards, 1994), Fear of Negative Evaluation (Leary, 1983), and Self-Identification as a Healthy Eater Scale (Armitage & Conner, 1999a). Structural Equation Modeling (SEM) was used to examine predictors of consumption. SEM indicated that the TPB successfully predicted fast-food consumption. Factor analyses assisted in the definition of constructs that underlay attitudes towards fast foods. These constructs were included in an 'extended' TPB model which then provided a richer source of information regarding the nature of the variables influencing fast-food consumption. Findings suggest that fast-food consumption is influenced by specific referent groups as well as a general demand for meals that are tasty, satisfying, and convenient. These factors reflect immediate needs and appear to override concerns about longer-term health risks associated with fast food. Results are discussed in the context of possible applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. 5 CFR 1315.9 - Required documentation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... following delivery to inspect and/or test goods furnished or to evaluate services performed is stated; (6... later than the first request for payment; (9) If using Fast Payment, the proper FAR clause stipulating Fast Payment is required. (b)(1) Except for interim payment requests under cost-reimbursement service...

  9. Design of the smart scenic spot service platform

    NASA Astrophysics Data System (ADS)

    Yin, Min; Wang, Shi-tai

    2015-12-01

    With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.

  10. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  11. Unified random access memory (URAM) by integration of a nanocrystal floating gate for nonvolatile memory and a partially depleted floating body for capacitorless 1T-DRAM

    NASA Astrophysics Data System (ADS)

    Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu

    2009-03-01

    This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.

  12. Fast and Sensitive Alignment of Microbial Whole Genome Sequencing Reads to Large Sequence Datasets on a Desktop PC: Application to Metagenomic Datasets and Pathogen Identification

    PubMed Central

    2014-01-01

    Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner. PMID:25077800

  13. Fast and sensitive alignment of microbial whole genome sequencing reads to large sequence datasets on a desktop PC: application to metagenomic datasets and pathogen identification.

    PubMed

    Pongor, Lőrinc S; Vera, Roberto; Ligeti, Balázs

    2014-01-01

    Next generation sequencing (NGS) of metagenomic samples is becoming a standard approach to detect individual species or pathogenic strains of microorganisms. Computer programs used in the NGS community have to balance between speed and sensitivity and as a result, species or strain level identification is often inaccurate and low abundance pathogens can sometimes be missed. We have developed Taxoner, an open source, taxon assignment pipeline that includes a fast aligner (e.g. Bowtie2) and a comprehensive DNA sequence database. We tested the program on simulated datasets as well as experimental data from Illumina, IonTorrent, and Roche 454 sequencing platforms. We found that Taxoner performs as well as, and often better than BLAST, but requires two orders of magnitude less running time meaning that it can be run on desktop or laptop computers. Taxoner is slower than the approaches that use small marker databases but is more sensitive due the comprehensive reference database. In addition, it can be easily tuned to specific applications using small tailored databases. When applied to metagenomic datasets, Taxoner can provide a functional summary of the genes mapped and can provide strain level identification. Taxoner is written in C for Linux operating systems. The code and documentation are available for research applications at http://code.google.com/p/taxoner.

  14. The fast neutron fluence and the activation detector activity calculations using the effective source method and the adjoint function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hep, J.; Konecna, A.; Krysl, V.

    2011-07-01

    This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weightingmore » is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV and RPV cavity of the VVER-440 reacto rand located axially at the position of maximum power and at the position of the weld. Both of these methods (the effective source and the adjoint function) are briefly described in the present paper. The paper also describes their application to the solution of fast neutron fluence and detectors activities for the VVER-440 reactor. (authors)« less

  15. 48 CFR 13.404 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...

  16. 48 CFR 13.404 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...

  17. 48 CFR 13.404 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...

  18. 48 CFR 13.404 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...

  19. 48 CFR 13.404 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13.404 Contract clause. The contracting officer shall insert the clause at 52.213-1, Fast Payment Procedure, in solicitations and contracts when the conditions in 13.402 are applicable and it is intended that the fast payment...

  20. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    PubMed

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  1. A Fast Hermite Transform★

    PubMed Central

    Leibon, Gregory; Rockmore, Daniel N.; Park, Wooram; Taintor, Robert; Chirikjian, Gregory S.

    2008-01-01

    We present algorithms for fast and stable approximation of the Hermite transform of a compactly supported function on the real line, attainable via an application of a fast algebraic algorithm for computing sums associated with a three-term relation. Trade-offs between approximation in bandlimit (in the Hermite sense) and size of the support region are addressed. Numerical experiments are presented that show the feasibility and utility of our approach. Generalizations to any family of orthogonal polynomials are outlined. Applications to various problems in tomographic reconstruction, including the determination of protein structure, are discussed. PMID:20027202

  2. Forging Fast Ion Conducting Nanochannels with Swift Heavy Ions: The Correlated Role of Local Electronic and Atomic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin

    2016-12-19

    Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less

  3. Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7

    NASA Astrophysics Data System (ADS)

    Zhuang, Huidong; Zhang, Xiaodong

    2013-08-01

    In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected.

  4. SQUIDs vs. Induction Coils for Ultra-Low Field Nuclear Magnetic Resonance: Experimental and Simulation Comparison

    PubMed Central

    Matlashov, Andrei N.; Schultz, Larry J.; Espy, Michelle A.; Kraus, Robert H.; Savukov, Igor M.; Volegov, Petr L.; Wurden, Caroline J.

    2011-01-01

    Nuclear magnetic resonance (NMR) is widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging (MRI). Recently it has become possible to perform NMR and MRI in the ultra-low field (ULF) regime requiring measurement field strengths of the order of only 1 Gauss. This technique exploits the advantages offered by superconducting quantum interference devices or SQUIDs. Our group has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airport security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification and security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers may provide enough sensitivity in the 3–10 kHz range and can be used for fast liquid explosives detection based on ULF NMR technique. We describe experimental and computer-simulation results comparing multichannel SQUID based and induction coils based instruments that are capable of performing ULF MRI for liquid identification. PMID:21747638

  5. Evaluation of the cognitive effects of travel technique in complex real and virtual environments.

    PubMed

    Suma, Evan A; Finkelstein, Samantha L; Reid, Myra; V Babu, Sabarish; Ulinski, Amy C; Hodges, Larry F

    2010-01-01

    We report a series of experiments conducted to investigate the effects of travel technique on information gathering and cognition in complex virtual environments. In the first experiment, participants completed a non-branching multilevel 3D maze at their own pace using either real walking or one of two virtual travel techniques. In the second experiment, we constructed a real-world maze with branching pathways and modeled an identical virtual environment. Participants explored either the real or virtual maze for a predetermined amount of time using real walking or a virtual travel technique. Our results across experiments suggest that for complex environments requiring a large number of turns, virtual travel is an acceptable substitute for real walking if the goal of the application involves learning or reasoning based on information presented in the virtual world. However, for applications that require fast, efficient navigation or travel that closely resembles real-world behavior, real walking has advantages over common joystick-based virtual travel techniques.

  6. ePix: a class of architectures for second generation LCLS cameras

    DOE PAGES

    Dragone, A.; Caragiulo, P.; Markovic, B.; ...

    2014-03-31

    ePix is a novel class of ASIC architectures, based on a common platform, optimized to build modular scalable detectors for LCLS. The platform architecture is composed of a random access analog matrix of pixel with global shutter, fast parallel column readout, and dedicated sigma-delta analog-to-digital converters per column. It also implements a dedicated control interface and all the required support electronics to perform configuration, calibration and readout of the matrix. Based on this platform a class of front-end ASICs and several camera modules, meeting different requirements, can be developed by designing specific pixel architectures. This approach reduces development time andmore » expands the possibility of integration of detector modules with different size, shape or functionality in the same camera. The ePix platform is currently under development together with the first two integrating pixel architectures: ePix100 dedicated to ultra low noise applications and ePix10k for high dynamic range applications.« less

  7. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  8. Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging

    PubMed Central

    Schmidt, A. B.; Berner, S.; Schimpf, W.; Müller, C.; Lickert, T.; Schwaderlapp, N.; Knecht, S.; Skinner, J. G.; Dost, A.; Rovedo, P.; Hennig, J.; von Elverfeldt, D.; Hövener, J. -B.

    2017-01-01

    Hyperpolarized (HP) tracers dramatically increase the sensitivity of magnetic resonance imaging (MRI) to monitor metabolism non-invasively and in vivo. Their production, however, requires an extra polarizing device (polarizer) whose complexity, operation and cost can exceed that of an MRI system itself. Furthermore, the lifetime of HP tracers is short and some of the enhancement is lost during transfer to the application site. Here, we present the production of HP tracers in water without an external polarizer: by Synthesis Amid the Magnet Bore, A Dramatically Enhanced Nuclear Alignment (SAMBADENA) is achieved within seconds, corresponding to a hyperpolarization of ∼20%. As transfer of the tracer is no longer required, SAMBADENA may permit a higher polarization at the time of detection at a fraction of the cost and complexity of external polarizers. This development is particularly promising in light of the recently extended portfolio of biomedically relevant para-hydrogen-tracers and may lead to new diagnostic applications. PMID:28262691

  9. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls

    PubMed Central

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique LCT; Heeren, Ron MA; Sillevis Smitt, Peter A; Luider, Theo M

    2006-01-01

    Background Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. Results A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. Conclusion The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the higher resolution and mass accuracy of the FT-ICR mass spectrometry prevents the clustering of peaks of different peptides and allows the identification of differentially expressed proteins from the peptide profiles. PMID:16953879

  10. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls.

    PubMed

    Titulaer, Mark K; Siccama, Ivar; Dekker, Lennard J; van Rijswijk, Angelique L C T; Heeren, Ron M A; Sillevis Smitt, Peter A; Luider, Theo M

    2006-09-05

    Statistical comparison of peptide profiles in biomarker discovery requires fast, user-friendly software for high throughput data analysis. Important features are flexibility in changing input variables and statistical analysis of peptides that are differentially expressed between patient and control groups. In addition, integration the mass spectrometry data with the results of other experiments, such as microarray analysis, and information from other databases requires a central storage of the profile matrix, where protein id's can be added to peptide masses of interest. A new database application is presented, to detect and identify significantly differentially expressed peptides in peptide profiles obtained from body fluids of patient and control groups. The presented modular software is capable of central storage of mass spectra and results in fast analysis. The software architecture consists of 4 pillars, 1) a Graphical User Interface written in Java, 2) a MySQL database, which contains all metadata, such as experiment numbers and sample codes, 3) a FTP (File Transport Protocol) server to store all raw mass spectrometry files and processed data, and 4) the software package R, which is used for modular statistical calculations, such as the Wilcoxon-Mann-Whitney rank sum test. Statistic analysis by the Wilcoxon-Mann-Whitney test in R demonstrates that peptide-profiles of two patient groups 1) breast cancer patients with leptomeningeal metastases and 2) prostate cancer patients in end stage disease can be distinguished from those of control groups. The database application is capable to distinguish patient Matrix Assisted Laser Desorption Ionization (MALDI-TOF) peptide profiles from control groups using large size datasets. The modular architecture of the application makes it possible to adapt the application to handle also large sized data from MS/MS- and Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry experiments. It is expected that the higher resolution and mass accuracy of the FT-ICR mass spectrometry prevents the clustering of peaks of different peptides and allows the identification of differentially expressed proteins from the peptide profiles.

  11. A prospective audit of preprocedural fasting practices on a transplant ward: when fasting becomes starving.

    PubMed

    Vidot, Helen; Teevan, Kate; Carey, Sharon; Strasser, Simone; Shackel, Nicholas

    2016-03-01

    To investigate the prevalence and duration of preprocedural medically ordered fasting during a period of hospitalisation in an Australian population of patients with hepatic cirrhosis or following liver transplantation and to identify potential solutions to reduce fasting times. Protein-energy malnutrition is a common finding in patients with hepatic cirrhosis and can impact significantly on survival and quality of life. Protein and energy requirements in patients with cirrhosis are higher than those of healthy individuals. A significant feature of cirrhosis is the induction of starvation metabolism following seven to eight hours of food deprivation. Many investigative and interventional procedures for patients with cirrhosis necessitate a period of fasting to comply with anaesthesia guidelines. An observational study of the fasting episodes for 34 hospitalised patients with hepatic cirrhosis or following liver transplantation. Nutritional status was estimated using subjective global assessment and handgrip strength. The prevalence and duration of fasting practices for diagnostic or investigational procedures were estimated using electronic records and patient notes. Thirty-three patients (97%) were malnourished. Twenty-two patients (65%) were fasted during the observation period. There were 43 occasions of fasting with a median fasting time of 13·5 hours. On 40 occasions fasting times exceeded the maximum six-hour guideline recommended prior to the administration of anaesthesia by the majority of Anaesthesiology Societies. The majority of procedures (77%) requiring fasting occurred after midday. Eating breakfast on the day of the procedure reduced fasting time by 45%. Medically ordered preprocedural fasting times almost always exceed existing guidelines in this nutritionally compromised group. Adherence to fasting guidelines and eating breakfast before the procedure can reduce fasting times significantly and avoid the potential induction of starvation metabolism in this nutritionally at risk group. © 2016 John Wiley & Sons Ltd.

  12. Controllable optical modulation of blue/green up-conversion fluorescence from Tm3+ (Er3+) single-doped glass ceramics upon two-step excitation of two-wavelengths

    PubMed Central

    Chen, Zhi; Kang, Shiliang; Zhang, Hang; Wang, Ting; Lv, Shichao; Chen, Qiuqun; Dong, Guoping; Qiu, Jianrong

    2017-01-01

    Optical modulation is a crucial operation in photonics for network data processing with the aim to overcome information bottleneck in terms of speed, energy consumption, dispersion and cross-talking from conventional electronic interconnection approach. However, due to the weak interactions between photons, a facile physical approach is required to efficiently manipulate photon-photon interactions. Herein, we demonstrate that transparent glass ceramics containing LaF3: Tm3+ (Er3+) nanocrystals can enable fast-slow optical modulation of blue/green up-conversion fluorescence upon two-step excitation of two-wavelengths at telecom windows (0.8–1.8 μm). We show an optical modulation of more than 1500% (800%) of the green (blue) up-conversion fluorescence intensity, and fast response of 280 μs (367 μs) as well as slow response of 5.82 ms (618 μs) in the green (blue) up-conversion fluorescence signal, respectively. The success of manipulating laser at telecom windows for fast-slow optical modulation from rear-earth single-doped glass ceramics may find application in all-optical fiber telecommunication areas. PMID:28368041

  13. catsHTM: A Tool for Fast Accessing and Cross-matching Large Astronomical Catalogs

    NASA Astrophysics Data System (ADS)

    Soumagnac, Maayane T.; Ofek, Eran O.

    2018-07-01

    Fast access to large catalogs is required for some astronomical applications. Here we introduce the catsHTM tool, consisting of several large catalogs reformatted into HDF5-based file format, which can be downloaded and used locally. To allow fast access, the catalogs are partitioned into hierarchical triangular meshes and stored in HDF5 files. Several tools are provided to perform efficient cone searches at resolutions spanning from a few arc-seconds to degrees, within a few milliseconds time. The first released version includes the following catalogs (by alphabetical order): 2MASS, 2MASS extended sources, AKARI, APASS, Cosmos, DECaLS/DR5, FIRST, GAIA/DR1, GAIA/DR2, GALEX/DR6Plus7, HSC/v2, IPHAS/DR2, NED redshifts, NVSS, Pan-STARRS1/DR1, PTF photometric catalog, ROSAT faint source, SDSS sources, SDSS/DR14 spectroscopy, SkyMapper, Spitzer/SAGE, Spitzer/IRAC galactic center, UCAC4, UKIDSS/DR10, VST/ATLAS/DR3, VST/KiDS/DR3, WISE and XMM. We provide Python code that allows to perform cone searches, as well as MATLAB code for performing cone searches, catalog cross-matching, general searches, as well as load and create these catalogs.

  14. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-01

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  15. Pulse I-V characterization of a nano-crystalline oxide device with sub-gap density of states.

    PubMed

    Kim, Taeho; Hur, Ji-Hyun; Jeon, Sanghun

    2016-05-27

    Understanding the charge trapping nature of nano-crystalline oxide semiconductor thin film transistors (TFTs) is one of the most important requirements for their successful application. In our investigation, we employed a fast-pulsed I-V technique for understanding the charge trapping phenomenon and for characterizing the intrinsic device performance of an amorphous/nano-crystalline indium-hafnium-zinc-oxide semiconductor TFT with varying density of states in the bulk. Because of the negligible transient charging effect with a very short pulse, the source-to-drain current obtained with the fast-pulsed I-V measurement was higher than that measured by the direct-current characterization method. This is because the fast-pulsed I-V technique provides a charge-trap free environment, suggesting that it is a representative device characterization methodology of TFTs. In addition, a pulsed source-to-drain current versus time plot was used to quantify the dynamic trapping behavior. We found that the charge trapping phenomenon in amorphous/nano-crystalline indium-hafnium-zinc-oxide TFTs is attributable to the charging/discharging of sub-gap density of states in the bulk and is dictated by multiple trap-to-trap processes.

  16. Determination of association constants at moderately fast chemical exchange: complexation of camphor enantiomers by alpha-cyclodextrin.

    PubMed

    Bernatowicz, Piotr; Nowakowski, Michał; Dodziuk, Helena; Ejchart, Andrzej

    2006-08-01

    Association constants in weak molecular complexes can be determined by analysis of chemical shifts variations resulting from changes of guest to host concentration ratio. In the regime of very fast exchange, i.e., when exchange rate is several orders of magnitude larger than the Larmor angular frequency difference of the observed resonance in free and complexed molecule, the apparent position of averaged resonance is a population-weighted mean of resonances of particular forms involved in the equilibrium. The assumption of very fast exchange is often, however, tacitly admitted in literature even in cases where the process of interest is much slower than required. We show that such an unjustified simplification may, under certain circumstances, lead to significant underestimation of association constant and, in consequence, to non-negligible errors in Gibbs free energy under determination. We present a general method, based on iterative numerical NMR line shape analysis, which allows one for the compensation of chemical exchange effects, and delivers both the correct association constants and the exchange rates. The latter are not delivered by the other mentioned method. Practical application of our algorithm is illustrated by the case of camphor-alpha-cyclodextrin complexes.

  17. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds.

    PubMed

    Fino, Peter; Lockhart, Thurmon E

    2014-04-11

    This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The Implementation of Satellite Control System Software Using Object Oriented Design

    NASA Technical Reports Server (NTRS)

    Anderson, Mark O.; Reid, Mark; Drury, Derek; Hansell, William; Phillips, Tom

    1998-01-01

    NASA established the Small Explorer (SMEX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions that can be launched into low earth orbit by small expendable vehicles. The development schedule for each SMEX spacecraft was three years from start to launch. The SMEX program has produced five satellites; Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is scheduled to be launched in April of 1998, WIRE is scheduled to be launched in September of 1998, and SWAS is scheduled to be launched in January of 1999. In each of these missions, the Attitude Control System (ACS) software was written using a modular procedural design. Current program goals require complete spacecraft development within 18 months. This requirement has increased pressure to write reusable flight software. Object-Oriented Design (OOD) offers the constructs for developing an application that only needs modification for mission unique requirements. This paper describes the OOD that was used to develop the SMEX-Lite ACS software. The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of performing sub-arc-minute pointing. The paper first describes the high level requirements which governed the architecture of the SMEX-Lite ACS software. Next, the context in which the software resides is explained. The paper describes the benefits of encapsulation, inheritance and polymorphism with respect to the implementation of an ACS software system. This paper will discuss the design of several software components that comprise the ACS software. Specifically, Object-Oriented designs are presented for sensor data processing, attitude control, attitude determination and failure detection. The paper addresses the benefits of the OOD versus a conventional procedural design. The final discussion in this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects, saving production time and costs.

  19. A new strategy for fast radiofrequency CW EPR imaging: Direct detection with rapid scan and rotating gradients

    PubMed Central

    Subramanian, Sankaran; Koscielniak, Janusz W.; Devasahayam, Nallathamby; Pursley, Randall H.; Pohida, Thomas J.; Krishna, Murali C.

    2007-01-01

    Rapid field scan on the order of T/s using high frequency sinusoidal or triangular sweep fields superimposed on the main Zeeman field, was used for direct detection of signals without low-frequency field modulation. Simultaneous application of space-encoding rotating field gradients have been employed to perform fast CW EPR imaging using direct detection that could, in principle, approach the speed of pulsed FT EPR imaging. The method takes advantage of the well-known rapid-scan strategy in CW NMR and EPR that allows arbitrarily fast field sweep and the simultaneous application of spinning gradients that allows fast spatial encoding. This leads to fast functional EPR imaging and, depending on the spin concentration, spectrometer sensitivity and detection band width, can provide improved temporal resolution that is important to interrogate dynamics of spin perfusion, pharmacokinetics, spectral spatial imaging, dynamic oxymetry, etc. PMID:17350865

  20. A new fast algorithm for computing a complex number: Theoretic transforms

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Liu, K. Y.; Truong, T. K.

    1977-01-01

    A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.

  1. Portland cement based fast-setting concrete demonstration, district 07, Los Angeles County

    DOT National Transportation Integrated Search

    2001-09-01

    The California Department of Transportation currently uses fast-setting concrete to accommodate short working windows. The current special provision for fast-setting concrete requires that the concrete reach a flexural strength of 2.8 MPa (400 psi) b...

  2. Fasting time and vitamin B12 levels in a community-based population.

    PubMed

    Orton, Dennis J; Naugler, Christopher; Sadrzadeh, S M Hossein

    2016-07-01

    Vitamin B12, also known as cobalamin (Cbl), is an essential vitamin that manifests with numerous severe but non-specific symptoms in cases of deficiency. Assessing Cbl status often requires fasting, although this requirement is not standard between institutions. This study evaluated the impact of fasting on Cbl levels in a large community-based cohort in an effort to promote standardization of Cbl testing between sites. Laboratory data for Cbl, fasting time, patient age and sex were obtained from laboratory information service from Calgary Laboratory Services (CLS) for the period of April 2011 to June 2015. CLS is the sole supplier of laboratory services in the Southern Alberta region in Canada (population, approximately 1.4 million). To investigate potential sex-specific effects of fasting on Cbl levels, males and females were analyzed separately using linear regression models. A total of 346,957 individual patient results (196,849 females, 146,085 males) were obtained. The mean plasma Cbl level was 386.5 (±195.6) pmol/L and 412.0 (±220.8) pmol/L for males and females, respectively. Linear regression analysis showed fasting had no significant association with Cbl levels in females; however a statistically significant decrease of 0.9pmol/L/hour fasting (p<0.001) was noted in males. The broad population variance in Cbl suggests the slight gender-specific differences noted in this study are insignificant. Despite this, fasting has the potential to contribute to higher rates of Cbl deficiency in men. Together, these data suggest fasting should be excluded as a requirement for evaluating plasma Cbl. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development of a fast PCR protocol enabling rapid generation of AmpFℓSTR® Identifiler® profiles for genotyping of human DNA

    PubMed Central

    2012-01-01

    Background Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Methods Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. Results The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. Conclusions The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations. PMID:22394458

  4. Development of a fast PCR protocol enabling rapid generation of AmpFℓSTR® Identifiler® profiles for genotyping of human DNA.

    PubMed

    Foster, Amanda; Laurin, Nancy

    2012-03-06

    Traditional PCR methods for forensic STR genotyping require approximately 2.5 to 4 hours to complete, contributing a significant portion of the time required to process forensic DNA samples. The purpose of this study was to develop and validate a fast PCR protocol that enabled amplification of the 16 loci targeted by the AmpFℓSTR® Identifiler® primer set, allowing decreased cycling times. Fast PCR conditions were achieved by substituting the traditional Taq polymerase for SpeedSTAR™ HS DNA polymerase which is designed for fast PCR, by upgrading to a thermal cycler with faster temperature ramping rates and by modifying cycling parameters (less time at each temperature) and adopting a two-step PCR approach. The total time required for the optimized protocol is 26 min. A total of 147 forensically relevant DNA samples were amplified using the fast PCR protocol for Identifiler. Heterozygote peak height ratios were not affected by fast PCR conditions, and full profiles were generated for single-source DNA amounts between 0.125 ng and 2.0 ng. Individual loci in profiles produced with the fast PCR protocol exhibited average n-4 stutter percentages ranging from 2.5 ± 0.9% (THO1) to 9.9 ± 2.7% (D2S1338). No increase in non-adenylation or other amplification artefacts was observed. Minor contributor alleles in two-person DNA mixtures were reliably discerned. Low level cross-reactivity (monomorphic peaks) was observed with some domestic animal DNA. The fast PCR protocol presented offers a feasible alternative to current amplification methods and could aid in reducing the overall time in STR profile production or could be incorporated into a fast STR genotyping procedure for time-sensitive situations.

  5. Performance comparison between ceramic Ce:GAGG and single crystal Ce:GAGG with digital-SiPM

    NASA Astrophysics Data System (ADS)

    Park, C.; Kim, C.; Kim, J.; Lee, Y.; Na, Y.; Lee, K.; Yeom, J. Y.

    2017-01-01

    The Gd3Al2Ga3O12 (Ce:GAGG) is a new inorganic scintillator known for its attractive properties such as high light yield, stopping power and relatively fast decay time. In this study, we fabricated a ceramic Ce:GAGG scintillator as a cost-effective alternative to single crystal Ce:GAGG and, for the first time, investigated their performances when coupled to the digital silicon photomultiplier (dSiPM)—a new type of photosensor designed for applications in medical imaging, high energy and astrophysics. Compared to 3 × 3 × 2 mm3 sized single crystal Ce:GAGG, the translucent ceramic Ce:GAGG, which has a much lower transmittance than the single crystal, was determined to give an output signal amplitude that is approximately 61% of single crystal Ce:GAGG. The energy resolution of the 511 keV annihilation peak of a 22Na source was measured to be 9.9 ± 0.2% and 13.0 ± 0.3% for the single and ceramic scintillators respectively. On the other hand, the coincidence resolving time (CRT) of ceramic Ce:GAGG was 307 ± 23 ps, better than the 465 ± 37 ps acquired with single crystals—probably attributed to its slightly faster decay time and higher proportion of the fast decay component. The ceramic Ce:GAGG may be a promising cost-effective candidate for applications that do not require thick scintillators such as x-ray detectors and charged particle detectors, and those that require time-of-flight capabilities.

  6. Integrated RGB laser light module for autostereoscopic outdoor displays

    NASA Astrophysics Data System (ADS)

    Reitterer, Jörg; Fidler, Franz; Hambeck, Christian; Saint Julien-Wallsee, Ferdinand; Najda, Stephen; Perlin, Piotr; Stanczyk, Szymon; Czernecki, Robert; McDougall, Stewart D.; Meredith, Wyn; Vickers, Garrie; Landles, Kennedy; Schmid, Ulrich

    2015-02-01

    We have developed highly compact RGB laser light modules to be used as light sources in multi-view autostereoscopic outdoor displays and projection devices. Each light module consists of an AlGaInP red laser diode, a GaInN blue laser diode, a GaInN green laser diode, as well as a common cylindrical microlens. The plano-convex microlens is a so-called "fast axis collimator", which is widely used for collimating light beams emitted from high-power laser diode bars, and has been optimized for polychromatic RGB laser diodes. The three light beams emitted from the red, green, and blue laser diodes are collimated in only one transverse direction, the so-called "fast axis", and in the orthogonal direction, the so-called "slow axis", the beams pass the microlens uncollimated. In the far field of the integrated RGB light module this produces Gaussian beams with a large ellipticity which are required, e.g., for the application in autostereoscopic outdoor displays. For this application only very low optical output powers of a few milliwatts per laser diode are required and therefore we have developed tailored low-power laser diode chips with short cavity lengths of 250 μm for red and 300 μm for blue. Our RGB laser light module including the three laser diode chips, associated monitor photodiodes, the common microlens, as well as the hermetically sealed package has a total volume of only 0.45 cm³, which to our knowledge is the smallest RGB laser light source to date.

  7. Covalent Binding of Antibodies to Cellulose Paper Discs and Their Applications in Naked-eye Colorimetric Immunoassays.

    PubMed

    Peng, Yanfen; Gelder, Victor Van; Amaladoss, Anburaj; Patel, Kadamb Haribhai

    2016-10-21

    This report presents two methods for the covalent immobilization of capture antibodies on cellulose filter paper grade No. 1 (medium-flow filter paper) discs and grade No. 113 (fast-flow filter paper) discs. These cellulose paper discs were grafted with amine functional groups through a silane coupling technique before the antibodies were immobilized on them. Periodate oxidation and glutaraldehyde cross-linking methods were used to graft capture antibodies on the cellulose paper discs. In order to ensure the maximum binding capacity of the capture antibodies to their targets after immobilization, the effects of various concentrations of sodium periodate, glutaraldehyde, and capture antibodies on the surface of the paper discs were investigated. The antibodies that were coated on the amine-functionalized cellulose paper discs through a glutaraldehyde cross-linking agent showed enhanced binding activity to the target when compared to the periodate oxidation method. IgG (in mouse reference serum) was used as a reference target in this study to test the application of covalently immobilized antibodies through glutaraldehyde. A new paper-based, enzyme-linked immunosorbent assay (ELISA) was successfully developed and validated for the detection of IgG. This method does not require equipment, and it can detect 100 ng/ml of IgG. The fast-flow filter paper was more sensitive than the medium-flow filter paper. The incubation period of this assay was short and required small sample volumes. This naked-eye, colorimetric immunoassay can be extended to detect other targets that are identified with conventional ELISA.

  8. Advanced industrial fluorescence metrology used for qualification of high quality optical materials

    NASA Astrophysics Data System (ADS)

    Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker

    2003-11-01

    Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.

  9. Advanced EUV mask and imaging modeling

    NASA Astrophysics Data System (ADS)

    Evanschitzky, Peter; Erdmann, Andreas

    2017-10-01

    The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.

  10. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  11. Generic torus canards

    NASA Astrophysics Data System (ADS)

    Vo, Theodore

    2017-10-01

    Torus canards are special solutions of fast/slow systems that alternate between attracting and repelling manifolds of limit cycles of the fast subsystem. A relatively new dynamic phenomenon, torus canards have been found in neural applications to mediate the transition from tonic spiking to bursting via amplitude-modulated spiking. In R3, torus canards are degenerate: they require one-parameter families of 2-fast/1-slow systems in order to be observed and even then, they only occur on exponentially thin parameter intervals. The addition of a second slow variable unfolds the torus canard phenomenon, making it generic and robust. That is, torus canards in fast/slow systems with (at least) two slow variables occur on open parameter sets. So far, generic torus canards have only been studied numerically, and their behaviour has been inferred based on averaging and canard theory. This approach, however, has not been rigorously justified since the averaging method breaks down near a fold of periodics, which is exactly where torus canards originate. In this work, we combine techniques from Floquet theory, averaging theory, and geometric singular perturbation theory to show that the average of a torus canard is a folded singularity canard. In so doing, we devise an analytic scheme for the identification and topological classification of torus canards in fast/slow systems with two fast variables and k slow variables, for any positive integer k. We demonstrate the predictive power of our results in a model for intracellular calcium dynamics, where we explain the mechanisms underlying a novel class of elliptic bursting rhythms, called amplitude-modulated bursting, by constructing the torus canard analogues of mixed-mode oscillations. We also make explicit the connection between our results here with prior studies of torus canards and torus canard explosion in R3, and discuss how our methods can be extended to fast/slow systems of arbitrary (finite) dimension.

  12. A new automatic synthetic aperture radar-based flood mapping application hosted on the European Space Agency's Grid Processing of Demand Fast Access to Imagery environment

    NASA Astrophysics Data System (ADS)

    Matgen, Patrick; Giustarini, Laura; Hostache, Renaud

    2012-10-01

    This paper introduces an automatic flood mapping application that is hosted on the Grid Processing on Demand (GPOD) Fast Access to Imagery (Faire) environment of the European Space Agency. The main objective of the online application is to deliver operationally flooded areas using both recent and historical acquisitions of SAR data. Having as a short-term target the flooding-related exploitation of data generated by the upcoming ESA SENTINEL-1 SAR mission, the flood mapping application consists of two building blocks: i) a set of query tools for selecting the "crisis image" and the optimal corresponding "reference image" from the G-POD archive and ii) an algorithm for extracting flooded areas via change detection using the previously selected "crisis image" and "reference image". Stakeholders in flood management and service providers are able to log onto the flood mapping application to get support for the retrieval, from the rolling archive, of the most appropriate reference image. Potential users will also be able to apply the implemented flood delineation algorithm. The latter combines histogram thresholding, region growing and change detection as an approach enabling the automatic, objective and reliable flood extent extraction from SAR images. Both algorithms are computationally efficient and operate with minimum data requirements. The case study of the high magnitude flooding event that occurred in July 2007 on the Severn River, UK, and that was observed with a moderateresolution SAR sensor as well as airborne photography highlights the performance of the proposed online application. The flood mapping application on G-POD can be used sporadically, i.e. whenever a major flood event occurs and there is a demand for SAR-based flood extent maps. In the long term, a potential extension of the application could consist in systematically extracting flooded areas from all SAR images acquired on a daily, weekly or monthly basis.

  13. Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao; Liu, Bao-Jie; Shao, L.-B.; Zhang, Xin-Ding; Xue, Zheng-Yuan

    2017-09-01

    Adiabatic processes have found many important applications in modern physics, the distinct merit of which is that accurate control over process timing is not required. However, such processes are slow, which limits their application in quantum computation, due to the limited coherent times of typical quantum systems. Here, we propose a scheme to implement quantum state conversion in opto-electro-mechanical systems via a shortcut to adiabaticity, where the process can be greatly speeded up while precise timing control is still not necessary. In our scheme, by modifying only the coupling strength, we can achieve fast quantum state conversion with high fidelity, where the adiabatic condition does not need to be met. In addition, the population of the unwanted intermediate state can be further suppressed. Therefore, our protocol presents an important step towards practical state conversion between optical and microwave photons, and thus may find many important applications in hybrid quantum information processing.

  14. An Integrated Computerized Triage System in the Emergency Department

    PubMed Central

    Aronsky, Dominik; Jones, Ian; Raines, Bill; Hemphill, Robin; Mayberry, Scott R; Luther, Melissa A; Slusser, Ted

    2008-01-01

    Emergency department (ED) triage is a fast-paced process that prioritizes the allocation of limited health care resources to patients in greatest need. This paper describes the experiences with an integrated, computerized triage application. The system exchanges information with other information systems, including the ED patient tracking board, the longitudinal electronic medical record, the computerized provider order entry, and the medication reconciliation application. The application includes decision support capabilities such as assessing the patient’s acuity level, age-dependent alerts for vital signs, and clinical reminders. The browser-based system utilizes the institution’s controlled vocabulary, improves data completeness and quality, such as compliance with capturing required data elements and screening questions, initiates clinical processes, such as pneumococcal vaccination ordering, and reminders to start clinical pathways, issues alerts for clinical trial eligibility, and facilitates various reporting needs. The system has supported the triage documentation of >290,000 pediatric and adult patients. PMID:18999190

  15. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  16. Integrated Data Analysis for Fusion: A Bayesian Tutorial for Fusion Diagnosticians

    NASA Astrophysics Data System (ADS)

    Dinklage, Andreas; Dreier, Heiko; Fischer, Rainer; Gori, Silvio; Preuss, Roland; Toussaint, Udo von

    2008-03-01

    Integrated Data Analysis (IDA) offers a unified way of combining information relevant to fusion experiments. Thereby, IDA meets with typical issues arising in fusion data analysis. In IDA, all information is consistently formulated as probability density functions quantifying uncertainties in the analysis within the Bayesian probability theory. For a single diagnostic, IDA allows the identification of faulty measurements and improvements in the setup. For a set of diagnostics, IDA gives joint error distributions allowing the comparison and integration of different diagnostics results. Validation of physics models can be performed by model comparison techniques. Typical data analysis applications benefit from IDA capabilities of nonlinear error propagation, the inclusion of systematic effects and the comparison of different physics models. Applications range from outlier detection, background discrimination, model assessment and design of diagnostics. In order to cope with next step fusion device requirements, appropriate techniques are explored for fast analysis applications.

  17. Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation.

    PubMed

    Junker, Laura V; Ensminger, Ingo

    2016-12-01

    Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C 30 -column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies. © 2016 Scandinavian Plant Physiology Society.

  18. Key Assets for a Sustainable Low Carbon Energy Future

    NASA Astrophysics Data System (ADS)

    Carre, Frank

    2011-10-01

    Since the beginning of the 21st century, concerns of energy security and climate change gave rise to energy policies focused on energy conservation and diversified low-carbon energy sources. Provided lessons of Fukushima accident are evidently accounted for, nuclear energy will probably be confirmed in most of today's nuclear countries as a low carbon energy source needed to limit imports of oil and gas and to meet fast growing energy needs. Future challenges of nuclear energy are then in three directions: i) enhancing safety performance so as to preclude any long term impact of severe accident outside the site of the plant, even in case of hypothetical external events, ii) full use of Uranium and minimization long lived radioactive waste burden for sustainability, and iii) extension to non-electricity energy products for maximizing the share of low carbon energy source in transportation fuels, industrial process heat and district heating. Advanced LWRs (Gen-III) are today's best available technologies and can somewhat advance nuclear energy in these three directions. However, breakthroughs in sustainability call for fast neutron reactors and closed fuel cycles, and non-electric applications prompt a revival of interest in high temperature reactors for exceeding cogeneration performances achievable with LWRs. Both types of Gen-IV nuclear systems by nature call for technology breakthroughs to surpass LWRs capabilities. Current resumption in France of research on sodium cooled fast neutron reactors (SFRs) definitely aims at significant progress in safety and economic competitiveness compared to earlier reactors of this type in order to progress towards a new generation of commercially viable sodium cooled fast reactor. Along with advancing a new generation of sodium cooled fast reactor, research and development on alternative fast reactor types such as gas or lead-alloy cooled systems (GFR & LFR) is strategic to overcome technical difficulties and/or political opposition specific to sodium. In conclusion, research and technology breakthroughs in nuclear power are needed for shaping a sustainable low carbon future. International cooperation is key for sharing costs of research and development of the required novel technologies and cost of first experimental reactors needed to demonstrate enabling technologies. At the same time technology breakthroughs are developed, pre-normative research is required to support codification work and harmonized regulations that will ultimately apply to safety and security features of resulting innovative reactor types and fuel cycles.

  19. Bridging Quantum, Classical and Stochastic Shortcuts to Adiabaticity

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti

    Adiabatic invariants - quantities that are preserved under the slow driving of a system's external parameters - are important in classical mechanics, quantum mechanics and thermodynamics. Adiabatic processes allow a system to be guided to evolve to a desired final state. However, the slow driving of a quantum system makes it vulnerable to environmental decoherence, and for both quantum and classical systems, it is often desirable and time-efficient to speed up a process. Shortcuts to adiabaticity are strategies for preserving adiabatic invariants under rapid driving, typically by means of an auxiliary field that suppresses excitations, otherwise generated during rapid driving. Several theoretical approaches have been developed to construct such shortcuts. In this dissertation we focus on two different approaches, namely counterdiabatic driving and fast-forward driving, which were originally developed for quantum systems. The counterdiabatic approach introduced independently by Dermirplak and Rice [J. Phys. Chem. A, 107:9937, 2003], and Berry [J. Phys. A: Math. Theor., 42:365303, 2009] formally provides an exact expression for the auxiliary Hamiltonian, which however is abstract and difficult to translate into an experimentally implementable form. By contrast, the fast-forward approach developed by Masuda and Nakamura [Proc. R. Soc. A, 466(2116):1135, 2010] provides an auxiliary potential that may be experimentally implementable but generally applies only to ground states. The central theme of this dissertation is that classical shortcuts to adiabaticity can provide useful physical insights and lead to experimentally implementable shortcuts for analogous quantum systems. We start by studying a model system of a tilted piston to provide a proof of principle that quantum shortcuts can successfully be constructed from their classical counterparts. In the remainder of the dissertation, we develop a general approach based on flow-fields which produces simple expressions for auxiliary terms required for both counterdiabatic and fast-forward driving. We demonstrate the applicability of this approach for classical, quantum as well as stochastic systems. We establish strong connections between counterdiabatic and fast-forward approaches, and also between shortcut protocols required for classical, quantum and stochastic systems. In particular, we show how the fast-forward approach can be extended to highly excited states of quantum systems.

  20. Plasma FGF21 concentrations, adipose fibroblast growth factor receptor-1 and β-klotho expression decrease with fasting in northern elephant seals.

    PubMed

    Suzuki, Miwa; Lee, Andrew Y; Vázquez-Medina, José Pablo; Viscarra, Jose A; Crocker, Daniel E; Ortiz, Rudy M

    2015-05-15

    Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Plasma FGF21 Concentrations, Adipose Fibroblast Growth Factor Receptor-1 and β-Klotho Expression Decrease with Fasting in Northern Elephant Seals

    PubMed Central

    Suzuki, Miwa; Lee, Andrew; Vázquez-Medina, Jose Pablo; Viscarra, Jose A.; Crocker, Daniel E.; Ortiz, Rudy M.

    2015-01-01

    Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. PMID:25857751

  2. Inverse load calculation procedure for offshore wind turbines and application to a 5-MW wind turbine support structure: Inverse load calculation procedure for offshore wind turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahn, T.; Rolfes, R.; Jonkman, J.

    A significant number of wind turbines installed today have reached their designed service life of 20 years, and the number will rise continuously. Most of these turbines promise a more economical performance if they operate for more than 20 years. To assess a continued operation, we have to analyze the load-bearing capacity of the support structure with respect to site-specific conditions. Such an analysis requires the comparison of the loads used for the design of the support structure with the actual loads experienced. This publication presents the application of a so-called inverse load calculation to a 5-MW wind turbine supportmore » structure. The inverse load calculation determines external loads derived from a mechanical description of the support structure and from measured structural responses. Using numerical simulations with the software fast, we investigated the influence of wind-turbine-specific effects such as the wind turbine control or the dynamic interaction between the loads and the support structure to the presented inverse load calculation procedure. fast is used to study the inverse calculation of simultaneously acting wind and wave loads, which has not been carried out until now. Furthermore, the application of the inverse load calculation procedure to a real 5-MW wind turbine support structure is demonstrated. In terms of this practical application, setting up the mechanical system for the support structure using measurement data is discussed. The paper presents results for defined load cases and assesses the accuracy of the inversely derived dynamic loads for both the simulations and the practical application.« less

  3. High yield neutron generators using the DD reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber,more » increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.« less

  4. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    NASA Astrophysics Data System (ADS)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  5. High yield neutron generators using the DD reaction

    NASA Astrophysics Data System (ADS)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T.; Ji, Qing; Ludewigt, B. A.; Jones, G.

    2013-04-01

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 × 109 n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 μs have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  6. Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules

    PubMed Central

    Chen, Xu; Grandont, Laurie; Li, Hongjiang; Hauschild, Robert; Paque, Sébastien; Abuzeineh, Anas; Rakusová, Hana; Benkova, Eva; Perrot-Rechenmann, Catherine; Friml, Jiří

    2014-01-01

    The prominent and evolutionary ancient effect of the plant hormone auxin is the regulation of cell expansion1. Cell expansion requires ordered cytoskeleton arrangement2 but molecular mechanisms underlying its regulation by signaling molecules including auxin are unknown. Here we show in the model plant Arabidopsis thaliana that in elongating cells exogenous application of auxin or redistribution of endogenous auxin induces very rapid microtubule reorientation from transversal to longitudinal, coherent with the inhibition of cell expansion. This fast auxin effect requires Auxin Binding Protein1 (ABP1) and involves a contribution of downstream signaling components such as ROP6 GTPase, ROP-interactive protein RIC1 and microtubule severing protein Katanin. These components are required for rapid auxin and ABP1-mediated reorientation of microtubules to regulate cell elongation in roots and dark grown hypocotyls as well as asymmetric growth during gravitropic responses. PMID:25409144

  7. Time-Accurate Solutions of Incompressible Navier-Stokes Equations for Potential Turbopump Applications

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Kwak, Dochan

    2001-01-01

    Two numerical procedures, one based on artificial compressibility method and the other pressure projection method, are outlined for obtaining time-accurate solutions of the incompressible Navier-Stokes equations. The performance of the two method are compared by obtaining unsteady solutions for the evolution of twin vortices behind a at plate. Calculated results are compared with experimental and other numerical results. For an un- steady ow which requires small physical time step, pressure projection method was found to be computationally efficient since it does not require any subiterations procedure. It was observed that the artificial compressibility method requires a fast convergence scheme at each physical time step in order to satisfy incompressibility condition. This was obtained by using a GMRES-ILU(0) solver in our computations. When a line-relaxation scheme was used, the time accuracy was degraded and time-accurate computations became very expensive.

  8. Numerical calculation of charge exchange cross sections for plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Mendez, Luis

    2016-09-01

    The diagnostics of impurity density and temperature in the plasma core in tokamak plasmas is carried out by applying the charge exchange recombination spectroscopy (CXRS) technique, where a fast beam of H atoms collides with the plasma particles leading to electron capture reactions with the impurity ions. The diagnostics is based on the emission of the excited ions formed in the electron capture. The application of the CXRS requires the knowledge of accurate state-selective cross sections, which in general are not accessible experimentally, and the calculation of cross sections for the high n capture levels, required for the diagnostics in the intermediate energy domain of the probe beam, is particularly difficult. In this work, we present a lattice numerical method to solve the time dependent Schrödinger equation. The method is based on the GridTDSE package, it is applicable in the wide energy range 1 - 500 keV/u and can be used to assess the accuracy of previous calculations. The application of the method will be illustrated with calculations for collisions of multiply charged ions with H. Work partially supported by project ENE2014-52432-R (Secretaria de Estado de I+D+i, Spain).

  9. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  10. Fast Track to the Cloud: Design Patterns for 12-Factor Earth Sciences Applications

    NASA Technical Reports Server (NTRS)

    Pawloski, Andrew; McLaughlin, Brett; Lynnes, Christopher

    2016-01-01

    As expanding service offerings and decreasing prices make the cloud increasingly attractive to Earth Science applications, there are nontrivial practical considerations which can hinder its meaningful use. In this talk, we will discuss architectural recommendations and lessons learned while working on EOSDIS' cloud efforts, particularly the NASA-compliant General Application Platform (NGAP) and its associated applications. Prominent in our findings is the importance of 12-factor design patterns and the powerful "wins" they enable in the cloud. We will share our strategies for "fast-tracking" applications to the cloud --whether they be legacy, planned for the future, or somewhere in between.

  11. Smart Actuators and Adhesives for Reconfigurable Matter.

    PubMed

    Ko, Hyunhyub; Javey, Ali

    2017-04-18

    Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.

  12. Compute as Fast as the Engineers Can Think! ULTRAFAST COMPUTING TEAM FINAL REPORT

    NASA Technical Reports Server (NTRS)

    Biedron, R. T.; Mehrotra, P.; Nelson, M. L.; Preston, M. L.; Rehder, J. J.; Rogersm J. L.; Rudy, D. H.; Sobieski, J.; Storaasli, O. O.

    1999-01-01

    This report documents findings and recommendations by the Ultrafast Computing Team (UCT). In the period 10-12/98, UCT reviewed design case scenarios for a supersonic transport and a reusable launch vehicle to derive computing requirements necessary for support of a design process with efficiency so radically improved that human thought rather than the computer paces the process. Assessment of the present computing capability against the above requirements indicated a need for further improvement in computing speed by several orders of magnitude to reduce time to solution from tens of hours to seconds in major applications. Evaluation of the trends in computer technology revealed a potential to attain the postulated improvement by further increases of single processor performance combined with massively parallel processing in a heterogeneous environment. However, utilization of massively parallel processing to its full capability will require redevelopment of the engineering analysis and optimization methods, including invention of new paradigms. To that end UCT recommends initiation of a new activity at LaRC called Computational Engineering for development of new methods and tools geared to the new computer architectures in disciplines, their coordination, and validation and benefit demonstration through applications.

  13. Current State of the Art Historic Building Information Modelling

    NASA Astrophysics Data System (ADS)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  14. Fast, high-fidelity readout of multiple qubits

    NASA Astrophysics Data System (ADS)

    Bronn, N. T.; Abdo, B.; Inoue, K.; Lekuch, S.; Córcoles, A. D.; Hertzberg, J. B.; Takita, M.; Bishop, L. S.; Gambetta, J. M.; Chow, J. M.

    2017-05-01

    Quantum computing requires a delicate balance between coupling quantum systems to external instruments for control and readout, while providing enough isolation from sources of decoherence. Circuit quantum electrodynamics has been a successful method for protecting superconducting qubits, while maintaining the ability to perform readout [1, 2]. Here, we discuss improvements to this method that allow for fast, high-fidelity readout. Specifically, the integration of a Purcell filter, which allows us to increase the resonator bandwidth for fast readout, the incorporation of a Josephson parametric converter, which enables us to perform high-fidelity readout by amplifying the readout signal while adding the minimum amount of noise required by quantum mechanics, and custom control electronics, which provide us with the capability of fast decision and control.

  15. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.

  16. High power gas laser - Applications and future developments

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1977-01-01

    Fast flow can be used to create the population inversion required for lasing action, or can be used to improve laser operation, for example by the removal of waste heat. It is pointed out that at the present time all lasers which are capable of continuous high-average power employ flow as an indispensable aspect of operation. High power laser systems are discussed, taking into account the gasdynamic laser, the HF supersonic diffusion laser, and electric discharge lasers. Aerodynamics and high power lasers are considered, giving attention to flow effects in high-power gas lasers, aerodynamic windows and beam manipulation, and the Venus machine. Applications of high-power laser technology reported are related to laser material working, the employment of the laser in controlled fusion machines, laser isotope separation and photochemistry, and laser power transmission.

  17. Modeling and simulation of a direct ethanol fuel cell: An overview

    NASA Astrophysics Data System (ADS)

    Abdullah, S.; Kamarudin, S. K.; Hasran, U. A.; Masdar, M. S.; Daud, W. R. W.

    2014-09-01

    The commercialization of Direct Ethanol Fuel Cells (DEFCs) is still hindered because of economic and technical reasons. Fundamental scientific research is required to more completely understanding the complex electrochemical behavior and engineering technology of DEFCs. To use the DEFC system in real-world applications, fast, reliable, and cost-effective methods are needed to explore this complex phenomenon and to predict the performance of different system designs. Thus, modeling and simulation play an important role in examining the DEFC system as well as in designing an optimized DEFC system. The current DEFC literature shows that modeling studies on DEFCs are still in their early stages and are not able to describe the DEFC system as a whole. Potential DEFC applications and their current status are also presented.

  18. [CRISPR/Cas system for genome editing in pluripotent stem cells].

    PubMed

    Vasil'eva, E A; Melino, D; Barlev, N A

    2015-01-01

    Genome editing systems based on site-specific nucleases became very popular for genome editing in modern bioengineering. Human pluripotent stem cells provide a unique platform for genes function study, disease modeling, and drugs testing. Consequently, technology for fast, accurate and well controlled genome manipulation is required. CRISPR/Cas (clustered regularly interspaced short palindromic repeat/CRISPR-associated) system could be employed for these purposes. This system is based on site-specific programmable nuclease Cas9. Numerous advantages of the CRISPR/Cas system and its successful application to human stem cells provide wide opportunities for genome therapy and regeneration medicine. In this publication, we describe and compare the main genome editing systems based on site-specific programmable nucleases and discuss opportunities and perspectives of the CRISPR/Cas system for application to pluripotent stem cells.

  19. Fast and predictable video compression in software design and implementation of an H.261 codec

    NASA Astrophysics Data System (ADS)

    Geske, Dagmar; Hess, Robert

    1998-09-01

    The use of software codecs for video compression becomes commonplace in several videoconferencing applications. In order to reduce conflicts with other applications used at the same time, mechanisms for resource reservation on endsystems need to determine an upper bound for computing time used by the codec. This leads to the demand for predictable execution times of compression/decompression. Since compression schemes as H.261 inherently depend on the motion contained in the video, an adaptive admission control is required. This paper presents a data driven approach based on dynamical reduction of the number of processed macroblocks in peak situations. Besides the absolute speed is a point of interest. The question, whether and how software compression of high quality video is feasible on today's desktop computers, is examined.

  20. Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected].

    PubMed

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna

    2014-12-01

    Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (∼10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.

  1. A fast algorithm for solving a linear feasibility problem with application to Intensity-Modulated Radiation Therapy.

    PubMed

    Herman, Gabor T; Chen, Wei

    2008-03-01

    The goal of Intensity-Modulated Radiation Therapy (IMRT) is to deliver sufficient doses to tumors to kill them, but without causing irreparable damage to critical organs. This requirement can be formulated as a linear feasibility problem. The sequential (i.e., iteratively treating the constraints one after another in a cyclic fashion) algorithm ART3 is known to find a solution to such problems in a finite number of steps, provided that the feasible region is full dimensional. We present a faster algorithm called ART3+. The idea of ART3+ is to avoid unnecessary checks on constraints that are likely to be satisfied. The superior performance of the new algorithm is demonstrated by mathematical experiments inspired by the IMRT application.

  2. Laboratory x-ray micro-computed tomography: a user guideline for biological samples

    PubMed Central

    2017-01-01

    Abstract Laboratory x-ray micro–computed tomography (micro-CT) is a fast-growing method in scientific research applications that allows for non-destructive imaging of morphological structures. This paper provides an easily operated “how to” guide for new potential users and describes the various steps required for successful planning of research projects that involve micro-CT. Background information on micro-CT is provided, followed by relevant setup, scanning, reconstructing, and visualization methods and considerations. Throughout the guide, a Jackson's chameleon specimen, which was scanned at different settings, is used as an interactive example. The ultimate aim of this paper is make new users familiar with the concepts and applications of micro-CT in an attempt to promote its use in future scientific studies. PMID:28419369

  3. Hardware architecture design of a fast global motion estimation method

    NASA Astrophysics Data System (ADS)

    Liang, Chaobing; Sang, Hongshi; Shen, Xubang

    2015-12-01

    VLSI implementation of gradient-based global motion estimation (GME) faces two main challenges: irregular data access and high off-chip memory bandwidth requirement. We previously proposed a fast GME method that reduces computational complexity by choosing certain number of small patches containing corners and using them in a gradient-based framework. A hardware architecture is designed to implement this method and further reduce off-chip memory bandwidth requirement. On-chip memories are used to store coordinates of the corners and template patches, while the Gaussian pyramids of both the template and reference frame are stored in off-chip SDRAMs. By performing geometric transform only on the coordinates of the center pixel of a 3-by-3 patch in the template image, a 5-by-5 area containing the warped 3-by-3 patch in the reference image is extracted from the SDRAMs by burst read. Patched-based and burst mode data access helps to keep the off-chip memory bandwidth requirement at the minimum. Although patch size varies at different pyramid level, all patches are processed in term of 3x3 patches, so the utilization of the patch-processing circuit reaches 100%. FPGA implementation results show that the design utilizes 24,080 bits on-chip memory and for a sequence with resolution of 352x288 and frequency of 60Hz, the off-chip bandwidth requirement is only 3.96Mbyte/s, compared with 243.84Mbyte/s of the original gradient-based GME method. This design can be used in applications like video codec, video stabilization, and super-resolution, where real-time GME is a necessity and minimum memory bandwidth requirement is appreciated.

  4. The FAST-ED App: A Smartphone Platform for the Field Triage of Patients With Stroke.

    PubMed

    Nogueira, Raul G; Silva, Gisele S; Lima, Fabricio O; Yeh, Yu-Chih; Fleming, Carol; Branco, Daniel; Yancey, Arthur H; Ratcliff, Jonathan J; Wages, Robert Keith; Doss, Earnest; Bouslama, Mehdi; Grossberg, Jonathan A; Haussen, Diogo C; Sakano, Teppei; Frankel, Michael R

    2017-05-01

    The Emergency Medical Services field triage to stroke centers has gained considerable complexity with the recent demonstration of clinical benefit of endovascular treatment for acute ischemic stroke. We sought to describe a new smartphone freeware application designed to assist Emergency Medical Services professionals with the field assessment and destination triage of patients with acute ischemic stroke. Review of the application's platform and its development as well as the different variables, assessments, algorithms, and assumptions involved. The FAST-ED (Field Assessment Stroke Triage for Emergency Destination) application is based on a built-in automated decision-making algorithm that relies on (1) a brief series of questions assessing patient's age, anticoagulant usage, time last known normal, motor weakness, gaze deviation, aphasia, and hemineglect; (2) a database of all regional stroke centers according to their capability to provide endovascular treatment; and (3) Global Positioning System technology with real-time traffic information to compute the patient's eligibility for intravenous tissue-type plasminogen activator or endovascular treatment as well as the distances/transportation times to the different neighboring stroke centers in order to assist Emergency Medical Services professionals with the decision about the most suitable destination for any given patient with acute ischemic stroke. The FAST-ED smartphone application has great potential to improve the triage of patients with acute ischemic stroke, as it seems capable to optimize resources, reduce hospital arrivals times, and maximize the use of both intravenous tissue-type plasminogen activator and endovascular treatment ultimately leading to better clinical outcomes. Future field studies are needed to properly evaluate the impact of this tool in stroke outcomes and resource utilization. © 2017 American Heart Association, Inc.

  5. 18 CFR 385.206 - Complaints (Rule 206).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... electronic media as specified by the Secretary. (11) Explain with respect to requests for Fast Track... merits based upon the pleadings; (3) The Commission may establish a hearing before an ALJ; (h) Fast Track processing. (1) The Commission may resolve complaints using Fast Track procedures if the complaint requires...

  6. 18 CFR 385.206 - Complaints (Rule 206).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... electronic media as specified by the Secretary. (11) Explain with respect to requests for Fast Track... merits based upon the pleadings; (3) The Commission may establish a hearing before an ALJ; (h) Fast Track processing. (1) The Commission may resolve complaints using Fast Track procedures if the complaint requires...

  7. Fast Conceptual Cost Estimating of Aerospace Projects Using Historical Information

    NASA Technical Reports Server (NTRS)

    Butts, Glenn

    2007-01-01

    Accurate estimates can be created in less than a minute by applying powerful techniques and algorithms to create an Excel-based parametric cost model. In five easy steps you will learn how to normalize your company 's historical cost data to the new project parameters. This paper provides a complete, easy-to-understand, step by step how-to guide. Such a guide does not seem to currently exist. Over 2,000 hours of research, data collection, and trial and error, and thousands of lines of Excel Visual Basic Application (VBA) code were invested in developing these methods. While VBA is not required to use this information, it increases the power and aesthetics of the model. Implementing all of the steps described, while not required, will increase the accuracy of the results.

  8. Application of fluorescence spectroscopy for on-line bioprocess monitoring and control

    NASA Astrophysics Data System (ADS)

    Boehl, Daniela; Solle, D.; Toussaint, Hans J.; Menge, M.; Renemann, G.; Lindemann, Carsten; Hitzmann, Bernd; Scheper, Thomas-Helmut

    2001-02-01

    12 Modern bioprocess control requires fast data acquisition and in-time evaluation of bioprocess variables. On-line fluorescence spectroscopy for data acquisition and the use of chemometric methods accomplish these requirements. The presented investigations were performed with fluorescence spectrometers with wide ranges of excitation and emission wavelength. By detection of several biogenic fluorophors (amino acids, coenzymes and vitamins) a large amount of information about the state of the bioprocess are obtained. For the evaluation of the process variables partial least squares regression is used. This technique was applied to several bioprocesses: the production of ergotamine by Claviceps purpurea, the production of t-PA (tissue plasminogen activator) by animal cells and brewing processes. The main point of monitoring the brewing processes was to determine the process variables cell count and extract concentration.

  9. On the Contribution of Raman Spectroscopy to Forensic Science

    NASA Astrophysics Data System (ADS)

    Buzzini, Patrick; Massonnet, Genevieve

    2010-08-01

    Raman spectroscopy has only recently sparked interest from forensic laboratories. The Raman technique has demonstrated important advantages such as its nondestructive nature, its fast analysis time, and especially the possibility of performing microscopical in situ analyses. In forensic applications, it is a versatile technique that covers a wide spectrum of substances such as trace evidence, illicit drugs and inks. An overview of the recent developments of Raman spectroscopy in forensic science will be discussed. Also, the requirements for an analytical technique for the examination of physical evidence will be described. Examples of casework will be depicted.

  10. Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go

    PubMed Central

    Moitessier, N; Englebienne, P; Lee, D; Lawandi, J; Corbeil, C R

    2008-01-01

    Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation. In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable docking/scoring method. PMID:18037925

  11. Design and development of the coaxial scanner as a compact high-performance thermal imager

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.

    1994-09-01

    This paper describes the original requirement of a light weight, high performance, low cost thermal imager which resulted in the design of the novel coaxial scanner. The early form of imager used a dedicated display to match the original cyclic scan sequence. With the advent of fast digital scan converters and the desire to use standard TV monitors the imager was redesigned and new TV compatible scan sequences devised. A version of this scanner is currently being manufactured by GEC Marconi Avionics, UK, and the paper concludes with examples of its application.

  12. Investigation of Allan variance for determining noise spectral forms with application to microwave radiometry

    NASA Technical Reports Server (NTRS)

    Stanley, William D.

    1994-01-01

    An investigation of the Allan variance method as a possible means for characterizing fluctuations in radiometric noise diodes has been performed. The goal is to separate fluctuation components into white noise, flicker noise, and random-walk noise. The primary means is by discrete-time processing, and the study focused primarily on the digital processes involved. Noise satisfying the requirements was generated by direct convolution, fast Fourier transformation (FFT) processing in the time domain, and FFT processing in the frequency domain. Some of the numerous results obtained are presented along with the programs used in the study.

  13. The key technique study of a kind of personal navigation oriented LBS system

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Zheng, Jianghua; Zhang, Xin; Peng, Chunhua; He, Lina

    2005-11-01

    With the integration of GIS, IT technology and wireless communication techniques, LBS is fast developing and caused wide concern. Personal navigation is the critical application of LBS. It has higher requirement of data quality, positioning accuracy and multi-model services. The study discusses the key techniques of a personal navigation oriented LBS system. As an example for service platform of China Unicom, NAVISTAR especially emphasizes the importance of spatial data organization. Based-on CDMA1X network, it adopts gpsOne\\MS-Assisted dynamic positioning technique, and puts forward a data organization solution to realize multi-scale representation.

  14. Evaluation of the low dose cardiac CT imaging using ASIR technique

    NASA Astrophysics Data System (ADS)

    Fan, Jiahua; Hsieh, Jiang; Deubig, Amy; Sainath, Paavana; Crandall, Peter

    2010-04-01

    Today Cardiac imaging is one of the key driving forces for the research and development activities of Computed Tomography (CT) imaging. It requires high spatial and temporal resolution and is often associated with high radiation dose. The newly introduced ASIR technique presents an efficient method that offers the dose reduction benefits while maintaining image quality and providing fast reconstruction speed. This paper discusses the study of image quality of the ASIR technique for Cardiac CT imaging. Phantoms as well as clinical data have been evaluated to demonstrate the effectiveness of ASIR technique for Cardiac CT applications.

  15. High Speed Photomicrography

    NASA Astrophysics Data System (ADS)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  16. High performance embedded system for real-time pattern matching

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  17. Application of Approximate Pattern Matching in Two Dimensional Spaces to Grid Layout for Biochemical Network Maps

    PubMed Central

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    Background For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. Results We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Conclusions Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html. PMID:22679486

  18. Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators

    PubMed Central

    Ponomarenko, Sergei A.; Surin, Nikolay M.; Borshchev, Oleg V.; Luponosov, Yuriy N.; Akimov, Dmitry Y.; Alexandrov, Ivan S.; Burenkov, Alexander A.; Kovalenko, Alexey G.; Stekhanov, Viktor N.; Kleymyuk, Elena A.; Gritsenko, Oleg T.; Cherkaev, Georgiy V.; Kechek'yan, Alexander S.; Serenko, Olga A.; Muzafarov, Aziz M.

    2014-01-01

    Organic luminophores are widely used in various optoelectronic devices, which serve for photonics, nuclear and particle physics, quantum electronics, medical diagnostics and many other fields of science and technology. Improving their spectral-luminescent characteristics for particular technical requirements of the devices is a challenging task. Here we show a new concept to universal solution of this problem by creation of nanostructured organosilicon luminophores (NOLs), which are a particular type of dendritic molecular antennas. They combine the best properties of organic luminophores and inorganic quantum dots: high absorption cross-section, excellent photoluminescence quantum yield, fast luminescence decay time and good processability. A NOL consists of two types of covalently bonded via silicon atoms organic luminophores with efficient Förster energy transfer between them. Using NOLs in plastic scintillators, widely utilized for radiation detection and in elementary particles discoveries, led to a breakthrough in their efficiency, which combines both high light output and fast decay time. Moreover, for the first time plastic scintillators, which emit light in the desired wavelength region ranging from 370 to 700 nm, have been created. We anticipate further applications of NOLs as working elements of pulsed dye lasers in photonics, optoelectronics and as fluorescent labels in biology and medical diagnostics. PMID:25293808

  19. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites.

    PubMed

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-28

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm(-1) under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot "hand" were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.

  20. Design and implementation of fast bipolar clock drivers for CCD imaging systems in space applications

    NASA Astrophysics Data System (ADS)

    Jayarajan, Jayesh; Kumar, Nishant; Verma, Amarnath; Thaker, Ramkrishna

    2016-05-01

    Drive electronics for generating fast, bipolar clocks, which can drive capacitive loads of the order of 5-10nF are indispensable for present day Charge Coupled Devices (CCDs). Design of these high speed bipolar clocks is challenging because of the capacitive loads that have to be driven and a strict constraint on the rise and fall times. Designing drive electronics circuits for space applications becomes even more challenging due to limited number of available discrete devices, which can survive in the harsh radiation prone space environment. This paper presents the design, simulations and test results of a set of such high speed, bipolar clock drivers. The design has been tested under a thermal cycle of -15 deg C to +55 deg C under vacuum conditions and has been designed using radiation hardened components. The test results show that the design meets the stringent rise/fall time requirements of 50+/-10ns for Multiple Vertical CCD (VCCD) clocks and 20+/-5ns for Horizontal CCD (HCCD) clocks with sufficient design margins across full temperature range, with a pixel readout rate of 6.6MHz. The full design has been realized in flexi-rigid PCB with package volume of 140x160x50 mm3.

  1. Moho Modeling Using FFT Technique

    NASA Astrophysics Data System (ADS)

    Chen, Wenjin; Tenzer, Robert

    2017-04-01

    To improve the numerical efficiency, the Fast Fourier Transform (FFT) technique was facilitated in Parker-Oldenburg's method for a regional gravimetric Moho recovery, which assumes the Earth's planar approximation. In this study, we extend this definition for global applications while assuming a spherical approximation of the Earth. In particular, we utilize the FFT technique for a global Moho recovery, which is practically realized in two numerical steps. The gravimetric forward modeling is first applied, based on methods for a spherical harmonic analysis and synthesis of the global gravity and lithospheric structure models, to compute the refined gravity field, which comprises mainly the gravitational signature of the Moho geometry. The gravimetric inverse problem is then solved iteratively in order to determine the Moho depth. The application of FFT technique to both numerical steps reduces the computation time to a fraction of that required without applying this fast algorithm. The developed numerical producers are used to estimate the Moho depth globally, and the gravimetric result is validated using the global (CRUST1.0) and regional (ESC) seismic Moho models. The comparison reveals a relatively good agreement between the gravimetric and seismic models, with the RMS of differences (of 4-5 km) at the level of expected uncertainties of used input datasets, while without the presence of significant systematic bias.

  2. Application of approximate pattern matching in two dimensional spaces to grid layout for biochemical network maps.

    PubMed

    Inoue, Kentaro; Shimozono, Shinichi; Yoshida, Hideaki; Kurata, Hiroyuki

    2012-01-01

    For visualizing large-scale biochemical network maps, it is important to calculate the coordinates of molecular nodes quickly and to enhance the understanding or traceability of them. The grid layout is effective in drawing compact, orderly, balanced network maps with node label spaces, but existing grid layout algorithms often require a high computational cost because they have to consider complicated positional constraints through the entire optimization process. We propose a hybrid grid layout algorithm that consists of a non-grid, fast layout (preprocessor) algorithm and an approximate pattern matching algorithm that distributes the resultant preprocessed nodes on square grid points. To demonstrate the feasibility of the hybrid layout algorithm, it is characterized in terms of the calculation time, numbers of edge-edge and node-edge crossings, relative edge lengths, and F-measures. The proposed algorithm achieves outstanding performances compared with other existing grid layouts. Use of an approximate pattern matching algorithm quickly redistributes the laid-out nodes by fast, non-grid algorithms on the square grid points, while preserving the topological relationships among the nodes. The proposed algorithm is a novel use of the pattern matching, thereby providing a breakthrough for grid layout. This application program can be freely downloaded from http://www.cadlive.jp/hybridlayout/hybridlayout.html.

  3. Enhanced recovery after surgery in gastric resections.

    PubMed

    Bruna Esteban, Marcos; Vorwald, Peter; Ortega Lucea, Sonia; Ramírez Rodríguez, Jose Manuel

    2017-02-01

    Enhanced recovery after surgery is a modality of perioperative management with the purpose of improving results and providing a faster recovery of patients. This kind of protocol has been applied frequently in colorectal surgery, presenting less available experience and evidence in gastric surgery. According to the RICA guidelines published in 2015, a review of the bibliography and the consensus established in a multidisciplinary meeting in Zaragoza on the 9th of October 2015, we present a protocol that contains the basic procedures of fast-track for resective gastric surgery. The measures to be applied are divided in a preoperative, perioperative and postoperative stage. This document provides recommendations concerning the appropriate information, limited fasting and administration of carbohydrate drinks 2hours before surgery, specialized anesthetic strategies, minimal invasive surgery, no routine use of drainages and tubes, mobilization and early oral tolerance during the immediate postoperative period, as well as criteria for discharge. The application of a protocol of enhanced recovery after surgery in resective gastric surgery can improve and accelerate the functional recovery of our patients, requiring an appropriate multidisciplinary coordination, the evaluation of obtained results with the application of these measures and the investigation of controversial topics about which we currently have limited evidence. Copyright © 2016 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Flexible software platform for fast-scan cyclic voltammetry data acquisition and analysis.

    PubMed

    Bucher, Elizabeth S; Brooks, Kenneth; Verber, Matthew D; Keithley, Richard B; Owesson-White, Catarina; Carroll, Susan; Takmakov, Pavel; McKinney, Collin J; Wightman, R Mark

    2013-11-05

    Over the last several decades, fast-scan cyclic voltammetry (FSCV) has proved to be a valuable analytical tool for the real-time measurement of neurotransmitter dynamics in vitro and in vivo. Indeed, FSCV has found application in a wide variety of disciplines including electrochemistry, neurobiology, and behavioral psychology. The maturation of FSCV as an in vivo technique led users to pose increasingly complex questions that require a more sophisticated experimental design. To accommodate recent and future advances in FSCV application, our lab has developed High Definition Cyclic Voltammetry (HDCV). HDCV is an electrochemical software suite that includes data acquisition and analysis programs. The data collection program delivers greater experimental flexibility and better user feedback through live displays. It supports experiments involving multiple electrodes with customized waveforms. It is compatible with transistor-transistor logic-based systems that are used for monitoring animal behavior, and it enables simultaneous recording of electrochemical and electrophysiological data. HDCV analysis streamlines data processing with superior filtering options, seamlessly manages behavioral events, and integrates chemometric processing. Furthermore, analysis is capable of handling single files collected over extended periods of time, allowing the user to consider biological events on both subsecond and multiminute time scales. Here we describe and demonstrate the utility of HDCV for in vivo experiments.

  5. Optimization of a hardware implementation for pulse coupled neural networks for image applications

    NASA Astrophysics Data System (ADS)

    Gimeno Sarciada, Jesús; Lamela Rivera, Horacio; Warde, Cardinal

    2010-04-01

    Pulse Coupled Neural Networks are a very useful tool for image processing and visual applications, since it has the advantages of being invariant to image changes as rotation, scale, or certain distortion. Among other characteristics, the PCNN changes a given image input into a temporal representation which can be easily later analyzed for pattern recognition. The structure of a PCNN though, makes it necessary to determine all of its parameters very carefully in order to function optimally, so that the responses to the kind of inputs it will be subjected are clearly discriminated allowing for an easy and fast post-processing yielding useful results. This tweaking of the system is a taxing process. In this paper we analyze and compare two methods for modeling PCNNs. A purely mathematical model is programmed and a similar circuital model is also designed. Both are then used to determine the optimal values of the several parameters of a PCNN: gain, threshold, time constants for feed-in and threshold and linking leading to an optimal design for image recognition. The results are compared for usefulness, accuracy and speed, as well as the performance and time requirements for fast and easy design, thus providing a tool for future ease of management of a PCNN for different tasks.

  6. Epinephrine deficiency results in intact glucose counter-regulation, severe hepatic steatosis and possible defective autophagy in fasting mice

    PubMed Central

    Sharara-Chami, Rana I.; Zhou, Yingjiang; Ebert, Steven; Pacak, Karel; Ozcan, Umut; Majzoub, Joseph A.

    2016-01-01

    Epinephrine is one of the major hormones involved in glucose counter-regulation and gluconeogenesis. However, little is known about its importance in energy homeostasis during fasting. Our objective is to study the specific role of epinephrine in glucose and lipid metabolism during starvation. In our experiment, we subject regular mice and epinephrine-deficient mice to a 48-h fast then we evaluate the different metabolic responses to fasting. Our results show that epinephrine is not required for glucose counter-regulation: epinephrine-deficient mice maintain their blood glucose at normal fasting levels via glycogenolysis and gluconeogenesis, with normal fasting-induced changes in the peroxisomal activators: peroxisome proliferator activated receptor γ coactivator α (PGC-1α), fibroblast growth factor 21 (FGF-21), peroxisome proliferator activated receptor α (PPAR-α), and sterol regulatory element binding protein (SREBP-1c). However, fasted epinephrine-deficient mice develop severe ketosis and hepatic steatosis, with evidence for inhibition of hepatic autophagy, a process that normally provides essential energy via degradation of hepatic triglycerides during starvation. We conclude that, during fasting, epinephrine is not required for glucose homeostasis, lipolysis or ketogenesis. Epinephrine may have an essential role in lipid handling, possibly via an autophagy-dependent mechanism. PMID:22405854

  7. Polarizable atomic multipole X-ray refinement: application to peptide crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnieders, Michael J.; Fenn, Timothy D.; Howard Hughes Medical Institute

    2009-09-01

    A method to accelerate the computation of structure factors from an electron density described by anisotropic and aspherical atomic form factors via fast Fourier transformation is described for the first time. Recent advances in computational chemistry have produced force fields based on a polarizable atomic multipole description of biomolecular electrostatics. In this work, the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field is applied to restrained refinement of molecular models against X-ray diffraction data from peptide crystals. A new formalism is also developed to compute anisotropic and aspherical structure factors using fast Fourier transformation (FFT) of Cartesian Gaussianmore » multipoles. Relative to direct summation, the FFT approach can give a speedup of more than an order of magnitude for aspherical refinement of ultrahigh-resolution data sets. Use of a sublattice formalism makes the method highly parallelizable. Application of the Cartesian Gaussian multipole scattering model to a series of four peptide crystals using multipole coefficients from the AMOEBA force field demonstrates that AMOEBA systematically underestimates electron density at bond centers. For the trigonal and tetrahedral bonding geometries common in organic chemistry, an atomic multipole expansion through hexadecapole order is required to explain bond electron density. Alternatively, the addition of interatomic scattering (IAS) sites to the AMOEBA-based density captured bonding effects with fewer parameters. For a series of four peptide crystals, the AMOEBA–IAS model lowered R{sub free} by 20–40% relative to the original spherically symmetric scattering model.« less

  8. Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications.

    PubMed

    Chang, Yingna; Zhang, Guoxin; Han, Biao; Li, Haoyuan; Hu, Cejun; Pang, Yingchun; Chang, Zheng; Sun, Xiaoming

    2017-09-06

    Doped carbon materials (DCM) with multiple heteroatoms hold broad interest in electrochemical catalysis and energy storage but require several steps to fabricate, which greatly hinder their practical applications. In this study, a facile strategy is developed to enable the fast fabrication of multiply doped carbon materials via room-temperature dehalogenation of polyvinyl dichloride (PVDC) promoted by KOH with the presence of different organic dopants. A N,S-codoped carbon material (NS-DCM) is demonstratively synthesized using two dopants (dimethylformamide for N doping and dimethyl sulfoxide for S doping). Afterward, the precursive room-temperature NS-DCM with intentionally overdosed KOH is submitted to inert annealing to obtain large specific surface area and high conductivity. Remarkably, NS-DCM annealed at 600 °C (named as 600-NS-DCM), with 3.0 atom % N and 2.4 atom % S, exhibits a very high specific capacitance of 427 F g -1 at 1.0 A g -1 in acidic electrolyte and also keeps ∼60% of capacitance at ultrahigh current density of 100.0 A g -1 . Furthermore, capacitive deionization (CDI) measurements reveal that 600-NS-DCM possesses a large desalination capacity of 32.3 mg g -1 (40.0 mg L -1 NaCl) and very good cycling stability. Our strategy of fabricating multiply doped carbon materials can be potentially extended to the synthesis of carbon materials with various combinations of heteroatom doping for broad electrochemical applications.

  9. Multiple-scale stochastic processes: Decimation, averaging and beyond

    NASA Astrophysics Data System (ADS)

    Bo, Stefano; Celani, Antonio

    2017-02-01

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  10. Kruppel-like factor 15 is required for the cardiac adaptive response to fasting.

    PubMed

    Sugi, Keiki; Hsieh, Paishiun N; Ilkayeva, Olga; Shelkay, Shamanthika; Moroney, Bridget; Baadh, Palvir; Haynes, Browning; Pophal, Megan; Fan, Liyan; Newgard, Christopher B; Prosdocimo, Domenick A; Jain, Mukesh K

    2018-01-01

    Cardiac metabolism is highly adaptive in response to changes in substrate availability, as occur during fasting. This metabolic flexibility is essential to the maintenance of contractile function and is under the control of a group of select transcriptional regulators, notably the nuclear receptor family of factors member PPARα. However, the diversity of physiologic and pathologic states through which the heart must sustain function suggests the possible existence of additional transcriptional regulators that play a role in matching cardiac metabolism to energetic demand. Here we show that cardiac KLF15 is required for the normal cardiac response to fasting. Specifically, we find that cardiac function is impaired upon fasting in systemic and cardiac specific Klf15-null mice. Further, cardiac specific Klf15-null mice display a fasting-dependent accumulation of long chain acylcarnitine species along with a decrease in expression of the carnitine translocase Slc25a20. Treatment with a diet high in short chain fatty acids relieves the KLF15-dependent long chain acylcarnitine accumulation and impaired cardiac function in response to fasting. Our observations establish KLF15 as a critical mediator of the cardiac adaptive response to fasting through its regulation of myocardial lipid utilization.

  11. First-arrival traveltime computation for quasi-P waves in 2D transversely isotropic media using Fermat’s principle-based fast marching

    NASA Astrophysics Data System (ADS)

    Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong

    2017-12-01

    First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.

  12. Cross hole GPR traveltime inversion using a fast and accurate neural network as a forward model

    NASA Astrophysics Data System (ADS)

    Mejer Hansen, Thomas

    2017-04-01

    Probabilistic formulated inverse problems can be solved using Monte Carlo based sampling methods. In principle both advanced prior information, such as based on geostatistics, and complex non-linear forward physical models can be considered. However, in practice these methods can be associated with huge computational costs that in practice limit their application. This is not least due to the computational requirements related to solving the forward problem, where the physical response of some earth model has to be evaluated. Here, it is suggested to replace a numerical complex evaluation of the forward problem, with a trained neural network that can be evaluated very fast. This will introduce a modeling error, that is quantified probabilistically such that it can be accounted for during inversion. This allows a very fast and efficient Monte Carlo sampling of the solution to an inverse problem. We demonstrate the methodology for first arrival travel time inversion of cross hole ground-penetrating radar (GPR) data. An accurate forward model, based on 2D full-waveform modeling followed by automatic travel time picking, is replaced by a fast neural network. This provides a sampling algorithm three orders of magnitude faster than using the full forward model, and considerably faster, and more accurate, than commonly used approximate forward models. The methodology has the potential to dramatically change the complexity of the types of inverse problems that can be solved using non-linear Monte Carlo sampling techniques.

  13. Recovery Systems Design Guide

    DTIC Science & Technology

    1978-12-01

    analysis. retrieval parachute concepts are being investigated. The development of recovery systems for fast flying, possible out-of-control missiles proved...system. 21 •, . , r, _ . .. , . " , , . : . .. . " . , ,- Reference 32 suggests certain applications (speed/ Fast Opening. An emergency escape...operation, physiological aspect of flying and escape. fast parachute opening., Low Rate of Descent. A sea level rate of descent low parachute opening

  14. Darwin Assembly: fast, efficient, multi-site bespoke mutagenesis

    PubMed Central

    Cozens, Christopher

    2018-01-01

    Abstract Engineering proteins for designer functions and biotechnological applications almost invariably requires (or at least benefits from) multiple mutations to non-contiguous residues. Several methods for multiple site-directed mutagenesis exist, but there remains a need for fast and simple methods to efficiently introduce such mutations – particularly for generating large, high quality libraries for directed evolution. Here, we present Darwin Assembly, which can deliver high quality libraries of >108 transformants, targeting multiple (>10) distal sites with minimal wild-type contamination (<0.25% of total population) and which takes a single working day from purified plasmid to library transformation. We demonstrate its efficacy with whole gene codon reassignment of chloramphenicol acetyl transferase, mutating 19 codons in a single reaction in KOD DNA polymerase and generating high quality, multiple-site libraries in T7 RNA polymerase and Tgo DNA polymerase. Darwin Assembly uses commercially available enzymes, can be readily automated, and offers a cost-effective route to highly complex and customizable library generation. PMID:29409059

  15. Superadiabatic holonomic quantum computation in cavity QED

    NASA Astrophysics Data System (ADS)

    Liu, Bao-Jie; Huang, Zhen-Hua; Xue, Zheng-Yuan; Zhang, Xin-Ding

    2017-06-01

    Adiabatic quantum control is a powerful tool for quantum engineering and a key component in some quantum computation models, where accurate control over the timing of the involved pulses is not needed. However, the adiabatic condition requires that the process be very slow and thus limits its application in quantum computation, where quantum gates are preferred to be fast due to the limited coherent times of the quantum systems. Here, we propose a feasible scheme to implement universal holonomic quantum computation based on non-Abelian geometric phases with superadiabatic quantum control, where the adiabatic manipulation is sped up while retaining its robustness against errors in the timing control. Consolidating the advantages of both strategies, our proposal is thus both robust and fast. The cavity QED system is adopted as a typical example to illustrate the merits where the proposed scheme can be realized in a tripod configuration by appropriately controlling the pulse shapes and their relative strength. To demonstrate the distinct performance of our proposal, we also compare our scheme with the conventional adiabatic strategy.

  16. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    NASA Astrophysics Data System (ADS)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  17. The power of simplicity: a fast-and-frugal heuristics approach to performance science.

    PubMed

    Raab, Markus; Gigerenzer, Gerd

    2015-01-01

    Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive "adaptive toolbox;" the prescriptive study of their "ecological rationality," that is, the characterization of the situations in which a given heuristic works; and the engineering study of "intuitive design," that is, the design of transparent aids for making better decisions.

  18. The power of simplicity: a fast-and-frugal heuristics approach to performance science

    PubMed Central

    Raab, Markus; Gigerenzer, Gerd

    2015-01-01

    Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive “adaptive toolbox;” the prescriptive study of their “ecological rationality,” that is, the characterization of the situations in which a given heuristic works; and the engineering study of “intuitive design,” that is, the design of transparent aids for making better decisions. PMID:26579051

  19. Inversion of surface parameters using fast learning neural networks

    NASA Technical Reports Server (NTRS)

    Dawson, M. S.; Olvera, J.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A neural network approach to the inversion of surface scattering parameters is presented. Simulated data sets based on a surface scattering model are used so that the data may be viewed as taken from a completely known randomly rough surface. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) are tested on the simulated backscattering data. The RMS error of training the FL network is found to be less than one half the error of the BP network while requiring one to two orders of magnitude less CPU time. When applied to inversion of parameters from a statistically rough surface, the FL method is successful at recovering the surface permittivity, the surface correlation length, and the RMS surface height in less time and with less error than the BP network. Further applications of the FL neural network to the inversion of parameters from backscatter measurements of an inhomogeneous layer above a half space are shown.

  20. Adaptive Wiener filter super-resolution of color filter array images.

    PubMed

    Karch, Barry K; Hardie, Russell C

    2013-08-12

    Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.

  1. MgB2-based superconductors for fault current limiters

    NASA Astrophysics Data System (ADS)

    Sokolovsky, V.; Prikhna, T.; Meerovich, V.; Eisterer, M.; Goldacker, W.; Kozyrev, A.; Weber, H. W.; Shapovalov, A.; Sverdun, V.; Moshchil, V.

    2017-02-01

    A promising solution of the fault current problem in power systems is the application of fast-operating nonlinear superconducting fault current limiters (SFCLs) with the capability of rapidly increasing their impedance, and thus limiting high fault currents. We report the results of experiments with models of inductive (transformer type) SFCLs based on the ring-shaped bulk MgB2 prepared under high quasihydrostatic pressure (2 GPa) and by hot pressing technique (30 MPa). It was shown that the SFCLs meet the main requirements to fault current limiters: they possess low impedance in the nominal regime of the protected circuit and can fast increase their impedance limiting both the transient and the steady-state fault currents. The study of quenching currents of MgB2 rings (SFCL activation current) and AC losses in the rings shows that the quenching current density and critical current density determined from AC losses can be 10-20 times less than the critical current determined from the magnetization experiments.

  2. Enhanced parent selection algorithms in mintroute protocol

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Il

    2012-11-01

    A low-rate, short-range wireless radio communication on a small device often hampers high reliability in wireless sensor networks. However, more applications are increasingly demanding high reliability. To meet this requirement, various approaches have been proposed in each viewpoint of layers. Among those, MintRoute is a well-known network layer approach to develop a new metric based on link quality for path selection towards the sink. By choosing the link with the highest measured value, it has a higher possibility to transmit a packet over the link without error. However, there are still several issues to be mentioned during operations. In this paper, we propose how to improve the MintRoute protocol through revised algorithms. They include a parent selection considering distance and level from the sink node, and a fast recovery method against failures. Simulations and analysis are performed by in order to validate the suitability of reduced end-to-end delay and fast recovery for failures, thus to enhance the reliability of communication.

  3. A Fast and Accurate Sparse Continuous Signal Reconstruction by Homotopy DCD with Non-Convex Regularization

    PubMed Central

    Wang, Tianyun; Lu, Xinfei; Yu, Xiaofei; Xi, Zhendong; Chen, Weidong

    2014-01-01

    In recent years, various applications regarding sparse continuous signal recovery such as source localization, radar imaging, communication channel estimation, etc., have been addressed from the perspective of compressive sensing (CS) theory. However, there are two major defects that need to be tackled when considering any practical utilization. The first issue is off-grid problem caused by the basis mismatch between arbitrary located unknowns and the pre-specified dictionary, which would make conventional CS reconstruction methods degrade considerably. The second important issue is the urgent demand for low-complexity algorithms, especially when faced with the requirement of real-time implementation. In this paper, to deal with these two problems, we have presented three fast and accurate sparse reconstruction algorithms, termed as HR-DCD, Hlog-DCD and Hlp-DCD, which are based on homotopy, dichotomous coordinate descent (DCD) iterations and non-convex regularizations, by combining with the grid refinement technique. Experimental results are provided to demonstrate the effectiveness of the proposed algorithms and related analysis. PMID:24675758

  4. Object-oriented approach to fast display of electrophysiological data under MS-windows.

    PubMed

    Marion-Poll, F

    1995-12-01

    Microcomputers provide neuroscientists an alternative to a host of laboratory equipment to record and analyze electrophysiological data. Object-oriented programming tools bring an essential link between custom needs for data acquisition and analysis with general software packages. In this paper, we outline the layout of basic objects that display and manipulate electrophysiological data files. Visual inspection of the recordings is a basic requirement of any data analysis software. We present an approach that allows flexible and fast display of large data sets. This approach involves constructing an intermediate representation of the data in order to lower the number of actual points displayed while preserving the aspect of the data. The second group of objects is related to the management of lists of data files. Typical experiments designed to test the biological activity of pharmacological products include scores of files. Data manipulation and analysis are facilitated by creating multi-document objects that include the names of all experiment files. Implementation steps of both objects are described for an MS-Windows hosted application.

  5. Design of fast earth-return trajectories from a lunar base

    NASA Astrophysics Data System (ADS)

    Anhorn, Walter

    1991-09-01

    The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.

  6. Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations

    PubMed Central

    Gustafsson, Nils; Culley, Siân; Ashdown, George; Owen, Dylan M.; Pereira, Pedro Matos; Henriques, Ricardo

    2016-01-01

    Despite significant progress, high-speed live-cell super-resolution studies remain limited to specialized optical setups, generally requiring intense phototoxic illumination. Here, we describe a new analytical approach, super-resolution radial fluctuations (SRRF), provided as a fast graphics processing unit-enabled ImageJ plugin. In the most challenging data sets for super-resolution, such as those obtained in low-illumination live-cell imaging with GFP, we show that SRRF is generally capable of achieving resolutions better than 150 nm. Meanwhile, for data sets similar to those obtained in PALM or STORM imaging, SRRF achieves resolutions approaching those of standard single-molecule localization analysis. The broad applicability of SRRF and its performance at low signal-to-noise ratios allows super-resolution using modern widefield, confocal or TIRF microscopes with illumination orders of magnitude lower than methods such as PALM, STORM or STED. We demonstrate this by super-resolution live-cell imaging over timescales ranging from minutes to hours. PMID:27514992

  7. Fast and robust wavelet-based dynamic range compression and contrast enhancement model with color restoration

    NASA Astrophysics Data System (ADS)

    Unaldi, Numan; Asari, Vijayan K.; Rahman, Zia-ur

    2009-05-01

    Recently we proposed a wavelet-based dynamic range compression algorithm to improve the visual quality of digital images captured from high dynamic range scenes with non-uniform lighting conditions. The fast image enhancement algorithm that provides dynamic range compression, while preserving the local contrast and tonal rendition, is also a good candidate for real time video processing applications. Although the colors of the enhanced images produced by the proposed algorithm are consistent with the colors of the original image, the proposed algorithm fails to produce color constant results for some "pathological" scenes that have very strong spectral characteristics in a single band. The linear color restoration process is the main reason for this drawback. Hence, a different approach is required for the final color restoration process. In this paper the latest version of the proposed algorithm, which deals with this issue is presented. The results obtained by applying the algorithm to numerous natural images show strong robustness and high image quality.

  8. Ultrafast, high repetition rate, ultraviolet, fiber-laser-based source: application towards Yb+ fast quantum-logic.

    PubMed

    Hussain, Mahmood Irtiza; Petrasiunas, Matthew Joseph; Bentley, Christopher D B; Taylor, Richard L; Carvalho, André R R; Hope, Joseph J; Streed, Erik W; Lobino, Mirko; Kielpinski, David

    2016-07-25

    Trapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.5 ps ultraviolet (UV) pulses at a stabilized repetition rate of 300.00000 MHz with an average power of 190 mW. The laser wavelength is resonant with the strong transition in Ytterbium (Yb+) at 369.53 nm and its repetition rate can be scaled up using high harmonic mode locking. We show that our source can produce arbitrary pulse patterns using a programmable pulse pattern generator and fast modulating components. Finally, simulations demonstrate that our laser is capable of performing resonant, temperature-insensitive, two-qubit quantum logic gates on trapped Yb+ ions faster than the trap period and with fidelity above 99%.

  9. Droplet microfluidics with magnetic beads: a new tool to investigate drug-protein interactions.

    PubMed

    Lombardi, Dario; Dittrich, Petra S

    2011-01-01

    In this study, we give the proof of concept for a method to determine binding constants of compounds in solution. By implementing a technique based on magnetic beads with a microfluidic device for segmented flow generation, we demonstrate, for individual droplets, fast, robust and complete separation of the magnetic beads. The beads are used as a carrier for one binding partner and hence, any bound molecule is separated likewise, while the segmentation into small microdroplets ensures fast mixing, and opens future prospects for droplet-wise analysis of drug candidate libraries. We employ the method for characterization of drug-protein binding, here warfarin to human serum albumin. The approach lays the basis for a microfluidic droplet-based screening device aimed at investigating the interactions of drugs with specific targets including enzymes and cells. Furthermore, the continuous method could be employed for various applications, such as binding assays, kinetic studies, and single cell analysis, in which rapid removal of a reactive component is required.

  10. Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring

    PubMed Central

    Wu, Hongpeng; Dong, Lei; Zheng, Huadan; Yu, Yajun; Ma, Weiguang; Zhang, Lei; Yin, Wangbao; Xiao, Liantuan; Jia, Suotang; Tittel, Frank K.

    2017-01-01

    Quartz-enhanced photoacoustic spectroscopy (QEPAS) is a sensitive gas detection technique which requires frequent calibration and has a long response time. Here we report beat frequency (BF) QEPAS that can be used for ultra-sensitive calibration-free trace-gas detection and fast spectral scan applications. The resonance frequency and Q-factor of the quartz tuning fork (QTF) as well as the trace-gas concentration can be obtained simultaneously by detecting the beat frequency signal generated when the transient response signal of the QTF is demodulated at its non-resonance frequency. Hence, BF-QEPAS avoids a calibration process and permits continuous monitoring of a targeted trace gas. Three semiconductor lasers were selected as the excitation source to verify the performance of the BF-QEPAS technique. The BF-QEPAS method is capable of measuring lower trace-gas concentration levels with shorter averaging times as compared to conventional PAS and QEPAS techniques and determines the electrical QTF parameters precisely. PMID:28561065

  11. Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use.

    PubMed

    Willis, Peter A; Hunt, Brian D; White, Victor E; Lee, Michael C; Ikeda, Michael; Bae, Sam; Pelletier, Michael J; Grunthaner, Frank J

    2007-11-01

    Microfluidic diaphragm valves and pumps capable of surviving conditions required for unmanned spaceflight applications have been developed. The Pasteur payload of the European ExoMars Rover is expected to experience temperatures ranging between -100 degrees C and +50 degrees C during its transit to Mars and on the Martian surface. As such, the Urey instrument package, which contains at its core a lab-on-a-chip capillary electrophoresis analysis system first demonstrated by Mathies et al., requires valving and pumping systems that are robust under these conditions before and after exposure to liquid samples, which are to be analyzed for chemical signatures of past or present living processes. The microfluidic system developed to meet this requirement uses membranes consisting of Teflon and Teflon AF as a deformable material in the valve seat region between etched Borofloat glass wafers. Pneumatic pressure and vacuum, delivered via off-chip solenoid valves, are used to actuate individual on-chip valves. Valve sealing properties of Teflon diaphragm valves, as well as pumping properties from collections of valves, are characterized. Secondary processing for embossing the membrane against the valve seats after fabrication is performed to optimize single valve sealing characteristics. A variety of different material solutions are found to produce robust devices. The optimal valve system utilizes a membrane of mechanically cut Teflon sandwiched between two thin spun films of Teflon AF-1600 as a composite "laminated" diaphragm. Pump rates up to 1600 nL s(-1) are achieved with pumps of this kind. These high pumping rates are possible because of the very fast response of the membranes to applied pressure, enabling extremely fast pump cycling with relatively small liquid volumes, compared to analogous diaphragm pumps. The developed technologies are robust over extremes of temperature cycling and are applicable in a wide range of chemical environments.

  12. Fast Numerical Methods for the Design of Layered Photonic Structures with Rough Interfaces

    NASA Technical Reports Server (NTRS)

    Komarevskiy, Nikolay; Braginsky, Leonid; Shklover, Valery; Hafner, Christian; Lawson, John

    2011-01-01

    Modified boundary conditions (MBC) and a multilayer approach (MA) are proposed as fast and efficient numerical methods for the design of 1D photonic structures with rough interfaces. These methods are applicable for the structures, composed of materials with arbitrary permittivity tensor. MBC and MA are numerically validated on different types of interface roughness and permittivities of the constituent materials. The proposed methods can be combined with the 4x4 scattering matrix method as a field solver and an evolutionary strategy as an optimizer. The resulted optimization procedure is fast, accurate, numerically stable and can be used to design structures for various applications.

  13. Note: A fast pneumatic sample-shuttle with attenuated shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancalana, Valerio; Dancheva, Yordanka; Stiaccini, Leonardo

    2014-03-15

    We describe a home-built pneumatic shuttle suitable for the fast displacement of samples in the vicinity of a highly sensitive atomic magnetometer. The samples are magnetized at 1 T using a Halbach assembly of magnets. The device enables the remote detection of free-induction-decay in ultra-low-field and zero-field nuclear magnetic resonance (NMR) experiments, in relaxometric measurements and in other applications involving the displacement of magnetized samples within time intervals as short as a few tens of milliseconds. Other possible applications of fast sample shuttling exist in radiological studies, where samples have to be irradiated and then analyzed in a cold environment.

  14. The diabetic patient in Ramadan.

    PubMed

    Chamsi-Pasha, Hassan; Aljabri, Khalid S

    2014-04-01

    During the month of Ramadan, all healthy, adult Muslims are required to fast from dawn to sunset. Fasting during Ramadan involves abstaining from food, water, beverages, smoking, oral drugs, and sexual intercourse. Although the Quran exempts chronically ill from fasting, many Muslims with diabetes still fast during Ramadan. Patients with diabetes who fast during the month of Ramadan can have acute complications. The risk of complications in fasting individuals with diabetes increases with longer periods of fasting. All patients with diabetes who wish to fast during Ramadan should be prepared by undergoing a medical assessment and engaging in a structured education program to undertake the fast as safely as possible. Although some guidelines do exist, there is an overwhelming need for better designed clinical trials which could provide us with evidence-based information and guidance in the management of patients with diabetes fasting Ramadan.

  15. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography.

    PubMed

    Brockhauser, Sandor; Svensson, Olof; Bowler, Matthew W; Nanao, Max; Gordon, Elspeth; Leal, Ricardo M F; Popov, Alexander; Gerring, Matthew; McCarthy, Andrew A; Gotz, Andy

    2012-08-01

    The automation of beam delivery, sample handling and data analysis, together with increasing photon flux, diminishing focal spot size and the appearance of fast-readout detectors on synchrotron beamlines, have changed the way that many macromolecular crystallography experiments are planned and executed. Screening for the best diffracting crystal, or even the best diffracting part of a selected crystal, has been enabled by the development of microfocus beams, precise goniometers and fast-readout detectors that all require rapid feedback from the initial processing of images in order to be effective. All of these advances require the coupling of data feedback to the experimental control system and depend on immediate online data-analysis results during the experiment. To facilitate this, a Data Analysis WorkBench (DAWB) for the flexible creation of complex automated protocols has been developed. Here, example workflows designed and implemented using DAWB are presented for enhanced multi-step crystal characterizations, experiments involving crystal reorientation with kappa goniometers, crystal-burning experiments for empirically determining the radiation sensitivity of a crystal system and the application of mesh scans to find the best location of a crystal to obtain the highest diffraction quality. Beamline users interact with the prepared workflows through a specific brick within the beamline-control GUI MXCuBE.

  16. Holographic Adaptive Laser Optics System (HALOS): Fast, Autonomous Aberration Correction

    NASA Astrophysics Data System (ADS)

    Andersen, G.; MacDonald, K.; Gelsinger-Austin, P.

    2013-09-01

    We present an adaptive optics system which uses a multiplexed hologram to deconvolve the phase aberrations in an input beam. This wavefront characterization is extremely fast as it is based on simple measurements of the intensity of focal spots and does not require any computations. Furthermore, the system does not require a computer in the loop and is thus much cheaper, less complex and more robust as well. A fully functional, closed-loop prototype incorporating a 32-element MEMS mirror has been constructed. The unit has a footprint no larger than a laptop but runs at a bandwidth of 100kHz over an order of magnitude faster than comparable, conventional systems occupying a significantly larger volume. Additionally, since the sensing is based on parallel, all-optical processing, the speed is independent of actuator number running at the same bandwidth for one actuator as for a million. We are developing the HALOS technology with a view towards next-generation surveillance systems for extreme adaptive optics applications. These include imaging, lidar and free-space optical communications for unmanned aerial vehicles and SSA. The small volume is ideal for UAVs, while the high speed and high resolution will be of great benefit to the ground-based observation of space-based objects.

  17. Energy efficient and fast reversal of a fixed skyrmion two-terminal memory with spin current assisted by voltage controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dhritiman; Mamun Al-Rashid, Md; Atulasimha, Jayasimha

    2017-10-01

    Recent work (P-H Jang et al 2015 Appl. Phys. Lett. 107 202401, J. Sampaio et al 2016 Appl. Phys. Lett. 108 112403) suggests that ferromagnetic reversal with spin transfer torque (STT) requires more current in a system in the presence of Dzyaloshinskii-Moriya interaction (DMI) than switching a typical ferromagnet of the same dimensions and perpendicular magnetic anisotropy (PMA). However, DMI promotes the stabilization of skyrmions and we report that when perpendicular anisotropy is modulated (reduced) for both the skyrmion and ferromagnet, it takes a much smaller current to reverse the fixed skyrmion than to reverse the ferromagnet in the same amount of time, or the skyrmion reverses much faster than the ferromagnet at similar levels of current. We show with rigorous micromagnetic simulations that skyrmion switching proceeds along a different path at very low PMA, which results in a significant reduction in the spin current or time required for reversal. This can offer potential for memory applications where a relatively simple modification of the standard STT-RAM (to include a heavy metal adjacent to the soft magnetic layer and with appropriate design of the tunnel barrier) can lead to an energy efficient and fast magnetic memory device based on the reversal of fixed skyrmions.

  18. Guiding and focusing of fast electron beams produced by ultra-intense laser pulse using a double cone funnel target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen-shuai; Cai, Hong-bo, E-mail: Cai-hongbo@iapcm.ac.cn; HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871

    A novel double cone funnel target design aiming at efficiently guiding and focusing fast electron beams produced in high intensity (>10{sup 19 }W/cm{sup 2}) laser-solid interactions is investigated via two-dimensional particle-in-cell simulations. The forward-going fast electron beams are shown to be directed and focused to a smaller size in comparison with the incident laser spot size. This plasma funnel attached on the cone target guides and focuses electrons in a manner akin to the control of liquid by a plastic funnel. Such device has the potential to add substantial design flexibility and prevent inefficiencies for important applications such as fast ignition.more » Two reasons account for the collimation of fast electron beams. First, the sheath electric fields and quasistatic magnetic fields inside the vacuum gap of the double cone provide confinement of the fast electrons in the laser-plasma interaction region. Second, the interface magnetic fields inside the beam collimator further guide and focus the fast electrons during the transport. The application of this technique to cone-guided fast ignition is considered, and it is shown that it can enhance the laser energy deposition in the compressed fuel plasma by a factor of 2 in comparison with the single cone target case.« less

  19. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection.

    PubMed

    Chen, Zhigang; Tao, Zhengxu; Cong, Shan; Hou, Junyu; Zhang, Dengsong; Geng, Fengxia; Zhao, Zhigang

    2016-09-15

    A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a plate, the electrochemical shock with Al 3+ ions and the following extraction with the help of oleic acid can disintegrate bulk TMD crystals into ultrafine TMD QDs. The fast-prepared QDs are then applied to detect highly explosive molecules such as 2,4,6-trinitrophenol (TNP) with a low detection limit of 10 -6 M. Our versatile method could be broadly applicable for the fast production of ultrathin QDs of other materials with great promise for various applications.

  20. Influence of simethicone and fasting on the quality of abdominal ultrasonography in New Zealand White rabbits.

    PubMed

    da Silva, Kassy Gomes; de Andrade, Carla; Sotomaior, Cristina Santos

    2017-07-17

    Presence of significant quantities of gas in the intestines may hinder a proper conduction of abdominal ultrasonography. In humans, preparatory techniques are used to solve this, but measures to avoid ultrasonographic complications due to intestinal gas in rabbits have not been reported. The objective of this study was to evaluate the influence of fasting and simethicone administered orally on the quality of ultrasonographic images of the gallbladder, kidneys, and jejunum in adult New Zealand White (NZW) rabbits. A total of 28 adult NZW rabbits were included in a crossover design study, involving four groups: F: fasting for 4-6 h before the examination; FS: fasting and application of simethicone (20 mg/kg, orally) 20 to 30 min before the examination; S: application of simethicone 20-30 min before the examination without fasting; and C: controls without fasting and no application of simethicone. Evaluation of the ultrasonographic images was done in terms of percentage of visualization of each organ and image quality using a 3-point scoring system (unacceptable, acceptable, or excellent). The kidneys and the gallbladder were visualized at an equal frequency in all groups, while the jejunum was visualized more frequently in the FS group. The image quality scores for gallbladder, right kidney, and left kidney was similar for all groups, but for the jejunum, a higher number of images with acceptable scores was found within the FS group.

  1. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results

    PubMed Central

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data. PMID:27438065

  2. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  3. 46 CFR 12.601 - General requirements for STCW rating endorsements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...,000 HP or more. (6) Proficiency in survival craft and rescue boats, other than fast rescue boats (PSC). (7) Proficiency in survival craft and rescue boats, other than lifeboats and fast rescue boats (PSC-limited). (8) Proficiency in fast rescue boats. (9) Medical first-aid provider. (10) Person in charge of...

  4. The price of fast fashion

    NASA Astrophysics Data System (ADS)

    2018-01-01

    The fashion industry has changed rapidly in recent years with the increased prevalence of fast fashion, impacting the environment. Efforts to green this polluting industry require action from businesses and consumers.

  5. Fast Charging Electric Vehicle Research & Development Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heny, Michael

    The research and development project supported the engineering, design and implementation of on-road Electric Vehicle (“EV”) charging technologies. It included development of potential solutions for DC fast chargers (“DCFC”) capable of converting high voltage AC power to the DC power required by EVs. Additional development evaluated solutions related to the packaging of power electronic components and enclosure design, as well as for the design and evaluation of EV charging stations. Research compared different charging technologies to identify optimum applications in a municipal fleet. This project collected EV usage data and generated a report demonstrating that EVs, when supported by adequatemore » charging infrastructure, are capable of replacing traditional internal combustion vehicles in many municipal applications. The project’s period of performance has demonstrated various methods of incorporating EVs into a municipal environment, and has identified three general categories for EV applications: Short Commute: Defined as EVs performing in limited duration, routine commutes. - Long Commute: Defined as tasks that require EVs to operate in longer daily mileage patterns. - Critical Needs: Defined as the need for EVs to be ready at every moment for indefinite periods. Together, the City of Charlottesville, VA (the “City”) and Aker Wade Power Technologies, LLC (“Aker Wade”) concluded that the EV has a viable position in many municipal fleets but with limited recommendation for use in Critical Needs applications such as Police fleets. The report also documented that, compared to internal combustion vehicles, BEVs have lower vehicle-related greenhouse gas (“GHG”) emissions and contribute to a reduction of air pollution in urban areas. The enhanced integration of EVs in a municipal fleet can result in reduced demand for imported oil and reduced municipal operating costs. The conclusions indicated in the project’s Engineering Report (see Attachment A) are intended to assist future implementation of electric vehicle technology. They are based on the cited research and on the empirical data collected and presented. The report is not expected to represent the entire operating conditions of any of the equipment under consideration within this project, and tested equipment may operate differently under other conditions.« less

  6. The cardiac patient during Ramadan and Hajj.

    PubMed

    Chamsi-Pasha, Hassan; Ahmed, Waqar H; Al-Shaibi, Khaled F

    2014-10-01

    The holy month of Ramadan is one of the five pillars of Islam. During this month, fasting Muslims refrain from eating, drinking, smoking, and sex from dawn until sunset. Although the Quran exempts sick people from the duty of fasting, it is not uncommon for many heart disease patients to fast during Ramadan. Despite the fact that more than a billion Muslims worldwide fast during Ramadan, there is no clear consensus on its effects on cardiac disease. Some studies have shown that the effects of fasting on stable patients with cardiac disease are minimal and the majority of patients with stable cardiac illness can endure Ramadan fasting with no clinical deterioration. Fasting during Ramadan does not seem to increase hospitalizations for congestive heart failure. However, patients with decompensated heart failure or those requiring large doses of diuretics are strongly advised not to fast, particularly when Ramadan falls in summer. Patients with controlled hypertension can safely fast. However, patients with resistant hypertension should be advised not to fast until their blood pressure is reasonably controlled. Patients with recent myocardial infarction, unstable angina, recent cardiac intervention or cardiac surgery should avoid fasting. Physician advice should be individualized and patients are encouraged to seek medical advice before fasting in order to adjust their medications, if required. The performance of the Hajj pilgrimage is another pillar of Islam and is obligatory once in the lifetime for all adult Muslims who are in good health and can afford to undertake the journey. Hajj is a physically, mentally, emotionally, and spiritually demanding experience. Medical checkups one or two months before leaving for Hajj is warranted, especially for those with chronic illnesses such as cardiovascular disease. Patients with heart failure, uncontrolled hypertension, serious arrhythmias, unstable angina, recent myocardial infarction, or cardiac surgery should be considered unfit for undertaking the Hajj pilgrimage.

  7. Requirements for AMLCDs in U.S. military applications

    NASA Astrophysics Data System (ADS)

    Hopper, Darrel G.; Desjardins, Daniel D.

    1995-06-01

    Flat panel displays are fast becoming a significant source of more defense for less money. Military instruments have begun to use color active matrix liquid crystal displays (AMLCDs). This is the beginning of a significant transition from electromechanical, CRT. dichroic LCD, and electroluminescent display designs to the AMLCD designs. We have the opportunity with this new technology to establish common products capable of meeting user requirements for sunlight-readable, color and grayscale capable, high-sharpness high-pixel count, flat panel displays for military applications. The Wright Laboratory is leading the development of recommended best practice, draft guidance standard, and performance specifications for this new generation, the flat panel cockpit display generation, of display modules based on requirements for U.S. military aircraft and ground combat human system interfaces. These requirements are similar in many regards to those in both the civil aviation and automotive industries; accordingly, commonality with these civil applications is incorporated where possible, against the requirements for military combat applications. The performance requirement may be achieved by two approaches: militarization of displays made to low requirements of a large volume civil products manufacturer like Sharp or integration of displays made to high requirements by a niche market commercial vendor, like Optical Imaging Systems, Litton Systems Limited, ImageQuest Inc., and Planar Advanced Inc. teamed with Xerox PARC and Standish Industries. [Note that the niche market companies listed are commercial off-the shelf vendors, albeit for high requirement low volume customers.] Given that the performance specifications can be met for a particular military product by either approach, the choice is based on life cycle cost and a thin analysis based on initial costs alone is not acceptable as it ignores the fact that military product life cycles and procurements are 20-60 years compared to 1.5 years for civil products. Thus far there is no convincing evidence that the large volume commercial product approach for combat systems will meet the combat performance specification or be cheaper from a life cycle cost perspective. National and economic security requirements require some military/avionic-grade AMLCD production domestically (i.e. in the U.S. and/or Canada). Examples of AMLCD demand and performance requirements in U.S. military systems are provided.

  8. The development and testing of the fast imaging plasma spectrometer and its application in the plasma environment at Mercury

    NASA Astrophysics Data System (ADS)

    Koehn, Patrick Leo

    The plasma environment at Mercury is a rich laboratory for studying the interaction of the solar wind with a planet. Three primary populations of ions exist at Mercury: solar wind, magnetospheric particles, and pickup ions. Pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury should include a sensor that is able to determine the dynamical properties and composition of all three plasma components. The Fast Imaging Plasma Spectrometer (FIPS) is an instrument to measure the composition of these ion populations and their three-dimensional velocity distribution functions. It is lightweight, fast, and has a very large field of view, and these properties made possible its accommodation within the highly mass- constrained payload of MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) mission, a Mercury orbiter. This work details the development cycle of FIPS, from concept to prototype testing. It begins with science studies of the magnetospheric and pickup ion environments of Mercury, using state-of-the-art computer simulations to produce static and quasi-dynamic magnetospheric systems. Predictions are made of the spatially variable plasma environment at Mercury, and the temporally varying magnetosphere-solar wind interaction is examined. Pickup ion studies provide insights to particle loss mechanisms and the nature of the radar-bright regions at the Hermean poles. These studies produce science requirements for successfully measuring this environment with an orbiting mass spectrometer. With these science requirements in mind, a concept for a new electrostatic analyzer is created. This concept is considered from a theoretical standpoint, and compared with other, similarly performing instruments, both of the past and currently in use. The development cycle continues with instrument simulation, which allows the design to be adjusted to fit within the science requirements of the mission. Finally, a prototype electrostatic is constructed and tested in a space- simulating vacuum chamber system. The results of these tests are compared with the simulation results, and ultimately shown to fit within the science requirements for the MESSENGER mission.

  9. Transparent actuators and robots based on single-layer superaligned carbon nanotube sheet and polymer composites

    NASA Astrophysics Data System (ADS)

    Chen, Luzhuo; Weng, Mingcen; Zhang, Wei; Zhou, Zhiwei; Zhou, Yi; Xia, Dan; Li, Jiaxin; Huang, Zhigao; Liu, Changhong; Fan, Shoushan

    2016-03-01

    Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency.Transparent actuators have been attracting emerging interest recently, as they demonstrate potential applications in the fields of invisible robots, tactical displays, variable-focus lenses, and flexible cellular phones. However, previous technologies did not simultaneously realize macroscopic transparent actuators with advantages of large-shape deformation, low-voltage-driven actuation and fast fabrication. Here, we develop a fast approach to fabricate a high-performance transparent actuator based on single-layer superaligned carbon nanotube sheet and polymer composites. Various advantages of single-layer nanotube sheets including high transparency, considerable conductivity, and ultra-thin dimensions together with selected polymer materials completely realize all the above required advantages. Also, this is the first time that a single-layer nanotube sheet has been used to fabricate actuators with high transparency, avoiding the structural damage to the single-layer nanotube sheet. The transparent actuator shows a transmittance of 72% at the wavelength of 550 nm and bends remarkably with a curvature of 0.41 cm-1 under a DC voltage for 5 s, demonstrating a significant advance in technological performances compared to previous conventional actuators. To illustrate their great potential usage, a transparent wiper and a humanoid robot ``hand'' were elaborately designed and fabricated, which initiate a new direction in the development of high-performance invisible robotics and other intelligent applications with transparency. Electronic supplementary information (ESI) available: Video records of the actuation process of the transparent wiper and the grabbing-releasing process of the transparent robot ``hand'', transmittance spectra of the PET and BOPP films, the SEM image showing the thickness of the SACNT sheet, calculation of the curvature, calculation of energy efficiency, experimental results of the control experiment, modeling of the SACNT/PET and PET/BOPP composites and experimental results of the repeatability test. See DOI: 10.1039/c5nr07237a

  10. Fused Silica Ion Trap Chip with Efficient Optical Collection System for Timekeeping, Sensing, and Emulation

    DTIC Science & Technology

    2015-01-22

    applications in fast single photon sources, quantum repeater circuitry, and high fidelity remote entanglement of atoms for quantum information protocols. We...fluorescence for motion/force sensors through Doppler velocimetry; and for the efficient collection of single photons from trapped ions for...Doppler velocimetry; and for the efficient collection of single photons from trapped ions for applications in fast single photon sources, quantum

  11. A Hierarchical Algorithm for Fast Debye Summation with Applications to Small Angle Scattering

    PubMed Central

    Gumerov, Nail A.; Berlin, Konstantin; Fushman, David; Duraiswami, Ramani

    2012-01-01

    Debye summation, which involves the summation of sinc functions of distances between all pair of atoms in three dimensional space, arises in computations performed in crystallography, small/wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS). Direct evaluation of Debye summation has quadratic complexity, which results in computational bottleneck when determining crystal properties, or running structure refinement protocols that involve SAXS or SANS, even for moderately sized molecules. We present a fast approximation algorithm that efficiently computes the summation to any prescribed accuracy ε in linear time. The algorithm is similar to the fast multipole method (FMM), and is based on a hierarchical spatial decomposition of the molecule coupled with local harmonic expansions and translation of these expansions. An even more efficient implementation is possible when the scattering profile is all that is required, as in small angle scattering reconstruction (SAS) of macromolecules. We examine the relationship of the proposed algorithm to existing approximate methods for profile computations, and show that these methods may result in inaccurate profile computations, unless an error bound derived in this paper is used. Our theoretical and computational results show orders of magnitude improvement in computation complexity over existing methods, while maintaining prescribed accuracy. PMID:22707386

  12. Rapid Transient Pressure Field Computations in the Nearfield of Circular Transducers using Frequency Domain Time-Space Decomposition

    PubMed Central

    Alles, E. J.; Zhu, Y.; van Dongen, K. W. A.; McGough, R. J.

    2013-01-01

    The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when applied to the fast nearfield method, are expressed as a finite sum of products of separate temporal and spatial terms. To extend time-space decomposition such that accelerated transient field simulations are enabled in the nearfield for an arbitrary transducer surface velocity, a new transient simulation method, frequency domain time-space decomposition (FDTSD), is derived. With this method, the temporal transducer surface velocity is transformed into the frequency domain, and then each complex-valued term is processed separately. Further improvements are achieved by spectral clipping, which reduces the number of terms and the computation time. Trade-offs between speed and accuracy are established for FDTSD calculations, and pressure fields obtained with the FDTSD method for a circular transducer are compared to those obtained with Field II and the impulse response method. The FDTSD approach, when combined with the fast nearfield method and spectral clipping, consistently achieves smaller errors in less time and requires less memory than Field II or the impulse response method. PMID:23160476

  13. Fasting: Molecular Mechanisms and Clinical Applications

    PubMed Central

    Longo, Valter D.; Mattson, Mark P.

    2014-01-01

    Fasting has been practiced for millennia, but only recently studies have shed light on its role in adaptive cellular responses that reduce oxidative damage and inflammation, optimize energy metabolism and bolster cellular protection. In lower eukaryotes, chronic fasting extends longevity in part by reprogramming metabolic and stress resistance pathways. In rodents intermittent or periodic fasting protects against diabetes, cancers, heart disease and neurodegeneration, while in humans it helps reduce obesity, hypertension, asthma and rheumatoid arthritis. Thus, fasting has the potential to delay aging and help prevent and treat diseases while minimizing the side effects caused by chronic dietary interventions. PMID:24440038

  14. Fast All-Sky Radiation Model for Solar Applications (FARMS): A Brief Overview of Mechanisms, Performance, and Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yu; Sengupta, Manajit

    Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy Laboratory at http://nsrdb.nrel.gov.« less

  15. Using colloidal silica as isolator, diverter and blocking agent for subsurface geological applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourcier, William L.; Roberts, Sarah K.; Roberts, Jeffery J.

    A system for blocking fast flow paths in geological formations includes preparing a solution of colloidal silica having a nonviscous phase and a solid gel phase. The solution of colloidal silica is injected into the geological formations while the solution of colloidal silica is in the nonviscous phase. The solution of colloidal silica is directed into the fast flow paths and reaches the solid gel phase in the fast flow paths thereby blocking flow of fluid in the fast paths.

  16. Test Preparation: Your Role

    MedlinePlus

    ... transport the sample from home to the lab. Examples of some common laboratory tests that require advance preparation include: Glucose tolerance, fasting, and two-hour post-prandial blood glucose tests : fasting or eating meals ...

  17. 48 CFR 13.403 - Preparation and execution of orders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...

  18. 48 CFR 13.403 - Preparation and execution of orders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...

  19. 48 CFR 13.403 - Preparation and execution of orders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...

  20. 48 CFR 13.403 - Preparation and execution of orders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...

  1. 48 CFR 13.403 - Preparation and execution of orders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REGULATION CONTRACTING METHODS AND CONTRACT TYPES SIMPLIFIED ACQUISITION PROCEDURES Fast Payment Procedure 13... the fast payment procedure shall include the following: (a) A requirement that the supplies be shipped...

  2. A Lab-on-Chip Design for Miniature Autonomous Bio-Chemoprospecting Planetary Rovers

    NASA Astrophysics Data System (ADS)

    Santoli, S.

    The performance of the so-called ` Lab-on-Chip ' devices, featuring micrometre size components and employed at present for carrying out in a very fast and economic way the extremely high number of sequence determinations required in genomic analyses, can be largely improved as to further size reduction, decrease of power consumption and reaction efficiency through development of nanofluidics and of nano-to-micro inte- grated systems. As is shown, such new technologies would lead to robotic, fully autonomous, microwatt consumption and complete ` laboratory on a chip ' units for accurate, fast and cost-effective astrobiological and planetary exploration missions. The theory and the manufacturing technologies for the ` active chip ' of a miniature bio/chemoprospecting planetary rover working on micro- and nanofluidics are investigated. The chip would include micro- and nanoreactors, integrated MEMS (MicroElectroMechanical System) components, nanoelectronics and an intracavity nanolaser for highly accurate and fast chemical analysis as an application of such recently introduced solid state devices. Nano-reactors would be able to strongly speed up reaction kinetics as a result of increased frequency of reactive collisions. The reaction dynamics may also be altered with respect to standard macroscopic reactors. A built-in miniature telemetering unit would connect a network of other similar rovers and a central, ground-based or orbiting control unit for data collection and transmission to an Earth-based unit through a powerful antenna. The development of the ` Lab-on-Chip ' concept for space applications would affect the economy of space exploration missions, as the rover's ` Lab-on-Chip ' development would link space missions with the ever growing terrestrial market and business concerning such devices, largely employed in modern genomics and bioinformatics, so that it would allow the recoupment of space mission costs.

  3. A fast double shutter for CCD-based metrology

    NASA Astrophysics Data System (ADS)

    Geisler, R.

    2017-02-01

    Image based metrology such as Particle Image Velocimetry (PIV) depends on the comparison of two images of an object taken in fast succession. Cameras for these applications provide the so-called `double shutter' mode: One frame is captured with a short exposure time and in direct succession a second frame with a long exposure time can be recorded. The difference in the exposure times is typically no problem since illumination is provided by a pulsed light source such as a laser and the measurements are performed in a darkened environment to prevent ambient light from accumulating in the long second exposure time. However, measurements of self-luminous processes (e.g. plasma, combustion ...) as well as experiments in ambient light are difficult to perform and require special equipment (external shutters, highspeed image sensors, multi-sensor systems ...). Unfortunately, all these methods incorporate different drawbacks such as reduced resolution, degraded image quality, decreased light sensitivity or increased susceptibility to decalibration. In the solution presented here, off-the-shelf CCD sensors are used with a special timing to combine neighbouring pixels in a binning-like way. As a result, two frames of short exposure time can be captured in fast succession. They are stored in the on-chip vertical register in a line-interleaved pattern, read out in the common way and separated again by software. The two resultant frames are completely congruent; they expose no insensitive lines or line shifts and thus enable sub-pixel accurate measurements. A third frame can be captured at the full resolution analogue to the double shutter technique. Image based measurement techniques such as PIV can benefit from this mode when applied in bright environments. The third frame is useful e.g. for acceleration measurements or for particle tracking applications.

  4. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  5. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be characterised by high non-linearity.

  6. Enhanced Evaporation Strength through Fast Water Permeation in Graphene-Oxide Deposition

    PubMed Central

    Li Tong, Wei; Ong, Wee-Jun; Chai, Siang-Piao; Tan, Ming K.; Mun Hung, Yew

    2015-01-01

    The unique characteristic of fast water permeation in laminated graphene oxide (GO) sheets has facilitated the development of ultrathin and ultrafast nanofiltration membranes. Here we report the application of fast water permeation property of immersed GO deposition for enhancing the performance of a GO/water nanofluid charged two-phase closed thermosyphon (TPCT). By benchmarking its performance against a silver oxide/water nanofluid charged TPCT, the enhancement of evaporation strength is found to be essentially attributed to the fast water permeation property of GO deposition instead of the enhanced surface wettability of the deposited layer. The expansion of interlayer distance between the graphitic planes of GO deposited layer enables intercalation of bilayer water for fast water permeation. The capillary force attributed to the frictionless interaction between the atomically smooth, hydrophobic carbon structures and the well-ordered hydrogen bonds of water molecules is sufficiently strong to overcome the gravitational force. As a result, a thin water film is formed on the GO deposited layers, inducing filmwise evaporation which is more effective than its interfacial counterpart, appreciably enhanced the overall performance of TPCT. This study paves the way for a promising start of employing the fast water permeation property of GO in thermal applications. PMID:26100977

  7. High-voltage integrated active quenching circuit for single photon count rate up to 80 Mcounts/s.

    PubMed

    Acconcia, Giulia; Rech, Ivan; Gulinatti, Angelo; Ghioni, Massimo

    2016-08-08

    Single photon avalanche diodes (SPADs) have been subject to a fast improvement in recent years. In particular, custom technologies specifically developed to fabricate SPAD devices give the designer the freedom to pursue the best detector performance required by applications. A significant breakthrough in this field is represented by the recent introduction of a red enhanced SPAD (RE-SPAD) technology, capable of attaining a good photon detection efficiency in the near infrared range (e.g. 40% at a wavelength of 800 nm) while maintaining a remarkable timing resolution of about 100ps full width at half maximum. Being planar, the RE-SPAD custom technology opened the way to the development of SPAD arrays particularly suited for demanding applications in the field of life sciences. However, to achieve such excellent performance custom SPAD detectors must be operated with an external active quenching circuit (AQC) designed on purpose. Next steps toward the development of compact and practical multichannel systems will require a new generation of monolithically integrated AQC arrays. In this paper we present a new, fully integrated AQC fabricated in a high-voltage 0.18 µm CMOS technology able to provide quenching pulses up to 50 Volts with fast leading and trailing edges. Although specifically designed for optimal operation of RE-SPAD devices, the new AQC is quite versatile: it can be used with any SPAD detector, regardless its fabrication technology, reaching remarkable count rates up to 80 Mcounts/s and generating a photon detection pulse with a timing jitter as low as 119 ps full width at half maximum. The compact design of our circuit has been specifically laid out to make this IC a suitable building block for monolithically integrated AQC arrays.

  8. An Improved Cross-Layering Design for IPv6 Fast Handover with IEEE 802.16m Entry Before Break Handover

    NASA Astrophysics Data System (ADS)

    Kim, Ronny Yongho; Jung, Inuk; Kim, Young Yong

    IEEE 802.16m is an advanced air interface standard which is under development for IMT-Advanced systems, known as 4G systems. IEEE 802.16m is designed to provide a high data rate and a Quality of Service (QoS) level in order to meet user service requirements, and is especially suitable for mobilized environments. There are several factors that have great impact on such requirements. As one of the major factors, we mainly focus on latency issues. In IEEE 802.16m, an enhanced layer 2 handover scheme, described as Entry Before Break (EBB) was proposed and adopted to reduce handover latency. EBB provides significant handover interruption time reduction with respect to the legacy IEEE 802.16 handover scheme. Fast handovers for mobile IPv6 (FMIPv6) was standardized by Internet Engineering Task Force (IETF) in order to provide reduced handover interruption time from IP layer perspective. Since FMIPv6 utilizes link layer triggers to reduce handover latency, it is very critical to jointly design FMIPv6 with its underlying link layer protocol. However, FMIPv6 based on new handover scheme, EBB has not been proposed. In this paper, we propose an improved cross-layering design for FMIPv6 based on the IEEE 802.16m EBB handover. In comparison with the conventional FMIPv6 based on the legacy IEEE 802.16 network, the overall handover interruption time can be significantly reduced by employing the proposed design. Benefits of this improvement on latency reduction for mobile user applications are thoroughly investigated with both numerical analysis and simulation on various IP applications.

  9. Hybrid Methods for Muon Accelerator Simulations with Ionization Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Josiah; Snopok, Pavel; Berz, Martin

    Muon ionization cooling involves passing particles through solid or liquid absorbers. Careful simulations are required to design muon cooling channels. New features have been developed for inclusion in the transfer map code COSY Infinity to follow the distribution of charged particles through matter. To study the passage of muons through material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map--Monte-Carlo approach in which transfer map methods describe the deterministic behavior of the particles, and Monte-Carlo methods are used to provide corrections accounting for the stochasticmore » nature of scattering and straggling of particles. The advantage of the new approach is that the vast majority of the dynamics are represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed are expected to simplify the optimization of cooling channels which is usually computationally demanding. Progress on the development of the required algorithms and their application to modeling muon ionization cooling channels is reported.« less

  10. A distributed approach to the OPF problem

    NASA Astrophysics Data System (ADS)

    Erseghe, Tomaso

    2015-12-01

    This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.

  11. SQUIDs vs. Faraday coils for ultlra-low field nuclear magnetic resonance: experimental and simulation comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlashov, Andrei N; Espy, Michelle A; Kraus, Robert H

    2010-01-01

    Nuclear magnetic resonance (NMR) methods are widely used in medicine, chemistry and industry. One application area is magnetic resonance imaging or MRI. Recently it has become possible to perform NMR and MRI in ultra-low field (ULF) regime that requires measurement field strengths only of the order of 1 Gauss. These techniques exploit the advantages offered by superconducting quantum interference devices or SQUIDs. Our group at LANL has built SQUID based MRI systems for brain imaging and for liquid explosives detection at airports security checkpoints. The requirement for liquid helium cooling limits potential applications of ULF MRI for liquid identification andmore » security purposes. Our experimental comparative investigation shows that room temperature inductive magnetometers provide enough sensitivity in the 3-10 kHz range and can be used for fast liquid explosives detection based on ULF NMR/MRI technique. We describe an experimental and computer simulation comparison of the world's first multichannel SQUID based and Faraday coils based instruments that are capable of performing ULF MRI for liquids identification.« less

  12. Medusa: A Scalable MR Console Using USB

    PubMed Central

    Stang, Pascal P.; Conolly, Steven M.; Santos, Juan M.; Pauly, John M.; Scott, Greig C.

    2012-01-01

    MRI pulse sequence consoles typically employ closed proprietary hardware, software, and interfaces, making difficult any adaptation for innovative experimental technology. Yet MRI systems research is trending to higher channel count receivers, transmitters, gradient/shims, and unique interfaces for interventional applications. Customized console designs are now feasible for researchers with modern electronic components, but high data rates, synchronization, scalability, and cost present important challenges. Implementing large multi-channel MR systems with efficiency and flexibility requires a scalable modular architecture. With Medusa, we propose an open system architecture using the Universal Serial Bus (USB) for scalability, combined with distributed processing and buffering to address the high data rates and strict synchronization required by multi-channel MRI. Medusa uses a modular design concept based on digital synthesizer, receiver, and gradient blocks, in conjunction with fast programmable logic for sampling and synchronization. Medusa is a form of synthetic instrument, being reconfigurable for a variety of medical/scientific instrumentation needs. The Medusa distributed architecture, scalability, and data bandwidth limits are presented, and its flexibility is demonstrated in a variety of novel MRI applications. PMID:21954200

  13. Direct transfer of graphene onto flexible substrates.

    PubMed

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  14. Direct transfer of graphene onto flexible substrates

    PubMed Central

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  15. Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring Applications: A Review.

    PubMed

    Baron, Ronan; Saffell, John

    2017-11-22

    This review examines the use of amperometric electrochemical gas sensors for monitoring inorganic gases that affect urban air quality. First, we consider amperometric gas sensor technology including its development toward specifically designed air quality sensors. We then review recent academic and research organizations' studies where this technology has been trialed for air quality monitoring applications: early studies showed the potential of electrochemical gas sensors when colocated with reference Air Quality Monitoring (AQM) stations. Spatially dense networks with fast temporal resolution provide information not available from sparse AQMs with longer recording intervals. We review how this technology is being offered as commercial urban air quality networks and consider the remaining challenges. Sensors must be sensitive, selective, and stable; air quality monitors/nodes must be electronically and mechanically well designed. Data correction is required and models with differing levels of sophistication are being designed. Data analysis and validation is possibly the biggest remaining hurdle needed to deliver reliable concentration readings. Finally, this review also considers the roles of companies, urban infrastructure requirements, and public research in the development of this technology.

  16. Formation of charge-nanopatterned templates with flexible geometry via layer by layer deposition of polyelectrolytes for directed self-assembly of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sayin, Mustafa; Dahint, Reiner

    2017-03-01

    Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.

  17. A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    PubMed Central

    Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad

    2012-01-01

    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time. PMID:22666034

  18. A reverse localization scheme for underwater acoustic sensor networks.

    PubMed

    Moradi, Marjan; Rezazadeh, Javad; Ismail, Abdul Samad

    2012-01-01

    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time.

  19. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    NASA Astrophysics Data System (ADS)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  20. Fasting Activation of AgRP Neurons Requires NMDA Receptors and Involves Spinogenesis and Increased Excitatory Tone

    PubMed Central

    Liu, Tiemin; Kong, Dong; Shah, Bhavik P.; Ye, Chianping; Koda, Shuichi; Saunders, Arpiar; Ding, Jun B.; Yang, Zongfang; Sabatini, Bernardo L.; Lowell, Bradford B.

    2012-01-01

    SUMMARY AgRP neuron activity drives feeding and weight gain while that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting. PMID:22325203

  1. 46 CFR 12.603 - Requirements to qualify for an STCW endorsement as able seafarer-deck.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... satisfactorily completed approved training in— (i) Proficiency in survival craft and rescue boats other than fast rescue boats (PSC); or (ii) Proficiency in survival craft and rescue boats, other than lifeboats or fast... completed approved training in— (i) Proficiency in survival craft and rescue boats, other than fast rescue...

  2. 49 CFR Appendix A to Part 210 - Summary of Noise Standards, 40 CFR Part 201

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 96 Lmax (fast) Do. All Locomotives Manufactured After 31 December 1979 201.11(b) Stationary, Idle....12(b) Moving 90 Lmax (fast) Do. 201.11(c) and 201.12(c) Additional Requirement for Switcher... Locomotive Noise Exceeds the Receiving Property Limit of 65 L90 (fast) 2 Receiving property 201.11(c...

  3. 49 CFR Appendix A to Part 210 - Summary of Noise Standards, 40 CFR Part 201

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 96 Lmax (fast) Do. All Locomotives Manufactured After 31 December 1979 201.11(b) Stationary, Idle....12(b) Moving 90 Lmax (fast) Do. 201.11(c) and 201.12(c) Additional Requirement for Switcher... Locomotive Noise Exceeds the Receiving Property Limit of 65 L90 (fast) 2 Receiving property 201.11(c...

  4. 49 CFR Appendix A to Part 210 - Summary of Noise Standards, 40 CFR Part 201

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 96 Lmax (fast) Do. All Locomotives Manufactured After 31 December 1979 201.11(b) Stationary, Idle....12(b) Moving 90 Lmax (fast) Do. 201.11(c) and 201.12(c) Additional Requirement for Switcher... Locomotive Noise Exceeds the Receiving Property Limit of 65 L90 (fast) 2 Receiving property 201.11(c...

  5. 49 CFR Appendix A to Part 210 - Summary of Noise Standards, 40 CFR Part 201

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 96 Lmax (fast) Do. All Locomotives Manufactured After 31 December 1979 201.11(b) Stationary, Idle....12(b) Moving 90 Lmax (fast) Do. 201.11(c) and 201.12(c) Additional Requirement for Switcher... Locomotive Noise Exceeds the Receiving Property Limit of 65 L90 (fast) 2 Receiving property 201.11(c...

  6. 49 CFR Appendix A to Part 210 - Summary of Noise Standards, 40 CFR Part 201

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 96 Lmax (fast) Do. All Locomotives Manufactured After 31 December 1979 201.11(b) Stationary, Idle....12(b) Moving 90 Lmax (fast) Do. 201.11(c) and 201.12(c) Additional Requirement for Switcher... Locomotive Noise Exceeds the Receiving Property Limit of 65 L90 (fast) 2 Receiving property 201.11(c...

  7. Very fast motion planning for highly dexterous-articulated robots

    NASA Technical Reports Server (NTRS)

    Challou, Daniel J.; Gini, Maria; Kumar, Vipin

    1994-01-01

    Due to the inherent danger of space exploration, the need for greater use of teleoperated and autonomous robotic systems in space-based applications has long been apparent. Autonomous and semi-autonomous robotic devices have been proposed for carrying out routine functions associated with scientific experiments aboard the shuttle and space station. Finally, research into the use of such devices for planetary exploration continues. To accomplish their assigned tasks, all such autonomous and semi-autonomous devices will require the ability to move themselves through space without hitting themselves or the objects which surround them. In space it is important to execute the necessary motions correctly when they are first attempted because repositioning is expensive in terms of both time and resources (e.g., fuel). Finally, such devices will have to function in a variety of different environments. Given these constraints, a means for fast motion planning to insure the correct movement of robotic devices would be ideal. Unfortunately, motion planning algorithms are rarely used in practice because of their computational complexity. Fast methods have been developed for detecting imminent collisions, but the more general problem of motion planning remains computationally intractable. However, in this paper we show how the use of multicomputers and appropriate parallel algorithms can substantially reduce the time required to synthesize paths for dexterous articulated robots with a large number of joints. We have developed a parallel formulation of the Randomized Path Planner proposed by Barraquand and Latombe. We have shown that our parallel formulation is capable of formulating plans in a few seconds or less on various parallel architectures including: the nCUBE2 multicomputer with up to 1024 processors (nCUBE2 is a registered trademark of the nCUBE corporation), and a network of workstations.

  8. Direct Digital Demultiplexing of Analog TDM Signals for Cable Reduction in Ultrasound Imaging Catheters

    PubMed Central

    Carpenter, Thomas M.; Rashid, M. Wasequr; Ghovanloo, Maysam; Cowell, David M. J.; Freear, Steven; Degertekin, F. Levent

    2016-01-01

    In real-time catheter based 3D ultrasound imaging applications, gathering data from the transducer arrays is difficult as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications like intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper an alternative approach using Analog Time Division Multiplexing (TDM) is presented which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4 MHz to 11 MHz range. A TDM integrated circuit (IC) with 8:1 multiplexer is interfaced with a fast ADC through a micro-coaxial catheter cable bundle, and processed with an FPGA RTL simulation. Input signals to the TDM IC are recovered with −40 dB crosstalk between channels on the same micro-coax, showing the feasibility of this system for ultrasound imaging applications. PMID:27116738

  9. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future.

  10. Low toxic maghemite nanoparticles for theranostic applications.

    PubMed

    Kuchma, Elena A; Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I; Soldatov, Alexander V

    2017-01-01

    Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe 2 O 3 ) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe 2 O 3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Quasispherical Fe 3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy.

  11. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  12. Low toxic maghemite nanoparticles for theranostic applications

    PubMed Central

    Zolotukhin, Peter V; Belanova, Anna A; Soldatov, Mikhail A; Lastovina, Tatiana A; Kubrin, Stanislav P; Nikolsky, Anatoliy V; Mirmikova, Lidia I

    2017-01-01

    Background Iron oxide nanoparticles have numerous and versatile biological properties, ranging from direct and immediate biochemical effects to prolonged influences on tissues. Most applications have strict requirements with respect to the chemical and physical properties of such agents. Therefore, developing rational design methods of synthesis of iron oxide nanoparticles remains of vital importance in nanobiomedicine. Methods Low toxic superparamagnetic iron oxide nanoparticles (SPIONs) for theranostic applications in oncology having spherical shape and maghemite structure were produced using the fast microwave synthesis technique and were fully characterized by several complementary methods (transmission electron microscopy [TEM], X-ray diffraction [XRD], dynamic light scattering [DLS], X-ray photoelectron spectroscopy [XPS], X-ray absorption near edge structure [XANES], Mossbauer spectroscopy, and HeLa cells toxicity testing). Results TEM showed that the majority of the obtained nanoparticles were almost spherical and did not exceed 20 nm in diameter. The averaged DLS hydrodynamic size was found to be ~33 nm, while that of nanocrystallites estimated by XRD waŝ16 nm. Both XRD and XPS studies evidenced the maghemite (γ-Fe2O3) atomic and electronic structure of the synthesized nanoparticles. The XANES data analysis demonstrated the structure of the nanoparticles being similar to that of macroscopic maghemite. The Mossbauer spectroscopy revealed the γ-Fe2O3 phase of the nanoparticles and vibration magnetometry study showed that reactive oxygen species in HeLa cells are generated both in the cytoplasm and the nucleus. Conclusion Quasispherical Fe3+ SPIONs having the maghemite structure with the average size of 16 nm obtained by using the fast microwave synthesis technique are expected to be of great value for theranostic applications in oncology and multimodal anticancer therapy. PMID:28919740

  13. Fast structure similarity searches among protein models: efficient clustering of protein fragments

    PubMed Central

    2012-01-01

    Background For many predictive applications a large number of models is generated and later clustered in subsets based on structure similarity. In most clustering algorithms an all-vs-all root mean square deviation (RMSD) comparison is performed. Most of the time is typically spent on comparison of non-similar structures. For sets with more than, say, 10,000 models this procedure is very time-consuming and alternative faster algorithms, restricting comparisons only to most similar structures would be useful. Results We exploit the inverse triangle inequality on the RMSD between two structures given the RMSDs with a third structure. The lower bound on RMSD may be used, when restricting the search of similarity to a reasonably low RMSD threshold value, to speed up similarity searches significantly. Tests are performed on large sets of decoys which are widely used as test cases for predictive methods, with a speed-up of up to 100 times with respect to all-vs-all comparison depending on the set and parameters used. Sample applications are shown. Conclusions The algorithm presented here allows fast comparison of large data sets of structures with limited memory requirements. As an example of application we present clustering of more than 100000 fragments of length 5 from the top500H dataset into few hundred representative fragments. A more realistic scenario is provided by the search of similarity within the very large decoy sets used for the tests. Other applications regard filtering nearly-indentical conformation in selected CASP9 datasets and clustering molecular dynamics snapshots. Availability A linux executable and a Perl script with examples are given in the supplementary material (Additional file 1). The source code is available upon request from the authors. PMID:22642815

  14. Fast-cycling superconducting synchrotrons and possible path to the future of US experimental high-energy particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    The authors outline primary physics motivation, present proposed new arrangement for Fermilab accelerator complex, and then discuss possible long-range application of fast-cycling superconducting synchrotrons at Fermilab.

  15. Dyeing and characterization of regenerated cellulose nanofibers with vat dyes.

    PubMed

    Khatri, Muzamil; Ahmed, Farooq; Shaikh, Irfan; Phan, Duy-Nam; Khan, Qamar; Khatri, Zeeshan; Lee, Hoik; Kim, Ick Soo

    2017-10-15

    Recent advancement in dyeing of nanofibers has been accelerated to improve their aesthetic properties, however, achieving good color fastness remains a challenge. Therefore, we attempt to improve the color fastness properties nanofibers. Vat dyes are known for better color fastness and their application on nanofibers has not been investigated to date. Herein, we report dyeing of regenerated cellulose nanofibers (RCNF) that were produced from precursor of cellulose acetate (CA) followed by deacetylation process. The resultant RCNF was dyed with two different vat dyes and the color attributes were examined under spectrophotometer which showed outstanding color build-up. Morphological of CA before and after deacetylation and before and after vat dyeing was investigated under TEM, FE-SEM and SEM respectively. The vat dyed RCNF were further characterized by FTIR and WAXD. Excellent color fastness results demonstrate that vat dyed RCNF can potentially be considered for advanced apparel applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  17. A MEMS-based super fast dew point hygrometer—construction and medical applications

    NASA Astrophysics Data System (ADS)

    Jachowicz, Ryszard S.; Weremczuk, Jerzy; Paczesny, Daniel; Tarapata, Grzegorz

    2009-12-01

    The paper shows how MEMS (micro-electro-mechanical system) technology and a modified principle of fast temperature control (by heat injection instead of careful control of cooling) can considerably improve the dynamic parameters of dew point hygrometers. Some aspects of MEMS-type integrated sensor construction and technology, whole measurement system design, the control algorithm to run the system as well as empirical dynamic parameters from the tests are discussed too. The hygrometer can easily obtain five to six measurements per second with an uncertainty of less than 0.3 K. The meter range is between -10 °C and 40 °C dew point. In the second part of the paper (section 2), two different successful applications in medicine based on fast humidity measurements have been discussed. Some specific constructions of these super fast dew point hygrometers based on a MEMS sensor as well as limited empirical results from clinical tests have been reported too.

  18. The virtual infinite capacitor

    NASA Astrophysics Data System (ADS)

    Yona, Guy; Weiss, George

    2017-01-01

    We define the virtual infinite capacitor (VIC) as a nonlinear capacitor that has the property that for an interval of the charge Q (the operating range), the voltage V remains constant. We propose a lossless approximate realisation for the VIC as a simple circuit with two controllers: a voltage controller acts fast to maintain the desired terminal voltage, while a charge controller acts more slowly and maintains the charge Q in the desired operating range by influencing the incoming current. The VIC is useful as a filter capacitor for various applications, for example, power factor compensators (PFC), as we describe. In spite of using small capacitors, the VIC can replace a very large capacitor in applications that do not require substantial energy storage. We give simulation results for a PFC working in critical conduction mode with a VIC for output voltage filtering.

  19. Deformable image registration using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  20. Protein-protein docking on hardware accelerators: comparison of GPU and MIC architectures

    PubMed Central

    2015-01-01

    Background The hardware accelerators will provide solutions to computationally complex problems in bioinformatics fields. However, the effect of acceleration depends on the nature of the application, thus selection of an appropriate accelerator requires some consideration. Results In the present study, we compared the effects of acceleration using graphics processing unit (GPU) and many integrated core (MIC) on the speed of fast Fourier transform (FFT)-based protein-protein docking calculation. The GPU implementation performed the protein-protein docking calculations approximately five times faster than the MIC offload mode implementation. The MIC native mode implementation has the advantage in the implementation costs. However, the performance was worse with larger protein pairs because of memory limitations. Conclusion The results suggest that GPU is more suitable than MIC for accelerating FFT-based protein-protein docking applications. PMID:25707855

Top