Sample records for applied genetics work

  1. Genetic algorithms for adaptive real-time control in space systems

    NASA Technical Reports Server (NTRS)

    Vanderzijp, J.; Choudry, A.

    1988-01-01

    Genetic Algorithms that are used for learning as one way to control the combinational explosion associated with the generation of new rules are discussed. The Genetic Algorithm approach tends to work best when it can be applied to a domain independent knowledge representation. Applications to real time control in space systems are discussed.

  2. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women

    MedlinePlus

    ... independent group of national experts in prevention and evidence- based medicine. The Task Force works to improve the health of all Americans by making evidence-based recommendations about clinical ... or preventive medicines. The recommendations apply to people with no signs ...

  3. Tuning of Kalman filter parameters via genetic algorithm for state-of-charge estimation in battery management system.

    PubMed

    Ting, T O; Man, Ka Lok; Lim, Eng Gee; Leach, Mark

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area.

  4. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-Charge Estimation in Battery Management System

    PubMed Central

    Ting, T. O.; Lim, Eng Gee

    2014-01-01

    In this work, a state-space battery model is derived mathematically to estimate the state-of-charge (SoC) of a battery system. Subsequently, Kalman filter (KF) is applied to predict the dynamical behavior of the battery model. Results show an accurate prediction as the accumulated error, in terms of root-mean-square (RMS), is a very small value. From this work, it is found that different sets of Q and R values (KF's parameters) can be applied for better performance and hence lower RMS error. This is the motivation for the application of a metaheuristic algorithm. Hence, the result is further improved by applying a genetic algorithm (GA) to tune Q and R parameters of the KF. In an online application, a GA can be applied to obtain the optimal parameters of the KF before its application to a real plant (system). This simply means that the instantaneous response of the KF is not affected by the time consuming GA as this approach is applied only once to obtain the optimal parameters. The relevant workable MATLAB source codes are given in the appendix to ease future work and analysis in this area. PMID:25162041

  5. Genetics in the art and art in genetics.

    PubMed

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Applied genomics in ruminants-new discoveries and model for predictive medicine

    USDA-ARS?s Scientific Manuscript database

    An overview of the progress for Dr. Sonstegard’s work in applied genomics in dairy cattle will be presented. The overview will include how applied research in livestock offers unique investigative models to discover gene function as a result of genetic load or inbreeding and also how genome selectio...

  7. A century of genetics

    Treesearch

    Daniel J. Fairbanks

    2001-01-01

    In 1866, Gregor Mendel published his experiments on heredity in the garden pea (Pisum sativum). The fundamental principles of inheritance derived from his work apply to nearly all eukaryotic species and are now known as Mendelian principles. Since 1900, Mendel has been recognized as the founder of genetics. In 1900, three botanists, Carl Correns, Hugo De Vries, and...

  8. Distinguishing genetics and eugenics on the basis of fairness.

    PubMed Central

    Ledley, F D

    1994-01-01

    There is concern that human applications of modern genetic technologies may lead inexorably to eugenic abuse. To prevent such abuse, it is essential to have clear, formal principles as well as algorithms for distinguishing genetics from eugenics. This work identifies essential distinctions between eugenics and genetics in the implied nature of the social contract and the importance ascribed to individual welfare relative to society. Rawls's construction of 'justice as fairness' is used as a model for how a formal systems of ethics can be used to proscribe eugenic practices. Rawls's synthesis can be applied to this problem if it is assumed that in the original condition all individuals are ignorant of their genetic constitution and unwilling to consent to social structures which may constrain their own potential. The principles of fairness applied to genetics requires that genetic interventions be directed at extending individual liberties and be applied to the greatest benefit of individuals with the least advantages. These principles are incompatible with negative eugenics which would further penalize those with genetic disadvantage. These principles limit positive eugenics to those practices which are designed to provide absolute benefit to those individuals with least advantage, are acceptable to its subjects, and further a system of basic equal liberties. This analysis also illustrates how simple deviations from first principles in Rawls's formulation could countenance eugenic applications of genetic technologies. PMID:7996561

  9. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    PubMed

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  10. Engineering Delivery Vehicles for Genome Editing.

    PubMed

    Nelson, Christopher E; Gersbach, Charles A

    2016-06-07

    The field of genome engineering has created new possibilities for gene therapy, including improved animal models of disease, engineered cell therapies, and in vivo gene repair. The most significant challenge for the clinical translation of genome engineering is the development of safe and effective delivery vehicles. A large body of work has applied genome engineering to genetic modification in vitro, and clinical trials have begun using cells modified by genome editing. Now, promising preclinical work is beginning to apply these tools in vivo. This article summarizes the development of genome engineering platforms, including meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas9, and their flexibility for precise genetic modifications. The prospects for the development of safe and effective viral and nonviral delivery vehicles for genome editing are reviewed, and promising advances in particular therapeutic applications are discussed.

  11. Applied Genomics in Cattle – Identification of the SLICK locus in tropically adapted cattle

    USDA-ARS?s Scientific Manuscript database

    Over the past 3 years, ARS scientists have been working to identify the underlying genetic variants responsible for a heat tolerance phenotype in cattle associated with the SLICK locus typically found in Senepol cattle. This presentation reviews the general field of applied genomics in cattle, and ...

  12. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches

    PubMed Central

    Parasuraman, Raja; Jiang, Yang

    2012-01-01

    We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

  13. Genetics at school level: addressing the difficulties

    NASA Astrophysics Data System (ADS)

    Chu, Yu-Chien; Reid, Norman

    2012-11-01

    Background : A wide range of studies has offered suggestions why genetics is difficult and some of their key findings are summarised. Underpinning all of this is the way the brain works when handling information. The limitations of working memory capacity offer an interpretation of these difficulties Purpose : The aim is to confirm that working memory capacity (and the related concept of field dependency) controls performance in understanding genetics and whether it is possible to improve performance by changing the teaching approach to mininise overload. Programme description : The curriculum in Taiwan in genetics is outlined briefly. A wide range of measurements were made. Using a diagnostic test of understanding of underpinning ideas, the key areas of weakness were detected before the pupils started the course. Sample : Stage 1: 141 students in Taiwan, aged 13, boys and girls, drawn from a cross-section of Taiwanese pupils at this age, following their first course in genetics. Stage 2: 361 students, drawn from a cross-section of Taiwanese pupils at the same age, and divided into two groups (experimental-control) which both encompass the same ability range. Design and methods : Stage 1: test of pre-knowledge using structural communication grids, applied before the course commenced; working memory capacity using the figural intersection test; extent of field dependency using the group embedded figure test; understanding of genetics was measured at end of course; school test data collated. Stage 2: following a completely revised approach, performance in genetics was measured using traditional school tests and a word association test. Student perspectives were measured. Results : The test of pre-knowledge revealed key areas of difficulty. In addition, it was found that working memory capacity and extent of field dependency both correlated extremely highly with all measures of performance. Given that it has been established that working memory capacity controls performance, working memory demand explains why genetics is difficult. It was found that re-structuring the teaching approach to minimise mental overload brought about a very marked improvement in performance. Conclusions : The findings suggest that it is possible to reduce difficulties in understanding genetics by means of teaching re-design to minimise potential working memory overload, with concomitant improvements in learner confidence.

  14. Advances in autism genetics: on the threshold of a new neurobiology

    PubMed Central

    Abrahams, Brett S.; Geschwind, Daniel H.

    2009-01-01

    Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme. PMID:18414403

  15. Artificial intelligence tools for pattern recognition

    NASA Astrophysics Data System (ADS)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  16. The ethical framework for performing research with rare inherited neurometabolic disease patients.

    PubMed

    Giannuzzi, Viviana; Devlieger, Hugo; Margari, Lucia; Odlind, Viveca Lena; Ragab, Lamis; Bellettato, Cinzia Maria; D'Avanzo, Francesca; Lampe, Christina; Cassis, Linda; Cortès-Saladelafont, Elisenda; Cazorla, Ángels Garcia; Barić, Ivo; Cvitanović-Šojat, Ljerka; Fumić, Ksenija; Dali, Christine I; Bartoloni, Franco; Bonifazi, Fedele; Scarpa, Maurizio; Ceci, Adriana

    2017-03-01

    The need for performing clinical trials to develop well-studied and appropriate medicines for inherited neurometabolic disease patients faces ethical concerns mainly raising from four aspects: the diseases are rare; include young and very young patients; the neurological impairment may compromise the capability to provide 'consent'; and the genetic nature of the disease leads to further ethical implications. This work is intended to identify the ethical provisions applicable to clinical research involving these patients and to evaluate if these cover the ethical issues. Three searches have been performed on the European regulatory/legal framework, the literature and European Union-funded projects. The European legal framework offers a number of ethical provisions ruling the clinical research on paediatric, rare, inherited diseases with neurological symptoms. In the literature, relevant publications deal with informed consent, newborn genetic screenings, gene therapy and rights/interests of research participants. Additional information raised from European projects on sharing patients' data from different countries, the need to fill the gap of the regulatory framework and to improve information to stakeholders and patients/families. Several recommendations and guidelines on ethical aspects are applicable to the inherited neurometabolic disease research in Europe, even though they suffer from the lack of a common ethical approach. What is Known: • When planning and conducting clinical trials, sponsors and researchers know that clinical trials are to be performed according to well-established ethical rules, and patients should be aware about their rights. • In the cases of paediatric patients, vulnerable patients unable to provide consent, genetic diseases' further rules apply. What is New: • This work discusses which ethical rules apply to ensure protection of patient's rights if all the above-mentioned features coexist. • This work shows available data and information on how these rules have been applied.

  17. Ontology driven modeling for the knowledge of genetic susceptibility to disease.

    PubMed

    Lin, Yu; Sakamoto, Norihiro

    2009-05-12

    For the machine helped exploring the relationships between genetic factors and complex diseases, a well-structured conceptual framework of the background knowledge is needed. However, because of the complexity of determining a genetic susceptibility factor, there is no formalization for the knowledge of genetic susceptibility to disease, which makes the interoperability between systems impossible. Thus, the ontology modeling language OWL was used for formalization in this paper. After introducing the Semantic Web and OWL language propagated by W3C, we applied text mining technology combined with competency questions to specify the classes of the ontology. Then, an N-ary pattern was adopted to describe the relationships among these defined classes. Based on the former work of OGSF-DM (Ontology of Genetic Susceptibility Factors to Diabetes Mellitus), we formalized the definition of "Genetic Susceptibility", "Genetic Susceptibility Factor" and other classes by using OWL-DL modeling language; and a reasoner automatically performed the classification of the class "Genetic Susceptibility Factor". The ontology driven modeling is used for formalization the knowledge of genetic susceptibility to complex diseases. More importantly, when a class has been completely formalized in an ontology, the OWL reasoning can automatically compute the classification of the class, in our case, the class of "Genetic Susceptibility Factors". With more types of genetic susceptibility factors obtained from the laboratory research, our ontologies always needs to be refined, and many new classes must be taken into account to harmonize with the ontologies. Using the ontologies to develop the semantic web needs to be applied in the future.

  18. Food control and a citizen science approach for improving teaching of Genetics in universities.

    PubMed

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  19. Evolving autonomous learning in cognitive networks.

    PubMed

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  20. Recent Advances in Elucidating the Genetic Mechanisms of Nephrogenesis Using Zebrafish

    PubMed Central

    Cheng, Christina N.; Verdun, Valerie A.; Wingert, Rebecca A.

    2015-01-01

    The kidney is comprised of working units known as nephrons, which are epithelial tubules that contain a series of specialized cell types organized into a precise pattern of functionally distinct segment domains. There is a limited understanding of the genetic mechanisms that establish these discrete nephron cell types during renal development. The zebrafish embryonic kidney serves as a simplified yet conserved vertebrate model to delineate how nephron segments are patterned from renal progenitors. Here, we provide a concise review of recent advances in this emerging field, and discuss how continued research using zebrafish genetics can be applied to gain insightsabout nephrogenesis. PMID:26024215

  1. ECUT: Energy Conversion and Utilization Technologies program. Biocatalysis project

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of Universities, Industrial Companies and Government Research Laboratories. The Project's technical activities were organized into three work elements: molecular modeling and applied genetics; bioprocess engineering; and bioprocess design and assessment.

  2. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, N G; Shea, N

    1992-01-01

    This article provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect tomore » see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.« less

  3. Los Alamos Science: The Human Genome Project. Number 20, 1992

    DOE R&D Accomplishments Database

    Cooper, N. G.; Shea, N. eds.

    1992-01-01

    This document provides a broad overview of the Human Genome Project, with particular emphasis on work being done at Los Alamos. It tries to emphasize the scientific aspects of the project, compared to the more speculative information presented in the popular press. There is a brief introduction to modern genetics, including a review of classic work. There is a broad overview of the Genome Project, describing what the project is, what are some of its major five-year goals, what are major technological challenges ahead of the project, and what can the field of biology, as well as society expect to see as benefits from this project. Specific results on the efforts directed at mapping chromosomes 16 and 5 are discussed. A brief introduction to DNA libraries is presented, bearing in mind that Los Alamos has housed such libraries for many years prior to the Genome Project. Information on efforts to do applied computational work related to the project are discussed, as well as experimental efforts to do rapid DNA sequencing by means of single-molecule detection using applied spectroscopic methods. The article introduces the Los Alamos staff which are working on the Genome Project, and concludes with brief discussions on ethical, legal, and social implications of this work; a brief glimpse of genetics as it may be practiced in the next century; and a glossary of relevant terms.

  4. An overview of STRUCTURE: applications, parameter settings, and supporting software

    PubMed Central

    Porras-Hurtado, Liliana; Ruiz, Yarimar; Santos, Carla; Phillips, Christopher; Carracedo, Ángel; Lareu, Maria V.

    2013-01-01

    Objectives: We present an up-to-date review of STRUCTURE software: one of the most widely used population analysis tools that allows researchers to assess patterns of genetic structure in a set of samples. STRUCTURE can identify subsets of the whole sample by detecting allele frequency differences within the data and can assign individuals to those sub-populations based on analysis of likelihoods. The review covers STRUCTURE's most commonly used ancestry and frequency models, plus an overview of the main applications of the software in human genetics including case-control association studies (CCAS), population genetics, and forensic analysis. The review is accompanied by supplementary material providing a step-by-step guide to running STRUCTURE. Methods: With reference to a worked example, we explore the effects of changing the principal analysis parameters on STRUCTURE results when analyzing a uniform set of human genetic data. Use of the supporting software: CLUMPP and distruct is detailed and we provide an overview and worked example of STRAT software, applicable to CCAS. Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct, and STRAT can be applied to provide researchers with an informed choice of parameter settings and supporting software when analyzing their own genetic data. PMID:23755071

  5. Reaching a Consensus on the Definition of Genetic Literacy that Is Required from a Twenty-First-Century Citizen

    NASA Astrophysics Data System (ADS)

    Boerwinkel, Dirk Jan; Yarden, Anat; Waarlo, Arend Jan

    2017-12-01

    To determine what knowledge of genetics is needed for decision-making on genetic-related issues, a consensus-reaching approach was used. An international group of 57 experts, involved in teaching, studying, or developing genetic education and communication or working with genetic applications in medicine, agriculture, or forensics, answered the questions: "What knowledge of genetics is relevant to those individuals not professionally involved in science?" and "Why is this knowledge relevant?" The answers were classified in different knowledge components following the PISA 2015 science framework. During a workshop with the participants, the results were discussed and applied to seven cases in which genetic knowledge is relevant for decision-making. The analysis of these discussions resulted in a revised framework consisting of nine conceptual knowledge components, three sociocultural components, and four epistemic components. The framework can be used in curricular decisions; its open character allows for including new technologies and applications and facilitates comparisons of different cases.

  6. Nurses' knowledge and educational needs regarding genetics.

    PubMed

    Seven, Memnun; Akyüz, Aygül; Elbüken, Burcu; Skirton, Heather; Öztürk, Hatice

    2015-03-01

    Nurses now require a basic knowledge of genetics to provide patient care in a range of settings. To determine Turkish registered nurses' current knowledge and educational needs in relation to genetics. A descriptive, cross-sectional study. Turkish registered nurses working in a university hospital in Turkey were recruited. All registered nurses were invited to participate and 175 completed the study. The survey instrument, basic knowledge of health genetics, confidence in knowledge and the nurses' need for genetics education were used to collect data. The majority (81.1%, n=142) of participants indicated that genetics was not taught during their degree program, although 53.1% to 96% of respondents felt confident in defining different genetic concepts. The average genetics knowledge score was 6.89±1.99 of a possible 11 (range 0-11). The majority (70.3%) expressed a strong wish to attend a continuing nursing education program in genetics. The study shows that although Turkish nurses are not sufficiently knowledgeable to apply genetics in practice, they are willing to have more education to support their care of patients. Nurses need to have more education related to genetics in accordance with advances in human genetics to optimize health care. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    NASA Technical Reports Server (NTRS)

    Baresi, Larry

    1989-01-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  8. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project

    NASA Astrophysics Data System (ADS)

    Baresi, Larry

    1989-03-01

    The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.

  9. An efficient and rapid influenza gene cloning strategy for reverse genetics system.

    PubMed

    Shao, Hongxia; Fan, Zhonglei; Wan, Zhimin; Tian, Xiaoyan; Chen, Hongjun; Perez, Daniel R; Qin, Aijian; Ye, Jianqiang

    2015-09-15

    Influenza reverse genetics plays vital roles in understanding influenza molecular characteristics and vaccine development. However, current influenza reverse genetics heavily depends on restriction enzyme and ligation for gene cloning. The traditional cloning process of influenza eight fragments for virus rescuing generally requires considerable work. To simplify and increase the pace of gene cloning for influenza reverse genetics system, we developed a rapid restriction enzyme-free ExnaseTM II-based in vitro recombination approach for influenza gene cloning. We used this strategy rapidly and successfully to clone influenza eight genes both from viruses PR8 and H9N2 for virus rescuing. Our data demonstrate that the strategy developed here can accelerate the process of influenza gene cloning into reverse genetics system, and shows high potential for applications in both influenza basic and applied research. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm

    PubMed Central

    Chung, Yongchul G.; Gómez-Gualdrón, Diego A.; Li, Peng; Leperi, Karson T.; Deria, Pravas; Zhang, Hongda; Vermeulen, Nicolaas A.; Stoddart, J. Fraser; You, Fengqi; Hupp, Joseph T.; Farha, Omar K.; Snurr, Randall Q.

    2016-01-01

    Discovery of new adsorbent materials with a high CO2 working capacity could help reduce CO2 emissions from newly commissioned power plants using precombustion carbon capture. High-throughput computational screening efforts can accelerate the discovery of new adsorbents but sometimes require significant computational resources to explore the large space of possible materials. We report the in silico discovery of high-performing adsorbents for precombustion CO2 capture by applying a genetic algorithm to efficiently search a large database of metal-organic frameworks (MOFs) for top candidates. High-performing MOFs identified from the in silico search were synthesized and activated and show a high CO2 working capacity and a high CO2/H2 selectivity. One of the synthesized MOFs shows a higher CO2 working capacity than any MOF reported in the literature under the operating conditions investigated here. PMID:27757420

  11. 50 CFR 224.101 - Enumeration of endangered marine and anadromous species.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...

  12. 50 CFR 224.101 - Enumeration of endangered marine and anadromous species.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... institutions) and which are identified as fish belonging to the NYB DPS based on genetics analyses, previously... genetics analyses, previously applied tags, previously applied marks, or documentation to verify that the... Carolina DPS based on genetics analyses, previously applied tags, previously applied marks, or...

  13. Brachypodium distachyon as a Genetic Model System.

    PubMed

    Kellogg, Elizabeth A

    2015-01-01

    Brachypodium distachyon has emerged as a powerful model system for studying the genetics of flowering plants. Originally chosen for its phylogenetic proximity to the large-genome cereal crops wheat and barley, it is proving to be useful for more than simply providing markers for comparative mapping. Studies in B. distachyon have provided new insight into the structure and physiology of plant cell walls, the development and chemical composition of endosperm, and the genetic basis for cold tolerance. Recent work on auxin transport has uncovered mechanisms that apply to all angiosperms other than Arabidopsis. In addition to the areas in which it is currently used, B. distachyon is uniquely suited for studies of floral development, vein patterning, the controls of the perennial versus annual habit, and genome organization.

  14. Epigenetic and genetic diagnosis of Silver-Russell syndrome.

    PubMed

    Eggermann, Thomas; Spengler, Sabrina; Gogiel, Magdalena; Begemann, Matthias; Elbracht, Miriam

    2012-06-01

    Silver-Russell syndrome (SRS) is a congenital imprinting disorder characterized by intrauterine and postnatal growth restriction and further characteristic features. SRS is genetically heterogenous: 7-10% of patients carry a maternal uniparental disomy of chromosome 7; >38% show a hypomethylation in imprinting control region 1 in 11p15; and a further class of mutations are copy number variations affecting different chromosomes, but mainly 11p15 and 7. The diagnostic work-up should thus aim to detect these three molecular subtypes. Numerous techniques are currently applied in genetic SRS testing, but none of them covers all known (epi)mutations, and they should therefore be used synergistically. However, future next-generation sequencing approaches will allow a comprehensive analysis of all types of alterations in SRS.

  15. Genetic education and the challenge of genomic medicine: development of core competences to support preparation of health professionals in Europe

    PubMed Central

    Skirton, Heather; Lewis, Celine; Kent, Alastair; Coviello, Domenico A

    2010-01-01

    The use of genetics and genomics within a wide range of health-care settings requires health professionals to develop expertise to practise appropriately. There is a need for a common minimum standard of competence in genetics for health professionals in Europe but because of differences in professional education and regulation between European countries, setting curricula may not be practical. Core competences are used as a basis for health professional education in many fields and settings. An Expert Group working under the auspices of the EuroGentest project and European Society of Human Genetics Education Committee agreed that a pragmatic solution to the need to establish common standards for education and practice in genetic health care was to agree to a set of core competences that could apply across Europe. These were agreed through an exhaustive process of consultation with relevant health professionals and patient groups. Sets of competences for practitioners working in primary, secondary and tertiary care have been agreed and were approved by the European Society of Human Genetics. The competences provide an appropriate framework for genetics education of health professionals across national boundaries, and the suggested learning outcomes are available to guide development of curricula that are appropriate to the national context, educational system and health-care setting of the professional involved. Collaboration between individuals from many European countries and professions has resulted in an adaptable framework for both pre-registration and continuing professional education. This competence framework has the potential to improve the quality of genetic health care for patients globally. PMID:20442748

  16. Genetic education and the challenge of genomic medicine: development of core competences to support preparation of health professionals in Europe.

    PubMed

    Skirton, Heather; Lewis, Celine; Kent, Alastair; Coviello, Domenico A

    2010-09-01

    The use of genetics and genomics within a wide range of health-care settings requires health professionals to develop expertise to practise appropriately. There is a need for a common minimum standard of competence in genetics for health professionals in Europe but because of differences in professional education and regulation between European countries, setting curricula may not be practical. Core competences are used as a basis for health professional education in many fields and settings. An Expert Group working under the auspices of the EuroGentest project and European Society of Human Genetics Education Committee agreed that a pragmatic solution to the need to establish common standards for education and practice in genetic health care was to agree to a set of core competences that could apply across Europe. These were agreed through an exhaustive process of consultation with relevant health professionals and patient groups. Sets of competences for practitioners working in primary, secondary and tertiary care have been agreed and were approved by the European Society of Human Genetics. The competences provide an appropriate framework for genetics education of health professionals across national boundaries, and the suggested learning outcomes are available to guide development of curricula that are appropriate to the national context, educational system and health-care setting of the professional involved. Collaboration between individuals from many European countries and professions has resulted in an adaptable framework for both pre-registration and continuing professional education. This competence framework has the potential to improve the quality of genetic health care for patients globally.

  17. Exploring the Role of Genetic Modifiers in DNA Repair and Breast Cancer

    DTIC Science & Technology

    2013-09-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail: 5f. WORK UNIT NUMBER 7. PERFORMING...detailed in the Statement of Work for this training grant . I have applied for and received a no-cost extension (Amendment P00001, 24-Aug-2012...Date In Year 1 of this grant I successfully constructed a yeast tel1∆ ∆ genome-wide double-deletion library that was screened for sensitivity to

  18. Kernel-based whole-genome prediction of complex traits: a review.

    PubMed

    Morota, Gota; Gianola, Daniel

    2014-01-01

    Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.

  19. FAVR (Filtering and Annotation of Variants that are Rare): methods to facilitate the analysis of rare germline genetic variants from massively parallel sequencing datasets

    PubMed Central

    2013-01-01

    Background Characterising genetic diversity through the analysis of massively parallel sequencing (MPS) data offers enormous potential to significantly improve our understanding of the genetic basis for observed phenotypes, including predisposition to and progression of complex human disease. Great challenges remain in resolving genetic variants that are genuine from the millions of artefactual signals. Results FAVR is a suite of new methods designed to work with commonly used MPS analysis pipelines to assist in the resolution of some of the issues related to the analysis of the vast amount of resulting data, with a focus on relatively rare genetic variants. To the best of our knowledge, no equivalent method has previously been described. The most important and novel aspect of FAVR is the use of signatures in comparator sequence alignment files during variant filtering, and annotation of variants potentially shared between individuals. The FAVR methods use these signatures to facilitate filtering of (i) platform and/or mapping-specific artefacts, (ii) common genetic variants, and, where relevant, (iii) artefacts derived from imbalanced paired-end sequencing, as well as annotation of genetic variants based on evidence of co-occurrence in individuals. We applied conventional variant calling applied to whole-exome sequencing datasets, produced using both SOLiD and TruSeq chemistries, with or without downstream processing by FAVR methods. We demonstrate a 3-fold smaller rare single nucleotide variant shortlist with no detected reduction in sensitivity. This analysis included Sanger sequencing of rare variant signals not evident in dbSNP131, assessment of known variant signal preservation, and comparison of observed and expected rare variant numbers across a range of first cousin pairs. The principles described herein were applied in our recent publication identifying XRCC2 as a new breast cancer risk gene and have been made publically available as a suite of software tools. Conclusions FAVR is a platform-agnostic suite of methods that significantly enhances the analysis of large volumes of sequencing data for the study of rare genetic variants and their influence on phenotypes. PMID:23441864

  20. Computer-aided design for metabolic engineering.

    PubMed

    Fernández-Castané, Alfred; Fehér, Tamás; Carbonell, Pablo; Pauthenier, Cyrille; Faulon, Jean-Loup

    2014-12-20

    The development and application of biotechnology-based strategies has had a great socio-economical impact and is likely to play a crucial role in the foundation of more sustainable and efficient industrial processes. Within biotechnology, metabolic engineering aims at the directed improvement of cellular properties, often with the goal of synthesizing a target chemical compound. The use of computer-aided design (CAD) tools, along with the continuously emerging advanced genetic engineering techniques have allowed metabolic engineering to broaden and streamline the process of heterologous compound-production. In this work, we review the CAD tools available for metabolic engineering with an emphasis, on retrosynthesis methodologies. Recent advances in genetic engineering strategies for pathway implementation and optimization are also reviewed as well as a range of bionalytical tools to validate in silico predictions. A case study applying retrosynthesis is presented as an experimental verification of the output from Retropath, the first complete automated computational pipeline applicable to metabolic engineering. Applying this CAD pipeline, together with genetic reassembly and optimization of culture conditions led to improved production of the plant flavonoid pinocembrin. Coupling CAD tools with advanced genetic engineering strategies and bioprocess optimization is crucial for enhanced product yields and will be of great value for the development of non-natural products through sustainable biotechnological processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Genetic and Environmental Contributions to Behavioral Stability and Change in Children 6-36 months of Age Using Louisville Twin Study Data.

    PubMed

    Davis, Deborah Winders; Finkel, Deborah; Turkheimer, Eric; Dickens, William

    2015-11-01

    The Infant Behavior Record (IBR) from the Bayley Scales of Infant Development has been used to study behavioral development since the 1960s. Matheny (1983) examined behavioral development at 6, 12, 18, and 24 months from the Louisville Twin Study (LTS). The extracted temperament scales included Task Orientation, Affect-Extraversion, and Activity. He concluded that monozygotic twins were more similar than same-sex dizygotic twins on these dimensions. Since this seminal work was published, a larger LTS sample and more advanced analytical methods are available. In the current analyses, Choleksy decomposition was applied to behavioral data (n = 1231) from twins 6-36 months. Different patterns of genetic continuity vs genetic innovations were identified for each IBR scale. Single common genetic and shared environmental factors explained cross-age twin similarity in the Activity scale. Multiple shared environmental factors and a single genetic factor coming on line at age 18 months contributed to Affect-Extraversion. A single shared environmental factor and multiple genetic factors explained cross-age twin similarity in Task Orientation.

  2. An Epidemiologic Study of Genetic Variation in Hormonal Pathways in Relation to the Effect of Hormone Replacement Therapy on Breast Cancer Risk

    DTIC Science & Technology

    2007-04-01

    active learning techniques in Introduction to Epidemiology Ongoing5 W81XWH-06-1-0312 Reding, Kerryn 7 TASK STATUS of FUTURE TASKS Task 3...Apply for and obtain IRB renewal Ongoing task Task 4: Training-related Work (Months 13-36) a. Present research findings on active learning at

  3. Applications of information theory, genetic algorithms, and neural models to predict oil flow

    NASA Astrophysics Data System (ADS)

    Ludwig, Oswaldo; Nunes, Urbano; Araújo, Rui; Schnitman, Leizer; Lepikson, Herman Augusto

    2009-07-01

    This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.

  4. Scalability of a Methodology for Generating Technical Trading Rules with GAPs Based on Risk-Return Adjustment and Incremental Training

    NASA Astrophysics Data System (ADS)

    de La Cal, E. A.; Fernández, E. M.; Quiroga, R.; Villar, J. R.; Sedano, J.

    In previous works a methodology was defined, based on the design of a genetic algorithm GAP and an incremental training technique adapted to the learning of series of stock market values. The GAP technique consists in a fusion of GP and GA. The GAP algorithm implements the automatic search for crisp trading rules taking as objectives of the training both the optimization of the return obtained and the minimization of the assumed risk. Applying the proposed methodology, rules have been obtained for a period of eight years of the S&P500 index. The achieved adjustment of the relation return-risk has generated rules with returns very superior in the testing period to those obtained applying habitual methodologies and even clearly superior to Buy&Hold. This work probes that the proposed methodology is valid for different assets in a different market than previous work.

  5. Comparative Proteomic Analysis of Two Varieties of Genetically Modified (GM) Embrapa 5.1 Common Bean (Phaseolus vulgaris L.) and Their Non-GM Counterparts.

    PubMed

    Balsamo, Geisi M; Valentim-Neto, Pedro A; Mello, Carla S; Arisi, Ana C M

    2015-12-09

    The genetically modified (GM) common bean event Embrapa 5.1 was commercially approved in Brazil in 2011; it is resistant to golden mosaic virus infection. In the present work grain proteome profiles of two Embrapa 5.1 common bean varieties, Pérola and Pontal, and their non-GM counterparts were compared by two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). Analyses detected 23 spots differentially accumulated between GM Pérola and non-GM Pérola and 21 spots between GM Pontal and non-GM Pontal, although they were not the same proteins in Pérola and Pontal varieties, indicating that the variability observed may not be due to the genetic transformation. Among them, eight proteins were identified in Pérola varieties, and four proteins were identified in Pontal. Moreover, we applied principal component analysis (PCA) on 2-DE data, and variation between varieties was explained in the first two principal components. This work provides a first 2-DE-MS/MS-based analysis of Embrapa 5.1 common bean grains.

  6. Inference of RhoGAP/GTPase regulation using single-cell morphological data from a combinatorial RNAi screen.

    PubMed

    Nir, Oaz; Bakal, Chris; Perrimon, Norbert; Berger, Bonnie

    2010-03-01

    Biological networks are highly complex systems, consisting largely of enzymes that act as molecular switches to activate/inhibit downstream targets via post-translational modification. Computational techniques have been developed to perform signaling network inference using some high-throughput data sources, such as those generated from transcriptional and proteomic studies, but comparable methods have not been developed to use high-content morphological data, which are emerging principally from large-scale RNAi screens, to these ends. Here, we describe a systematic computational framework based on a classification model for identifying genetic interactions using high-dimensional single-cell morphological data from genetic screens, apply it to RhoGAP/GTPase regulation in Drosophila, and evaluate its efficacy. Augmented by knowledge of the basic structure of RhoGAP/GTPase signaling, namely, that GAPs act directly upstream of GTPases, we apply our framework for identifying genetic interactions to predict signaling relationships between these proteins. We find that our method makes mediocre predictions using only RhoGAP single-knockdown morphological data, yet achieves vastly improved accuracy by including original data from a double-knockdown RhoGAP genetic screen, which likely reflects the redundant network structure of RhoGAP/GTPase signaling. We consider other possible methods for inference and show that our primary model outperforms the alternatives. This work demonstrates the fundamental fact that high-throughput morphological data can be used in a systematic, successful fashion to identify genetic interactions and, using additional elementary knowledge of network structure, to infer signaling relations.

  7. The danger within: the role of genetic, behavioural and ecological factors in population persistence of colour polymorphic species.

    PubMed

    Bolton, Peri E; Rollins, Lee A; Griffith, Simon C

    2015-06-01

    Polymorphic species have been the focus of important work in evolutionary biology. It has been suggested that colour polymorphic species have specific evolutionary and population dynamics that enable them to persist through environmental changes better than less variable species. We suggest that recent empirical and theoretical work indicates that polymorphic species may be more vulnerable to extinction than previously thought. This vulnerability arises because these species often have a number of correlated sexual, behavioural, life history and ecological traits, which can have a simple genetic underpinning. When exacerbated by environmental change, these alternate strategies can lead to conflict between morphs at the genomic and population levels, which can directly or indirectly affect population and evolutionary dynamics. In this perspective, we identify a number of ways in which the nature of the correlated traits, their underpinning genetic architecture, and the inevitable interactions between colour morphs can result in a reduction in population fitness. The principles illustrated here apply to all kinds of discrete polymorphism (e.g. behavioural syndromes), but we focus primarily on colour polymorphism because they are well studied. We urge further empirical investigation of the genetic architecture and interactions in polymorphic species to elucidate the impact on population fitness. © 2015 John Wiley & Sons Ltd.

  8. Assessing Genetic Literacy Awareness and Knowledge Gaps in the US Population: Results from the Health Information National Trends Survey.

    PubMed

    Krakow, Melinda; Ratcliff, Chelsea L; Hesse, Bradford W; Greenberg-Worisek, Alexandra J

    2018-05-31

    Public understanding of the role of genetics in disease risk is key to appropriate disease prevention and detection. This study assessed the current extent of awareness and use of genetic testing in the US population. Additionally, the study identified characteristics of subgroups more likely to be at risk for low genetic literacy. The study used data from the National Cancer Institute's 2017 Health Information National Trends Survey, including measures of genetic testing awareness, genetic testing applications and genetic testing usage. Multivariable logistic regression models estimated associations between sociodemographics, genetic testing awareness, and genetic testing use. Fifty-seven percent of respondents were aware of genetic tests. Testing awareness differed by age, household income, and race/ethnicity. Most participants had heard of using tests to determine personal disease risk (82.58%) or inherited disease risk in children (81.41%), but less were familiar with determining treatment (38.29%) or drug efficacy (40.76%). Among those with genetic testing awareness, actual testing uptake was low. A large portion of the general public lacks genetic testing awareness and may benefit from educational campaigns. As precision medicine expands, increasing public awareness about genetic testing applications for disease prevention and treatment will be important to support population health. This is a work of the US Government and is not subject to copyright protection in the United States. Foreign copyrights may apply. Published by S. Karger AG, Basel.

  9. The future in clinical genetics: affective forecasting biases in patient and clinician decision making.

    PubMed

    Peters, S A; Laham, S M; Pachter, N; Winship, I M

    2014-04-01

    When clinicians facilitate and patients make decisions about predictive genetic testing, they often base their choices on the predicted emotional consequences of positive and negative test results. Research from psychology and decision making suggests that such predictions may often be biased. Work on affective forecasting-predicting one's future emotional states-shows that people tend to overestimate the impact of (especially negative) emotional events on their well-being; a phenomenon termed the impact bias. In this article, we review the causes and consequences of the impact bias in medical decision making, with a focus on applying such findings to predictive testing in clinical genetics. We also recommend strategies for reducing the impact bias and consider the ethical and practical implications of doing so. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Optogenetics in a transparent animal: circuit function in the larval zebrafish.

    PubMed

    Portugues, Ruben; Severi, Kristen E; Wyart, Claire; Ahrens, Misha B

    2013-02-01

    Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches. Copyright © 2012. Published by Elsevier Ltd.

  11. Applying Genomic and Genetic Tools to Understand and Mitigate Damage from Exposure to Toxins

    DTIC Science & Technology

    2013-10-01

    sequences to the human genome . Genome Biol 10, R25 (2009). 26 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand...utilizing the high-throughput technology of mRNA-seq. BODY The goal of our research program (W81XWH-09-1-0715) was to utilize genetic and genomic ...also acquired the achetf222a * * * * * 5 Award number: W81XWH-09-1-0715 Title: Applying Genomic and Genetic Tools to Understand and Mitigate

  12. Applying Quantitative Genetic Methods to Primate Social Behavior

    PubMed Central

    Brent, Lauren J. N.

    2013-01-01

    Increasingly, behavioral ecologists have applied quantitative genetic methods to investigate the evolution of behaviors in wild animal populations. The promise of quantitative genetics in unmanaged populations opens the door for simultaneous analysis of inheritance, phenotypic plasticity, and patterns of selection on behavioral phenotypes all within the same study. In this article, we describe how quantitative genetic techniques provide studies of the evolution of behavior with information that is unique and valuable. We outline technical obstacles for applying quantitative genetic techniques that are of particular relevance to studies of behavior in primates, especially those living in noncaptive populations, e.g., the need for pedigree information, non-Gaussian phenotypes, and demonstrate how many of these barriers are now surmountable. We illustrate this by applying recent quantitative genetic methods to spatial proximity data, a simple and widely collected primate social behavior, from adult rhesus macaques on Cayo Santiago. Our analysis shows that proximity measures are consistent across repeated measurements on individuals (repeatable) and that kin have similar mean measurements (heritable). Quantitative genetics may hold lessons of considerable importance for studies of primate behavior, even those without a specific genetic focus. PMID:24659839

  13. Genetic tool development underpins recent advances in thermophilic whole-cell biocatalysts.

    PubMed

    Taylor, M P; van Zyl, L; Tuffin, I M; Leak, D J; Cowan, D A

    2011-07-01

    The environmental value of sustainably producing bioproducts from biomass is now widely appreciated, with a primary target being the economic production of fuels such as bioethanol from lignocellulose. The application of thermophilic prokaryotes is a rapidly developing niche in this field, driven by their known catabolic versatility with lignocellulose-derived carbohydrates. Fundamental to the success of this work has been the development of reliable genetic and molecular systems. These technical tools are now available to assist in the development of other (hyper)thermophilic strains with diverse phenotypes such as hemicellulolytic and cellulolytic properties, branched chain alcohol production and other 'valuable bioproduct' synthetic capabilities. Here we present an insight into the historical limitations, recent developments and current status of a number of genetic systems for thermophiles. We also highlight the value of reliable genetic methods for increasing our knowledge of thermophile physiology. We argue that the development of robust genetic systems is paramount in the evolution of future thermophilic based bioprocesses and make suggestions for future approaches and genetic targets that will facilitate this process. © 2011 The Authors. Journal compilation © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Are genetic and environmental influences on job satisfaction stable over time? A three-wave longitudinal twin study.

    PubMed

    Li, Wen-Dong; Stanek, Kevin C; Zhang, Zhen; Ones, Deniz S; McGue, Matt

    2016-11-01

    Job satisfaction research has unfolded as an exemplary manifestation of the "person versus environment" debate in applied psychology. With the increasing recognition of the importance of time, it is informative to examine a question critical to the dispositional view of job satisfaction: Are genetic influences on job satisfaction stable across different time points? Drawing upon dispositional and situational perspectives on job satisfaction and recent research in developmental behavioral genetics, we examined whether the relative potency of genetic (i.e., the person) and environmental influences on job satisfaction changed over time in a 3-wave longitudinal twin study. Biometric behavioral genetics analyses showed that genetic influences accounted for 31.2% of the variance in job satisfaction measured at approximately Age 21, which was markedly greater than the 18.7% and 19.8% of variance explained by genetic factors at Age 25 and Age 30. Such genetic influences were mediated via positive affectivity and negative affectivity, but not via general mental ability. After partialing out genetic influences, environmental influences on job satisfaction were related to interpersonal conflict at work and occupational status, and these influences were relatively stable across the 3 time points. These results offer important implications for organizations and employees to better understand and implement practices to enhance job satisfaction. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    PubMed Central

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672

  16. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    PubMed

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  17. Refining Intervention Targets in Family-Based Research: Lessons From Quantitative Behavioral Genetics

    PubMed Central

    Leve, Leslie D.; Harold, Gordon T.; Ge, Xiaojia; Neiderhiser, Jenae M.; Patterson, Gerald

    2010-01-01

    The results from a large body of family-based research studies indicate that modifying the environment (specifically dimensions of the social environment) through intervention is an effective mechanism for achieving positive outcomes. Parallel to this work is a growing body of evidence from genetically informed studies indicating that social environmental factors are central to enhancing or offsetting genetic influences. Increased precision in the understanding of the role of the social environment in offsetting genetic risk might provide new information about environmental mechanisms that could be applied to prevention science. However, at present, the multifaceted conceptualization of the environment in prevention science is mismatched with the more limited measurement of the environment in many genetically informed studies. A framework for translating quantitative behavioral genetic research to inform the development of preventive interventions is presented in this article. The measurement of environmental indices amenable to modification is discussed within the context of quantitative behavioral genetic studies. In particular, emphasis is placed on the necessary elements that lead to benefits in prevention science, specifically the development of evidence-based interventions. An example from an ongoing prospective adoption study is provided to illustrate the potential of this translational process to inform the selection of preventive intervention targets. PMID:21188273

  18. The perceived impact of the European registration system for genetic counsellors and nurses.

    PubMed

    Paneque, Milena; Moldovan, Ramona; Cordier, Christophe; Serra-Juhé, Clara; Feroce, Irene; Pasalodos, Sara; Haquet, Emmanuelle; Lambert, Debby; Bjørnevoll, Inga; Skirton, Heather

    2017-09-01

    The aim of the European Board of Medical Genetics has been to develop and promote academic and professional standards necessary in order to provide competent genetic counselling services. The aim of this study was to explore the impact of the European registration system for genetic nurses and counsellors from the perspectives of those professionals who have registered. Registration system was launched in 2013. A cross-sectional, online survey was used to explore the motivations and experiences of those applying for, and the effect of registration on their career. Fifty-five Genetic Nurses and Counsellors are registered till now, from them, thirty-three agreed to participate on this study. The main motivations for registering were for recognition of their work value and competence (30.3%); due to the absence of a registration system in their own country (15.2%) and the possibility of obtaining a European/international certification (27.3%), while 27.3% of respondents registered to support recognition of the genetic counselling profession. Some participants valued the registration process as an educational activity in its own right, while the majority indicated the greatest impact of the registration process was on their clinical practice. The results confirm that registrants value the opportunity to both confirm their own competence and advance the genetic counselling profession in Europe.

  19. An Analysis Pipeline with Statistical and Visualization-Guided Knowledge Discovery for Michigan-Style Learning Classifier Systems

    PubMed Central

    Urbanowicz, Ryan J.; Granizo-Mackenzie, Ambrose; Moore, Jason H.

    2014-01-01

    Michigan-style learning classifier systems (M-LCSs) represent an adaptive and powerful class of evolutionary algorithms which distribute the learned solution over a sizable population of rules. However their application to complex real world data mining problems, such as genetic association studies, has been limited. Traditional knowledge discovery strategies for M-LCS rule populations involve sorting and manual rule inspection. While this approach may be sufficient for simpler problems, the confounding influence of noise and the need to discriminate between predictive and non-predictive attributes calls for additional strategies. Additionally, tests of significance must be adapted to M-LCS analyses in order to make them a viable option within fields that require such analyses to assess confidence. In this work we introduce an M-LCS analysis pipeline that combines uniquely applied visualizations with objective statistical evaluation for the identification of predictive attributes, and reliable rule generalizations in noisy single-step data mining problems. This work considers an alternative paradigm for knowledge discovery in M-LCSs, shifting the focus from individual rules to a global, population-wide perspective. We demonstrate the efficacy of this pipeline applied to the identification of epistasis (i.e., attribute interaction) and heterogeneity in noisy simulated genetic association data. PMID:25431544

  20. A Tri-part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning About Authentic Genetics Dilemmas

    NASA Astrophysics Data System (ADS)

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-08-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational features of a reasoning task may influence how students apply content knowledge as they generate and support arguments. Understanding how students apply content knowledge to reason about authentic and complex issues is important for considering instructional practices that best support student thinking and reasoning. In this conceptual report, we present a tri-part model for genetics literacy that embodies the relationships between content knowledge use, argumentation quality, and the role of situational features in reasoning to support genetics literacy. Using illustrative examples from an interview study with early career undergraduate students majoring in the biological sciences and late career undergraduate students majoring in genetics, we provide insights into undergraduate student reasoning about complex genetics issues and discuss implications for teaching and learning. We further discuss the need for research about how the tri-part model of genetics literacy can be used to explore students' thinking and reasoning abilities in genetics.

  1. Establishing a comprehensive genetic diagnosis strategy for hemophilia B and its application in Chinese population.

    PubMed

    Lin, X Y; Wang, J; Xiao, X; Xu, Y W; Yan, Q J; Jiang, W Y

    2018-04-01

    To reduce the incidence of hemophilia B (HB) which with no complete cure currently, prenatal diagnosis and preimplantation genetic diagnosis (PGD) are effective and feasible means. However, previous studies about genetic diagnosis in HB mostly just focused on the detection of patients and carriers. Here, we established a comprehensive genetic diagnosis strategy for HB and worked it out in Chinese population. The strategy includes the detection of patients and carriers, prenatal diagnosis, and PGD. Seven unrelated HB families from Chinese population involved in this study. Firstly, probands and available members were carried out coagulation laboratory assays, and the clinical information has been recorded. Secondly, we used DNA direct sequencing to screen the whole FIX gene of them. The pathogenicity of novel mutations was verified according to 2015 ACMG-AM guidelines. For prenatal diagnosis, a mix of DNA direct sequencing and STR linkage analysis was employed. To explore a better PGD protocol, Karyomapping was first applied in PGD of HB, comparing with conventional PCR-based methods. Six different pathogenic mutations including 1 novel duplication (c.660_661dup ATCA) were identified. The results of prenatal diagnosis were consistent with birth outcomes. In the PGD case, 4 of 11 embryos were confirmed to be normal and one of them was transferred and led to a healthy birth. The established genetic diagnosis strategy for HB in our study was comprehensive and well applied in clinic practice. Besides, we recommended that DNA direct sequencing combined with Karyomapping was a better PGD protocol. © 2017 John Wiley & Sons Ltd.

  2. Narrow-sense heritability estimation of complex traits using identity-by-descent information.

    PubMed

    Evans, Luke M; Tahmasbi, Rasool; Jones, Matt; Vrieze, Scott I; Abecasis, Gonçalo R; Das, Sayantan; Bjelland, Douglas W; de Candia, Teresa R; Yang, Jian; Goddard, Michael E; Visscher, Peter M; Keller, Matthew C

    2018-03-28

    Heritability is a fundamental parameter in genetics. Traditional estimates based on family or twin studies can be biased due to shared environmental or non-additive genetic variance. Alternatively, those based on genotyped or imputed variants typically underestimate narrow-sense heritability contributed by rare or otherwise poorly tagged causal variants. Identical-by-descent (IBD) segments of the genome share all variants between pairs of chromosomes except new mutations that have arisen since the last common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing among classically unrelated individuals is an appealing approach to estimating the near full additive genetic variance while possibly avoiding biases that can occur when modeling close relatives. We applied an IBD-based approach (GREML-IBD) to estimate heritability in unrelated individuals using phenotypic simulation with thousands of whole-genome sequences across a range of stratification, polygenicity levels, and the minor allele frequencies of causal variants (CVs). In simulations, the IBD-based approach produced unbiased heritability estimates, even when CVs were extremely rare, although precision was low. However, population stratification and non-genetic familial environmental effects shared across generations led to strong biases in IBD-based heritability. We used data on two traits in ~120,000 people from the UK Biobank to demonstrate that, depending on the trait and possible confounding environmental effects, GREML-IBD can be applied to very large genetic datasets to infer the contribution of very rare variants lost using other methods. However, we observed apparent biases in these real data, suggesting that more work may be required to understand and mitigate factors that influence IBD-based heritability estimates.

  3. Postdoctoral Fellows | Center for Cancer Research

    Cancer.gov

    The Oncogenomics section of the Genetics Branch is a multidisciplinary and interdisciplinary translational research programmatic effort with the goal of utilizing genomics to develop novel immunotherapies for cancer. Our group is applying high throughput applied genomics methods including single cell RNAseq, single cell TCR sequencing, DNA sequencing, CRISPR/Cas9, bioinformatics combined with T cell based therapeutics to identify and develop novel immunotherapeutics for human cancer. We work with other investigators within the intramural program as well as industrial and pharmaceutical partners to rapidly translate our findings to the clinic. The program takes advantage of the uniqueness of the National Cancer Institute, (NCI), Center for Cancer Research (CCR) intramural program in that it spans high-risk basic discovery research in immunology, genomics and tumor biology, through preclinical translational research, to paradigm-shifting clinical trials. The position is available immediately. The appointment duration is up to 5 years. Stipends are commensurate with education and experience. Additional information can be found on Dr. Khan’s profile page: https://ccr.cancer.gov/Genetics-Branch/javed-khan

  4. Pathway-based analyses.

    PubMed

    Kent, Jack W

    2016-02-03

    New technologies for acquisition of genomic data, while offering unprecedented opportunities for genetic discovery, also impose severe burdens of interpretation and penalties for multiple testing. The Pathway-based Analyses Group of the Genetic Analysis Workshop 19 (GAW19) sought reduction of multiple-testing burden through various approaches to aggregation of highdimensional data in pathways informed by prior biological knowledge. Experimental methods testedincluded the use of "synthetic pathways" (random sets of genes) to estimate power and false-positive error rate of methods applied to simulated data; data reduction via independent components analysis, single-nucleotide polymorphism (SNP)-SNP interaction, and use of gene sets to estimate genetic similarity; and general assessment of the efficacy of prior biological knowledge to reduce the dimensionality of complex genomic data. The work of this group explored several promising approaches to managing high-dimensional data, with the caveat that these methods are necessarily constrained by the quality of external bioinformatic annotation.

  5. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci

    PubMed Central

    Fakhfakh, Hatem; Belkadhi, Mohamed Sadok

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest. PMID:28972992

  6. A landscape genetic analysis of important agricultural pest species in Tunisia: The whitefly Bemisia tabaci.

    PubMed

    Ben Abdelkrim, Ahmed; Hattab, Tarek; Fakhfakh, Hatem; Belkadhi, Mohamed Sadok; Gorsane, Faten

    2017-01-01

    Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest. We used nuclear microsatellite loci to analyze B. tabaci populations collected from various agricultural areas across the country and we determine their biotype status. Molecular data were subsequently interpreted in an ecological context supplied from a species distribution model to infer habitat suitability and hereafter the potential connection paths between sampling localities. An analysis of landscape resistance to B. tabaci genetic flow was thus applied to take into account habitat suitability, genetic relatedness and functional connectivity of habitats within a varied landscape matrix. We shed light on the occurrence of three geographically delineated genetic groups with high levels of genetic differentiation within each of them. Potential migration corridors of this pest were then established providing significant advances toward the understanding of genetic features and the dynamic dispersal of this pest. This study supports the hypothesis of a long-distance dispersal of B. tabaci followed by infrequent long-term isolations. The Inference of population sources and colonization routes is critical for the design and implementation of accurate management strategies against this pest.

  7. Studying Gene and Gene-Environment Effects of Uncommon and Common Variants on Continuous Traits: A Marker-Set Approach Using Gene-Trait Similarity Regression

    PubMed Central

    Tzeng, Jung-Ying; Zhang, Daowen; Pongpanich, Monnat; Smith, Chris; McCarthy, Mark I.; Sale, Michèle M.; Worrall, Bradford B.; Hsu, Fang-Chi; Thomas, Duncan C.; Sullivan, Patrick F.

    2011-01-01

    Genomic association analyses of complex traits demand statistical tools that are capable of detecting small effects of common and rare variants and modeling complex interaction effects and yet are computationally feasible. In this work, we introduce a similarity-based regression method for assessing the main genetic and interaction effects of a group of markers on quantitative traits. The method uses genetic similarity to aggregate information from multiple polymorphic sites and integrates adaptive weights that depend on allele frequencies to accomodate common and uncommon variants. Collapsing information at the similarity level instead of the genotype level avoids canceling signals that have the opposite etiological effects and is applicable to any class of genetic variants without the need for dichotomizing the allele types. To assess gene-trait associations, we regress trait similarities for pairs of unrelated individuals on their genetic similarities and assess association by using a score test whose limiting distribution is derived in this work. The proposed regression framework allows for covariates, has the capacity to model both main and interaction effects, can be applied to a mixture of different polymorphism types, and is computationally efficient. These features make it an ideal tool for evaluating associations between phenotype and marker sets defined by linkage disequilibrium (LD) blocks, genes, or pathways in whole-genome analysis. PMID:21835306

  8. Time-Domain Receiver Function Deconvolution using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Moreira, L. P.

    2017-12-01

    Receiver Functions (RF) are well know method for crust modelling using passive seismological signals. Many different techniques were developed to calculate the RF traces, applying the deconvolution calculation to radial and vertical seismogram components. A popular method used a spectral division of both components, which requires human intervention to apply the Water Level procedure to avoid instabilities from division by small numbers. One of most used method is an iterative procedure to estimate the RF peaks and applying the convolution with vertical component seismogram, comparing the result with the radial component. This method is suitable for automatic processing, however several RF traces are invalid due to peak estimation failure.In this work it is proposed a deconvolution algorithm using Genetic Algorithm (GA) to estimate the RF peaks. This method is entirely processed in the time domain, avoiding the time-to-frequency calculations (and vice-versa), and totally suitable for automatic processing. Estimated peaks can be used to generate RF traces in a seismogram format for visualization. The RF trace quality is similar for high magnitude events, although there are less failures for RF calculation of smaller events, increasing the overall performance for high number of events per station.

  9. [The practice and discussion of the physical knowledge stepping into genetics teaching].

    PubMed

    Luo, Shen; Luo, Peigao

    2014-09-01

    Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.

  10. Genetic considerations for mollusk production in aquaculture: current state of knowledge

    PubMed Central

    Astorga, Marcela P.

    2014-01-01

    In 2012, world mollusk production in aquaculture reached a volume of 15,171,000 tons, representing 23% of total aquaculture production and positioning mollusks as the second most important category of aquaculture products (fishes are the first). Clams and oysters are the mollusk species with the highest production levels, followed in descending order by mussels, scallops, and abalones. In view of the increasing importance attached to genetic information on aquaculture, which can help with good maintenance and thus the sustainability of production, the present work offers a review of the state of knowledge on genetic and genomic information about mollusks produced in aquaculture. The analysis was applied to mollusks which are of importance for aquaculture, with emphasis on the 5 species with the highest production levels. According to FAO, these are: Japanese clam Ruditapes philippinarum; Pacific oyster Crassostrea gigas; Chilean mussel Mytilus chilensis; Blood clam Anadara granosa and Chinese clam Sinonovacula constricta. To date, the genomes of 5 species of mollusks have been sequenced, only one of which, Crassostrea gigas, coincides with the species with the greatest production in aquaculture. Another important species whose genome has been sequenced is Mytilus galloprovincialis, which is the second most important mussel in aquaculture production, after M. chilensis. Few genetic improvement programs have been reported in comparison with the number reported in fish species. The most commonly investigated species are oysters, with at least 5 genetic improvement programs reported, followed by abalones with 2 programs and mussels with one. The results of this work will establish the current situation with respect to the genetics of mollusks which are of importance for aquaculture production, in order to assist future decisions to ensure the sustainability of these resources. PMID:25540651

  11. Multi-objective optimization in systematic conservation planning and the representation of genetic variability among populations.

    PubMed

    Schlottfeldt, S; Walter, M E M T; Carvalho, A C P L F; Soares, T N; Telles, M P C; Loyola, R D; Diniz-Filho, J A F

    2015-06-18

    Biodiversity crises have led scientists to develop strategies for achieving conservation goals. The underlying principle of these strategies lies in systematic conservation planning (SCP), in which there are at least 2 conflicting objectives, making it a good candidate for multi-objective optimization. Although SCP is typically applied at the species level (or hierarchically higher), it can be used at lower hierarchical levels, such as using alleles as basic units for analysis, for conservation genetics. Here, we propose a method of SCP using a multi-objective approach. We used non-dominated sorting genetic algorithm II in order to identify the smallest set of local populations of Dipteryx alata (baru) (a Brazilian Cerrado species) for conservation, representing the known genetic diversity and using allele frequency information associated with heterozygosity and Hardy-Weinberg equilibrium. We worked in 3 variations for the problem. First, we reproduced a previous experiment, but using a multi-objective approach. We found that the smallest set of populations needed to represent all alleles under study was 7, corroborating the results of the previous study, but with more distinct solutions. In the 2nd and 3rd variations, we performed simultaneous optimization of 4 and 5 objectives, respectively. We found similar but refined results for 7 populations, and a larger portfolio considering intra-specific diversity and persistence with populations ranging from 8-22. This is the first study to apply multi-objective algorithms to an SCP problem using alleles at the population level as basic units for analysis.

  12. Pitfalls of the Geographic Population Structure (GPS) Approach Applied to Human Genetic History: A Case Study of Ashkenazi Jews

    PubMed Central

    Flegontov, Pavel; Kassian, Alexei; Thomas, Mark G.; Fedchenko, Valentina; Changmai, Piya; Starostin, George

    2016-01-01

    In a recent interdisciplinary study, Das et al. have attempted to trace the homeland of Ashkenazi Jews and of their historical language, Yiddish (Das et al. 2016. Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biol Evol. 8:1132–1149). Das et al. applied the geographic population structure (GPS) method to autosomal genotyping data and inferred geographic coordinates of populations supposedly ancestral to Ashkenazi Jews, placing them in Eastern Turkey. They argued that this unexpected genetic result goes against the widely accepted notion of Ashkenazi origin in the Levant, and speculated that Yiddish was originally a Slavic language strongly influenced by Iranian and Turkic languages, and later remodeled completely under Germanic influence. In our view, there are major conceptual problems with both the genetic and linguistic parts of the work. We argue that GPS is a provenancing tool suited to inferring the geographic region where a modern and recently unadmixed genome is most likely to arise, but is hardly suitable for admixed populations and for tracing ancestry up to 1,000 years before present, as its authors have previously claimed. Moreover, all methods of historical linguistics concur that Yiddish is a Germanic language, with no reliable evidence for Slavic, Iranian, or Turkic substrata. PMID:27389685

  13. Genetic Expression Outside the Skin: Clues to Mechanisms of Genotype × Environment Interaction

    PubMed Central

    Reiss, David; Leve, Leslie D.

    2007-01-01

    The rapidly moving study of Gene × Environment interaction needs interim conceptual tools to track progress, integrate findings, and apply this knowledge to preventive intervention. We define two closely related concepts: the social mediation of the expression of genetic influences and the interaction between the entire genotype and the social environment (Genotype × Environment interaction; G×E). G×E interaction, the primary focus of this report, assesses individual differences in the full genotype using twin, sibling, and adoption designs and, for the most part, employs fine-grained analyses of relational processes in the social environment. In comparison, studies of Allele × Environment interaction (A×E) assess the influence on development of one or more measured polymorphisms as modified by environmental factors. G×E studies build on work showing how the social environment responds to genetic influences and how genetic influences shape the social environment. Recent G×E research has yielded new insight into variations in the sensitivity of the social environment to genotypic influences and provides clues to the specificity and timing of these environmental responses that can be leveraged to inform preventive interventions aimed at reducing genetic risk for problem behavior. PMID:17931431

  14. A Mesoamerican origin of cherimoya (Annona cherimola Mill.): Implications for the conservation of plant genetic resources.

    PubMed

    Larranaga, N; Albertazzi, F J; Fontecha, G; Palmieri, M; Rainer, H; van Zonneveld, M; Hormaza, J I

    2017-08-01

    Knowledge on the structure and distribution of genetic diversity is a key aspect to plan and execute an efficient conservation and utilization of the genetic resources of any crop as well as for determining historical demographic inferences. In this work, a large data set of 1,765 accessions of cherimoya (Annona cherimola Mill, Annonaceae), an underutilized fruit tree crop native to the Neotropics and used as a food source by pre-Columbian cultures, was collected from six different countries across the American continent and amplified with nine highly informative microsatellite markers. The structure analyses, fine representation of the genetic diversity and an ABC approach suggest a Mesoamerican origin of the crop, contrary to previous reports, with clear implications for the dispersion of plant germplasm between Central and South America in pre-Columbian times. These results together with the potential distribution of the species in a climatic change context using two different climate models provide new insights for the history and conservation of extant genetic resources of cherimoya that can be applied to other currently underutilized woody perennial crops. © 2017 John Wiley & Sons Ltd.

  15. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis.

    PubMed

    Brownell, Robert; Kaminski, Naftali; Woodruff, Prescott G; Bradford, Williamson Z; Richeldi, Luca; Martinez, Fernando J; Collard, Harold R

    2016-06-01

    Precision medicine is defined by the National Institute of Health's Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field's nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management.

  16. Optimality and stability of symmetric evolutionary games with applications in genetic selection.

    PubMed

    Huang, Yuanyuan; Hao, Yiping; Wang, Min; Zhou, Wen; Wu, Zhijun

    2015-06-01

    Symmetric evolutionary games, i.e., evolutionary games with symmetric fitness matrices, have important applications in population genetics, where they can be used to model for example the selection and evolution of the genotypes of a given population. In this paper, we review the theory for obtaining optimal and stable strategies for symmetric evolutionary games, and provide some new proofs and computational methods. In particular, we review the relationship between the symmetric evolutionary game and the generalized knapsack problem, and discuss the first and second order necessary and sufficient conditions that can be derived from this relationship for testing the optimality and stability of the strategies. Some of the conditions are given in different forms from those in previous work and can be verified more efficiently. We also derive more efficient computational methods for the evaluation of the conditions than conventional approaches. We demonstrate how these conditions can be applied to justifying the strategies and their stabilities for a special class of genetic selection games including some in the study of genetic disorders.

  17. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    PubMed

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  18. Teaching Applied Genetics and Molecular Biology to Agriculture Engineers. Application of the European Credit Transfer System

    ERIC Educational Resources Information Center

    Weiss, J.; Egea-Cortines, M.

    2008-01-01

    We have been teaching applied molecular genetics to engineers and adapted the teaching methodology to the European Credit Transfer System. We teach core principles of genetics that are universal and form the conceptual basis of most molecular technologies. The course then teaches widely used techniques and finally shows how different techniques…

  19. Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks.

    PubMed

    Larson, Shawn E; Daly-Engel, Toby S; Phillips, Nicole M

    Conservation genetics is an applied science that utilizes molecular tools to help solve problems in species conservation and management. It is an interdisciplinary specialty in which scientists apply the study of genetics in conjunction with traditional ecological fieldwork and other techniques to explore molecular variation, population boundaries, and evolutionary relationships with the goal of enabling resource managers to better protect biodiversity and identify unique populations. Several shark species in the northeast Pacific (NEP) have been studied using conservation genetics techniques, which are discussed here. The primary methods employed to study population genetics of sharks have historically been nuclear microsatellites and mitochondrial (mt) DNA. These markers have been used to assess genetic diversity, mating systems, parentage, relatedness, and genetically distinct populations to inform management decisions. Novel approaches in conservation genetics, including next-generation DNA and RNA sequencing, environmental DNA (eDNA), and epigenetics are just beginning to be applied to elasmobranch evolution, physiology, and ecology. Here, we review the methods and results of past studies, explore future directions for shark conservation genetics, and discuss the implications of molecular research and techniques for the long-term management of shark populations in the NEP. © 2017 Elsevier Ltd. All rights reserved.

  20. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003.

    PubMed

    O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; van Sinderen, Douwe

    2013-01-01

    Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  1. Inclusion Criteria for NCI Cancer Genetics Services Directory

    Cancer.gov

    Professionals who provide services related to cancer genetics (cancer risk assessment, genetic counseling, genetic susceptibility testing, and others) must meet these criteria before applying to be listed in the National Cancer Institute's Cancer Genetics Services Directory.

  2. Crossover versus mutation: a comparative analysis of the evolutionary strategy of genetic algorithms applied to combinatorial optimization problems.

    PubMed

    Osaba, E; Carballedo, R; Diaz, F; Onieva, E; de la Iglesia, I; Perallos, A

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test.

  3. Crossover versus Mutation: A Comparative Analysis of the Evolutionary Strategy of Genetic Algorithms Applied to Combinatorial Optimization Problems

    PubMed Central

    Osaba, E.; Carballedo, R.; Diaz, F.; Onieva, E.; de la Iglesia, I.; Perallos, A.

    2014-01-01

    Since their first formulation, genetic algorithms (GAs) have been one of the most widely used techniques to solve combinatorial optimization problems. The basic structure of the GAs is known by the scientific community, and thanks to their easy application and good performance, GAs are the focus of a lot of research works annually. Although throughout history there have been many studies analyzing various concepts of GAs, in the literature there are few studies that analyze objectively the influence of using blind crossover operators for combinatorial optimization problems. For this reason, in this paper a deep study on the influence of using them is conducted. The study is based on a comparison of nine techniques applied to four well-known combinatorial optimization problems. Six of the techniques are GAs with different configurations, and the remaining three are evolutionary algorithms that focus exclusively on the mutation process. Finally, to perform a reliable comparison of these results, a statistical study of them is made, performing the normal distribution z-test. PMID:25165731

  4. ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.

  5. Genetic algorithm dynamics on a rugged landscape

    NASA Astrophysics Data System (ADS)

    Bornholdt, Stefan

    1998-04-01

    The genetic algorithm is an optimization procedure motivated by biological evolution and is successfully applied to optimization problems in different areas. A statistical mechanics model for its dynamics is proposed based on the parent-child fitness correlation of the genetic operators, making it applicable to general fitness landscapes. It is compared to a recent model based on a maximum entropy ansatz. Finally it is applied to modeling the dynamics of a genetic algorithm on the rugged fitness landscape of the NK model.

  6. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    DTIC Science & Technology

    2016-12-01

    Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street Concord, NH 03301 under contract W911SR...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street... Genetic Algorithm 5a. CONTRACT NUMBER W199SR-15-2-001 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Justin L Paul 5d. PROJECT

  7. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    PubMed

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  8. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms

    PubMed Central

    Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709

  9. Role of FGFs/FGFRs in skeletal development and bone regeneration.

    PubMed

    Du, Xiaolan; Xie, Yangli; Xian, Cory J; Chen, Lin

    2012-12-01

    Fibroblast growth factor (FGF)/FGF (FGFR) signaling is an important pathway involved in skeletal development. Missense mutations in FGFs and FGFRs were found clinically to cause multiple congenital skeleton diseases including chondrodysplasia, craniosynostosis, syndromes with dysregulated phosphate metabolism. FGFs/FGFRs also have crucial roles in bone fracture repair and bone regeneration. Understanding the molecular mechanisms for the role of FGFs/FGFRs in the regulation of skeletal development, genetic skeletal diseases, and fracture healing will ultimately lead to better treatment of skeleton diseases caused by mutations of FGFs/FGFRs and fracture. This review summarizes the major findings on the role of FGF signaling in skeletal development, genetic skeletal diseases and bone healing, and discusses issues that remain to be resolved in applying FGF signaling-related measures to promote bone healing. This review has also provided a perspective view on future work for exploring the roles and action mechanisms of FGF signaling in skeletal development, genetic skeletal diseases, and fracture healing. Copyright © 2012 Wiley Periodicals, Inc.

  10. Working with the Hmong Population in a Genetics Setting: an Interpreter Perspective.

    PubMed

    Krieger, Meghan; Agather, Aime; Douglass, Kathryn; Reiser, Catherine A; Petty, Elizabeth M

    2018-06-01

    The aim of this pilot qualitative study was to describe the experiences and beliefs of medical interpreters when working with genetic counselors and other genetic providers caring for Hmong patients who are not native English speakers. Specific goals were to identify interpreters' thoughts and perceptions on (a) their roles during sessions, (b) unique challenges in a genetics session, (c) knowledge genetics providers need when working with Hmong patients and interpreters, and (d) supports and training needed to effectively interpret in a genetics setting. Hmong medical interpreters from Wisconsin and Minnesota were invited by email to participate in the study. Six were interviewed by telephone. Participants had worked with a variety of providers including geneticists, genetic counselors, primary care physicians, and oncologists. Factors identified by Hmong interpreters that made interpretation of content difficult in clinical genetics sessions included: time constraints, technical terms, and unique cultural perspectives of Hmong patients. While all respondents felt their primary role was to interpret session content as close to verbatim as possible, there was notable variation in the description of their interpretation style and other perceived roles in the genetic counseling session. Cultural issues genetics providers could consider when working with Hmong patients and different style issues when working with Hmong interpreters are discussed. Ideas for future studies and suggestions to improve communication with Hmong patients are explored.

  11. Precision Medicine: The New Frontier in Idiopathic Pulmonary Fibrosis

    PubMed Central

    Brownell, Robert; Kaminski, Naftali; Woodruff, Prescott G.; Bradford, Williamson Z.; Richeldi, Luca; Martinez, Fernando J.

    2016-01-01

    Precision medicine is defined by the National Institute of Health’s Precision Medicine Initiative Working Group as an approach to disease treatment that takes into account individual variability in genes, environment, and lifestyle. There has been increased interest in applying the concept of precision medicine to idiopathic pulmonary fibrosis, in particular to search for genetic and molecular biomarker-based profiles (so called endotypes) that identify mechanistically distinct disease subgroups. The relevance of precision medicine to idiopathic pulmonary fibrosis is yet to be established, but we believe that it holds great promise to provide targeted and highly effective therapies to patients. In this manuscript, we describe the field’s nascent efforts in genetic/molecular endotype identification and how environmental and behavioral subgroups may also be relevant to disease management. PMID:26991475

  12. Applications of machine learning and data mining methods to detect associations of rare and common variants with complex traits.

    PubMed

    Lu, Ake Tzu-Hui; Austin, Erin; Bonner, Ashley; Huang, Hsin-Hsiung; Cantor, Rita M

    2014-09-01

    Machine learning methods (MLMs), designed to develop models using high-dimensional predictors, have been used to analyze genome-wide genetic and genomic data to predict risks for complex traits. We summarize the results from six contributions to our Genetic Analysis Workshop 18 working group; these investigators applied MLMs and data mining to analyses of rare and common genetic variants measured in pedigrees. To develop risk profiles, group members analyzed blood pressure traits along with single-nucleotide polymorphisms and rare variant genotypes derived from sequence and imputation analyses in large Mexican American pedigrees. Supervised MLMs included penalized regression with varying penalties, support vector machines, and permanental classification. Unsupervised MLMs included sparse principal components analysis and sparse graphical models. Entropy-based components analyses were also used to mine these data. None of the investigators fully capitalized on the genetic information provided by the complete pedigrees. Their approaches either corrected for the nonindependence of the individuals within the pedigrees or analyzed only those who were independent. Some methods allowed for covariate adjustment, whereas others did not. We evaluated these methods using a variety of metrics. Four contributors conducted primary analyses on the real data, and the other two research groups used the simulated data with and without knowledge of the underlying simulation model. One group used the answers to the simulated data to assess power and type I errors. Although the MLMs applied were substantially different, each research group concluded that MLMs have advantages over standard statistical approaches with these high-dimensional data. © 2014 WILEY PERIODICALS, INC.

  13. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

    PubMed Central

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308

  14. Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR.

    PubMed

    MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali

    2017-01-01

    Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.

  15. A Tri-Part Model for Genetics Literacy: Exploring Undergraduate Student Reasoning about Authentic Genetics Dilemmas

    ERIC Educational Resources Information Center

    Shea, Nicole A.; Duncan, Ravit Golan; Stephenson, Celeste

    2015-01-01

    Genetics literacy is becoming increasingly important as advancements in our application of genetic technologies such as stem cell research, cloning, and genetic screening become more prevalent. Very few studies examine how genetics literacy is applied when reasoning about authentic genetic dilemmas. However, there is evidence that situational…

  16. Developmental regulation of DNA replication timing at the human beta globin locus.

    PubMed

    Simon, I; Tenzen, T; Mostoslavsky, R; Fibach, E; Lande, L; Milot, E; Gribnau, J; Grosveld, F; Fraser, P; Cedar, H

    2001-11-01

    The human beta globin locus replicates late in most cell types, but becomes early replicating in erythroid cells. Using FISH to map DNA replication timing around the endogenous beta globin locus and by applying a genetic approach in transgenic mice, we have demonstrated that both the late and early replication states are controlled by regulatory elements within the locus control region. These results also show that the pattern of replication timing is set up by mechanisms that work independently of gene transcription.

  17. Pitfalls of the Geographic Population Structure (GPS) Approach Applied to Human Genetic History: A Case Study of Ashkenazi Jews.

    PubMed

    Flegontov, Pavel; Kassian, Alexei; Thomas, Mark G; Fedchenko, Valentina; Changmai, Piya; Starostin, George

    2016-08-16

    In a recent interdisciplinary study, Das et al. have attempted to trace the homeland of Ashkenazi Jews and of their historical language, Yiddish (Das et al. 2016 Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biol Evol. 8:1132-1149). Das et al. applied the geographic population structure (GPS) method to autosomal genotyping data and inferred geographic coordinates of populations supposedly ancestral to Ashkenazi Jews, placing them in Eastern Turkey. They argued that this unexpected genetic result goes against the widely accepted notion of Ashkenazi origin in the Levant, and speculated that Yiddish was originally a Slavic language strongly influenced by Iranian and Turkic languages, and later remodeled completely under Germanic influence. In our view, there are major conceptual problems with both the genetic and linguistic parts of the work. We argue that GPS is a provenancing tool suited to inferring the geographic region where a modern and recently unadmixed genome is most likely to arise, but is hardly suitable for admixed populations and for tracing ancestry up to 1,000 years before present, as its authors have previously claimed. Moreover, all methods of historical linguistics concur that Yiddish is a Germanic language, with no reliable evidence for Slavic, Iranian, or Turkic substrata. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs

    NASA Astrophysics Data System (ADS)

    Schalkoff, Robert J.; Shaaban, Khaled M.

    1999-07-01

    Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.

  19. Self-fertilization is the main sexual reproduction mechanism in native wine yeast populations.

    PubMed

    Cubillos, Francisco A; Vásquez, Claudia; Faugeron, Sylvain; Ganga, Angélica; Martínez, Claudio

    2009-01-01

    Saccharomyces cerevisiae is a model eukaryotic organism for classical genetics and genomics, and yet its ecology is still largely unknown. In this work, a population genetic analysis was performed on five yeast populations isolated from wine-making areas with different enological practices using simple sequence repeats and restriction fragment length polymorphism of mitochondrial DNA as molecular markers on 292 strains. In accordance with other studies, genome size estimation suggests that native S. cerevisiae strains are mainly homothallic and diploids. Analysis of mtDNA data showed that yeast populations from nonindustrial areas have 40% higher genetic diversity than populations isolated from industrial areas, demonstrating that industrial enological practices are likely to affect native yeast populations negatively by reducing its biodiversity. On the other hand, genetic differentiation analysis based on their microsatellite showed no correlation between genetic and geographic distance and a nonsignificant value when a Mantel test was applied. Finally, in the five populations studied, positive inbreeding (F(is)) values from 0.4 to 0.75, a low but significant level of linkage disequilibrium and a high number of multilocus genotypes were detected. These results strongly advocate that sexual reproduction is frequent enough to erase clonal signature in natural populations and that self-fertilization is the main mating system.

  20. The conservation genetics juggling act: Integrating genetics and ecology, science and policy

    USGS Publications Warehouse

    Haig, Susan M.; Miller, Mark P.; Bellinger, Renee; Draheim, Hope M.; Mercer, Dacey; Mullins, Tom

    2016-01-01

    The field of conservation genetics, when properly implemented, is a constant juggling act integrating molecular genetics, ecology, and demography with applied aspects concerning managing declining species or implementing conservation laws and policies. This young field has grown substantially since the 1980’s following development of the polymerase chain reaction and now into the genomics era. Our lab has “grown up” with the field, having worked on these issues for over three decades. Our multi-disciplinary approach entails understanding the behavior and ecology of species as well as the underlying processes that contribute to genetic viability. Taking this holistic approach provides a comprehensive understanding of factors that influence species persistence and evolutionary potential while considering annual challenges that occur throughout their life cycle. As a federal lab, we are often addressing the needs of the U.S. Fish and Wildlife Service in their efforts to list, de-list or recover species. Nevertheless, there remains an overall communication gap between research geneticists and biologists who are charged with implementing their results. Therefore, we outline the need for a National Center for Small Population Biology to ameliorate this problem and provide organizations charged with making status decisions firmer ground from which to make their critical decisions. 

  1. Threshold matrix for digital halftoning by genetic algorithm optimization

    NASA Astrophysics Data System (ADS)

    Alander, Jarmo T.; Mantere, Timo J.; Pyylampi, Tero

    1998-10-01

    Digital halftoning is used both in low and high resolution high quality printing technologies. Our method is designed to be mainly used for low resolution ink jet marking machines to produce both gray tone and color images. The main problem with digital halftoning is pink noise caused by the human eye's visual transfer function. To compensate for this the random dot patterns used are optimized to contain more blue than pink noise. Several such dot pattern generator threshold matrices have been created automatically by using genetic algorithm optimization, a non-deterministic global optimization method imitating natural evolution and genetics. A hybrid of genetic algorithm with a search method based on local backtracking was developed together with several fitness functions evaluating dot patterns for rectangular grids. By modifying the fitness function, a family of dot generators results, each with its particular statistical features. Several versions of genetic algorithms, backtracking and fitness functions were tested to find a reasonable combination. The generated threshold matrices have been tested by simulating a set of test images using the Khoros image processing system. Even though the work was focused on developing low resolution marking technology, the resulting family of dot generators can be applied also in other halftoning application areas including high resolution printing technology.

  2. How Genetics Might Affect Real Property Rights: Currents in Contemporary Bioethics.

    PubMed

    Rothstein, Mark A; Rothstein, Laura

    2016-03-01

    New developments in genetics could affect a variety of real property rights. Mortgage lenders, mortgage insurers, real estate sellers, senior living centers, retirement communities, or other parties in residential real estate transactions begin requiring predictive genetic information as part of the application process. One likely use would be by retirement communities to learn an individual's genetic risk for Alzheimer's disease. The federal Fair Housing Act prohibits discrimination based on disability, but it is not clear that it would apply to genetic risk assessments. Only California law explicitly applies to this situation and there have been no reported cases. © 2016 American Society of Law, Medicine & Ethics.

  3. The population genetics of mutations: good, bad and indifferent

    PubMed Central

    Loewe, Laurence; Hill, William G.

    2010-01-01

    Population genetics is fundamental to our understanding of evolution, and mutations are essential raw materials for evolution. In this introduction to more detailed papers that follow, we aim to provide an oversight of the field. We review current knowledge on mutation rates and their harmful and beneficial effects on fitness and then consider theories that predict the fate of individual mutations or the consequences of mutation accumulation for quantitative traits. Many advances in the past built on models that treat the evolution of mutations at each DNA site independently, neglecting linkage of sites on chromosomes and interactions of effects between sites (epistasis). We review work that addresses these limitations, to predict how mutations interfere with each other. An understanding of the population genetics of mutations of individual loci and of traits affected by many loci helps in addressing many fundamental and applied questions: for example, how do organisms adapt to changing environments, how did sex evolve, which DNA sequences are medically important, why do we age, which genetic processes can generate new species or drive endangered species to extinction, and how should policy on levels of potentially harmful mutagens introduced into the environment by humans be determined? PMID:20308090

  4. Inferring the Mode of Selection from the Transient Response to Demographic Perturbations

    NASA Astrophysics Data System (ADS)

    Balick, Daniel; Do, Ron; Reich, David; Sunyaev, Shamil

    2014-03-01

    Despite substantial recent progress in theoretical population genetics, most models work under the assumption of a constant population size. Deviations from fixed population sizes are ubiquitous in natural populations, many of which experience population bottlenecks and re-expansions. The non-equilibrium dynamics introduced by a large perturbation in population size are generally viewed as a confounding factor. In the present work, we take advantage of the transient response to a population bottleneck to infer features of the mode of selection and the distribution of selective effects. We develop an analytic framework and a corresponding statistical test that qualitatively differentiates between alleles under additive and those under recessive or more general epistatic selection. This statistic can be used to bound the joint distribution of selective effects and dominance effects in any diploid sexual organism. We apply this technique to human population genetic data, and severely restrict the space of allowed selective coefficients in humans. Additionally, one can test a set of functionally or medically relevant alleles for the primary mode of selection, or determine the local regional variation in dominance coefficients along the genome.

  5. Evaluation of inbreeding in laying hens by applying optimum genetic contribution and gene flow theory.

    PubMed

    König, S; Tsehay, F; Sitzenstock, F; von Borstel, U U; Schmutz, M; Preisinger, R; Simianer, H

    2010-04-01

    Due to consistent increases of inbreeding of on average 0.95% per generation in layer populations, selection tools should consider both genetic gain and genetic relationships in the long term. The optimum genetic contribution theory using official estimated breeding values for egg production was applied for 3 different lines of a layer breeding program to find the optimal allocations of hens and sires. Constraints in different scenarios encompassed restrictions related to additive genetic relationships, the increase of inbreeding, the number of selected sires and hens, and the number of selected offspring per mating. All these constraints enabled higher genetic gain up to 10.9% at the same level of additive genetic relationships or in lower relationships at the same gain when compared with conventional selection schemes ignoring relationships. Increases of inbreeding and genetic gain were associated with the number of selected sires. For the lowest level of the allowed average relationship at 10%, the optimal number of sires was 70 and the estimated breeding value for egg production of the selected group was 127.9. At the highest relationship constraint (16%), the optimal number of sires decreased to 15, and the average genetic value increased to 139.7. Contributions from selected sires and hens were used to develop specific mating plans to minimize inbreeding in the following generation by applying a simulated annealing algorithm. The additional reduction of average additive genetic relationships for matings was up to 44.9%. An innovative deterministic approach to estimate kinship coefficients between and within defined selection groups based on gene flow theory was applied to compare increases of inbreeding from random matings with layer populations undergoing selection. Large differences in rates of inbreeding were found, and they underline the necessity to establish selection tools controlling long-term relationships. Furthermore, it was suggested to use optimum genetic contribution theory for conservation schemes or, for example, the experimental line in our study.

  6. Genetic and environmental influences on individual differences in emotion regulation and its relation to working memory in toddlerhood.

    PubMed

    Wang, Manjie; Saudino, Kimberly J

    2013-12-01

    This is the first study to explore genetic and environmental contributions to individual differences in emotion regulation in toddlers, and the first to examine the genetic and environmental etiology underlying the association between emotion regulation and working memory. In a sample of 304 same-sex twin pairs (140 MZ, 164 DZ) at age 3, emotion regulation was assessed using the Behavior Rating Scale of the Bayley Scales of Infant Development (BRS; Bayley, 1993), and working memory was measured by the visually cued recall (VCR) task (Zelazo, Jacques, Burack, & Frye, 2002) and several memory tasks from the Mental Scale of the BSID. Based on model-fitting analyses, both emotion regulation and working memory were significantly influenced by genetic and nonshared environmental factors. Shared environmental effects were significant for working memory, but not for emotion regulation. Only genetic factors significantly contributed to the covariation between emotion regulation and working memory.

  7. Genetic and Environmental Influences on Individual Differences in Emotion Regulation and Its Relation to Working Memory in Toddlerhood

    PubMed Central

    Wang, Manjie; Saudino, Kimberly J.

    2014-01-01

    This is the first study to explore genetic and environmental contributions to individual differences in emotion regulation in toddlers, and the first to examine the genetic and environmental etiology underlying the association between emotion regulation and working memory. In a sample of 304 same-sex twin pairs (140 MZ, 164 DZ) at age 3, emotion regulation was assessed using the Behavior Rating Scale of the Bayley Scales of Infant Development (BRS; Bayley, 1993), and working memory was measured by the visually cued recall (VCR) task (Zelazo et al., 2002) and several memory tasks from the Mental Scale of BSID. Based on model-fitting analyses, both emotion regulation and working memory were significantly influenced by genetic and nonshared environmental factors. Shared environmental effects were significant for working memory, but not for emotion regulation. Only genetic factors significantly contributed to the covariation between emotion regulation and working memory. PMID:24098922

  8. Working Memory and Parent-Rated Components of Attention in Middle Childhood: A Behavioral Genetic Study

    PubMed Central

    Deater-Deckard, Kirby; Cutting, Laurie; Thompson, Lee A.; Petrill, Stephen A.

    2012-01-01

    The purpose of the current study was to investigate potential genetic and environmental correlations between working memory and three behavioral aspects of the attention network (i.e., executive, alerting, and orienting) using a twin design. Data were from 90 monozygotic (39% male) and 112 same-sex dizygotic (41% male) twins. Individual differences in working memory performance (digit span) and parent-rated measures of executive, alerting, and orienting attention included modest to moderate genetic variance, modest shared environmental variance, and modest to moderate nonshared environmental variance. As hypothesized, working memory performance was correlated with executive and alerting attention, but not orienting attention. The correlation between working memory, executive attention, and alerting attention was completely accounted for by overlapping genetic covariance, suggesting a common genetic mechanism or mechanisms underlying the links between working memory and certain parent-rated indicators of attentive behavior. PMID:21948215

  9. ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide☆☆☆★

    PubMed Central

    Thompson, Paul M.; Andreassen, Ole A.; Arias-Vasquez, Alejandro; Bearden, Carrie E.; Boedhoe, Premika S.; Brouwer, Rachel M.; Buckner, Randy L.; Buitelaar, Jan K.; Bulayeva, Kazima B.; Cannon, Dara M.; Cohen, Ronald A.; Conrod, Patricia J.; Dale, Anders M.; Deary, Ian J.; Dennis, Emily L.; de Reus, Marcel A.; Desrivieres, Sylvane; Dima, Danai; Donohoe, Gary; Fisher, Simon E.; Fouche, Jean-Paul; Francks, Clyde; Frangou, Sophia; Franke, Barbara; Ganjgahi, Habib; Garavan, Hugh; Glahn, David C.; Grabe, Hans J.; Guadalupe, Tulio; Gutman, Boris A.; Hashimoto, Ryota; Hibar, Derrek P.; Holland, Dominic; Hoogman, Martine; Pol, Hilleke E. Hulshoff; Hosten, Norbert; Jahanshad, Neda; Kelly, Sinead; Kochunov, Peter; Kremen, William S.; Lee, Phil H.; Mackey, Scott; Martin, Nicholas G.; Mazoyer, Bernard; McDonald, Colm; Medland, Sarah E.; Morey, Rajendra A.; Nichols, Thomas E.; Paus, Tomas; Pausova, Zdenka; Schmaal, Lianne; Schumann, Gunter; Shen, Li; Sisodiya, Sanjay M.; Smit, Dirk J.A.; Smoller, Jordan W.; Stein, Dan J.; Stein, Jason L.; Toro, Roberto; Turner, Jessica A.; van den Heuvel, Martijn P.; van den Heuvel, Odile L.; van Erp, Theo G.M.; van Rooij, Daan; Veltman, Dick J.; Walter, Henrik; Wang, Yalin; Wardlaw, Joanna M.; Whelan, Christopher D.; Wright, Margaret J.; Ye, Jieping

    2016-01-01

    In this review, we discuss recent work by the ENIGMA Consortium (http://enigma.ini.usc.edu) – a global alliance of over 500 scientists spread across 200 institutions in 35 countries collectively analyzing brain imaging, clinical, and genetic data. Initially formed to detect genetic influences on brain measures, ENIGMA has grown to over 30 working groups studying 12 major brain diseases by pooling and comparing brain data. In some of the largest neuroimaging studies to date – of schizophrenia and major depression – ENIGMA has found replicable disease effects on the brain that are consistent worldwide, as well as factors that modulate disease effects. In partnership with other consortia including ADNI, CHARGE, IMAGEN and others1, ENIGMA's genomic screens – now numbering over 30,000 MRI scans – have revealed at least 8 genetic loci that affect brain volumes. Downstream of gene findings, ENIGMA has revealed how these individual variants – and genetic variants in general – may affect both the brain and risk for a range of diseases. The ENIGMA consortium is discovering factors that consistently affect brain structure and function that will serve as future predictors linking individual brain scans and genomic data. It is generating vast pools of normative data on brain measures – from tens of thousands of people – that may help detect deviations from normal development or aging in specific groups of subjects. We discuss challenges and opportunities in applying these predictors to individual subjects and new cohorts, as well as lessons we have learned in ENIGMA's efforts so far. PMID:26658930

  10. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    PubMed

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.

  11. Genetic testing and genetic counseling in patients with sudden death risk due to heritable arrhythmias.

    PubMed

    Spoonamore, Katherine G; Ware, Stephanie M

    2016-03-01

    Sudden cardiac death due to heritable ventricular arrhythmias is an important cause of mortality, especially in young healthy individuals. The identification of the genetic basis of Mendelian diseases associated with arrhythmia has allowed the integration of this information into the diagnosis and clinical management of patients and at-risk family members. The rapid expansion of genetic testing options and the increasing complexity involved in the interpretation of results creates unique opportunities and challenges. There is a need for competency to incorporate genetics into clinical management and to provide appropriate family-based risk assessment and information. In addition, disease-specific genetic knowledge is required to order and correctly interpret and apply genetic testing results. Importantly, genetic diagnosis has a critical role in the risk stratification and clinical management of family members. This review summarizes the approach to genetic counseling and genetic testing for inherited arrhythmias and highlights specific genetic principles that apply to long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  12. Hereditary arrhythmias and cardiomyopathies: decision-making about genetic testing.

    PubMed

    Louis, Clauden; Calamaro, Emily; Vinocur, Jeffrey M

    2018-01-01

    The modern field of clinical genetics has advanced beyond the traditional teachings familiar to most practicing cardiologists. Increased understanding of the roles of genetic testing may improve uptake and appropriateness of use. Clinical genetics has become integral to the management of patients with hereditary arrhythmia and cardiomyopathy diagnoses. Depending on the condition, genetic testing may be useful for diagnosis, prognosis, treatment, family screening, and reproductive planning. However, genetic testing is a powerful tool with potential for underuse, overuse, and misuse. In the absence of a substantial body of literature on how these guidelines are applied in clinical practice, we use a case-based approach to highlight key lessons and pitfalls. Importantly, in many scenarios genetic testing has become the standard of care supported by numerous class I recommendations; genetic counselors can improve accessibility to and appropriate use and application of testing. Optimal management of hereditary arrhythmias and cardiomyopathies incorporates genetic testing, applied as per consensus guidelines, with involvement of a multidisciplinary team.

  13. A Solution Method of Job-shop Scheduling Problems by the Idle Time Shortening Type Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ida, Kenichi; Osawa, Akira

    In this paper, we propose a new idle time shortening method for Job-shop scheduling problems (JSPs). We insert its method into a genetic algorithm (GA). The purpose of JSP is to find a schedule with the minimum makespan. We suppose that it is effective to reduce idle time of a machine in order to improve the makespan. The left shift is a famous algorithm in existing algorithms for shortening idle time. The left shift can not arrange the work to idle time. For that reason, some idle times are not shortened by the left shift. We propose two kinds of algorithms which shorten such idle time. Next, we combine these algorithms and the reversal of a schedule. We apply GA with its algorithm to benchmark problems and we show its effectiveness.

  14. Improving the efficiency of a user-driven learning system with reconfigurable hardware. Application to DNA splicing.

    PubMed

    Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M

    1999-01-01

    This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.

  15. Research Associate | Center for Cancer Research

    Cancer.gov

    The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.

  16. Optimization of gear ratio and power distribution for a multimotor powertrain of an electric vehicle

    NASA Astrophysics Data System (ADS)

    Urbina Coronado, Pedro Daniel; Orta Castañón, Pedro; Ahuett-Garza, Horacio

    2018-02-01

    The architecture and design of the propulsion system of electric vehicles are highly important for the reduction of energy losses. This work presents a powertrain composed of four electric motors in which each motor is connected with a different gear ratio to the differential of the rear axle. A strategy to reduce energy losses is proposed, in which two phases are applied. Phase 1 uses a divide-and-conquer approach to increase the overall output efficiency by obtaining the optimal torque distribution for the electric motors. Phase 2 applies a genetic algorithm to find the optimal value of the gear ratios, in which each individual of each generation applies Phase 1. The results show an optimized efficiency map for the output torque and speed of the powertrain. The increase in efficiency and the reduction of energy losses are validated by the use of numerical experiments in various driving cycles.

  17. Recent molecular genetic studies and methodological issues in suicide research.

    PubMed

    Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay

    2011-06-01

    Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes interacting with non-genetic factors. A better understanding of the SB genes by combining whole genome approaches with case-control association studies, may potentially lead to developing effective screening, prevention, and management of SB. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. "It's challenging on a personal level"--exploring the 'lived experience' of Australian and Canadian prenatal genetic counselors.

    PubMed

    Menezes, Melody A; Hodgson, Jan M; Sahhar, Margaret A; Aitken, Maryanne; Metcalfe, Sylvia A

    2010-12-01

    Prenatal genetic counselors work with clients who are at risk of having a child with a fetal anomaly, or who have been diagnosed with a fetal anomaly. This can raise challenging ethical, moral and legal issues for both clients and counselors. Few studies have explored whether this type of work impacts on genetic counselors themselves. Interviews were conducted with 15 prenatal genetic counselors, five from Toronto, Canada and ten from Melbourne, Australia. A qualitative approach was used to allow for an in-depth exploration of the experiences of genetic counselors working in the prenatal setting. While participants reported that working in a prenatal setting affected them in several ways, this paper focuses on one particular unanticipated finding--that of the impact experienced by counselors from both countries while working when pregnant.

  19. Methane producing bacteria: Immunological characterization: Progress report, April 1, 1984--June 30, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway de Macario, E.; Macario, A.J.L.; Wolin, M.J.

    1988-01-01

    A major contribution of this research has been a significant advance of the immunology of methanogens and other archaebacteria (e.g., extreme halophiles). The foundations have been laid to begin the immunologic study of microbes which are non-methanogens themselves but are important for the fermentation process. This work helped to make clear that bacterial immunology goes beyond the study of pathogens for man, animals, or plants. Immunology can be applied successfully to the study of isolates of importance to understand evolution, phylogeny, ecology, bio-conversion systems, and to advance methanogenic biotechnology. Immunology holds considerable potential to aid in genetic and genetic engineeringmore » manipulations as well as in in situ handling of microbes relevant to methanogenesis. Thus, antibodies can help in the discovery of useful microbes, the generation of improved stains, the selection of desirable microorganisms, and in the monitoring and controlling of bioreactors. Immunogolic work in this new field should generate knowledge and devices relevant to areas such as Biological Energy Research, Ecology of Microorganisms, and Environmental (Sanitary) Engineering. In this regard, this work has contributed a comprehensive antiserum bank, a large panel of calibrated polyclonal antibody probes, and techniques for producing and utilizing these probes in the study of methanogens and related bacteria. 67 refs.« less

  20. Applying a Genetic Algorithm to Reconfigurable Hardware

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  1. Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank

    PubMed Central

    2012-01-01

    Background The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on a large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypotheses generation. Results In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and Hypothyroidism to discover gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. Conclusions This study demonstrates how Semantic Web technologies can be applied in conjunction with clinical data stored in EHRs to accurately identify subjects with specific diseases and phenotypes, and identify genotype-phenotype associations. PMID:23244446

  2. Integrating population genetics and conservation biology in the era of genomics.

    PubMed

    Ouborg, N Joop

    2010-02-23

    As one of the final activities of the ESF-CONGEN Networking programme, a conference entitled 'Integrating Population Genetics and Conservation Biology' was held at Trondheim, Norway, from 23 to 26 May 2009. Conference speakers and poster presenters gave a display of the state-of-the-art developments in the field of conservation genetics. Over the five-year running period of the successful ESF-CONGEN Networking programme, much progress has been made in theoretical approaches, basic research on inbreeding depression and other genetic processes associated with habitat fragmentation and conservation issues, and with applying principles of conservation genetics in the conservation of many species. Future perspectives were also discussed in the conference, and it was concluded that conservation genetics is evolving into conservation genomics, while at the same time basic and applied research on threatened species and populations from a population genetic point of view continues to be emphasized.

  3. Microsatellite data analysis for population genetics

    USDA-ARS?s Scientific Manuscript database

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  4. Development of a Streamlined Work Flow for Handling Patients' Genetic Testing Insurance Authorizations.

    PubMed

    Uhlmann, Wendy R; Schwalm, Katie; Raymond, Victoria M

    2017-08-01

    Obtaining genetic testing insurance authorizations for patients is a complex, time-involved process often requiring genetic counselor (GC) and physician involvement. In an effort to mitigate this complexity and meet the increasing number of genetic testing insurance authorization requests, GCs formed a novel partnership with an industrial engineer (IE) and a patient services associate (PSA) to develop a streamlined work flow. Eight genetics clinics and five specialty clinics at the University of Michigan were surveyed to obtain benchmarking data. Tasks needed for genetic testing insurance authorization were outlined and time-saving work flow changes were introduced including 1) creation of an Excel password-protected shared database between GCs and PSAs, used for initiating insurance authorization requests, tracking and follow-up 2) instituting the PSAs sending GCs a pre-clinic email noting each patients' genetic testing insurance coverage 3) inclusion of test medical necessity documentation in the clinic visit summary note instead of writing a separate insurance letter and 4) PSAs development of a manual with insurance providers and genetic testing laboratories information. These work flow changes made it more efficient to request and track genetic testing insurance authorizations for patients, enhanced GCs and PSAs communication, and reduced tasks done by clinicians.

  5. Genetic Engineering and the Amelioration of Genetic Defect

    ERIC Educational Resources Information Center

    Lederberg, Joshua

    1970-01-01

    Discusses the claims for a brave new world of genetic manipulation" and concludes that if we could agree upon applying genetic (or any other effective) remedies to global problems we probably would need no rescourse to them. Suggests that effective methods of preventing genetic disease are prevention of mutations and detection and…

  6. Epileptic Encephalopathy in Childhood: A Stepwise Approach for Identification of Underlying Genetic Causes.

    PubMed

    Patel, Jaina; Mercimek-Mahmutoglu, Saadet

    2016-10-01

    Epilepsy is one of the most common neurological disorders in childhood. Epilepsy associated with global developmental delay and cognitive dysfunction is defined as epileptic encephalopathy. Certain inherited metabolic disorders presenting with epileptic encephalopathy can be treated with disease specific diet, vitamin, amino acid or cofactor supplementations. In those disorders, disease specific therapy is successful to achieve good seizure control and improve long-term neurodevelopmental outcome. For this reason, intractable epilepsy with global developmental delay or history of developmental regression warrants detailed metabolic investigations for the possibility of an underlying treatable inherited metabolic disorder, which should be undertaken as first line investigations. An underlying genetic etiology in epileptic encephalopathy has been supported by recent studies such as array comparative genomic hybridization, targeted next generation sequencing panels, whole exome and whole genome sequencing. These studies report a diagnostic yield up to 70%, depending on the applied genetic testing as well as number of patients enrolled. In patients with epileptic encephalopathy, a stepwise approach for diagnostic work-up will help to diagnose treatable inherited metabolic disorders quickly. Application of detailed genetic investigations such as targeted next generation sequencing as second line and whole exome sequencing as third line testing will diagnose underlying genetic disease which will help for genetic counseling as well as guide for prenatal diagnosis. Knowledge of underlying genetic cause will provide novel insights into the pathogenesis of epileptic encephalopathy and pave the ground towards the development of targeted neuroprotective treatment strategies to improve the health outcome of children with epileptic encephalopathy.

  7. Competences, education and support for new roles in cancer genetics services: outcomes from the cancer genetics pilot projects.

    PubMed

    Bennett, Catherine; Burton, Hilary; Farndon, Peter

    2007-01-01

    In 2004 the Department of Health in collaboration with Macmillan Cancer Support set up service development projects to pilot the integration of genetics in mainstream medicine in the area of cancer genetics.In developing these services, new roles and responsibilities were devised that required supporting programmes of education and training. The NHS National Genetics Education and Development Centre has worked with the projects to draw together their experience in these aspects. New roles include the Cancer Family Nurse Specialist, in which a nurse working in a cancer setting was trained to identify and manage genetic or family history concerns, and the Genetic Risk Assessment Practitioner--a small team of practitioners working within a secondary care setting to deliver a standardised risk assessment pathway. Existing roles were also adapted for a different setting, in particular the use of genetic counsellors working in a community ethnic minority setting. These practitioners undertook a range of clinical activities that can be mapped directly to the 'UK National Workforce Competences for Genetics in Clinical Practice for Non-genetics Healthcare Staff' framework developed by Skills for Health and the NHS National Genetics Education and Development Centre (2007; draft competence framework). The main differences between the various roles were in the ordering of genetic tests and the provision of advice on invasive preventive options such as mastectomy. Those involved in service development also needed to develop competences in project management, business skills, audit and evaluation, working with users, general management (personnel, multi-agency work and marketing), educational supervision, IT, public and professional outreach, and research. Important resources to support the development of new roles and competences included pathways and guidelines, a formal statement of competences, a recognised syllabus, appropriate and timely courses, the availability of a mentor, supervision and opportunities to discuss cases, a formal assessment of learning and continuing support from specialist genetics services. This represents a current resource gap that will be of concern to cancer networks and a challenge to providers of educational resources and regional genetics services.

  8. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2014-12-01

    Award Number: W81XWH-11-2-0226 TITLE: Integrative Lifecourse and Genetic Analysis of Military Working Dogs PRINCIPAL INVESTIGATOR: Kun Huang...Integrative Lifecourse and Genetic Analysis of Military Working Dogs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0226 5c. PROGRAM ELEMENT NUMBER...of the military working dog population. There are several critical aspects to meeting the aims of this proposal. 1) development of data driven

  9. Statistics for Learning Genetics

    ERIC Educational Resources Information Center

    Charles, Abigail Sheena

    2012-01-01

    This study investigated the knowledge and skills that biology students may need to help them understand statistics/mathematics as it applies to genetics. The data are based on analyses of current representative genetics texts, practicing genetics professors' perspectives, and more directly, students' perceptions of, and performance in, doing…

  10. Harnessing quantitative genetics and genomics for understanding and improving complex traits in crops

    USDA-ARS?s Scientific Manuscript database

    Classical quantitative genetics aids crop improvement by providing the means to estimate heritability, genetic correlations, and predicted responses to various selection schemes. Genomics has the potential to aid quantitative genetics and applied crop improvement programs via large-scale, high-thro...

  11. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers.

    PubMed

    Roman, Fabiola; das Chagas Xavier, Samanta; Messenger, Louisa A; Pavan, Márcio G; Miles, Michael A; Jansen, Ana María; Yeo, Matthew

    2018-05-01

    Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.

  12. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers

    PubMed Central

    das Chagas Xavier, Samanta; Messenger, Louisa A.; Pavan, Márcio G.; Miles, Michael A.; Jansen, Ana María; Yeo, Matthew

    2018-01-01

    Background Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. Methodology/Principal findings In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. Conclusions/Significance The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species. PMID:29782493

  13. Understanding invasion history and predicting invasive niches using genetic sequencing technology in Australia: case studies from Cucurbitaceae and Boraginaceae.

    PubMed

    Shaik, Razia S; Zhu, Xiaocheng; Clements, David R; Weston, Leslie A

    2016-01-01

    Part of the challenge in dealing with invasive plant species is that they seldom represent a uniform, static entity. Often, an accurate understanding of the history of plant introduction and knowledge of the real levels of genetic diversity present in species and populations of importance is lacking. Currently, the role of genetic diversity in promoting the successful establishment of invasive plants is not well defined. Genetic profiling of invasive plants should enhance our understanding of the dynamics of colonization in the invaded range. Recent advances in DNA sequencing technology have greatly facilitated the rapid and complete assessment of plant population genetics. Here, we apply our current understanding of the genetics and ecophysiology of plant invasions to recent work on Australian plant invaders from the Cucurbitaceae and Boraginaceae. The Cucurbitaceae study showed that both prickly paddy melon ( Cucumis myriocarpus ) and camel melon ( Citrullus lanatus ) were represented by only a single genotype in Australia, implying that each was probably introduced as a single introduction event. In contrast, a third invasive melon, Citrullus colocynthis , possessed a moderate level of genetic diversity in Australia and was potentially introduced to the continent at least twice. The Boraginaceae study demonstrated the value of comparing two similar congeneric species; one, Echium plantagineum , is highly invasive and genetically diverse, whereas the other, Echium vulgare , exhibits less genetic diversity and occupies a more limited ecological niche. Sequence analysis provided precise identification of invasive plant species, as well as information on genetic diversity and phylogeographic history. Improved sequencing technologies will continue to allow greater resolution of genetic relationships among invasive plant populations, thereby potentially improving our ability to predict the impact of these relationships upon future spread and better manage invaders possessing potentially diverse biotypes and exhibiting diverse breeding systems, life histories and invasion histories.

  14. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    PubMed

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  15. Safe genetically engineered plants

    NASA Astrophysics Data System (ADS)

    Rosellini, D.; Veronesi, F.

    2007-10-01

    The application of genetic engineering to plants has provided genetically modified plants (GMPs, or transgenic plants) that are cultivated worldwide on increasing areas. The most widespread GMPs are herbicide-resistant soybean and canola and insect-resistant corn and cotton. New GMPs that produce vaccines, pharmaceutical or industrial proteins, and fortified food are approaching the market. The techniques employed to introduce foreign genes into plants allow a quite good degree of predictability of the results, and their genome is minimally modified. However, some aspects of GMPs have raised concern: (a) control of the insertion site of the introduced DNA sequences into the plant genome and of its mutagenic effect; (b) presence of selectable marker genes conferring resistance to an antibiotic or an herbicide, linked to the useful gene; (c) insertion of undesired bacterial plasmid sequences; and (d) gene flow from transgenic plants to non-transgenic crops or wild plants. In response to public concerns, genetic engineering techniques are continuously being improved. Techniques to direct foreign gene integration into chosen genomic sites, to avoid the use of selectable genes or to remove them from the cultivated plants, to reduce the transfer of undesired bacterial sequences, and make use of alternative, safer selectable genes, are all fields of active research. In our laboratory, some of these new techniques are applied to alfalfa, an important forage plant. These emerging methods for plant genetic engineering are briefly reviewed in this work.

  16. Comparison of Genetic Algorithm and Hill Climbing for Shortest Path Optimization Mapping

    NASA Astrophysics Data System (ADS)

    Fronita, Mona; Gernowo, Rahmat; Gunawan, Vincencius

    2018-02-01

    Traveling Salesman Problem (TSP) is an optimization to find the shortest path to reach several destinations in one trip without passing through the same city and back again to the early departure city, the process is applied to the delivery systems. This comparison is done using two methods, namely optimization genetic algorithm and hill climbing. Hill Climbing works by directly selecting a new path that is exchanged with the neighbour's to get the track distance smaller than the previous track, without testing. Genetic algorithms depend on the input parameters, they are the number of population, the probability of crossover, mutation probability and the number of generations. To simplify the process of determining the shortest path supported by the development of software that uses the google map API. Tests carried out as much as 20 times with the number of city 8, 16, 24 and 32 to see which method is optimal in terms of distance and time computation. Based on experiments conducted with a number of cities 3, 4, 5 and 6 producing the same value and optimal distance for the genetic algorithm and hill climbing, the value of this distance begins to differ with the number of city 7. The overall results shows that these tests, hill climbing are more optimal to number of small cities and the number of cities over 30 optimized using genetic algorithms.

  17. MULTI-OBJECTIVE OPTIMAL DESIGN OF GROUNDWATER REMEDIATION SYSTEMS: APPLICATION OF THE NICHED PARETO GENETIC ALGORITHM (NPGA). (R826614)

    EPA Science Inventory

    A multiobjective optimization algorithm is applied to a groundwater quality management problem involving remediation by pump-and-treat (PAT). The multiobjective optimization framework uses the niched Pareto genetic algorithm (NPGA) and is applied to simultaneously minimize the...

  18. Identifying Multimodal Intermediate Phenotypes between Genetic Risk Factors and Disease Status in Alzheimer’s Disease

    PubMed Central

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li

    2016-01-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  19. Bio-Inspired Genetic Algorithms with Formalized Crossover Operators for Robotic Applications.

    PubMed

    Zhang, Jie; Kang, Man; Li, Xiaojuan; Liu, Geng-Yang

    2017-01-01

    Genetic algorithms are widely adopted to solve optimization problems in robotic applications. In such safety-critical systems, it is vitally important to formally prove the correctness when genetic algorithms are applied. This paper focuses on formal modeling of crossover operations that are one of most important operations in genetic algorithms. Specially, we for the first time formalize crossover operations with higher-order logic based on HOL4 that is easy to be deployed with its user-friendly programing environment. With correctness-guaranteed formalized crossover operations, we can safely apply them in robotic applications. We implement our technique to solve a path planning problem using a genetic algorithm with our formalized crossover operations, and the results show the effectiveness of our technique.

  20. Probabilistic expert systems for forensic inference from DNA markers in horses: applications to confirm genealogies with lack of genetic data.

    PubMed

    Dobosz, Marina; Bocci, Chiara; Bonuglia, Margherita; Grasso, Cinzia; Merigioli, Sara; Russo, Alessandra; De Iuliis, Paolo

    2010-01-01

    Microsatellites have been used for parentage testing and individual identification in forensic science because they are highly polymorphic and show abundant sequences dispersed throughout most eukaryotic nuclear genomes. At present, genetic testing based on DNA technology is used for most domesticated animals, including horses, to confirm identity, to determine parentage, and to validate registration certificates. But if genetic data of one of the putative parents are missing, verifying a genealogy could be questionable. The aim of this paper is to illustrate a new approach to analyze complex cases of disputed relationship with microsatellites markers. These cases were solved by analyzing the genotypes of the offspring and other horses' genotypes in the pedigrees of the putative dam/sire with probabilistic expert systems (PESs). PES was especially efficient in supplying reliable, error-free Bayesian probabilities in complex cases with missing pedigree data. One of these systems was developed for forensic purposes (FINEX program) and is particularly valuable in human analyses. We applied this program to parentage analysis in horses, and we will illustrate how different cases have been successfully worked out.

  1. Automatic genetic optimization approach to two-dimensional blade profile design for steam turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trigg, M.A.; Tubby, G.R.; Sheard, A.G.

    1999-01-01

    In this paper a systematic approach to the optimization of two-dimensional blade profiles is presented. A genetic optimizer has been developed that modifies the blade profile and calculates its profile loss. This process is automatic, producing profile designs significantly faster and with significantly lower loss than has previously been possible. The optimizer developed uses a genetic algorithm to optimize a two-dimensional profile, defined using 17 parameters, for minimum loss with a given flow condition. The optimizer works with a population of two-dimensional profiles with varied parameters. A CFD mesh is generated for each profile, and the result is analyzed usingmore » a two-dimensional blade-to-blade solver, written for steady viscous compressible flow, to determine profile loss. The loss is used as the measure of a profile`s fitness. The optimizer uses this information to select the members of the next population, applying crossovers, mutations, and elitism in the process. Using this method, the optimizer tends toward the best values for the parameters defining the profile with minimum loss.« less

  2. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression.

    PubMed

    Nielsen, Alec A K; Segall-Shapiro, Thomas H; Voigt, Christopher A

    2013-12-01

    Cells use regulatory networks to perform computational operations to respond to their environment. Reliably manipulating such networks would be valuable for many applications in biotechnology; for example, in having genes turn on only under a defined set of conditions or implementing dynamic or temporal control of expression. Still, building such synthetic regulatory circuits remains one of the most difficult challenges in genetic engineering and as a result they have not found widespread application. Here, we review recent advances that address the key challenges in the forward design of genetic circuits. First, we look at new design concepts, including the construction of layered digital and analog circuits, and new approaches to control circuit response functions. Second, we review recent work to apply part mining and computational design to expand the number of regulators that can be used together within one cell. Finally, we describe new approaches to obtain precise gene expression and to reduce context dependence that will accelerate circuit design by more reliably balancing regulators while reducing toxicity. Copyright © 2013. Published by Elsevier Ltd.

  3. Inferring Demographic History Using Two-Locus Statistics.

    PubMed

    Ragsdale, Aaron P; Gutenkunst, Ryan N

    2017-06-01

    Population demographic history may be learned from contemporary genetic variation data. Methods based on aggregating the statistics of many single loci into an allele frequency spectrum (AFS) have proven powerful, but such methods ignore potentially informative patterns of linkage disequilibrium (LD) between neighboring loci. To leverage such patterns, we developed a composite-likelihood framework for inferring demographic history from aggregated statistics of pairs of loci. Using this framework, we show that two-locus statistics are more sensitive to demographic history than single-locus statistics such as the AFS. In particular, two-locus statistics escape the notorious confounding of depth and duration of a bottleneck, and they provide a means to estimate effective population size based on the recombination rather than mutation rate. We applied our approach to a Zambian population of Drosophila melanogaster Notably, using both single- and two-locus statistics, we inferred a substantially lower ancestral effective population size than previous works and did not infer a bottleneck history. Together, our results demonstrate the broad potential for two-locus statistics to enable powerful population genetic inference. Copyright © 2017 by the Genetics Society of America.

  4. Modeling the Ebolavirus Life Cycle with Transcription and Replication-Competent Viruslike Particle Assays.

    PubMed

    Biedenkopf, Nadine; Hoenen, Thomas

    2017-01-01

    Ebolaviruses are the causative agent of a severe hemorrhagic fever with high case fatality rates, for which no approved specific therapy is available. As biosafety level 4 (BSL4) agents, work with live ebolaviruses is restricted to maximum containment laboratories. Transcription and replication-competent viruslike particle (trVLP) systems are reverse genetics-based life cycle modeling systems that allow researchers to model virtually the entire ebolavirus life cycle outside of a maximum containment laboratory. These systems can be used to dissect the virus life cycle, and thus increase our understanding of virus biology, as well as for more applied uses such as the screening and development of novel antivirals, and thus represent powerful tools for work on ebolaviruses.

  5. Contribution of genetics to ecological restoration.

    PubMed

    Mijangos, Jose Luis; Pacioni, Carlo; Spencer, Peter B S; Craig, Michael D

    2015-01-01

    Ecological restoration of degraded ecosystems has emerged as a critical tool in the fight to reverse and ameliorate the current loss of biodiversity and ecosystem services. Approaches derived from different genetic disciplines are extending the theoretical and applied frameworks on which ecological restoration is based. We performed a search of scientific articles and identified 160 articles that employed a genetic approach within a restoration context to shed light on the links between genetics and restoration. These articles were then classified on whether they examined association between genetics and fitness or the application of genetics in demographic studies, and on the way the studies informed restoration practice. Although genetic research in restoration is rapidly growing, we found that studies could make better use of the extensive toolbox developed by applied fields in genetics. Overall, 41% of reviewed studies used genetic information to evaluate or monitor restoration, and 59% provided genetic information to guide prerestoration decision-making processes. Reviewed studies suggest that restoration practitioners often overlook the importance of including genetic aspects within their restoration goals. Even though there is a genetic basis influencing the provision of ecosystem services, few studies explored this relationship. We provide a view of research gaps, future directions and challenges in the genetics of restoration. © 2014 John Wiley & Sons Ltd.

  6. Perspectives on use and protection of genetic information in work settings: results of a preliminary study.

    PubMed

    Roberts, Laura Weiss; Geppert, Cynthia M A; Warner, Teddy D; Green Hammond, Katherine A; Rogers, Melinda; Smrcka, Julienne; Roberts, Brian B

    2005-04-01

    The societal use of genetic information raises ethical concerns, and the views of working persons regarding genetic information have received little attention. We performed an empirical project to characterize perspectives of 63 employees at two sites who expressed strong interest in learning about and protecting their personal genetic information. Genetic data were seen as more sensitive than other health data, and disclosure of genetic susceptibility was perceived as having negative consequences. This study suggests the value of exploring the perspectives of key stakeholders most directly affected by genetic applications across diverse societal settings.

  7. Medical genetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorde, L.B.; Carey, J.C.; White, R.L.

    This book on the subject of medical genetics is a textbook aimed at a very broad audience: principally, medical students, nursing students, graduate, and undergraduate students. The book is actually a primer of general genetics as applied to humans and provides a well-balanced introduction to the scientific and clinical basis of human genetics. The twelve chapters include: Introduction, Basic Cell Biology, Genetic Variation, Autosomal Dominant and Recessive Inheritance, Sex-linked and Mitochondrial Inheritance, Clinical Cytogenetics, Gene Mapping, Immunogenetics, Cancer Genetics, Multifactorial Inheritance and Common Disease, Genetic Screening, Genetic Diagnosis and Gene Therapy, and Clinical Genetics and Genetic Counseling.

  8. Work-Home Interference, Perceived Total Workload, and the Risk of Future Sickness Absence Due to Stress-Related Mental Diagnoses Among Women and Men: a Prospective Twin Study.

    PubMed

    Svedberg, Pia; Mather, Lisa; Bergström, Gunnar; Lindfors, Petra; Blom, Victoria

    2018-02-01

    Work-home interference has been proposed as an important explanation for sickness absence (SA). Previous studies show mixed results, have not accounted for familial factors (genetics and shared everyday environment), or investigated diagnosis specific SA. The aim was to study whether work-home interference and perceived total workload predict SA due to stress-related mental diagnoses, or SA due to other mental diagnoses, among women and men, when adjusting for various confounders and familial factors. This study included 11,916 twins, 19-47 years (49% women). Data on work-to-home and home-to-work conflicts, perceived total workload, and relevant confounders were derived from a 2005 survey, and national register data on SA spells until 2013 were obtained. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Discordant twin pair design was applied to adjust for familial factors. Each one unit increase in work-to-home and home-to-work conflicts, and perceived total workload was associated with higher odds for SA due to stress-related mental diagnoses and to SA due to other mental diagnoses among women, when adjusting for sociodemographic factors (ORs 1.15-1.31). Including health or familial factors, no associations remained. For men, each one unit increase in work-to-home conflicts was associated with higher odds for SA due to stress-related diagnoses (ORs 1.23-1.35), independently of confounders. Work-to-home conflict was independently associated with future SA due to stress-related diagnoses among men only. Health- and work-related factors seem to be important confounders when researching work-home interference, perceived total workload, and SA. Not including such confounders involves risking drawing incorrect conclusions. Further studies are needed to confirm sex differences and whether genetic factors are important for the associations studied.

  9. The Application of Structural Equation Modeling to Maternal Ratings of Twins' Behavior and Emotional Problems.

    ERIC Educational Resources Information Center

    Silberg, Judy L.; And Others

    1994-01-01

    Applied structural equation modeling to twin data to assess impact of genetic and environmental factors on children's behavioral and emotional functioning. Applied models to maternal ratings of behavior of 515 monozygotic and 749 dizygotic twin pairs. Importance of genetic, shared, and specific environmental factors for explaining variation was…

  10. Sparse models for correlative and integrative analysis of imaging and genetic data

    PubMed Central

    Lin, Dongdong; Cao, Hongbao; Calhoun, Vince D.

    2014-01-01

    The development of advanced medical imaging technologies and high-throughput genomic measurements has enhanced our ability to understand their interplay as well as their relationship with human behavior by integrating these two types of datasets. However, the high dimensionality and heterogeneity of these datasets presents a challenge to conventional statistical methods; there is a high demand for the development of both correlative and integrative analysis approaches. Here, we review our recent work on developing sparse representation based approaches to address this challenge. We show how sparse models are applied to the correlation and integration of imaging and genetic data for biomarker identification. We present examples on how these approaches are used for the detection of risk genes and classification of complex diseases such as schizophrenia. Finally, we discuss future directions on the integration of multiple imaging and genomic datasets including their interactions such as epistasis. PMID:25218561

  11. An optimization design for evacuation planning based on fuzzy credibility theory and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Zhang, W. Y.

    2017-08-01

    Evacuation planning is an important activity in disaster management. It has to be planned in advance due to the unpredictable occurrence of disasters. It is necessary that the evacuation plans are as close as possible to the real evacuation work. However, the evacuation plan is extremely challenging because of the inherent uncertainty of the required information. There is a kind of vehicle routing problem based on the public traffic evacuation. In this paper, the demand for each evacuation set point is a fuzzy number, and each routing selection of the point is based on the fuzzy credibility preference index. This paper proposes an approximate optimal solution for this problem by the genetic algorithm based on the fuzzy reliability theory. Finally, the algorithm is applied to an optimization model, and the experiment result shows that the algorithm is effective.

  12. Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study

    PubMed Central

    Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.

    2010-01-01

    Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597

  13. Representation matters: quantitative behavioral variation in wild worm strains

    NASA Astrophysics Data System (ADS)

    Brown, Andre

    Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.

  14. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros.

    PubMed

    Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N; Payne, Junaidi

    2013-02-01

    To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA(®) blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases.

  15. Unraveling the Neurobiology of Sleep and Sleep Disorders Using Drosophila.

    PubMed

    Chakravarti, L; Moscato, E H; Kayser, M S

    2017-01-01

    Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans. © 2017 Elsevier Inc. All rights reserved.

  16. A meta-learning system based on genetic algorithms

    NASA Astrophysics Data System (ADS)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  17. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF.

    PubMed

    Cong, Yingnan; Chan, Yao-Ban; Phillips, Charles A; Langston, Michael A; Ragan, Mark A

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k ) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k . Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k .

  18. Comparative Analysis of Soft Computing Models in Prediction of Bending Rigidity of Cotton Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Guruprasad, R.; Behera, B. K.

    2015-10-01

    Quantitative prediction of fabric mechanical properties is an essential requirement for design engineering of textile and apparel products. In this work, the possibility of prediction of bending rigidity of cotton woven fabrics has been explored with the application of Artificial Neural Network (ANN) and two hybrid methodologies, namely Neuro-genetic modeling and Adaptive Neuro-Fuzzy Inference System (ANFIS) modeling. For this purpose, a set of cotton woven grey fabrics was desized, scoured and relaxed. The fabrics were then conditioned and tested for bending properties. With the database thus created, a neural network model was first developed using back propagation as the learning algorithm. The second model was developed by applying a hybrid learning strategy, in which genetic algorithm was first used as a learning algorithm to optimize the number of neurons and connection weights of the neural network. The Genetic algorithm optimized network structure was further allowed to learn using back propagation algorithm. In the third model, an ANFIS modeling approach was attempted to map the input-output data. The prediction performances of the models were compared and a sensitivity analysis was reported. The results show that the prediction by neuro-genetic and ANFIS models were better in comparison with that of back propagation neural network model.

  19. How random is the random forest? Random forest algorithm on the service of structural imaging biomarkers for Alzheimer's disease: from Alzheimer's disease neuroimaging initiative (ADNI) database.

    PubMed

    Dimitriadis, Stavros I; Liparas, Dimitris

    2018-06-01

    Neuroinformatics is a fascinating research field that applies computational models and analytical tools to high dimensional experimental neuroscience data for a better understanding of how the brain functions or dysfunctions in brain diseases. Neuroinformaticians work in the intersection of neuroscience and informatics supporting the integration of various sub-disciplines (behavioural neuroscience, genetics, cognitive psychology, etc.) working on brain research. Neuroinformaticians are the pathway of information exchange between informaticians and clinicians for a better understanding of the outcome of computational models and the clinical interpretation of the analysis. Machine learning is one of the most significant computational developments in the last decade giving tools to neuroinformaticians and finally to radiologists and clinicians for an automatic and early diagnosis-prognosis of a brain disease. Random forest (RF) algorithm has been successfully applied to high-dimensional neuroimaging data for feature reduction and also has been applied to classify the clinical label of a subject using single or multi-modal neuroimaging datasets. Our aim was to review the studies where RF was applied to correctly predict the Alzheimer's disease (AD), the conversion from mild cognitive impairment (MCI) and its robustness to overfitting, outliers and handling of non-linear data. Finally, we described our RF-based model that gave us the 1 st position in an international challenge for automated prediction of MCI from MRI data.

  20. Study of parameter identification using hybrid neural-genetic algorithm in electro-hydraulic servo system

    NASA Astrophysics Data System (ADS)

    Moon, Byung-Young

    2005-12-01

    The hybrid neural-genetic multi-model parameter estimation algorithm was demonstrated. This method can be applied to structured system identification of electro-hydraulic servo system. This algorithms consist of a recurrent incremental credit assignment(ICRA) neural network and a genetic algorithm. The ICRA neural network evaluates each member of a generation of model and genetic algorithm produces new generation of model. To evaluate the proposed method, electro-hydraulic servo system was designed and manufactured. The experiment was carried out to figure out the hybrid neural-genetic multi-model parameter estimation algorithm. As a result, the dynamic characteristics were obtained such as the parameters(mass, damping coefficient, bulk modulus, spring coefficient), which minimize total square error. The result of this study can be applied to hydraulic systems in industrial fields.

  1. A toolkit for incorporating genetics into mainstream medical services: Learning from service development pilots in England

    PubMed Central

    2010-01-01

    Background As advances in genetics are becoming increasingly relevant to mainstream healthcare, a major challenge is to ensure that these are integrated appropriately into mainstream medical services. In 2003, the Department of Health for England announced the availability of start-up funding for ten 'Mainstreaming Genetics' pilot services to develop models to achieve this. Methods Multiple methods were used to explore the pilots' experiences of incorporating genetics which might inform the development of new services in the future. A workshop with project staff, an email questionnaire, interviews and a thematic analysis of pilot final reports were carried out. Results Seven themes relating to the integration of genetics into mainstream medical services were identified: planning services to incorporate genetics; the involvement of genetics departments; the establishment of roles incorporating genetic activities; identifying and involving stakeholders; the challenges of working across specialty boundaries; working with multiple healthcare organisations; and the importance of cultural awareness of genetic conditions. Pilots found that the planning phase often included the need to raise awareness of genetic conditions and services and that early consideration of organisational issues such as clinic location was essential. The formal involvement of genetics departments was crucial to success; benefits included provision of clinical and educational support for staff in new roles. Recruitment and retention for new roles outside usual career pathways sometimes proved difficult. Differences in specialties' working practices and working with multiple healthcare organisations also brought challenges such as the 'genetic approach' of working with families, incompatible record systems and different approaches to health professionals' autonomous practice. 'Practice points' have been collated into a Toolkit which includes resources from the pilots, including job descriptions and clinical tools. These can be customised for reuse by other services. Conclusions Healthcare services need to translate advances in genetics into benefits for patients. Consideration of the issues presented here when incorporating genetics into mainstream medical services will help ensure that new service developments build on the body of experience gained by the pilots, to provide high quality services for patients with or at risk of genetic conditions. PMID:20470377

  2. A toolkit for incorporating genetics into mainstream medical services: Learning from service development pilots in England.

    PubMed

    Bennett, Catherine L; Burke, Sarah E; Burton, Hilary; Farndon, Peter A

    2010-05-14

    As advances in genetics are becoming increasingly relevant to mainstream healthcare, a major challenge is to ensure that these are integrated appropriately into mainstream medical services. In 2003, the Department of Health for England announced the availability of start-up funding for ten 'Mainstreaming Genetics' pilot services to develop models to achieve this. Multiple methods were used to explore the pilots' experiences of incorporating genetics which might inform the development of new services in the future. A workshop with project staff, an email questionnaire, interviews and a thematic analysis of pilot final reports were carried out. Seven themes relating to the integration of genetics into mainstream medical services were identified: planning services to incorporate genetics; the involvement of genetics departments; the establishment of roles incorporating genetic activities; identifying and involving stakeholders; the challenges of working across specialty boundaries; working with multiple healthcare organisations; and the importance of cultural awareness of genetic conditions. Pilots found that the planning phase often included the need to raise awareness of genetic conditions and services and that early consideration of organisational issues such as clinic location was essential. The formal involvement of genetics departments was crucial to success; benefits included provision of clinical and educational support for staff in new roles. Recruitment and retention for new roles outside usual career pathways sometimes proved difficult. Differences in specialties' working practices and working with multiple healthcare organisations also brought challenges such as the 'genetic approach' of working with families, incompatible record systems and different approaches to health professionals' autonomous practice. 'Practice points' have been collated into a Toolkit which includes resources from the pilots, including job descriptions and clinical tools. These can be customised for reuse by other services. Healthcare services need to translate advances in genetics into benefits for patients. Consideration of the issues presented here when incorporating genetics into mainstream medical services will help ensure that new service developments build on the body of experience gained by the pilots, to provide high quality services for patients with or at risk of genetic conditions.

  3. Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China.

    PubMed

    Hu, Li-Jiang; Uchiyama, Kentaro; Shen, Hai-Long; Saito, Yoko; Tsuda, Yoshiaki; Ide, Yuji

    2008-08-01

    The widely accepted paradigm that the modern genetic structure of plant species in the northern hemisphere has been largely determined by recolonization from refugia after the last glacial maximum fails to explain the presence of cold-tolerant species at intermediate latitudes. Another generally accepted paradigm is that mountain ridges act as important barriers causing genetic isolation of species, but this too has been challenged in recent studies. The aims of the work reported here were to determine the genetic diversity and distribution patterns of extant natural populations of an endangered cool temperate species, Faxinus mandshurica, and to examine whether these two paradigms are appropriate when applied to this species over a wide geographical scale. 1435 adult individuals were sampled from 30 natural populations across the main and central range of the species, covering major mountain ranges across North-east China (NEC). Genetic variation was estimated based on nine polymorphic nuclear microsatellite loci. Phylogeographical analyses were employed using various approaches, including Bayesian clustering, spatial analysis of molecular variance, Monmonier's algorithm, neighbor-joining trees, principal co-ordinate analysis and isolation by distance. Genetic diversity within populations was relatively high, and no significant recent bottlenecks were detected in any of the populations. A significant negative correlation between intra-population genetic diversity and latitude was identified. In contrast, genetic differentiation among all the populations examined was extremely low and no clear geographic genetic structure was identified, with the exception of one distinct population. The modern genetic structure in this species can be explained by extensive gene flow, an absence of mountains acting as barriers, and the presence of a wide refuge across NEC rather than multiple small refugia. Intra-population genetic variation along latitudes is probably associated with the systematically northward shifts of forest biomes in eastern China during the mid-Holocene. To determine important genetic patterns and identify resources for conservation, however, it will be necessary to examine differentially inherited genetic markers exposed to selection pressures (e.g. chloroplast DNA) and to investigate different generations.

  4. Automated extraction of DNA from blood and PCR setup using a Tecan Freedom EVO liquid handler for forensic genetic STR typing of reference samples.

    PubMed

    Stangegaard, Michael; Frøslev, Tobias G; Frank-Hansen, Rune; Hansen, Anders J; Morling, Niels

    2011-04-01

    We have implemented and validated automated protocols for DNA extraction and PCR setup using a Tecan Freedom EVO liquid handler mounted with the Te-MagS magnetic separation device (Tecan, Männedorf, Switzerland). The protocols were validated for accredited forensic genetic work according to ISO 17025 using the Qiagen MagAttract DNA Mini M48 kit (Qiagen GmbH, Hilden, Germany) from fresh whole blood and blood from deceased individuals. The workflow was simplified by returning the DNA extracts to the original tubes minimizing the risk of misplacing samples. The tubes that originally contained the samples were washed with MilliQ water before the return of the DNA extracts. The PCR was setup in 96-well microtiter plates. The methods were validated for the kits: AmpFℓSTR Identifiler, SGM Plus and Yfiler (Applied Biosystems, Foster City, CA), GenePrint FFFL and PowerPlex Y (Promega, Madison, WI). The automated protocols allowed for extraction and addition of PCR master mix of 96 samples within 3.5h. In conclusion, we demonstrated that (1) DNA extraction with magnetic beads and (2) PCR setup for accredited, forensic genetic short tandem repeat typing can be implemented on a simple automated liquid handler leading to the reduction of manual work, and increased quality and throughput. Copyright © 2011 Society for Laboratory Automation and Screening. Published by Elsevier Inc. All rights reserved.

  5. Proceedings of the symposium on isozymes of North American forest trees and forest insects; July 27, 1979; Berkeley, California

    Treesearch

    M. Thompson Conkle

    1981-01-01

    These 10 symposium papers discuss gene resource management, basic genetics, genetic variation between and within tree species, genetic variability and growth, comparisons of tree life history characteristics, genetic variation in forest insects, breeding systems, and applied uses of isozymes in breeding programs.

  6. Genetic polymorphisms in lung disease: bandwagon or breakthrough?

    PubMed Central

    Iannuzzi, Michael C; Maliarik, Mary; Rybicki, Benjamin

    2002-01-01

    The study of genetic polymorphisms has touched every aspect of pulmonary and critical care medicine. We review recent progress made using genetic polymorphisms to define pathophysiology, to identify persons at risk for pulmonary disease and to predict treatment response. Several pitfalls are commonly encountered in studying genetic polymorphisms, and this article points out criteria that should be applied to design high-quality genetic polymorphism studies. PMID:11980584

  7. Etiological Distinction of Working Memory Components in Relation to Mathematics

    PubMed Central

    Lukowski, Sarah L.; Soden, Brooke; Hart, Sara A.; Thompson, Lee A.; Kovas, Yulia; Petrill, Stephen A.

    2014-01-01

    Working memory has been consistently associated with mathematics achievement, although the etiology of these relations remains poorly understood. The present study examined the genetic and environmental underpinnings of math story problem solving, timed calculation, and untimed calculation alongside working memory components in 12-year-old monozygotic (n = 105) and same-sex dizygotic (n = 143) twin pairs. Results indicated significant phenotypic correlation between each working memory component and all mathematics outcomes (r = 0.18 – 0.33). Additive genetic influences shared between the visuo-spatial sketchpad and mathematics achievement was significant, accounting for roughly 89% of the observed correlation. In addition, genetic covariance was found between the phonological loop and math story problem solving. In contrast, despite there being a significant observed relationship between phonological loop and timed and untimed calculation, there was no significant genetic or environmental covariance between the phonological loop and timed or untimed calculation skills. Further analyses indicated that genetic overlap between the visuo-spatial sketchpad and math story problem solving and math fluency was distinct from general genetic factors, whereas g, phonological loop, and mathematics shared generalist genes. Thus, although each working memory component was related to mathematics, the etiology of their relationships may be distinct. PMID:25477699

  8. The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis).

    PubMed

    Bruggeman, Douglas J; Wiegand, Thorsten; Fernández, Néstor

    2010-09-01

    The relative influence of habitat loss, fragmentation and matrix heterogeneity on the viability of populations is a critical area of conservation research that remains unresolved. Using simulation modelling, we provide an analysis of the influence both patch size and patch isolation have on abundance, effective population size (N(e)) and F(ST). An individual-based, spatially explicit population model based on 15 years of field work on the red-cockaded woodpecker (Picoides borealis) was applied to different landscape configurations. The variation in landscape patterns was summarized using spatial statistics based on O-ring statistics. By regressing demographic and genetics attributes that emerged across the landscape treatments against proportion of total habitat and O-ring statistics, we show that O-ring statistics provide an explicit link between population processes, habitat area, and critical thresholds of fragmentation that affect those processes. Spatial distances among land cover classes that affect biological processes translated into critical scales at which the measures of landscape structure correlated best with genetic indices. Therefore our study infers pattern from process, which contrasts with past studies of landscape genetics. We found that population genetic structure was more strongly affected by fragmentation than population size, which suggests that examining only population size may limit recognition of fragmentation effects that erode genetic variation. If effective population size is used to set recovery goals for endangered species, then habitat fragmentation effects may be sufficiently strong to prevent evaluation of recovery based on the ratio of census:effective population size alone.

  9. Mapping heritability and molecular genetic associations with cortical features using probabilistic brain atlases: methods and applications to schizophrenia.

    PubMed

    Cannon, Tyrone D; Thompson, Paul M; van Erp, Theo G M; Huttunen, Matti; Lonnqvist, Jouko; Kaprio, Jaakko; Toga, Arthur W

    2006-01-01

    There is an urgent need to decipher the complex nature of genotype-phenotype relationships within the multiple dimensions of brain structure and function that are compromised in neuropsychiatric syndromes such as schizophrenia. Doing so requires sophisticated methodologies to represent population variability in neural traits and to probe their heritable and molecular genetic bases. We have recently developed and applied computational algorithms to map the heritability of, as well as genetic linkage and association to, neural features encoded using brain imaging in the context of three-dimensional (3D), populationbased, statistical brain atlases. One set of algorithms builds on our prior work using classical twin study methods to estimate heritability by fitting biometrical models for additive genetic, unique, and common environmental influences. Another set of algorithms performs regression-based (Haseman-Elston) identical-bydescent linkage analysis and genetic association analysis of DNA polymorphisms in relation to neural traits of interest in the same 3D population-based brain atlas format. We demonstrate these approaches using samples of healthy monozygotic (MZ) and dizygotic (DZ) twin pairs, as well as MZ and DZ twin pairs discordant for schizophrenia, but the methods can be generalized to other classes of relatives and to other diseases. The results confirm prior evidence of genetic influences on gray matter density in frontal brain regions. They also provide converging evidence that the chromosome 1q42 region is relevant to schizophrenia by demonstrating linkage and association of markers of the Transelin-Associated-Factor-X and Disrupted-In- Schizophrenia-1 genes with prefrontal cortical gray matter deficits in twins discordant for schizophrenia.

  10. A probabilistic method for testing and estimating selection differences between populations

    PubMed Central

    He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li

    2015-01-01

    Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. PMID:26463656

  11. Applying gene flow science to environmental policy needs: a boundary work perspective.

    PubMed

    Ridley, Caroline E; Alexander, Laurie C

    2016-08-01

    One application of gene flow science is the policy arena. In this article, we describe two examples in which the topic of gene flow has entered into the U.S. national environmental policymaking process: regulation of genetically engineered crops and clarification of the jurisdictional scope of the Clean Water Act. We summarize both current scientific understanding and the legal context within which gene flow science has relevance. We also discuss the process by which scientific knowledge has been synthesized and communicated to decision-makers in these two contexts utilizing the concept of 'boundary work'. Boundary organizations, the work they engage in to bridge the worlds of science, policy, and practice, and the boundary objects they produce to translate scientific knowledge existed in both examples. However, the specific activities and attributes of the objects produced varied based on the needs of the decision-makers. We close with suggestions for how scientists can contribute to or engage in boundary work with policymakers.

  12. Genetic factors in Threatened Species Recovery Plans on three continents

    EPA Science Inventory

    Threatened species' recovery planning is applied globally to stem the current species extinction crisis. Evidence supports a key role of genetic processes, such as inbreeding depression, in determining species viability. We examined whether genetic factors are considered in threa...

  13. TRANSGENE ESCAPE MONITORING, POPULATION GENETICS, AND THE LAW

    EPA Science Inventory

    There has been little discussion about how to apply population genetics methods to monitor the spread of transgenes that are detected outside the agricultural populations where they are deployed. Population geneticists have developed tools for analyzing the genetic makeup of indi...

  14. QSRR modeling for diverse drugs using different feature selection methods coupled with linear and nonlinear regressions.

    PubMed

    Goodarzi, Mohammad; Jensen, Richard; Vander Heyden, Yvan

    2012-12-01

    A Quantitative Structure-Retention Relationship (QSRR) is proposed to estimate the chromatographic retention of 83 diverse drugs on a Unisphere poly butadiene (PBD) column, using isocratic elutions at pH 11.7. Previous work has generated QSRR models for them using Classification And Regression Trees (CART). In this work, Ant Colony Optimization is used as a feature selection method to find the best molecular descriptors from a large pool. In addition, several other selection methods have been applied, such as Genetic Algorithms, Stepwise Regression and the Relief method, not only to evaluate Ant Colony Optimization as a feature selection method but also to investigate its ability to find the important descriptors in QSRR. Multiple Linear Regression (MLR) and Support Vector Machines (SVMs) were applied as linear and nonlinear regression methods, respectively, giving excellent correlation between the experimental, i.e. extrapolated to a mobile phase consisting of pure water, and predicted logarithms of the retention factors of the drugs (logk(w)). The overall best model was the SVM one built using descriptors selected by ACO. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Applied Interventions in the Prevention and Treatment of Obesity Through the Research of Professor Jane Wardle.

    PubMed

    Croker, Helen; Beeken, Rebecca J

    2017-03-01

    Obesity presents a challenge for practitioners, policy makers, researchers and for those with obesity themselves. This review focuses on psychological approaches to its management and prevention in children and adults. Through exploring the work of the late Professor Jane Wardle, we look at the earliest behavioural treatment approaches and how psychological theory has been used to develop more contemporary approaches, for example incorporating genetic feedback and habit formation theory into interventions. We also explore how Jane has challenged thinking about the causal pathways of obesity in relation to eating behaviour. Beyond academic work, Jane was an advocate of developing interventions which had real-world applications. Therefore, we discuss how she not only developed new interventions but also made these widely available and the charity that she established.

  16. Introduction to focus issue: quantitative approaches to genetic networks.

    PubMed

    Albert, Réka; Collins, James J; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  17. Ancient DNA Reveals Prehistoric Gene-Flow from Siberia in the Complex Human Population History of North East Europe

    PubMed Central

    Der Sarkissian, Clio; Balanovsky, Oleg; Brandt, Guido; Khartanovich, Valery; Buzhilova, Alexandra; Koshel, Sergey; Zaporozhchenko, Valery; Gronenborn, Detlef; Moiseyev, Vyacheslav; Kolpakov, Eugen; Shumkin, Vladimir; Alt, Kurt W.; Balanovska, Elena; Cooper, Alan; Haak, Wolfgang

    2013-01-01

    North East Europe harbors a high diversity of cultures and languages, suggesting a complex genetic history. Archaeological, anthropological, and genetic research has revealed a series of influences from Western and Eastern Eurasia in the past. While genetic data from modern-day populations is commonly used to make inferences about their origins and past migrations, ancient DNA provides a powerful test of such hypotheses by giving a snapshot of the past genetic diversity. In order to better understand the dynamics that have shaped the gene pool of North East Europeans, we generated and analyzed 34 mitochondrial genotypes from the skeletal remains of three archaeological sites in northwest Russia. These sites were dated to the Mesolithic and the Early Metal Age (7,500 and 3,500 uncalibrated years Before Present). We applied a suite of population genetic analyses (principal component analysis, genetic distance mapping, haplotype sharing analyses) and compared past demographic models through coalescent simulations using Bayesian Serial SimCoal and Approximate Bayesian Computation. Comparisons of genetic data from ancient and modern-day populations revealed significant changes in the mitochondrial makeup of North East Europeans through time. Mesolithic foragers showed high frequencies and diversity of haplogroups U (U2e, U4, U5a), a pattern observed previously in European hunter-gatherers from Iberia to Scandinavia. In contrast, the presence of mitochondrial DNA haplogroups C, D, and Z in Early Metal Age individuals suggested discontinuity with Mesolithic hunter-gatherers and genetic influx from central/eastern Siberia. We identified remarkable genetic dissimilarities between prehistoric and modern-day North East Europeans/Saami, which suggests an important role of post-Mesolithic migrations from Western Europe and subsequent population replacement/extinctions. This work demonstrates how ancient DNA can improve our understanding of human population movements across Eurasia. It contributes to the description of the spatio-temporal distribution of mitochondrial diversity and will be of significance for future reconstructions of the history of Europeans. PMID:23459685

  18. Introduction to Focus Issue: Quantitative Approaches to Genetic Networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; Collins, James J.; Glass, Leon

    2013-06-01

    All cells of living organisms contain similar genetic instructions encoded in the organism's DNA. In any particular cell, the control of the expression of each different gene is regulated, in part, by binding of molecular complexes to specific regions of the DNA. The molecular complexes are composed of protein molecules, called transcription factors, combined with various other molecules such as hormones and drugs. Since transcription factors are coded by genes, cellular function is partially determined by genetic networks. Recent research is making large strides to understand both the structure and the function of these networks. Further, the emerging discipline of synthetic biology is engineering novel gene circuits with specific dynamic properties to advance both basic science and potential practical applications. Although there is not yet a universally accepted mathematical framework for studying the properties of genetic networks, the strong analogies between the activation and inhibition of gene expression and electric circuits suggest frameworks based on logical switching circuits. This focus issue provides a selection of papers reflecting current research directions in the quantitative analysis of genetic networks. The work extends from molecular models for the binding of proteins, to realistic detailed models of cellular metabolism. Between these extremes are simplified models in which genetic dynamics are modeled using classical methods of systems engineering, Boolean switching networks, differential equations that are continuous analogues of Boolean switching networks, and differential equations in which control is based on power law functions. The mathematical techniques are applied to study: (i) naturally occurring gene networks in living organisms including: cyanobacteria, Mycoplasma genitalium, fruit flies, immune cells in mammals; (ii) synthetic gene circuits in Escherichia coli and yeast; and (iii) electronic circuits modeling genetic networks using field-programmable gate arrays. Mathematical analyses will be essential for understanding naturally occurring genetic networks in diverse organisms and for providing a foundation for the improved development of synthetic genetic networks.

  19. An overview of the genetic susceptibility to alcoholism.

    PubMed

    Buscemi, Loredana; Turchi, Chiara

    2011-01-01

    Alcoholism is a multifactorial, genetically influenced disorder. It is a major health and social issue, a highly frequent disease and a cause of premature death. It is also the most expensive addictive disorder due to morbidity, mortality, societal and legal problems. Besides their involvement in alcohol-related fatalities, forensic scientists are also required to assess driving and working ability as well as permanent invalidity due to alcohol-related conditions. Greater knowledge of the genetic basis of alcoholism could improve prevention by identifying specific risk factors and mechanisms, leading to effective therapeutic strategies and eventually to personalized treatments. This overview of the recent scientific literature on the genetic basis of alcoholism summarizes the analytical strategies currently applied to the identification of candidate genes involved in alcohol-use disorders (AUDs) and discusses some genes and related phenotypes that have been shown to influence the risk of alcoholism. Alcoholism is a complex heterogeneous genetic disease. It is a quantitative disorder, in which the combined incidence of multiple genetic factors and environmental factors varies from one subject to another. Family, twin and adoption studies indicate that 50-60% of the risk of alcoholism is due to genetic factors. Risk loci for AUDs include both genes involved in alcohol pharmacokinetics and pharmacodynamics as well as genes moderating neurophysiological responses such as impulsivity, disinhibition, sensation-seeking and externalizing behaviours. Alcoholism also co-exists with other addictions and psychiatric disorders. Such co-morbidity suggests the existence of shared aetiological factors. Despite several genes that influence the risk for AUDs having been identified, the genetic bases of alcoholism remain largely unknown. Particularly the mechanism of action or the understanding of the physiology of some genes, as well as the gene-environment interactions, is still unknown. Technological progress and advances in transcriptomics, epigenomics and proteomics are expected to enhance our knowledge of the genetic susceptibility to alcoholism.

  20. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    PubMed Central

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  1. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    PubMed

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  2. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites

    PubMed Central

    Routtu, J; Ebert, D

    2015-01-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host–parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host–parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host–parasite systems. Only the Pasteuria–Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium–Daphnia system remains unclear. PMID:25335558

  3. Toward an Understanding of "Genetic Sociology" and Its Relationships to Medical Sociology and Medical Genetics in the Educational Enterprise

    ERIC Educational Resources Information Center

    Fredericks, Marcel; Odiet, Jeff A.; Miller, Steven I.; Fredericks, Janet

    2004-01-01

    In this research, we have demonstrated that a new subdiscipline in the field of Medical Sociology is urgently needed to integrate, interpret, and synthesize the interrelationships and implications of genetic discoveries, treatments, and prognoses upon societal behavior. That subdiscipline in our view is "Genetic Sociology."We applied the…

  4. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    PubMed

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  5. OPTOGENETICS, SEX AND VIOLENCE IN THE BRAIN: IMPLICATIONS FOR PSYCHIATRY

    PubMed Central

    Anderson, David J.

    2012-01-01

    Pathological aggression, and the inability to control aggressive impulses, takes a tremendous toll on society. Yet aggression is a normal component of the innate behavior repertoire of most vertebrate animal species, as well as of many invertebrates. Progress in understanding the etiology of disorders of aggressive behavior, whether genetic or environmental in nature, therefore requires an understanding of the brain circuitry that controls normal aggression. Efforts to understand this circuitry at the level of specific neuronal populations have been constrained by the limited resolution of classical methodologies, such as electrical stimulation and electrolytic lesion. The availability of new, genetically based tools for mapping and manipulating neural circuits at the level of specific, genetically defined neuronal subtypes provides an opportunity to investigate the functional organization of aggression circuitry with cellular resolution. However these technologies are optimally applied in the mouse, where there has been surprisingly little traditional work on the functional neuroanatomy of aggression. Here we discuss recent, initial efforts to apply optogenetics and other state-of-the-art methods to the dissection of aggression circuitry in the mouse. We find, surprisingly, that neurons necessary and sufficient for inter-male aggression are located within the ventrolateral subdivision of the ventromedial hypothalamic nucleus (VMHvl), a structure traditionally associated with reproductive behavior. These neurons are intermingled with neurons activated during male-female mating, with ~20% overlap between the populations. We discuss the significance of these findings with respect to neuroethological and neuroanatomical perspectives on the functional organization of innate behaviors, and their potential implications for psychiatry. PMID:22209636

  6. [Teaching design and practice of human blood type traits in genetics comprehensive laboratory course].

    PubMed

    Zhao, Jian; Hu, Dong-mei; Yu, Da-de; Dong, Ming-liang; Li, Yun; Fan, Ying-ming; Wang, Yan-wei; Zhang, Jin-feng

    2016-05-01

    Comprehensive laboratory courses, which enable students to aptly apply theoretic knowledge and master experiment skills, play an important role in the present educational reform of laboratory courses. We utilized human ABO blood type as the experimental subject, and designed the experiment--"Molecular Genotyping of Human ABO Blood Type and Analysis of Population Genetic Equilibrium". In the experiment, DNA in mucosal cells is extracted from students' saliva, and each student's genotype is identified using a series of molecular genetics technologies, including PCR amplification of target fragments, enzymatic digestion, and electrophoretic separation. Then, taking the whole class as an analogous Mendel population, a survey of genotype frequency of ABO blood type is conducted, followed with analyses of various population genetic parameters using Popgene. Through the open laboratory course, students can not only master molecular genetic experimental skills, but also improve their understanding of theoretic knowledge through independent design and optimization of molecular techniques. After five years of research and practice, a stable experimental system of molecular genetics has been established to identify six genotypes of ABO blood types, namely I(A)I(A), I(A)i, I(B)I(B), I(B)i, I(A)I(B) and ii. Laboratory courses of molecular and population genetics have been integrated by calculating the frequencies of the six genotypes and three multiple alleles and testing population genetic equilibrium. The goal of the open laboratory course with independent design and implementation by the students has been achieved. This laboratory course has proved effective and received good reviews from the students. It could be applied as a genetics laboratory course for the biology majors directly, and its ideas and methods could be promoted and applied to other biological laboratory courses.

  7. Migraine

    MedlinePlus

    ... Researchers believe that migraine is the result of fundamental neurological abnormalities caused by genetic mutations at work ... Researchers believe that migraine is the result of fundamental neurological abnormalities caused by genetic mutations at work ...

  8. The ABC Model and its Applicability to Basal Angiosperms

    PubMed Central

    Soltis, Douglas E.; Chanderbali, André S.; Kim, Sangtae; Buzgo, Matyas; Soltis, Pamela S.

    2007-01-01

    Background Although the flower is the central feature of the angiosperms, little is known of its origin and subsequent diversification. The ABC model has long been the unifying paradigm for floral developmental genetics, but it is based on phylogenetically derived eudicot models. Synergistic research involving phylogenetics, classical developmental studies, genomics and developmental genetics has afforded valuable new insights into floral evolution in general, and the early flower in particular. Scope and Conclusions Genomic studies indicate that basal angiosperms, and by inference the earliest angiosperms, had a rich tool kit of floral genes. Homologues of the ABCE floral organ identity genes are also present in basal angiosperm lineages; however, C-, E- and particularly B-function genes are more broadly expressed in basal lineages. There is no single model of floral organ identity that applies to all angiosperms; there are multiple models that apply depending on the phylogenetic position and floral structure of the group in question. The classic ABC (or ABCE) model may work well for most eudicots. However, modifications are needed for basal eudicots and, the focus of this paper, basal angiosperms. We offer ‘fading borders’ as a testable hypothesis for the basal-most angiosperms and, by inference, perhaps some of the earliest (now extinct) angiosperms. PMID:17616563

  9. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Peptidic tools applied to redirect alternative splicing events.

    PubMed

    Nancy, Martínez-Montiel; Nora, Rosas-Murrieta; Rebeca, Martínez-Contreras

    2015-05-01

    Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Actor-network theory: a tool to support ethical analysis of commercial genetic testing.

    PubMed

    Williams-Jones, Bryn; Graham, Janice E

    2003-12-01

    Social, ethical and policy analysis of the issues arising from gene patenting and commercial genetic testing is enhanced by the application of science and technology studies, and Actor-Network Theory (ANT) in particular. We suggest the potential for transferring ANT's flexible nature to an applied heuristic methodology for gathering empirical information and for analysing the complex networks involved in the development of genetic technologies. Three concepts are explored in this paper--actor-networks, translation, and drift--and applied to the case of Myriad Genetics and their commercial BRACAnalysis genetic susceptibility test for hereditary breast cancer. Treating this test as an active participant in socio-technical networks clarifies the extent to which it interacts with, shapes and is shaped by people, other technologies, and institutions. Such an understanding enables more sophisticated and nuanced technology assessment, academic analysis, as well as public debate about the social, ethical and policy implications of the commercialization of new genetic technologies.

  12. Spatial working memory function in twins with schizophrenia and bipolar disorder.

    PubMed

    Pirkola, Tiia; Tuulio-Henriksson, Annamari; Glahn, David; Kieseppä, Tuula; Haukka, Jari; Kaprio, Jaakko; Lönnqvist, Jouko; Cannon, Tyrone D

    2005-12-15

    Family studies are in conflict as to whether schizophrenia and bipolar disorder have independent genetic etiologies. Given the relatively low prevalence (approximately 1%) of these disorders, the use of quantitative endophenotypic markers of genetic liability might provide a more sensitive strategy for evaluating their genetic overlap. We have previously demonstrated that spatial working memory deficits increase in a dose-dependent fashion with increasing genetic proximity to a proband among the unaffected co-twins of schizophrenic patients. Here, we evaluated whether such deficits might also mark genetic susceptibility to bipolar disorder. The Wechsler Memory Scale-Revised Visual Memory Span and Digit Span subtests were administered to 46 schizophrenic patients, 32 of their unaffected co-twins, 22 bipolar patients, 16 of their unaffected co-twins, and 100 control twins, representing unselectively nationwide twin samples. Schizophrenic patients and their unaffected co-twins performed significantly worse than control subjects on the spatial working memory task, whereas only the schizophrenic patients performed significantly below the control subjects on the verbal working memory task. Neither bipolar patients nor their unaffected co-twins differed from control subjects on these measures. Our findings support the hypothesis that impairment in spatial working memory might effectively reflect an expression of genetic liability to schizophrenia but less clearly to bipolar disorder.

  13. Forensic science, genetics and wildlife biology: getting the right mix for a wildlife DNA forensics lab.

    PubMed

    Ogden, Rob

    2010-09-01

    Wildlife DNA forensics is receiving increasing coverage in the popular press and has begun to appear in the scientific literature in relation to several different fields. Recognized as an applied subject, it rests on top of very diverse scientific pillars ranging from biochemistry through to evolutionary genetics, all embedded within the context of modern forensic science. This breadth of scope, combined with typically limited resources, has often left wildlife DNA forensics hanging precariously between human DNA forensics and academics keen to seek novel applications for biological research. How best to bridge this gap is a matter for regular debate among the relatively few full-time practitioners in the field. The decisions involved in establishing forensic genetic services to investigate wildlife crime can be complex, particularly where crimes involve a wide range of species and evidential questions. This paper examines some of the issues relevant to setting up a wildlife DNA forensics laboratory based on experiences of working in this area over the past 7 years. It includes a discussion of various models for operating individual laboratories as well as options for organizing forensic testing at higher national and international levels.

  14. Novel Multiplex Fluorescent PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of β-Thalassemia.

    PubMed

    Khosravi, Sharifeh; Salehi, Mansour; Ramezanzadeh, Mahboobeh; Mirzaei, Hamed; Salehi, Rasoul

    2016-05-01

    Thalassemia is curable by bone marrow transplantation; however, finding suitable donors with defined HLA combination remains a major challenge. Cord blood stem cells with preselected HLA system through preimplantation genetic diagnosis (PGD) proved very useful for resolving scarce HLA-matched bone marrow donors. A thalassemia trait couple with an affected child was included in this study. We used informative STR markers at the HLA and beta globin loci to develop a single cell multiplex fluorescent PCR protocol. The protocol was extensively optimized on single lymphocytes isolated from the couple's peripheral blood. The optimized protocol was applied on single blastomeres biopsied from day 3 cleavage stage IVF embryos of the couple. Four IVF embryos biopsied on day 3 and a single blastomere of each were provided for genetic diagnosis of combined β-thalassemia mutations and HLA typing. Of these, one embryo was diagnosed as homozygous normal for the thalassemia mutation and HLA matched with the existing affected sibling. The optimized protocol worked well in PGD clinical cycle for selection of thalassemia-unaffected embryos with the desired HLA system. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  15. QTL Dissection of Lag Phase in Wine Fermentation Reveals a New Translocation Responsible for Saccharomyces cerevisiae Adaptation to Sulfite

    PubMed Central

    Zimmer, Adrien; Durand, Cécile; Loira, Nicolás; Durrens, Pascal; Sherman, David James; Marullo, Philippe

    2014-01-01

    Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity. PMID:24489712

  16. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  17. [Detection of novel genetic markers of susceptibility to preeclampsia based on an analysis of the regulatory genes in the placental tissue].

    PubMed

    Serebrova, V N; Trifonova, E A; Gabidulina, T V; Bukharina, I Yu; Agarkova, T A; Evtushenko, I D; Maksimova, N R; Stepanov, V A

    2016-01-01

    Regulatory single nucleotide polymorphisms (rSNPs) are the least-studied group of SNP; however, they play an essential role in the development of human pathology by altering the level of candidate genes expression. In this work, we analyzed 29 rSNPs in 17 new candidate genes associated with preeclampsia (PE) according to the analysis of the transcriptome in placental tissue. Three ethnic groups have been studied (yakut, russian, and buryat). We have detected significant associations of PE with eight rSNPs in six differentially expressed genes, i.e., rs10423795 in the LHB gene; rs3771787 in the HK2 gene; rs72959687 in the INHA gene; rs12678229, rs2227262, and rs3802252 in the NDRG1 gene; rs34845949 in the SASH1 gene; and rs66707428 in the PPP1R12C gene. We used a new approach to detecting genetic markers of multifactorial diseases in the case of PE based on a combination of genomic, transcriptomic, and bioinformatic approaches. This approach proved its efficiency and may be applied to detecting new potential genetic markers in genes involved in disease pathogenesis, which reduces missing heritability in multifactorial diseases.

  18. The Association between Infants' Attention Control and Social Inhibition Is Moderated by Genetic and Environmental Risk for Anxiety

    ERIC Educational Resources Information Center

    Brooker, Rebecca J.; Neiderhiser, Jenae M.; Kiel, Elizabeth J.; Leve, Leslie D.; Shaw, Daniel S.; Reiss, David

    2011-01-01

    Infant social inhibition is associated with increased risk for anxiety later in life. Although both genetic and environmental factors are associated with anxiety, little empirical work has addressed how developing regulatory abilities work with genetic and environmental risk to exacerbate or mitigate problem behaviors. The current study was aimed…

  19. Night Shift Work, Genetic Risk, and Type 2 Diabetes in the UK Biobank.

    PubMed

    Vetter, Céline; Dashti, Hassan S; Lane, Jacqueline M; Anderson, Simon G; Schernhammer, Eva S; Rutter, Martin K; Saxena, Richa; Scheer, Frank A J L

    2018-04-01

    To examine the effects of past and current night shift work and genetic type 2 diabetes vulnerability on type 2 diabetes odds. In the UK Biobank, we examined associations of current ( N = 272,214) and lifetime ( N = 70,480) night shift work exposure with type 2 diabetes risk (6,770 and 1,191 prevalent cases, respectively). For 180,704 and 44,141 unrelated participants of European ancestry (4,002 and 726 cases, respectively) with genetic data, we assessed whether shift work exposure modified the relationship between a genetic risk score (comprising 110 single-nucleotide polymorphisms) for type 2 diabetes and prevalent diabetes. Compared with day workers, all current night shift workers were at higher multivariable-adjusted odds for type 2 diabetes (none or rare night shifts: odds ratio [OR] 1.15 [95% CI 1.05-1.26]; some nights: OR 1.18 [95% CI 1.05-1.32]; and usual nights: OR 1.44 [95% CI 1.19-1.73]), except current permanent night shift workers (OR 1.09 [95% CI 0.93-1.27]). Considering a person's lifetime work schedule and compared with never shift workers, working more night shifts per month was associated with higher type 2 diabetes odds (<3/month: OR 1.24 [95% CI 0.90-1.68]; 3-8/month: OR 1.11 [95% CI 0.90-1.37]; and >8/month: OR 1.36 [95% CI 1.14-1.62]; P trend = 0.001). The association between genetic type 2 diabetes predisposition and type 2 diabetes odds was not modified by shift work exposure. Our findings show that night shift work, especially rotating shift work including night shifts, is associated with higher type 2 diabetes odds and that the number of night shifts worked per month appears most relevant for type 2 diabetes odds. Also, shift work exposure does not modify genetic risk for type 2 diabetes, a novel finding that warrants replication. © 2018 by the American Diabetes Association.

  20. Not all GMOs are crop plants: non-plant GMO applications in agriculture

    USDA-ARS?s Scientific Manuscript database

    In the time since the tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteri...

  1. An Adaptive Niching Genetic Algorithm using a niche size equalization mechanism

    NASA Astrophysics Data System (ADS)

    Nagata, Yuichi

    Niching GAs have been widely investigated to apply genetic algorithms (GAs) to multimodal function optimization problems. In this paper, we suggest a new niching GA that attempts to form niches, each consisting of an equal number of individuals. The proposed GA can be applied also to combinatorial optimization problems by defining a distance metric in the search space. We apply the proposed GA to the job-shop scheduling problem (JSP) and demonstrate that the proposed niching method enhances the ability to maintain niches and improve the performance of GAs.

  2. AAAI (American Association on Artificial Intelligence) Workshop on AI (Artificial Intelligence) Simulation Held in Philadelphia, Pennsylvania on August 11, 1986,

    DTIC Science & Technology

    1986-08-01

    is then applied in i ABSTRCT : ,.:,.vu knowledge acquisition from those multiple sources for a specific design, for example, an expert system for...67. N 181.1 47.U3 a75 269;9.6 % A. %3 3 Genetic Explanations: For the concept of a genetic explanation (see .d -. above) to apply to the Gaither...Simulation Research Unit (Acock,1985; Baker,1983; Baker,1985). -. MD’,EX srves as an inner shell for apPlying Artificial Intelligence and E:pert System

  3. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

  4. Genetic Counseling and Families of the Visually Impaired.

    ERIC Educational Resources Information Center

    Carpenter, Pat

    1977-01-01

    The value of genetic counseling for prospective parents with visual impairments is discussed. Work in genetic counseling is reviewed and the types of monitoring services available are explored. The development of genetics, and the kinds of genetic disorders, as well as the importance of genetic counseling, are described. (PHR)

  5. Robust Inference of Genetic Exchange Communities from Microbial Genomes Using TF-IDF

    PubMed Central

    Cong, Yingnan; Chan, Yao-ban; Phillips, Charles A.; Langston, Michael A.; Ragan, Mark A.

    2017-01-01

    Bacteria and archaea can exchange genetic material across lineages through processes of lateral genetic transfer (LGT). Collectively, these exchange relationships can be modeled as a network and analyzed using concepts from graph theory. In particular, densely connected regions within an LGT network have been defined as genetic exchange communities (GECs). However, it has been problematic to construct networks in which edges solely represent LGT. Here we apply term frequency-inverse document frequency (TF-IDF), an alignment-free method originating from document analysis, to infer regions of lateral origin in bacterial genomes. We examine four empirical datasets of different size (number of genomes) and phyletic breadth, varying a key parameter (word length k) within bounds established in previous work. We map the inferred lateral regions to genes in recipient genomes, and construct networks in which the nodes are groups of genomes, and the edges natively represent LGT. We then extract maximum and maximal cliques (i.e., GECs) from these graphs, and identify nodes that belong to GECs across a wide range of k. Most surviving lateral transfer has happened within these GECs. Using Gene Ontology enrichment tests we demonstrate that biological processes associated with metabolism, regulation and transport are often over-represented among the genes affected by LGT within these communities. These enrichments are largely robust to change of k. PMID:28154557

  6. Precocious flowering of juvenile citrus induced by a viral vector based on Citrus leaf blotch virus: a new tool for genetics and breeding.

    PubMed

    Velázquez, Karelia; Agüero, Jesús; Vives, María C; Aleza, Pablo; Pina, José A; Moreno, Pedro; Navarro, Luis; Guerri, José

    2016-10-01

    The long juvenile period of citrus trees (often more than 6 years) has hindered genetic improvement by traditional breeding methods and genetic studies. In this work, we have developed a biotechnology tool to promote transition from the vegetative to the reproductive phase in juvenile citrus plants by expression of the Arabidopsis thaliana or citrus FLOWERING LOCUS T (FT) genes using a Citrus leaf blotch virus-based vector (clbvINpr-AtFT and clbvINpr-CiFT, respectively). Citrus plants of different genotypes graft inoculated with either of these vectors started flowering within 4-6 months, with no alteration of the plant architecture, leaf, flower or fruit morphology in comparison with noninoculated adult plants. The vector did not integrate in or recombine with the plant genome nor was it pollen or vector transmissible, albeit seed transmission at low rate was detected. The clbvINpr-AtFT is very stable, and flowering was observed over a period of at least 5 years. Precocious flowering of juvenile citrus plants after vector infection provides a helpful and safe tool to dramatically speed up genetic studies and breeding programmes. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Applying remote sensing expertise to crop improvement: progress and challenges to scale up high throughput field phenotyping from research to industry

    NASA Astrophysics Data System (ADS)

    Gouache, David; Beauchêne, Katia; Mini, Agathe; Fournier, Antoine; de Solan, Benoit; Baret, Fred; Comar, Alexis

    2016-05-01

    Digital and image analysis technologies in greenhouses have become commonplace in plant science research and started to move into the plant breeding industry. However, the core of plant breeding work takes place in fields. We will present successive technological developments that have allowed the migration and application of remote sensing approaches at large into the field of crop genetics and physiology research, with a number of projects that have taken place in France. These projects have allowed us to develop combined sensor plus vector systems, from tractor mounted and UAV (unmanned aerial vehicle) mounted spectroradiometry to autonomous vehicle mounted spectroradiometry, RGB (red-green-blue) imagery and Lidar. We have tested these systems for deciphering the genetics of complex plant improvement targets such as the robustness to nitrogen and water deficiency of wheat and maize. Our results from wheat experiments indicate that these systems can be used both to screen genetic diversity for nitrogen stress tolerance and to decipher the genetics behind this diversity. We will present our view on the next critical steps in terms of technology and data analysis that will be required to reach cost effective implementation in industrial plant breeding programs. If this can be achieved, these technologies will largely contribute to resolving the equation of increasing food supply in the resource limited world that lies ahead.

  8. In my experience: Mitochondrial DNA in wildlife taxonomy and conservation biology: Cautionary notes

    USGS Publications Warehouse

    Cronin, Matthew A.

    1993-01-01

    Several recently published papers discussed the importance of systematics (the study of evolutionary and genetic relationships among organisms) and taxonomy (the naming and classification of organisms) for managing wildlife (Ryder 1986, Avise 1989, Amato 1991, O'Brien and Mayr 1991, Dowling et al. 1992), Often, classification below the species level is needed; for example, the Endangered Species Act of 1973 applies to local populations and subspecies as well as species. Conservation efforts may focus below the species level because of concerns about the fitness, evolutionary potentials, and locally adapted gene pools of natural populations (Soulé 1986, Hedrick and Milller 1992). This can be considered the genetic component of biodiversity.Recent systematic studies with wildlife management applications have used modern molecular genetic methods. Analyses of a specific molecular marker, mitochondrial DNA (mtDNA), have been used in many of these studies (e.g., Shields and Wilson 1987, Avise and Nelson 1989, O'Brien et al. 1990, Wayne and Jenks 1991, Cronin 1992), However, there are limitations to the use of mtDNA in systematics (e.g., Overden et al., 1987, Pamilo and Nei 1988, Dowling et al. 1992). In my experience as a geneticist working with wildlife biologists, I have found a need for clarification of the use and limitations of modern molecular genetics. I specifically discuss the limitations of mtDNA data in systematic assessments of wildlife at and below the species level.

  9. A scoring strategy combining statistics and functional genomics supports a possible role for common polygenic variation in autism

    PubMed Central

    Carayol, Jérôme; Schellenberg, Gerard D.; Dombroski, Beth; Amiet, Claire; Génin, Bérengère; Fontaine, Karine; Rousseau, Francis; Vazart, Céline; Cohen, David; Frazier, Thomas W.; Hardan, Antonio Y.; Dawson, Geraldine; Rio Frio, Thomas

    2014-01-01

    Autism spectrum disorders (ASD) are highly heritable complex neurodevelopmental disorders with a 4:1 male: female ratio. Common genetic variation could explain 40–60% of the variance in liability to autism. Because of their small effect, genome-wide association studies (GWASs) have only identified a small number of individual single-nucleotide polymorphisms (SNPs). To increase the power of GWASs in complex disorders, methods like convergent functional genomics (CFG) have emerged to extract true association signals from noise and to identify and prioritize genes from SNPs using a scoring strategy combining statistics and functional genomics. We adapted and applied this approach to analyze data from a GWAS performed on families with multiple children affected with autism from Autism Speaks Autism Genetic Resource Exchange (AGRE). We identified a set of 133 candidate markers that were localized in or close to genes with functional relevance in ASD from a discovery population (545 multiplex families); a gender specific genetic score (GS) based on these common variants explained 1% (P = 0.01 in males) and 5% (P = 8.7 × 10−7 in females) of genetic variance in an independent sample of multiplex families. Overall, our work demonstrates that prioritization of GWAS data based on functional genomics identified common variants associated with autism and provided additional support for a common polygenic background in autism. PMID:24600472

  10. Genetic harm: bitten by the body that keeps you?

    PubMed

    Kahn, Jeffrey P

    1991-10-01

    ... We must attempt to explain, how, if ever, our existence may harm us. To address this and the other questions raised, I propose to examine what constitutes harm and whether it makes sense to say that our genetic makeup may harm us. To do this I will describe three approaches to the problem of describing the status of negative effects our genes have upon us, which I have named the "technical harm" view, the "constitutive" view, and the "harmful conditions" view. On the technical harm view, the standard definitions of harm are applied to genetic disposition in an attempt to couch genetic defects or flaws in terms of harming. The constitutive view rejects applying the concept of harm to genetic disposition on the grounds that it is impossible to separate genetic disposition from individual identity. Lastly, the harmful conditions view, which I conclude is the most successful of the three, focuses on the tendency of certain genetic dispositions to cause harm in the future and thus avoids what I will argue are the "context" shortcomings of the other two approaches. To conclude the discussion I will very briefly analyze the ramifications of a harmful conditions view for the concept of genetic disease and the prospects for genetic counseling, gene therapy, and reproductive decision making.

  11. Advanced Covariance-Based Stochastic Inversion and Neuro-Genetic Optimization for Rosetta CONSERT Radar Data to Improve Spatial Resolution of Multi-Fractal Depth Profiles for Cometary Nucleus

    NASA Astrophysics Data System (ADS)

    Edenhofer, Peter; Ulamec, Stephan

    2015-04-01

    The paper is devoted to results of doctoral research work at University of Bochum as applied to the radar transmission experiment CONSERT of the ESA cometary mission Rosetta. This research aims at achieving the limits of optimum spatial (and temporal) resolution for radar remote sensing by implementation of covariance informations concerned with error-balanced control as well as coherence of wave propagation effects through random composite media involved (based on Joel Franklin's approach of extended stochastic inversion). As a consequence the well-known inherent numerical instabilities of remote sensing are significantly reduced in a robust way by increasing the weight of main diagonal elements of the resulting composite matrix to be inverted with respect to off-diagonal elements following synergy relations as to the principle of correlation receiver in wireless telecommunications. It is shown that the enhancement of resolution for remote sensing holds for an integral and differential equation approach of inversion as well. In addition to that the paper presents a discussion on how the efficiency of inversion for radar data gets achieved by an overall optimization of inversion due to a novel neuro-genetic approach. Such kind of approach is in synergy with the priority research program "Organic Computing" of DFG / German Research Organization. This Neuro-Genetic Optimization (NGO) turns out, firstly, to take into account more detailed physical informations supporting further improved resolution such as the process of accretion for cometary nucleus, wave propagation effects from rough surfaces, ground clutter, nonlinear focusing, etc. as well as, secondly, to accelerate the computing process of inversion in a really significantly enhanced and fast way, e.g., enabling online-control of autonomous processes such as detection of unknown objects, navigation, etc. The paper describes in some detail how this neuro-genetic approach of optimization is incorporated into the procedure of data inversion by combining inverted artificial neural networks of adequately chosen topology and learning routines for short access times with the concept of genetic algorithms enabling to achieve a multi-dimensional global optimum subject to a properly constructed and problem-oriented target function, ensemble selection rules, etc. Finally the paper discusses how the power of realistic simulation of the structures of the interior of a cometary nucleus can be improved by applying Benoit Mandelbrot's concept of fractal structures. It is shown how the fractal volumetric modelling of the nucleus of a comet can be accomplished by finite 3D elements of flexibility (serving topography and morphology as well) such as of tetrahedron shape with specific scaling factors of self similarity and a Maxwellian type of distribution function. By applying the widely accepted fBm-concept of fractal Brownian motion basically each of the corresponding Hurst exponents 0 (rough) < H < 1 (smooth) can be derived for the multi-fractal depth (and terrain) profiles of the equivalent dielectric constant per tomographic angular orbital segment of intersection by transmissive radar ray paths with the nucleus of the comet. Cooperative efforts and work are in progress to achieve numerical results of depth profiles for the nucleus of comet 67P/Churyumov-Gerasimenko.

  12. Henry Friesen Award Lecture. Work, the clinician-scientist and human biochemical genetics.

    PubMed

    Scriver, C R

    2001-08-01

    The pursuit of human biochemical genetics has allowed us to understand better how the person with the (genetic) disease differs from the disease the person has and to develop the concept that genetics belongs in all aspects of health care. It is a perspective that comes quite readily to the clinician-scientist, and the restoration of that "species" in the era of functional genomics is strongly recommended. Garrod, the initial founder of human "biochemical genetics" belonged to the clinician-scientist community. Archibald Edward Garrod introduced a paradigm, new for its day, in medicine: biochemistry is dynamic and different from the static nature of organic chemistry. It led him to think about metabolic pathways and to recognize that variation in Mendelian heredity could explain an "inborn error of metabolism." At the time, Garrod had no idea about the nature of a gene. Genes are now well understood; genomes are being described for one organism after another (including Homo sapiens) and it is understood that genomes "speak biochemistry (not phenotype)." Accordingly, in the era of genomics, biochemistry and physiology become the bases of functional genomics, and it is possible to appreciate why "nothing in biology makes sense without evolution" (and nothing in medicine will make sense without biology). Mendelian, biochemical and molecular genetics together have revealed what lies behind the 4 canonical inborn errors described by Garrod (albinisn, alkaptonuria, cystinuria and pentosuria). Both older and newer ideas in genetics, new tools for applying them (and renewed respect for the clinician-scientist) will enhance our understanding of the human biological variation that accounts for variant states of health and overt disease. A so-called monogenic phenotype (phenylketonuria) is used to illustrate, in some detail, that all disease phenotypes are, in one way or another, likely to be complex in nature. What can be known and what ought to be done, with knowledge about human genetics, to benefit individuals, families and communities (society), is both opportunity and challenge.

  13. Reasoning across Ontologically Distinct Levels: Students' Understandings of Molecular Genetics

    ERIC Educational Resources Information Center

    Duncan, Ravit Golan; Reiser, Brian J.

    2007-01-01

    In this article we apply a novel analytical framework to explore students' difficulties in understanding molecular genetics--a domain that is particularly challenging to learn. Our analytical framework posits that reasoning in molecular genetics entails mapping across ontologically distinct levels--an information level containing the genetic…

  14. Application of molecular genetic tools for forest pathology

    Treesearch

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  15. Genetic structure of populations and differentiation in forest trees

    Treesearch

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  16. Genetic Variation Sampled in Three California Oaks

    Treesearch

    Lawrence A. Riggs; Constance I. Millar; Diane L. Delany

    1991-01-01

    As a first step in acquiring genetic information about oak species indigenous to California's hardwood rangelands we drew on experience from both forest regeneration and species conservation and applied biochemical techniques for rapidly assaying patterns of genetic variation. In a study sponsored by the California Integrated Hardwood Range Management Program we...

  17. Genetically shaping morphology of the filamentous fungus Aspergillus glaucus for production of antitumor polyketide aspergiolide A

    PubMed Central

    2014-01-01

    Background For filamentous fungi, the basic growth unit of hyphae usually makes it sensitive to shear stress which is generated from mechanical force and dynamic fluid in bioreactor, and it severely decreases microbial productions. The conventional strategies against shear-sensitive conundrum in fungal fermentation usually focus on adapting agitation, impeller type and bioreactor configuration, which brings high cost and tough work in industry. This study aims to genetically shape shear resistant morphology of shear-sensitive filamentous fungus Aspergillus glaucus to make it adapt to bioreactor so as to establish an efficient fermentation process. Results Hyphal morphology shaping by modifying polarized growth genes of A. glaucus was applied to reduce its shear-sensitivity and enhance aspergiolide A production. Degenerate PCR and genome walking were used to obtain polarized growth genes AgkipA and AgteaR, followed by construction of gene-deficient mutants by homologous integration of double crossover. Deletion of both genes caused meandering hyphae, for which, ΔAgkipA led to small but intense curves comparing with ΔAgteaR by morphology analysis. The germination of a second germ tube from conidiospore of the mutants became random while colony growth and development almost maintained the same. Morphology of ΔAgkipA and ΔAgteaR mutants turned to be compact pellet and loose clump in liquid culture, respectively. The curved hyphae of both mutants showed no remarkably resistant to glass bead grinding comparing with the wild type strain. However, they generated greatly different broth rheology which further caused growth and metabolism variations in bioreactor fermentations. By forming pellets, the ΔAgkipA mutant created a tank environment with low-viscosity, low shear stress and high dissolved oxygen tension, leading to high production of aspergiolide A (121.7 ± 2.3 mg/L), which was 82.2% higher than the wild type. Conclusions A new strategy for shaping fungal morphology by modifying polarized growth genes was applied in submerged fermentation in bioreactor. This work provides useful information of shaping fungal morphology for submerged fermentation by genetically modification, which could be valuable for morphology improvement of industrial filamentous fungi. PMID:24886193

  18. Eugenics, genetics, and the minority group model of disabilities: implications for social work advocacy.

    PubMed

    O'Brien, Gerald V

    2011-10-01

    In the United States, genetic research, as well as policy and practice innovations based on this research, has expanded greatly over the past few decades. This expansion is indicated, for example, by the mapping of the human genome, an expansion of genetic counseling, and other biogenetic research. Also, a disability rights movement that in many ways parallels other "minority" rights campaigns has expanded. The coexistence of these developments poses intriguing challenges for social work that the profession has yet to address in a meaningful way. These issues are especially pertinent for social work professionals in the crucial role as advocates for marginalized populations. This article describes some ofthe concerns of disability rights activists relative to genetic innovations and goals as well as the instrumental role of the social work community in this important debate.

  19. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems.

    PubMed

    Araújo, Luciano V; Malkowski, Simon; Braghetto, Kelly R; Passos-Bueno, Maria R; Zatz, Mayana; Pu, Calton; Ferreira, João E

    2011-12-22

    Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.

  20. A probabilistic method for testing and estimating selection differences between populations.

    PubMed

    He, Yungang; Wang, Minxian; Huang, Xin; Li, Ran; Xu, Hongyang; Xu, Shuhua; Jin, Li

    2015-12-01

    Human populations around the world encounter various environmental challenges and, consequently, develop genetic adaptations to different selection forces. Identifying the differences in natural selection between populations is critical for understanding the roles of specific genetic variants in evolutionary adaptation. Although numerous methods have been developed to detect genetic loci under recent directional selection, a probabilistic solution for testing and quantifying selection differences between populations is lacking. Here we report the development of a probabilistic method for testing and estimating selection differences between populations. By use of a probabilistic model of genetic drift and selection, we showed that logarithm odds ratios of allele frequencies provide estimates of the differences in selection coefficients between populations. The estimates approximate a normal distribution, and variance can be estimated using genome-wide variants. This allows us to quantify differences in selection coefficients and to determine the confidence intervals of the estimate. Our work also revealed the link between genetic association testing and hypothesis testing of selection differences. It therefore supplies a solution for hypothesis testing of selection differences. This method was applied to a genome-wide data analysis of Han and Tibetan populations. The results confirmed that both the EPAS1 and EGLN1 genes are under statistically different selection in Han and Tibetan populations. We further estimated differences in the selection coefficients for genetic variants involved in melanin formation and determined their confidence intervals between continental population groups. Application of the method to empirical data demonstrated the outstanding capability of this novel approach for testing and quantifying differences in natural selection. © 2015 He et al.; Published by Cold Spring Harbor Laboratory Press.

  1. A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems

    PubMed Central

    2011-01-01

    Background Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes. Results This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra. Conclusions This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces. PMID:22369688

  2. Unraveling the genetic history of the European wild goats

    NASA Astrophysics Data System (ADS)

    Ureña, I.; Ersmark, E.; Samaniego, J. A.; Galindo-Pellicena, M. A.; Crégut-Bonnoure, E.; Bolívar, H.; Gómez-Olivencia, A.; Rios-Garaizar, J.; Garate, D.; Dalén, L.; Arsuaga, J. L.; Valdiosera, C. E.

    2018-04-01

    The population history of the Iberian wild goat and the Alpine ibex has been closely related to that of humans since the Palaeolithic. Current molecular and paleontological studies differ substantially on the phylogenetic origin of the European wild goats, possibly due the loss of genetic variation through time. We investigated the phylogenetic relationship between the Alpine ibex (Capra ibex) and the Iberian wild goat (Capra pyrenaica) including different Iberian wild goat subspecies by applying ancient DNA techniques combined with Next Generation Sequencing technologies. We analysed the cytochrome b gene of the mitochondrial genome in 33 ancient and modern European wild goats from Spain and France together with publicly available genetic information of modern wild goats. This work uncovers for the first time ancient genetic information of the Iberian wild goat and the Alpine ibex, spanning a time range of approximately 40,000 years to the present. Our results suggest genetic continuity between ancient and modern populations and indicate a monophyletic origin of the Alpine ibex and the Iberian wild goat when compared to other Capra species. The monophyly of both species is in agreement with other molecular studies based only on modern populations, therefore supporting one-wave migration of wild goats into Western Europe followed by possible allopatric speciation. We observe three major clades of wild goats in Western Europe: Capra ibex, Capra pyrenaica pyrenaica and the group containing the subspecies Capra pyrenaica hispanica and Capra pyrenaica victoriae. This genetic structure recognizes the distinctiveness of the bucardo (C. p. pyrenaica) from the rest of Iberian wild goats and thus supports the idea that this group is an Evolutionary Significant Unit. The divergence time estimated here indicates an almost contemporaneous split between the three clades around 50,000-90,000 years BP.

  3. Genetic Algorithms for Multiple-Choice Problems

    NASA Astrophysics Data System (ADS)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  4. Characterization and genetic variability of feed-borne and clinical animal/human Aspergillus fumigatus strains using molecular markers.

    PubMed

    Pena, Gabriela A; Coelho, Irene; Reynoso, María M; Soleiro, Carla; Cavaglieri, Lilia R

    2015-09-01

    Aspergillus fumigatus, the major etiological agent of human and animal aspergillosis, is a toxigenic fungus largely regarded as a single species by macroscopic and microscopic features. However, molecular studies have demonstrated that several morphologically identified A. fumigatus strains might be genetically distinct. This work was aimed to apply PCR-restriction length fragment polymorphisms (PCR-RFLP) and random amplification of polymorphic DNA (RAPD) molecular markers to characterize a set of feed-borne and clinical A. fumigatus sensu lato strains isolated from Argentina and Brazil and to determine and compare their genetic variability. All A. fumigatus strains had the same band profile and those typical of A. fumigatus sensu stricto positive controls by PCR-RFLP. Moreover, all Argentinian and Brazilian strains typified by RAPD showed similar band patterns to each other and to A. fumigatus sensu stricto reference strains regardless of their isolation source (animal feeds or human/animal clinical cases) and geographic origin. Genetic similarity coefficients ranged from 0.61 to 1.00, but almost all isolates showed 78% of genetic similarly suggesting that genetic variability was found at intraspecific level. Finally, benA sequencing confirmed its identification as A. fumigatus sensu stricto species. These results suggest that A. fumigatus sensu stricto is a predominant species into Aspergillus section Fumigati found in animal environments as well as in human/animal clinical cases, while other species may be rarely isolated. The strains involved in human and animal aspergillosis could come from the environment where this fungus is frequently found. Rural workers and animals would be constantly exposed. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  6. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  7. Amplifying Riboswitch Signal Output using Cellular Wiring

    DTIC Science & Technology

    2017-01-30

    riboswitches are developed within a specific genetic context. This becomes challenging when using a riboswitch to control a reporter gene that it was...survive well outside of controlled environmental conditions. Biological circuits utilize molecules that connect different genetic ‘components’, so that the...engineering to construct genetic logic gates to form genetic programs within and between cells.8-10,12-14 We have applied biological circuitry to

  8. Developing a Model of Advanced Training to Promote Career Advancement for Certified Genetic Counselors: An Investigation of Expanded Skills, Advanced Training Paths, and Professional Opportunities.

    PubMed

    Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N

    2016-08-01

    There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.

  9. A guide to the contained use of plant virus infectious clones.

    PubMed

    Brewer, Helen C; Hird, Diane L; Bailey, Andy M; Seal, Susan E; Foster, Gary D

    2018-04-01

    Plant virus infectious clones are important tools with wide-ranging applications in different areas of biology and medicine. Their uses in plant pathology include the study of plant-virus interactions, and screening of germplasm as part of prebreeding programmes for virus resistance. They can also be modified to induce transient plant gene silencing (Virus Induced Gene Silencing - VIGS) and as expression vectors for plant or exogenous proteins, with applications in both plant pathology and more generally for the study of plant gene function. Plant viruses are also increasingly being investigated as expression vectors for in planta production of pharmaceutical products, known as molecular farming. However, plant virus infectious clones may pose a risk to the environment due to their ability to reconstitute fully functional, transmissible viruses. These risks arise from both their inherent pathogenicity and the effect of any introduced genetic modifications. Effective containment measures are therefore required. There has been no single comprehensive review of the biosafety considerations for the contained use of genetically modified plant viruses, despite their increasing importance across many biological fields. This review therefore explores the biosafety considerations for working with genetically modified plant viruses in contained environments, with focus on plant growth facilities. It includes regulatory frameworks, risk assessment, assignment of biosafety levels, facility features and working practices. The review is based on international guidance together with information provided by plant virus researchers. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  10. EHR based Genetic Testing Knowledge Base (iGTKB) Development

    PubMed Central

    2015-01-01

    Background The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). Methods We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Results Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. Conclusions In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics. PMID:26606281

  11. EHR based Genetic Testing Knowledge Base (iGTKB) Development.

    PubMed

    Zhu, Qian; Liu, Hongfang; Chute, Christopher G; Ferber, Matthew

    2015-01-01

    The gap between a large growing number of genetic tests and a suboptimal clinical workflow of incorporating these tests into regular clinical practice poses barriers to effective reliance on advanced genetic technologies to improve quality of healthcare. A promising solution to fill this gap is to develop an intelligent genetic test recommendation system that not only can provide a comprehensive view of genetic tests as education resources, but also can recommend the most appropriate genetic tests to patients based on clinical evidence. In this study, we developed an EHR based Genetic Testing Knowledge Base for Individualized Medicine (iGTKB). We extracted genetic testing information and patient medical records from EHR systems at Mayo Clinic. Clinical features have been semi-automatically annotated from the clinical notes by applying a Natural Language Processing (NLP) tool, MedTagger suite. To prioritize clinical features for each genetic test, we compared odds ratio across four population groups. Genetic tests, genetic disorders and clinical features with their odds ratios have been applied to establish iGTKB, which is to be integrated into the Genetic Testing Ontology (GTO). Overall, there are five genetic tests operated with sample size greater than 100 in 2013 at Mayo Clinic. A total of 1,450 patients who was tested by one of the five genetic tests have been selected. We assembled 243 clinical features from the Human Phenotype Ontology (HPO) for these five genetic tests. There are 60 clinical features with at least one mention in clinical notes of patients taking the test. Twenty-eight clinical features with high odds ratio (greater than 1) have been selected as dominant features and deposited into iGTKB with their associated information about genetic tests and genetic disorders. In this study, we developed an EHR based genetic testing knowledge base, iGTKB. iGTKB will be integrated into the GTO by providing relevant clinical evidence, and ultimately to support development of genetic testing recommendation system, iGenetics.

  12. Confronting the stigma of eugenics: genetics, demography and the problems of population.

    PubMed

    Ramsden, Edmund

    2009-12-01

    Building upon the work of Thomas Gieryn and Erving Goffman, this paper will explore how the concepts of stigma and boundary work can be usefully applied to history of population science. Having been closely aligned to eugenics in the early 20th century, from the 1930s both demographers and geneticists began to establish a boundary between their own disciplines and eugenic ideology. The eugenics movement responded to this process of stigmatization. Through strategies defined by Goffman as 'disclosure' and 'concealment', stigma was managed, and a limited space for eugenics was retained in science and policy. Yet by the 1960s, a revitalized eugenics movement was bringing leading social and biological scientists together through the study of the genetic demography of characteristics such as intelligence. The success of this programme of 'stigma transformation' resulted from its ability to allow geneticists and demographers to conceive of eugenic improvement in ways that seemed consistent with the ideals of individuality, diversity and liberty. In doing so, it provided them with an alternative, and a challenge, to more radical and controversial programmes to realize an optimal genotype and population. The processes of stigma attribution and management are, however, ongoing, and since the rise of the nature-nurture controversy in the 1970s, the use of eugenics as a 'stigma symbol' has prevailed.

  13. Rotation-Induced Macromolecular Spooling of DNA

    NASA Astrophysics Data System (ADS)

    Shendruk, Tyler N.; Sean, David; Berard, Daniel J.; Wolf, Julian; Dragoman, Justin; Battat, Sophie; Slater, Gary W.; Leslie, Sabrina R.

    2017-07-01

    Genetic information is stored in a linear sequence of base pairs; however, thermal fluctuations and complex DNA conformations such as folds and loops make it challenging to order genomic material for in vitro analysis. In this work, we discover that rotation-induced macromolecular spooling of DNA around a rotating microwire can monotonically order genomic bases, overcoming this challenge. We use single-molecule fluorescence microscopy to directly visualize long DNA strands deforming and elongating in shear flow near a rotating microwire, in agreement with numerical simulations. While untethered DNA is observed to elongate substantially, in agreement with our theory and numerical simulations, strong extension of DNA becomes possible by introducing tethering. For the case of tethered polymers, we show that increasing the rotation rate can deterministically spool a substantial portion of the chain into a fully stretched, single-file conformation. When applied to DNA, the fraction of genetic information sequentially ordered on the microwire surface will increase with the contour length, despite the increased entropy. This ability to handle long strands of DNA is in contrast to modern DNA sample preparation technologies for sequencing and mapping, which are typically restricted to comparatively short strands, resulting in challenges in reconstructing the genome. Thus, in addition to discovering new rotation-induced macromolecular dynamics, this work inspires new approaches to handling genomic-length DNA strands.

  14. Strain gage selection in loads equations using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  15. Learning about Parkinson's Disease

    MedlinePlus

    ... having genetic testing can learn more about their risk for Parkinson's disease and the availability and accuracy of genetic testing for this disease by setting up an appointment with a genetics health professional. Genetic professionals work as members of health ...

  16. The Evolution of Genetics: Alzheimer's and Parkinson's Diseases.

    PubMed

    Singleton, Andrew; Hardy, John

    2016-06-15

    Genetic discoveries underlie the majority of the current thinking in neurodegenerative disease. This work has been driven by the significant gains made in identifying causal mutations; however, the translation of genetic causes of disease into pathobiological understanding remains a challenge. The application of a second generation of genetics methods allows the dissection of moderate and mild genetic risk factors for disease. This requires new thinking in two key areas: what constitutes proof of pathogenicity, and how do we translate these findings to biological understanding. Here we describe the progress and ongoing evolution in genetics. We describe a view that rejects the tradition that genetic proof has to be absolute before functional characterization and centers on a multi-dimensional approach integrating genetics, reference data, and functional work. We also argue that these challenges cannot be efficiently met by traditional hypothesis-driven methods but that high content system-wide efforts are required. Published by Elsevier Inc.

  17. Genetic mapping uncovers cis-regulatory landscape of RNA editing.

    PubMed

    Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy

    2015-09-16

    Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.

  18. Approximation algorithms for a genetic diagnostics problem.

    PubMed

    Kosaraju, S R; Schäffer, A A; Biesecker, L G

    1998-01-01

    We define and study a combinatorial problem called WEIGHTED DIAGNOSTIC COVER (WDC) that models the use of a laboratory technique called genotyping in the diagnosis of an important class of chromosomal aberrations. An optimal solution to WDC would enable us to define a genetic assay that maximizes the diagnostic power for a specified cost of laboratory work. We develop approximation algorithms for WDC by making use of the well-known problem SET COVER for which the greedy heuristic has been extensively studied. We prove worst-case performance bounds on the greedy heuristic for WDC and for another heuristic we call directional greedy. We implemented both heuristics. We also implemented a local search heuristic that takes the solutions obtained by greedy and dir-greedy and applies swaps until they are locally optimal. We report their performance on a real data set that is representative of the options that a clinical geneticist faces for the real diagnostic problem. Many open problems related to WDC remain, both of theoretical interest and practical importance.

  19. Directed Field Ionization: A Genetic Algorithm for Evolving Electric Field Pulses

    NASA Astrophysics Data System (ADS)

    Kang, Xinyue; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-04-01

    When an ionizing electric field pulse is applied to a Rydberg atom, the electron's amplitude traverses many avoided crossings among the Stark levels as the field increases. The resulting superposition determines the shape of the time resolved field ionization spectrum at a detector. An engineered electric field pulse that sweeps back and forth through avoided crossings can control the phase evolution so as to determine the electron's path through the Stark map. In the region of n = 35 in rubidium there are hundreds of potential avoided crossings; this yields a large space of possible pulses. We use a genetic algorithm to search this space and evolve electric field pulses to direct the ionization of the Rydberg electron in rubidium. We present the algorithm along with a comparison of simulated and experimental results. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.

  20. Identifying disease polymorphisms from case-control genetic association data.

    PubMed

    Park, L

    2010-12-01

    In case-control association studies, it is typical to observe several associated polymorphisms in a gene region. Often the most significantly associated polymorphism is considered to be the disease polymorphism; however, it is not clear whether it is the disease polymorphism or there is more than one disease polymorphism in the gene region. Currently, there is no method that can handle these problems based on the linkage disequilibrium (LD) relationship between polymorphisms. To distinguish real disease polymorphisms from markers in LD, a method that can detect disease polymorphisms in a gene region has been developed. Relying on the LD between polymorphisms in controls, the proposed method utilizes model-based likelihood ratio tests to find disease polymorphisms. This method shows reliable Type I and Type II error rates when sample sizes are large enough, and works better with re-sequenced data. Applying this method to fine mapping using re-sequencing or dense genotyping data would provide important information regarding the genetic architecture of complex traits.

  1. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  2. A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate.

    PubMed

    Del Vecchio, Domitilla; Abdallah, Hussein; Qian, Yili; Collins, James J

    2017-01-25

    To artificially reprogram cell fate, experimentalists manipulate the gene regulatory networks (GRNs) that maintain a cell's phenotype. In practice, reprogramming is often performed by constant overexpression of specific transcription factors (TFs). This process can be unreliable and inefficient. Here, we address this problem by introducing a new approach to reprogramming based on mathematical analysis. We demonstrate that reprogramming GRNs using constant overexpression may not succeed in general. Instead, we propose an alternative reprogramming strategy: a synthetic genetic feedback controller that dynamically steers the concentration of a GRN's key TFs to any desired value. The controller works by adjusting TF expression based on the discrepancy between desired and actual TF concentrations. Theory predicts that this reprogramming strategy is guaranteed to succeed, and its performance is independent of the GRN's structure and parameters, provided that feedback gain is sufficiently high. As a case study, we apply the controller to a model of induced pluripotency in stem cells. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Blood meal analysis of tabanid fly after it biting the rare Sumatran rhinoceros

    PubMed Central

    Rovie-Ryan, Jeffrine Japning; Zainuddin, Zainal Zahari; Marni, Wahap; Ahmad, Abdul Hamid; Ambu, Laurentius N.; Payne, Junaidi

    2013-01-01

    Objective To demonstrate a noninvasive large mammalian genetic sampling method using blood meal obtained from a tabanid fly. Methods Blood meal was recovered from the abdomen of an engorged tabanid fly (Haematopota sp.) which was captured immediately after biting a Sumatran rhino in captivity. The blood was applied on to a Whatman FTA® blood card. Subsequent laboratory work was conducted to extract, amplify and sequence the DNA from the sample. Validation was done by sampling the hair follicles and blood samples from the rhinoceros and subjecting it to the same laboratory process. Results BLAST search and constructed phylogenetic trees confirmed the blood meal samples were indeed from the rhino. Conclusions This method could be used in the field application to noninvasively collect genetic samples. Collection of tabanids and other haematophagous arthropods (e.g. mosquitoes and ticks) and other blood-sucking parasites (e.g. leeches and worms) could also provide information on vector-borne diseases. PMID:23593586

  4. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  5. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    PubMed

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders.

  6. DNA barcoding coupled to HRM analysis as a new and simple tool for the authentication of Gadidae fish species.

    PubMed

    Fernandes, Telmo J R; Costa, Joana; Oliveira, M Beatriz P P; Mafra, Isabel

    2017-09-01

    This work aimed to exploit the use of DNA mini-barcodes combined with high resolution melting (HRM) for the authentication of gadoid species: Atlantic cod (Gadus morhua), Pacific cod (Gadus macrocephalus), Alaska pollock (Theragra chalcogramma) and saithe (Pollachius virens). Two DNA barcode regions, namely cytochrome c oxidase subunit I (COI) and cytochrome b (cytb), were analysed in silico to identify genetic variability among the four species and used, subsequently, to develop a real-time PCR method coupled with HRM analysis. The cytb mini-barcode enabled best discrimination of the target species with a high level of confidence (99.3%). The approach was applied successfully to identify gadoid species in 30 fish-containing foods, 30% of which were not as declared on the label. Herein, a novel approach for rapid, simple and cost-effective discrimination/clustering, as a tool to authenticate Gadidae fish species, according to their genetic relationship, is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures

    PubMed Central

    Wang, Xinchen; Tucker, Nathan R; Rizki, Gizem; Mills, Robert; Krijger, Peter HL; de Wit, Elzo; Subramanian, Vidya; Bartell, Eric; Nguyen, Xinh-Xinh; Ye, Jiangchuan; Leyton-Mange, Jordan; Dolmatova, Elena V; van der Harst, Pim; de Laat, Wouter; Ellinor, Patrick T; Newton-Cheh, Christopher; Milan, David J; Kellis, Manolis; Boyer, Laurie A

    2016-01-01

    Genetic variants identified by genome-wide association studies explain only a modest proportion of heritability, suggesting that meaningful associations lie 'hidden' below current thresholds. Here, we integrate information from association studies with epigenomic maps to demonstrate that enhancers significantly overlap known loci associated with the cardiac QT interval and QRS duration. We apply functional criteria to identify loci associated with QT interval that do not meet genome-wide significance and are missed by existing studies. We demonstrate that these 'sub-threshold' signals represent novel loci, and that epigenomic maps are effective at discriminating true biological signals from noise. We experimentally validate the molecular, gene-regulatory, cellular and organismal phenotypes of these sub-threshold loci, demonstrating that most sub-threshold loci have regulatory consequences and that genetic perturbation of nearby genes causes cardiac phenotypes in mouse. Our work provides a general approach for improving the detection of novel loci associated with complex human traits. DOI: http://dx.doi.org/10.7554/eLife.10557.001 PMID:27162171

  8. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences.

    PubMed

    Lee, David; La Mura, Maurizio; Allnutt, Theo R; Powell, Wayne

    2009-02-02

    The most common method of GMO detection is based upon the amplification of GMO-specific DNA amplicons using the polymerase chain reaction (PCR). Here we have applied the loop-mediated isothermal amplification (LAMP) method to amplify GMO-related DNA sequences, 'internal' commonly-used motifs for controlling transgene expression and event-specific (plant-transgene) junctions. We have tested the specificity and sensitivity of the technique for use in GMO studies. Results show that detection of 0.01% GMO in equivalent background DNA was possible and dilutions of template suggest that detection from single copies of the template may be possible using LAMP. This work shows that GMO detection can be carried out using LAMP for routine screening as well as for specific events detection. Moreover, the sensitivity and ability to amplify targets, even with a high background of DNA, here demonstrated, highlights the advantages of this isothermal amplification when applied for GMO detection.

  9. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach☆

    PubMed Central

    Catalano, Sarah R.; Whittington, Ian D.; Donnellan, Stephen C.; Gillanders, Bronwyn M.

    2013-01-01

    We review the use of parasites as biological tags of marine fishes and cephalopods in host population structure studies. The majority of the work published has focused on marine fish and either single parasite species or more recently, whole parasite assemblages, as biological tags. There is representation of host organisms and parasites from a diverse range of taxonomic groups, although focus has primarily been on host species of commercial importance. In contrast, few studies have used parasites as tags to assess cephalopod population structure, even though records of parasites infecting cephalopods are well-documented. Squid species are the only cephalopod hosts for which parasites as biological tags have been applied, with anisakid nematode larvae and metacestodes being the parasite taxa most frequently used. Following a brief insight into the importance of accurate parasite identification, the population studies that have used parasites as biological tags for marine fishes and cephalopods are reviewed, including comments on the dicyemid mesozoans. The advancement of molecular genetic techniques is discussed in regards to the new ways parasite genetic data can be incorporated into population structure studies, alongside host population genetic analyses, followed by an update on the guidelines for selecting a parasite species as a reliable tag candidate. As multiple techniques and methods can be used to assess the population structure of marine organisms (e.g. artificial tags, phenotypic characters, biometrics, life history, genetics, otolith microchemistry and parasitological data), we conclude by commenting on a holistic approach to allow for a deeper insight into population structuring. PMID:25197624

  10. Monitoring the presence of genetically modified food on the market of the Republic of Croatia.

    PubMed

    Cattunar, Albert; Capak, Krunoslav; Novak, Jelena Zafran; Mićović, Vladimir; Doko-Jelinić, Jagoda; Malatestinić, Dulija

    2011-12-01

    From the beginning of the human race people have been applying different methods to change the genetic material of either plants or animals in order to increase their yield as well as to improve the quality and quantity of food. Genetically modified organism (GMO) means an organism in which the genetic material has been altered in a way that does not occur naturally by mating and/or natural recombination. Analysing the presence of GMO in food is done by detecting the presence of either specific DNA sequences inserted in the genome of transgenic organism, or detecting proteins as a result of the expression of the inserted DNA. In this work food testing for the presence of genetically modified organisms was conducted during the period from 2004 to 2007 in the GMO laboratory of the Croatian National Institute of Public Health. According to the regulations, among the samples in which the presence of GMO was detected, all those which had more than 0.9% of GMO content were either rejected from the border or removed from the market, because such GM food has to be appropriately labelled. Among the food samples which were analysed in 2004: 127 (2.37%) of a total of 1226 samples contained more than 0.9% of GMOs; in 2005 there was only one in 512 (0.20%) samples in total; in 2006 there were 4 out of 404 samples (0.99%), and in 2007: 7 of a total of 655 samples (1.07%) had GMO content above the allowed threshold of 0.9%.

  11. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    PubMed

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases

    PubMed Central

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J.; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-01-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%–5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. PMID:24989021

  13. The Forest Genetic Resources Working Group of the North American Forestry Commission (FAO)

    Treesearch

    Ronald C. Schmidtling

    2002-01-01

    The Forest Genetic Resources Working Group (FGRWG) is one of seven working groups established by the North American Forest Commission (NAFC). The NAFC is one of six Forest Commissions established by the Food and Agriculture Organization (F-40). The FGRWG was established by the NAFC in 1961 as the Working Group on Forest Tree Improvement but went through several-changes...

  14. Genetic privacy in sports: clearing the hurdles.

    PubMed

    Callier, Shawneequa

    2012-12-01

    As genomic medicine continues to advance and inform clinical care, knowledge gained is likely to influence sports medicine and training practices. Susceptibility to injury, sudden cardiac failure, and other serious conditions may one day be tackled on a subclinical level through genetic testing programs. In addition, athletes may increasingly consider using genetic testing services to maximize their performance potential. This paper assesses the role of privacy and genetic discrimination laws that would apply to athletes who engage in genetic testing and the limits of these protections.

  15. Genetics/Silviculture Workshop Proceedings; Wenatchee, WA; August 27-31, 1990

    Treesearch

    Richard G. Miller; Dennis D. Murphy

    1990-01-01

    The primary objective of the 1990 Genetics/Silviculture Workshop was to review and discuss the virtues, concerns, and opportunities for applying the five regeneration harvest methods and their variations in forest management. The first two papers discuss population dynamics and the importance of understanding genetic variation. These are followed by the moderator'...

  16. Standards of Practice: Applying Genetics and Genomics Resources to Oncology
.

    PubMed

    Kerber, Alice S; Ledbetter, Nancy J

    2017-04-01

    Knowledge about genetics and genomics and its application to oncology care is rapidly expanding and evolving. As a result, oncology nurses at all levels must develop and maintain their knowledge of genetics and genomics, as well as be aware of resources to guide practice. This article focuses on implementation of the standards described in the updated Genetics/Genomics Nursing: Scope and Standards of Practice by the basic practitioner.
.

  17. [Application of case-based method in genetics and eugenics teaching].

    PubMed

    Li, Ya-Xuan; Zhao, Xin; Zhang, Fei-Xiong; Hu, Ying-Kao; Yan, Yue-Ming; Cai, Min-Hua; Li, Xiao-Hui

    2012-05-01

    Genetics and Eugenics is a cross-discipline between genetics and eugenics. It is a common curriculum in many Chinese universities. In order to increase the learning interest, we introduced case teaching method and got a better teaching effect. Based on our teaching practices, we summarized some experiences about this subject. In this article, the main problem of case-based method applied in Genetics and Eugenics teaching was discussed.

  18. 45 CFR 148.102 - Scope, applicability, and effective dates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... against discrimination based on genetic information apply to all issuers of individual health insurance... newborns), and § 148.180 (prohibition of health discrimination based on genetic information) of this part...

  19. 45 CFR 148.102 - Scope, applicability, and effective dates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... against discrimination based on genetic information apply to all issuers of individual health insurance... newborns), and § 148.180 (prohibition of health discrimination based on genetic information) of this part...

  20. Surrogate motherhood as a medical treatment procedure for women's infertility.

    PubMed

    Jovic, Olga S

    2011-03-01

    The content of this work is conceived on the research of the consequences of surrogate motherhood as a process of assisted procreation, which represent a way of parenthood in cases when it is not possible to realize parenthood through a natural way. Surrogate motherhood is a process in which a woman (surrogate mother) agrees to carry a pregnancy with the intent to give the child to the couple with whom she has made a contract on surrogate maternity after the birth. This process of conception and birth makes the determination of the child's origin on its mother's side hard to determine, because of the distinction of the genetic and gestation phases of the two women. The concept of surrogate motherhood is to appear in two forms, depending on the existence or the non-existence of the genetic link between the surrogate mother and the child she gives birth to. There are gestation (full) and genetic (partial) surrogates each with different modalities and legal and ethical implications. In Serbia, Infertility Treatment and the Bio-medically Assisted Procreation Act from 2009 explicitly forbids surrogate motherhood, despite the fact that an infertile couple decides to use it, as a rule, after having tried all other treatment procedures, in cases when there is a diagnosis but the conventional treatment applied has not produced the desired results. Given the fact that no one has the right to ignore the sufferings of people who cannot procreate naturally, the medical practice and legal science in our country plead for a formulation of a legal framework in which to apply surrogate motherhood as an infertility treatment, under particular conditions.

  1. Genetic programs constructed from layered logic gates in single cells

    PubMed Central

    Moon, Tae Seok; Lou, Chunbo; Tamsir, Alvin; Stanton, Brynne C.; Voigt, Christopher A.

    2014-01-01

    Genetic programs function to integrate environmental sensors, implement signal processing algorithms and control expression dynamics1. These programs consist of integrated genetic circuits that individually implement operations ranging from digital logic to dynamic circuits2–6, and they have been used in various cellular engineering applications, including the implementation of process control in metabolic networks and the coordination of spatial differentiation in artificial tissues. A key limitation is that the circuits are based on biochemical interactions occurring in the confined volume of the cell, so the size of programs has been limited to a few circuits1,7. Here we apply part mining and directed evolution to build a set of transcriptional AND gates in Escherichia coli. Each AND gate integrates two promoter inputs and controls one promoter output. This allows the gates to be layered by having the output promoter of an upstream circuit serve as the input promoter for a downstream circuit. Each gate consists of a transcription factor that requires a second chaperone protein to activate the output promoter. Multiple activator–chaperone pairs are identified from type III secretion pathways in different strains of bacteria. Directed evolution is applied to increase the dynamic range and orthogonality of the circuits. These gates are connected in different permutations to form programs, the largest of which is a 4-input AND gate that consists of 3 circuits that integrate 4 inducible systems, thus requiring 11 regulatory proteins. Measuring the performance of individual gates is sufficient to capture the behaviour of the complete program. Errors in the output due to delays (faults), a common problem for layered circuits, are not observed. This work demonstrates the successful layering of orthogonal logic gates, a design strategy that could enable the construction of large, integrated circuits in single cells. PMID:23041931

  2. A hybrid correlation analysis with application to imaging genetics

    NASA Astrophysics Data System (ADS)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding the correlation between brain imaging and genomic data.

  3. A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5.

    PubMed

    Lev, Ifat; Shemesh, Keren; Volpe, Marina; Sau, Soumitra; Levinton, Nelly; Molco, Maya; Singh, Shivani; Liefshitz, Batia; Ben Aroya, Shay; Kupiec, Martin

    2017-07-01

    The vast majority of processes within the cell are carried out by proteins working in conjunction. The Yeast Two-Hybrid (Y2H) methodology allows the detection of physical interactions between any two interacting proteins. Here, we describe a novel systematic genetic methodology, "Reverse Yeast Two-Hybrid Array" (RYTHA), that allows the identification of proteins required for modulating the physical interaction between two given proteins. Our assay starts with a yeast strain in which the physical interaction of interest can be detected by growth on media lacking histidine, in the context of the Y2H methodology. By combining the synthetic genetic array technology, we can systematically screen mutant libraries of the yeast Saccharomyces cerevisiae to identify trans -acting mutations that disrupt the physical interaction of interest. We apply this novel method in a screen for mutants that disrupt the interaction between the N-terminus of Elg1 and the Slx5 protein. Elg1 is part of an alternative replication factor C-like complex that unloads PCNA during DNA replication and repair. Slx5 forms, together with Slx8, a SUMO-targeted ubiquitin ligase (STUbL) believed to send proteins to degradation. Our results show that the interaction requires both the STUbL activity and the PCNA unloading by Elg1, and identify topoisomerase I DNA-protein cross-links as a major factor in separating the two activities. Thus, we demonstrate that RYTHA can be applied to gain insights about particular pathways in yeast, by uncovering the connection between the proteasomal ubiquitin-dependent degradation pathway, DNA replication, and repair machinery, which can be separated by the topoisomerase-mediated cross-links to DNA. Copyright © 2017 by the Genetics Society of America.

  4. A multiple mediator analysis approach to quantify the effects of the ADH1B and ALDH2 genes on hepatocellular carcinoma risk.

    PubMed

    Shih, Stephannie; Huang, Yen-Tsung; Yang, Hwai-I

    2018-06-01

    Previous work suggested a genetic component affecting the risk of hepatocellular carcinoma (HCC) and mediation analyses have elucidated potential indirect pathways of these genetic effects. Specifically, the effects of alcohol dehydrogenase (ADH1B) and aldehyde dehydrogenase (ALDH2) genes on HCC risk vary based on alcohol consumption habits. However, alcohol consumption may not be the only mediator in the identified pathway: factors related to alcohol consumption may contribute to the same indirect pathway. Thus, we developed a multimediator model to quantify the genetic effects on HCC risk through sequential dichotomous mediators under the counterfactual framework. Our method provided a closed form formula for the mediation effects through different indirect paths, which requires no assumption for the rarity of outcome. In simulation studies of a finite sample, we presented the utility of the method with the variance of the effects estimated using the delta method and bootstrapping. We applied our method to data from participants in Taiwan (580 cases and 3,207 controls) and quantified the mediation effects of single nucleotide polymorphisms (SNPs) in the ADH1B and ALDH2 genes on HCC through alcohol consumption (yes/no) and high alanine transaminase (ALT) levels (greater than or equal to 45 U/L or below 45 U/L). Assuming a dominant risk model, we identified that the SNPs' effects through alcohol consumption is more significant than through ALT levels on HCC risk. This new method provides insight to the magnitude of various casual mechanisms as a closed form solution and can be readily applied in other genomic studies. © 2018 WILEY PERIODICALS, INC.

  5. A Gradient Taguchi Method for Engineering Optimization

    NASA Astrophysics Data System (ADS)

    Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song

    2017-10-01

    To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.

  6. Catalysis and biocatalysis program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The annual report presents the fiscal year (FY) 1990 research activities and accomplishments for the Catalysis and Biocatalysis Program of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The mission of the AICD is to create a balanced program of high risk, long term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. The Catalysis and Biocatalysis Program's technical activities were organized into five work elements: the Molecular Modeling and Catalysis by Design element; the Applied Microbiology and Genetics element; the Bioprocess Engineering element; the Separations and Novel Chemical Processes element; and the Process Design and Analysis element.

  7. Identification of Direct Protein Targets of Small Molecules

    PubMed Central

    2010-01-01

    Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area. PMID:21077692

  8. [Spontaneous models of human diseases in dogs: ichthyoses as an example].

    PubMed

    André, Catherine; Grall, Anaïs; Guaguere, Éric; Thomas, Anne; Galibert, Francis

    2013-06-01

    Ichthyoses encompass a heterogeneous group of genodermatoses characterized by abnormal desquamation over the entire body due to defects of the terminal differentiation of keratinocytes and desquamation, which occur in the upper layer of the epidermis. Even though in humans more than 40 genes have already been identified, the genetic causes of several forms remain unknown and are difficult to identify in Humans. Strikingly, several purebred dogs are also affected by specific forms of ichthyoses. In the Golden retriever dog breed, an autosomal recessive form of ichthyosis, resembling human autosomal recessive congenital ichthyoses, has recently been diagnosed with a high incidence. We first characterized the disease occurring in the golden retriever breed and collected cases and controls. A genome-wide association study on 40 unrelated Golden retriever dogs, using the canine 49.000 SNPs (single nucleotide polymorphisms) array (Affymetrix v2), followed by statistical analyses and candidate gene sequencing, allowed to identify the causal mutation in the lipase coding PNPLA1 gene (patatin-like phospholipase domain-containing protein). Screening for alterations in the human ortholog gene in 10 autosomal recessive congenital ichthyoses families, for which no genetic cause has been identified thus far, allowed to identify two recessive mutations in the PNPLA1 protein in two families. This collaborative work between "human" and "canine" geneticists, practicians, histopathologists, biochemists and electron microscopy experts not only allowed to identify, in humans, an eighth gene for autosomal recessive congenital ichthyoses, but also allowed to highlight the function of this as-yet-unknown skin specific lipase in the lipid metabolism of the skin barrier. For veterinary medicine and breeding practices, a genetic test has been developed. These findings illustrate the importance of the discovery of relevant human orthologous canine genetic diseases, whose causes can be tracked in dog breeds more easily than in humans. Indeed, due to the selection and breeding practices applied to purebred dogs, the dog constitutes a unique species for unravelling phenotype/genotype relationships and providing new insights into human genetic diseases. This work paves the way for the identification of rare gene variants in humans that may be responsible for other keratinisation and epidermal barrier defects.

  9. Machine-learned analysis of the association of next-generation sequencing-based human TRPV1 and TRPA1 genotypes with the sensitivity to heat stimuli and topically applied capsaicin.

    PubMed

    Kringel, Dario; Geisslinger, Gerd; Resch, Eduard; Oertel, Bruno G; Thrun, Michael C; Heinemann, Sarah; Lötsch, Jörn

    2018-03-27

    Heat pain and its modulation by capsaicin varies among subjects in experimental and clinical settings. A plausible cause is a genetic component, of which TRPV1 ion channels, by their response to both heat and capsaicin, are primary candidates. However, TRPA1 channels can heterodimerize with TRPV1 channels and carry genetic variants reported to modulate heat pain sensitivity. To address the role of these candidate genes in capsaicin-induced hypersensitization to heat, pain thresholds acquired before and after topical application of capsaicin and TRPA1/TRPV1 exomic sequences derived by next-generation sequencing were assessed in n = 75 healthy volunteers and the genetic information comprised 278 loci. Gaussian mixture modeling indicated 2 phenotype groups with high or low capsaicin-induced hypersensitization to heat. Unsupervised machine learning implemented as swarm-based clustering hinted at differences in the genetic pattern between these phenotype groups. Several methods of supervised machine learning implemented as random forests, adaptive boosting, k-nearest neighbors, naive Bayes, support vector machines, and for comparison, binary logistic regression predicted the phenotype group association consistently better when based on the observed genotypes than when using a random permutation of the exomic sequences. Of note, TRPA1 variants were more important for correct phenotype group association than TRPV1 variants. This indicates a role of the TRPA1 and TRPV1 next-generation sequencing-based genetic pattern in the modulation of the individual response to heat-related pain phenotypes. When considering earlier evidence that topical capsaicin can induce neuropathy-like quantitative sensory testing patterns in healthy subjects, implications for future analgesic treatments with transient receptor potential inhibitors arise.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  10. Accelerating global optimization of aerodynamic shapes using a new surrogate-assisted parallel genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Mehdi; Jahangirian, Alireza

    2017-12-01

    An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.

  11. Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: a tribute to Professor Stanley J. Peloquin (1921–2008)

    PubMed Central

    Ortiz, Rodomiro; Simon, Philipp; Jansky, Shelley; Stelly, David

    2009-01-01

    Background Emeritus Campbell-Bascom Professor Stanley J. Peloquin was an internationally renowned plant geneticist and breeder who made exceptional contributions to the quantity, quality and sustainable supply of food for the world from his innovative and extensive scientific contributions. For five decades, Dr Peloquin merged basic research in plant reproduction, cytology, cytogenetics, genetics, potato (Solanum tuberosum) improvement and education at the University of Wisconsin-Madison. Successive advances across these five decades redefined scientific comprehension of reproductive variation, its genetic control, genetic effects, evolutionary impact and utility for breeding. In concert with the International Potato Center (CIP), he and others translated the advances into application, resulting in large benefits on food production worldwide, exemplifying the importance of integrated innovative university research and graduate education to meet domestic and international needs. Scope Dr Peloquin is known to plant breeders, geneticists, international agricultural economists and potato researchers for his enthusiastic and incisive contributions to genetic enhancement of potato using haploids, 2n gametes and wild Solanum species; for his pioneering work on potato cultivation through true seed; and as mentor of a new generation of plant breeders worldwide. The genetic enhancement of potato, the fourth most important food crop worldwide, benefited significantly from expanded germplasm utilization and advanced reproductive genetic knowledge, which he and co-workers, including many former students, systematically transformed into applied breeding methods. His research on plant sexual reproduction included subjects such as haploidization and polyploidization, self- and cross-incompatibility, cytoplasmic male sterility and restorer genes, gametophytic/sporophytic heterozygosity and male fertility, as well as endosperm dosages and seed development. By defining methods of half-tetrad analysis and new cytological techniques, he elucidated modes, mechanisms and genetic controls and effects of 2n gametes in Solanum. Ramifications extend to many other crops and plants, in both basic and applied sciences. Achievements Based upon a foundation of genetics, cytogenetics and plant reproductive biology, Dr Peloquin and co-workers developed methods to use 2n gametes and haploids for breeding, and used them to move genes for important horticultural traits from wild tuber-bearing Solanum species to cultivated potato for the betterment of agriculture. The resulting potato germplasm included combinations of yield, adaptation, quality and disease resistance traits that were previously unavailable. This elite plant germplasm was utilized and distributed to 85 countries by the CIP, because it not only increased potato yields and quality, it also broadened the adaptation of potato to lowland tropical regions, where humanity has benefited from this addition to their food supply. PMID:19689972

  12. The forensic value of X-linked markers in mixed-male DNA analysis.

    PubMed

    He, HaiJun; Zha, Lagabaiyila; Cai, JinHong; Huang, Jian

    2018-05-04

    Autosomal genetic markers and Y chromosome markers have been widely applied in analysis of mixed stains at crime scenes by forensic scientists. However, true genotype combinations are often difficult to distinguish using autosomal markers when similar amounts of DNA are contributed by multiple donors. In addition, specific individuals cannot be determined by Y chromosomal markers because male relatives share the same Y chromosome. X-linked markers, possessing characteristics somewhere intermediate between autosomes and the Y chromosome, are less universally applied in criminal casework. In this paper, X markers are proposed to apply to male mixtures because their true genes can be more easily and accurately recognized than the decision of the genotypes of AS markers. In this study, an actual two-man mixed stain from a forensic case file and simulated male-mixed DNA were examined simultaneously with the X markers and autosomal markers. Finally, the actual mixture was separated successfully by the X markers, although it was unresolved by AS-STRs, and the separation ratio of the simulated mixture was much higher using Chr X tools than with AS methods. We believe X-linked markers provide significant advantages in individual discrimination of male mixtures that should be further applied to forensic work.

  13. Form Follows Function: A Model for Clinical Supervision of Genetic Counseling Students.

    PubMed

    Wherley, Colleen; Veach, Patricia McCarthy; Martyr, Meredith A; LeRoy, Bonnie S

    2015-10-01

    Supervision plays a vital role in genetic counselor training, yet models describing genetic counseling supervision processes and outcomes are lacking. This paper describes a proposed supervision model intended to provide a framework to promote comprehensive and consistent clinical supervision training for genetic counseling students. Based on the principle "form follows function," the model reflects and reinforces McCarthy Veach et al.'s empirically derived model of genetic counseling practice - the "Reciprocal Engagement Model" (REM). The REM consists of mutually interactive educational, relational, and psychosocial components. The Reciprocal Engagement Model of Supervision (REM-S) has similar components and corresponding tenets, goals, and outcomes. The 5 REM-S tenets are: Learning and applying genetic information are key; Relationship is integral to genetic counseling supervision; Student autonomy must be supported; Students are capable; and Student emotions matter. The REM-S outcomes are: Student understands and applies information to independently provide effective services, develop professionally, and engage in self-reflective practice. The 16 REM-S goals are informed by the REM of genetic counseling practice and supported by prior literature. A review of models in medicine and psychology confirms the REM-S contains supervision elements common in healthcare fields, while remaining unique to genetic counseling. The REM-S shows promise for enhancing genetic counselor supervision training and practice and for promoting research on clinical supervision. The REM-S is presented in detail along with specific examples and training and research suggestions.

  14. Self-reported psychological demands, skill discretion and decision authority at work: A twin study.

    PubMed

    Theorell, Töres; De Manzano, Örjan; Lennartsson, Anna-Karin; Pedersen, Nancy L; Ullén, Fredrik

    2016-06-01

    To examine the contribution of genetic factors to self-reported psychological demands (PD), skill discretion (SD) and decision authority (DA) and the possible importance of such influence on the association between these work variables and depressive symptoms. 11,543 participants aged 27-54 in the Swedish Twin Registry participated in a web survey. First of all, in multiple regressions, phenotypic associations between each one of the three work environment variables and depressive symptoms were analysed. Secondly, by means of classical twin analysis, the genetic contribution to PD, SD and DA was assessed. After this, cross-twin cross-trait correlations were computed between PD, SD and DA, on the one hand, and depressive symptom score, on the other hand. The genetic contribution to self-reported PD, DS and DA ranged from 18% for decision authority to 30% for skill discretion. Cross-twin cross-trait correlations were very weak (r values < .1) and non-significant for dizygotic twins, and we lacked power to analyse the genetic architecture of the phenotypic associations using bivariate twin modelling. However, substantial genetic contribution to these associations seems unlikely. CONCLUSIONS GENETIC CONTRIBUTIONS TO THE SELF-REPORTED WORK ENVIRONMENT SCORES WERE 18-30%. © 2016 the Nordic Societies of Public Health.

  15. The Significance of Content Knowledge for Informal Reasoning regarding Socioscientific Issues: Applying Genetics Knowledge to Genetic Engineering Issues

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Zeidler, Dana L.

    2005-01-01

    This study focused on informal reasoning regarding socioscientific issues. It sought to explore how content knowledge influenced the negotiation and resolution of contentious and complex scenarios based on genetic engineering. Two hundred and sixty-nine students drawn from undergraduate natural science and nonnatural science courses completed a…

  16. New Results in Astrodynamics Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Coverstone-Carroll, V.; Hartmann, J. W.; Williams, S. N.; Mason, W. J.

    1998-01-01

    Generic algorithms have gained popularity as an effective procedure for obtaining solutions to traditionally difficult space mission optimization problems. In this paper, a brief survey of the use of genetic algorithms to solve astrodynamics problems is presented and is followed by new results obtained from applying a Pareto genetic algorithm to the optimization of low-thrust interplanetary spacecraft missions.

  17. Genetic Variance in Processing Speed Drives Variation in Aging of Spatial and Memory Abilities

    ERIC Educational Resources Information Center

    Finkel, Deborah; Reynolds, Chandra A.; McArdle, John J.; Hamagami, Fumiaki; Pedersen, Nancy L.

    2009-01-01

    Previous analyses have identified a genetic contribution to the correlation between declines with age in processing speed and higher cognitive abilities. The goal of the current analysis was to apply the biometric dual change score model to consider the possibility of temporal dynamics underlying the genetic covariance between aging trajectories…

  18. Global Optimization of a Periodic System using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Stucke, David; Crespi, Vincent

    2001-03-01

    We use a novel application of a genetic algorithm global optimizatin technique to find the lowest energy structures for periodic systems. We apply this technique to colloidal crystals for several different stoichiometries of binary and trinary colloidal crystals. This application of a genetic algorithm is decribed and results of likely candidate structures are presented.

  19. The Impact of a Web-Based Research Simulation in Bioinformatics on Students' Understanding of Genetics

    ERIC Educational Resources Information Center

    Gelbart, Hadas; Brill, Gilat; Yarden, Anat

    2009-01-01

    Providing learners with opportunities to engage in activities similar to those carried out by scientists was addressed in a web-based research simulation in genetics developed for high school biology students. The research simulation enables learners to apply their genetics knowledge while giving them an opportunity to participate in an authentic…

  20. Invasion success in Cogongrass (Imperata cylindrica): A population genetic approach exploring genetic diversity and historical introductions

    Treesearch

    Rima D. Lucardi; Lisa E. Wallace; Gary N. Ervin

    2014-01-01

    Propagule pressure significantly contributes to and limits the potential success of a biological invasion, especially during transport, introduction, and establishment. Events such as multiple introductions of foreign parent material and gene flow among them can increase genetic diversity in founding populations, often leading to greater invasion success. We applied...

  1. Genetics, the Big Five, and the Tendency to Be Self-Employed

    ERIC Educational Resources Information Center

    Shane, Scott; Nicolaou, Nicos; Cherkas, Lynn; Spector, Tim D.

    2010-01-01

    We applied multivariate genetics techniques to a sample of 3,412 monozygotic and dizygotic twins from the United Kingdom and 1,300 monozygotic and dizygotic twins from the United States to examine whether genetic factors account for part of the covariance between the Big Five personality characteristics and the tendency to be an entrepreneur. We…

  2. Genetics

    USDA-ARS?s Scientific Manuscript database

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  3. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models

    PubMed Central

    Chiu, Chi-yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-ling; Xiong, Momiao; Fan, Ruzong

    2017-01-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data. PMID:28000696

  4. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Amit; Ando, David; Gin, Jennifer

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  5. 13C Metabolic Flux Analysis for Systematic Metabolic Engineering of S. cerevisiae for Overproduction of Fatty Acids

    DOE PAGES

    Ghosh, Amit; Ando, David; Gin, Jennifer; ...

    2016-10-05

    Efficient redirection of microbial metabolism into the abundant production of desired bioproducts remains non-trivial. Here, we used flux-based modeling approaches to improve yields of fatty acids in Saccharomyces cerevisiae. We combined 13C labeling data with comprehensive genome-scale models to shed light onto microbial metabolism and improve metabolic engineering efforts. We concentrated on studying the balance of acetyl-CoA, a precursor metabolite for the biosynthesis of fatty acids. A genome-wide acetyl-CoA balance study showed ATP citrate lyase from Yarrowia lipolytica as a robust source of cytoplasmic acetyl-CoA and malate synthase as a desirable target for downregulation in terms of acetyl-CoA consumption. Thesemore » genetic modifications were applied to S. cerevisiae WRY2, a strain that is capable of producing 460 mg/L of free fatty acids. With the addition of ATP citrate lyase and downregulation of malate synthase, the engineered strain produced 26% more free fatty acids. Further increases in free fatty acid production of 33% were obtained by knocking out the cytoplasmic glycerol-3-phosphate dehydrogenase, which flux analysis had shown was competing for carbon flux upstream with the carbon flux through the acetyl-CoA production pathway in the cytoplasm. In total, the genetic interventions applied in this work increased fatty acid production by ~70%.« less

  6. Meta-analysis of quantitative pleiotropic traits for next-generation sequencing with multivariate functional linear models.

    PubMed

    Chiu, Chi-Yang; Jung, Jeesun; Chen, Wei; Weeks, Daniel E; Ren, Haobo; Boehnke, Michael; Amos, Christopher I; Liu, Aiyi; Mills, James L; Ting Lee, Mei-Ling; Xiong, Momiao; Fan, Ruzong

    2017-02-01

    To analyze next-generation sequencing data, multivariate functional linear models are developed for a meta-analysis of multiple studies to connect genetic variant data to multiple quantitative traits adjusting for covariates. The goal is to take the advantage of both meta-analysis and pleiotropic analysis in order to improve power and to carry out a unified association analysis of multiple studies and multiple traits of complex disorders. Three types of approximate F -distributions based on Pillai-Bartlett trace, Hotelling-Lawley trace, and Wilks's Lambda are introduced to test for association between multiple quantitative traits and multiple genetic variants. Simulation analysis is performed to evaluate false-positive rates and power of the proposed tests. The proposed methods are applied to analyze lipid traits in eight European cohorts. It is shown that it is more advantageous to perform multivariate analysis than univariate analysis in general, and it is more advantageous to perform meta-analysis of multiple studies instead of analyzing the individual studies separately. The proposed models require individual observations. The value of the current paper can be seen at least for two reasons: (a) the proposed methods can be applied to studies that have individual genotype data; (b) the proposed methods can be used as a criterion for future work that uses summary statistics to build test statistics to meta-analyze the data.

  7. Effect of genetic algorithm as a variable selection method on different chemometric models applied for the analysis of binary mixture of amoxicillin and flucloxacillin: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2016-03-01

    Different chemometric models were applied for the quantitative analysis of amoxicillin (AMX), and flucloxacillin (FLX) in their binary mixtures, namely, partial least squares (PLS), spectral residual augmented classical least squares (SRACLS), concentration residual augmented classical least squares (CRACLS) and artificial neural networks (ANNs). All methods were applied with and without variable selection procedure (genetic algorithm GA). The methods were used for the quantitative analysis of the drugs in laboratory prepared mixtures and real market sample via handling the UV spectral data. Robust and simpler models were obtained by applying GA. The proposed methods were found to be rapid, simple and required no preliminary separation steps.

  8. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    NASA Astrophysics Data System (ADS)

    Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.

    2007-09-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.

  9. History of safe use as applied to the safety assessment of novel foods and foods derived from genetically modified organisms.

    PubMed

    Constable, A; Jonas, D; Cockburn, A; Davi, A; Edwards, G; Hepburn, P; Herouet-Guicheney, C; Knowles, M; Moseley, B; Oberdörfer, R; Samuels, F

    2007-12-01

    Very few traditional foods that are consumed have been subjected to systematic toxicological and nutritional assessment, yet because of their long history and customary preparation and use and absence of evidence of harm, they are generally regarded as safe to eat. This 'history of safe use' of traditional foods forms the benchmark for the comparative safety assessment of novel foods, and of foods derived from genetically modified organisms. However, the concept is hard to define, since it relates to an existing body of information which describes the safety profile of a food, rather than a precise checklist of criteria. The term should be regarded as a working concept used to assist the safety assessment of a food product. Important factors in establishing a history of safe use include: the period over which the traditional food has been consumed; the way in which it has been prepared and used and at what intake levels; its composition and the results of animal studies and observations from human exposure. This paper is aimed to assist food safety professionals in the safety evaluation and regulation of novel foods and foods derived from genetically modified organisms, by describing the practical application and use of the concept of 'history of safe use'.

  10. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development.

    PubMed

    Covassin, L D; Siekmann, A F; Kacergis, M C; Laver, E; Moore, J C; Villefranc, J A; Weinstein, B M; Lawson, N D

    2009-05-15

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development.

  11. Plant contributions to our understanding of sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2015-10-01

    A minority of angiosperms have male and female flowers separated in distinct individuals (dioecy), and most dioecious plants do not have cytologically different (heteromorphic) sex chromosomes. Plants nevertheless have several advantages for the study of sex chromosome evolution, as genetic sex determination has evolved repeatedly and is often absent in close relatives. I review sex-determining regions in non-model plant species, which may help us to understand when and how (and, potentially, test hypotheses about why) recombination suppression evolves within young sex chromosomes. I emphasize high-throughput sequencing approaches that are increasingly being applied to plants to test for non-recombining regions. These data are particularly illuminating when combined with sequence data that allow phylogenetic analyses, and estimates of when these regions evolved. Together with comparative genetic mapping, this has revealed that sex-determining loci and sex-linked regions evolved independently in many plant lineages, sometimes in closely related dioecious species, and often within the past few million years. In reviewing recent progress, I suggest areas for future work, such as the use of phylogenies to allow the informed choice of outgroup species suitable for inferring the directions of changes, including testing whether Y chromosome-like regions are undergoing genetic degeneration, a predicted consequence of losing recombination. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  12. Optimised analytical models of the dielectric properties of biological tissue.

    PubMed

    Salahuddin, Saqib; Porter, Emily; Krewer, Finn; O' Halloran, Martin

    2017-05-01

    The interaction of electromagnetic fields with the human body is quantified by the dielectric properties of biological tissues. These properties are incorporated into complex numerical simulations using parametric models such as Debye and Cole-Cole, for the computational investigation of electromagnetic wave propagation within the body. These parameters can be acquired through a variety of optimisation algorithms to achieve an accurate fit to measured data sets. A number of different optimisation techniques have been proposed, but these are often limited by the requirement for initial value estimations or by the large overall error (often up to several percentage points). In this work, a novel two-stage genetic algorithm proposed by the authors is applied to optimise the multi-pole Debye parameters for 54 types of human tissues. The performance of the two-stage genetic algorithm has been examined through a comparison with five other existing algorithms. The experimental results demonstrate that the two-stage genetic algorithm produces an accurate fit to a range of experimental data and efficiently out-performs all other optimisation algorithms under consideration. Accurate values of the three-pole Debye models for 54 types of human tissues, over 500 MHz to 20 GHz, are also presented for reference. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. A genetic screen for vascular mutants in zebrafish reveals dynamic roles for Vegf/Plcg1 signaling during artery development

    PubMed Central

    Covassin, L. D.; Siekmann, A. F.; Kacergis, M. C.; Laver, E.; Moore, J. C.; Villefranc, J. A.; Weinstein, B. M.; Lawson, N. D.

    2009-01-01

    In this work we describe a forward genetic approach to identify mutations that affect blood vessel development in the zebrafish. By applying a haploid screening strategy in a transgenic background that allows direct visualization of blood vessels, it was possible to identify several classes of mutant vascular phenotypes. Subsequent characterization of mutant lines revealed that defects in Vascular endothelial growth factor (Vegf) signaling specifically affected artery development. Comparison of phenotypes associated with different mutations within a functional zebrafish Vegf receptor-2 ortholog (referred to as kdr-like, kdrl) revealed surprisingly varied effects on vascular development. In parallel, we identified an allelic series of mutations in phospholipase c gamma 1 (plcg1). Together with in vivo structure-function analysis, our results suggest a requirement for Plcg1 catalytic activity downstream of receptor tyrosine kinases. We further find that embryos lacking both maternal and zygotic plcg1 display more severe defects in artery differentiation but are otherwise similar to zygotic mutants. Finally, we demonstrate through mosaic analysis that plcg1 functions autonomously in endothelial cells. Together our genetic analyses suggest that Vegf/Plcg1 signaling acts at multiple time points and in different signaling contexts to mediate distinct aspects of artery development. PMID:19269286

  14. Bioforensics: Characterization of biological weapons agents by NanoSIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, P K; Ghosal, S; Leighton, T J

    2007-02-26

    The anthrax attacks of Fall 2001 highlight the need to develop forensic methods based on multiple identifiers to determine the origin of biological weapons agents. Genetic typing methods (i.e., DNA and RNA-based) provide one attribution technology, but genetic information alone is not usually sufficient to determine the provenance of the material. Non-genetic identifiers, including elemental and isotopic signatures, provide complementary information that can be used to identify the means, geographic location and date of production. Under LDRD funding, we have successfully developed the techniques necessary to perform bioforensic characterization with the NanoSIMS at the individual spore level. We have developedmore » methods for elemental and isotopic characterization at the single spore scale. We have developed methods for analyzing spore sections to map elemental abundance within spores. We have developed rapid focused ion beam (FIB) sectioning techniques for spores to preserve elemental and structural integrity. And we have developed a high-resolution depth profiling method to characterize the elemental distribution in individual spores without sectioning. We used these newly developed methods to study the controls on elemental abundances in spores, characterize the elemental distribution of in spores, and to study elemental uptake by spores. Our work under this LDRD project attracted FBI and DHS funding for applied purposes.« less

  15. Ecological and genetic determinants of plasmid distribution in Escherichia coli.

    PubMed

    Medaney, Frances; Ellis, Richard J; Raymond, Ben

    2016-11-01

    Bacterial plasmids are important carriers of virulence and antibiotic resistance genes. Nevertheless, little is known of the determinants of plasmid distribution in bacterial populations. Here the factors affecting the diversity and distribution of the large plasmids of Escherichia coli were explored in cattle grazing on semi-natural grassland, a set of populations with low frequencies of antibiotic resistance genes. Critically, the population genetic structure of bacterial hosts was chararacterized. This revealed structured E. coli populations with high diversity between sites and individuals but low diversity within cattle hosts. Plasmid profiles, however, varied considerably within the same E. coli genotype. Both ecological and genetic factors affected plasmid distribution: plasmid profiles were affected by site, E. coli diversity, E. coli genotype and the presence of other large plasmids. Notably 3/26 E. coli serotypes accounted for half the observed plasmid-free isolates indicating that within species variation can substantially affect carriage of the major conjugative plasmids. The observed population structure suggest that most of the opportunities for within species plasmid transfer occur between different individuals of the same genotype and support recent experimental work indicating that plasmid-host coevolution, and epistatic interactions on fitness costs are likely to be important in determining occupancy. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Generation of transgenic monkeys with human inherited genetic disease.

    PubMed

    Chan, Anthony W S; Yang, Shang-Hsun

    2009-09-01

    Modeling human diseases using nonhuman primates including chimpanzee, rhesus, cynomolgus, marmoset and squirrel monkeys has been reported in the past decades. Due to the high similarity between nonhuman primates and humans, including genome constitution, cognitive behavioral functions, anatomical structure, metabolic, reproductive, and brain functions; nonhuman primates have played an important role in understanding physiological functions of the human body, clarifying the underlying mechanism of human diseases, and the development of novel treatments for human diseases. However, nonhuman primate research has been restricted to cognitive, behavioral, biochemical and pharmacological approaches of human diseases due to the limitation of gene transfer technology in nonhuman primates. The recent advancement in transgenic technology that has led to the generation of the first transgenic monkey in 2001 and a transgenic monkey model of Huntington's disease (HD) in 2008 has changed that focus. The creation of transgenic HD monkeys that replicate key pathological features of human HD patients further suggests the crucial role of nonhuman primates in the future development of biomedicine. These successes have opened the door to genetic manipulation in nonhuman primates and a new era in modeling human inherited genetic disorders. We focused on the procedures in creating transgenic Huntington's disease monkeys, but our work can be applied to transgenesis in other nonhuman primate species.

  17. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

    PubMed

    Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

  18. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    PubMed Central

    Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731

  19. Self-Adaptive Stepsize Search Applied to Optimal Structural Design

    NASA Astrophysics Data System (ADS)

    Nolle, L.; Bland, J. A.

    Structural engineering often involves the design of space frames that are required to resist predefined external forces without exhibiting plastic deformation. The weight of the structure and hence the weight of its constituent members has to be as low as possible for economical reasons without violating any of the load constraints. Design spaces are usually vast and the computational costs for analyzing a single design are usually high. Therefore, not every possible design can be evaluated for real-world problems. In this work, a standard structural design problem, the 25-bar problem, has been solved using self-adaptive stepsize search (SASS), a relatively new search heuristic. This algorithm has only one control parameter and therefore overcomes the drawback of modern search heuristics, i.e. the need to first find a set of optimum control parameter settings for the problem at hand. In this work, SASS outperforms simulated-annealing, genetic algorithms, tabu search and ant colony optimization.

  20. From prenatal genomic diagnosis to fetal personalized medicine: progress and challenges

    PubMed Central

    Bianchi, Diana W

    2015-01-01

    Thus far, the focus of personalized medicine has been the prevention and treatment of conditions that affect adults. Although advances in genetic technology have been applied more frequently to prenatal diagnosis than to fetal treatment, genetic and genomic information is beginning to influence pregnancy management. Recent developments in sequencing the fetal genome combined with progress in understanding fetal physiology using gene expression arrays indicate that we could have the technical capabilities to apply an individualized medicine approach to the fetus. Here I review recent advances in prenatal genetic diagnostics, the challenges associated with these new technologies and how the information derived from them can be used to advance fetal care. Historically, the goal of prenatal diagnosis has been to provide an informed choice to prospective parents. We are now at a point where that goal can and should be expanded to incorporate genetic, genomic and transcriptomic data to develop new approaches to fetal treatment. PMID:22772565

  1. Reaching a Consensus on the Definition of Genetic Literacy That Is Required from a Twenty-First-Century Citizen

    ERIC Educational Resources Information Center

    Boerwinkel, Dirk Jan; Yarden, Anat; Waarlo, Arend Jan

    2017-01-01

    To determine what knowledge of genetics is needed for decision-making on genetic-related issues, a consensus-reaching approach was used. An international group of 57 experts, involved in teaching, studying, or developing genetic education and communication or working with genetic applications in medicine, agriculture, or forensics, answered the…

  2. Genetic Testing: How Genetics and Genomics Can Affect Healthcare Disparities
.

    PubMed

    Allen, Deborah

    2018-02-01

    Advances in oncology care have transformed treatment approaches as genetics and genomics analyses promote implementation of personalized medicine. Genetics and genomics research in TP53 have demonstrated that some mutations are prevalent in minority populations. This has implications on personalized treatment approaches, particularly in early disease stages. The purpose of this article is to describe oncology nurses' role in applying these findings in practice to reduce disparities observed in cancer and survivorship care.
.

  3. Primer Part 1-The building blocks of epilepsy genetics.

    PubMed

    Helbig, Ingo; Heinzen, Erin L; Mefford, Heather C

    2016-06-01

    This is the first of a two-part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy. In Part 1, we cover the foundations of epilepsy genetics including genetic epidemiology and the range of genetic variants that can affect the risk for developing epilepsy. We discuss various epidemiologic study designs that have been applied to the genetics of the epilepsies including population studies, which provide compelling evidence for a strong genetic contribution in many epilepsies. We discuss genetic risk factors varying in size, frequency, inheritance pattern, effect size, and phenotypic specificity, and provide examples of how genetic risk factors within the various categories increase the risk for epilepsy. We end by highlighting trends in epilepsy genetics including the increasing use of massive parallel sequencing technologies. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  4. HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN

    EPA Science Inventory

    While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...

  5. [The discussion of the infiltrative model of mathematical knowledge to genetics teaching].

    PubMed

    Liu, Jun; Luo, Pei-Gao

    2011-11-01

    Genetics, the core course of biological field, is an importance major-basic course in curriculum of many majors related with biology. Due to strong theoretical and practical as well as abstract of genetics, it is too difficult to study on genetics for many students. At the same time, mathematics is one of the basic courses in curriculum of the major related natural science, which has close relationship with the establishment, development and modification of genetics. In this paper, to establish the intrinsic logistic relationship and construct the integral knowledge network and to help students improving the analytic, comprehensive and logistic abilities, we applied some mathematical infiltrative model genetic knowledge in genetics teaching, which could help students more deeply learn and understand genetic knowledge.

  6. Latent spatial models and sampling design for landscape genetics

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  7. "On the job" learning: A bioinformatics course incorporating undergraduates in actual research projects and manuscript submissions.

    PubMed

    Smith, Jason T; Harris, Justine C; Lopez, Oscar J; Valverde, Laura; Borchert, Glen M

    2015-01-01

    The sequencing of whole genomes and the analysis of genetic information continues to fundamentally change biological and medical research. Unfortunately, the people best suited to interpret this data (biologically trained researchers) are commonly discouraged by their own perceived computational limitations. To address this, we developed a course to help alleviate this constraint. Remarkably, in addition to equipping our undergraduates with an informatic toolset, we found our course design helped prepare our students for collaborative research careers in unexpected ways. Instead of simply offering a traditional lecture- or laboratory-based course, we chose a guided inquiry method, where an instructor-selected research question is examined by students in a collaborative analysis with students contributing to experimental design, data collection, and manuscript reporting. While students learn the skills needed to conduct bioinformatic research throughout all sections of the course, importantly, students also gain experience in working as a team and develop important communication skills through working with their partner and the class as a whole, and by contributing to an original research article. Remarkably, in its first three semesters, this novel computational genetics course has generated 45 undergraduate authorships across three peer-reviewed articles. More importantly, the students that took this course acquired a positive research experience, newfound informatics technical proficiency, unprecedented familiarity with manuscript preparation, and an earned sense of achievement. Although this course deals with analyses of genetic systems, we suggest the basic concept of integrating actual research projects into a 16-week undergraduate course could be applied to numerous other research-active academic fields. © 2015 The International Union of Biochemistry and Molecular Biology.

  8. Tragedy or success? Elisabeth Goldschmidt (1912-1970) and genetics in Israel.

    PubMed

    Kirsh, Nurit

    2013-06-01

    This article introduces the reader to the life and work of Elisabeth Goldschmidt, the founding mother of the field of genetics in Israel. It concurrently strives to uncover the roots and development of genetics in Israel, tracing the crucial transition from classical Drosophila genetics to human genetics and the shift from a Germanic tradition of scientific research to an American one. Goldschmidt's personal biography is inextricably linked to the early stages of genetic research in Israel. The narrative of her life could have been a heroic and inspiring account of a female scientist who 'had it all', had its end been less tragic. Nevertheless, her life was rich, including a path of achievement and trail-blazing coupled with the joy and satisfaction she gleaned from her scientific work. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  10. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    ERIC Educational Resources Information Center

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  11. Improving Genetics Education in Graduate and Continuing Health Professional Education: Workshop Summary

    ERIC Educational Resources Information Center

    Berger, Adam C.; Johnson, Samuel G.; Beachy, Sarah H.; Olson, Steve

    2015-01-01

    Many health care providers do not have either the knowledge or the tools they need in order to apply genetic information in their day-to-day practices. This lack of support is contributing to a substantial delay in the translation of genetic research findings, when appropriate, into improvement in patient outcomes within the health care system.…

  12. Genetic Counsellors and Private Practice: Professional Turbulence and Common Values.

    PubMed

    Collis, Sarah; Gaff, Clara; Wake, Samantha; McEwen, Alison

    2017-12-27

    Genetic counsellors face tensions between past and future identities: between established values and goals, and a broadening scope of settings and activities. This study examines the advent of genetic counsellors in private practice in Australia and New Zealand from the perspectives of the small numbers working in this sector and those who have only worked in public practice. Semi-structured interviews were conducted with 16 genetic counsellors who had experience in private practice, and 14 genetic counsellors without private sector experience. Results demonstrated that circumstantial and personal factors can mitigate the challenges experienced and the amount of support desired by those who had established a private practice, and those who were employed by private companies. Notably, most participants with private sector experience perceived themselves to be viewed negatively by other genetic counsellors. Most participants without private sector experience expressed concern that the challenges they believed genetic counsellors face in private practice may impact service quality, but wished to address such concerns by providing appropriate support. Together, our results reinforce that participants in private and public sectors are strong advocates for peer support, multidisciplinary team work, and professional development. These core values, and seeking understanding of different circumstances and support needs, will enable genetic counsellors in different sectors to move forward together. Our results suggest supports that may be acted upon by members of the profession, professional groups, and training programs, in Australia, New Zealand, and overseas.

  13. An International Genetic Survey of Breed-Specific Diseases in Working Dogs from the United States, Israel, and Poland.

    PubMed

    Shaffer, Lisa G; Ramirez, Christina J; Phelps, Patricia; Aviram, Maya; Walczak, Marta; Bar-Gal, Gila Kahila; Ballif, Blake C

    2017-01-01

    Genetic diseases occur in breeds used for law enforcement. As important team members, dogs are expected to operate at peak performance for several years and are significant investments for both the initial purchase and extensive, specialized training. Previous studies have not focused on causes for retirement or euthanasia as genetic (inherited) versus acquired (environmental). We performed direct mutational analysis for breed-specific conditions on samples from 304 dogs including 267 law enforcement (122 US, 87 Israeli, and 58 Polish) and 37 search and rescue dogs. Genetic testing identified 29% (n = 89) of the dogs tested to be carriers of a genetic mutation and 6% (n = 19) to be at risk for a debilitating inherited condition that may eventually impair the dog's ability to work. At-risk dogs included Labrador Retrievers (n = 4) with exercise-induced collapse, Bloodhounds (n = 2) with degenerative myelopathy (DM), and German Shepherd dogs with DM (n = 12) or leukocyte adhesion deficiency, type III (n = 1). A substantial number of working dogs were shown to be at risk for genetic conditions that may shorten the dog's career. The loss of dogs, due to early retirement or euthanasia, as a result of preventable genetic conditions has an emotional cost to handlers and financial cost to service organizations that can be avoided with genetic screening prior to breeding, buying, or training. © 2018 S. Karger AG, Basel.

  14. Meeting Report: International Symposium on the Genetics of Aging and Life History II

    PubMed Central

    Lee, Seung‐Jae V.; Nam, Hong Gil

    2015-01-01

    The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age‐associated diseases, and cellular senescence. The work was conducted in various organisms, including C. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016. PMID:26115541

  15. Meeting Report: International Symposium on the Genetics of Aging and Life History II.

    PubMed

    Artan, Murat; Hwang, Ara B; Lee, Seung V; Nam, Hong Gil

    2015-06-01

    The second International Symposium on the Genetics of Aging and Life History was held at the campus of Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea, from May 14 to 16, 2014. Many leading scientists in the field of aging research from all over the world contributed to the symposium by attending and presenting their recent work and thoughts. The aim of the symposium was to stimulate international collaborations and interactions among scientists who work on the biology of aging. In the symposium, the most recent and exciting work on aging research was presented, covering a wide range of topics, including the genetics of aging, age-associated diseases, and cellular senescence. The work was conducted in various organisms, includingC. elegans, mice, plants, and humans. Topics covered in the symposium stimulated discussion of novel directions for future research on aging. The meeting ended with a commitment for the third International Symposium on the Genetics of Aging and Life History, which will be held in 2016.

  16. Understanding GINA and How GINA Affects Nurses.

    PubMed

    Delk, Kayla L

    2015-11-01

    The Genetic Information Nondiscrimination Act (GINA) is a federal law that became fully effective in 2009 and is intended to prevent employers and health insurers from discriminating against individuals based on their genetic or family history. The article discusses the sections of GINA, what information constitutes genetic information, who enforces GINA, and scenarios in which GINA does not apply. Also discussed are the instances in which an employer may request genetic information from employees, including wellness or genetic monitoring programs. Finally, the article offers a look at how GINA affects nurses who are administering wellness or genetic monitoring programs on behalf of employers. © 2015 The Author(s).

  17. Genetic engineering applied to agriculture has a long row to hoe.

    PubMed

    Miller, Henry I

    2018-01-02

    In spite of the lack of scientific justification for skepticism about crops modified with molecular techniques of genetic engineering, they have been the most scrutinized agricultural products in human history. The assumption that "genetically engineered" or "genetically modified" is a meaningful - and dangerous - classification has led to excessive and dilatory regulation. The modern molecular techniques are an extension, or refinement, of older, less precise, less predictable methods of genetic modification, but as long as today's activists and regulators remain convinced that so called "GMOs" represent a distinct and dangerous category of research and products, genetic engineering will fall short of its potential.

  18. Using expression genetics to study the neurobiology of ethanol and alcoholism.

    PubMed

    Farris, Sean P; Wolen, Aaron R; Miles, Michael F

    2010-01-01

    Recent simultaneous progress in human and animal model genetics and the advent of microarray whole genome expression profiling have produced prodigious data sets on genetic loci, potential candidate genes, and differential gene expression related to alcoholism and ethanol behaviors. Validated target genes or gene networks functioning in alcoholism are still of meager proportions. Genetical genomics, which combines genetic analysis of both traditional phenotypes and whole genome expression data, offers a potential methodology for characterizing brain gene networks functioning in alcoholism. This chapter will describe concepts, approaches, and recent findings in the field of genetical genomics as it applies to alcohol research. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    PubMed

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.

  20. Optimal Refueling Pattern Search for a CANDU Reactor Using a Genetic Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quang Binh, DO; Gyuhong, ROH; Hangbok, CHOI

    2006-07-01

    This paper presents the results from the application of genetic algorithms to a refueling optimization of a Canada deuterium uranium (CANDU) reactor. This work aims at making a mathematical model of the refueling optimization problem including the objective function and constraints and developing a method based on genetic algorithms to solve the problem. The model of the optimization problem and the proposed method comply with the key features of the refueling strategy of the CANDU reactor which adopts an on-power refueling operation. In this study, a genetic algorithm combined with an elitism strategy was used to automatically search for themore » refueling patterns. The objective of the optimization was to maximize the discharge burn-up of the refueling bundles, minimize the maximum channel power, or minimize the maximum change in the zone controller unit (ZCU) water levels. A combination of these objectives was also investigated. The constraints include the discharge burn-up, maximum channel power, maximum bundle power, channel power peaking factor and the ZCU water level. A refueling pattern that represents the refueling rate and channels was coded by a one-dimensional binary chromosome, which is a string of binary numbers 0 and 1. A computer program was developed in FORTRAN 90 running on an HP 9000 workstation to conduct the search for the optimal refueling patterns for a CANDU reactor at the equilibrium state. The results showed that it was possible to apply genetic algorithms to automatically search for the refueling channels of the CANDU reactor. The optimal refueling patterns were compared with the solutions obtained from the AUTOREFUEL program and the results were consistent with each other. (authors)« less

  1. A three-way parallel ICA approach to analyze links among genetics, brain structure and brain function.

    PubMed

    Vergara, Victor M; Ulloa, Alvaro; Calhoun, Vince D; Boutte, David; Chen, Jiayu; Liu, Jingyu

    2014-09-01

    Multi-modal data analysis techniques, such as the Parallel Independent Component Analysis (pICA), are essential in neuroscience, medical imaging and genetic studies. The pICA algorithm allows the simultaneous decomposition of up to two data modalities achieving better performance than separate ICA decompositions and enabling the discovery of links between modalities. However, advances in data acquisition techniques facilitate the collection of more than two data modalities from each subject. Examples of commonly measured modalities include genetic information, structural magnetic resonance imaging (MRI) and functional MRI. In order to take full advantage of the available data, this work extends the pICA approach to incorporate three modalities in one comprehensive analysis. Simulations demonstrate the three-way pICA performance in identifying pairwise links between modalities and estimating independent components which more closely resemble the true sources than components found by pICA or separate ICA analyses. In addition, the three-way pICA algorithm is applied to real experimental data obtained from a study that investigate genetic effects on alcohol dependence. Considered data modalities include functional MRI (contrast images during alcohol exposure paradigm), gray matter concentration images from structural MRI and genetic single nucleotide polymorphism (SNP). The three-way pICA approach identified links between a SNP component (pointing to brain function and mental disorder associated genes, including BDNF, GRIN2B and NRG1), a functional component related to increased activation in the precuneus area, and a gray matter component comprising part of the default mode network and the caudate. Although such findings need further verification, the simulation and in-vivo results validate the three-way pICA algorithm presented here as a useful tool in biomedical data fusion applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Genetic variation in California oaks

    Treesearch

    Constance I. Millar; Diane L. Delany; Lawrence A. Riggs

    1990-01-01

    In forestry the importance of genetic variation for successful reproduction, survival and growth has been widely documented for commercial conifers; until recently, little genetic work has been done on the California oaks. Even before the nature of genetic variation was scientifically investigated, its importance was suspected in operational forestry. Many failures of...

  3. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks.

    PubMed

    Morozova, Tatiana V; Goldman, David; Mackay, Trudy F C; Anholt, Robert R H

    2012-02-20

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms.

  4. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2015-12-01

    TITLE AND SUBTITLE Integrative Lifecourse and Genetic Analysis of Military Working Dogs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-11-2-0225 5c...developments for realizing the potential of canine models”, with subsection “Epidemiology, longitudinal cohorts, tissue repositories and integrative

  5. Genet-specific DNA methylation probabilities detected in a spatial epigenetic analysis of a clonal plant population.

    PubMed

    Araki, Kiwako S; Kubo, Takuya; Kudoh, Hiroshi

    2017-01-01

    In sessile organisms such as plants, spatial genetic structures of populations show long-lasting patterns. These structures have been analyzed across diverse taxa to understand the processes that determine the genetic makeup of organismal populations. For many sessile organisms that mainly propagate via clonal spread, epigenetic status can vary between clonal individuals in the absence of genetic changes. However, fewer previous studies have explored the epigenetic properties in comparison to the genetic properties of natural plant populations. Here, we report the simultaneous evaluation of the spatial structure of genetic and epigenetic variation in a natural population of the clonal plant Cardamine leucantha. We applied a hierarchical Bayesian model to evaluate the effects of membership of a genet (a group of individuals clonally derived from a single seed) and vegetation cover on the epigenetic variation between ramets (clonal plants that are physiologically independent individuals). We sampled 332 ramets in a 20 m × 20 m study plot that contained 137 genets (identified using eight SSR markers). We detected epigenetic variation in DNA methylation at 24 methylation-sensitive amplified fragment length polymorphism (MS-AFLP) loci. There were significant genet effects at all 24 MS-AFLP loci in the distribution of subepiloci. Vegetation cover had no statistically significant effect on variation in the majority of MS-AFLP loci. The spatial aggregation of epigenetic variation is therefore largely explained by the aggregation of ramets that belong to the same genets. By applying hierarchical Bayesian analyses, we successfully identified a number of genet-specific changes in epigenetic status within a natural plant population in a complex context, where genotypes and environmental factors are unevenly distributed. This finding suggests that it requires further studies on the spatial epigenetic structure of natural populations of diverse organisms, particularly for sessile clonal species.

  6. TANTAMOUNT TO FRAUD?: EXPLORING NON-DISCLOSURE OF GENETIC INFORMATION IN LIFE INSURANCE APPLICATIONS AS GROUNDS FOR POLICY RESCISSION.

    PubMed

    Prince, Anya E R

    2016-01-01

    Many genetic counselors recommend that individuals secure desired insurance policies, such as life insurance, prior to undergoing predictive genetic testing. It has been argued, however, that this practice is "tantamount to fraud" and that failure to disclose genetic test results, or conspiring to secure a policy before testing, opens an individual up to legal recourse. This debate traps affected individuals in a Catch-22. If they apply for life insurance and disclose a genetic test result, they may be denied. If they apply without disclosing the information, they may have committed fraud. The consequences of life insurance fraud are significant: If fraud is found on an application, a life insurer can rescind the policy, in some cases even after the individual has passed away. Such a rescission could leave family members or beneficiaries without the benefits of the life insurance policy payment after the individual's death and place them in in economic difficulty. Although it is clear that lying in response to a direct question about genetic testing would be tantamount to fraud, few, if any, life insurance applications currently include broad questions about genetic testing. This paper investigates whether non-disclosure of unasked for genetic information constitutes fraud and explores varying types of insurance questions that could conceivably be interpreted as seeking genetic information. Life insurance applicants generally have no duty to disclose unasked for information, including genetic information, on an application. However, given the complexities of genetic information, individuals may be exposed to fraud and rescission of their life insurance policy despite honest attempts to truthfully and completely answer all application questions.

  7. Ethics and genomic medicine, how to navigate decisions in surgical oncology.

    PubMed

    Devon, Karen M; Lerner-Ellis, Jordan P; Ganai, Sabha; Angelos, Peter

    2015-01-01

    Using genetic information to make medical decisions and tailor treatments to individuals will likely provide major benefits and become an important part of health care. Surgical oncologists must ethically apply scientific genetic information in a complex and evolving environment to the benefit of their patients. In this review we address ethical issues associated with: indications for genetic testing, informed consent for testing and therapy, confidentiality, targeted therapy, prophylactic surgery, and genetic testing in children. © 2014 Wiley Periodicals, Inc.

  8. A data-driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genome-wide significant genetic loci.

    PubMed

    Leonenko, Ganna; Di Florio, Arianna; Allardyce, Judith; Forty, Liz; Knott, Sarah; Jones, Lisa; Gordon-Smith, Katherine; Owen, Michael J; Jones, Ian; Walters, James; Craddock, Nick; O'Donovan, Michael C; Escott-Price, Valentina

    2018-06-01

    The etiologies of bipolar disorder (BD) and schizophrenia include a large number of common risk alleles, many of which are shared across the disorders. BD is clinically heterogeneous and it has been postulated that the pattern of symptoms is in part determined by the particular risk alleles carried, and in particular, that risk alleles also confer liability to schizophrenia influence psychotic symptoms in those with BD. To investigate links between psychotic symptoms in BD and schizophrenia risk alleles we employed a data-driven approach in a genotyped and deeply phenotyped sample of subjects with BD. We used sparse canonical correlation analysis (sCCA) (Witten, Tibshirani, & Hastie, ) to analyze 30 psychotic symptoms, assessed with the OPerational CRITeria checklist, and 82 independent genome-wide significant single nucleotide polymorphisms (SNPs) identified by the Schizophrenia Working group of the Psychiatric Genomics Consortium for which we had data in our BD sample (3,903 subjects). As a secondary analysis, we applied sCCA to larger groups of SNPs, and also to groups of symptoms defined according to a published factor analyses of schizophrenia. sCCA analysis based on individual psychotic symptoms revealed a significant association (p = .033), with the largest weights attributed to a variant on chromosome 3 (rs11411529), chr3:180594593, build 37) and delusions of influence, bizarre behavior and grandiose delusions. sCCA analysis using the same set of SNPs supported association with the same SNP and the group of symptoms defined "factor 3" (p = .012). A significant association was also observed to the "factor 3" phenotype group when we included a greater number of SNPs that were less stringently associated with schizophrenia; although other SNPs contributed to the significant multivariate association result, the greatest weight remained assigned to rs11411529. Our results suggest that the canonical correlation is a useful tool to explore phenotype-genotype relationships. To the best of our knowledge, this is the first study to apply this approach to complex, polygenic psychiatric traits. The sparse canonical correlation approach offers the potential to include a larger number of fine-grained systematic descriptors, and to include genetic markers associated with other disorders that are genetically correlated with BD. © 2018 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.

  9. Challenges and opportunities in genetic improvement of local livestock breeds

    PubMed Central

    Biscarini, Filippo; Nicolazzi, Ezequiel L.; Stella, Alessandra; Boettcher, Paul J.; Gandini, Gustavo

    2015-01-01

    Sufficient genetic variation in livestock populations is necessary both for adaptation to future changes in climate and consumer demand, and for continual genetic improvement of economically important traits. Unfortunately, the current trend is for reduced genetic variation, both within and across breeds. The latter occurs primarily through the loss of small, local breeds. Inferior production is a key driver for loss of small breeds, as they are replaced by high-output international transboundary breeds. Selection to improve productivity of small local breeds is therefore critical for their long term survival. The objective of this paper is to review the technology options available for the genetic improvement of small local breeds and discuss their feasibility. Most technologies have been developed for the high-input breeds and consequently are more favorably applied in that context. Nevertheless, their application in local breeds is not precluded and can yield significant benefits, especially when multiple technologies are applied in close collaboration with farmers and breeders. Breeding strategies that require cooperation and centralized decision-making, such as optimal contribution selection, may in fact be more easily implemented in small breeds. PMID:25763010

  10. Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level.

    PubMed

    Urrestarazu, Jorge; Denancé, Caroline; Ravon, Elisa; Guyader, Arnaud; Guisnel, Rémi; Feugey, Laurence; Poncet, Charles; Lateur, Marc; Houben, Patrick; Ordidge, Matthew; Fernandez-Fernandez, Felicidad; Evans, Kate M; Paprstein, Frantisek; Sedlak, Jiri; Nybom, Hilde; Garkava-Gustavsson, Larisa; Miranda, Carlos; Gassmann, Jennifer; Kellerhals, Markus; Suprun, Ivan; Pikunova, Anna V; Krasova, Nina G; Torutaeva, Elnura; Dondini, Luca; Tartarini, Stefano; Laurens, François; Durel, Charles-Eric

    2016-06-08

    The amount and structure of genetic diversity in dessert apple germplasm conserved at a European level is mostly unknown, since all diversity studies conducted in Europe until now have been performed on regional or national collections. Here, we applied a common set of 16 SSR markers to genotype more than 2,400 accessions across 14 collections representing three broad European geographic regions (North + East, West and South) with the aim to analyze the extent, distribution and structure of variation in the apple genetic resources in Europe. A Bayesian model-based clustering approach showed that diversity was organized in three groups, although these were only moderately differentiated (FST = 0.031). A nested Bayesian clustering approach allowed identification of subgroups which revealed internal patterns of substructure within the groups, allowing a finer delineation of the variation into eight subgroups (FST = 0.044). The first level of stratification revealed an asymmetric division of the germplasm among the three groups, and a clear association was found with the geographical regions of origin of the cultivars. The substructure revealed clear partitioning of genetic groups among countries, but also interesting associations between subgroups and breeding purposes of recent cultivars or particular usage such as cider production. Additional parentage analyses allowed us to identify both putative parents of more than 40 old and/or local cultivars giving interesting insights in the pedigree of some emblematic cultivars. The variation found at group and subgroup levels may reflect a combination of historical processes of migration/selection and adaptive factors to diverse agricultural environments that, together with genetic drift, have resulted in extensive genetic variation but limited population structure. The European dessert apple germplasm represents an important source of genetic diversity with a strong historical and patrimonial value. The present work thus constitutes a decisive step in the field of conservation genetics. Moreover, the obtained data can be used for defining a European apple core collection useful for further identification of genomic regions associated with commercially important horticultural traits in apple through genome-wide association studies.

  11. Genetic and Genomic Toolbox of Zea mays

    PubMed Central

    Nannas, Natalie J.; Dawe, R. Kelly

    2015-01-01

    Maize has a long history of genetic and genomic tool development and is considered one of the most accessible higher plant systems. With a fully sequenced genome, a suite of cytogenetic tools, methods for both forward and reverse genetics, and characterized phenotype markers, maize is amenable to studying questions beyond plant biology. Major discoveries in the areas of transposons, imprinting, and chromosome biology came from work in maize. Moving forward in the post-genomic era, this classic model system will continue to be at the forefront of basic biological study. In this review, we outline the basics of working with maize and describe its rich genetic toolbox. PMID:25740912

  12. Beyond the Triplet Code: Context Cues Transform Translation.

    PubMed

    Brar, Gloria A

    2016-12-15

    The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    EPA Science Inventory

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  14. Photoperiodic Diapause and the Establishment of Aedes albopictus (Diptera: Culicidae) in North America

    PubMed Central

    2016-01-01

    The invasion and range expansion of Aedes albopictus (Skuse) in North America represents an outstanding opportunity to study processes of invasion, range expansion, and climatic adaptation. Furthermore, knowledge obtained from such research is relevant to developing novel strategies to control this important vector species. Substantial evidence indicates that the photoperiodic diapause response is an important adaptation to climatic variation across the range of Ae. albopictus in North America. Photoperiodic diapause is a key determinant of abundance in both space and time, and the timing of entry into and exit out of diapause strongly affects seasonal population dynamics and thus the potential for arbovirus transmission. Emerging genomic technologies are making it possible to develop high-resolution, genome-wide genetic markers that can be used for genetic mapping of traits relevant to disease transmission and phylogeographic studies to elucidate invasion history. Recent work using next-generation sequencing technologies (e.g., RNA-seq), combined with physiological experiments, has provided extensive insight into the transcriptional basis of the diapause response in Ae. albopictus. Applying this knowledge to identify novel targets for vector control represents an important future challenge. Finally, recent studies have begun to identify traits other than diapause that are affected by photoperiodism. Extending this work to identify additional traits influenced by photoperiod should produce important insights into the seasonal biology of Ae. albopictus. PMID:27354438

  15. The "GeneTrustee": a universal identification system that ensures privacy and confidentiality for human genetic databases.

    PubMed

    Burnett, Leslie; Barlow-Stewart, Kris; Proos, Anné L; Aizenberg, Harry

    2003-05-01

    This article describes a generic model for access to samples and information in human genetic databases. The model utilises a "GeneTrustee", a third-party intermediary independent of the subjects and of the investigators or database custodians. The GeneTrustee model has been implemented successfully in various community genetics screening programs and has facilitated research access to genetic databases while protecting the privacy and confidentiality of research subjects. The GeneTrustee model could also be applied to various types of non-conventional genetic databases, including neonatal screening Guthrie card collections, and to forensic DNA samples.

  16. The genetic basis of alcoholism: multiple phenotypes, many genes, complex networks

    PubMed Central

    2012-01-01

    Alcoholism is a significant public health problem. A picture of the genetic architecture underlying alcohol-related phenotypes is emerging from genome-wide association studies and work on genetically tractable model organisms. PMID:22348705

  17. Intensive genetic assessment of the mating system and reproductive success in a semi-closed population of the mottled sculpin, Cottus bairdi

    Treesearch

    Anthony C. Fiumera; Brady A. Porter; Gary D. Grossman; John C. Avise

    2002-01-01

    Most genetic surveys of parentage in nature sample only a small fraction of the breeding population. Here we apply micro satellite markers to deduce the genetic mating system and assess the reproductive success of females and males in an extensively collected, semiclosed stream population of the mottled sculpin fish, Cottus bairdi. In this species,...

  18. Application of medical cases in general genetics teaching in universities.

    PubMed

    He, Zhumei; Bie, Linsai; Li, Wei

    2018-01-20

    General genetics is a core course in life sciences, medicine, agriculture and other related fields. As one of the most fast-developing disciplines of life sciences in the 21th century, the influence of the genetics knowledge on daily life is expanding, especially on human health and reproduction. In order to make it easier for students to understand the profound principles of genetics and to better apply the theories to daily life, we have introduced appropriate medical cases in general genetics teaching and further extended them combined with theoretical basis of genetics. This approach will be beneficial to enhance students' abilities of genetic analysis and promote their enthusiasm to learn and master practical skills. In this paper, we enumerate medical cases related to the modern genetics teaching system to provide a reference for genetics teaching in general and normal universities.

  19. A European curriculum for nurses working in haemophilia.

    PubMed

    Harrington, C; Bedford, M; Andritschke, K; Barrie, A; Elfvinge, P; Grønhaug, S; Mueller-Kagi, E; Leenders, B; Schrijvers, L H

    2016-01-01

    Currently, there is no consensus on education required to develop haemophilia nursing. The aim was to develop a curriculum for haemophilia nurses that could be used as a resource in Europe. This could form a basis for continuous professional development and used in the preparation of specialized educational programmes. The EAHAD nurses working group set out to describe the skills and knowledge needed for a nurse to work in this specialty. This was considered at two levels: basic requirements and at a more advanced level. The working group acted as a focus group for this project drawing on existing specialist training, national role definitions, competencies and results of the EAHAD Nurses survey (2012). A template was populated with the knowledge base and the skills required. Themes were analysed and information generated organized into domains: content of curriculum; learning outcomes, defined in terms of knowledge, skills, behaviour and attitudes; and suggestions for teaching methods. For curriculum content the following domains were identified: Applied biological science; treatment and management of haemophilia and associated disorders; genetic practice; care management of affected carriers and women; the impact of living with bleeding disorders; evidence base and applied research in haemophilia practice; and, the specialist role of the haemophilia nurse. Examples are given for teaching and learning process. This curriculum is intended for use as a strategic resource to outline education for the haemophilia nurse and contribute to the standardization and benchmarking of haemophilia nursing care and thus to improvement in the quality of patient care. © 2015 John Wiley & Sons Ltd.

  20. Eliciting expert opinion for economic models: an applied example.

    PubMed

    Leal, José; Wordsworth, Sarah; Legood, Rosa; Blair, Edward

    2007-01-01

    Expert opinion is considered as a legitimate source of information for decision-analytic modeling where required data are unavailable. Our objective was to develop a practical computer-based tool for eliciting expert opinion about the shape of the uncertainty distribution around individual model parameters. We first developed a prepilot survey with departmental colleagues to test a number of alternative approaches to eliciting opinions on the shape of the uncertainty distribution around individual parameters. This information was used to develop a survey instrument for an applied clinical example. This involved eliciting opinions from experts to inform a number of parameters involving Bernoulli processes in an economic model evaluating DNA testing for families with a genetic disease, hypertrophic cardiomyopathy. The experts were cardiologists, clinical geneticists, and laboratory scientists working with cardiomyopathy patient populations and DNA testing. Our initial prepilot work suggested that the more complex elicitation techniques advocated in the literature were difficult to use in practice. In contrast, our approach achieved a reasonable response rate (50%), provided logical answers, and was generally rated as easy to use by respondents. The computer software user interface permitted graphical feedback throughout the elicitation process. The distributions obtained were incorporated into the model, enabling the use of probabilistic sensitivity analysis. There is clearly a gap in the literature between theoretical elicitation techniques and tools that can be used in applied decision-analytic models. The results of this methodological study are potentially valuable for other decision analysts deriving expert opinion.

  1. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids.

    PubMed

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum.

  2. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  3. Quantitative interpretation of magnetic properties as a way to characterize biogeophysical signatures of biodegraded contaminated sites

    NASA Astrophysics Data System (ADS)

    Ustra, A.; Kessouri, P.; Leite, A.; Mendonça, C. A.; Bandeira, N.

    2017-12-01

    Magnetic minerals in soils and rocks are one way to study biogechemical and paleoenvironmental processes. The ultrafine fraction of these minerals (superparmagnetic (SP) and stable single domain (SSD)) are usually investigated in environmental magnetism studies, since changes in mineralogy, concentration, size and morphology of the magnetic grains can be related to biogeochemical processes. In this study, we use low-field frequency dependent susceptibility (FDS) and isothermal remanent magnetization (IRM) to characterize the magnetic properties of materials in environmental magnetism. Magnetic susceptibility (MS) measurements are frequently used as a proxy of magnetic minerals present in soils and rocks. MS is a complex function of magnetic mineralogy and grain size, as well as magnitude and frequency of the applied field. This work presents a method for inverting low-field FDS data. The inverted parameters can be interpreted in terms of grain size variations of magnetic particles on the SP-SSD transition. This work also presents a method for inverting IRM demagnetization curves, to obtain the saturation magnetization, the individual magnetic moment for an assemblage of ultrafine SP minerals and estimate the concentration of magnetic carriers. IRM magnetization curves can be interpreted as resulting from distinct contributions of different mineral phases, which can be described by Cummulative Log-Gaussian (CLG) distributions. Each acquisition curve provides fundamental parameters that are characteristic of the respective mineral phase. The CLG decomposition is widely used in an interpretation procedure named mineral unmixing. In this work we present an inversion method for mineral unmixing, implementing the genetic algorithm to find the parameters of distinct components. These methodologies have been tested by synthetic models and applied to data from environmental magnetism studies. In this work we apply the proposed methodologies to characterize the magnetic properties of samples from the former Brandywine MD Defense Reutilization and Marketing Office (DRMO). The results from the magnetic properties characterization will provide additional information that may assist the interpretation of the biogeophysical signatures observed at the site.

  4. Genetic Contributions to Clinical Pain and Analgesia: Avoiding Pitfalls in Genetic Research

    PubMed Central

    Kim, Hyungsuk; Clark, David; Dionne, Raymond A.

    2010-01-01

    Understanding the genetic basis of human variations in pain is critical to elucidating the molecular basis of pain sensitivity, variable responses to analgesic drugs, and, ultimately, to individualized treatment of pain and improved public health. With the help of recently accumulated knowledge and advanced technologies, pain researchers hope to gain insight into genetic mechanisms of pain and eventually apply this knowledge to pain treatment. Perspective We critically reviewed the published literature to examine the strength of evidence supporting genetic influences on clinical and human experimental pain. Based on this evidence and the experience of false associations that have occurred in other related disciplines, we provide recommendations for avoiding pitfalls in pain genetic research. PMID:19559388

  5. Learning genetic inquiry through the use, revision, and justification of explanatory models

    NASA Astrophysics Data System (ADS)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to come to a rich understanding of both the central concepts of transmission genetics and important epistemological aspects of genetic practice.

  6. Genetic variation in HTR2A influences serotonin transporter binding potential as measured using PET and [11C]DASB.

    PubMed

    Laje, Gonzalo; Cannon, Dara M; Allen, Andrew S; Klaver, Jackie M; Peck, Summer A; Liu, Xinmin; Manji, Husseini K; Drevets, Wayne C; McMahon, Francis J

    2010-07-01

    In a previous study we showed that genetic variation in HTR2A, which encodes the serotonin 2A receptor, influenced outcome of citalopram treatment in patients with major depressive disorder. Since chronic administration of citalopram, which selectively and potently inhibits the serotonin transporter (5-HTT), putatively enhances serotonergic transmission, it is conceivable that genetic variation within HTR2A also influences pretreatment 5-HTT function or serotonergic transmission. The present study used positron emission tomography (PET) and the selective 5-HTT ligand, [11C]DASB, to investigate whether the HTR2A marker alleles that predict treatment outcome also predict differences in 5-HTT binding. Brain levels of 5-HTT were assessed in vivo using PET measures of the non-displaceable component of the [11C]DASB binding potential (BPND). DNA from 43 patients and healthy volunteers, all unmedicated, was genotyped with 14 single nucleotide polymorphisms located within or around HTR2A. Allelic association with BPND was assessed in eight brain regions, with covariates to control for race and ethnicity. We detected allelic association between [11C]DASB BPND in thalamus and three markers in a region spanning the 3' untranslated region and second intron of HTR2A (rs7333412, p=0.000045; rs7997012, p=0.000086; rs977003, p=0.000069). The association signal at rs7333412 remained significant (p<0.05) after applying corrections for multiple testing via permutation. Genetic variation in HTR2A that was previously associated with citalopram treatment outcome was also associated with thalamic 5-HTT binding. While further work is needed to identify the actual functional genetic variants involved, these results suggest that a relationship exists between genetic variation in HTR2A and either 5-HTT expression or central serotonergic transmission that influences the therapeutic response to 5-HTT inhibition in major depression.

  7. Effective Population Size Dynamics and the Demographic Collapse of Bornean Orang-Utans

    PubMed Central

    Goossens, Benoit; Nater, Alexander; Morf, Nadja; Salmona, Jordi; Bruford, Michael W.; Van Schaik, Carel P.; Krützen, Michael; Chikhi, Lounès

    2012-01-01

    Bornean orang-utans experienced a major demographic decline and local extirpations during the Pleistocene and Holocene due to climate change, the arrival of modern humans, of farmers and recent commercially-driven habitat loss and fragmentation. The recent loss of habitat and its dramatic fragmentation has affected the patterns of genetic variability and differentiation among the remaining populations and increased the extinction risk of the most isolated ones. However, the contribution of recent demographic events to such genetic patterns is still not fully clear. Indeed, it can be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric demographic events. Here, we investigated the genetic structure and population size dynamics of orang-utans from different sites. Altogether 126 individuals were analyzed and a full-likelihood Bayesian approach was applied. All sites exhibited clear signals of population decline. Population structure is known to generate spurious bottleneck signals and we found that it does indeed contribute to the signals observed. However, population structure alone does not easily explain the observed patterns. The dating of the population decline varied across sites but was always within the 200–2000 years period. This suggests that in some sites at least, orang-utan populations were affected by demographic events that started before the recent anthropogenic effects that occurred in Borneo. These results do not mean that the recent forest exploitation did not leave its genetic mark on orang-utans but suggests that the genetic pool of orang-utans is also impacted by more ancient events. While we cannot identify the main cause for this decline, our results suggests that the decline may be related to the arrival of the first farmers or climatic events, and that more theoretical work is needed to understand how multiple demographic events impact the genome of species and how we can assess their relative contributions. PMID:23166666

  8. Accuracy of whole-genome prediction using a genetic architecture-enhanced variance-covariance matrix.

    PubMed

    Zhang, Zhe; Erbe, Malena; He, Jinlong; Ober, Ulrike; Gao, Ning; Zhang, Hao; Simianer, Henner; Li, Jiaqi

    2015-02-09

    Obtaining accurate predictions of unobserved genetic or phenotypic values for complex traits in animal, plant, and human populations is possible through whole-genome prediction (WGP), a combined analysis of genotypic and phenotypic data. Because the underlying genetic architecture of the trait of interest is an important factor affecting model selection, we propose a new strategy, termed BLUP|GA (BLUP-given genetic architecture), which can use genetic architecture information within the dataset at hand rather than from public sources. This is achieved by using a trait-specific covariance matrix ( T: ), which is a weighted sum of a genetic architecture part ( S: matrix) and the realized relationship matrix ( G: ). The algorithm of BLUP|GA (BLUP-given genetic architecture) is provided and illustrated with real and simulated datasets. Predictive ability of BLUP|GA was validated with three model traits in a dairy cattle dataset and 11 traits in three public datasets with a variety of genetic architectures and compared with GBLUP and other approaches. Results show that BLUP|GA outperformed GBLUP in 20 of 21 scenarios in the dairy cattle dataset and outperformed GBLUP, BayesA, and BayesB in 12 of 13 traits in the analyzed public datasets. Further analyses showed that the difference of accuracies for BLUP|GA and GBLUP significantly correlate with the distance between the T: and G: matrices. The new strategy applied in BLUP|GA is a favorable and flexible alternative to the standard GBLUP model, allowing to account for the genetic architecture of the quantitative trait under consideration when necessary. This feature is mainly due to the increased similarity between the trait-specific relationship matrix ( T: matrix) and the genetic relationship matrix at unobserved causal loci. Applying BLUP|GA in WGP would ease the burden of model selection. Copyright © 2015 Zhang et al.

  9. Biased random key genetic algorithm with insertion and gender selection for capacitated vehicle routing problem with time windows

    NASA Astrophysics Data System (ADS)

    Rochman, Auliya Noor; Prasetyo, Hari; Nugroho, Munajat Tri

    2017-06-01

    Vehicle Routing Problem (VRP) often occurs when the manufacturers need to distribute their product to some customers/outlets. The distribution process is typically restricted by the capacity of the vehicle and the working hours at the distributor. This type of VRP is also known as Capacitated Vehicle Routing Problem with Time Windows (CVRPTW). A Biased Random Key Genetic Algorithm (BRKGA) was designed and coded in MATLAB to solve the CVRPTW case of soft drink distribution. The standard BRKGA was then modified by applying chromosome insertion into the initial population and defining chromosome gender for parent undergoing crossover operation. The performance of the established algorithms was then compared to a heuristic procedure for solving a soft drink distribution. Some findings are revealed (1) the total distribution cost of BRKGA with insertion (BRKGA-I) results in a cost saving of 39% compared to the total cost of heuristic method, (2) BRKGA with the gender selection (BRKGA-GS) could further improve the performance of the heuristic method. However, the BRKGA-GS tends to yield worse results compared to that obtained from the standard BRKGA.

  10. Mining the Human Phenome using Semantic Web Technologies: A Case Study for Type 2 Diabetes

    PubMed Central

    Pathak, Jyotishman; Kiefer, Richard C.; Bielinski, Suzette J.; Chute, Christopher G.

    2012-01-01

    The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form “biobanks” where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. PMID:23304343

  11. Development of mathematical models and optimization of the process parameters of laser surface hardened EN25 steel using elitist non-dominated sorting genetic algorithm

    NASA Astrophysics Data System (ADS)

    Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.

    2018-02-01

    The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.

  12. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage.

    PubMed

    Devaraj, Vasanthan; Han, Jiye; Kim, Chuntae; Kang, Yong-Cheol; Oh, Jin-Woo

    2018-06-12

    Highly periodic and uniform nanostructures, based on a genetically engineered M13 bacteriophage, displayed unique properties at the nanoscale that have the potential for a variety of applications. In this work, we report a multilayer biofilm with self-assembled nanoporous surfaces involving a nanofiber-like genetically engineered 4E-type M13 bacteriophage, which was fabricated using a simple pulling method. The nanoporous surfaces were effectively formed by using the networking-like structural layers of the M13 bacteriophage during self-assembly. Therefore, an external template was not required. The actual M13 bacteriophage-based fabricated multilayered biofilm with porous nanostructures agreed well with experimental and simulation results. Pores formed in the final layer had a diameter of about 150⁻500 nm and a depth of about 15⁻30 nm. We outline a filter application for this multilayered biofilm that enables selected ions to be extracted from a sodium chloride solution. Here, we describe a simple, environmentally friendly, and inexpensive fabrication approach with large-scale production potential. The technique and the multi-layered biofilms produced may be applied to sensor, filter, plasmonics, and bio-mimetic fields.

  13. Novel Phenotype Issues Raised in Cross-National Epidemiological Research on Drug Dependence

    PubMed Central

    Anthony, James C.

    2010-01-01

    Stage-transition models based on the American Diagnostic and Statistical Manual (DSM) generally are applied in epidemiology and genetics research on drug dependence syndromes associated with cannabis, cocaine, and other internationally regulated drugs (IRD). Difficulties with DSM stage-transition models have surfaced during cross-national research intended to provide a truly global perspective, such as the work of the World Mental Health Surveys (WMHS) Consortium. Alternative simpler dependence-related phenotypes are possible, including population-level count process models for steps early and before coalescence of clinical features into a coherent syndrome (e.g., zero-inflated Poisson regression). Selected findings are reviewed, based on ZIP modeling of alcohol, tobacco, and IRD count processes, with an illustration that may stimulate new research on genetic susceptibility traits. The annual National Surveys on Drug Use and Health can be readily modified for this purpose, along the lines of a truly anonymous research approach that can help make NSDUH-type cross-national epidemiological surveys more useful in the context of subsequent genome wide association (GWAS) research and post-GWAS investigations with a truly global health perspective. PMID:20201862

  14. Electrochemical genosensors in food safety assessment.

    PubMed

    Martín-Fernández, Begoña; Manzanares-Palenzuela, C Lorena; Sánchez-Paniagua López, Marta; de-Los-Santos-Álvarez, Noemí; López-Ruiz, Beatriz

    2017-09-02

    The main goal of food safety assessment is to provide reliable information on the identity and composition of food and reduce the presence of harmful components. Nowadays, there are many countries where rather than the presence of pathogens, common public concerns are focused on the presence of hidden allergens, fraudulent practices, and genetic modifications in food. Accordingly, food regulations attempt to offer a high level of protection and to guarantee transparent information to the consumers. The availability of analytical methods is essential to comply these requirements. Protein-based strategies are usually employed for this purpose, but present some limitations. Because DNA is a more stable molecule, present in most tissues, and can be amplified, there has been an increasing interest in developing DNA-based approaches (polymerase chain reaction, microarrays, and genosensors). In this regard, electrochemical genosensors may play a major role in fulfilling the needs of food industry, such as reliable, portable, and affordable devices. This work reviews the achievements of this technology applied to allergen detection, species identification, and genetically modified organisms testing. We summarized the legislative framework, current design strategies in sensor development, their analytical characteristics, and future prospects.

  15. Mining the human phenome using semantic web technologies: a case study for Type 2 Diabetes.

    PubMed

    Pathak, Jyotishman; Kiefer, Richard C; Bielinski, Suzette J; Chute, Christopher G

    2012-01-01

    The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypothesis generation. In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped with Type 2 Diabetes for discovering gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries.

  16. Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies.

    PubMed

    Geeleher, Paul; Zhang, Zhenyu; Wang, Fan; Gruener, Robert F; Nath, Aritro; Morrison, Gladys; Bhutra, Steven; Grossman, Robert L; Huang, R Stephanie

    2017-10-01

    Obtaining accurate drug response data in large cohorts of cancer patients is very challenging; thus, most cancer pharmacogenomics discovery is conducted in preclinical studies, typically using cell lines and mouse models. However, these platforms suffer from serious limitations, including small sample sizes. Here, we have developed a novel computational method that allows us to impute drug response in very large clinical cancer genomics data sets, such as The Cancer Genome Atlas (TCGA). The approach works by creating statistical models relating gene expression to drug response in large panels of cancer cell lines and applying these models to tumor gene expression data in the clinical data sets (e.g., TCGA). This yields an imputed drug response for every drug in each patient. These imputed drug response data are then associated with somatic genetic variants measured in the clinical cohort, such as copy number changes or mutations in protein coding genes. These analyses recapitulated drug associations for known clinically actionable somatic genetic alterations and identified new predictive biomarkers for existing drugs. © 2017 Geeleher et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Using biological data to test climate change refugia

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Maher, S. P.

    2015-12-01

    The concept of refugia has been discussed from theoretical and paleontological perspectives to address how populations persisted during periods of unfavorable climate. Recently, several studies have applied the idea to contemporary landscapes to identify locations that are buffered from climate change effects so as to favor greater persistence of valued resources relative to other areas. Refugia are now being discussed among natural resource agencies as a potential adaptation option in the face of anthropogenic climate change. Using downscaled climate data, we identified hypothetical refugial meadows in the Sierra Nevada and then tested them using survey and genetic data from Belding's ground squirrel (Urocitellus beldingi) populations. We predicted that refugial meadows would show higher genetic diversity, higher rates of occupancy and lower rates of extirpation over time. At each step of the research, we worked with managers to ensure the largest impact. Although no panacea, identifying climate change refugia could be an important strategy for prioritizing habitats for management intervention in order to conserve populations. This research was supported by the California LCC, the Northeast Climate Science Center, and NSF.

  18. Genetic programming applied to RFI mitigation in radio astronomy

    NASA Astrophysics Data System (ADS)

    Staats, K.

    2016-12-01

    Genetic Programming is a type of machine learning that employs a stochastic search of a solutions space, genetic operators, a fitness function, and multiple generations of evolved programs to resolve a user-defined task, such as the classification of data. At the time of this research, the application of machine learning to radio astronomy was relatively new, with a limited number of publications on the subject. Genetic Programming had never been applied, and as such, was a novel approach to this challenging arena. Foundational to this body of research, the application Karoo GP was developed in the programming language Python following the fundamentals of tree-based Genetic Programming described in "A Field Guide to Genetic Programming" by Poli, et al. Karoo GP was tasked with the classification of data points as signal or radio frequency interference (RFI) generated by instruments and machinery which makes challenging astronomers' ability to discern the desired targets. The training data was derived from the output of an observation run of the KAT-7 radio telescope array built by the South African Square Kilometre Array (SKA-SA). Karoo GP, kNN, and SVM were comparatively employed, the outcome of which provided noteworthy correlations between input parameters, the complexity of the evolved hypotheses, and performance of raw data versus engineered features. This dissertation includes description of novel approaches to GP, such as upper and lower limits to the size of syntax trees, an auto-scaling multiclass classifier, and a Numpy array element manager. In addition to the research conducted at the SKA-SA, it is described how Karoo GP was applied to fine-tuning parameters of a weather prediction model at the South African Astronomical Observatory (SAAO), to glitch classification at the Laser Interferometer Gravitational-wave Observatory (LIGO), and to astro-particle physics at The Ohio State University.

  19. Abnormal appearances: inspection, display and the clinic.

    PubMed

    Featherstone, Katie; Atkinson, Paul

    2014-01-01

    We provide an examination of the field of dysmorphology, a clinical speciality that in its current form combines a long history of inspection and display with the identification and representation of associated underlying molecular changes. The recognition and description of abnormal appearances is thus increasingly accompanied by genetic and other molecular investigations. Our analysis draws on our long-term ethnographic engagement with a UK clinical genetics service and the work of two clinical genetics teams within a regional teaching hospital. We document the intersection of genetic science with clinical work to suggest that while molecular testing often identifies the genetic basis for unusual appearances and abnormal development, it does not fully supplant clinical apperception and interpretation. The two modes of knowledge--the clinical and the biomedical--co-exist in the work and the discourse of dysmorphology practice. The contemporary dysmorphology clinic thus encapsulates the epistemological systems of modern medicine, grounded in the clinical gaze and on the classificatory systems of classic nosology. Within such a system of clinical knowledge, the 'monstrous' does not escape the boundaries of knowledge. Monstrous appearances are accommodated and domesticated within the classificatory systems of normal medicine.

  20. Genetics at School Level: Addressing the Difficulties

    ERIC Educational Resources Information Center

    Chu, Yu-Chien; Reid, Norman

    2012-01-01

    Background: A wide range of studies has offered suggestions why genetics is difficult and some of their key findings are summarised. Underpinning all of this is the way the brain works when handling information. The limitations of working memory capacity offer an interpretation of these difficulties. Purpose: The aim is to confirm that working…

  1. Who Are We Talking About? A Discussion of Peter Molenaar's Interpretation of Gottlieb's Legacy. Commentary on: "An Interpretation of Part of Gilbert Gottlieb's Legacy: Developmental Systems Theory Contra Developmental Behavior Genetics"

    ERIC Educational Resources Information Center

    von Eye, Alexander

    2015-01-01

    The concepts and paradigms "development", "evolution", and "developmental behavior genetics" target, in their statements, populations. The laws of genetics and evolution are supposed to apply to every single case in a population. It can be counted among the major contributions of Gottlieb (1992, 1995) to have pointed…

  2. Disease Modeling via Large-Scale Network Analysis

    DTIC Science & Technology

    2015-05-20

    SECURITY CLASSIFICATION OF: A central goal of genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit...guarantees for the methods. In the past, we have developed predictive methods general enough to apply to potentially any genetic trait, varying from... genetics is to learn how the genotype of an organism determines its phenotype. We address the implicit problem of predicting the association of genes with

  3. Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested grey wolf (Canis lupus) population in north-eastern Europe.

    PubMed

    Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas

    2013-01-01

    Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.

  4. Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck

    USGS Publications Warehouse

    D'Elia, Jesse; Haig, Susan M.; Mullins, Thomas D.; Miller, Mark P.

    2016-01-01

    Critically endangered species that have undergone severe population bottlenecks often have little remaining genetic variation, making it difficult to reconstruct population histories to apply in reintroduction and recovery strategies. By using ancient DNA techniques, it is possible to combine genetic evidence from the historical population with contemporary samples to provide a more complete picture of a species' genetic variation across its historical range and through time. Applying this approach, we examined changes in the mitochondrial DNA (mtDNA) control region (526 base pairs) of the endangered California Condor (Gymnogyps californianus). Results showed a >80% reduction in unique haplotypes over the past 2 centuries. We found no spatial sorting of haplotypes in the historical population; the periphery of the range contained haplotypes that were common throughout the historical range. Direct examination of mtDNA from California Condor museum specimens provided a new window into historical population connectivity and genetic diversity showing: (1) a substantial loss of haplotypes, which is consistent with the hypothesis that condors were relatively abundant in the nineteenth century, but declined rapidly as a result of human-caused mortality; and (2) no evidence of historical population segregation, meaning that the available genetic data offer no cause to avoid releasing condors in unoccupied portions of their historical range.

  5. Evaluation of morpho-anatomical and chemical differences between varieties of the medicinal plant Casearia sylvestris Swartz.

    PubMed

    Claudino, Josiane C; Sacramento, Luis V S do; Koch, Ingrid; Santos, Helen A; Cavalheiro, Alberto J; Tininis, Aristeu G; Santos, André G dos

    2013-01-01

    Casearia sylvestris Swartz (Salicaceae) has been used in traditional medicine and its leaf extracts have been exhibited important pharmacological activities. The species presents morphological, chemical and genetic variation. Two varieties are considered due external morphological differences: C. sylvestris var. sylvestris and var. lingua. There are difficulties in definition of these varieties. The objective of this work is to evaluate chemical and morpho-anatomical differences between C. sylvestris varieties that can be applied in their distinction for pharmaceutical or botanical purposes. Transverse and paradermic sections of leaves were prepared for morpho-anatomical, histochemical and quantitative microscopy (stomatal and palisade index) analyses. Diterpene profiles of the specimens were obtained by HPLC-DAD and TLC. Morpho-anatomical analyses demonstrated significant differences between the varieties only in paradermic sections: var. sylvestris--polygonal epidermic cell walls and hypostomatic; var. lingua--rounded epidermic cell walls and amphistomatic. No differences were observed for stomatal index; palisade index was found 2.8 for var. lingua and 3.9 for var. sylvestris. Chromatographic analyses confirmed previous results demonstrating that diterpene profile in varieties differs, with predominance of these metabolites in var. sylvestris. In conclusion, this work indicates that chromatographic analysis besides morpho-anatomical analysis can be applied in distinction of C. sylvestris varieties.

  6. Understanding Genetic Toxicity Through Data Mining: The ...

    EPA Pesticide Factsheets

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies. This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies.

  7. ECUT (Energy Conversion and Utilization Technologies Program). Biocatalysis Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Presented are the FY 1985 accomplishments, activities, and planned research efforts of the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Program. The Project's technical activities were organized as follows: In the Molecular Modeling and Applied Genetics work element, research focused on (1) modeling and simulation studies to establish the physiological basis of high temperature tolerance in a selected enzyme and the catalytic mechanisms of three species of another enzyme, and (2) determining the degree of plasmid amplification and stability of several DNA bacterial strains. In the Bioprocess Engineering work element, research focused on (1) studies of plasmid propagation and the generation of models, (2) developing methods for preparing immobilized biocatalyst beads, and (3) developing an enzyme encapsulation method. In the Process Design and Analysis work element, research focused on (1) further refinement of a test case simulation of the economics and energy efficiency of alternative biocatalyzed production processes, (2) developing a candidate bioprocess to determine the potential for reduced energy consumption and facility/operating costs, and (3) a techno-economic assessment of potential advancements in microbial ammonia production.

  8. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Laub

    2008-12-29

    Our team of investigators from MIT (Michael Laub) and Stanford (Harley McAdams and Lucy Shapiro) conducted a multi-faceted, systematic experimental analysis of the 106 Caulobacter two-component signal transduction system proteins (62 histidine kinases and 44 response regulators) to understand how they coordinate cell cycle progression, metabolism, and response to environmental changes. These two-component signaling proteins were characterized at the genetic, biochemical, and genomic levels. The results generated by our laboratories have provided numerous insights into how Caulobacter cells sense and respond to a myriad of signals. As nearly all bacteria use two-component signaling for cell regulation, the results from thismore » project help to deepen our general understanding of bacterial signal transduction. The tools and approaches developed can be applied to other bacteria. In particular, work from the Laub laboratory now enables the systematic, rational rewiring of two-component signaling proteins, a major advance that stands to impact synthetic biology and the development of biosensors and other designer molecular circuits. Results are summarized from our work. Each section lists publications and publicly-available resources which result from the work described.« less

  9. Genetic Technology and Agricultural Development

    ERIC Educational Resources Information Center

    Staub, William J.; Blase, Melvin G.

    1971-01-01

    Examines the nature, application, limits and potential of applied genetics in plant breeding as a factor in South Asian agricultural development. Concludes other factors were also present in recent agricultural growth, and indicates some economic implications of continued growth, including problems of employment of displaced rural workers. (AL)

  10. Students' Understanding of Quadratic Equations

    ERIC Educational Resources Information Center

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  11. [Public health, genetics and ethics].

    PubMed

    Kottow, Miguel H

    2002-10-01

    Genetics research has shown enormous developments in recent decades, although as yet with only limited clinical application. Bioethical analysis has been unable to deal with the vast problems of genetics because emphasis has been put on the principlism applied to both clinical and research bioethics. Genetics nevertheless poses its most complex moral dilemmas at the public level, where a social brand of ethics ought to supersede the essentially interpersonal perspective of principlism. A more social understanding of ethics in genetics is required to unravel issues such as research and clinical explorations, ownership and patents, genetic manipulation, and allocation of resources. All these issues require reflection based on the requirements of citizenry, consideration of common assets, and definition of public policies in regulating genetic endeavors and protecting the society as a whole Bioethics has privileged the approach to individual ethical issues derived from genetic intervention, thereby neglecting the more salient aspects of genetics and social ethics.

  12. From Mendel's discovery on pea to today's plant genetics and breeding : Commemorating the 150th anniversary of the reading of Mendel's discovery.

    PubMed

    Smýkal, Petr; K Varshney, Rajeev; K Singh, Vikas; Coyne, Clarice J; Domoney, Claire; Kejnovský, Eduard; Warkentin, Thomas

    2016-12-01

    This work discusses several selected topics of plant genetics and breeding in relation to the 150th anniversary of the seminal work of Gregor Johann Mendel. In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin's theory of evolution was based on differential survival and differential reproductive success, Mendel's theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin's concepts were continuous variation and "soft" heredity; Mendel espoused discontinuous variation and "hard" heredity. Thus, the combination of Mendelian genetics with Darwin's theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker-trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner.

  13. Stimulus-triggered enhancement of chilling tolerance in zebrafish embryos

    PubMed Central

    Szabó, Katalin; Budai, Csilla; Losonczi, Eszter; Bernáth, Gergely; Csenki-Bakos, Zsolt; Urbányi, Béla; Pribenszky, Csaba; Horváth, Ákos; Cserepes, Judit

    2017-01-01

    Background Cryopreservation of zebrafish embryos is still an unsolved problem despite market demand and massive efforts to preserve genetic variation among numerous existing lines. Chilled storage of embryos might be a step towards developing successful cryopreservation, but no methods to date have worked. Methods In the present study, we applied a novel strategy to improve the chilling tolerance of zebrafish embryos by introducing a preconditioning hydrostatic pressure treatment to the embryos. In our experiments, 26-somites and Prim-5 stage zebrafish embryos were chilled at 0°C for 24 hours after preconditioning. Embryo survival rate, ability to reach maturation and fertilizing capacity were tested. Results Our results indicate that applied preconditioning technology made it possible for the chilled embryos to develop normally until maturity, and to produce healthy offspring as normal, thus passing on their genetic material successfully. Treated embryos had a significantly higher survival and better developmental rate, moreover the treated group had a higher ratio of normal morphology during continued development. While all controls from chilled embryos died by 30 day-post-fertilization, the treated group reached maturity (~90–120 days) and were able to reproduce, resulting in offspring in expected quantity and quality. Conclusions Based on our results, we conclude that the preconditioning technology represents a significant improvement in zebrafish embryo chilling tolerance, thus enabling a long-time survival. Furthermore, as embryonic development is arrested during chilled storage this technology also provides a solution to synchronize or delay the development. PMID:28166301

  14. Determination of optimum allocation and pricing of distributed generation using genetic algorithm methodology

    NASA Astrophysics Data System (ADS)

    Mwakabuta, Ndaga Stanslaus

    Electric power distribution systems play a significant role in providing continuous and "quality" electrical energy to different classes of customers. In the context of the present restrictions on transmission system expansions and the new paradigm of "open and shared" infrastructure, new approaches to distribution system analyses, economic and operational decision-making need investigation. This dissertation includes three layers of distribution system investigations. In the basic level, improved linear models are shown to offer significant advantages over previous models for advanced analysis. In the intermediate level, the improved model is applied to solve the traditional problem of operating cost minimization using capacitors and voltage regulators. In the advanced level, an artificial intelligence technique is applied to minimize cost under Distributed Generation injection from private vendors. Soft computing techniques are finding increasing applications in solving optimization problems in large and complex practical systems. The dissertation focuses on Genetic Algorithm for investigating the economic aspects of distributed generation penetration without compromising the operational security of the distribution system. The work presents a methodology for determining the optimal pricing of distributed generation that would help utilities make a decision on how to operate their system economically. This would enable modular and flexible investments that have real benefits to the electric distribution system. Improved reliability for both customers and the distribution system in general, reduced environmental impacts, increased efficiency of energy use, and reduced costs of energy services are some advantages.

  15. Molecular mapping of chromosomes 17 and X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping clones from a larger genome.« less

  16. Molecular mapping of chromosomes 17 and X. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, D.F.

    1991-01-15

    Progress toward the construction of high density genetic maps of chromosomes 17 and X has been made by isolating and characterizing a relatively large set of polymorphic probes for each chromosome and using these probes to construct genetic maps. We have mapped the same polymorphic probes against a series of chromosome breakpoints on X and 17. The probes could be assigned to over 30 physical intervals on the X chromosome and 7 intervals on 17. In many cases, this process resulted in improved characterization of the relative locations of the breakpoints with respect to each other and the definition ofmore » new physical intervals. The strategy for isolation of the polymorphic clones utilized chromosome specific libraries of 1--15 kb segments from each of the two chromosomes. From these libraries, clones were screened for those detecting restriction fragment length polymorphisms. The markers were further characterized, the chromosomal assignments confirmed and in most cases segments of the original probes were subcloned into plasmids to produce probes with improved signal to noise ratios for use in the genetic marker studies. The linkage studies utilize the CEPH reference families and other well-characterized families in our collection which have been used for genetic disease linkage work. Preliminary maps and maps of portions of specific regions of 17 and X are provided. We have nearly completed a map of the 1 megabase Mycoplasma arthritidis genome by applying these techniques to a lambda phage library of its genome. We have found bit mapping to be an efficient means to organize a contiguous set of overlapping@ clones from a larger genome.« less

  17. Development of microsatellite markers for the rapid and reliable genotyping of Brettanomyces bruxellensis at strain level.

    PubMed

    Albertin, Warren; Panfili, Aurélie; Miot-Sertier, Cécile; Goulielmakis, Aurélie; Delcamp, Adline; Salin, Franck; Lonvaud-Funel, Aline; Curtin, Chris; Masneuf-Pomarede, Isabelle

    2014-09-01

    Although many yeasts are useful for food production and beverage, some species may cause spoilage with important economic loss. This is the case of Dekkera/Brettanomyces bruxellensis, a contaminant species that is mainly associated with fermented beverages (wine, beer, cider and traditional drinks). To better control Brettanomyces spoilage, rapid and reliable genotyping methods are necessary to determine the origins of the spoilage, to assess the effectiveness of preventive treatments and to develop new control strategies. Despite several previously published typing methods, ranging from classical molecular methods (RAPD, AFLP, REA-PFGE, mtDNA restriction analysis) to more engineered technologies (infrared spectroscopy), there is still a lack of a rapid, reliable and universal genotyping approach. In this work, we developed eight polymorphic microsatellites markers for the Brettanomyces/Dekkera bruxellensis species. Microsatellite typing was applied to the genetic analysis of wine and beer isolates from Europe, Australia and South Africa. Our results suggest that B. bruxellensis is a highly disseminated species, with some strains isolated from different continents being closely related at the genetic level. We also focused on strains isolated from two Bordeaux wineries on different substrates (grapes, red wines) and for different vintages (over half a century). We showed that all B. bruxellensis strains within a cellar are strongly related at the genetic level, suggesting that one clonal population may cause spoilage over decades. The microsatellite tool now paves the way for future population genetics research of the B. bruxellensis species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Legacies of Garrod's brilliance. One hundred years--and counting.

    PubMed

    Rosenberg, L E

    2008-10-01

    One hundred years ago--in 1908--Archibald Garrod delivered his four Croonian Lectures. In these formerly forgotten, but now famous, dissertations, Garrod first used the expression, 'inborn errors of metabolism', to describe four rare disorders: albinism, alkaptonuria, cystinuria, and pentosuria. This prescient work proposed that such disorders resulted from enzymatic defects in the catabolic pathways for amino acids and sugars. Thus, Garrod can rightfully be called the first human geneticist. Much influenced by his colleague Bateson, who brought Mendel's work to his attention, Garrod then was the first to apply Gregor Mendel's law of gene segregation to humans, the first to propose recessive inheritance in humans, and the first to point out the importance of consanguinity. He even mentioned the role of ethnicity in inherited disorders. This would have been legacy enough, but Garrod did much more. He wrote about such other 'modern' topics as genetic predisposition to common disorders; the critical importance of physicians who were also scientists; and the proper role of the university in society. Although Garrod's work and ideas were not appreciated during his lifetime, they have echoed and reverberated ever since. He can rightly be deemed one of the most profound intellectuals of the 20th century, whose bequests to science and medicine continue to increase in value. All of us who study inborn errors of metabolism and who apply our knowledge in the hope of improving the diagnosis and treatment of affected patients are, in a genuine sense, Garrodians.

  19. Genetics of hereditary neurological disorders in children.

    PubMed

    Huang, Yue; Yu, Sui; Wu, Zhanhe; Tang, Beisha

    2014-04-01

    Hereditary neurological disorders (HNDs) are relatively common in children compared to those occurring in adulthood. Recognising clinical manifestations of HNDs is important for the selection of genetic testing, genetic testing results interpretation, and genetic consultation. Meanwhile, advances in next generation sequencing (NGS) technologies have significantly enabled the discovery of genetic causes of HNDs and also challenge paediatricians on applying genetic investigation. Combination of both clinical information and advanced technologies will enhance the genetic test yields in clinical setting. This review summarises the clinical presentations as well as genetic causes of paediatric neurological disorders in four major areas including movement disorders, neuropsychiatric disorders, neuron peripheral disorders and epilepsy. The aim of this review is to help paediatric neurologists not only to see the clinical features but also the complex genetic aspect of HNDs in order to utilise genetic investigation confidently in their clinical practice. A smooth transition from research based to clinical use of comprehensive genetic testing in HNDs in children could be foreseen in the near future while genetic testing, genetic counselling and genetic data interpretation are in place appropriately.

  20. Generation of EMS-Mutagenized Populations of Arabidopsis thaliana for Polyamine Genetics.

    PubMed

    Atanasov, Kostadin E; Liu, Changxin; Tiburcio, Antonio F; Alcázar, Rubén

    2018-01-01

    In the recent years, genetic engineering of polyamine biosynthetic genes has provided evidence for their involvement in plant stress responses and different aspects of plant development. Such approaches are being complemented with the use of reverse genetics, in which mutants affected on a particular trait, tightly associated with polyamines, are isolated and the causal genes mapped. Reverse genetics enables the identification of novel genes in the polyamine pathway, which may be involved in downstream signaling, transport, homeostasis, or perception. Here, we describe a basic protocol for the generation of ethyl methanesulfonate (EMS) mutagenized populations of Arabidopsis thaliana for its use in reverse genetics applied to polyamines.

  1. Applying molecular genetic tools to the conservation and action plan for the critically endangered Far Eastern leopard (Panthera pardus orientalis).

    PubMed

    Uphyrkina, Olga; O'Brien, Stephen J

    2003-08-01

    A role for molecular genetic approaches in conservation of endangered taxa is now commonly recognized. Because conservation genetic analyses provide essential insights on taxonomic status, recent evolutionary history and current health of endangered taxa, they are considered in nearly all conservation programs. Genetic analyses of the critically endangered Far Eastern, or Amur leopard, Panthera pardus orientalis, have been done recently to address all of these questions and develop strategies for survival of the leopard in the wild. The genetic status and implication for conservation management of the Far Eastern leopard subspecies are discussed.

  2. Genetic programming over context-free languages with linear constraints for the knapsack problem: first results.

    PubMed

    Bruhn, Peter; Geyer-Schulz, Andreas

    2002-01-01

    In this paper, we introduce genetic programming over context-free languages with linear constraints for combinatorial optimization, apply this method to several variants of the multidimensional knapsack problem, and discuss its performance relative to Michalewicz's genetic algorithm with penalty functions. With respect to Michalewicz's approach, we demonstrate that genetic programming over context-free languages with linear constraints improves convergence. A final result is that genetic programming over context-free languages with linear constraints is ideally suited to modeling complementarities between items in a knapsack problem: The more complementarities in the problem, the stronger the performance in comparison to its competitors.

  3. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids

    PubMed Central

    Xu, Jun-Wei; Zhong, Jian-Jiang

    2015-01-01

    Ganoderma lucidum is a well-known traditional medicinal mushroom that produces ganoderic acids with numerous interesting bioactivities. Genetic engineering is an efficient approach to improve ganoderic acid biosynthesis. However, reliable genetic transformation methods and appropriate genetic manipulation strategies remain underdeveloped and thus should be enhanced. We previously established a homologous genetic transformation method for G. lucidum; we also applied the established method to perform the deregulated overexpression of a homologous 3-hydroxy-3-methyl-glutaryl coenzyme A reductase gene in G. lucidum. Engineered strains accumulated more ganoderic acids than wild-type strains. In this report, the genetic transformation systems of G. lucidum are described; current trends are also presented to improve ganoderic acid production through the genetic manipulation of G. lucidum. PMID:26588475

  4. Genetic literacy series: Primer part 2-Paradigm shifts in epilepsy genetics.

    PubMed

    Helbig, Ingo; Heinzen, Erin L; Mefford, Heather C

    2018-05-09

    This is the second of a 2-part primer on the genetics of the epilepsies within the Genetic Literacy Series of the Genetics Commission of the International League Against Epilepsy. In Part 1, we covered types of genetic variation, inheritance patterns, and their relationship to disease. In Part 2, we apply these basic principles to the case of a young boy with epileptic encephalopathy and ask 3 important questions: (1) Is the gene in question an established genetic etiology for epilepsy? (2) Is the variant in this particular gene pathogenic by established variant interpretation criteria? (3) Is the variant considered causative in the clinical context? These questions are considered and then answered for the clinical case in question. Wiley Periodicals, Inc. © 2018 International League Against Epilepsy.

  5. Genetic engineering and chemical conjugation of potato virus X.

    PubMed

    Lee, Karin L; Uhde-Holzem, Kerstin; Fischer, Rainer; Commandeur, Ulrich; Steinmetz, Nicole F

    2014-01-01

    Here we report the genetic engineering and chemical modification of potato virus X (PVX) for the presentation of various peptides, proteins, and fluorescent dyes, or other chemical modifiers. Three different ways of genetic engineering are described and by these means, peptides are successfully expressed not only when the foot and mouth disease virus (FMDV) 2A sequence or a flexible glycine-serine linker is included, but also when the peptide is fused directly to the PVX coat protein. When larger proteins or unfavorable peptide sequences are presented, a partial fusion via the FMDV 2A sequence is preferable. When these PVX chimeras retain the ability to assemble into viral particles and are thus able to infect plants systemically, they can be utilized to inoculate susceptible plants for isolation of sufficient amounts of virus particles for subsequent chemical modification. Chemical modification is required for the display of nonbiological ligands such as fluorophores, polymers, and small drug compounds. We present three methods of chemical bioconjugation. For direct conjugation of small chemical modifiers to solvent exposed lysines, N-hydroxysuccinimide chemistry can be applied. Bio-orthogonal reactions such as copper-catalyzed azide-alkyne cycloaddition or hydrazone ligation are alternatives to achieve more efficient conjugation (e.g., when working with high molecular weight or insoluble ligands). Furthermore, hydrazone ligation offers an attractive route for the introduction of pH-cleavable cargos (e.g., therapeutic molecules).

  6. Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.

    PubMed

    Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia

    2018-03-01

    To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.

  7. Complete Numerical Solution of the Diffusion Equation of Random Genetic Drift

    PubMed Central

    Zhao, Lei; Yue, Xingye; Waxman, David

    2013-01-01

    A numerical method is presented to solve the diffusion equation for the random genetic drift that occurs at a single unlinked locus with two alleles. The method was designed to conserve probability, and the resulting numerical solution represents a probability distribution whose total probability is unity. We describe solutions of the diffusion equation whose total probability is unity as complete. Thus the numerical method introduced in this work produces complete solutions, and such solutions have the property that whenever fixation and loss can occur, they are automatically included within the solution. This feature demonstrates that the diffusion approximation can describe not only internal allele frequencies, but also the boundary frequencies zero and one. The numerical approach presented here constitutes a single inclusive framework from which to perform calculations for random genetic drift. It has a straightforward implementation, allowing it to be applied to a wide variety of problems, including those with time-dependent parameters, such as changing population sizes. As tests and illustrations of the numerical method, it is used to determine: (i) the probability density and time-dependent probability of fixation for a neutral locus in a population of constant size; (ii) the probability of fixation in the presence of selection; and (iii) the probability of fixation in the presence of selection and demographic change, the latter in the form of a changing population size. PMID:23749318

  8. Guidelines on severity assessment and classification of genetically altered mouse and rat lines.

    PubMed

    Zintzsch, Anne; Noe, Elena; Reißmann, Monika; Ullmann, Kristina; Krämer, Stephanie; Jerchow, Boris; Kluge, Reinhart; Gösele, Claudia; Nickles, Hannah; Puppe, Astrid; Rülicke, Thomas

    2017-12-01

    Genetic alterations can unpredictably compromise the wellbeing of animals. Thus, more or less harmful phenotypes might appear in the animals used in research projects even when they are not subjected to experimental treatments. The severity classification of suffering has become an important issue since the implementation of Directive 2010/63/EU on the protection of animals used for scientific purposes. Accordingly, the breeding and maintenance of genetically altered (GA) animals which are likely to develop a harmful phenotype has to be authorized. However, a determination of the degree of severity is rather challenging due to the large variety of phenotypes. Here, the Working Group of Berlin Animal Welfare Officers (WG Berlin AWO) provides field-tested guidelines on severity assessment and classification of GA rodents. With a focus on basic welfare assessment and severity classification we provide a list of symptoms that have been classified as non-harmful, mild, moderate or severe burdens. Corresponding monitoring and refinement strategies as well as specific housing requirements have been compiled and are strongly recommended to improve hitherto applied breeding procedures and conditions. The document serves as a guide to determine the degree of severity for an observed phenotype. The aim is to support scientists, animal care takers, animal welfare bodies and competent authorities with this task, and thereby make an important contribution to a European harmonization of severity assessments for the continually increasing number of GA rodents.

  9. Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction.

    PubMed

    Teixeira, César A; Ruano, M Graça; Ruano, António E; Pereira, Wagner C A

    2008-06-01

    The existence of proper non-invasive temperature estimators is an essential aspect when thermal therapy applications are envisaged. These estimators must be good predictors to enable temperature estimation at different operational situations, providing better control of the therapeutic instrumentation. In this work, radial basis functions artificial neural networks were constructed to access temperature evolution on an ultrasound insonated medium. The employed models were radial basis functions neural networks with external dynamics induced by their inputs. Both the most suited set of model inputs and number of neurons in the network were found using the multi-objective genetic algorithm. The neural models were validated in two situations: the operating ones, as used in the construction of the network; and in 11 unseen situations. The new data addressed two new spatial locations and a new intensity level, assessing the intensity and space prediction capacity of the proposed model. Good performance was obtained during the validation process both in terms of the spatial points considered and whenever the new intensity level was within the range of applied intensities. A maximum absolute error of 0.5 degrees C+/-10% (0.5 degrees C is the gold-standard threshold in hyperthermia/diathermia) was attained with low computationally complex models. The results confirm that the proposed neuro-genetic approach enables foreseeing temperature propagation, in connection to intensity and space parameters, thus enabling the assessment of different operating situations with proper temperature resolution.

  10. Hemorheological alterations in sickle cell anemia and their clinical consequences - The role of genetic modulators.

    PubMed

    Silva, Marisa; Vargas, Sofia; Coelho, Andreia; Dias, Alexandra; Ferreira, Teresa; Morais, Anabela; Maia, Raquel; Kjöllerström, Paula; Lavinha, João; Faustino, Paula

    2016-01-01

    Sickle cell anemia (SCA) is an autosomal recessive disease caused by the HBB:c.20A>T mutation that leads to hemoglobin S synthesis. The disease presents with high clinical heterogeneity characterized by chronic hemolysis, recurrent episodes of vaso-oclusion and infection. This work aimed to characterize by in silico studies some genetic modulators of severe hemolysis and stroke risk in children with SCA, and understand their consequences at the hemorheological level.Association studies were performed between hemolysis biomarkers as well as the degree of cerebral vasculopathy and the inheritance of several polymorphic regions in genes related with vascular cell adhesion and vascular tonus in pediatric SCA patients. In silico tools (e.g. MatInspector) were applied to investigate the main variant consequences.Variants in vascular adhesion molecule-1 (VCAM1) gene promoter and endothelial nitric oxide synthase (NOS3) gene were significantly associated with higher degree of hemolysis and stroke events. They potentially modify transcription factor binding sites (e.g. VCAM1 rs1409419_T allele may lead to an EVI1 gain) or disturb the corresponding protein structure/function. Our findings emphasize the relevance of genetic variation in modulating the disease severity due to their effect on gene expression or modification of protein biological activities related with sickled erythrocyte/endothelial interactions and consequent hemorheological abnormalities.

  11. Designing a Polymerase Chain Reaction Device Working with Radiation and Convection Heat Transfer

    NASA Astrophysics Data System (ADS)

    Madadelahi, M.; Kalan, K.; Shamloo, A.

    2018-05-01

    Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device has been designed and fabricated which uses radiation and convection heat transfer at the same time to set and control the mentioned thermal sections. A 300W incandescent light bulb able to immediately turn off and on along with two 8×8 cm DC fans, controlled by a microcontroller as well as PID and PD controller codes are used to monitor the applied thermal cycles. In designing the controller codes it has been concerned that they not only control the temperature over the set-points as well as possible, but also increase the temperature variation rate between each two phases. The temperature data were plotted and DNA samples were used to assess the device function.

  12. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.

    PubMed

    Dekkers, Jack; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham

    2017-09-01

    PRRS is the most costly disease in the US pig industry. While vaccination, biosecurity and eradication effort have had some success, the variability and infectiousness of PRRS virus strains have hampered the effectiveness of these measures. We propose the use of genetic selection of pigs as an additional and complementary effort. Several studies have shown that host response to PRRS infection has a sizeable genetic component and recent advances in genomics provide opportunities to capitalize on these genetic differences and improve our understanding of host response to PRRS. While work is also ongoing to understand the genetic basis of host response to reproductive PRRS, the focus of this review is on research conducted on host response to PRRS in the nursery and grow-finish phase as part of the PRRS Host Genetics Consortium. Using experimental infection of large numbers of commercial nursery pigs, combined with deep phenotyping and genomics, this research has identified a major gene that is associated with host response to PRRS. Further functional genomics work identified the GBP5 gene as harboring the putative causative mutation. GBP5 is associated with innate immune response. Subsequent work has validated the effect of this genomic region on host response to a second PRRSV strain and to PRRS vaccination and co-infection of nursery pigs with PRRSV and PCV2b. A genetic marker near GBP5 is available to the industry for use in selection. Genetic differences in host response beyond GBP5 appear to be highly polygenic, i.e. controlled by many genes across the genome, each with a small effect. Such effects can by capitalized on in a selection program using genomic prediction on large numbers of genetic markers across the genome. Additional work has also identified the genetic basis of antibody response to PRRS, which could lead to the use of vaccine response as an indicator trait to select for host response to PRRS. Other genomic analyses, including gene expression analyses, have identified genes and modules of genes that are associated with differences in host response to PRRS and can be used to further understand and utilize differences in host response. Together, these results demonstrate that genetic selection can be an additional and complementary tool to combat PRRS in the swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Emerging Genetic Counselor Roles within the Biotechnology and Pharmaceutical Industries: as Industry Interest Grows in Rare Genetic Disorders, How are Genetic Counselors Joining the Discussion?

    PubMed

    Field, Tessa; Brewster, Stephanie Jo; Towne, Meghan; Campion, MaryAnn W

    2016-08-01

    Traditionally, the biotechnology and pharmaceutical industry (BPI) has focused drug development at the mass-market level targeting common medical issues. However, a recent trend is the development of therapies for orphan or rare disorders, including many genetic disorders. Developing treatments for genetic disorders requires an understanding of the needs of the community and translating genomic information to clinical and non-clinical audiences. The core skills of genetic counselors (GCs) include a deep knowledge of genetics and ability to communicate complex information to a broad audience, making GCs a choice fit for this shift in drug development. To date there is limited data defining the roles GCs hold within this industry. This exploratory study aimed to define the roles and motivation of GCs working in BPI, assess job satisfaction, and identify translatable skills and current gaps in GC training programs. The authors surveyed 26 GCs working in BPI in the United States; 79 % work for companies focused on rare disorders. GC positions in BPI are growing, with 57 % of respondents being the first GC in their role. GCs in BPI continue to utilize core genetic counseling competencies, though 72 % felt their training did not fully prepare them for BPI. These data suggest opportunities for exposure to BPI in GC training to better prepare future generations of GCs for these career opportunities. GC satisfaction was high in BPI, notably in areas traditionally reported as less satisfying on the National Society for Genetic Counselors Professional Status Survey: salary and advancement opportunities. BPI's growing interest in rare disorders represents a career opportunity for GCs, addressing both historic areas of dissatisfaction for GCs and BPI's genomic communication needs.

  14. A Threshold Model of Content Knowledge Transfer for Socioscientific Argumentation

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Fowler, Samantha R.

    2006-01-01

    This study explores how individuals make use of scientific content knowledge for socioscientific argumentation. More specifically, this mixed-methods study investigates how learners apply genetics content knowledge as they justify claims relative to genetic engineering. Interviews are conducted with 45 participants, representing three distinct…

  15. Scaffolding Dynamics and the Emergence of Problematic Learning Trajectories

    ERIC Educational Resources Information Center

    Steenbeek, Henderien; Jansen, Louise; van Geert, Paul

    2012-01-01

    This study aims at examining problematic learning trajectories of students with emotional behavioral disorders (EBD) by means of a longitudinal and time serial (micro genetic) study of individual instruction sessions during arithmetic lessons. Micro genetic analysis techniques were applied on the variable "responsiveness" in the scaffolding…

  16. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.

    PubMed

    Granleese, Tom; Clark, Samuel A; Swan, Andrew A; van der Werf, Julius H J

    2015-09-14

    Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juvenile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle breeding programs. Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding program for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each breeding program was simulated with and without genomic selection. All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively. Large increases in genetic gain were found across species when female reproductive technologies combined with genomic selection were applied and inbreeding was managed, especially for breeding programs that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.

  17. Genetic analyses of protein yield in dairy cows applying random regression models with time-dependent and temperature x humidity-dependent covariates.

    PubMed

    Brügemann, K; Gernand, E; von Borstel, U U; König, S

    2011-08-01

    Data used in the present study included 1,095,980 first-lactation test-day records for protein yield of 154,880 Holstein cows housed on 196 large-scale dairy farms in Germany. Data were recorded between 2002 and 2009 and merged with meteorological data from public weather stations. The maximum distance between each farm and its corresponding weather station was 50 km. Hourly temperature-humidity indexes (THI) were calculated using the mean of hourly measurements of dry bulb temperature and relative humidity. On the phenotypic scale, an increase in THI was generally associated with a decrease in daily protein yield. For genetic analyses, a random regression model was applied using time-dependent (d in milk, DIM) and THI-dependent covariates. Additive genetic and permanent environmental effects were fitted with this random regression model and Legendre polynomials of order 3 for DIM and THI. In addition, the fixed curve was modeled with Legendre polynomials of order 3. Heterogeneous residuals were fitted by dividing DIM into 5 classes, and by dividing THI into 4 classes, resulting in 20 different classes. Additive genetic variances for daily protein yield decreased with increasing degrees of heat stress and were lowest at the beginning of lactation and at extreme THI. Due to higher additive genetic variances, slightly higher permanent environment variances, and similar residual variances, heritabilities were highest for low THI in combination with DIM at the end of lactation. Genetic correlations among individual values for THI were generally >0.90. These trends from the complex random regression model were verified by applying relatively simple bivariate animal models for protein yield measured in 2 THI environments; that is, defining a THI value of 60 as a threshold. These high correlations indicate the absence of any substantial genotype × environment interaction for protein yield. However, heritabilities and additive genetic variances from the random regression model tended to be slightly higher in the THI range corresponding to cows' comfort zone. Selecting such superior environments for progeny testing can contribute to an accurate genetic differentiation among selection candidates. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Going forward with genetics: recent technological advances and forward genetics in mice.

    PubMed

    Moresco, Eva Marie Y; Li, Xiaohong; Beutler, Bruce

    2013-05-01

    Forward genetic analysis is an unbiased approach for identifying genes essential to defined biological phenomena. When applied to mice, it is one of the most powerful methods to facilitate understanding of the genetic basis of human biology and disease. The speed at which disease-causing mutations can be identified in mutagenized mice has been markedly increased by recent advances in DNA sequencing technology. Creating and analyzing mutant phenotypes may therefore become rate-limiting in forward genetic experimentation. We review the forward genetic approach and its future in the context of recent technological advances, in particular massively parallel DNA sequencing, induced pluripotent stem cells, and haploid embryonic stem cells. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    PubMed

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  20. A prospective cohort study assessing clinical referral management & workforce allocation within a UK regional medical genetics service.

    PubMed

    Benjamin, Caroline; Houghton, Catherine; Foo, Claire; Edgar, Chris; Mannion, Gail; Birch, Jan; Ellis, Ian; Weber, Astrid

    2015-08-01

    Ensuring patient access to genomic information in the face of increasing demand requires clinicians to develop innovative ways of working. This paper presents the first empirical prospective observational cohort study of UK multi-disciplinary genetic service delivery. It describes and explores collaborative working practices including the utilisation and role of clinical geneticists and non-medical genetic counsellors. Six hundred and fifty new patients referred to a regional genetics service were tracked through 850 clinical contacts until discharge. Referral decisions regarding allocation of lead health professional assigned to the case were monitored, including the use of initial clinical contact guidelines. Significant differences were found in the cases led by genetic counsellors and those led by clinical geneticists. Around a sixth, 16.8% (109/650) of referrals were dealt with by a letter back to the referrer or re-directed to another service provider and 14.8% (80/541) of the remaining patients chose not to schedule an appointment. Of the remaining 461 patients, genetic counsellors were allocated as lead health professional for 46.2% (213/461). A further 61 patients did not attend. Of those who did, 86.3% (345/400) were discharged after one or two appointments. Genetic counsellors contributed to 95% (784/825) of total patient contacts. They provided 93.7% (395/432) of initial contacts and 26.8% (106/395) of patients were discharged at that point. The information from this study informed a planned service re-design. More research is needed to assess the effectiveness and efficiency of different models of collaborative multi-disciplinary working within genetics services.

  1. [The importance of genealogy applied to genetic research in Costa Rica].

    PubMed

    Meléndez Obando, Mauricio O

    2004-09-01

    The extensive development of genealogical studies based on archival documents has provided powerful support for genetic research in Costa Rica over the past quarter century. As a result, several questions of population history have been answered, such as those involving hereditary illnesses, suggesting additional avenues and questions as well. Similarly, the preservation of massive amounts of historical documentation highlights the major advantages that the Costa Rican population offers to genetic research.

  2. Superscattering of light optimized by a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2014-07-01

    We analyse scattering of light from multi-layer plasmonic nanowires and employ a genetic algorithm for optimizing the scattering cross section. We apply the mode-expansion method using experimental data for material parameters to demonstrate that our genetic algorithm allows designing realistic core-shell nanostructures with the superscattering effect achieved at any desired wavelength. This approach can be employed for optimizing both superscattering and cloaking at different wavelengths in the visible spectral range.

  3. Detection of possible restriction sites for type II restriction enzymes in DNA sequences.

    PubMed

    Gagniuc, P; Cimponeriu, D; Ionescu-Tîrgovişte, C; Mihai, Andrada; Stavarachi, Monica; Mihai, T; Gavrilă, L

    2011-01-01

    In order to make a step forward in the knowledge of the mechanism operating in complex polygenic disorders such as diabetes and obesity, this paper proposes a new algorithm (PRSD -possible restriction site detection) and its implementation in Applied Genetics software. This software can be used for in silico detection of potential (hidden) recognition sites for endonucleases and for nucleotide repeats identification. The recognition sites for endonucleases may result from hidden sequences through deletion or insertion of a specific number of nucleotides. Tests were conducted on DNA sequences downloaded from NCBI servers using specific recognition sites for common type II restriction enzymes introduced in the software database (n = 126). Each possible recognition site indicated by the PRSD algorithm implemented in Applied Genetics was checked and confirmed by NEBcutter V2.0 and Webcutter 2.0 software. In the sequence NG_008724.1 (which includes 63632 nucleotides) we found a high number of potential restriction sites for ECO R1 that may be produced by deletion (n = 43 sites) or insertion (n = 591 sites) of one nucleotide. The second module of Applied Genetics has been designed to find simple repeats sizes with a real future in understanding the role of SNPs (Single Nucleotide Polymorphisms) in the pathogenesis of the complex metabolic disorders. We have tested the presence of simple repetitive sequences in five DNA sequence. The software indicated exact position of each repeats detected in the tested sequences. Future development of Applied Genetics can provide an alternative for powerful tools used to search for restriction sites or repetitive sequences or to improve genotyping methods.

  4. Understanding of Genetic Information in Higher Secondary Students in Northeast India and the Implications for Genetics Education

    ERIC Educational Resources Information Center

    Chattopadhyay, Ansuman

    2005-01-01

    Since the work of Watson and Crick in the mid-1950s, the science of genetics has become increasingly molecular. The development of recombinant DNA technologies by the agricultural and pharmaceutical industries led to the introduction of genetically modified organisms (GMOs). By the end of the twentieth century, reports of animal cloning and recent…

  5. Occupational and genetic risk factors for osteoarthritis: A review

    PubMed Central

    Yucesoy, Berran; Charles, Luenda E.; Baker, Brent; Burchfiel, Cecil M.

    2015-01-01

    BACKGROUND Osteoarthritis (OA) is a multifactorial disease with strong genetic and occupational components. Although published studies have described several risk factors for OA, very few studies have investigated the occupational and genetic factors that contribute to this debilitating condition. OBJECTIVE To describe occupational and genetic factors that may contribute to the risk of developing (OA). METHODS A literature search was conducted in PubMed using the search terms osteoarthritis, occupation, work, and genetics. RESULTS Heavy physical work load was the most common occupational risk factor for OA in several anatomical locations. Other factors include kneeling and regular stair climbing, crawling, bending and whole body vibration, and repetitive movements. Numerous studies have also shown the influence of genetic variability in the pathogenesis of OA. Genetic variants of several groups of genes e.g., cartilage extracellular matrix structural genes and the genes related to bone density have been implicated in disease pathogenesis. CONCLUSION This review shows that occupational factors were extensively studied in knee OA unlike OA of other anatomical regions. Although genetic association studies performed to date identified a number of risk variants, some of these associations have not been consistently replicated across different studies and populations. Therefore, more research is needed. PMID:24004806

  6. Genetic gatekeepers: regulating direct-to-consumer genomic services in an era of participatory medicine.

    PubMed

    Palmer, Jessica Elizabeth

    2012-01-01

    Should consumers be able to obtain information about their own bodies, even if it has no proven medical value? Direct-to-consumer ("DTC") genomic companies offer consumers two services: generation of the consumer's personal genetic sequence, and interpretation of that sequence in light of current research. Concerned that consumers will misunderstand genomic information and make ill-advised health decisions, regulators, legislators and scholars have advocated restricted access to DTC genomic services. The Food and Drug Administration, which has historically refrained from regulating most genetic tests, has announced its intent to treat DTC genomic services as medical devices because they make "medical claims." This Article argues that FDA regulation of genomic services as medical devices would be counterproductive. Clinical laboratories conducting genetic tests are already overseen by a federal regime administered by the Centers for Medicare and Medicaid Services. While consumers and clinicians would benefit from clearer communication of test results and their health implications, FDA's gatekeeping framework is ill-suited to weigh the safety and efficacy of genomic information that is not medically actionable in traditional ways. Playing gatekeeper would burden FDA's resources, conflict with the patient-empowering policies promoted by personalized medicine initiatives, impair individuals' access to information in which they have powerful autonomy interests, weaken novel participatory research infrastructures, and set a poor precedent for the future regulation of medical information. Rather than applying its risk-based regulatory framework to genetic information, FDA should ameliorate regulatory uncertainty by working with the Federal Trade Commission and Centers for Medicare and Medicaid Services to ensure that DTC genomic services deliver analytically valid data, market and implement their services in a truthful manner, and fully disclose the limitations of their services. Federal agencies with relevant expertise should collaborate on standards and best practices for interpreting genetic information in light of scientific uncertainty, and an adverse event reporting system should be established to collect empirical data verifying or disproving the speculative harms resulting from individual access to genetic information. Most of all, FDA should take advantage of this opportunity to adapt its regulatory process to an increasingly informational health ecosystem.

  7. Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types.

    PubMed

    Sampson, Joshua N; Wheeler, William A; Yeager, Meredith; Panagiotou, Orestis; Wang, Zhaoming; Berndt, Sonja I; Lan, Qing; Abnet, Christian C; Amundadottir, Laufey T; Figueroa, Jonine D; Landi, Maria Teresa; Mirabello, Lisa; Savage, Sharon A; Taylor, Philip R; De Vivo, Immaculata; McGlynn, Katherine A; Purdue, Mark P; Rajaraman, Preetha; Adami, Hans-Olov; Ahlbom, Anders; Albanes, Demetrius; Amary, Maria Fernanda; An, She-Juan; Andersson, Ulrika; Andriole, Gerald; Andrulis, Irene L; Angelucci, Emanuele; Ansell, Stephen M; Arici, Cecilia; Armstrong, Bruce K; Arslan, Alan A; Austin, Melissa A; Baris, Dalsu; Barkauskas, Donald A; Bassig, Bryan A; Becker, Nikolaus; Benavente, Yolanda; Benhamou, Simone; Berg, Christine; Van Den Berg, David; Bernstein, Leslie; Bertrand, Kimberly A; Birmann, Brenda M; Black, Amanda; Boeing, Heiner; Boffetta, Paolo; Boutron-Ruault, Marie-Christine; Bracci, Paige M; Brinton, Louise; Brooks-Wilson, Angela R; Bueno-de-Mesquita, H Bas; Burdett, Laurie; Buring, Julie; Butler, Mary Ann; Cai, Qiuyin; Cancel-Tassin, Geraldine; Canzian, Federico; Carrato, Alfredo; Carreon, Tania; Carta, Angela; Chan, John K C; Chang, Ellen T; Chang, Gee-Chen; Chang, I-Shou; Chang, Jiang; Chang-Claude, Jenny; Chen, Chien-Jen; Chen, Chih-Yi; Chen, Chu; Chen, Chung-Hsing; Chen, Constance; Chen, Hongyan; Chen, Kexin; Chen, Kuan-Yu; Chen, Kun-Chieh; Chen, Ying; Chen, Ying-Hsiang; Chen, Yi-Song; Chen, Yuh-Min; Chien, Li-Hsin; Chirlaque, María-Dolores; Choi, Jin Eun; Choi, Yi Young; Chow, Wong-Ho; Chung, Charles C; Clavel, Jacqueline; Clavel-Chapelon, Françoise; Cocco, Pierluigi; Colt, Joanne S; Comperat, Eva; Conde, Lucia; Connors, Joseph M; Conti, David; Cortessis, Victoria K; Cotterchio, Michelle; Cozen, Wendy; Crouch, Simon; Crous-Bou, Marta; Cussenot, Olivier; Davis, Faith G; Ding, Ti; Diver, W Ryan; Dorronsoro, Miren; Dossus, Laure; Duell, Eric J; Ennas, Maria Grazia; Erickson, Ralph L; Feychting, Maria; Flanagan, Adrienne M; Foretova, Lenka; Fraumeni, Joseph F; Freedman, Neal D; Beane Freeman, Laura E; Fuchs, Charles; Gago-Dominguez, Manuela; Gallinger, Steven; Gao, Yu-Tang; Gapstur, Susan M; Garcia-Closas, Montserrat; García-Closas, Reina; Gascoyne, Randy D; Gastier-Foster, Julie; Gaudet, Mia M; Gaziano, J Michael; Giffen, Carol; Giles, Graham G; Giovannucci, Edward; Glimelius, Bengt; Goggins, Michael; Gokgoz, Nalan; Goldstein, Alisa M; Gorlick, Richard; Gross, Myron; Grubb, Robert; Gu, Jian; Guan, Peng; Gunter, Marc; Guo, Huan; Habermann, Thomas M; Haiman, Christopher A; Halai, Dina; Hallmans, Goran; Hassan, Manal; Hattinger, Claudia; He, Qincheng; He, Xingzhou; Helzlsouer, Kathy; Henderson, Brian; Henriksson, Roger; Hjalgrim, Henrik; Hoffman-Bolton, Judith; Hohensee, Chancellor; Holford, Theodore R; Holly, Elizabeth A; Hong, Yun-Chul; Hoover, Robert N; Horn-Ross, Pamela L; Hosain, G M Monawar; Hosgood, H Dean; Hsiao, Chin-Fu; Hu, Nan; Hu, Wei; Hu, Zhibin; Huang, Ming-Shyan; Huerta, Jose-Maria; Hung, Jen-Yu; Hutchinson, Amy; Inskip, Peter D; Jackson, Rebecca D; Jacobs, Eric J; Jenab, Mazda; Jeon, Hyo-Sung; Ji, Bu-Tian; Jin, Guangfu; Jin, Li; Johansen, Christoffer; Johnson, Alison; Jung, Yoo Jin; Kaaks, Rudolph; Kamineni, Aruna; Kane, Eleanor; Kang, Chang Hyun; Karagas, Margaret R; Kelly, Rachel S; Khaw, Kay-Tee; Kim, Christopher; Kim, Hee Nam; Kim, Jin Hee; Kim, Jun Suk; Kim, Yeul Hong; Kim, Young Tae; Kim, Young-Chul; Kitahara, Cari M; Klein, Alison P; Klein, Robert J; Kogevinas, Manolis; Kohno, Takashi; Kolonel, Laurence N; Kooperberg, Charles; Kricker, Anne; Krogh, Vittorio; Kunitoh, Hideo; Kurtz, Robert C; Kweon, Sun-Seog; LaCroix, Andrea; Lawrence, Charles; Lecanda, Fernando; Lee, Victor Ho Fun; Li, Donghui; Li, Haixin; Li, Jihua; Li, Yao-Jen; Li, Yuqing; Liao, Linda M; Liebow, Mark; Lightfoot, Tracy; Lim, Wei-Yen; Lin, Chien-Chung; Lin, Dongxin; Lindstrom, Sara; Linet, Martha S; Link, Brian K; Liu, Chenwei; Liu, Jianjun; Liu, Li; Ljungberg, Börje; Lloreta, Josep; Di Lollo, Simonetta; Lu, Daru; Lund, Eiluv; Malats, Nuria; Mannisto, Satu; Le Marchand, Loic; Marina, Neyssa; Masala, Giovanna; Mastrangelo, Giuseppe; Matsuo, Keitaro; Maynadie, Marc; McKay, James; McKean-Cowdin, Roberta; Melbye, Mads; Melin, Beatrice S; Michaud, Dominique S; Mitsudomi, Tetsuya; Monnereau, Alain; Montalvan, Rebecca; Moore, Lee E; Mortensen, Lotte Maxild; Nieters, Alexandra; North, Kari E; Novak, Anne J; Oberg, Ann L; Offit, Kenneth; Oh, In-Jae; Olson, Sara H; Palli, Domenico; Pao, William; Park, In Kyu; Park, Jae Yong; Park, Kyong Hwa; Patiño-Garcia, Ana; Pavanello, Sofia; Peeters, Petra H M; Perng, Reury-Perng; Peters, Ulrike; Petersen, Gloria M; Picci, Piero; Pike, Malcolm C; Porru, Stefano; Prescott, Jennifer; Prokunina-Olsson, Ludmila; Qian, Biyun; Qiao, You-Lin; Rais, Marco; Riboli, Elio; Riby, Jacques; Risch, Harvey A; Rizzato, Cosmeri; Rodabough, Rebecca; Roman, Eve; Roupret, Morgan; Ruder, Avima M; Sanjose, Silvia de; Scelo, Ghislaine; Schned, Alan; Schumacher, Fredrick; Schwartz, Kendra; Schwenn, Molly; Scotlandi, Katia; Seow, Adeline; Serra, Consol; Serra, Massimo; Sesso, Howard D; Setiawan, Veronica Wendy; Severi, Gianluca; Severson, Richard K; Shanafelt, Tait D; Shen, Hongbing; Shen, Wei; Shin, Min-Ho; Shiraishi, Kouya; Shu, Xiao-Ou; Siddiq, Afshan; Sierrasesúmaga, Luis; Sihoe, Alan Dart Loon; Skibola, Christine F; Smith, Alex; Smith, Martyn T; Southey, Melissa C; Spinelli, John J; Staines, Anthony; Stampfer, Meir; Stern, Marianna C; Stevens, Victoria L; Stolzenberg-Solomon, Rachael S; Su, Jian; Su, Wu-Chou; Sund, Malin; Sung, Jae Sook; Sung, Sook Whan; Tan, Wen; Tang, Wei; Tardón, Adonina; Thomas, David; Thompson, Carrie A; Tinker, Lesley F; Tirabosco, Roberto; Tjønneland, Anne; Travis, Ruth C; Trichopoulos, Dimitrios; Tsai, Fang-Yu; Tsai, Ying-Huang; Tucker, Margaret; Turner, Jenny; Vajdic, Claire M; Vermeulen, Roel C H; Villano, Danylo J; Vineis, Paolo; Virtamo, Jarmo; Visvanathan, Kala; Wactawski-Wende, Jean; Wang, Chaoyu; Wang, Chih-Liang; Wang, Jiu-Cun; Wang, Junwen; Wei, Fusheng; Weiderpass, Elisabete; Weiner, George J; Weinstein, Stephanie; Wentzensen, Nicolas; White, Emily; Witzig, Thomas E; Wolpin, Brian M; Wong, Maria Pik; Wu, Chen; Wu, Guoping; Wu, Junjie; Wu, Tangchun; Wu, Wei; Wu, Xifeng; Wu, Yi-Long; Wunder, Jay S; Xiang, Yong-Bing; Xu, Jun; Xu, Ping; Yang, Pan-Chyr; Yang, Tsung-Ying; Ye, Yuanqing; Yin, Zhihua; Yokota, Jun; Yoon, Ho-Il; Yu, Chong-Jen; Yu, Herbert; Yu, Kai; Yuan, Jian-Min; Zelenetz, Andrew; Zeleniuch-Jacquotte, Anne; Zhang, Xu-Chao; Zhang, Yawei; Zhao, Xueying; Zhao, Zhenhong; Zheng, Hong; Zheng, Tongzhang; Zheng, Wei; Zhou, Baosen; Zhu, Meng; Zucca, Mariagrazia; Boca, Simina M; Cerhan, James R; Ferri, Giovanni M; Hartge, Patricia; Hsiung, Chao Agnes; Magnani, Corrado; Miligi, Lucia; Morton, Lindsay M; Smedby, Karin E; Teras, Lauren R; Vijai, Joseph; Wang, Sophia S; Brennan, Paul; Caporaso, Neil E; Hunter, David J; Kraft, Peter; Rothman, Nathaniel; Silverman, Debra T; Slager, Susan L; Chanock, Stephen J; Chatterjee, Nilanjan

    2015-12-01

    Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide polymorphisms (SNPs) for cancer at 13 anatomical sites. Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology (GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers. GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, hl (2), on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally statistically significant correlations, specifically kidney and testes (ρ = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL) and pediatric osteosarcoma (ρ = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (ρ = 0.51, SE =0.18), and bladder and lung (ρ = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that the genetic etiology for the same disease can vary by population and environmental exposures. Our results provide important insights into the genetic architecture of cancers and suggest new avenues for investigation. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  9. 2013 Review and Update of the Genetic Counseling Practice Based Competencies by a Task Force of the Accreditation Council for Genetic Counseling.

    PubMed

    Doyle, Debra Lochner; Awwad, Rawan I; Austin, Jehannine C; Baty, Bonnie J; Bergner, Amanda L; Brewster, Stephanie J; Erby, Lori A H; Franklin, Cathi Rubin; Greb, Anne E; Grubs, Robin E; Hooker, Gillian W; Noblin, Sarah Jane; Ormond, Kelly E; Palmer, Christina G; Petty, Elizabeth M; Singletary, Claire N; Thomas, Matthew J; Toriello, Helga; Walton, Carol S; Uhlmann, Wendy R

    2016-10-01

    The first practice based competencies (PBCs) for the field of genetic counseling were adopted by the American Board of Genetic Counseling (ABGC), 1996. Since that time, there has been significant growth in established and new work settings (clinical and non-clinical) and changes in service delivery models and the roles of genetic counselors. These changes prompted the ABGC to appoint a PBC Task Force in 2011 to review the PBCs with respect to their current relevance and to revise and update them as necessary. There are four domains in the revised PBCs: (I) Genetics Expertise and Analysis (II) Interpersonal, Psychosocial and Counseling Skills (III) Education and (IV) Professional Development and Practice. There are 22 competencies, each clarified with learning objectives or samples of activities and skills; a glossary is included. New competencies were added that address genomics, genetic testing and genetic counselors' roles in risk assessment, education, supervision, conducting research and presenting research options to patients. With PBCs serving as the pre-defined abilities or outcomes of training, graduating genetic counselors will be well prepared to enter the field with a minimum level of skills and abilities. A description of the Task Force's work, key changes and the 2013 PBCs are presented herein.

  10. Genetic Influences on Peer and Family Relationships Across Adolescent Development: Introduction to the Special Issue.

    PubMed

    Mullineaux, Paula Y; DiLalla, Lisabeth Fisher

    2015-07-01

    Nearly all aspects of human development are influenced by genetic and environmental factors, which conjointly shape development through several gene-environment interplay mechanisms. More recently, researchers have begun to examine the influence of genetic factors on peer and family relationships across the pre-adolescent and adolescent time periods. This article introduces the special issue by providing a critical overview of behavior genetic methodology and existing research demonstrating gene-environment processes operating on the link between peer and family relationships and adolescent adjustment. The overview is followed by a summary of new research studies, which use genetically informed samples to examine how peer and family environment work together with genetic factors to influence behavioral outcomes across adolescence. The studies in this special issue provide further evidence of gene-environment interplay through innovative behavior genetic methodological approaches across international samples. Results from the quantitative models indicate environmental moderation of genetic risk for coercive adolescent-parent relationships and deviant peer affiliation. The molecular genetics studies provide support for a gene-environment interaction differential susceptibility model for dopamine regulation genes across positive and negative peer and family environments. Overall, the findings from the studies in this special issue demonstrate the importance of considering how genes and environments work in concert to shape developmental outcomes during adolescence.

  11. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  12. Pedigree-based estimation of covariance between dominance deviations and additive genetic effects in closed rabbit lines considering inbreeding and using a computationally simpler equivalent model.

    PubMed

    Fernández, E N; Legarra, A; Martínez, R; Sánchez, J P; Baselga, M

    2017-06-01

    Inbreeding generates covariances between additive and dominance effects (breeding values and dominance deviations). In this work, we developed and applied models for estimation of dominance and additive genetic variances and their covariance, a model that we call "full dominance," from pedigree and phenotypic data. Estimates with this model such as presented here are very scarce both in livestock and in wild genetics. First, we estimated pedigree-based condensed probabilities of identity using recursion. Second, we developed an equivalent linear model in which variance components can be estimated using closed-form algorithms such as REML or Gibbs sampling and existing software. Third, we present a new method to refer the estimated variance components to meaningful parameters in a particular population, i.e., final partially inbred generations as opposed to outbred base populations. We applied these developments to three closed rabbit lines (A, V and H) selected for number of weaned at the Polytechnic University of Valencia. Pedigree and phenotypes are complete and span 43, 39 and 14 generations, respectively. Estimates of broad-sense heritability are 0.07, 0.07 and 0.05 at the base versus 0.07, 0.07 and 0.09 in the final generations. Narrow-sense heritability estimates are 0.06, 0.06 and 0.02 at the base versus 0.04, 0.04 and 0.01 at the final generations. There is also a reduction in the genotypic variance due to the negative additive-dominance correlation. Thus, the contribution of dominance variation is fairly large and increases with inbreeding and (over)compensates for the loss in additive variation. In addition, estimates of the additive-dominance correlation are -0.37, -0.31 and 0.00, in agreement with the few published estimates and theoretical considerations. © 2017 Blackwell Verlag GmbH.

  13. CrowdPhase: crowdsourcing the phase problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorda, Julien; Sawaya, Michael R.; Yeates, Todd O., E-mail: yeates@mbi.ucla.edu

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborativemore » online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.« less

  14. Can There Be Such a Thing as a "Wrongful Birth"?

    ERIC Educational Resources Information Center

    Pritchard, Megan

    2005-01-01

    With the growing application of modern genetic technology to everyday healthcare provision, concern over its moral defence is increasing. This paper discusses pre-natal genetic testing, currently the healthcare situation in which the technology is most frequently applied. In doing this it addresses the justification for the resulting marked…

  15. Genetic conservation in applied tree breeding programs.

    Treesearch

    R. Johnson; B. St. Clair; S. Lipow

    2001-01-01

    This paper reviews how population size and structure impacts the maintenance of genetic variation in breeding and gene resource populations. We discuss appropriate population sizes for low frequency alleles and point out some examples of low frequency alleles in the literature. Development of appropriate breeding populations and gene resource populations are discussed...

  16. Information Business: Applying Infometry (Informational Geometry) in Cognitive Coordination and Genetic Programming for Electronic Information Packaging and Marketing.

    ERIC Educational Resources Information Center

    Tsai, Bor-sheng

    1994-01-01

    Describes the use of infometry, or informational geometry, to meet the challenges of information service businesses. Highlights include theoretical models for cognitive coordination and genetic programming; electronic information packaging; marketing electronic information products, including cost-benefit analyses; and recapitalization, including…

  17. Supporting Students' Knowledge Transfer in Modeling Activities

    ERIC Educational Resources Information Center

    Piksööt, Jaanika; Sarapuu, Tago

    2014-01-01

    This study investigates ways to enhance secondary school students' knowledge transfer in complex science domains by implementing question prompts. Two samples of students applied two web-based models to study molecular genetics--the model of genetic code (n = 258) and translation (n = 245). For each model, the samples were randomly divided into…

  18. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder

    PubMed Central

    Dima, D; Roberts, R E; Frangou, S

    2016-01-01

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical—primarily emotional processing regions—and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies. PMID:26731443

  19. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.

    PubMed

    Dima, D; Roberts, R E; Frangou, S

    2016-01-05

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical-primarily emotional processing regions-and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies.

  20. Applied genetic evaluations for production and functional traits in dairy cattle.

    PubMed

    Mark, T

    2004-08-01

    The objective of this study was to review the current status of genetic evaluation systems for production and functional traits as practiced in different Interbull member countries and to discuss that status in relation to research results and potential improvements. Thirty-one countries provided information. Substantial variation was evident for number of traits considered per country, trait definition, genetic evaluation procedure within trait, effects included, and how these were treated in genetic evaluation models. All countries lacked genetic evaluations for one or more economically important traits. Improvement in the genetic evaluation models, especially for many functional traits, could be achieved by closing the gaps between research and practice. More detailed and up to date information about national genetic evaluation systems for traits in different countries is available at www.interbull.org. Female fertility and workability traits were considered in many countries and could be next in line for international genetic evaluations.

  1. Applying landscape genomic tools to forest management and restoration of Hawaiian koa (Acacia koa) in a changing environment.

    PubMed

    Gugger, Paul F; Liang, Christina T; Sork, Victoria L; Hodgskiss, Paul; Wright, Jessica W

    2018-02-01

    Identifying and quantifying the importance of environmental variables in structuring population genetic variation can help inform management decisions for conservation, restoration, or reforestation purposes, in both current and future environmental conditions. Landscape genomics offers a powerful approach for understanding the environmental factors that currently associate with genetic variation, and given those associations, where populations may be most vulnerable under future environmental change. Here, we applied genotyping by sequencing to generate over 11,000 single nucleotide polymorphisms from 311 trees and then used nonlinear, multivariate environmental association methods to examine spatial genetic structure and its association with environmental variation in an ecologically and economically important tree species endemic to Hawaii, Acacia koa . Admixture and principal components analyses showed that trees from different islands are genetically distinct in general, with the exception of some genotypes that match other islands, likely as the result of recent translocations. Gradient forest and generalized dissimilarity models both revealed a strong association between genetic structure and mean annual rainfall. Utilizing a model for projected future climate on the island of Hawaii, we show that predicted changes in rainfall patterns may result in genetic offset, such that trees no longer may be genetically matched to their environment. These findings indicate that knowledge of current and future rainfall gradients can provide valuable information for the conservation of existing populations and also help refine seed transfer guidelines for reforestation or replanting of koa throughout the state.

  2. Estimation of Additive, Dominance, and Imprinting Genetic Variance Using Genomic Data

    PubMed Central

    Lopes, Marcos S.; Bastiaansen, John W. M.; Janss, Luc; Knol, Egbert F.; Bovenhuis, Henk

    2015-01-01

    Traditionally, exploration of genetic variance in humans, plants, and livestock species has been limited mostly to the use of additive effects estimated using pedigree data. However, with the development of dense panels of single-nucleotide polymorphisms (SNPs), the exploration of genetic variation of complex traits is moving from quantifying the resemblance between family members to the dissection of genetic variation at individual loci. With SNPs, we were able to quantify the contribution of additive, dominance, and imprinting variance to the total genetic variance by using a SNP regression method. The method was validated in simulated data and applied to three traits (number of teats, backfat, and lifetime daily gain) in three purebred pig populations. In simulated data, the estimates of additive, dominance, and imprinting variance were very close to the simulated values. In real data, dominance effects account for a substantial proportion of the total genetic variance (up to 44%) for these traits in these populations. The contribution of imprinting to the total phenotypic variance of the evaluated traits was relatively small (1–3%). Our results indicate a strong relationship between additive variance explained per chromosome and chromosome length, which has been described previously for other traits in other species. We also show that a similar linear relationship exists for dominance and imprinting variance. These novel results improve our understanding of the genetic architecture of the evaluated traits and shows promise to apply the SNP regression method to other traits and species, including human diseases. PMID:26438289

  3. Allelopathic effect of methanolic extracts of genetically modified and non-genetically modified canola on soybean.

    PubMed

    Syed, Kashmala; Shinwari, Zabta Khan

    2016-03-01

    This study on the effect of genetically modified (GM) and non-GM canola on soybean was carried out for physiological and biochemical biosafety assessment of GM canola. Methanolic extracts of GM and non-GM canola were assessed on seed germination and growth of soybean (Glycine max L.) under sterilized conditions. The extracts applied were of 3, 5, and 10% concentrations. The results showed that methanolic extracts of both GM and non-GM canola improved the germination percentage. However, germination rate index was significantly decreased with concomitant increase in mean germination time of soybean. A significant rate of decrease was observed in root fresh weight while increase in shoot length took place; when treatment of GM canola extracts were applied, however, no effect was observed in shoot fresh weight. A significant increase in protein contents, as well as phenolic, carotenoids, proline, and chlorophyll a content, was observed when different GM canola treatments (3, 5, and 10%) were applied to soybean; however, a significant rate of reduction in chlorophyll b content was observed by the application of GM canola treatment. Similar results were observed for superoxide dismutase, peroxidase, and catalase activities. A significant increase in the sugar content levels was observed when GM canola treatments (3, 5, and 10%) were applied to soybean. © The Author(s) 2013.

  4. Reaction time, inhibition, working memory and ‘delay aversion’ performance: genetic influences and their interpretation

    PubMed Central

    KUNTSI, JONNA; ROGERS, HANNAH; SWINARD, GREER; BÖRGER, NORBERT; van der MEERE, JAAP; RIJSDIJK, FRUHLING; ASHERSON, PHILIP

    2013-01-01

    Background For candidate endophenotypes to be useful for psychiatric genetic research, they first of all need to show significant genetic influences. To address the relative lack of previous data, we set to investigate the extent of genetic and environmental influences on performance in a set of theoretically driven cognitive-experimental tasks in a large twin sample. We further aimed to illustrate how test–retest reliability of the measures affects the estimates. Method Four-hundred 7- to 9-year-old twin pairs were assessed individually on tasks measuring reaction time, inhibition, working memory and ‘delay aversion’ performance. Test–retest reliability data on some of the key measures were available from a previous study. Results Several key measures of reaction time, inhibition and working-memory performance indicated a moderate degree of genetic influence. Combining data across theoretically related tasks increased the heritability estimates, as illustrated by the heritability estimates of 60% for mean reaction time and 50% for reaction-time variability. Psychometric properties (reliability or ceiling effects) had a substantial influence on the estimates for some measures. Conclusions The data support the usefulness of several of the variables for endophenotype studies that aim to link genes to cognitive and motivational processes. Importantly, the data also illustrate specific conditions under which the true extent of genetic influences may be underestimated and hence the usefulness for genetic mapping studies compromised, and suggest ways to address this. PMID:16882357

  5. Analysis of conditional genetic effects and variance components in developmental genetics.

    PubMed

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  6. Analysis of Conditional Genetic Effects and Variance Components in Developmental Genetics

    PubMed Central

    Zhu, J.

    1995-01-01

    A genetic model with additive-dominance effects and genotype X environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t - 1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects. PMID:8601500

  7. Enhanced Carbon Concentration in Camelina: Development of a Dedicated, High-value Biofuels Crop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-01-01

    PETRO Project: UMass is developing an enhanced, biofuels-producing variant of Camelina, a drought-resistant, cold-tolerant oilseed crop that can be grown in many places other plants cannot. The team is working to incorporate several genetic traits into Camelina that increases its natural ability to produce oils and add the production of energy-dense terpene molecules that can be easily converted into liquid fuels. UMass is also experimenting with translating a component common in algae to Camelina that should allow the plants to absorb higher levels of carbon dioxide (CO2), which aids in enhancing photosynthesis and fuel conversion. The process will first bemore » demonstrated in tobacco before being applied in Camelina.« less

  8. Paul Spellman, Ph.D., Talks about TCGA at AACR 2011 - TCGA

    Cancer.gov

    Dr. Paul Spellman talks about The Cancer Genome Atlas (TCGA) and how this could help further the treatment of cancer. TCGA is a project working to catalog genetic mutations responsible for cancer. Clinicians are sequencing the genomes of patients with any of 20 different cancers and hope that this could target clinical trials at the specific patient sub-groups that would benefit most. Dr. Spellman explains how an increasing number of laboratories are becoming able to conduct genome sequencing and contribute to the TCGA project, discusses how clinicians could apply the findings in practice to decide on treatment and effect patient outlook and suggests that in future patients may start to request for their genome to be sequenced in order to aid their treatment.

  9. A comprehensive survey of soft wheat grain quality in United States germplasm

    USDA-ARS?s Scientific Manuscript database

    Wheat (Triticum aestivum L.) quality is dependent upon both genetic and environmental factors, which work in combination to produce specific grain, milling, and baking characteristics. Along with these genetic and environmental factors, the adaptation of the genetics to the given growing environment...

  10. Learning from the Fruit Fly

    ERIC Educational Resources Information Center

    Bierema, Andrea; Schwartz, Renee

    2016-01-01

    The fruit fly ("Drosophila melanogaster") is an ideal subject for studying inheritance patterns, Mendel's laws, meiosis, Punnett squares, and other aspects of genetics. Much of what we know about genetics dates to evolutionary biologist Thomas Hunt Morgan's work with mutated fruit flies in the early 1900s. Many genetic laboratories…

  11. Genetics and Psychiatry: Myth or Reality?

    PubMed

    Juli, Giada; Juli, Rebecca; Juli, Luigi

    2017-09-01

    Greek mythology and philosophical speculations were the first human productions on madness and psychiatry. Likewise, the origins of genetics sink their roots in a very remote and difficult time. This work tries to give an idea of the relationship between genetics and psychiatry through the myth and reality.

  12. The carcinogenicity of chromium

    PubMed Central

    Norseth, Tor

    1981-01-01

    The carcinogenicity of chromium compounds is reviewed with specific attention to the gaps in knowledge for risk estimation and research needs. The most important problems at present are whether trivalent chromium compounds cause cancer, and whether there is a difference in cancer causing effects between the soluble and the slightly soluble hexavalent compounds in the practical exposure situation. Dose estimates for risk estimation based on epidemiological investigations are also lacking. Present evidence indicates that the trivalent chromium compounds do not cause cancer although high concentrations in some in vitro systems have shown genetic toxicity. Hexavalent chromium compounds cause cancer in humans, in experimental animals and exert genetic toxicity in bacteria and in mammalian cells in vitro. Epidemiological evidence and animal experiments indicate that the slightly soluble hexavalent salts are the most potent carcinogens, but proper identification and characterization of exposure patterns in epidemiological work are lacking. Workers also tend to have mixed exposures. Soluble and slightly soluble salts are equally potent genotoxic agents in vitro. Further work for establishing dose estimates for risk evaluation in epidemiological work is important. In vitro systems should be applied for further identification of the mechanism of the carcinogenic effects, and animal experiments are urgent for comparison of the carcinogenic potency of the different hexavalent salts. Hexavalent chromium salts must be regarded as established carcinogens, and proper action should be taken in all industries with regard to such exposure. At present the carcinogenic risk to the general population caused by chromium compounds seems to be negligible, chromium in cigarettes, however, is an uncertainty in this respect. The amount of chromium and the type of chromium compounds inhaled from cigarettes is not known. PMID:7023928

  13. Science Translator: An Interview with Louisa Stark.

    PubMed

    Stark, Louisa A

    2015-07-01

    The Genetics Society of America's Elizabeth W. Jones Award for Excellence in Education recognizes significant and sustained impact on genetics education. The 2015 awardee, Louisa Stark, has made a major impact on global access to genetics education through her work as director of the University of Utah Genetic Science Learning Center. The Center's Learn.Genetics and Teach.Genetics websites are the most widely used online genetic education resources in the world. In 2014, they were visited by 18 million students, educators, scientists, and members of the public. With over 60 million page views annually, Learn.Genetics is among the most used sites on the Web. Copyright © 2015 by the Genetics Society of America.

  14. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background.

    PubMed

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-05-30

    Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase -480 C/T; endothelial nitric oxide synthase 690 C/T and glu298asp; vitamin K-dependent coagulation factor seven arg353glu, glycoprotein Ia/IIa 873 G/A and E-selectin ser128arg. This study provides an alternative and reliable method to approach complex diseases. Indeed, the application of a novel artificial intelligence-based method offers a new insight into genetic markers of sporadic ALS pointing out the existence of a strong genetic background.

  15. An introduction to genetic quality in the context of sexual selection.

    PubMed

    Pitcher, Trevor E; Mays, Herman L

    2008-09-01

    This special issue of Genetica brings together empirical researchers and theoreticians to present the latest on the evolutionary ecology of genetic quality in the context of sexual selection. The work comes from different fields of study including behavioral ecology, quantitative genetics and molecular genetics on a diversity of organisms using different approaches from comparative studies, mathematical modeling, field studies and laboratory experiments. The papers presented in this special issue primarily focus on genetic quality in relation to (1) sources of genetic variation, (2) polyandry, (3) new theoretical developments and (4) comprehensive reviews.

  16. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  17. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  18. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  19. 7 CFR 3430.309 - Priority areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Agriculture and Food Research Initiative § 3430.309 Priority areas. NIFA will award competitive grants in the...) Conventional breeding, including cultivar and breed development, selection theory, applied quantitative... development, selection theory, applied quantitative genetics, breeding for improved food quality, breeding for...

  20. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    DTIC Science & Technology

    2015-10-01

    available, work will commence. Tau, genetics , susceptibility, MAPT, chronic traumatic encephalopathy, Alzheimer disease U U U U 1 USAMRMC Table of...AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John

  1. [Pregnancy and delivery with transfer of vitrified blastocysts following trophectoderm biopsy].

    PubMed

    Mátyás, Szabolcs; Varga, Tünde; Kovács, Péter; Kónya, Márton; Rajczy, Klára; Babenko, Éva; Szabó, Barbara; Kaali, G Steven; Szentirmay, Zoltán

    2015-11-01

    Application of preimplantation genetic diagnosis makes it possible to transfer only embryos unaffected by a certain genetic disorder. The authors have applied the combination of trophectoderm biopsy and vitrification in order to detect a monogenic disorder. Previously diagnosed type 1 neurofibromatosis of the woman was the indication for genetic examination. In vitro fertilisation and embryo culture was performed using sequential culture mediums. Seven blastocysts could be sampled on the fifth day and were vitrified subsequently. Two blastocysts turned out to be genetically normal based on the result of genetic examination using polimerase chain reaction. A healthy boy was delivered following the transfer of warmed blastocysts and an uneventful singleton pregnancy.

  2. Mobile robot dynamic path planning based on improved genetic algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  3. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data.

    PubMed

    Thompson, Paul M; Stein, Jason L; Medland, Sarah E; Hibar, Derrek P; Vasquez, Alejandro Arias; Renteria, Miguel E; Toro, Roberto; Jahanshad, Neda; Schumann, Gunter; Franke, Barbara; Wright, Margaret J; Martin, Nicholas G; Agartz, Ingrid; Alda, Martin; Alhusaini, Saud; Almasy, Laura; Almeida, Jorge; Alpert, Kathryn; Andreasen, Nancy C; Andreassen, Ole A; Apostolova, Liana G; Appel, Katja; Armstrong, Nicola J; Aribisala, Benjamin; Bastin, Mark E; Bauer, Michael; Bearden, Carrie E; Bergmann, Orjan; Binder, Elisabeth B; Blangero, John; Bockholt, Henry J; Bøen, Erlend; Bois, Catherine; Boomsma, Dorret I; Booth, Tom; Bowman, Ian J; Bralten, Janita; Brouwer, Rachel M; Brunner, Han G; Brohawn, David G; Buckner, Randy L; Buitelaar, Jan; Bulayeva, Kazima; Bustillo, Juan R; Calhoun, Vince D; Cannon, Dara M; Cantor, Rita M; Carless, Melanie A; Caseras, Xavier; Cavalleri, Gianpiero L; Chakravarty, M Mallar; Chang, Kiki D; Ching, Christopher R K; Christoforou, Andrea; Cichon, Sven; Clark, Vincent P; Conrod, Patricia; Coppola, Giovanni; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Deary, Ian J; de Geus, Eco J C; den Braber, Anouk; Delvecchio, Giuseppe; Depondt, Chantal; de Haan, Lieuwe; de Zubicaray, Greig I; Dima, Danai; Dimitrova, Rali; Djurovic, Srdjan; Dong, Hongwei; Donohoe, Gary; Duggirala, Ravindranath; Dyer, Thomas D; Ehrlich, Stefan; Ekman, Carl Johan; Elvsåshagen, Torbjørn; Emsell, Louise; Erk, Susanne; Espeseth, Thomas; Fagerness, Jesen; Fears, Scott; Fedko, Iryna; Fernández, Guillén; Fisher, Simon E; Foroud, Tatiana; Fox, Peter T; Francks, Clyde; Frangou, Sophia; Frey, Eva Maria; Frodl, Thomas; Frouin, Vincent; Garavan, Hugh; Giddaluru, Sudheer; Glahn, David C; Godlewska, Beata; Goldstein, Rita Z; Gollub, Randy L; Grabe, Hans J; Grimm, Oliver; Gruber, Oliver; Guadalupe, Tulio; Gur, Raquel E; Gur, Ruben C; Göring, Harald H H; Hagenaars, Saskia; Hajek, Tomas; Hall, Geoffrey B; Hall, Jeremy; Hardy, John; Hartman, Catharina A; Hass, Johanna; Hatton, Sean N; Haukvik, Unn K; Hegenscheid, Katrin; Heinz, Andreas; Hickie, Ian B; Ho, Beng-Choon; Hoehn, David; Hoekstra, Pieter J; Hollinshead, Marisa; Holmes, Avram J; Homuth, Georg; Hoogman, Martine; Hong, L Elliot; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Hwang, Kristy S; Jack, Clifford R; Jenkinson, Mark; Johnston, Caroline; Jönsson, Erik G; Kahn, René S; Kasperaviciute, Dalia; Kelly, Sinead; Kim, Sungeun; Kochunov, Peter; Koenders, Laura; Krämer, Bernd; Kwok, John B J; Lagopoulos, Jim; Laje, Gonzalo; Landen, Mikael; Landman, Bennett A; Lauriello, John; Lawrie, Stephen M; Lee, Phil H; Le Hellard, Stephanie; Lemaître, Herve; Leonardo, Cassandra D; Li, Chiang-Shan; Liberg, Benny; Liewald, David C; Liu, Xinmin; Lopez, Lorna M; Loth, Eva; Lourdusamy, Anbarasu; Luciano, Michelle; Macciardi, Fabio; Machielsen, Marise W J; Macqueen, Glenda M; Malt, Ulrik F; Mandl, René; Manoach, Dara S; Martinot, Jean-Luc; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mattingsdal, Morten; Meyer-Lindenberg, Andreas; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Milaneschi, Yuri; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Moses, Eric K; Mueller, Bryon A; Muñoz Maniega, Susana; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Mwangi, Benson; Nauck, Matthias; Nho, Kwangsik; Nichols, Thomas E; Nilsson, Lars-Göran; Nugent, Allison C; Nyberg, Lars; Olvera, Rene L; Oosterlaan, Jaap; Ophoff, Roel A; Pandolfo, Massimo; Papalampropoulou-Tsiridou, Melina; Papmeyer, Martina; Paus, Tomas; Pausova, Zdenka; Pearlson, Godfrey D; Penninx, Brenda W; Peterson, Charles P; Pfennig, Andrea; Phillips, Mary; Pike, G Bruce; Poline, Jean-Baptiste; Potkin, Steven G; Pütz, Benno; Ramasamy, Adaikalavan; Rasmussen, Jerod; Rietschel, Marcella; Rijpkema, Mark; Risacher, Shannon L; Roffman, Joshua L; Roiz-Santiañez, Roberto; Romanczuk-Seiferth, Nina; Rose, Emma J; Royle, Natalie A; Rujescu, Dan; Ryten, Mina; Sachdev, Perminder S; Salami, Alireza; Satterthwaite, Theodore D; Savitz, Jonathan; Saykin, Andrew J; Scanlon, Cathy; Schmaal, Lianne; Schnack, Hugo G; Schork, Andrew J; Schulz, S Charles; Schür, Remmelt; Seidman, Larry; Shen, Li; Shoemaker, Jody M; Simmons, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soares, Jair C; Sponheim, Scott R; Sprooten, Emma; Starr, John M; Steen, Vidar M; Strakowski, Stephen; Strike, Lachlan; Sussmann, Jessika; Sämann, Philipp G; Teumer, Alexander; Toga, Arthur W; Tordesillas-Gutierrez, Diana; Trabzuni, Daniah; Trost, Sarah; Turner, Jessica; Van den Heuvel, Martijn; van der Wee, Nic J; van Eijk, Kristel; van Erp, Theo G M; van Haren, Neeltje E M; van 't Ent, Dennis; van Tol, Marie-Jose; Valdés Hernández, Maria C; Veltman, Dick J; Versace, Amelia; Völzke, Henry; Walker, Robert; Walter, Henrik; Wang, Lei; Wardlaw, Joanna M; Weale, Michael E; Weiner, Michael W; Wen, Wei; Westlye, Lars T; Whalley, Heather C; Whelan, Christopher D; White, Tonya; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Zilles, David; Zwiers, Marcel P; Thalamuthu, Anbupalam; Schofield, Peter R; Freimer, Nelson B; Lawrence, Natalia S; Drevets, Wayne

    2014-06-01

    The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.

  4. Work capacity, thermal responses and lung function: united kingdom studies in the L.B.P.

    PubMed

    Weiner, J S

    1976-07-01

    Results of physiological studies from some ten U.K. Human Adaptability projects are presented. U.K. investigators made major contributions in developing and adapting techniques for the assussment under field conditions of work capacity, heat tolerance and respiratory function. The various ethnic studies of work capacity revealed the special role of body size and muscularity, as well as training, in determining the observed inter- and intra-population variance. The results on samples from U.K., New Guinea, the Caribbean, Israel, West and East Africa and the Ethiopian highlands gave no indication that genetic difference were significant in determining population differences. Differences in heat tolerance reflect in general the intensity of heat exposure, especially when combined with hard physical work. Indigenous peoples in Africa and New Guinea show some modification in sweating responses which do not appear to be genetically determined but are in some way, as yet not clearly established, attributable to long continued residence in tropical climates. In renal function of some seven ethnic groups were analysed in terms of lung volume bellows function, gas exchange and responses to excercise and carbon dioxide. The relative importance of genetic and non-genetic factors was examined.

  5. Human neuroscience at National Institute on Drug Abuse: Implications for genetics research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, H.W.

    It is becoming clear that there is a genetic component to drug abuse. Family studies, adoption studies, and critical twin studies have all pointed to some genetic vulnerability or risk factors for an individual to abuse psychoactive drugs depending on certain psychopathologies in the biological parents and/or parents` own drug use. The question for the next generation of research at the National Institute on Drug Abuse (NIDA) is to apply the rapidly developing technology in molecular genetics in an effort to determine the candidate genes contributing to the risk. 19 refs.

  6. Research and application of multi-agent genetic algorithm in tower defense game

    NASA Astrophysics Data System (ADS)

    Jin, Shaohua

    2018-04-01

    In this paper, a new multi-agent genetic algorithm based on orthogonal experiment is proposed, which is based on multi-agent system, genetic algorithm and orthogonal experimental design. The design of neighborhood competition operator, orthogonal crossover operator, Son and self-learning operator. The new algorithm is applied to mobile tower defense game, according to the characteristics of the game, the establishment of mathematical models, and finally increases the value of the game's monster.

  7. Improvement of energy efficiency via spectrum optimization of excitation sequence for multichannel simultaneously triggered airborne sonar system

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Hao; Yao, Zhen-Jing; Peng, Han-Yang

    2009-12-01

    Both the energy efficiency and correlation characteristics are important in airborne sonar systems to realize multichannel ultrasonic transducers working together. High energy efficiency can increase echo energy and measurement range, and sharp autocorrelation and flat cross correlation can help eliminate cross-talk among multichannel transducers. This paper addresses energy efficiency optimization under the premise that cross-talk between different sonar transducers can be avoided. The nondominated sorting genetic algorithm-II is applied to optimize both the spectrum and correlation characteristics of the excitation sequence. The central idea of the spectrum optimization is to distribute most of the energy of the excitation sequence within the frequency band of the sonar transducer; thus, less energy is filtered out by the transducers. Real experiments show that a sonar system consisting of eight-channel Polaroid 600 series electrostatic transducers excited with 2 ms optimized pulse-position-modulation sequences can work together without cross-talk and can measure distances up to 650 cm with maximal 1% relative error.

  8. Research at the Institute of Forest Genetics, Rhinelander, Wisconsin.

    Treesearch

    Richard M. Jeffers

    1971-01-01

    Reports research at the Forest Genetics Institute in Rhinelander, Wisconsin, since its beginning in 1957. Describes the physical plant, study objectives, and work program. The latter includes studies of seed source, inheritance in white spruce, disease and insect resistance, interspecific hybridization, radiation genetics and radiobiology, vegetative propagation,...

  9. Enabling the extended compact genetic algorithm for real-parameter optimization by using adaptive discretization.

    PubMed

    Chen, Ying-ping; Chen, Chao-Hong

    2010-01-01

    An adaptive discretization method, called split-on-demand (SoD), enables estimation of distribution algorithms (EDAs) for discrete variables to solve continuous optimization problems. SoD randomly splits a continuous interval if the number of search points within the interval exceeds a threshold, which is decreased at every iteration. After the split operation, the nonempty intervals are assigned integer codes, and the search points are discretized accordingly. As an example of using SoD with EDAs, the integration of SoD and the extended compact genetic algorithm (ECGA) is presented and numerically examined. In this integration, we adopt a local search mechanism as an optional component of our back end optimization engine. As a result, the proposed framework can be considered as a memetic algorithm, and SoD can potentially be applied to other memetic algorithms. The numerical experiments consist of two parts: (1) a set of benchmark functions on which ECGA with SoD and ECGA with two well-known discretization methods: the fixed-height histogram (FHH) and the fixed-width histogram (FWH) are compared; (2) a real-world application, the economic dispatch problem, on which ECGA with SoD is compared to other methods. The experimental results indicate that SoD is a better discretization method to work with ECGA. Moreover, ECGA with SoD works quite well on the economic dispatch problem and delivers solutions better than the best known results obtained by other methods in existence.

  10. South American foF2 database using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gularte, Erika; Bilitza, Dieter; Carpintero, Daniel; Jaen, Juliana

    2016-07-01

    We present the first step towards a new database of the ionospheric parameter foF2 for the South American region. The foF2 parameter, being the maximum of the ionospheric electronic density profile and its main sculptor, is of great interest not only in atmospheric studies but also in the realm of radio propagation. Due to its importance, its large variability and the difficulty to model it in time and space, it was the subject of an intense study since decades ago. The current databases, used by the IRI (International Reference Ionosphere) model, and based on Fourier expansions, has been built in the 60s from the available ionosondes at that time; therefore, it is still short of South American data. The main goal of this work is to upgrade the database, incorporating the now available data compiled by the RAPEAS (Red Argentina para el Estudio de la Atmósfera Superior, Argentine Network for the Study of the Upper Atmosphere) network. Also, we developed an algorithm to study the foF2 variability, based on the modern technique of genetic algorithms, which has been successfully applied on other disciplines. One of the main advantages of this technique is its ability in working with many variables and with unfavorable samples. The results are compared with the IRI databases, and improvements to the latter are suggested. Finally, it is important to notice that the new database is designed so that new available data can be easily incorporated.

  11. Improving your genetic literacy in epilepsy-A new series.

    PubMed

    Tan, Nigel C K; Lowenstein, Daniel H

    2015-11-01

    Advances in epilepsy genetics have been rapid, and it is challenging for clinicians on the ground to keep pace with these advances. The International League Against Epilepsy (ILAE) Genetics Commission has thus crafted a new Genetic Literacy series targeted at busy clinicians. Our goal is to help provide a concise, accessible resource on epilepsy genetics for the busy, on-the-ground clinician so that he/she can apply that knowledge at point-of-care to help patients. This new series is grounded in educational theories and evidence to ensure that learning is effective and efficient. We hope that by promoting and encouraging continuing medical education in epilepsy genetics, this eventually translates to better patient management and therefore better patient health outcomes. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  12. Imaging genetics approach to predict progression of Parkinson's diseases.

    PubMed

    Mansu Kim; Seong-Jin Son; Hyunjin Park

    2017-07-01

    Imaging genetics is a tool to extract genetic variants associated with both clinical phenotypes and imaging information. The approach can extract additional genetic variants compared to conventional approaches to better investigate various diseased conditions. Here, we applied imaging genetics to study Parkinson's disease (PD). We aimed to extract significant features derived from imaging genetics and neuroimaging. We built a regression model based on extracted significant features combining genetics and neuroimaging to better predict clinical scores of PD progression (i.e. MDS-UPDRS). Our model yielded high correlation (r = 0.697, p <; 0.001) and low root mean squared error (8.36) between predicted and actual MDS-UPDRS scores. Neuroimaging (from 123 I-Ioflupane SPECT) predictors of regression model were computed from independent component analysis approach. Genetic features were computed using image genetics approach based on identified neuroimaging features as intermediate phenotypes. Joint modeling of neuroimaging and genetics could provide complementary information and thus have the potential to provide further insight into the pathophysiology of PD. Our model included newly found neuroimaging features and genetic variants which need further investigation.

  13. Characterization of the genetic diversity and population structure for the yellow cattle in Taiwan based on microsatellite markers.

    PubMed

    Tu, Po-An; Lin, Der-Yuh; Li, Guang-Fu; Huang, Jan-Chi; Wang, De-Chi; Wang, Pei-Hwa

    2014-01-01

    In recent years, the population size of Taiwan yellow cattle has drastically declined, even become endangered. A preservation project, Taiwan Yellow Cattle Genetic Preservation Project (TYCGPP), was carried out at the Livestock Research Institute (LRI) Hengchun branch (1988-present). An analysis of intra- and inter- population variability was performed to be the first step to preserve this precious genetic resource. In this work, a total number of 140 individuals selected from the five Taiwan yellow cattle populations were analyzed using 12 microsatellite markers (loci). These markers determined the level of genetic variation within and among populations as well as the phylogenetic structure. The total number of alleles detected (122, 10.28 per locus) and the expected heterozygosity (0.712) indicated that these five populations had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups was 2 (K = 2). Genetic differentiation among clusters was moderate (F ST = 0.095). The result of AMOVA showed that yellow cattle in Taiwan had maintained a high level of within-population genetic differentiation (91%), the remainder being accounted for by differentiation among subpopulations (4%), and by differentiation among regions (5%). The results of STRUCTURE and principal component analysis (PCA) revealed two divergent clusters. The individual unrooted phylogenetic tree showed that some Kinmen yellow cattle in the Hengchun facility (KMHC individuals) were overlapped with Taiwan yellow cattle (TW) and Taiwan yellow cattle Hengchun (HC) populations. Also, they were overlapped with Kinmen × Taiwan (KT) and Kinmen yellow cattle (KM) populations. It is possible that KMHC kept similar phenotypic characteristics and analogous genotypes between TW and KM. A significant inbreeding coefficient (F IS = 0.185; P < 0.01) was detected, suggesting a medium level of inbreeding for yellow cattle in Taiwan. The hypothesis that yellow cattle in Taiwan were derived from two different clusters was also supported by the phylogenetic tree constructed by the UPGMA, indicating that the yellow cattle in Taiwan and in Kinmen should be treated as two different management units. This result will be applied to maintain a good level of genetic variability and rusticity (stress-resistance) and to avoid further inbreeding for yellow cattle population in Taiwan.

  14. Identification of Genetic Loci Underlying the Phenotypic Constructs of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Liu, Xiao-Qing; Georgiades, Stelios; Duku, Eric; Thompson, Ann; Devlin, Bernie; Cook, Edwin H.; Wijsman, Ellen M.; Paterson, Andrew D.; Szatmari, Peter

    2011-01-01

    Objective: To investigate the underlying phenotypic constructs in autism spectrum disorders (ASD) and to identify genetic loci that are linked to these empirically derived factors. Method: Exploratory factor analysis was applied to two datasets with 28 selected Autism Diagnostic Interview-Revised (ADI-R) algorithm items. The first dataset was from…

  15. Investigating Novice and Expert Conceptions of Genetically Modified Organisms

    ERIC Educational Resources Information Center

    Potter, Lisa M.; Bissonnette, Sarah A.; Knight, Jonathan D.; Tanner, Kimberly D.

    2017-01-01

    The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students' conceptions of…

  16. PRELIMINARY STUDIES ON THE POPULATION GENETICS OF THE CENTRAL STONEROLLER (CAMPOSTOMA ANOMALUM) FROM THE GREAT MIAMI RIVER BASIN, OHIO

    EPA Science Inventory

    Molecular approaches are particularly useful for measuring genetic diversity and were applied to samples of central stonerollers obtained from sites along tributaries to the Great Miami River in Ohio. We used Random Amplified Polymorphic DNA (RAPD) analysis to assess the level of...

  17. PRELIMINARY STUDIES ON THE POPULATION GENETICS OF THE CENTRAL STONEROLLER (COMPOSTOMA ANOMALUM) FROM THE GREAT MIAMI RIVER BASIN, OHIO

    EPA Science Inventory

    Molecular approaches are particularly useful for measuring genetic diversity and were applied to samples of central stonerollers obtained from sites along tributaries to the Great Miami River in Ohio. We used Random Amplified Polymorphic DNA (RAPD) analysis to assess the level o...

  18. Classification, genetic variation and pathogenicity of Lymantria dispar nucleopolyhedrovirus isolates from Asia, Europe, and North America

    USDA-ARS?s Scientific Manuscript database

    Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) has been formulated and applied to control outbreaks of the gypsy moth, L. dispar. To classify and determine the degree of genetic variation among isolates of L. dispar NPVs from different parts of the range of the gypsy moth, partial sequence...

  19. Systems genetics reveals a transcriptional network associated with susceptibility in the maize-grey leaf spot pathosystem

    USDA-ARS?s Scientific Manuscript database

    We have applied a systems genetics approach to elucidate molecular mechanisms of maize responses to gray leaf spot (GLS) disease, caused by Cercospora zeina, a major threat to maize production globally. We conducted expression QTL (eQTL) analysis of gene expression variation measured in earleaf samp...

  20. Understanding Genetic Toxicity Through Data Mining: The Process of Building Knowledge by Integrating Multiple Genetic Toxicity Databases

    EPA Science Inventory

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in...

  1. Genetic and phenotypic parameter estimates for feed intake and other traits in growing beef cattle

    USDA-ARS?s Scientific Manuscript database

    Genetic parameters for dry matter intake (DMI), residual feed intake (RFI), average daily gain (ADG), mid-period body weight (MBW), gain to feed ratio (G:F) and flight speed (FS) were estimated using 1165 steers from a mixed-breed population using restricted maximum likelihood methodology applied to...

  2. Promoting meaning-making to help our patients grieve: an exemplar for genetic counselors and other health care professionals.

    PubMed

    Douglas, Heather A

    2014-10-01

    Genetic counselors and other health professionals frequently meet with patients who are grieving a loss. It is thus helpful for medical professionals to be familiar with approaches to bereavement counseling. Grief theory has evolved over the last few decades, from primarily stage theories of grief such as Kübler-Ross's "five stages of grief" to frameworks that promote more complex and long-term ways to cope with a loss. Herein I present one recent grief theory - meaning-making - and describe how it can be applied to help parents of children with disabilities grieve the loss of the child that they expected. In particular, I describe a scenario that many genetic counselors face - meeting with the parents of a child with Down syndrome. I outline the research done on the reactions, grief and coping experienced by parents in this circumstance, and I present suggestions for encouraging healthy coping and adjustment for parents, based on the meaning-making perspective. The meaning-making theory can also be applied to many of the other losses faced by genetic counseling patients.

  3. GAGA: a new algorithm for genomic inference of geographic ancestry reveals fine level population substructure in Europeans.

    PubMed

    Lao, Oscar; Liu, Fan; Wollstein, Andreas; Kayser, Manfred

    2014-02-01

    Attempts to detect genetic population substructure in humans are troubled by the fact that the vast majority of the total amount of observed genetic variation is present within populations rather than between populations. Here we introduce a new algorithm for transforming a genetic distance matrix that reduces the within-population variation considerably. Extensive computer simulations revealed that the transformed matrix captured the genetic population differentiation better than the original one which was based on the T1 statistic. In an empirical genomic data set comprising 2,457 individuals from 23 different European subpopulations, the proportion of individuals that were determined as a genetic neighbour to another individual from the same sampling location increased from 25% with the original matrix to 52% with the transformed matrix. Similarly, the percentage of genetic variation explained between populations by means of Analysis of Molecular Variance (AMOVA) increased from 1.62% to 7.98%. Furthermore, the first two dimensions of a classical multidimensional scaling (MDS) using the transformed matrix explained 15% of the variance, compared to 0.7% obtained with the original matrix. Application of MDS with Mclust, SPA with Mclust, and GemTools algorithms to the same dataset also showed that the transformed matrix gave a better association of the genetic clusters with the sampling locations, and particularly so when it was used in the AMOVA framework with a genetic algorithm. Overall, the new matrix transformation introduced here substantially reduces the within population genetic differentiation, and can be broadly applied to methods such as AMOVA to enhance their sensitivity to reveal population substructure. We herewith provide a publically available (http://www.erasmusmc.nl/fmb/resources/GAGA) model-free method for improved genetic population substructure detection that can be applied to human as well as any other species data in future studies relevant to evolutionary biology, behavioural ecology, medicine, and forensics.

  4. Estimation of genetic parameters and response to selection for a continuous trait subject to culling before testing.

    PubMed

    Arnason, T; Albertsdóttir, E; Fikse, W F; Eriksson, S; Sigurdsson, A

    2012-02-01

    The consequences of assuming a zero environmental covariance between a binary trait 'test-status' and a continuous trait on the estimates of genetic parameters by restricted maximum likelihood and Gibbs sampling and on response from genetic selection when the true environmental covariance deviates from zero were studied. Data were simulated for two traits (one that culling was based on and a continuous trait) using the following true parameters, on the underlying scale: h² = 0.4; r(A) = 0.5; r(E) = 0.5, 0.0 or -0.5. The selection on the continuous trait was applied to five subsequent generations where 25 sires and 500 dams produced 1500 offspring per generation. Mass selection was applied in the analysis of the effect on estimation of genetic parameters. Estimated breeding values were used in the study of the effect of genetic selection on response and accuracy. The culling frequency was either 0.5 or 0.8 within each generation. Each of 10 replicates included 7500 records on 'test-status' and 9600 animals in the pedigree file. Results from bivariate analysis showed unbiased estimates of variance components and genetic parameters when true r(E) = 0.0. For r(E) = 0.5, variance components (13-19% bias) and especially (50-80%) were underestimated for the continuous trait, while heritability estimates were unbiased. For r(E) = -0.5, heritability estimates of test-status were unbiased, while genetic variance and heritability of the continuous trait together with were overestimated (25-50%). The bias was larger for the higher culling frequency. Culling always reduced genetic progress from selection, but the genetic progress was found to be robust to the use of wrong parameter values of the true environmental correlation between test-status and the continuous trait. Use of a bivariate linear-linear model reduced bias in genetic evaluations, when data were subject to culling. © 2011 Blackwell Verlag GmbH.

  5. Genetic diversity of the Arctic fox using SRAP markers.

    PubMed

    Zhang, M; Bai, X J

    2013-12-04

    Sequence-related amplified polymorphism (SRAP) is a recently developed molecular marker technique that is stable, simple, reliable, and achieves moderate to high numbers of codominant markers. This study is the first to apply SRAP markers in a mammal, namely the Arctic fox. In order to investigate the genetic diversity of the Arctic fox and to provide a reference for use of its germplasm, we analyzed 7 populations of Arctic fox by SRAP. The genetic similarity coefficient, genetic distance, proportion of polymorphic loci, total genetic diversity (Ht), genetic diversity within populations (Hs), and genetic differentiation (Gst) were calculated using the Popgene software package. The results indicated abundant genetic diversity among the different populations of Arctic fox studied in China. The genetic similarity coefficient ranged from 0.1694 to 0.0417, genetic distance ranged from 0.8442 to 0.9592, and the proportion of polymorphic loci was smallest in the TS group. Genetic diversity ranged from 0.2535 to 0.3791, Ht was 0.3770, Hs was 0.3158, Gst was 0.1624, and gene flow (Nm) was estimated at 2.5790. Thus, a high level of genetic diversity and many genetic relationships were found in the populations of Arctic fox evaluated in this study.

  6. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  7. Healthcare professionals' and patients' perspectives on consent to clinical genetic testing: moving towards a more relational approach.

    PubMed

    Samuel, Gabrielle Natalie; Dheensa, Sandi; Farsides, Bobbie; Fenwick, Angela; Lucassen, Anneke

    2017-08-08

    This paper proposes a refocusing of consent for clinical genetic testing, moving away from an emphasis on autonomy and information provision, towards an emphasis on the virtues of healthcare professionals seeking consent, and the relationships they construct with their patients. We draw on focus groups with UK healthcare professionals working in the field of clinical genetics, as well as in-depth interviews with patients who have sought genetic testing in the UK's National Health Service (data collected 2013-2015). We explore two aspects of consent: first, how healthcare professionals consider the act of 'consenting' patients; and second how these professional accounts, along with the accounts of patients, deepen our understanding of the consent process. Our findings suggest that while healthcare professionals working in genetic medicine put much effort into ensuring patients' understanding about their impending genetic test, they acknowledge, and we show, that patients can still leave genetic consultations relatively uninformed. Moreover, we show how placing emphasis on the informational aspect of genetic testing is not always reflective of, or valuable to, patients' decision-making. Rather, decision-making is socially contextualised - also based on factors outside of information provision. A more collaborative on-going consent process, grounded in virtue ethics and values of honesty, openness and trustworthiness, is proposed.

  8. [The study of tomato fruit weight quantitative trait locus and its application in genetics teaching].

    PubMed

    Wang, Hai-yan

    2015-08-01

    The classical research cases, which have greatly promoted the development of genetics in history, can be combined with the content of courses in genetics teaching to train students' ability of scientific thinking and genetic analysis. The localization and clone of gene controlling tomato fruit weight is a pioneer work in quantitative trait locus (QTL) studies and represents a complete process of QTL research in plants. Application of this integrated case in genetics teaching, which showed a wonderful process of scientific discovery and the fascination of genetic research, has inspired students' interest in genetics and achieved a good teaching effect.

  9. Quantitative genetic versions of Hamilton's rule with empirical applications

    PubMed Central

    McGlothlin, Joel W.; Wolf, Jason B.; Brodie, Edmund D.; Moore, Allen J.

    2014-01-01

    Hamilton's theory of inclusive fitness revolutionized our understanding of the evolution of social interactions. Surprisingly, an incorporation of Hamilton's perspective into the quantitative genetic theory of phenotypic evolution has been slow, despite the popularity of quantitative genetics in evolutionary studies. Here, we discuss several versions of Hamilton's rule for social evolution from a quantitative genetic perspective, emphasizing its utility in empirical applications. Although evolutionary quantitative genetics offers methods to measure each of the critical parameters of Hamilton's rule, empirical work has lagged behind theory. In particular, we lack studies of selection on altruistic traits in the wild. Fitness costs and benefits of altruism can be estimated using a simple extension of phenotypic selection analysis that incorporates the traits of social interactants. We also discuss the importance of considering the genetic influence of the social environment, or indirect genetic effects (IGEs), in the context of Hamilton's rule. Research in social evolution has generated an extensive body of empirical work focusing—with good reason—almost solely on relatedness. We argue that quantifying the roles of social and non-social components of selection and IGEs, in addition to relatedness, is now timely and should provide unique additional insights into social evolution. PMID:24686930

  10. Genetic Architecture of Micro-Environmental Plasticity in Drosophila melanogaster.

    PubMed

    Morgante, Fabio; Sørensen, Peter; Sorensen, Daniel A; Maltecca, Christian; Mackay, Trudy F C

    2015-05-06

    Individuals of the same genotype do not have the same phenotype for quantitative traits when reared under common macro-environmental conditions, a phenomenon called micro-environmental plasticity. Genetic variation in micro-environmental plasticity is assumed in models of the evolution of phenotypic variance, and is important in applied breeding and personalized medicine. Here, we quantified genetic variation for micro-environmental plasticity for three quantitative traits in the inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel. We found substantial genetic variation for micro-environmental plasticity for all traits, with broad sense heritabilities of the same magnitude or greater than those of trait means. Micro-environmental plasticity is not correlated with residual segregating variation, is trait-specific, and has genetic correlations with trait means ranging from zero to near unity. We identified several candidate genes associated with micro-environmental plasticity of startle response, including Drosophila Hsp90, setting the stage for future genetic dissection of this phenomenon.

  11. Selective breeding in fish and conservation of genetic resources for aquaculture.

    PubMed

    Lind, C E; Ponzoni, R W; Nguyen, N H; Khaw, H L

    2012-08-01

    To satisfy increasing demands for fish as food, progress must occur towards greater aquaculture productivity whilst retaining the wild and farmed genetic resources that underpin global fish production. We review the main selection methods that have been developed for genetic improvement in aquaculture, and discuss their virtues and shortcomings. Examples of the application of mass, cohort, within family, and combined between-family and within-family selection are given. In addition, we review the manner in which fish genetic resources can be lost at the intra-specific, species and ecosystem levels and discuss options to best prevent this. We illustrate that fundamental principles of genetic management are common in the implementation of both selective breeding and conservation programmes, and should be emphasized in capacity development efforts. We highlight the value of applied genetics approaches for increasing aquaculture productivity and the conservation of fish genetic resources. © 2012 Blackwell Verlag GmbH.

  12. Genetic association studies in β-hemoglobinopathies.

    PubMed

    Thein, Swee Lay

    2013-01-01

    Characterization of the molecular basis of the β-thalassemias and sickle cell disease (SCD) clearly showed that individuals with the same β-globin genotypes can have extremely diverse clinical severity. Two key modifiers, an innate ability to produce fetal hemoglobin and coinheritance of α-thalassemia, both derived from family and population studies, affect the pathophysiology of both disorders at the primary level. In the past 2 decades, scientific research had applied genetic approaches to identify additional genetic modifiers. The review summarizes recent genetic studies and key genetic modifiers identified and traces the story of fetal hemoglobin genetics, which has led to an emerging network of globin gene regulation. The discoveries have provided insights on new targets for therapeutic intervention and raise possibilities of developing fetal hemoglobin predictive diagnostics for predicting disease severity in the newborn and for integration into prenatal diagnosis to better inform genetic counseling.

  13. [Application of Multiple Genetic Markers in a Case of Determination of Half Sibling].

    PubMed

    Yang, Xue; Shi, Mei-sen; Yuan, Li; Lu, Di

    2016-02-01

    A case of half sibling was determined with multiple genetic markers, which could be potentially applied for determination of half sibling relationship from same father. Half sibling relationship was detected by 39 autosomal STR genetic markers, 23 Y-chromosomal STR genetic markers and 12 X -chromosomal STR genetic markers among ZHAO -1, ZHAO -2, ZHAO -3, ZHAO -4, and ZHAO-5. According to autosomal STR, Y-STR and X-STR genotyping results, it was determined that ZHAO-4 (alleged half sibling) was unrelated with ZHAO-1 and ZHAO-2; however, ZHAO-3 (alleged half sibling), ZHAO-5 (alleged half sibling) shared same genetic profile with ZHAO-1, and ZHAO-2 from same father. It is reliable to use multiple genetic markers and family gene reconstruction to determine half sibling relationship from same father, but it is difficult to determination by calculating half sibling index with ITO and discriminant functions.

  14. Functional annotation of chemical libraries across diverse biological processes.

    PubMed

    Piotrowski, Jeff S; Li, Sheena C; Deshpande, Raamesh; Simpkins, Scott W; Nelson, Justin; Yashiroda, Yoko; Barber, Jacqueline M; Safizadeh, Hamid; Wilson, Erin; Okada, Hiroki; Gebre, Abraham A; Kubo, Karen; Torres, Nikko P; LeBlanc, Marissa A; Andrusiak, Kerry; Okamoto, Reika; Yoshimura, Mami; DeRango-Adem, Eva; van Leeuwen, Jolanda; Shirahige, Katsuhiko; Baryshnikova, Anastasia; Brown, Grant W; Hirano, Hiroyuki; Costanzo, Michael; Andrews, Brenda; Ohya, Yoshikazu; Osada, Hiroyuki; Yoshida, Minoru; Myers, Chad L; Boone, Charles

    2017-09-01

    Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.

  15. An Inquiry into Protein Structure and Genetic Disease: Introducing Undergraduates to Bioinformatics in a Large Introductory Course

    ERIC Educational Resources Information Center

    Bednarski, April E.; Elgin, Sarah C. R.; Pakrasi, Himadri B.

    2005-01-01

    This inquiry-based lab is designed around genetic diseases with a focus on protein structure and function. To allow students to work on their own investigatory projects, 10 projects on 10 different proteins were developed. Students are grouped in sections of 20 and work in pairs on each of the projects. To begin their investigation, students are…

  16. Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017.

    PubMed

    Giri, Veda N; Knudsen, Karen E; Kelly, William K; Abida, Wassim; Andriole, Gerald L; Bangma, Chris H; Bekelman, Justin E; Benson, Mitchell C; Blanco, Amie; Burnett, Arthur; Catalona, William J; Cooney, Kathleen A; Cooperberg, Matthew; Crawford, David E; Den, Robert B; Dicker, Adam P; Eggener, Scott; Fleshner, Neil; Freedman, Matthew L; Hamdy, Freddie C; Hoffman-Censits, Jean; Hurwitz, Mark D; Hyatt, Colette; Isaacs, William B; Kane, Christopher J; Kantoff, Philip; Karnes, R Jeffrey; Karsh, Lawrence I; Klein, Eric A; Lin, Daniel W; Loughlin, Kevin R; Lu-Yao, Grace; Malkowicz, S Bruce; Mann, Mark J; Mark, James R; McCue, Peter A; Miner, Martin M; Morgan, Todd; Moul, Judd W; Myers, Ronald E; Nielsen, Sarah M; Obeid, Elias; Pavlovich, Christian P; Peiper, Stephen C; Penson, David F; Petrylak, Daniel; Pettaway, Curtis A; Pilarski, Robert; Pinto, Peter A; Poage, Wendy; Raj, Ganesh V; Rebbeck, Timothy R; Robson, Mark E; Rosenberg, Matt T; Sandler, Howard; Sartor, Oliver; Schaeffer, Edward; Schwartz, Gordon F; Shahin, Mark S; Shore, Neal D; Shuch, Brian; Soule, Howard R; Tomlins, Scott A; Trabulsi, Edouard J; Uzzo, Robert; Vander Griend, Donald J; Walsh, Patrick C; Weil, Carol J; Wender, Richard; Gomella, Leonard G

    2018-02-01

    Purpose Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. Methods An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. Results Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. Conclusion To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease.

  17. Genetics and educational attainment

    NASA Astrophysics Data System (ADS)

    Cesarini, David; Visscher, Peter M.

    2017-12-01

    We explore how advances in our understanding of the genetics of complex traits such as educational attainment could constructively be leveraged to advance research on education and learning. We discuss concepts and misconceptions about genetic findings with regard to causes, consequences, and policy. Our main thesis is that educational attainment as a measure that varies between individuals in a population can be subject to exactly the same experimental biological designs as other outcomes, for example, those studied in epidemiology and medical sciences, and the same caveats about interpretation and implication apply.

  18. Immune allied genetic algorithm for Bayesian network structure learning

    NASA Astrophysics Data System (ADS)

    Song, Qin; Lin, Feng; Sun, Wei; Chang, KC

    2012-06-01

    Bayesian network (BN) structure learning is a NP-hard problem. In this paper, we present an improved approach to enhance efficiency of BN structure learning. To avoid premature convergence in traditional single-group genetic algorithm (GA), we propose an immune allied genetic algorithm (IAGA) in which the multiple-population and allied strategy are introduced. Moreover, in the algorithm, we apply prior knowledge by injecting immune operator to individuals which can effectively prevent degeneration. To illustrate the effectiveness of the proposed technique, we present some experimental results.

  19. Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula.

    PubMed

    Godinho, Raquel; Llaneza, Luis; Blanco, Juan C; Lopes, Susana; Álvares, Francisco; García, Emilio J; Palacios, Vicente; Cortés, Yolanda; Talegón, Javier; Ferrand, Nuno

    2011-12-01

    Hybridization between wild species and their domestic counterparts may represent a major threat to natural populations. However, high genetic similarity between the hybridizing taxa makes the detection of hybrids a difficult task and may hinder attempts to assess the impact of hybridization in conservation biology. In this work, we used a combination of 42 autosomal microsatellites together with Y-chromosome microsatellite-defined haplotypes and mtDNA sequences to investigate the occurrence and dynamics of wolf-dog hybridization in the Iberian Peninsula. To do this, we applied a variety of Bayesian analyses and a parallel set of simulation studies to evaluate (i) the differences between Iberian wolves and dogs, (ii) the frequency and geographical distribution of hybridization and (iii) the directionality of hybridization. First, we show that Iberian wolves and dogs form two well-differentiated genetic entities, suggesting that introgressive hybridization is not a widespread phenomenon shaping both gene pools. Second, we found evidence for the existence of hybridization that is apparently restricted to more peripheral and recently expanded wolf populations. Third, we describe compelling evidence suggesting that the dynamics of hybridization in wolf populations is mediated by crosses between male dogs and female wolves. More importantly, the observation of a population showing the occurrence of a continuum of hybrid classes forming mixed packs may indicate that we have underestimated hybridization. If future studies confirm this pattern, then an intriguing avenue of research is to investigate how introgression from free-ranging domestic dogs is enabling wolf populations to adapt to the highly humanized habitats of southern Europe while still maintaining their genetic differentiation. © 2011 Blackwell Publishing Ltd.

  20. G-Protein Genomic Association With Normal Variation in Gray Matter Density

    PubMed Central

    Chen, Jiayu; Calhoun, Vince D.; Arias-Vasquez, Alejandro; Zwiers, Marcel P.; van Hulzen, Kimm; Fernández, Guillén; Fisher, Simon E.; Franke, Barbara; Turner, Jessica A.; Liu, Jingyu

    2017-01-01

    While detecting genetic variations underlying brain structures helps reveal mechanisms of neural disorders, high data dimensionality poses a major challenge for imaging genomic association studies. In this work, we present the application of a recently proposed approach, parallel independent component analysis with reference (pICA-R), to investigate genomic factors potentially regulating gray matter variation in a healthy population. This approach simultaneously assesses many variables for an aggregate effect and helps to elicit particular features in the data. We applied pICA-R to analyze gray matter density (GMD) images (274,131 voxels) in conjunction with single nucleotide polymorphism (SNP) data (666,019 markers) collected from 1,256 healthy individuals of the Brain Imaging Genetics (BIG) study. Guided by a genetic reference derived from the gene GNA14, pICA-R identified a significant SNP-GMD association (r = −0.16, P = 2.34 × 10−8), implying that subjects with specific genotypes have lower localized GMD. The identified components were then projected to an independent dataset from the Mind Clinical Imaging Consortium (MCIC) including 89 healthy individuals, and the obtained loadings again yielded a significant SNP-GMD association (r = −0.25, P = 0.02). The imaging component reflected GMD variations in frontal, precuneus, and cingulate regions. The SNP component was enriched in genes with neuronal functions, including synaptic plasticity, axon guidance, molecular signal transduction via PKA and CREB, highlighting the GRM1, PRKCH, GNA12, and CAMK2B genes. Collectively, our findings suggest that GNA12 and GNA14 play a key role in the genetic architecture underlying normal GMD variation in frontal and parietal regions. PMID:26248772

  1. Pathway-based variant enrichment analysis on the example of dilated cardiomyopathy.

    PubMed

    Backes, Christina; Meder, Benjamin; Lai, Alan; Stoll, Monika; Rühle, Frank; Katus, Hugo A; Keller, Andreas

    2016-01-01

    Genome-wide association (GWA) studies have significantly contributed to the understanding of human genetic variation and its impact on clinical traits. Frequently only a limited number of highly significant associations were considered as biologically relevant. Increasingly, network analysis of affected genes is used to explore the potential role of the genetic background on disease mechanisms. Instead of first determining affected genes or calculating scores for genes and performing pathway analysis on the gene level, we integrated both steps and directly calculated enrichment on the genetic variant level. The respective approach has been tested on dilated cardiomyopathy (DCM) GWA data as showcase. To compute significance values, 5000 permutation tests were carried out and p values were adjusted for multiple testing. For 282 KEGG pathways, we computed variant enrichment scores and significance values. Of these, 65 were significant. Surprisingly, we discovered the "nucleotide excision repair" and "tuberculosis" pathways to be most significantly associated with DCM (p = 10(-9)). The latter pathway is driven by genes of the HLA-D antigen group, a finding that closely resembles previous discoveries made by expression quantitative trait locus analysis in the context of DCM-GWA. Next, we implemented a sub-network-based analysis, which searches for affected parts of KEGG, however, independent on the pre-defined pathways. Here, proteins of the contractile apparatus of cardiac cells as well as the FAS sub-network were found to be affected by common polymorphisms in DCM. In this work, we performed enrichment analysis directly on variants, leveraging the potential to discover biological information in thousands of published GWA studies. The applied approach is cutoff free and considers a ranked list of genetic variants as input.

  2. A cis-phase interaction study of genetic variants within the MAOA gene in major depressive disorder.

    PubMed

    Zhang, JieXu; Chen, YanBo; Zhang, KeRang; Yang, Hong; Sun, Yan; Fang, Yue; Shen, Yan; Xu, Qi

    2010-11-01

    The genetic basis of major depressive disorder (MDD) has been explored extensively, but the mode of transmission of the disease has yet to be established. To better understand the mechanism by which the monoamine oxidase A (MAOA) gene may play a role in developing MDD, the present work examined the cis-phase interaction between genetic variants within the MAOA gene for the pathogenesis of MDD. A variable number tandem repeat (VNTR) and 19 single nucleotide polymorphisms (SNPs) within the gene were genotyped in 512 unrelated patients with MDD and 567 unrelated control subjects among a Chinese population. Quantitative real-time polymerase chain reaction analysis was applied to test the effect of genetic variants on expression of the MAOA gene in MDD. Neither the VNTR polymorphism nor seven informative SNPs showed allelic association with MDD, but the cis-acting interactions between the VNTR polymorphism and four individual SNPs were strongly associated with MDD risk, of which the VNTR-rs1465107 combination showed the strongest association (p = .000011). Quantitative real-time polymerase chain reaction analysis showed that overall relative quantity of MAOA messenger RNA was significantly higher in patients with MDD than in control subjects (fold change = 5.28, p = 1.7 × 10⁻⁷) and that in the male subjects carrying the VNTR-L, rs1465107-A, rs6323-G, rs2072743-A, or rs1137070-T alleles, expression of MAOA messenger RNA was significantly higher in the patient group than in the control group. The cis-phase interaction between the VNTR polymorphism and functional SNPs may contribute to the etiology of MDD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Selecting materialized views using random algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Lijuan; Hao, Zhongxiao; Liu, Chi

    2007-04-01

    The data warehouse is a repository of information collected from multiple possibly heterogeneous autonomous distributed databases. The information stored at the data warehouse is in form of views referred to as materialized views. The selection of the materialized views is one of the most important decisions in designing a data warehouse. Materialized views are stored in the data warehouse for the purpose of efficiently implementing on-line analytical processing queries. The first issue for the user to consider is query response time. So in this paper, we develop algorithms to select a set of views to materialize in data warehouse in order to minimize the total view maintenance cost under the constraint of a given query response time. We call it query_cost view_ selection problem. First, cost graph and cost model of query_cost view_ selection problem are presented. Second, the methods for selecting materialized views by using random algorithms are presented. The genetic algorithm is applied to the materialized views selection problem. But with the development of genetic process, the legal solution produced become more and more difficult, so a lot of solutions are eliminated and producing time of the solutions is lengthened in genetic algorithm. Therefore, improved algorithm has been presented in this paper, which is the combination of simulated annealing algorithm and genetic algorithm for the purpose of solving the query cost view selection problem. Finally, in order to test the function and efficiency of our algorithms experiment simulation is adopted. The experiments show that the given methods can provide near-optimal solutions in limited time and works better in practical cases. Randomized algorithms will become invaluable tools for data warehouse evolution.

  4. PERSON-Personalized Expert Recommendation System for Optimized Nutrition.

    PubMed

    Chen, Chih-Han; Karvela, Maria; Sohbati, Mohammadreza; Shinawatra, Thaksin; Toumazou, Christofer

    2018-02-01

    The rise of personalized diets is due to the emergence of nutrigenetics and genetic tests services. However, the recommendation system is far from mature to provide personalized food suggestion to consumers for daily usage. The main barrier of connecting genetic information to personalized diets is the complexity of data and the scalability of the applied systems. Aiming to cross such barriers and provide direct applications, a personalized expert recommendation system for optimized nutrition is introduced in this paper, which performs direct to consumer personalized grocery product filtering and recommendation. Deep learning neural network model is applied to achieve automatic product categorization. The ability of scaling with unknown new data is achieved through the generalized representation of word embedding. Furthermore, the categorized products are filtered with a model based on individual genetic data with associated phenotypic information and a case study with databases from three different sources is carried out to confirm the system.

  5. Genetic and Environmental Influences on Media Use and Communication Behaviors

    ERIC Educational Resources Information Center

    Kirzinger, Ashley E.; Weber, Christopher; Johnson, Martin

    2012-01-01

    A great deal of scholarly work has explored the motivations behind media consumption and other various communication traits. However, little research has investigated the sources of these motivations and virtually no research considers their potential genetic underpinnings. Drawing on the field of behavior genetics, we use a classical twin design…

  6. Communicating the role of genetics in management

    Treesearch

    Mary F. Mahalovich

    1997-01-01

    Three current issues serve as examples to convey the role of genetics in management. (1) Consequences of silvicultural systems on the genetic resource of tree species are limited to one generation of study and isozyme (qualitative) data. Results of simulated data for diameter (quantitative data) over several generations, illustrate the pitfalls of working towards...

  7. GeneOnEarth: fitting genetic PC plots on the globe.

    PubMed

    Torres-Sánchez, Sergio; Medina-Medina, Nuria; Gignoux, Chris; Abad-Grau, María M; González-Burchard, Esteban

    2013-01-01

    Principal component (PC) plots have become widely used to summarize genetic variation of individuals in a sample. The similarity between genetic distance in PC plots and geographical distance has shown to be quite impressive. However, in most situations, individual ancestral origins are not precisely known or they are heterogeneously distributed; hence, they are hardly linked to a geographical area. We have developed GeneOnEarth, a user-friendly web-based tool to help geneticists to understand whether a linear isolation-by-distance model may apply to a genetic data set; thus, genetic distances among a set of individuals resemble geographical distances among their origins. Its main goal is to allow users to first apply a by-view Procrustes method to visually learn whether this model holds. To do that, the user can choose the exact geographical area from an on line 2D or 3D world map by using, respectively, Google Maps or Google Earth, and rotate, flip, and resize the images. GeneOnEarth can also compute the optimal rotation angle using Procrustes analysis and assess statistical evidence of similarity when a different rotation angle has been chosen by the user. An online version of GeneOnEarth is available for testing and using purposes at http://bios.ugr.es/GeneOnEarth.

  8. A Delphi study to determine the European core curriculum for Master programmes in genetic counselling.

    PubMed

    Skirton, Heather; Barnoy, Sivia; Ingvoldstad, Charlotta; van Kessel, Ingrid; Patch, Christine; O'Connor, Anita; Serra-Juhe, Clara; Stayner, Barbara; Voelckel, Marie-Antoinette

    2013-10-01

    Genetic counsellors have been working in some European countries for at least 30 years. Although there are great disparities between the numbers, education, practice and acceptance of these professionals across Europe, it is evident that genetic counsellors and genetic nurses in Europe are working autonomously within teams to deliver patient care. The aim of this study was to use the Delphi research method to develop a core curriculum to guide the educational preparation of these professionals in Europe. The Delphi method enables the researcher to utilise the views and opinions of a group of recognised experts in the field of study; this study consisted of four phases. Phases 1 and 4 consisted of expert workshops, whereas data were collected in phases 2 and 3 (n=35) via online surveys. All participants in the study were considered experts in the field of genetic counselling. The topics considered essential for genetic counsellor training have been organised under the following headings: (1) counselling; (2) psychological issues; (3) medical genetics; (4) human genetics; (5) ethics, law and sociology; (6) professional practice; and (7) education and research. Each topic includes the knowledge, skills and attitudes required to enable genetic counsellors to develop competence. In addition, it was considered by the experts that clinical practice should comprise 50% of the educational programme. The core Master programme curriculum will enable current courses to be assessed and inform the design of future educational programmes for European genetic counsellors.

  9. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    PubMed Central

    2012-01-01

    Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993

  10. How to Design a Genetic Mating Scheme: A Basic Training Package for Drosophila Genetics

    PubMed Central

    Roote, John; Prokop, Andreas

    2013-01-01

    Drosophila melanogaster is a powerful model organism for biological research. The essential and common instrument of fly research is genetics, the art of applying Mendelian rules in the specific context of Drosophila with its unique classical genetic tools and the breadth of modern genetic tools and strategies brought in by molecular biology, transgenic technologies and the use of recombinases. Training newcomers to fly genetics is a complex and time-consuming task but too important to be left to chance. Surprisingly, suitable training resources for beginners currently are not available. Here we provide a training package for basic Drosophila genetics, designed to ensure that basic knowledge on all key areas is covered while reducing the time invested by trainers. First, a manual introduces to fly history, rationale for mating schemes, fly handling, Mendelian rules in fly, markers and balancers, mating scheme design, and transgenic technologies. Its self-study is followed by a practical training session on gender and marker selection, introducing real flies under the dissecting microscope. Next, through self-study of a PowerPoint presentation, trainees are guided step-by-step through a mating scheme. Finally, to consolidate knowledge, trainees are asked to design similar mating schemes reflecting routine tasks in a fly laboratory. This exercise requires individual feedback but also provides unique opportunities for trainers to spot weaknesses and strengths of each trainee and take remedial action. This training package is being successfully applied at the Manchester fly facility and may serve as a model for further training resources covering other aspects of fly research. PMID:23390611

  11. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil.

    PubMed

    Santos, Elisa S L; Cerqueira-Silva, Carlos Bernard M; Mori, Gustavo M; Ahnert, Dário; Mello, Durval L N; Pires, José Luis; Corrêa, Ronan X; de Souza, Anete P

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called 'Bahian cacao' or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide.

  12. Genetic Structure and Molecular Diversity of Cacao Plants Established as Local Varieties for More than Two Centuries: The Genetic History of Cacao Plantations in Bahia, Brazil

    PubMed Central

    Santos, Elisa S. L.; Cerqueira-Silva, Carlos Bernard M.; Mori, Gustavo M.; Ahnert, Dário; Mello, Durval L. N.; Pires, José Luis; Corrêa, Ronan X.; de Souza, Anete P.

    2015-01-01

    Bahia is the most important cacao-producing state in Brazil, which is currently the sixth-largest country worldwide to produce cacao seeds. In the eighteenth century, the Comum, Pará and Maranhão varieties of cacao were introduced into southern Bahia, and their descendants, which are called ‘Bahian cacao’ or local Bahian varieties, have been cultivated for over 200 years. Comum plants have been used to start plantations in African countries and extended as far as countries in South Asia and Oceania. In Brazil, two sets of clones selected from Bahian varieties and their mutants, the Agronomic Institute of East (SIAL) and Bahian Cacao Institute (SIC) series, represent the diversity of Bahian cacao in germplasm banks. Because the genetic diversity of Bahian varieties, which is essential for breeding programs, remains unknown, the objective of this work was to assess the genetic structure and diversity of local Bahian varieties collected from farms and germplasm banks. To this end, 30 simple sequence repeat (SSR) markers were used to genotype 279 cacao plants from germplasm and local farms. The results facilitated the identification of 219 cacao plants of Bahian origin, and 51 of these were SIAL or SIC clones. Bahian cacao showed low genetic diversity. It could be verified that SIC and SIAL clones do not represent the true diversity of Bahian cacao, with the greatest amount of diversity found in cacao trees on the farms. Thus, a core collection to aid in prioritizing the plants to be sampled for Bahian cacao diversity is suggested. These results provide information that can be used to conserve Bahian cacao plants and applied in breeding programs to obtain more productive Bahian cacao with superior quality and tolerance to major diseases in tropical cacao plantations worldwide. PMID:26675449

  13. Population genetics-informed meta-analysis in seven genes associated with risk to dengue fever disease.

    PubMed

    Oliveira, Marisa; Saraiva, Diana P; Cavadas, Bruno; Fernandes, Verónica; Pedro, Nicole; Casademont, Isabelle; Koeth, Fanny; Alshamali, Farida; Harich, Nourdin; Cherni, Lotfi; Sierra, Beatriz; Guzman, Maria G; Sakuntabhai, Anavaj; Pereira, Luisa

    2018-04-17

    Population genetics theory predicted that rare frequent markers would be the main contributors for heritability of complex diseases, but meta-analyses of genome-wide association studies are revealing otherwise common markers, present in all population groups, as the identified candidate genes. In this work, we applied a population-genetics informed meta-analysis to 10 markers located in seven genes said to be associated with dengue fever disease. Seven markers (in PLCE1, CD32, CD209, OAS1 and OAS3 genes) have high-frequency and the other three (in MICB and TNFA genes) have intermediate frequency. Most of these markers have high discriminatory power between population groups, but their frequencies follow the rules of genetic drift, and seem to have not been under strong selective pressure. There was a good agreement in directional consistency across trans-ethnic association signals, in East Asian and Latin American cohorts, with heterogeneity generated by randomness between studies and especially by low sample sizes. This led to confirm the following significant associations: with DF, odds ratio of 0.67 for TNFA-rs1800629-A; with DHF, 0.82 for CD32-rs1801274-G; with DSS, 0.55 for OAS3-rs2285933-G, 0.80 for PLCE1-rs2274223-G and 1.32 for MICB-rs3132468-C. The overall genetic risks confirmed sub-Saharan African populations and descendants as the best protected against the severer forms of the disease, while Southeast and Northeast Asians are the least protected ones. European and close neighbours are the best protected against dengue fever, while, again, Southeast and Northeast Asians are the least protected ones. These risk scores provide important predictive information for the largely naïve European and North American regions, as well as for Africa where misdiagnosis with other hemorrhagic diseases is of concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan.

    PubMed

    Thormann, Imke; Reeves, Patrick; Reilley, Ann; Engels, Johannes M M; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M

    2016-01-01

    Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum.

  15. Geography of Genetic Structure in Barley Wild Relative Hordeum vulgare subsp. spontaneum in Jordan

    PubMed Central

    Reeves, Patrick; Reilley, Ann; Engels, Johannes M. M.; Lohwasser, Ulrike; Börner, Andreas; Pillen, Klaus; Richards, Christopher M.

    2016-01-01

    Informed collecting, conservation, monitoring and utilization of genetic diversity requires knowledge of the distribution and structure of the variation occurring in a species. Hordeum vulgare subsp. spontaneum (K. Koch) Thell., a primary wild relative of barley, is an important source of genetic diversity for barley improvement and co-occurs with the domesticate within the center of origin. We studied the current distribution of genetic diversity and population structure in H. vulgare subsp. spontaneum in Jordan and investigated whether it is correlated with either spatial or climatic variation inferred from publically available climate layers commonly used in conservation and ecogeographical studies. The genetic structure of 32 populations collected in 2012 was analyzed with 37 SSRs. Three distinct genetic clusters were identified. Populations were characterized by admixture and high allelic richness, and genetic diversity was concentrated in the northern part of the study area. Genetic structure, spatial location and climate were not correlated. This may point out a limitation in using large scale climatic data layers to predict genetic diversity, especially as it is applied to regional genetic resources collections in H. vulgare subsp. spontaneum. PMID:27513459

  16. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    PubMed

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into distinctive associations between pathway activities in case and control samples.

  17. The dynamics of sex ratio evolution: from the gene perspective to multilevel selection.

    PubMed

    Argasinski, Krzysztof

    2013-01-01

    The new dynamical game theoretic model of sex ratio evolution emphasizes the role of males as passive carriers of sex ratio genes. This shows inconsistency between population genetic models of sex ratio evolution and classical strategic models. In this work a novel technique of change of coordinates will be applied to the new model. This will reveal new aspects of the modelled phenomenon which cannot be shown or proven in the original formulation. The underlying goal is to describe the dynamics of selection of particular genes in the entire population, instead of in the same sex subpopulation, as in the previous paper and earlier population genetics approaches. This allows for analytical derivation of the unbiased strategic model from the model with rigorous non-simplified genetics. In effect, an alternative system of replicator equations is derived. It contains two subsystems: the first describes changes in gene frequencies (this is an alternative unbiased formalization of the Fisher-Dusing argument), whereas the second describes changes in the sex ratios in subpopulations of carriers of genes for each strategy. An intriguing analytical result of this work is that the fitness of a gene depends on the current sex ratio in the subpopulation of its carriers, not on the encoded individual strategy. Thus, the argument of the gene fitness function is not constant but is determined by the trajectory of the sex ratio among carriers of that gene. This aspect of the modelled phenomenon cannot be revealed by the static analysis. Dynamics of the sex ratio among gene carriers is driven by a dynamic "tug of war" between female carriers expressing the encoded strategic trait value and random partners of male carriers expressing the average population strategy (a primary sex ratio). This mechanism can be called "double-level selection". Therefore, gene interest perspective leads to multi-level selection.

  18. Mindfulness Among Genetic Counselors Is Associated with Increased Empathy and Work Engagement and Decreased Burnout and Compassion Fatigue.

    PubMed

    Silver, Julia; Caleshu, Colleen; Casson-Parkin, Sylvie; Ormond, Kelly

    2018-03-04

    Genetic counselors experience high rates of compassion fatigue and an elevated risk for burnout, both of which can negatively impact patient care and retention in the profession. In other healthcare professions, mindfulness training has been successfully used to address similar negative psychological sequelae and to bolster empathy, which is the foundation of our counseling work. We aimed to assess associations between mindfulness and key professional variables, including burnout, compassion fatigue, work engagement, and empathy. Data were collected via an anonymous, online survey that included validated measures of mindfulness and these key professional variables. The survey was completed by 441 genetic counselors involved in direct patient care. Half of the respondents (50.1%) reported engaging in yoga, meditation, and/or breathing exercises. Mindfulness was positively correlated with work engagement (r = 0.24, p < 0.001) and empathy (as measured through four subscales: perspective taking (r = 0.15, p = 0.002), empathic concern (r = 0.11, p = 0.03), fantasy (r = - 0.11, p = 0.03) and personal distress (r = - 0.15, p = 0.001)). Mindfulness was negatively correlated with compassion fatigue (r = - 0.48, p < 0.001) and burnout (r = - 0.50, p < 0.001). Given these findings, mindfulness training may be a valuable addition to graduate and continuing education for genetic counselors. The integration of mindfulness into the genetic counseling field will likely improve professional morale and well-being, while promoting workforce retention and bolstering the relational and counseling aspects of our clinical work.

  19. An informational transition in conditioned Markov chains: Applied to genetics and evolution.

    PubMed

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2016-08-07

    In this work we assume that we have some knowledge about the state of a population at two known times, when the dynamics is governed by a Markov chain such as a Wright-Fisher model. Such knowledge could be obtained, for example, from observations made on ancient and contemporary DNA, or during laboratory experiments involving long term evolution. A natural assumption is that the behaviour of the population, between observations, is related to (or constrained by) what was actually observed. The present work shows that this assumption has limited validity. When the time interval between observations is larger than a characteristic value, which is a property of the population under consideration, there is a range of intermediate times where the behaviour of the population has reduced or no dependence on what was observed and an equilibrium-like distribution applies. Thus, for example, if the frequency of an allele is observed at two different times, then for a large enough time interval between observations, the population has reduced or no dependence on the two observed frequencies for a range of intermediate times. Given observations of a population at two times, we provide a general theoretical analysis of the behaviour of the population at all intermediate times, and determine an expression for the characteristic time interval, beyond which the observations do not constrain the population's behaviour over a range of intermediate times. The findings of this work relate to what can be meaningfully inferred about a population at intermediate times, given knowledge of terminal states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Optimization of Processing Parameters in ECM of Die Tool Steel Using Nanofluid by Multiobjective Genetic Algorithm.

    PubMed

    Sathiyamoorthy, V; Sekar, T; Elango, N

    2015-01-01

    Formation of spikes prevents achievement of the better material removal rate (MRR) and surface finish while using plain NaNO3 aqueous electrolyte in electrochemical machining (ECM) of die tool steel. Hence this research work attempts to minimize the formation of spikes in the selected workpiece of high carbon high chromium die tool steel using copper nanoparticles suspended in NaNO3 aqueous electrolyte, that is, nanofluid. The selected influencing parameters are applied voltage and electrolyte discharge rate with three levels and tool feed rate with four levels. Thirty-six experiments were designed using Design Expert 7.0 software and optimization was done using multiobjective genetic algorithm (MOGA). This tool identified the best possible combination for achieving the better MRR and surface roughness. The results reveal that voltage of 18 V, tool feed rate of 0.54 mm/min, and nanofluid discharge rate of 12 lit/min would be the optimum values in ECM of HCHCr die tool steel. For checking the optimality obtained from the MOGA in MATLAB software, the maximum MRR of 375.78277 mm(3)/min and respective surface roughness Ra of 2.339779 μm were predicted at applied voltage of 17.688986 V, tool feed rate of 0.5399705 mm/min, and nanofluid discharge rate of 11.998816 lit/min. Confirmatory tests showed that the actual performance at the optimum conditions was 361.214 mm(3)/min and 2.41 μm; the deviation from the predicted performance is less than 4% which proves the composite desirability of the developed models.

Top