Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1972-01-01
A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.
NASA Astrophysics Data System (ADS)
Wang, X.
2018-04-01
Tourism geological resources are of high value in admiration, scientific research and universal education, which need to be protected and rationally utilized. In the past, most of the remote sensing investigations of tourism geological resources used two-dimensional remote sensing interpretation method, which made it difficult for some geological heritages to be interpreted and led to the omission of some information. This aim of this paper is to assess the value of a method using the three-dimensional visual remote sensing image to extract information of geological heritages. skyline software system is applied to fuse the 0.36 m aerial images and 5m interval DEM to establish the digital earth model. Based on the three-dimensional shape, color tone, shadow, texture and other image features, the distribution of tourism geological resources in Shandong Province and the location of geological heritage sites were obtained, such as geological structure, DaiGu landform, granite landform, Volcanic landform, sandy landform, Waterscapes, etc. The results show that using this method for remote sensing interpretation is highly recognizable, making the interpretation more accurate and comprehensive.
NASA Technical Reports Server (NTRS)
Wychgram, D. C.
1972-01-01
Remote sensor data from a NASA Convair 990 radar flight and Mission 101 and 105 have been interpreted and evaluated. Based on interpretation of the remote sensor data, a geologic map has been prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives one indication of the usefulness and reliability of the remote sensor data. Color and color infrared photography provided the largest amount of valuable information. Multiband photography was of lesser value and side-looking radar imagery provided no new information that was not available on small scale photography. Thermal scanner imagery proved to be a very specialized remote sensing tool that should be applied to areas of low relief and sparse vegetation where geologic features produce known or suspected thermal contrast. Low sun angle photography may be a good alternative to side-looking radar imagery but must be flown with critical timing.
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Mouat, D. A.; Johnson, J. D.; Foster, K. E.
1977-01-01
Descriptions of projects engaged by the Applied Remote Sensors Program in the state of Arizona are contained in an annual report for the fiscal year 1976-1977. Remote sensing techniques included thermal infrared imagery in analog and digital form and conversion of data into thermograms. Delineation of geologic areas, surveys of vegetation and inventory of resources were also presented.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.
1980-01-01
The methodology of remote sensing applied to geological study in a complex area was evaluated. Itatiaia was selected as a test area, which covers the alkaline massives and its precambrian basement. LANDSAT-MSS and radar mosaic of the RADAMBRASIL Project were used for photointerpretation. Previous geological works were consulted and many discrepancies in the distribution of stratigraphic units were found. Moreover, structural lineaments and talus deposits were clearly delineated.
Remote Sensing Applied to Geology (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1996-01-01
The bibliography contains citations concerning the use of remote sensing in geological resource exploration. Technologies discussed include thermal, optical, photographic, and electronic imaging using ground-based, aerial, and satellite-borne devices. Analog and digital techniques to locate, classify, and assess geophysical features, structures, and resources are also covered. Application of remote sensing to petroleum and minerals exploration is treated in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.)
Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics
NASA Technical Reports Server (NTRS)
Csatho, Beata M.
2003-01-01
Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.
Applying satellite technology to energy and mineral exploration
Carter, William D.; Rowan, Lawrence C.
1978-01-01
IGCP Project 143 ("Remote Sensing and Mineral Exploration"), is a worldwide research project designed to make satellite data an operational geological tool along with the geologic pick, hand lens, topographic map, aerial photo and geophysical instruments and data that comprise the exploration package. While remote sensing data will not replace field exploration and mapping, careful study of such data prior to field work should make the effort more efficient.
Airborne remote sensors applied to engineering geology and civil works design investigations
NASA Technical Reports Server (NTRS)
Gelnett, R. H.
1975-01-01
The usefulness of various airborne remote sensing systems in the detection and identification of regional and specific geologic structural features that may affect the design and location of engineering structures on major civil works projects is evaluated. The Butler Valley Dam and Blue Lake Project in northern California was selected as a demonstration site. Findings derived from the interpretation of various kinds of imagery used are given.
Report of the Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins
NASA Technical Reports Server (NTRS)
Lang, H. R. (Editor)
1985-01-01
The Workshop on Geologic Applications of Remote Sensing to the Study of Sedimentary Basins, held January 10 to 11, 1985 in Lakewood, Colorado, involved 43 geologists from industry, government, and academia. Disciplines represented ranged from vertebrate paleontology to geophysical modeling of continents. Deliberations focused on geologic problems related to the formation, stratigraphy, structure, and evolution of foreland basins in general, and to the Wind River/Bighorn Basin area of Wyoming in particular. Geological problems in the Wind River/Bighorn basin area that should be studied using state-of-the-art remote sensing methods were identified. These include: (1) establishing the stratigraphic sequence and mapping, correlating, and analyzing lithofacies of basin-filling strata in order to refine the chronology of basin sedimentation, and (2) mapping volcanic units, fracture patterns in basement rocks, and Tertiary-Holocene landforms in searches for surface manifestations of concealed structures in order to refine models of basin tectonics. Conventional geologic, topographic, geophysical, and borehole data should be utilized in these studies. Remote sensing methods developed in the Wind River/Bighorn Basin area should be applied in other basins.
,
1977-01-01
The Earth Resources Observation Systems (EROS) Program of the U.S. Department of the Interior, administered by the Geological Survey, was established in 1966 to apply remote-sensing techniques to the inventory, monitoring, and management of natural resources. To meet its primary objective, the EROS Program includes research and training in the interpretation and application of remotely sensed data and provides remotely sensed data at nominal cost to scientists, resource planners, managers, and the public.
,
1981-01-01
The Earth Resources Observation Systems (EROS) Program of the U.S. Department of the Interior, administered by the Geological Survey, was established in 1966 to apply remote-sensing techniques to the inventory, monitoring, and management of natural resources. To meet its primary objective, the EROS Program includes research and training in the interpretation and application of remotely sensed data and provides remotely sensed data at nominal cost to scientists, resource planners, managers, and the public.
NASA Astrophysics Data System (ADS)
Pour, A. B.; Hashim, M.; Park, Y.
2017-10-01
Geological investigations in Antarctica confront many difficulties due to its remoteness and extreme environmental conditions. In this study, the applications of Landsat-8 data were investigated to extract geological information for lithological and alteration mineral mapping in poorly exposed lithologies in inaccessible domains such in Antarctica. The north-eastern Graham Land, Antarctic Peninsula (AP) was selected in this study to conduct a satellite-based remote sensing mapping technique. Continuum Removal (CR) spectral mapping tool and Independent Components Analysis (ICA) were applied to Landsat-8 spectral bands to map poorly exposed lithologies at regional scale. Pixels composed of distinctive absorption features of alteration mineral assemblages associated with poorly exposed lithological units were detected by applying CR mapping tool to VNIR and SWIR bands of Landsat-8.Pixels related to Si-O bond emission minima features were identified using CR mapping tool to TIR bands in poorly mapped andunmapped zones in north-eastern Graham Land at regional scale. Anomaly pixels in the ICA image maps related to spectral featuresof Al-O-H, Fe, Mg-O-H and CO3 groups and well-constrained lithological attributions from felsic to mafic rocks were detectedusing VNIR, SWIR and TIR datasets of Landsat-8. The approach used in this study performed very well for lithological andalteration mineral mapping with little available geological data or without prior information of the study region.
Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data
NASA Astrophysics Data System (ADS)
Saibi, Hakim; Azizi, Masood; Mogren, Saad
2016-08-01
This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.
NASA Technical Reports Server (NTRS)
Eppler, Dean B.; Bleacher, Jacob F.; Evans, Cynthia A.; Feng, Wanda; Gruener, John; Hurwitz, Debra M.; Skinner, J. A., Jr.; Whitson, Peggy; Janoiko, Barbara
2013-01-01
Geologic maps integrate the distributions, contacts, and compositions of rock and sediment bodies as a means to interpret local to regional formative histories. Applying terrestrial mapping techniques to other planets is challenging because data is collected primarily by orbiting instruments, with infrequent, spatiallylimited in situ human and robotic exploration. Although geologic maps developed using remote data sets and limited "Apollo-style" field access likely contain inaccuracies, the magnitude, type, and occurrence of these are only marginally understood. This project evaluates the interpretative and cartographic accuracy of both field- and remote-based mapping approaches by comparing two 1:24,000 scale geologic maps of the San Francisco Volcanic Field (SFVF), north-central Arizona. The first map is based on traditional field mapping techniques, while the second is based on remote data sets, augmented with limited field observations collected during NASA Desert Research & Technology Studies (RATS) 2010 exercises. The RATS mission used Apollo-style methods not only for pre-mission traverse planning but also to conduct geologic sampling as part of science operation tests. Cross-comparison demonstrates that the Apollo-style map identifies many of the same rock units and determines a similar broad history as the field-based map. However, field mapping techniques allow markedly improved discrimination of map units, particularly unconsolidated surficial deposits, and recognize a more complex eruptive history than was possible using Apollo-style data. Further, the distribution of unconsolidated surface units was more obvious in the remote sensing data to the field team after conducting the fieldwork. The study raises questions about the most effective approach to balancing mission costs with the rate of knowledge capture, suggesting that there is an inflection point in the "knowledge capture curve" beyond which additional resource investment yields progressively smaller gains in geologic knowledge.
Space technology in the discovery and development of mineral and energy resources
NASA Technical Reports Server (NTRS)
Lowman, P. D.
1977-01-01
Space technology, applied to the discovery and extraction of mineral and energy resources, is summarized. Orbital remote sensing for geological purposes has been widely applied through the use of LANDSAT satellites. These techniques also have been of value for protection against environmental hazards and for a better understanding of crustal structure.
Application of remote sensor data to geologic analysis of the Bonanza test site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler); Butler, R. W.; Fisher, J. C.; Huntley, D.; Hulstrom, R. L.; Knepper, D. H., Jr.; Muhm, J. R.; Sawatzky, D. L.; Worman, K. E.; Wychgram, D.
1973-01-01
Research activities on geologic remote sensing applications for Colorado are summarized. Projects include: regional and detailed geologic mapping, surficial and engineering geology, fracture studies, uranium exploration, hydrology, and data reduction and enhancement. The acquisition of remote sensor data is also discussed.
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.
1981-01-01
Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.
Geological remote sensing signatures of terrestrial impact craters
NASA Technical Reports Server (NTRS)
Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.
1988-01-01
Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.
Applications of aerospace technology to petroleum exploration. Volume 1: Efforts and results
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1976-01-01
The feasibility of applying aerospace techniques to help solve significant problems in petroleum exploration is studied. Through contacts with petroleum industry and petroleum service industry, important petroleum exploration problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified where possible. Topics selected for investigation include: seismic reflection systems; down-hole acoustic techniques; identification of geological analogies; drilling methods; remote geological sensing; and sea floor imaging and mapping. Specific areas of aerospace technology are applied to 21 concepts formulated from the topics of concern.
Remote sensing applied to prospecting of thermomineral water in the county of Caldas Novas-Goias
NASA Technical Reports Server (NTRS)
Veneziani, P.; Eustaquiodosanjos, C.
1978-01-01
LANDSAT imagery of the region were studied allowing the placement of the area of study in the regional geological context. A geological mapping of the 1.60.000 scale was done. A methodology was developed which consisted in a regional temperature mapping using trend surface analysis. Through the correlation of all these data, four different areas were localized with a high potential as thermomineral sources.
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2016-06-01
Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.
Remote Sensing Information Applied to Geological Study of Planets
NASA Technical Reports Server (NTRS)
Pieters, Carle M.
2004-01-01
The Planetary Geology and Geophysics tasks under this grant have concentrated on the development and testing of tools for remote compositional analyses for the Moon and other airless bodies (especially asteroids). The grant has supported the PI and her students. Detailed analyses of space-weathering analogs were undertaken. Lunar research included development of models for regolith evolution and redistribution of materials across the Moon, with particular emphasis on the interior of South Pole-Aitken Basin. Lunar compositional analyses identified general rock types using Clementine data and mapped their distribution globally and locally based on the type of mafic mineralogy present (or lack thereof). Progress in these areas has been extensively discussed in the literature and in proposals submitted to the PGG program in 2003 and 2004.
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2016-06-01
Yearly, several landslides ensued during heavy monsoons rainfall in Kelantan river basin, peninsular Malaysia, which are obviously connected to geological structures and topographical features of the region. In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geological structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulated drainage pattern and metamorphic and Quaternary units. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping.
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
Mars exploration rover geologic traverse by the spirit rover in the plains of Gusev crater, Mars
Crumpler, L.S.; Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; DesMarais, D.J.; Farmer, J.D.; Fergason, R.; Golombek, M.P.; Grant, F.D.; Grant, J. A.; Greeley, R.; Hahn, B.; Herkenhoff, K. E.; Hurowitz, J.A.; Knudson, A.T.; Landis, G.A.; Li, R.; Maki, J.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Payne, M.C.; Rice, J.W.; Richter, L.; Ruff, S.W.; Sims, M.; Thompson, S.D.; Tosca, N.; Wang, A.; Whelley, P.; Wright, S.P.; Wyatt, M.B.
2005-01-01
The Spirit rover completed a 2.5 km traverse across gently sloping plains on the floor of Gusev crater from its location on the outer rim of Bonneville crater to the lower slopes of the Columbia Hills, Mars. Using the Athena suite of instruments in a transect approach, a systematic series of overlapping panoramic mosaics, remote sensing observations, surface analyses, and trenching operations documented the lateral variations in landforms, geologic materials, and chemistry of the surface throughout the traverse, demonstrating the ability to apply the techniques of field geology by remote rover operations. Textures and shapes of rocks within the plains are consistent with derivation from impact excavation and mixing of the upper few meters of basaltic lavas. The contact between surrounding plains and crater ejecta is generally abrupt and marked by increases in clast abundance and decimeter-scale steps in relief. Basaltic materials of the plains overlie less indurated and more altered rock types at a time-stratigraphic contact between the plains and Columbia Hills that occurs over a distance of one to two meters. This implies that regional geologic contacts are well preserved and that Earth-like field geologic mapping will be possible on Mars despite eons of overturn by small impacts. ?? 2005 Geological Society of America.
Applying remote sensing to invasive species science—A tamarisk example
Morisette, Jeffrey T.
2011-01-01
The Invasive Species Science Branch of the Fort Collins Science Center provides research and technical assistance relating to management concerns for invasive species, including understanding how these species are introduced, identifying areas vulnerable to invasion, forecasting invasions, and developing control methods. This fact sheet considers the invasive plant species tamarisk (Tamarix spp), addressing three fundamental questions: *Where is it now? *What are the potential or realized ecological impacts of invasion? *Where can it survive and thrive if introduced? It provides peer-review examples of how the U.S. Geological Survey, working with other federal agencies and university partners, are applying remote-sensing technologies to address these key questions.
Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand
NASA Astrophysics Data System (ADS)
Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong
2014-03-01
Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt.
Classification of high dimensional multispectral image data
NASA Technical Reports Server (NTRS)
Hoffbeck, Joseph P.; Landgrebe, David A.
1993-01-01
A method for classifying high dimensional remote sensing data is described. The technique uses a radiometric adjustment to allow a human operator to identify and label training pixels by visually comparing the remotely sensed spectra to laboratory reflectance spectra. Training pixels for material without obvious spectral features are identified by traditional means. Features which are effective for discriminating between the classes are then derived from the original radiance data and used to classify the scene. This technique is applied to Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data taken over Cuprite, Nevada in 1992, and the results are compared to an existing geologic map. This technique performed well even with noisy data and the fact that some of the materials in the scene lack absorption features. No adjustment for the atmosphere or other scene variables was made to the data classified. While the experimental results compare favorably with an existing geologic map, the primary purpose of this research was to demonstrate the classification method, as compared to the geology of the Cuprite scene.
Networking Technologies Enable Advances in Earth Science
NASA Technical Reports Server (NTRS)
Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard
2004-01-01
This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.
Remote geologic structural analysis of Yucca Flat
NASA Astrophysics Data System (ADS)
Foley, M. G.; Heasler, P. G.; Hoover, K. A.; Rynes, N. J.; Thiessen, R. L.; Alfaro, J. L.
1991-12-01
The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the U.S. Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures.
Research on Remote Sensing Geological Information Extraction Based on Object Oriented Classification
NASA Astrophysics Data System (ADS)
Gao, Hui
2018-04-01
The northern Tibet belongs to the Sub cold arid climate zone in the plateau. It is rarely visited by people. The geological working conditions are very poor. However, the stratum exposures are good and human interference is very small. Therefore, the research on the automatic classification and extraction of remote sensing geological information has typical significance and good application prospect. Based on the object-oriented classification in Northern Tibet, using the Worldview2 high-resolution remote sensing data, combined with the tectonic information and image enhancement, the lithological spectral features, shape features, spatial locations and topological relations of various geological information are excavated. By setting the threshold, based on the hierarchical classification, eight kinds of geological information were classified and extracted. Compared with the existing geological maps, the accuracy analysis shows that the overall accuracy reached 87.8561 %, indicating that the classification-oriented method is effective and feasible for this study area and provides a new idea for the automatic extraction of remote sensing geological information.
Lateral variations in geologic structure and tectonic setting from remote sensing data
NASA Astrophysics Data System (ADS)
Alexander, S. S.
1983-05-01
The principal objective of this study was: (1) to assess the usefulness of remote sensing digital imagery, principally LANDSAT multispectral scanning (MSS) data, for inferring lateral variations in geologic structure and tectonic setting; and (2) to determine the extent to which these inferred variations correlate with observed variations in seismic excitation from underground nuclear explosion test sites in the Soviet Union. Soviet, French and U.S. test sites have been investigated to compare their geologic and tectonic responses as seen by LANDSAT. The characteristics of "granite' intrusive bodies exposed at Semipalatinsk (Degelen), North Africa (Hoggar), NTS (Climax stock), and an analog site in Maine (Mt. Katahdin), have been studied in detail. The tectonic stress field inferred from the tectonic release portion of seismic signatures of explosions in these three areas is compared with local and regional fracture patterns discernable from imagery. The usefulness of satellite synthetic aperture radar (SAR) to determine geologic conditions and delineate fault (fracture) patterns is demonstrated by the analysis of SEASAT data for an area in the eastern United States. Algorithms to enhance structural boundaries and to use textures to identify rock types were developed and applied to several test sites.
Narragansett Bay From Space: A Perspective for the 21st Century
NASA Technical Reports Server (NTRS)
Mustard, John F.; Swanson, Craig; Deacutis, Chris
2001-01-01
In 1996, the NASA Administrator Dan Goldin and Rhode Island Congressman Patrick Kennedy challenged researchers in the Department of Geological Sciences at Brown University to developed a series of projects to apply remotely sensed data to problems of immediate concern to the State of Rhode Island. The result of that challenge was the project Narragansett Bay from Space: A Perspective for the 21st Century. The goals of the effort were to a) identify problems in coordination with state and local agencies, b) apply NASA technology to the problems and c) to involve small business that would benefit from incorporating remotely sensed data into their business operations. The overall effort was to serve two functions: help provide high quality science results based on remotely sensed data and increase the capacity of environmental managers and companies to use remotely sensed data. The effort has succeeded on both these fronts by providing new, quantitative information on the extent of environmental problems and developing a greater awareness and acceptance of remotely sensed data as a tool for monitoring and research.
NASA Technical Reports Server (NTRS)
Brennan, P. A.; Chapman, P. E.; Chipp, E. R.
1971-01-01
During August of 1970 Mission 140 was flown with the NASA P3A aircraft over the Klondike Mining District, Nevada. High quality metric photography, thermal infrared imagery, multispectral photography and multichannel microwave radiometry were obtained. Geology and ground truth data are presented and relationships of the physical attributes of geologic materials to remotely sensed data is discussed. It is concluded that remote sensing data was valuable in the geologic evaluation of the Klondike Mining District and would be of value in other mining districts.
Geological analysis of parts of the southern Arabian Shield based on Landsat imagery
NASA Astrophysics Data System (ADS)
Qari, Mohammed Yousef Hedaytullah T.
This thesis examines the capability and applicability of Landsat multispectral remote sensing data for geological analysis in the arid southern Arabian Shield, which is the eastern segment of the Nubian-Arabian Shield surrounding the Red Sea. The major lithologies in the study area are Proterozoic metavolcanics, metasediments, gneisses and granites. Three test-sites within the study area, located within two tectonic assemblages, the Asir Terrane and the Nabitah Mobile Belt, were selected for detailed comparison of remote sensing methods and ground geological studies. Selected digital image processing techniques were applied to full-resolution Landsat TM imagery and the results are interpreted and discussed. Methods included: image contrast improvement, edge enhancement for detecting lineaments and spectral enhancement for geological mapping. The last method was based on two principles, statistical analysis of the data and the use of arithmetical operators. New and detailed lithological and structural maps were constructed and compared with previous maps of these sites. Examples of geological relations identified using TM imagery include: recognition and mapping of migmatites for the first time in the Arabian Shield; location of the contact between the Asir Terrane and the Nabitah Mobile Belt; and mapping of lithologies, some of which were not identified on previous geological maps. These and other geological features were confirmed by field checking. Methods of lineament enhancement implemented in this study revealed structural lineaments, mostly mapped for the first time, which can be related to regional tectonics. Structural analysis showed that the southern Arabian Shield has been affected by at least three successive phases of deformation. The third phase is the most dominant and widespread. A crustal evolutionary model in the vicinity of the study area is presented showing four stages, these are: arc stage, accretion stage, collision stage and post-collision stage. The results of this study demonstrate that Landsat TM data can be used reliably for geological investigations in the Arabian Shield and comparable areas, particularly to generate detailed geological maps over large areas by using quantitative remote sensing methods, providing there is prior knowledge of part of the area.
Towards automatic lithological classification from remote sensing data using support vector machines
NASA Astrophysics Data System (ADS)
Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael
2010-05-01
Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14 principal component bands, 14 independent component bands, 3 band ratios, 3 DEM derivatives: slope/curvatureroughness and 2 aeromagnetic derivatives: mean and variance of susceptibility) extracted from the ASTER, DEM and aeromagnetic data, in order to determine the optimal inputs that provide the highest classification accuracy. It was found that a combination of ASTER-derived independent components, principal components and band ratios, DEM-derived slope, curvature and roughness, and aeromagnetic-derived mean and variance of magnetic susceptibility provide the highest classification accuracy of 93.4% on independent test samples. A comparison of the classification results of the SVM with those of maximum likelihood (84.9%) and minimum distance (38.4%) classifiers clearly show that the SVM algorithm returns much higher classification accuracy. Therefore, the SVM method can be used to produce quick and reliable geological maps from scarce geological information, which is still the case with many under-developed frontier regions of the world.
Calibration Of Airborne Visible/IR Imaging Spectrometer
NASA Technical Reports Server (NTRS)
Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.
1990-01-01
Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.
Application of remote sensing to reconnaissance geologic mapping and mineral exploration
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Dykstra, J. D.
1978-01-01
A method of mapping geology at a reconnaissance scale and locating zones of possible hydrothermal alteration has been developed. This method is based on principal component analysis of Landsat digital data and is applied to the desert area of the Chagai Hills, Baluchistan, Pakistan. A method for airborne spectrometric detection of geobotanical anomalies associated with prophyry Cu-Mo mineralization at Heddleston, Montana has also been developed. This method is based on discriminants in the 0.67 micron and 0.79 micron region of the spectrum.
Remote sensing strategic exploration of large or superlarge gold ore deposits
NASA Astrophysics Data System (ADS)
Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong
1998-08-01
To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.
NASA Technical Reports Server (NTRS)
Henderson, F. B. (Editor); Rock, B. N. (Editor)
1983-01-01
Consideration is given to: the applications of near-infrared spectroscopy to geological reconnaissance and exploration from space; imaging systems for identifying the spectral properties of geological materials in the visible and near-infrared; and Thematic Mapper (TM) data analysis. Consideration is also given to descriptions of individual geological remote sensing systems, including: GEO-SPAS; SPOT; the Thermal Infrared Multispectral Scanner (TIMS); and the Shuttle Imaging Radars A and B (SIR-A and SIR-B). Additional topics include: the importance of geobotany in geological remote sensing; achromatic holographic stereograms from Landsat MSS data; and the availability and applications of NOAA's non-Landsat satellite data archive.
Geology orbiter comparison study
NASA Technical Reports Server (NTRS)
Cutts, J. A. J.; Blasius, K. R.; Davis, D. R.; Pang, K. D.; Shreve, D. C.
1977-01-01
Instrument requirements of planetary geology orbiters were examined with the objective of determining the feasibility of applying standard instrument designs to a host of terrestrial targets. Within the basic discipline area of geochemistry, gamma-ray, X-ray fluorescence, and atomic spectroscopy remote sensing techniques were considered. Within the discipline area of geophysics, the complementary techniques of gravimetry and radar were studied. Experiments using these techniques were analyzed for comparison at the Moon, Mercury, Mars and the Galilean satellites. On the basis of these comparative assessments, the adaptability of each sensing technique was judged as a basic technique for many targets, as a single instrument applied to many targets, as a single instrument used in different mission modes, and as an instrument capability for nongeoscience objectives.
Remote sensing of geobotanical relations in Georgia
NASA Technical Reports Server (NTRS)
Arden, D. D., Jr.; Westra, R. N.
1977-01-01
The application of remote sensing to geological investigations, with special attention to geobotanical factors, was evaluated. The general areas of investigation included: (1) recognition of mineral deposits; (2) geological mapping; (3) delineation of geological structure, including areas of complex tectonics; and (4) limestone areas where ground withdrawal had intensified surface collapse.
New technology applied to well logging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-11-01
Remote locations and increasingly complex geology require a higher level of sophistication in well-logging equipment and services. Applying technological advancements, well-logging contractors have developed a variety of new products and services designed to provide better quality data at reasonable prices. One of the most significant technological breakthroughs has been in satellite communications. Denver-based Western Tele-Communications Inc. is one of the few companies offering voice and data transmission services via satellite. Up to 9600 bits per second of realtime data is transmitted from terminals at remote wellsites through a main station in Denver to locations throughout the world. Because management inmore » separate offices can review well data simultaneously, critical operations decisions can be made more quickly.« less
Application of remote sensor data to geologic analysis of the Bonanza Test Site Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Compiler)
1973-01-01
A geologic map of the Bonanza Test Site is nearing completion. Using published large scale geologic maps from various sources, the geology of the area is being compiled on a base scaled at 1:250,000. Sources of previously published geologic mapping include: (1) USGS Bulletins; (2) professional papers and geologic quadrangle maps; (3) Bureau of Mines reports; (4) Colorado School of Mines quarterlies; and (5) Rocky Mountain Association of Geologist Guidebooks. This compilation will be used to evaluate ERTS, Skylab, and remote sensing underflight data.
Multi- and hyperspectral geologic remote sensing: A review
NASA Astrophysics Data System (ADS)
van der Meer, Freek D.; van der Werff, Harald M. A.; van Ruitenbeek, Frank J. A.; Hecker, Chris A.; Bakker, Wim H.; Noomen, Marleen F.; van der Meijde, Mark; Carranza, E. John M.; Smeth, J. Boudewijn de; Woldai, Tsehaie
2012-02-01
Geologists have used remote sensing data since the advent of the technology for regional mapping, structural interpretation and to aid in prospecting for ores and hydrocarbons. This paper provides a review of multispectral and hyperspectral remote sensing data, products and applications in geology. During the early days of Landsat Multispectral scanner and Thematic Mapper, geologists developed band ratio techniques and selective principal component analysis to produce iron oxide and hydroxyl images that could be related to hydrothermal alteration. The advent of the Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) with six channels in the shortwave infrared and five channels in the thermal region allowed to produce qualitative surface mineral maps of clay minerals (kaolinite, illite), sulfate minerals (alunite), carbonate minerals (calcite, dolomite), iron oxides (hematite, goethite), and silica (quartz) which allowed to map alteration facies (propylitic, argillic etc.). The step toward quantitative and validated (subpixel) surface mineralogic mapping was made with the advent of high spectral resolution hyperspectral remote sensing. This led to a wealth of techniques to match image pixel spectra to library and field spectra and to unravel mixed pixel spectra to pure endmember spectra to derive subpixel surface compositional information. These products have found their way to the mining industry and are to a lesser extent taken up by the oil and gas sector. The main threat for geologic remote sensing lies in the lack of (satellite) data continuity. There is however a unique opportunity to develop standardized protocols leading to validated and reproducible products from satellite remote sensing for the geology community. By focusing on geologic mapping products such as mineral and lithologic maps, geochemistry, P-T paths, fluid pathways etc. the geologic remote sensing community can bridge the gap with the geosciences community. Increasingly workflows should be multidisciplinary and remote sensing data should be integrated with field observations and subsurface geophysical data to monitor and understand geologic processes.
Application of CBERS-1 to monitoring of geological hazards in china
NASA Astrophysics Data System (ADS)
Qiao, Y.
China is a country with a great variety of wide and frequent geological disasters which is the most serious natural disasters bring damage to national economical construction and people's life and property and causes an annual direct economic loss over 200 hundred million Chinese yuan to China. In recent 20 years great work has been done to apply remote sensing to investigation and monitoring earthquake, collapse, landslide, mud-rock flow, river-band cave-in, lava collapse, earth crevise, ground coal bunker spontaneous combustion, and great contribution has been done for the control. The successful launch and operation of the China-Brazil Resources Satellite& "CBERS -1" provides us an even more convenient tool. In present paper it introduces the applications of CBERS remote sensing in monitoring of large scale slide in Yigong Tibet and in Yangyuan Shanxi for earthquake calamities combined with meteorological remote sensing data. The results demonstrate that CBERS data could get in time and accurate geo-disasters monitoring information and show us the actual happenings which supply reliable basis for control and release measures to the disaster. CBERS has played an unique important role in fighting against the slide disaster and sending relief to the area and the resulted floods. It is bond to play an active role to promote growth of Chinese national economy. Keywords: CBERS; Geological Hazards; Monimonitoring
NASA Astrophysics Data System (ADS)
Fonseca, Luciano; Hung, Edson Mintsu; Neto, Arthur Ayres; Magrani, Fábio José Guedes
2018-06-01
A series of multibeam sonar surveys were conducted from 2009 to 2013 around Admiralty Bay, Shetland Islands, Antarctica. These surveys provided a detailed bathymetric model that helped understand and characterize the bottom geology of this remote area. Unfortunately, the acoustic backscatter records registered during these bathymetric surveys were heavily contaminated with noise and motion artifacts. These artifacts persisted in the backscatter records despite the fact that the proper acquisition geometry and the necessary offsets and delays were applied during the survey and in post-processing. These noisy backscatter records were very difficult to interpret and to correlate with gravity-core samples acquired in the same area. In order to address this issue, a directional notch-filter was applied to the backscatter waterfall in the along-track direction. The proposed filter provided better estimates for the backscatter strength of each sample by considerably reducing residual motion artifacts. The restoration of individual samples was possible since the waterfall frame of reference preserves the acquisition geometry. Then, a remote seafloor characterization procedure based on an acoustic model inversion was applied to the restored backscatter samples, generating remote estimates of acoustic impedance. These remote estimates were compared to Multi Sensor Core Logger measurements of acoustic impedance obtained from gravity core samples. The remote estimates and the Core Logger measurements of acoustic impedance were comparable when the shallow seafloor was homogeneous. The proposed waterfall notch-filtering approach can be applied to any sonar record, provided that we know the system ping-rate and sampling frequency.
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard
1991-01-01
Since 1986, remote sensing images derived from satellite and aircraft-borne sensor data have been used to study the stratigraphy and sedimentology of the vertebrate-bearing Wind River and Wagon Bed formations in the Wind River Basin (Wyoming). Landsat 5 TM and aircraft Thermal Infrared Multispectral Scanner data were combined with conventional geologic analyses. The remote sensing data have contributed significantly to: (1) geologic mapping at the formation, member, and bed levels; (2) stratigraphic correlation; (3) reconstruction of ancient depositional environments; and (4) identification of structural complexity. This information is critical to vertebrate paleontology in providing the stratigraphic, sedimentologic, and structural framework required for evolutionary and paleoecologic studies. Of primary importance is the ability to map at minimal cost the geology of large areas (20,000 sq km or greater) at a high level of precision. Remote sensing data can be especially useful in geologically and paleontologically unexplored or poorly understood regions.
Joint document concerning geological studies from 1971 - 1975
NASA Technical Reports Server (NTRS)
1977-01-01
In 1971, a joint Soviet-Americam Working Group on Remote Sensing of the Natural Environment was established. It was organized into a number of discipline panels, one of which was on geology. Membership on this panel came from the Geological Survey of the United States and from the Institute of Geology of the U.S.S.R. Academy of Sciences and Ministry Geology of the U.S.S.R.. During the period 1971-1975, this panel conducted coordinated research in the use of space remote sensing data in the field of geology. A summary of that coordinated research effort is presented.
NASA Astrophysics Data System (ADS)
Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.
2013-05-01
Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual interpretation of the geological structures. The study shows that GIS and RS have great application potential in the geothermal exploration in volcanic areas and will promote the exploration of renewable energy resources of great potential.
NASA Technical Reports Server (NTRS)
1988-01-01
Papers concerning remote sensing applications for exploration geology are presented, covering topics such as remote sensing technology, data availability, frontier exploration, and exploration in mature basins. Other topics include offshore applications, geobotany, mineral exploration, engineering and environmental applications, image processing, and prospects for future developments in remote sensing for exploration geology. Consideration is given to the use of data from Landsat, MSS, TM, SAR, short wavelength IR, the Geophysical Environmental Research Airborne Scanner, gas chromatography, sonar imaging, the Airborne Visible-IR Imaging Spectrometer, field spectrometry, airborne thermal IR scanners, SPOT, AVHRR, SIR, the Large Format camera, and multitimephase satellite photographs.
Sturdevant, J.A.
1981-01-01
The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.
ERIC Educational Resources Information Center
Geotimes, 1971
1971-01-01
Reviews advancements in earth science during 1970 in each of these areas: economic geology (fuels), economic geology (metals), economic geology (nonmetals), environmental geology, geochemistry, manpower, hydrology, mapping, marine geology, mineralogy, paleontology, plate tectonics, politics and geology, remote sensing, and seismology. (PR)
NASA Astrophysics Data System (ADS)
Qin, Qiming; Zhang, Ning; Nan, Peng; Chai, Leilei
2011-08-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using TIR data from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. Based on radiometric calibration, atmospheric correction and emissivity calculation, a simple but efficient single channel algorithm with acceptable precision is applied to retrieve the land surface temperature (LST) of study area. The LST anomalous areas with temperature about 4-10 K higher than background area are discovered. Four geothermal areas are identified with the discussion of geothermal mechanism and the further analysis of regional geologic structure. The research reveals that the distribution of geothermal areas is consistent with the fault development in study area. Magmatism contributes abundant thermal source to study area and the faults provide thermal channels for heat transfer from interior earth to land surface and facilitate the present of geothermal anomalies. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect LST anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
NASA Astrophysics Data System (ADS)
Salvini, Riccardo; Mastrorocco, Giovanni; Esposito, Giuseppe; Di Bartolo, Silvia; Coggan, John; Vanneschi, Claudio
2018-01-01
The use of remote sensing techniques is now common practice in different working environments, including engineering geology. Moreover, in recent years the development of structure from motion (SfM) methods, together with rapid technological improvement, has allowed the widespread use of cost-effective remotely piloted aircraft systems (RPAS) for acquiring detailed and accurate geometrical information even in evolving environments, such as mining contexts. Indeed, the acquisition of remotely sensed data from hazardous areas provides accurate 3-D models and high-resolution orthophotos minimizing the risk for operators. The quality and quantity of the data obtainable from RPAS surveys can then be used for inspection of mining areas, audit of mining design, rock mass characterizations, stability analysis investigations and monitoring activities. Despite the widespread use of RPAS, its potential and limitations still have to be fully understood.In this paper a case study is shown where a RPAS was used for the engineering geological investigation of a closed marble mine area in Italy; direct ground-based techniques could not be applied for safety reasons. In view of the re-activation of mining operations, high-resolution images taken from different positions and heights were acquired and processed using SfM techniques to obtain an accurate and detailed 3-D model of the area. The geometrical and radiometrical information was subsequently used for a deterministic rock mass characterization, which led to the identification of two large marble blocks that pose a potential significant hazard issue for the future workforce. A preliminary stability analysis, with a focus on investigating the contribution of potential rock bridges, was then performed in order to demonstrate the potential use of RPAS information in engineering geological contexts for geohazard identification, awareness and reduction.
Geologic Reconnaissance and Lithologic Identification by Remote Sensing
remote sensing in geologic reconnaissance for purposes of tunnel site selection was studied further and a test case was undertaken to evaluate this geological application. Airborne multispectral scanning (MSS) data were obtained in May, 1972, over a region between Spearfish and Rapid City, South Dakota. With major effort directed toward the analysis of these data, the following geologic features were discriminated: (1) exposed rock areas, (2) five separate rock groups, (3) large-scale structures. This discrimination was accomplished by ratioing multispectral channels.
NASA Astrophysics Data System (ADS)
Arulbalaji, Palanisamy; Balasubramanian, Gurugnanam
2017-07-01
This study uses advanced spaceborne thermal emission and reflection radiometer (ASTER) hyperspectral remote sensing techniques to discriminate rock types composing Kanjamalai hill located in the Salem district of Tamil Nadu, India. Kanjamalai hill is of particular interest because it contains economically viable iron ore deposits. ASTER hyperspectral data were subjected to principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF) to improve identification of lithologies remotely and to compare these digital data results with published geologic maps. Hyperspectral remote sensing analysis indicates that PCA (R∶G∶B=2∶1∶3), MNF (R∶G∶B=3∶2∶1), and ICA (R∶G∶B=1∶3∶2) provide the best band combination for effective discrimination of lithological rock types composing Kanjamalai hill. The remote sensing-derived lithological map compares favorably with a published geological map from Geological Survey of India and has been verified with ground truth field investigations. Therefore, ASTER data-based lithological mapping provides fast, cost-effective, and accurate geologic data useful for lithological discrimination and identification of ore deposits.
NASA Technical Reports Server (NTRS)
Reeves, R. G. (Compiler)
1972-01-01
Recent studies conducted in the Bonanza Test Site, Colorado, area indicated that: (1) more geologic structural information is available from remote sensing data than from conventional techniques; (2) greater accuracy results from using remote sensing data; (3) all major structural features were detected; (4) of all structural interpretations, about 75% were correct; and (5) interpretation of remote sensing data will not supplant field work, but it enables field work to be done much more efficiently.
Airborne remote sensing for geology and the environment; present and future
Watson, Ken; Knepper, Daniel H.
1994-01-01
In 1988, a group of leading experts from government, academia, and industry attended a workshop on airborne remote sensing sponsored by the U.S. Geological Survey (USGS) and hosted by the Branch of Geophysics. The purpose of the workshop was to examine the scientific rationale for airborne remote sensing in support of government earth science in the next decade. This report has arranged the six resulting working-group reports under two main headings: (1) Geologic Remote Sensing, for the reports on geologic mapping, mineral resources, and fossil fuels and geothermal resources; and (2) Environmental Remote Sensing, for the reports on environmental geology, geologic hazards, and water resources. The intent of the workshop was to provide an evaluation of demonstrated capabilities, their direct extensions, and possible future applications, and this was the organizational format used for the geologic remote sensing reports. The working groups in environmental remote sensing chose to present their reports in a somewhat modified version of this format. A final section examines future advances and limitations in the field. There is a large, complex, and often bewildering array of remote sensing data available. Early remote sensing studies were based on data collected from airborne platforms. Much of that technology was later extended to satellites. The original 80-m-resolution Landsat Multispectral Scanner System (MSS) has now been largely superseded by the 30-m-resolution Thematic Mapper (TM) system that has additional spectral channels. The French satellite SPOT provides higher spatial resolution for channels equivalent to MSS. Low-resolution (1 km) data are available from the National Oceanographic and Atmospheric Administration's AVHRR system, which acquires reflectance and day and night thermal data daily. Several experimental satellites have acquired limited data, and there are extensive plans for future satellites including those of Japan (JERS), Europe (ESA), Canada (Radarsat), and the United States (EOS). There are currently two national airborne remote sensing programs (photography, radar) with data archived at the USGS' EROS Data Center. Airborne broadband multispectral data (comparable to Landsat MSS and TM but involving several more channels) for limited geographic areas also are available for digital processing and analysis. Narrow-band imaging spectrometer data are available for some NASA experiment sites and can be acquired for other locations commercially. Remote sensing data and derivative images, because of the uniform spatial coverage, availability at different resolutions, and digital format, are becoming important data sets for geographic information system (GIS) analyses. Examples range from overlaying digitized geologic maps on remote sensing images and draping these over topography, to maps of mineral distribution and inferred abundance. A large variety of remote sensing data sets are available, with costs ranging from a few dollars per square mile for satellite digital data to a few hundred dollars per square mile for airborne imaging spectrometry. Computer processing and analysis costs routinely surpass these expenses because of the equipment and expertise necessary for information extraction and interpretation. Effective use requires both an understanding of the current methodology and an appreciation of the most cost-effective solution.
Introductory comments on the USGS geographic applications program
NASA Technical Reports Server (NTRS)
Gerlach, A. C.
1970-01-01
The third phase of remote sensing technologies and potentials applied to the operations of the U.S. Geological Survey is introduced. Remote sensing data with multidisciplinary spatial data from traditional sources is combined with geographic theory and techniques of environmental modeling. These combined imputs are subject to four sequential activities that involve: (1) thermatic mapping of land use and environmental factors; (2) the dynamics of change detection; (3) environmental surveillance to identify sudden changes and general trends; and (4) preparation of statistical model and analytical reports. Geography program functions, products, clients, and goals are presented in graphical form, along with aircraft photo missions, geography test sites, and FY-70.
Integration of geological remote-sensing techniques in subsurface analysis
Taranik, James V.; Trautwein, Charles M.
1976-01-01
Geological remote sensing is defined as the study of the Earth utilizing electromagnetic radiation which is either reflected or emitted from its surface in wavelengths ranging from 0.3 micrometre to 3 metres. The natural surface of the Earth is composed of a diversified combination of surface cover types, and geologists must understand the characteristics of surface cover types to successfully evaluate remotely-sensed data. In some areas landscape surface cover changes throughout the year, and analysis of imagery acquired at different times of year can yield additional geological information. Integration of different scales of analysis allows landscape features to be effectively interpreted. Interpretation of the static elements displayed on imagery is referred to as an image interpretation. Image interpretation is dependent upon: (1) the geologist's understanding of the fundamental aspects of image formation, and (2.) his ability to detect, delineate, and classify image radiometric data; recognize radiometric patterns; and identify landscape surface characteristics as expressed on imagery. A geologic interpretation integrates surface characteristics of the landscape with subsurface geologic relationships. Development of a geologic interpretation from imagery is dependent upon: (1) the geologist's ability to interpret geomorphic processes from their static surface expression as landscape characteristics on imagery, (2) his ability to conceptualize the dynamic processes responsible for the evolution 6f interpreted geologic relationships (his ability to develop geologic models). The integration of geologic remote-sensing techniques in subsurface analysis is illustrated by development of an exploration model for ground water in the Tucson area of Arizona, and by the development of an exploration model for mineralization in southwest Idaho.
Middle infrared remote sensing for geology
NASA Technical Reports Server (NTRS)
Kahle, A. B.
1982-01-01
The middle infrared portion of the spectrum available for geologic remote sensing extends from approximately 3 to 25 micrometers. The source of energy is thermal radiation from surface materials and ambient terrestrial temperatures. The spectral range of usefulness is limited by both the amount of energy available and by transmission of energy through the atmosphere. The best atmospheric window lies between about 8 and 14 micrometers. Remote sensing of the Earth in the infrared is just on the threshold of becoming a valuable geologic tool. Topics which need study include: (1) the used and limitations of the 8 to 14 micrometer region for distinguishing between silicates and nonsilicates; (2) theoretical and experimental understanding of laboratory spectra of rocks and minerals and their relationship to remotely sensed emission spectra; and (3) the possible use of the 3 to 5 and 17 to 25 micrometer portions of the spectrum for remote sensing.
Spectral data analysis of rock and mineral in Hatu Western Junggar Region, Xinjiang
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Zhou, Kefa; Zhang, Nannan; Wang, Jinlin
2014-11-01
Mineral resources are important material basis for the survival and development of human society. The development of hyperspectral remote sensing technology, which has made direct identification of minerals or mineral aggregates become possible, paves a new way for the application of remote sensing geology. The West Junggar region is located Xinjiang west verge of Junggar, with ore-forming geological conditions be richly endowed by nature and huge prospecting potentiality. The area has very good outcrop exposure with almost no vegetation cover, which is a natural test new method of remote sensing geological exploration. The characteristic of rock and mineral spectrum is not only the physical base of geological remote sensing technical application but also the base of the quantificational analysis of geological remote sensing, and the study of reflectance spectrum is the main content in the basic research of remote sensing. In this study, we collected the outdoor and indoor reflectance spectrum of rocks and minerals by using a spectroradiometer (ASD FieldSpec FR, ASD, USA), which band extent varied from 350 to 2,500 nm. Basin on a great deal of spectral data for different kinds of rocks and minerals, we have analyzed the spectrum characteristics and change of seven typical mineral rocks. According to the actual conditions, we analyzed the data noise characteristic of the spectrum and got rid of the noise. Meanwhile, continuum removed technology was used to remove the environmental background influence. Finally, in order to take full advantage of multi-spectrum data, ground information is absolutely necessary, and it is important to build a representative spectral library. We build the spectral library of rocks and minerals in Hatu, which can be used for features investigation, mineral classification, mineral mapping and geological prospecting in Hatu Western Junggar region by remote sensing. The result of this research will be significant to the research of accelerating Western Junggar mineral exploration.
3D subsurface geological modeling using GIS, remote sensing, and boreholes data
NASA Astrophysics Data System (ADS)
Kavoura, Katerina; Konstantopoulou, Maria; Kyriou, Aggeliki; Nikolakopoulos, Konstantinos G.; Sabatakakis, Nikolaos; Depountis, Nikolaos
2016-08-01
The current paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes and the 1:5000 engineering geological maps were digitized and implemented in a GIS platform for a three - dimensional subsurface model evaluation. The study is located at the North part of Peloponnese along the new national road.
NASA Technical Reports Server (NTRS)
Johnson, J. R.; Ruff, S. W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N. A.; Cockell, C.; Gazis, P.; Newsom, H. E.
2000-01-01
The 1999 Marsokhod Field Experiment (MFE) provided an opportunity to test the suitability of rover-borne visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site.
Study on various elements of the geosciences with respect to space technology
NASA Technical Reports Server (NTRS)
Head, J. W., III
1981-01-01
The utility of data acquired in space for both basic and applied studies of the geology of the Earth was evaluated. Focus was placed upon the gaps in the current ability to make effective use of remote sensing technology within the Earth sciences. A long range plan is presented for future research that involves an appropriate balance between the development and application of space techniques.
Integrated analysis of remote sensing products from basic geological surveys. [Brazil
NASA Technical Reports Server (NTRS)
Dasilvafagundesfilho, E. (Principal Investigator)
1984-01-01
Recent advances in remote sensing led to the development of several techniques to obtain image information. These techniques as effective tools in geological maping are analyzed. A strategy for optimizing the images in basic geological surveying is presented. It embraces as integrated analysis of spatial, spectral, and temporal data through photoptic (color additive viewer) and computer processing at different scales, allowing large areas survey in a fast, precise, and low cost manner.
Need for new sensors to map lithologic units
Rowan, Lawrence C.; Barringer, Anthony R.
1980-01-01
One of the most important contributions that remote sensing can make to mineral energy explorations to provide data from satellites to augment regional geological mapping. Geologic maps, which show information on the subsurface, are the main basis for formulating models of resource genesis that guide exploration. However, conventional compilation procedures are time-consuming and therefore often slow the pace of exploration, especially in large, inaccessible areas. Landsat Multispectral Scanner (MSS) images have been applied to a wide variety of specific geological problems, including discrimination of lithologic and delineation of previously unrecognized tectonic features. However, these lithologic distinctions are based on brightness, spectral reflectance, and, less commonly, the morphology of the unit, which in the wavelength region of MSS images are only rarely diagnostic of specific mineralogical content. Limonite is the only lithological material that can be identified be analyzing MSS spectral radiance.
Development of new mapping standards for geological surveys in Greenland
NASA Astrophysics Data System (ADS)
Mätzler, Eva; langley, Kirsty; Hollis, Julie; Heide-Jørgensen, Helene
2017-04-01
The current official topographic and geological maps of Greenland are in scale of 1:250:000 and 1:500.000 respectively, allowing only very limited amount of detail. The maps are outdated, and periglacial landscapes have changed significantly since the acquisition date. Hence, new affordable mapping products of high quality are in demand that can be available within a restricted time frame. In order to fulfill those demands a new mapping standard based on satellite imagery was developed, where classifications are mainly carried out with algorithms suitable for automatization. A Digital Elevation Model (ArcticDEM) was applied allowing examination of topographic and geological structures and 3D visualizing. Information on topographic features and lithology was extracted based on analysis of spectral characteristics from different multispectral data sources (Landsat 8, ASTER, WorldView-3) partly combined with the DEM. A first product is completed, and validation was carried out by field surveys. Field and remotely sensed data were integrated into a GIS database, and derived data will be freely available providing a valuable tool for planning and carrying out mineral exploration and other field activities. This study offers a method for generating up-to-date, low-cost and high quality mapping products suitable for Arctic regions, where accessibility is restricted due to remoteness and lack of infrastructure.
An assessment of two methods for identifying undocumented levees using remotely sensed data
Czuba, Christiana R.; Williams, Byron K.; Westman, Jack; LeClaire, Keith
2015-01-01
Many undocumented and commonly unmaintained levees exist in the landscape complicating flood forecasting, risk management, and emergency response. This report describes a pilot study completed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers to assess two methods to identify undocumented levees by using remotely sensed, high-resolution topographic data. For the first method, the U.S. Army Corps of Engineers examined hillshades computed from a digital elevation model that was derived from light detection and ranging (lidar) to visually identify potential levees and then used detailed site visits to assess the validity of the identifications. For the second method, the U.S. Geological Survey applied a wavelet transform to a lidar-derived digital elevation model to identify potential levees. The hillshade method was applied to Delano, Minnesota, and the wavelet-transform method was applied to Delano and Springfield, Minnesota. Both methods were successful in identifying levees but also identified other features that required interpretation to differentiate from levees such as constructed barriers, high banks, and bluffs. Both methods are complementary to each other, and a potential conjunctive method for testing in the future includes (1) use of the wavelet-transform method to rapidly identify slope-break features in high-resolution topographic data, (2) further examination of topographic data using hillshades and aerial photographs to classify features and map potential levees, and (3) a verification check of each identified potential levee with local officials and field visits.
NASA Astrophysics Data System (ADS)
Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.
Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
Methods of training the graduate level and professional geologist in remote sensing technology
NASA Technical Reports Server (NTRS)
Kolm, K. E.
1981-01-01
Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.
NASA Technical Reports Server (NTRS)
Feng, Wanda; Evans, Cynthia; Gruener, John; Eppler, Dean
2014-01-01
Geologic mapping involves interpreting relationships between identifiable units and landforms to understand the formative history of a region. Traditional field techniques are used to accomplish this on Earth. Mapping proves more challenging for other planets, which are studied primarily by orbital remote sensing and, less frequently, by robotic and human surface exploration. Systematic comparative assessments of geologic maps created by traditional mapping versus photogeology together with data from planned traverses are limited. The objective of this project is to produce a geologic map from data collected on the Desert Research and Technology Studies (RATS) 2010 analog mission using Apollo-style traverses in conjunction with remote sensing data. This map is compared with a geologic map produced using standard field techniques.
NASA Astrophysics Data System (ADS)
Lei, Tianjie; Zhang, Yazhen; Wang, Xingyong; Fu, Jun'e.; Li, Lin; Pang, Zhiguo; Zhang, Xiaolei; Kan, Guangyuan
2017-07-01
Remote sensing system fitted on Unmanned Aerial Vehicle (UAV) can obtain clear images and high-resolution aerial photographs. It has advantages of strong real-time, flexibility and convenience, free from influence of external environment, low cost, low-flying under clouds and ability to work full-time. When an earthquake happened, it could go deep into the places safely and reliably which human staff can hardly approach, such as secondary geological disasters hit areas. The system can be timely precise in response to secondary geological disasters monitoring by a way of obtaining first-hand information as quickly as possible, producing a unique emergency response capacity to provide a scientific basis for overall decision-making processes. It can greatly enhance the capability of on-site disaster emergency working team in data collection and transmission. The great advantages of UAV remote sensing system played an irreplaceable role in monitoring secondary geological disaster dynamics and influences. Taking the landslides and barrier lakes for example, the paper explored the basic application and process of UAV remote sensing in the disaster emergency relief. UAV high-resolution remote sensing images had been exploited to estimate the situation of disaster-hit areas and monitor secondary geological disasters rapidly, systematically and continuously. Furthermore, a rapid quantitative assessment on the distribution and size of landslides and barrier lakes was carried out. Monitoring results could support relevant government departments and rescue teams, providing detailed and reliable scientific evidence for disaster relief and decision-making.
Tectonics and Volcanism of East Africa as Seen Using Remote Sensing Imagery
NASA Technical Reports Server (NTRS)
Hutt, Duncan John
1996-01-01
The East African Rift is the largest area of active continental geology. The tectonics of this area has been studied with remote sensing data, including AVHRR, Landsat MSS and TM, SPOT, and electronic still camera from Shuttle. Lineation trends have been compared to centers of volcanic and earthquake activity as well as the trends shown on existing geologic maps. Remote sensing data can be used effectively to reveal and analyze significant tectonic features in this area.
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Park, Yongcheol; Park, Tae-Yoon S.; Hong, Jong Kuk; Hashim, Mazlan; Woo, Jusun; Ayoobi, Iman
2018-06-01
Satellite remote sensing imagery is especially useful for geological investigations in Antarctica because of its remoteness and extreme environmental conditions that constrain direct geological survey. The highest percentage of exposed rocks and soils in Antarctica occurs in Northern Victoria Land (NVL). Exposed Rocks in NVL were part of the paleo-Pacific margin of East Gondwana during the Paleozoic time. This investigation provides a satellite-based remote sensing approach for regional geological mapping in the NVL, Antarctica. Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) datasets were used to extract lithological-structural and mineralogical information. Several spectral-band ratio indices were developed using Landsat-8 and ASTER bands and proposed for Antarctic environments to map spectral signatures of snow/ice, iron oxide/hydroxide minerals, Al-OH-bearing and Fe, Mg-OH and CO3 mineral zones, and quartz-rich felsic and mafic-to-ultramafic lithological units. The spectral-band ratio indices were tested and implemented to Level 1 terrain-corrected (L1T) products of Landsat-8 and ASTER datasets covering the NVL. The surface distribution of the mineral assemblages was mapped using the spectral-band ratio indices and verified by geological expeditions and laboratory analysis. Resultant image maps derived from spectral-band ratio indices that developed in this study are fairly accurate and correspond well with existing geological maps of the NVL. The spectral-band ratio indices developed in this study are especially useful for geological investigations in inaccessible locations and poorly exposed lithological units in Antarctica environments.
[The application of spectral geological profile in the alteration mapping].
Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin
2012-07-01
Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.
Can Satellite Remote Sensing be Applied in Geological Mapping in Tropics?
NASA Astrophysics Data System (ADS)
Magiera, Janusz
2018-03-01
Remote sensing (RS) techniques are based on spectral data registered by RS scanners as energy reflected from the Earth's surface or emitted by it. In "geological" RS the reflectance (or emittence) should come from rock or sediment. The problem in tropical and subtropical areas is a dense vegetation. Spectral response from the rocks and sediments is gathered only from the gaps among the trees and shrubs. Images of high resolution are appreciated here, therefore. New generation of satellites and scanners (Digital Globe WV2, WV3 and WV4) yield imagery of spatial resolution of 2 m and up to 16 spectral bands (WV3). Images acquired by Landsat (TM, ETM+, OLI) and Sentinel 2 have good spectral resolution too (6-12 bands in visible and infrared) and, despite lower spatial resolution (10-60 m of pixel size) are useful in extracting lithological information too. Lithological RS map may reveal good precision (down to a single rock or outcrop of a meter size). Supplemented with the analysis of Digital Elevation Model and high resolution ortophotomaps (Google Maps, Bing etc.) allows for quick and cheap mapping of unsurveyed areas.
NASA Technical Reports Server (NTRS)
Carrere, Veronique
1990-01-01
Various image processing techniques developed for enhancement and extraction of linear features, of interest to the structural geologist, from digital remote sensing, geologic, and gravity data, are presented. These techniques include: (1) automatic detection of linear features and construction of rose diagrams from Landsat MSS data; (2) enhancement of principal structural directions using selective filters on Landsat MSS, Spacelab panchromatic, and HCMM NIR data; (3) directional filtering of Spacelab panchromatic data using Fast Fourier Transform; (4) detection of linear/elongated zones of high thermal gradient from thermal infrared data; and (5) extraction of strong gravimetric gradients from digitized Bouguer anomaly maps. Processing results can be compared to each other through the use of a geocoded database to evaluate the structural importance of each lineament according to its depth: superficial structures in the sedimentary cover, or deeper ones affecting the basement. These image processing techniques were successfully applied to achieve a better understanding of the transition between Provence and the Pyrenees structural blocks, in southeastern France, for an improved structural interpretation of the Mediterranean region.
Summaries of the thematic conferences on remote sensing for exploration geology
NASA Technical Reports Server (NTRS)
1989-01-01
The Thematic Conference series was initiated to address the need for concentrated discussion of particular remote sensing applications. The program is primarily concerned with the application of remote sensing to mineral and hydrocarbon exploration, with special emphasis on data integration, methodologies, and practical solutions for geologists. Some fifty invited papers are scheduled for eleven plenary sessions, formulated to address such important topics as basement tectonics and their surface expressions, spectral geology, applications for hydrocarbon exploration, and radar applications and future systems. Other invited presentations will discuss geobotanical remote sensing, mineral exploration, engineering and environmental applications, advanced image processing, and integration and mapping.
Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado
NASA Technical Reports Server (NTRS)
Lee, K. (Principal Investigator)
1976-01-01
The author has identified the following significant results. The Hayden Pass (Orient mine area) includes 60 sq miles of the northern Sangre de Cristo Mountains and San Luis Valley in south-central Colorado. Based on interpretation of the remote sensor data, a geologic map was prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives an indication of the usefulness and reliability of the remote sensor data. The relative utility of color and color infrared photography was tested. The photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all quaternary deposits and 62% of all areas of tertiary volcanic outcrop. Using a filter wheel photometer, more than 8,600 measurements of band reflectance of several sedimentary rocks were performed. The following conclusions were drawn: (1) the typical spectral reflectance curve shows a gradual increase with increasing wavelength; (2) the average band reflectance is about 0.20; and (3) within a formation, the minimum natural variation is about 0.04, or about 20% of the mean band reflectance.
U. S. GEOLOGICAL SURVEY LAND REMOTE SENSING ACTIVITIES.
Frederick, Doyle G.
1983-01-01
USGS uses all types of remotely sensed data, in combination with other sources of data, to support geologic analyses, hydrologic assessments, land cover mapping, image mapping, and applications research. Survey scientists use all types of remotely sensed data with ground verifications and digital topographic and cartographic data. A considerable amount of research is being done by Survey scientists on developing automated geographic information systems that can handle a wide variety of digital data. The Survey is also investigating the use of microprocessor computer systems for accessing, displaying, and analyzing digital data.
NASA Technical Reports Server (NTRS)
Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.
1977-01-01
A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.
Methodology of the interpretation of remote sensing data and applications in geology
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1981-01-01
Methods used for interpreting orbital (LANDSAT) data for regional geological mapping in Brazil are examined. Particular attention is given to the levels of analysis used for studying geomorphology, structural geology, lithology, stratigraphy, surface geology, and dynamic processes. Examples of regional mapping described include: (1) rock intrusions in SE Sao Paulo, the southern parts of Minas Gerais, and the states of Rio de Janeiro, and Espiritu Santo; (2) a preliminary survey of Pre-Cambrian geology in the State of Piaui; and (3) the Gondwana Project - surveying Jaguaribe plants. Mineral exploration in Rio Grande do Sul, and the geology of the Alcalino complex of Itatiaia are discussed as well as the use of automatic classifications of rock intrusions and of ilmenite deposits in the Floresta Region. Aerial photography, side looking radar, and thermal infrared scanning are other types of remote sensors also used in prospecting for geothermal anomalies in the city of Caldas Novas-Goias.
Wang, Fu-tao; Wang, Shi-xin; Zhou, Yi; Wang, Li-tao; Yan, Fu-li; Li, Wen-jun; Liu, Xiong-fei
2016-01-01
The secondary geological disasters triggered by the Lushan earthquake on April 20, 2013, such as landslides, collapses, debris flows, etc., had caused great casualties and losses. We monitored the number and spatial distribution of the secondary geological disasters in the earthquake-hit area from airborne remote sensing images, which covered areas about 3 100 km2. The results showed that Lushan County, Baoxing County and Tianquan County were most severely affected; there were 164, 126 and 71 secondary geological disasters in these regions. Moreover, we analyzed the relationship between the distribution of the secondary geological disasters, geological structure and intensity. The results indicate that there were 4 high-hazard zones in the monitored area, one focused within six kilometers from the epicenter, and others are distributed along the two main fault zones of the Longmen Mountain. More than 97% secondary geological disasters occurred in zones with a seismic intensity of VII to IX degrees, a slope between 25 A degrees and 50 A degrees, and an altitude of between 800 and 2 000 m. At last, preliminary suggestions were proposed for the rehabilitation and reconstruction planning of Lushan earthquake. According to the analysis result, airborne and space borne remote sensing can be used accurately and effectively in almost real-time to monitor and assess secondary geological disasters, providing a scientific basis and decision making support for government emergency command and post-disaster reconstruction.
NASA Astrophysics Data System (ADS)
Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding
2011-11-01
The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.
Multisource geological data mining and its utilization of uranium resources exploration
NASA Astrophysics Data System (ADS)
Zhang, Jie-lin
2009-10-01
Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.
ERIC Educational Resources Information Center
Williams, Richard S., Jr.; Southworth, C. Scott
1983-01-01
The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonseca, A.; Navarro, A.; Osorio, R.
1996-08-01
Hydrocarbon exploration has nowadays a diversity of technological resources to capture, merge and interpret information from diverse sources. To accomplish this, the integration of geodata for modeling was done through the use of new technologies like Remote Sensing and Geographical Systems of Information and applied to the San Pedro-Machango area, located in the Serrania de Trujillo, west of Costa Bolivar (onshore), eastern Maracaibo Basin, Venezuela. The main purpose of this work was to optimize the design of an exploration program in harmony with environmental conservation procedures. Starting with satellital and radar images that incorporated geophysical, geological and environmental information, theymore » then were analyzed and merged to improve the lithological, structural and tectonic interpretation, generating an integrated model that allowed better project design. The use of a system that combines information of geographical, geodetical, geophysical and geological origins with satellital and radar images produced up to date cartography and refined results of image interpretation.« less
Geological applications and training in remote sensing
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1981-01-01
Some of the experiences, methods, and opinions developed during 15 years of teaching an introductory course in remote sensing at several universities in the Southern California area are related. Although the course is offered in Geology departments, every class includes significant numbers of students from other disciplines including geography, computer science, biology, and environmental science. The instructor or teaching assistant provides a few hours of tutorial lectures (outside of regular class time) on basic geology for these nongeologists. This approach is successful because the grade distribution for nongeologists is similar to that for geologists. The schedule for a typical one-semester course is given.
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
NASA Technical Reports Server (NTRS)
Pascucci, R. F.; Smith, A.
1982-01-01
To assist the U.S. Geological Survey in carrying out a Congressional mandate to investigate the use of side-looking airborne radar (SLAR) for resources exploration, a research program was conducted to define the contribution of SLAR imagery to structural geologic mapping and to compare this with contributions from other remote sensing systems. Imagery from two SLAR systems and from three other remote sensing systems was interpreted, and the resulting information was digitized, quantified and intercompared using a computer-assisted geographic information system (GIS). The study area covers approximately 10,000 square miles within the Naval Petroleum Reserve, Alaska, and is situated between the foothills of the Brooks Range and the North Slope. The principal objectives were: (1) to establish quantitatively, the total information contribution of each of the five remote sensing systems to the mapping of structural geology; (2) to determine the amount of information detected in common when the sensors are used in combination; and (3) to determine the amount of unique, incremental information detected by each sensor when used in combination with others. The remote sensor imagery that was investigated included real-aperture and synthetic-aperture radar imagery, standard and digitally enhanced LANDSAT MSS imagery, and aerial photos.
Use of remote-sensing techniques to survey the physical habitat of large rivers
Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.; Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffrey W.; Kennedy, Gregory W.; Smith, Stephen B.
1997-01-01
Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.
Joint Agency Commercial Imagery Evaluation (JACIE)
Jucht, Carrie
2010-01-01
Remote sensing data are vital to understanding the physical world and to answering many of its needs and problems. The United States Geological Survey's (USGS) Remote Sensing Technologies (RST) Project, working with its partners, is proud to sponsor the annual Joint Agency Commercial Imagery Evaluation (JACIE) Workshop to help understand the quality and usefulness of remote sensing data. The JACIE program was formed in 2001 to leverage U.S. Federal agency resources for the characterization of commercial remote sensing data. These agencies sponsor and co-chair JACIE: U.S. Geological Survey (USGS) National Aeronautics and Space Administration (NASA) National Geospatial-Intelligence Agency (NGA) U.S. Department of Agriculture (USDA) JACIE is an effort to coordinate data assessments between the participating agencies and partners and communicate the knowledge and results of the quality and utility of the remotely sensed data available for government and private use.
Advanced and applied remote sensing of environmental conditions
Slonecker, E. Terrence; Fisher, Gary B.; Marr, David A.; Milheim, Lesley E.; Roig-Silva, Coral M.
2013-01-01
"Remote sensing” is a general term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth’s surface. Remotely sensed data are fundamental to geographic science. The U.S. Geological Survey’s (USGS) Eastern Geographic Science Center (EGSC) is currently conducting and promoting the research and development of several different aspects of remote sensing science in both the laboratory and from overhead instruments. Spectroscopy is the science of recording interactions of energy and matter and is the bench science for all remote sensing. Visible and infrared analysis in the laboratory with special instruments called spectrometers enables the transfer of this research from the laboratory to multispectral (5–15 broad bands) and hyperspectral (50–300 narrow contiguous bands) analyses from aircraft and satellite sensors. In addition, mid-wave (3–5 micrometers, µm) and long-wave (8–14 µm) infrared data analysis, such as attenuated total reflectance (ATR) spectral analysis, are also conducted. ATR is a special form of vibrational infrared spectroscopy that has many applications in chemistry and biology but has recently been shown to be especially diagnostic for vegetation analysis.
Applications of remote sensing data to the Alaskan environment
NASA Technical Reports Server (NTRS)
Belon, A. E.; Iller, J. M.
1973-01-01
The ERTS program provides a means to overcome the formidable logistic and economic costs of preparing environmental surveys of the vast and relatively unexplored regions of Alaska. There is an excellent potential in satellite remote sensing to benefit Federal, state, local, and private agencies, by providing a new synoptic data base which is necessary for the preparation of the needed surveys and the search for solutions to environmental management problems. One approach in coupling satellite data to Alaskan problems is a major program initiated by the University of Alaska and funded by NASA's Goddard Space Flight Center. This included 12 projects whose aims were to study the feasibility of applying ERTS data to the disciplines of ecology, agriculture, hydrology, wildlife management, oceanography, geology, glaciology, volcanology, and archaeology.
The hydrology of prehistoric farming systems in a central Arizona ecotone
NASA Technical Reports Server (NTRS)
Gumerman, G. J.; Hanson, J. A.; Brew, D.; Tomoff, K.; Weed, C. S.
1975-01-01
The prehistoric land use and water management in the semi-arid Southwest was examined. Remote sensing data, geology, hydrology and biology are discussed along with an evaluation of remote sensing contributions, recommendations for applications, and proposed future remote sensing studies.
NASA Astrophysics Data System (ADS)
Bishop, Charlotte; Rivard, Benoit; de Souza Filho, Carlos; van der Meer, Freek
2018-02-01
Geology is defined as the 'study of the planet Earth - the materials of which it is made, the processes that act on these materials, the products formed, and the history of the planet and its life forms since its origin' (Bates and Jackson, 1976). Remote sensing has seen a number of variable definitions such as those by Sabins and Lillesand and Kiefer in their respective textbooks (Sabins, 1996; Lillesand and Kiefer, 2000). Floyd Sabins (Sabins, 1996) defined it as 'the science of acquiring, processing and interpreting images that record the interaction between electromagnetic energy and matter' while Lillesand and Kiefer (Lillesand and Kiefer, 2000) defined it as 'the science and art of obtaining information about an object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the object, area, or phenomenon under investigation'. Thus Geological Remote Sensing can be considered the study of, not just Earth given the breadth of work undertaken in planetary science, geological features and surfaces and their interaction with the electromagnetic spectrum using technology that is not in direct contact with the features of interest.
Remote sensing and geologic studies of the planetary crusts
NASA Technical Reports Server (NTRS)
Hawke, B. R.
1983-01-01
Dark haloed craters and regions of the Moon which were sites of ancient volcanism were remotely sensed as well as KREEP deposits in the Inbrium region. The relationship between geology and geochemistry in the Undarum/Spumans region was also examined. Results are summarized for observations of the Reiner Gamma formation, studies of impact cratering mechanics and processes, spectral variations of asteroidal surfaces, albedo and color variations on Ganymede, and studies of lunar impact structures.
The U.S. Geological Survey Land Remote Sensing Program
,
2007-01-01
The fundamental goals of the U.S. Geological Survey's Land Remote Sens-ing (LRS) Program are to provide the Federal Government and the public with a primary source of remotely sensed data and applications and to be a leader in defining the future of land remote sensing, nationally and internationally. Remotely sensed data provide information that enhance the understand-ing of ecosystems and the capabilities for predicting ecosystem change. The data promote an understanding of the role of the environment and wildlife in human health issues, the requirements for disaster response, the effects of climate variability, and the availability of energy and mineral resources. Also, as land satellite systems acquire global coverage, the program coordinates a network of international receiving stations and users of the data. It is the responsibility of the program to assure that data from land imaging satellites, airborne photography, radar, and other technologies are available to the national and global science communities.
NASA Astrophysics Data System (ADS)
Gazi, M. Y.; Rahman, M.; Islam, M. A.; Kabir, S. M. M.
2016-12-01
Techniques of remote sensing and geographic information systems (GIS) have been applied for the analysis and interpretation of the Geo-environmental assessment to Sitakund area, located within the administrative boundaries of the Chittagong district, Bangladesh. Landsat ETM+ image with a ground resolution of 30-meter and Digital Elevation Model (DEM) has been adopted in this study in order to produce a set of thematic maps. The diversity of the terrain characteristics had a major role in the diversity of recipes and types of soils that are based on the geological structure, also helped to diversity in land cover and use in the region. The geological situation has affected on the general landscape of the study area. The problem of research lies in the possibility of the estimating the techniques of remote sensing and geographic information systems in the evaluation of the natural data for the study area spatially as well as determine the appropriate in grades for the appearance of the ground and in line with the reality of the region. Software for remote sensing and geographic information systems were adopted in the analysis, classification and interpretation of the prepared thematic maps in order to get to the building of the Geo-environmental assessment map of the study area. Low risk geo-environmental land mostly covered area of Quaternary deposits especially with area of slope wash deposits carried by streams. Medium and high risk geo-environmental land distributed with area of other formation with the study area, mostly the high risk shows area of folds and faults. The study has assessed the suitability of lands for agricultural purpose and settlements in less vulnerable areas within this region.
Regolith Formation Rates and Evolution from the Diviner Lunar Radiometer
NASA Astrophysics Data System (ADS)
Hayne, P. O.; Ghent, R. R.; Bandfield, J. L.; Vasavada, A. R.; Williams, J. P.; Siegler, M. A.; Lucey, P. G.; Greenhagen, B. T.; Elder, C. M.; Paige, D. A.
2015-12-01
Fragmentation and overturn of lunar surface materials produces a layer of regolith, which increases in thickness through time. Experiments on the lunar surface during the Apollo era, combined with remote sensing, found that the upper 10's of cm of regolith exhibit a rapid increase in density and thermal conductivity with depth. This is interpreted to be the signature of impact gardening, which operates most rapidly in the uppermost layers. Gravity data from the GRAIL mission showed that impacts have also extensively fractured the deeper crust. The breakdown and mixing of crustal materials is therefore a central process to lunar evolution and must be understood in order to interpret compositional information from remote sensing and sample analysis. Recently, thermal infrared data from the Lunar Reconnaissance Orbiter (LRO) Diviner radiometer were used to provide the first remote observational constraints on the rate of ejecta breakdown around craters < 1 Ga (Ghent et al., 2014). Here, we use nighttime regolith temperatures derived from Diviner data to constrain regolith thermal inertia, thickness, and spatial variability. Applied to models, these new data help improve understanding of regolith formation on a variety of geologic units. We will also discuss several anomalous features that merit further investigation. Reference: Ghent, R. R., Hayne, P. O., Bandfield, J. L., Campbell, B. A., Allen, C. C., Carter, L. M., & Paige, D. A. (2014). Constraints on the recent rate of lunar ejecta breakdown and implications for crater ages. Geology, 42(12), 1059-1062.
Paleogeodesy of the Southern Santa Cruz Mountains Frontal Thrusts, Silicon Valley, CA
NASA Astrophysics Data System (ADS)
Aron, F.; Johnstone, S. A.; Mavrommatis, A. P.; Sare, R.; Hilley, G. E.
2015-12-01
We present a method to infer long-term fault slip rate distributions using topography by coupling a three-dimensional elastic boundary element model with a geomorphic incision rule. In particular, we used a 10-m-resolution digital elevation model (DEM) to calculate channel steepness (ksn) throughout the actively deforming southern Santa Cruz Mountains in Central California. We then used these values with a power-law incision rule and the Poly3D code to estimate slip rates over seismogenic, kilometer-scale thrust faults accommodating differential uplift of the relief throughout geologic time. Implicit in such an analysis is the assumption that the topographic surface remains unchanged over time as rock is uplifted by slip on the underlying structures. The fault geometries within the area are defined based on surface mapping, as well as active and passive geophysical imaging. Fault elements are assumed to be traction-free in shear (i.e., frictionless), while opening along them is prohibited. The free parameters in the inversion include the components of the remote strain-rate tensor (ɛij) and the bedrock resistance to channel incision (K), which is allowed to vary according to the mapped distribution of geologic units exposed at the surface. The nonlinear components of the geomorphic model required the use of a Markov chain Monte Carlo method, which simulated the posterior density of the components of the remote strain-rate tensor and values of K for the different mapped geologic units. Interestingly, posterior probability distributions of ɛij and K fall well within the broad range of reported values, suggesting that the joint use of elastic boundary element and geomorphic models may have utility in estimating long-term fault slip-rate distributions. Given an adequate DEM, geologic mapping, and fault models, the proposed paleogeodetic method could be applied to other crustal faults with geological and morphological expressions of long-term uplift.
Bowman, Helen L.
1984-01-01
The U.S. Geological Survey's Earth Resources Observation Systems (EROS) Program was established in 1967 by Secretarial order to plan and develop techniques for collecting and analyzing remotely sensed data, and to apply these techniques to the resource inventory and management responsibilities of the Department of the Interior. U.S. Geological Survey scientists, realizing the potential benefits of synoptic views of the Earth, were among the first members of America's scientific community to press for the launch of civilian Earth-surface observation satellites. Under the leadership of Director William T. Pecora, U.S. Geological Survey initiatives greatly influenced the National Aeronautics and Space Administration's (NASA) development of the Landsat program.As part of the Landsat program, an agreement between NASA and the Geological Survey was signed to provide Landsat archiving and data production capabilities at the EROS Data Center in Sioux Falls, South Dakota. This partnership with NASA began in 1972 and continued until Presidential Directive 54 designated the National Oceanic and Atmospheric Administration (NOAA) of the Department of Commerce as the manager of U.S. civil operational land remote-sensing activities. NOAA has managed the Landsat program since Fiscal Year 1983, and EROS continues to process, archive, reproduce, and distribute Landsat data under a Memorandum of Understanding between NOAA and the Geological Survey. Archives at the EROS Data Center include over 2 million worldwide Landsat scenes and over 5 million aerial photographs, primarily of U.S. sites. Since the launch of Landsat 1, global imaging of the Earth's surface has become an operational tool for resource exploration and land management. As technology evolved, so did the EROS Program mission. Research and applications efforts began at the EROS Headquarters Office in the Washington metropolitan area in 1966; at the EROS Data Center in 1971; and at the EROS Field Office in Anchorage, Alaska, in 1980. EROS functions were realined under the National Mapping Division of the Geological Survey in Fiscal Year 1983, when the EROS Headquarters Office v/as closed. EROS research and applications functions are now conducted by the EROS Data Center and the EROS Field Office in Anchorage. Approximately 50 civil servants and 250 contract personnel carry out the EROS mission of research, development, and technology transfer in remote sensing, geographic information systems, and digital data base applications. This bibliography is a compilation of publications between 1975 and 1982 by EROS Program personnel and by persons under contract to the EROS Program. Requests for information regarding EROS research and/or publications should be directed to: Chief, EROS Data Center, Sioux Falls, South Dakota 5719P.
Zoning method for environmental engineering geological patterns in underground coal mining areas.
Liu, Shiliang; Li, Wenping; Wang, Qiqing
2018-09-01
Environmental engineering geological patterns (EEGPs) are used to express the trend and intensity of eco-geological environment caused by mining in underground coal mining areas, a complex process controlled by multiple factors. A new zoning method for EEGPs was developed based on the variable-weight theory (VWT), where the weights of factors vary with their value. The method was applied to the Yushenfu mining area, Shaanxi, China. First, the mechanism of the EEGPs caused by mining was elucidated, and four types of EEGPs were proposed. Subsequently, 13 key control factors were selected from mining conditions, lithosphere, hydrosphere, ecosphere, and climatic conditions; their thematic maps were constructed using ArcGIS software and remote-sensing technologies. Then, a stimulation-punishment variable-weight model derived from the partition of basic evaluation unit of study area, construction of partition state-variable-weight vector, and determination of variable-weight interval was built to calculate the variable weights of each factor. On this basis, a zoning mathematical model of EEGPs was established, and the zoning results were analyzed. For comparison, the traditional constant-weight theory (CWT) was also applied to divide the EEGPs. Finally, the zoning results obtained using VWT and CWT were compared. The verification of field investigation indicates that VWT is more accurate and reliable than CWT. The zoning results are consistent with the actual situations and the key of planning design for the rational development of coal resources and protection of eco-geological environment. Copyright © 2018 Elsevier B.V. All rights reserved.
The EarthServer Geology Service: web coverage services for geosciences
NASA Astrophysics Data System (ADS)
Laxton, John; Sen, Marcus; Passmore, James
2014-05-01
The EarthServer FP7 project is implementing web coverage services using the OGC WCS and WCPS standards for a range of earth science domains: cryospheric; atmospheric; oceanographic; planetary; and geological. BGS is providing the geological service (http://earthserver.bgs.ac.uk/). Geoscience has used remote sensed data from satellites and planes for some considerable time, but other areas of geosciences are less familiar with the use of coverage data. This is rapidly changing with the development of new sensor networks and the move from geological maps to geological spatial models. The BGS geology service is designed initially to address two coverage data use cases and three levels of data access restriction. Databases of remote sensed data are typically very large and commonly held offline, making it time-consuming for users to assess and then download data. The service is designed to allow the spatial selection, editing and display of Landsat and aerial photographic imagery, including band selection and contrast stretching. This enables users to rapidly view data, assess is usefulness for their purposes, and then enhance and download it if it is suitable. At present the service contains six band Landsat 7 (Blue, Green, Red, NIR 1, NIR 2, MIR) and three band false colour aerial photography (NIR, green, blue), totalling around 1Tb. Increasingly 3D spatial models are being produced in place of traditional geological maps. Models make explicit spatial information implicit on maps and thus are seen as a better way of delivering geosciences information to non-geoscientists. However web delivery of models, including the provision of suitable visualisation clients, has proved more challenging than delivering maps. The EarthServer geology service is delivering 35 surfaces as coverages, comprising the modelled superficial deposits of the Glasgow area. These can be viewed using a 3D web client developed in the EarthServer project by Fraunhofer. As well as remote sensed imagery and 3D models, the geology service is also delivering DTM coverages which can be viewed in the 3D client in conjunction with both imagery and models. The service is accessible through a web GUI which allows the imagery to be viewed against a range of background maps and DTMs, and in the 3D client; spatial selection to be carried out graphically; the results of image enhancement to be displayed; and selected data to be downloaded. The GUI also provides access to the Glasgow model in the 3D client, as well as tutorial material. In the final year of the project it is intended to increase the volume of data to 20Tb and enhance the WCPS processing, including depth and thickness querying of 3D models. We have also investigated the use of GeoSciML, developed to describe and interchange the information on geological maps, to describe model surface coverages. EarthServer is developing a combined WCPS and xQuery query language, and we will investigate applying this to the GeoSciML described surfaces to answer questions such as 'find all units with a predominant sand lithology within 25m of the surface'.
NASA Astrophysics Data System (ADS)
Al-Nahmi, F.; Saddiqi, O.; Hilali, A.; Rhinane, H.; Baidder, L.; El arabi, H.; Khanbari, K.
2017-11-01
Remote sensing technology plays an important role today in the geological survey, mapping, analysis and interpretation, which provides a unique opportunity to investigate the geological characteristics of the remote areas of the earth's surface without the need to gain access to an area on the ground. The aim of this study is achievement a geological map of the study area. The data utilizes is Sentinel-2 imagery, the processes used in this study, the OIF Optimum Index Factor is a statistic value that can be used to select the optimum combination of three bands in a satellite image. It's based on the total variance within bands and correlation coefficient between bands, ICA Independent component analysis (3, 4, 6) is a statistical and computational technique for revealing hidden factors that underlie sets of random variables, measurements, or signals, MNF Minimum Noise Fraction (1, 2, 3) is used to determine the inherent dimensionality of image data to segregate noise in the data and to reduce the computational requirements for subsequent processing, Optimum Index Factor is a good method for choosing the best band for lithological mapping. ICA, MNF, also a practical way to extract the structural geology maps. The results in this paper indicate that, the studied area can be divided into four main geological units: Basement rocks (Meta volcanic, Meta sediments), Sedimentary rocks, Intrusive rocks, volcanic rocks. The method used in this study offers great potential for lithological mapping, by using Sentinel-2 imagery, the results were compared with existing geologic maps and were superior and could be used to update the existing maps.
Aerospace technology can be applied to exploration 'back on earth'. [offshore petroleum resources
NASA Technical Reports Server (NTRS)
Jaffe, L. D.
1977-01-01
Applications of aerospace technology to petroleum exploration are described. Attention is given to seismic reflection techniques, sea-floor mapping, remote geochemical sensing, improved drilling methods and down-hole acoustic concepts, such as down-hole seismic tomography. The seismic reflection techniques include monitoring of swept-frequency explosive or solid-propellant seismic sources, as well as aerial seismic surveys. Telemetry and processing of seismic data may also be performed through use of aerospace technology. Sea-floor sonor imaging and a computer-aided system of geologic analogies for petroleum exploration are also considered.
NASA Astrophysics Data System (ADS)
Pournamdari, M.; Hashim, M.
2014-02-01
Chromite ore deposit occurrence is related to ophiolite complexes as a part of the oceanic crust and provides a good opportunity for lithological mapping using remote sensing data. The main contribution of this paper is a novel approaches to discriminate different rock units associated with ophiolite complex using the Feature Level Fusion technique on ASTER and Landsat TM satellite data at regional scale. In addition this study has applied spectral transform approaches, consisting of Spectral Angle Mapper (SAM) to distinguish the concentration of high-potential areas of chromite and also for determining the boundary between different rock units. Results indicated both approaches show superior outputs compared to other methods and can produce a geological map for ophiolite complex rock units in the arid and the semi-arid region. The novel technique including feature level fusion and Spectral Angle Mapper (SAM) discriminated ophiolitic rock units and produced detailed geological maps of the study area. As a case study, Sikhoran ophiolite complex located in SE, Iran has been selected for image processing techniques. In conclusion, a suitable approach for lithological mapping of ophiolite complexes is demonstrated, this technique contributes meaningfully towards economic geology in terms of identifying new prospects.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Barbosa, M. P.; Veneziani, P.
1982-01-01
The efficiency of some criteria developed for the utilization of small scale and low resolution remote sensing products to map geological and structural features was demonstrated. Those criteria were adapted from the Logical Method of Photointerpretation which consists of textural qualitative analysis of landforms and drainage net patterns. LANDSAT images of channel 5 and 7, 4 LANDSAT-RBV scenes, and 1 radar mosiac were utilized. The region of study is characterized by supracrustal metassediments (quartzites and micaschist) folded according to a "zig-zag" pattern and gnaissic basement. Lithological-structural definition was considered outstanding when compared to data acquired during field work, bibliographic data and geologic maps acquired in larger scales.
The application of remote sensing techniques to the study of ophiolites
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Mahmood, Khalid
2008-08-01
Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mengel, S.K.; Morrison, D.B.
1985-01-01
Consideration is given to global biogeochemical issues, image processing, remote sensing of tropical environments, global processes, geology, landcover hydrology, and ecosystems modeling. Topics discussed include multisensor remote sensing strategies, geographic information systems, radars, and agricultural remote sensing. Papers are presented on fast feature extraction; a computational approach for adjusting TM imagery terrain distortions; the segmentation of a textured image by a maximum likelihood classifier; analysis of MSS Landsat data; sun angle and background effects on spectral response of simulated forest canopies; an integrated approach for vegetation/landcover mapping with digital Landsat images; geological and geomorphological studies using an image processing technique;more » and wavelength intensity indices in relation to tree conditions and leaf-nutrient content.« less
National Satellite Land Remote Sensing Data Archive
Faundeen, John L.; Longhenry, Ryan
2018-06-13
The National Satellite Land Remote Sensing Data Archive is managed on behalf of the Secretary of the Interior by the U.S. Geological Survey’s Earth Resources Observation and Science Center. The Land Remote Sensing Policy Act of 1992 (51 U.S.C. §601) directed the U.S. Department of the Interior to establish a permanent global archive consisting of imagery over land areas obtained from satellites orbiting the Earth. The law also directed the U.S. Department of the Interior, delegated to the U.S. Geological Survey, to ensure proper storage and preservation of imagery, and timely access for all parties. Since 2008, these images have been available at no cost to the user.
Hyperspectral surveying for mineral resources in Alaska
Kokaly, Raymond F.; Graham, Garth E.; Hoefen, Todd M.; Kelley, Karen D.; Johnson, Michaela R.; Hubbard, Bernard E.
2016-07-07
Alaska is a major producer of base and precious metals and has a high potential for additional undiscovered mineral resources. However, discovery is hindered by Alaska’s vast size, remoteness, and rugged terrain. New methods are needed to overcome these obstacles in order to fully evaluate Alaska’s geology and mineral resource potential. Hyperspectral surveying is one method that can be used to rapidly acquire data about the distributions of surficial materials, including different types of bedrock and ground cover. In 2014, the U.S. Geological Survey began the Alaska Hyperspectral Project to assess the applicability of this method in Alaska. The primary study area is a remote part of the eastern Alaska Range where porphyry deposits are exposed. In collaboration with the Alaska Division of Geological and Geophysical Surveys, the University of Alaska Fairbanks, and the National Park Service, the U.S. Geological Survey is collecting and analyzing hyperspectral data with the goals of enhancing geologic mapping and developing methods to identify and characterize mineral deposits elsewhere in Alaska.
Remote Sensing of Landscapes with Spectral Images
NASA Astrophysics Data System (ADS)
Adams, John B.; Gillespie, Alan R.
2006-05-01
Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures
Airborne Gravity Survey and Ground Gravity in Afghanistan: A Website for Distribution of Data
Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.
2008-01-01
Afghanistan?s geologic setting suggests significant natural resource potential. Although important mineral deposits and petroleum resources have been identified, much of the country?s potential remains unknown. Airborne geophysical surveys are a well- accepted and cost-effective method for remotely obtaining information of the geological setting of an area. A regional airborne geophysical survey was proposed due to the security situation and the large areas of Afghanistan that have not been covered using geophysical exploration methods. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the U.S. Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan. Data collected during this survey will provide basic information for mineral and petroleum exploration studies that are important for the economic development of Afghanistan. Additionally, use of these data is broadly applicable in the assessment of water resources and natural hazards, the inventory and planning of civil infrastructure and agricultural resources, and the construction of detailed maps. The U.S. Geological Survey is currently working in cooperation with the U.S. Agency of International Development to conduct resource assessments of the country of Afghanistan for mineral, energy, coal, and water resources, and to assess geologic hazards. These geophysical and remote sensing data will be used directly in the resource and hazard assessments.
Teaching Geologic/Earth Science Remote Sensing at the Collegiate and the Secondary School Level
ERIC Educational Resources Information Center
Fisher, John J.
1977-01-01
Describes util satellite photography, satellite remote sensing, and high altitude aircraft photography for teaching environmental and ecological aspects of earth science at the secondary or college levels. (SL)
NASA Technical Reports Server (NTRS)
1985-01-01
A photogeologic and remote sensing model of porphyry type mineral sytems is considered along with a Landsat application to development of a tectonic model for hydrocarbon exploration of Devonian shales in west-central Virginia, remote sensing and the funnel philosophy, Landsat-based tectonic and metallogenic synthesis of the southwest United States, and an evolving paradigm for computer vision. Attention is given to the neotectonics of the Tibetan plateau deduced from Landsat MSS image interpretation, remote sensing in northern Arizona, the use of an airborne laser system for vegetation inventories and geobotanical prospecting, an evaluation of Thematic Mapper data for hydrocarbon exploration in low-relief basins, and an evaluation of the information content of high spectral resolution imagery. Other topics explored are related to a major source of new radar data for exploration research, the accuracy of geologic maps produced from Landsat data, and an approach for the geometric rectification of radar imagery.
Geological Mapping Uses Landsat 4-5TM Satellite Data in Manlai Soum of Omnogovi Aimag
NASA Astrophysics Data System (ADS)
Norovsuren, B.
2014-12-01
Author: Bayanmonkh N1, Undram.G1, Tsolmon.R2, Ariunzul.Ya1, Bayartungalag B31 Environmental Research Information and Study Center 2NUM-ITC-UNESCO Space Science and Remote Sensing International Laboratory, National University of Mongolia 3Geology and Hydrology School, Korea University KEY WORDS: geology, mineral resources, fracture, structure, lithologyABSTRACTGeologic map is the most important map for mining when it does exploration job. In Mongolia geological map completed by Russian geologists which is done by earlier technology. Those maps doesn't satisfy for present requirements. Thus we want to study improve geological map which includes fracture, structural map and lithology use Landsat TM4-5 satellite data. If we can produce a geological map from satellite data with more specification then geologist can explain or read mineralogy very easily. We searched all methodology and researches of every single element of geological mapping. Then we used 3 different remote sensing methodologies to produce structural and lithology and fracture map based on geographic information system's softwares. There can be found a visible lithology border improvement and understandable structural map and we found fracture of the Russian geological map has a lot of distortion. The result of research geologist can read mineralogy elements very easy and discovered 3 unfound important elements from satellite image.
Application of remote sensing techniques to the geology of the bonanza volcanic center
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
A program is reported for evaluating remote sensing as an aid to geologic mapping for the past four years. Data tested in this evaluation include color and color infrared photography, multiband photography, low sun-angle photography, thermal infrared scanner imagery, and side-looking airborne radar. The relative utility of color and color infrared photography was tested as it was used to refine geologic maps in previously mapped areas, as field photos while mapping in the field, and in making photogeologic maps prior to field mapping. The latter technique served as a test of the maximum utility of the photography. In this application the photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all Quaternary deposits and 62% of all areas of Tertiary volcanic outcrop in the area.
Reports of Planetary Geology Program, 1982
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1982-01-01
Work conducted in the Planetary Geology program is summarized. The following categories are presented: outer solar system satellites; asteroids and comets; Venus; cratering processes and landform development; volcanic processes and landforms; aolian processes and landforms; fluvial processes and landform development; periglacial and permafrost processes; structure, tectonics and stratigraphy; remote sensing and regolith studies; geologic mapping, cartography and geodesy.
Advances in planetary geology, volume 2
NASA Technical Reports Server (NTRS)
1986-01-01
This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.
NASA Astrophysics Data System (ADS)
Guardo, R.; De Siena, L.
2017-11-01
The timely estimation of short- and long-term volcanic hazard relies on the availability of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centres and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The study recovers a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows that anomalies are generally related to volcano-tectonic structures active during the last 17 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource to monitor volcanoes in unrest, reducing the risk of loss of human lives and instrumentation.
NASA Astrophysics Data System (ADS)
Shakak, N.
2015-04-01
Spatial variations in ground water quality in the Khartoum state, Sudan, have been studied using geographic information system (GIS) and remote sensing technique. Gegraphical informtion system a tool which is used for storing, analyzing and displaying spatial data is also used for investigating ground water quality information. Khartoum landsat mosac image aquired in 2013was used, Arc/Gis software applied to extract the boundary of the study area, the image was classified to create land use/land cover map. The land use map,geological and soil map are used for correlation between land use , geological formations, and soil types to understand the source of natural pollution that can lower the ground water quality. For this study, the global positioning system (GPS), used in the field to identify the borehole location in a three dimentional coordinate (Latitude, longitude, and altitude), water samples were collected from 156 borehole wells, and analyzed for physico-chemical parameters like electrical conductivity, Total dissolved solid,Chloride, Nitrate, Sodium, Magnisium, Calcium,and Flouride, using standard techniques in the laboratory and compared with the standards.The ground water quality maps of the entire study area have been prepared using spatial interpolation technique for all the above parameters.then the created maps used to visualize, analyze, and understand the relationship among the measured points. Mapping was coded for potable zones, non-potable zones in the study area, in terms of water quality sutability for drinking water and sutability for irrigation. In general satellite remote sensing in conjunction with geographical information system (GIS) offers great potential for water resource development and management.
The preservation of LANDSAT data by the National Land Remote Sensing Archive
NASA Technical Reports Server (NTRS)
Boyd, John E.
1992-01-01
Digital data, acquired by the National Landsat Remote Sensing Program, document nearly two decades of global agricultural, environmental, and sociological change. The data were widely applied and continue to be essential to a variety of geologic, hydrologic, agronomic, and strategic programs and studies by governmental, academic, and commercial researchers. Landsat data were acquired by five observatories that use primarily two digital sensor systems. The Multispectral Scanner (MSS) was onboard all five Landsats, which have orbited over 19 years; the higher resolution Thematic Mapper (TM) sensor acquired data for the last 9 years on Landsats 4 and 5 only. The National Land Remote Sensing Archive preserves the 800,000 scenes, which total more than 60 terabytes of data, on master tapes that are steadily deteriorating. Data are stored at two terabytes of data, on master tapes that are steadily deteriorating. Data are stored at two locations (Sioux Falls, South Dakota and Landover, Maryland), in three archive formats. The U.S. Geological Survey's EROS Data Center has initiated a project to consolidate and convert, over the next 4 years, two of the archive formats from antiquated instrumentation tape to rotary-recorded cassette magnetic tape. The third archive format, consisting of 300,000 scenes of MSS data acquired from 1972 through 1978, will not be converted because of budgetary constraints. This data preservation project augments EDC's experience in data archiving and information management, expertise that is critical to EDC's role as a Distributed Active Archive Center for the Earth Observing System, a new and much larger national earth science program.
Reports of planetary geology program, 1983
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1984-01-01
Several areas of the Planetary Geology Program were addressed including outer solar system satellites, asteroids, comets, Venus, cratering processes and landform development, volcanic processes, aeolian processes, fluvial processes, periglacial and permafrost processes, geomorphology, remote sensing, tectonics and stratigraphy, and mapping.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
The correspondence of surface climate parameters with satellite and terrain data
NASA Technical Reports Server (NTRS)
Dozier, Jeff; Davis, Frank
1987-01-01
One of the goals of the research was to develop a ground sampling stragegy for calibrating remotely sensed measurements of surface climate parameters. The initial sampling strategy involved the stratification of the terrain based on important ancillary surface variables such as slope, exposure, insolation, geology, drainage, fire history, etc. For a spatially heterogeneous population, sampling error is reduced and efficiency increased by stratification of the landscape into more homogeneous sub-areas and by employing periodic random spacing of samples. These concepts were applied in the initial stratification of the study site for the purpose of locating and allocating instrumentation.
ERIC Educational Resources Information Center
Blake, Linda; Warner, Tim
2011-01-01
After receiving a mini-grant for developing integrated information literacy programs, a Geography/Geology Department faculty member worked with the Science Librarian to embed information literacy in a cross-listed geology and geography course, Geog/Geol 455, Introduction to Remote Sensing. Planning for the revisions to the class started with…
Geological evaluation and applications of ERTS-1 imagery over Georgia
NASA Technical Reports Server (NTRS)
Pickering, S. M.; Jones, R. C.
1974-01-01
ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.
Geoinformatics and Data Fusion in the Southwestern Utah Mineral Belt
NASA Astrophysics Data System (ADS)
Kiesel, T.; Enright, R.
2012-12-01
Data Fusion is a technique in remote sensing that combines separate geophysical data sets from different platforms to yield the maximum information of each set. Data fusion was employed on multiple sources of data for the purposes of investigating an area of the Utah Mineral Belt known as the San Francisco Mining District. In the past many mineral deposits were expressed in or on the immediate surface and therefore relatively easy to locate. More modern methods of investigation look for evidence beyond the visible spectrum to find patterns that predict the presence of deeply buried mineral deposits. The methods used in this study employed measurements of reflectivity or emissivity features in the infrared portion of the electromagnetic spectrum for different materials, elevation data collected from the Shuttle Radar Topography Mission and indirect measurement of the magnetic or mass properties of deposits. The measurements were collected by various spaceborne remote sensing instruments like Landsat TM, ASTER and Hyperion and ground-based statewide geophysical surveys. ASTER's shortwave infrared bands, that have been calibrated to surface reflectance using the atmospheric correction tool FLAASH, can be used to identify products of hydrothermal alteration like kaolinite, alunite, limonite and pyrophyllite using image spectroscopy. The thermal infrared bands once calibrated to emissivity can be used to differentiate between felsic, mafic and carbonate rock units for the purposes of lithologic mapping. To validate results from the extracted spectral profiles existing geological reports were used for ground truth data. Measurements of electromagnetic spectra can only reveal the composition of surface features. Gravimetric and magnetic information were utilized to reveal subsurface features. Using Bouguer anomaly data provided by the USGS an interpreted geological cross section can be created that indicates the shape of local igneous intrusions and the depth of sedimentary basins. By comparing the digital elevation model with a satellite photo of the area a major high angle fault system was identified that had not been clearly evaluated in previous geologic mapping. For the investigation of the Frisco Mining District, gravity and magnetic data was fused to help differentiate igneous and sedimentary rocks that might have the same density. Data fusion allows for a more thorough analysis rather than viewing each data set separately with the accompanying improvement in ability to understand the complex geology of an area and can be applied to any remote sensing data set regardless of the type of instrument used.
Earth observations from space: Outlook for the geological sciences
NASA Technical Reports Server (NTRS)
Short, N. M.; Lowman, P. D., Jr.
1973-01-01
Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing.
A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective
NASA Astrophysics Data System (ADS)
Shafique, Muhammad; van der Meijde, Mark; Khan, M. Asif
2016-03-01
The 8th October 2005 Kashmir earthquake, in northern Pakistan has triggered thousands of landslides, which was the second major factor in the destruction of the build-up environment, after earthquake-induced ground shaking. Subsequent to the earthquake, several researchers from home and abroad applied a variety of remote sensing techniques, supported with field observations, to develop inventories of the earthquake-triggered landslides, analyzed their spatial distribution and subsequently developed landslide-susceptibility maps. Earthquake causative fault rupture, geology, anthropogenic activities and remote sensing derived topographic attributes were observed to have major influence on the spatial distribution of landslides. These were subsequently used to develop a landslide susceptibility map, thereby demarcating the areas prone to landsliding. Temporal studies monitoring the earthquake-induced landslides shows that the earthquake-induced landslides are stabilized, contrary to earlier belief, directly after the earthquake. The biggest landslide induced dam, as a result of the massive Hattian Bala landslide, is still posing a threat to the surrounding communities. It is observed that remote sensing data is effectively and efficiently used to assess the landslides triggered by the Kashmir earthquake, however, there is still a need of more research to understand the mechanism of intensity and distribution of landslides; and their continuous monitoring using remote sensing data at a regional scale. This paper, provides an overview of remote sensing and GIS applications, for the Kashmir-earthquake triggered landslides, derived outputs and discusses the lessons learnt, advantages, limitations and recommendations for future research.
NASA Technical Reports Server (NTRS)
Dohm, J. M.; Cabrol, N. A.; Grin, E. A.; Moersch, J.; Diaz, G. Chong; Cockell, C.; Coppin, P.; Fisher, G.; Hock, A. N.; Ori, G. G.
2005-01-01
The "Life in the Atacama" (LITA) project included two field trials during the 2004 field season, each of which lasted about a week. The remote science team had no prior knowledge of the local geology, and relied entirely on orbital images and rover-acquired data to make interpretations. The sites for these trials were in different locations, and are designated "Site B" and "Site C" respectively. The primary objective of the experiment is to develop and test the means to locate, characterize, and identify habitats and life remotely through long-range roving, which included field testing the rover, named Zoe. Zoe has onboard autonomous navigation for long-range roving, a plow to overturn rocks and expose near-surface rock materials, and high-resolution imaging, spectral, and fluorescence sampling capabilities. Highlights from the experiment included characterizing the geology in and near the landing ellipse, assessing pre-mission, satellite-based hypotheses, and improving the approach and procedures used by the remote and field teams for upcoming experiments through combined satellite, field-based, and microscopic perspectives and long-range roving.
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing
NASA Technical Reports Server (NTRS)
Blanchard, D. P. (Editor)
1980-01-01
The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.
Remote Sensing of Earth and Environment
ERIC Educational Resources Information Center
Schertler, Ronald J.
1974-01-01
Discusses basic principles of remote sensing applications and five areas of the earth resources survey program: agriculture and forestry production; geography, cartography, cultural resources; geology and mineral resources; hydrology and water resources; and oceanography and marine resources. Indicates that information acquisition is the first…
Significant achievements in the planetary geology program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Editor)
1981-01-01
Recent developments in planetology research as reported at the 1981 NASA Planetary Geology Principal Investigators meeting are summarized. The evolution of the solar system, comparative planetology, and geologic processes active on other planets are considered. Galilean satellites and small bodies, Venus, geochemistry and regoliths, volcanic and aeolian processes and landforms, fluvial and periglacial processes, and planetary impact cratering, remote sensing, and cartography are discussed.
The application of automatic recognition techniques in the Apollo 9 SO-65 experiment
NASA Technical Reports Server (NTRS)
Macdonald, R. B.
1970-01-01
A synoptic feature analysis is reported on Apollo 9 remote earth surface photographs that uses the methods of statistical pattern recognition to classify density points and clusterings in digital conversion of optical data. A computer derived geological map of a geological test site indicates that geological features of the range are separable, but that specific rock types are not identifiable.
NASA Astrophysics Data System (ADS)
Mohamed, L.; Farag, A. Z. A.
2017-12-01
North African countries struggle with insufficient, polluted, oversubscribed, and increasingly expensive water. This natural water shortage, in addition to the lack of a comprehensive scheme for the identification of new water resources challenge the political settings in north Africa. Groundwater is one of the main water resources and its occurrence is controlled by the structural elements which are still poorly understood. Integration of remote sensing images and geophysical tools enable us to delineate the surface and subsurface structures (i.e. faults, joints and shear zones), identify the role of these structures on groundwater flow and then to define the proper locations for groundwater wells. This approach were applied to three different areas in Egypt; southern Sinai, north eastern Sinai and the Eastern Desert using remote sensing, geophysical and hydrogeological datasets as follows: (1) identification of the spatial and temporal rainfall events using meteorological station data and Tropical Rainfall Measuring Mission data; (2) delineation of major faults and shear zones using ALOS Palsar, Landsat 8 and ASTER images, geological maps and field investigation; (3) generation of a normalized difference ratio image using Envisat radar images before and after the rain events to identify preferential water-channeling discontinuities in the crystalline terrain; (4) analysis of well data and derivations of hydrological parameters; (5) validation of the water-channeling discontinuities using Very Low Frequency, testing the structural elements (pre-delineated by remote sensing data) and their depth using gravity, magnetic and Vertical Electrical Sounding methods; (6) generation of regional groundwater flow and isotopic (18O and 2H) distribution maps for the sedimentary aquifer and an approximation flow map for the crystalline aquifer. The outputs include: (1) a conceptual/physical model for the groundwater flow in fractured crystalline and sedimentary aquifers; (2) locations of suggested new wells in light of the findings.
Geological Features Mapping Using PALSAR-2 Data in Kelantan River Basin, Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Pour, A. B.; Hashim, M.
2016-09-01
In this study, the recently launched Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) onboard the Advanced Land Observing Satellite-2 (ALOS-2), remote sensing data were used to map geologic structural and topographical features in the Kelantan river basin for identification of high potential risk and susceptible zones for landslides and flooding areas. A ScanSAR and two fine mode dual polarization level 3.1 images cover Kelantan state were processed for comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. Red-Green-Blue (RGB) colour-composite was applied to different polarization channels of PALSAR-2 data to extract variety of geological information. Directional convolution filters were applied to the data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results derived from ScanSAR image indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. Combination of different polarization channels produced image maps contain important information related to water bodies, wetlands and lithological units for the Kelantan state using fine mode observation data. The N-S, NE-SW and NNE-SSW lineament trends were identified in the study area using directional filtering. Dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan river basin. The analysis of field investigations data indicate that many of flooded areas were associated with high potential risk zones for hydro-geological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topograghy regions. Numerous landslide points were located in rectangular drainage system that associated with topographic slope of metamorphic and Quaternary rock units. Some large landslides were associated with N-S, NNE-SSW and NE-SW trending fault zones. Consequently, structural and topographical geology maps were produced for Kelantan river basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydro-geological hazards.
NASA Astrophysics Data System (ADS)
Snidero, M.; Amilibia, A.; Gratacos, O.; Muñoz, J. A.
2009-04-01
This work presents a methodological workflow for the 3D reconstruction of geological surfaces at regional scale, based on remote sensing data and geological maps. This workflow has been tested on the reconstruction of the Anaran anticline, located in the Zagros Fold and Thrust belt mountain front. The used remote sensing data-set is a combination of Aster and Spot images as well as a high resolution digital elevation model. A consistent spatial positioning of the complete data-set in a 3D environment is necessary to obtain satisfactory results during the reconstruction. The Aster images have been processed by the Optimum Index Factor (OIF) technique, in order to facilitate the geological mapping. By pansharpening of the resulting Aster image with the SPOT panchromatic one we obtain the final high-resolution image used during the 3D mapping. Structural data (dip data) has been acquired through the analysis of the 3D mapped geological traces. Structural analysis of the resulting data-set allows us to divide the structure in different cylindrical domains. Related plunge lines orientation has been used to project data along the structure, covering areas with little or no information. Once a satisfactory dataset has been acquired, we reconstruct a selected horizon following the dip-domain concept. By manual editing, the obtained surfaces have been adjusted to the mapped geological limits as well as to the modeled faults. With the implementation of the Discrete Smooth Interpolation (DSI) algorithm, the final surfaces have been reconstructed along the anticline. Up to date the results demonstrate that the proposed methodology is a powerful tool for 3D reconstruction of geological surfaces when working with remote sensing data, in very inaccessible areas (eg. Iran, China, Africa). It is especially useful in semiarid regions where the structure strongly controls the topography. The reconstructed surfaces clearly show the geometry in the different sectors of the structure: presence of a back thrust affecting the back limb in the southern part of the anticline, the geometry of the grabens located along the anticline crest, the crosscutting relationship in the north-south faulted zone with the main thrust, the northern dome periclinal closure.
NASA Technical Reports Server (NTRS)
1976-01-01
Abstracts related to remote sensing instrumentation and techniques, and to the remote sensing of natural resources are presented by the Technology Application Center at the University of New Mexico. Areas of interest included theory, general surveys, and miscellaneous studies; geology and hydrology; agriculture and forestry; marine sciences; and urban and land use. An alphabetically arranged Author/Key Word index is provided.
NASA Astrophysics Data System (ADS)
Hassan, Safaa M.; El kazzaz, Yahiya A.; Taha, Maysa M. N.; Mohammad, Abdullah T.
2017-07-01
Meatiq dome is one of the mysteries of the basement rocks in Central Eastern Desert (CED) of Egypt. Its mode of formation, and tectonic evolution are still controversial and not fully understood. Satellite remote sensing is a powerful tool for geologic applications, especially in inaccessible regions of the Earth's surface. In this study, three proposed Landsat-8 band ratios (6/2, 6/7, (6/4*4/3)), (6/7, 6/4, 4/2), and (7/5, 7/6, 5/3) are successfully used for detailed geological mapping of the different lithological rock units exposed in Meatiq dome area in the CED. Landsat-8 Principal component (PC) images is also used for refinement the boundaries between the widely-exposed rock units in the study area. Fourteen spectral bands of Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) data are successfully used to emphasize the distribution of some rock forming minerals (i.e. muscovite, quartz, ferrous oxides, ferrous silicates and hydroxyl-bearing minerals) in the lithological rock units of Meatiq dome area. ASTER muscovite index (B7/B6) and quartz index (B14/B12), ferrous iron index (B5/B3), ferrous silicates index (B5/B4), mafic index (B12/B13) and hydroxyl-bearing minerals index ((B7/B6)*(B4/B6)) discriminate muscovite bearing rocks, Granitoids, and other felsic rocks, amphibolite and other mafic rocks. The proposed image processing methods effectively discriminates between four granitic varieties existed in Meatiq area. They are namely; Abu Ziran, Ariki, Fawakhir and Atalla Plutons. This study reveals that the applied data of ASTER and Landsat-8 enhanced images produced a modified geological map with well emphasized rock units which are verified with field observations, and petrographic study.
The landslide susceptibility mapping and assessment with ZY satellite data
NASA Astrophysics Data System (ADS)
Zhang, R.; Zhang, Z.; Zhao, Y.
2012-12-01
Natural hazards can result in enormous property damage and casualties in mountainous regions. In China, the direct loss of hazards is about 400 million yuan in 2011. Especially the landslide, the most common natural hazards, got the wide attention of each country. Landslide susceptibility mapping is of great importance for landslide hazard mitigation efforts throughout the world. In Southwest Hubei, there are much mineral mining activities, which may trigger the landslide. In addition the Three Gorges reservoir is located in this area, and the storage changed the geological and hydrological environment, which may increase the frequency of the ancient landslide reactivation, and the new landslide occurrence. There are more than 200 landslide hazards happened since 2003. So producing a regional-scaled landslide susceptibility map is necessary. For the above purpose, the landslide susceptibility mapping was produced by using the ZY-3 and ZY-1-02C satellite data, the DEMs and the conventional topographic data.(1) The DEM derivatives slope gradient, the slope aspect and the topographic wetness index (TWI) ; (2) in order to acquire the spatially continuous vegetation information, Normalized Difference Vegetation Index (NDVI) was computed using ZY-1-02C and ZY-3; (3) the regional lithologic information (i.e. mineral distribution) and the tectonic information obtained from remote sensing data in combination with regional geological survey; (4) the regional hydrogeological information was produced by using the remote sensing data in combination with the DEMs; (5) the existed landslides information obtained from remote sensing. To model the landslide hazard assessment using variety of statistic methods and evaluation methods, the cross application model yields reasonable results which can be applied for preliminary landslide hazard mapping and the hazard grade division.
NASA Astrophysics Data System (ADS)
Guardo, Roberto; De Siena, Luca
2017-04-01
The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.
Detecting Suspended Sediments from Remote Sensed Data in the Northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Hardin, D. M.; Graves, S. J.; Hawkins, L.; He, M.; Smith, T.; Drewry, M.; Ebersole, S.; Travis, A.; Thorn, J.; Brown, B.
2012-12-01
The Sediment Analysis Network for Decision Support (SANDS) project utilized remotely sensed data from Landsat and MODIS, both prior and following landfall, to investigate suspended sediment and sediment redistribution. The satellite imagery was enhanced by applying a combination of cluster busting and classification techniques to color and infrared bands. Results from the process show patterns associated with sediment transport and deposition related to coastal processes, storm-related sediment transport, post-storm pollutant transport, and sediment-current interactions. Imagery prior to landfall and following landfall are shown to the left for Landsat and to the right for MODIS. Scientific analysis and production of enhanced imagery was conducted by the Geological Survey of Alabama. The Information Technology and Systems Center at the University of Alabama in Huntsville was responsible for data acquisition, development of the SANDS data portal and the archive and distribution through the Global Hydrology Resource Center, one of NASA's Earth Science Data Centers . SANDs data may be obtained from the GHRC at ghrc.nsstc.nasa.gov and from the SANDS data portal at sands.itsc.uah.edu. This project was funded by the NASA Applied Sciences Division
A bibliography of planetary geology principal investigators and their associates, 1981 - 1982
NASA Technical Reports Server (NTRS)
Plescia, J. B. (Compiler)
1982-01-01
Over 800 publications submitted by researchers supported through NASA's Planetary Geology Program are cited and an author/editor index is provided. Entries are listed under the following subjects: (1) general interest topics; (2) solar system, comets, asteroids, and small bodies; (3) geologic mapping, geomorphology, and stratigraphy; (4) structure, tectonics, geologic and geophysical evolution; (5) impact craters: morphology, density, and geologic studies; (6) volcanism; (7) fluvial, mass wasting, and periglacial processes; (8) Eolian studies; (9) regolith, volatile, atmosphere, and climate; (10) remote sensing, radar, and photometry; and (11) cartography, photogrammetry, geodesy, and altimetry.
Adding Value: A GIS Minor to Complement the Geology Major
NASA Astrophysics Data System (ADS)
Rhodes, D. D.
2008-12-01
Geographic Information Systems (GIS) has proven to be a valuable addition to the geology curriculum at Georgia Southern University. The Department of Geology and Geography offers course work in GIS required for the geography major and has used these courses to create a minor in GIS. Approximately half the students graduating with degrees in geology during the last 5 years have taken the GIS minor. A working knowledge of GIS has helped students secure summer employment and internships. For some of them it was the key to immediate employment upon graduation and for others it was a valuable additional skill to present as part of graduate school applications. Although once daunting in the financial and intellectual capital required to create a program, GIS software has become much more user friendly and standard PCs are now the platform on which most GIS work is conducted. Georgia Southern's GIS minor is based on five courses taught by four members of the faculty (3 geographers and 1 geologist). The foundation of the minor is two courses integrating the fundamentals of GIS and cartography. The other three courses cover data bases and web-based applications of GIS, remote sensing, and a semester long project in applied GIS. Although missing topics that are part of the curriculum for certificates or degrees in GIS, this five-course sequence provides a sound basis for introductory level positions in government and industry and graduate programs in geology.
NASA Technical Reports Server (NTRS)
Jolliff, B.; Moersch, J.; Knoll, A.; Morris, R.; Arvidson, R.; Gilmore, M.; Greeley, R.; Herkenhoff, K.; McSween, H.; Squyres, S.
2000-01-01
Tests of the FIDO (Field Integration Design and Operations) rover and Athena-like operational scenarios were conducted May 7-16, 2000. A group located at the Jet Propulsion Lab, Pasadena, CA, formed the Core Operations Team (COT) that designed experiments and command sequences while another team tracked, maintained, and secured the rover in the field. The COT had no knowledge of the specific field location, thus the tests were done "blind." In addition to FIDO rover instrumentation, the COT had access to LANDSAT 7, TIMS, and AVIRIS regional coverage and color descent images. Using data from the FIDO instruments, primarily a color microscopic imager (CMI), infrared point spectrometer (IPS; 1.5-2.4 microns), and a three-color stereo panoramic camera (Pancam), the COT correlated lithologic features (mineralogy, rock types) from the simulated landing site to a regional scale. The May test results provide an example of how to relate site geology from landed rover investigations to the regional geology using remote sensing. The capability to relate mineralogic signatures using the point IR spectrometer to remotely sensed, multispectral or hyperspectral data proved to be key to integration of the in-situ and remote data. This exercise demonstrated the potential synergy between lander-based and orbital data, and highlighted the need to investigate a landing site in detail and at multiple scales.
NASA Astrophysics Data System (ADS)
Shavers, E. J.; Ghulam, A.; Encarnacion, J. P.
2016-12-01
Spectroscopic reflectance in the visible to short-wave infrared region is an important tool for remote geologic mapping and is applied at scales from satellite to field measurements. Remote geologic mapping is challenging in regions subject to significant surficial weathering. Here we identify absorption features found in altered volcanic pipes and dikes in the Avon Volcanic District, Missouri, that are inherited from the original ultramafic and carbonatite lithology. Alteration ranges from small degree hydrothermal alteration to extensive laterization. The absorption features are three broad minima centered near 690, 890, and 1100 nm. Features in this region are recognized to be caused by ferric and ferrous Fe minerals including olivine, carbonates, chlorite, and goethite all of which are found among the Avon pipes and dikes that are in various stages of alteration. Iron-related intervalence charge transfer and crystal field perturbations of ions are the principal causes of the spectroscopic features in the visible to near-infrared region yet spectra are also distorted by factors like texture and the presence of opaque minerals known to reduce overall reflectance. In the Avon samples, Fe oxide content can reach >15 wt% leading to prominent absorption features even in the less altered ultramafics with reflectance curve maxima as low as 5%. The exaggerated minima allow the altered intrusive rocks to stand out among other weathered lithologies that will often have clay features in the region yet have lower iron concentration. The absorption feature centered near 690 nm is particularly noteworthy. Broad mineral-related absorption features centered at this wavelength are rare but have been linked to Ti3+ in octahedral coordination. The reduced form of Ti is not common in surface lithologies. Titanium-rich andradite has Ti3+ in the octahedral position, is resistant to weathering, is found among the Avon lithologies including ultramafic, carbonatite, and carbonated breccia, and is identified here as the cause of the 690 nm absorption feature. The Ti3+ absorption feature centered near 690 nm and strong Fe absorption features at 890 and 1100 nm may be useful indicators of rare intrusive lithologies in remote geologic mapping.
NASA Astrophysics Data System (ADS)
Forney, W.; Bernknopf, R. L.; Mishra, S.; Raunikar, R. P.
2011-12-01
William M. Forney1*, Richard L. Bernknopf1, Shruti K. Mishra2, Ronald P. Raunikar1. 1=Western Geographic Science Center, US Geological Survey, Menlo Park, California. 2=Contractor, Western Geographic Science Center, US Geological Survey, Menlo Park, California *=Contact author, wforney@usgs.gov, 650-329-4237. Does remote sensing information provide economic benefits to society and can those benefits be valued? Can resource management and policy be better informed by coupling past and present earth observations with groundwater nitrate measurements? Using an integrated assessment approach, the USGS's research applies an established conceptual framework to answer these questions as well as estimate the value of information (VOI) for remote sensing imagery. The approach uses moderate resolution land imagery (MRLI) data from the Landsat and Advanced Wide Field Sensor satellites that has been classified by the National Agricultural Statistics Service into the Cropland Data Layer (CDL). Within the constraint of the US Environmental Protection Agency's public health threshold for potable groundwater resources, we model the relationship between a population of the CDL's land uses and the evolution of nitrate (NO3-) contamination of aquifers in a case study region in northeastern Iowa. Using source data from the Iowa Department of Natural Resources and the USGS's National Water Quality Assessment Program, the approach uses multi-scaled, environmental science models to address dynamic, biophysical process models of nitrogen fate and transport at specific sites (wells) and at landscape scale (35 counties) in order to assess groundwater vulnerability. In addition to the ecosystem service of potable groundwater, this effort focuses on particular agricultural goods and land uses: corn, soybeans and livestock manure management. Results of this four-year study will be presented, including: 1) the integrated models of the assessment approach, 2) mapping the range of vulnerabilities across the region, and 3) considerations of improved nitrogen and crop management. Finally, utilizing both a situation where society does not have access to MRLI, and an enhanced land use scenario based on plausible, future regulatory and policy frameworks and continued availability of MRLI, estimates of the incremental increase in the MRLI's VOI are presented.
NASA Technical Reports Server (NTRS)
Alexander, S. S. (Principal Investigator)
1982-01-01
Characteristic traits for earthquakes associated with strike-slip motion in Central California and the Salton Sea area, as revealed in ground based studies and LANDSAT imagery, were compared. The mapped lineaments are found to be oriented in several dominant directions. One direction is the same as the trend of the San Andreas fault. The other directions differ from area to area and may reflect the stresses of earlier geologic processes. The pattern of lineament orientations is significantly LANDSAT MSS data, SEASAT synthetic aperture radar data, and magnetic field data from the South Mountain area west of Gettysburg, Pennsylvania were registered to match each other in spatial position and merged. Pattern recognition techniques were applied to the composite data set to determine its utility in recognizing different rock types and structures in vegetated terrain around South Mountain. With the use of a texture algorithm to enhance geologic features, a classification of the entire area was made. A test of the correlation between SAR tone and texture, LANDSAT tone and texture, and magnetic field data revealed no tone or texture measures linking any two of the original data sets.
Staff - Jacquelyn R. Overbeck | Alaska Division of Geological & Geophysical
Tidal Datum Portal Climate and Cryosphere Hazards Coastal Hazards Program Guide to Geologic Hazards in main content Jacquelyn R. Overbeck Jacquelyn R. Overbeck Geomorphology, coastal hazards, remote sensing University, Environmental Science Projects and/or Research Interests As the project manager for the Coastal
NASA Astrophysics Data System (ADS)
Beiranvand Pour, Amin; Hashim, Mazlan
2017-07-01
Identification of high potential risk and susceptible zones for natural hazards of geological origin is one of the most important applications of advanced remote sensing technology. Yearly, several landslides occur during heavy monsoon rainfall in Kelantan River basin, Peninsular Malaysia. Flooding and subsequent landslide occurrences generated significant damage to livestock, agricultural produce, homes and businesses in the Kelantan River basin. In this study, remote sensing data from the recently launched Landsat-8 and Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) on board the Advanced Land Observing Satellite-2 (ALOS-2) were used to map geologic structural and topographical features in the Kelantan River basin for identification of high potential risk and susceptible zones for landslides and flooding areas. The data were processed for a comprehensive analysis of major geological structures and detailed characterizations of lineaments, drainage patterns and lithology at both regional and district scales. The analytical hierarchy process (AHP) approach was used for landslide susceptibility mapping. Several factors such as slope, aspect, soil, lithology, normalized difference vegetation index (NDVI), land cover, distance to drainage, precipitation, distance to fault and distance to the road were extracted from remote sensing satellite data and fieldwork to apply the AHP approach. Directional convolution filters were applied to ALOS-2 data for identifying linear features in particular directions and edge enhancement in the spatial domain. Results indicate that lineament occurrence at regional scale was mainly linked to the N-S trending of the Bentong-Raub Suture Zone (BRSZ) in the west and Lebir Fault Zone in the east of the Kelantan state. The combination of different polarization channels produced image maps that contain important information related to water bodies, wetlands and lithological units. The N-S, NE-SW and NNE-SSW lineament trends and dendritic, sub-dendritic and rectangular drainage patterns were detected in the Kelantan River basin. The analysis of field investigation data indicates that many of flooded areas were associated with high potential risk zones for hydrogeological hazards such as wetlands, urban areas, floodplain scroll, meander bend, dendritic and sub-dendritic drainage patterns, which are located in flat topographic regions. Numerous landslide points were located in a rectangular drainage system that is associated with a topographic slope of metamorphic and quaternary rock units. Consequently, structural and topographical geology maps were produced for Kelantan River basin using PALSAR-2 data, which could be broadly applicable for landslide hazard mapping and identification of high potential risk zone for hydrogeological hazards. Geohazard mitigation programs could be conducted in the landslide recurrence regions and flooded areas to reduce natural catastrophes leading to loss of life and financial investments in the Kelantan River basin. In this investigation, Landsat-8 and ALOS-2 have proven to successfully provide advanced Earth observation satellite data for disaster monitoring in tropical environments.
Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data
2011-09-30
Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215
Literature review of the remote sensing of natural resources. [bibliography
NASA Technical Reports Server (NTRS)
Fears, C. B. (Editor); Inglis, M. H. (Editor)
1977-01-01
Abstracts of 596 documents related to remote sensors or the remote sensing of natural resources by satellite, aircraft, or ground-based stations are presented. Topics covered include general theory, geology and hydrology, agriculture and forestry, marine sciences, urban land use, and instrumentation. Recent documents not yet cited in any of the seven information sources used for the compilation are summarized. An author/key word index is provided.
NASA Technical Reports Server (NTRS)
Nascimento, F. S. D. (Principal Investigator); Nascimento, M. A. L. S. D.
1977-01-01
The author has identified the following significant results. Results showed that the black and white aerial photographs and the color infrared transparencies were efficient for mapping of three lithological units of the Paraopeba formation and for mineralized zones identification, respectively. Multispectral transparencies of I2S made it easier to separate dolomites, which were the rocks conditioning zinc and lead mineralization. Statistical analysis of morphometric indexes obtained from black and white photographs and topographic charts showed significant difference among three lithological units of Paraopeba formation which can be defined as Crest, Hilly, and Karstic reliefs.
Role of remote sensing in Bay measurements
NASA Technical Reports Server (NTRS)
Mugler, J. P., Jr.; Godfrey, J. P.; Hickman, G. D.; Hovis, W. G.; Pearson, A. O.; Weaver, K. N.
1978-01-01
Remote measurements of a number of surface or near surface parameters for baseline definition and specialized studies, remote measurements of episodic events, and remote measurements of the Bay lithosphere are considered in terms of characterizing and understanding the ecology of the Chesapeake Bay. Geologic processes and features best suited for information enhancement by remote sensing methods are identified. These include: (1) rates of sedimentation in the Bay; (2) rates of erosion of Bay shorelines; (3) spatial distribution and geometry of aquifers; (4) mapping of Karst terrain (sinkholes); and (5) mapping of fracture patterns. Recommendations for studying problem areas identified are given.
NASA Astrophysics Data System (ADS)
Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele
2016-10-01
The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.
Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters
NASA Technical Reports Server (NTRS)
Eppler, Dean B.
2010-01-01
The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.
Meta Data Mining in Earth Remote Sensing Data Archives
NASA Astrophysics Data System (ADS)
Davis, B.; Steinwand, D.
2014-12-01
Modern search and discovery tools for satellite based remote sensing data are often catalog based and rely on query systems which use scene- (or granule-) based meta data for those queries. While these traditional catalog systems are often robust, very little has been done in the way of meta data mining to aid in the search and discovery process. The recently coined term "Big Data" can be applied in the remote sensing world's efforts to derive information from the vast data holdings of satellite based land remote sensing data. Large catalog-based search and discovery systems such as the United States Geological Survey's Earth Explorer system and the NASA Earth Observing System Data and Information System's Reverb-ECHO system provide comprehensive access to these data holdings, but do little to expose the underlying scene-based meta data. These catalog-based systems are extremely flexible, but are manually intensive and often require a high level of user expertise. Exposing scene-based meta data to external, web-based services can enable machine-driven queries to aid in the search and discovery process. Furthermore, services which expose additional scene-based content data (such as product quality information) are now available and can provide a "deeper look" into remote sensing data archives too large for efficient manual search methods. This presentation shows examples of the mining of Landsat and Aster scene-based meta data, and an experimental service using OPeNDAP to extract information from quality band from multiple granules in the MODIS archive.
Apollo 16 landing site: Summary of earth based remote sensing data, part W
NASA Technical Reports Server (NTRS)
Zisk, S. H.; Masursky, H.; Milton, D. J.; Schaber, G. G.; Shorthill, R. W.; Thompson, T. W.
1972-01-01
Infrared and radar studies of the Apollo 16 landing site are summarized. Correlations and comparisons between earth based remote sensing data, IR observations, and other data are discussed in detail. Remote sensing studies were devoted to solving two problems: (1) determining the physical difference between Cayley and Descartes geologic units near the landing site; and (2) determining the nature of the bright unit of Descartes mountain material.
Reports of Planetary Geology and Geophysics Program, 1984
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler); Watters, T. R. (Compiler)
1985-01-01
Topics include outer planets and satellites; asteroids and comets; Venus; lunar origin and solar dynamics; cratering process; planetary interiors, petrology, and geochemistry; volcanic processes; aeolian processes and landforms; fluvial processes; geomorphology; periglacial and permafrost processes; remote sensing and regolith studies; structure, tectonics, and stratigraphy; geological mapping, cartography, and geodesy; and radar applications.
Exploration for fossil and nuclear fuels from orbital altitudes
NASA Technical Reports Server (NTRS)
Short, N. M.
1977-01-01
The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.
Robotic Lunar Rover Technologies and SEI Supporting Technologies at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klarer, Paul R.
1992-01-01
Existing robotic rover technologies at Sandia National Laboratories (SNL) can be applied toward the realization of a robotic lunar rover mission in the near term. Recent activities at the SNL-RVR have demonstrated the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low-data-rate teleoperation, multivehicle control, remote site and sample inspection, standard bandwidth stereo vision, and autonomous path following based on both internal dead reckoning and an external position location update system. These activities serve to support the use of robotic rovers for an early return to the lunar surface by demonstrating capabilities that are attainable with off-the-shelf technology and existing control techniques. The breadth of technical activities at SNL provides many supporting technology areas for robotic rover development. These range from core competency areas and microsensor fabrication facilities, to actual space qualification of flight components that are designed and fabricated in-house.
Report to the National Park Service for Permit LAKE-2014-SCI-002
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnley, Pamela C.
The overall purpose of the study is to determine how to use existing geologic data to predict gamma-ray background levels as measured during aerial radiological surveys. Aerial radiological surveys have typically been for resource exploration purposes but are now also used for homeland security purposes and nuclear disaster assessment as well as determining the depth of snowpack. Foreknowledge of the background measured during aerial radiological survey will be valuable for all the above applications. The gamma-ray background comes from the rocks and soil within the first 30 cm of the earth’s surface in the area where the survey is beingmore » made. The background should therefore be predictable based on an understanding of the distribution and geochemistry of the rocks on the surface. We are using a combination of geologic maps, remote sensing imagery and geochemical data from existing databases and the scientific literature to develop a method for predicting gamma-ray backgrounds. As part of this project we have an opportunity to ground truth our technique along a survey calibration line near Lake Mojave that is used by the Remote Sensing Lab (RSL) of National Security Technologies, LLC (NSTec). RSL makes aerial measurements along this line on a regular basis, so the aerial background in the area is well known. By making ground-based measurements of the gamma-ray background and detailed observations of the geology of the ground surface as well as local topography we will have the data we need to make corrections to the models we build based on the remote sensing and geologic data. Our project involves collaborators from the Airborne Geophysics Section of the Geological Survey of Canada as well as from NSTec’s RSL. Findings« less
Zisk, S.H.; Hodges, C.A.; Moore, H.J.; Shorthill, R.W.; Thompson, T.W.; Whitaker, E.A.; Wilhelms, D.E.
1977-01-01
The region including the Aristarchus Plateau and Montes Harbinger is probably the most diverse, geologically, of any area of comparble size on the Moon. This part of the northwest quadrant of the lunar near side includes unique dark mantling material; both the densest concentration and the largest of the sinuous rilles; apparent volcanic vents, sinks, and domes; mare materials of various ages and colors; one of the freshest large craters (Aristarchus) with ejecta having unique colors and albedos; and three other large craters in different states of flooding and degradation (krieger, Herodotus, and Prinz). The three best-authenticated lunar transient phenomena were also observed here. This study is based principally on photographic and remote sensing observations made from Earth and Apollo orbiting space craft. Results include (1) delineation of geologic map units and their stratigraphic relationships; (2) discussion of the complex interrelationships between materials of volcanic and impact origin, including the effects of excavation, redistribution and mixing of previously deposited materials by younger impact craters; (3) deduction of physical and chemical properties of certain of the geologic units, based on both the remote-sensing information and on extrapolation of Apollo data to this area; and (4) development of a detailed geologic history of the region, outlining the probable sequence of events that resulted in its present appearance. A primary concern of the investigation has been anomalous red dark mantle on the Plateau. Based on an integration of Earth- and lunar orbit-based data, this layer seems to consist of fine-grained, block-free material containing a relatively large fraction of orange glass. It is probably of pyroclastic origin, laid down at some time during the Imbrian period of mare flooding. ?? 1977 D. Reidel Publishing Company.
NASA Astrophysics Data System (ADS)
Kavoura, K.; Kordouli, M.; Nikolakopoulos, K.; Elias, P.; Sykioti, O.; Tsagaris, V.; Drakatos, G.; Rondoyanni, Th.; Tsiambaos, G.; Sabatakakis, N.; Anastasopoulos, V.
2014-08-01
Landslide phenomena constitute a major geological hazard in Greece and especially in the western part of the country as a result of anthropogenic activities, growing urbanization and uncontrolled land - use. More frequent triggering events and increased susceptibility of the ground surface to instabilities as consequence of climate change impacts (continued deforestation mainly due to the devastating forest wildfires and extreme meteorological events) have also increased the landslide risk. The studied landslide occurrence named "Platanos" has been selected within the framework of "Landslide Vulnerability Model - LAVMO" project that aims at creating a persistently updated electronic platform assessing risks related with landslides. It is a coastal area situated between Korinthos and Patras at the northwestern part of the elongated graben of the Corinth Gulf. The paper presents the combined use of geological-geotechnical insitu data, remote sensing data and GIS techniques for the evaluation of a subsurface geological model. High accuracy Digital Surface Model (DSM), airphotos mosaic and satellite data, with a spatial resolution of 0.5m were used for an othophoto base map compilation of the study area. Geological - geotechnical data obtained from exploratory boreholes were digitized and implemented in a GIS platform with engineering geological maps for a three - dimensional subsurface model evaluation. This model is provided for being combined with inclinometer measurements for sliding surface location through the instability zone.
A number of existing and new remote sensing data provide images of areas ranging from small communities to continents. These images provide views on a wide range of physical features in the landscape, including vegetation, road infrastructure, urban areas, geology, soils, and wa...
In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...
U.S. Geological Survey, remote sensing, and geoscience data: Using standards to serve us all
Benson, Michael G.; Faundeen, John L.
2000-01-01
The U.S. Geological Survey (USGS) advocates the use of standards with geosciences and remotely sensed data and metadata for its own purposes and those of its customers. In activities that range from archiving data to making a product, the incorporation of standards makes these functions repeatable and understandable. More important, when accepted standards are followed, data discovery and sharing can be more efficient and the overall value to society can be expanded. The USGS archives many terabytes of digital geoscience and remotely sensed data. Several million photographs are also available to the research community. To manage these vast holdings and ensure that strict preservation and high usability criteria are observed, the USGS uses standards within the archival, data management, public access and ordering, and data distribution areas. The USGS uses Federal and international standards in performing its role as the U.S. National Satellite Land Remote Sensing Data Archive and in its mission as the long-term archive and production center for aerial photographs and cartographic data covering the United States.
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
Environmental mapping and monitoring of Iceland by remote sensing (EMMIRS)
NASA Astrophysics Data System (ADS)
Pedersen, Gro B. M.; Vilmundardóttir, Olga K.; Falco, Nicola; Sigurmundsson, Friðþór S.; Rustowicz, Rose; Belart, Joaquin M.-C.; Gísladóttir, Gudrun; Benediktsson, Jón A.
2016-04-01
Iceland is exposed to rapid and dynamic landscape changes caused by natural processes and man-made activities, which impact and challenge the country. Fast and reliable mapping and monitoring techniques are needed on a big spatial scale. However, currently there is lack of operational advanced information processing techniques, which are needed for end-users to incorporate remote sensing (RS) data from multiple data sources. Hence, the full potential of the recent RS data explosion is not being fully exploited. The project Environmental Mapping and Monitoring of Iceland by Remote Sensing (EMMIRS) bridges the gap between advanced information processing capabilities and end-user mapping of the Icelandic environment. This is done by a multidisciplinary assessment of two selected remote sensing super sites, Hekla and Öræfajökull, which encompass many of the rapid natural and man-made landscape changes that Iceland is exposed to. An open-access benchmark repository of the two remote sensing supersites is under construction, providing high-resolution LIDAR topography and hyperspectral data for land-cover and landform classification. Furthermore, a multi-temporal and multi-source archive stretching back to 1945 allows a decadal evaluation of landscape and ecological changes for the two remote sensing super sites by the development of automated change detection techniques. The development of innovative pattern recognition and machine learning-based approaches to image classification and change detection is one of the main tasks of the EMMIRS project, aiming to extract and compute earth observation variables as automatically as possible. Ground reference data collected through a field campaign will be used to validate the implemented methods, which outputs are then inferred with geological and vegetation models. Here, preliminary results of an automatic land-cover classification based on hyperspectral image analysis are reported. Furthermore, the EMMIRS project investigates the complex landscape dynamics between geological and ecological processes. This is done through cross-correlation of mapping results and implementation of modelling techniques that simulate geological and ecological processes in order to extrapolate the landscape evolution
The U.S. Geological Survey Land Remote Sensing Program
,
2003-01-01
In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.
NASA Astrophysics Data System (ADS)
Nikolakopoulos, Konstantinos; Depountis, Nikolaos; Vagenas, Nikolaos; Kavoura, Katerina; Vlaxaki, Eleni; Kelasidis, George; Sabatakakis, Nikolaos
2015-06-01
In this paper a specific example of the synergistic use of geotechnical survey, remote sensing data and GIS for rockfall risk evaluation is presented. The study area is located in Western Greece. Extensive rockfalls have been recorded along Patras - Ioannina highway just after the cable-stayed bridge of Rio-Antirrio, at Klokova site. The rockfalls include medium- sized limestone boulders with volume up to 1.5m3. A detailed engineering geological survey was conducted including rockmass characterization, laboratory testing and geological - geotechnical mapping. Many Rockfall trajectory simulations were done. Rockfall risk along the road was estimated using spatial analysis in a GIS environment.
Remote sensing studies of the geomorphology of Surtsey, 1987-1991
Garvin, James B.; Williams, R. S.
1992-01-01
The volcanic island of Surtsey, formed by explosive submarine and effusive subaerial eruptions between November 1963 and June 1967, consists of a complex combination of primary and redeposited tephra and alkaline olivine basalt lava flows in a 2.5 km2 area (Thorarinsson, 1967; Thorarinsson et al., 1964; Fridriksson, 1975). During the past 24 years, wave and wind erosion of this subaerial mid-ocean ridge (MOR) vent complex have modified Surtsey's coastal morphology, including the deposition of a 0.5 km-long northern peninsula (ness) composed of tephra and rounded lava fragments derived from the southern half of the island. Detailed geomorphologic and sedimentologic mapping of the various surface units now present on Surtsey has been accomplished throughout the history of the evolving island, most recently by Calles et al. (1980) and Ingolfsson (1980). On the basis of these studies, an effort to quantify the topographic characteristics of the primary geomorphic units on the island was initiated by the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) in 1987. The objective has been to directly measure the microtopographic properties of the widest range of surface types possible, with special emphasis on the pristine or dynamic types. While large-scale topographic maps of Surtsey were prepared in 1968 and 1975 (Norrman, 1980; Norrman and Erlingsson, 1991; Calles et al, 1980), and geodetic leveling surveys have been carried out (Moore, 1980), there have been no recent attempts to geodetically determine the local topography of the island. Because of the rapid rates of geomorphic processes, such as erosion and deposition, on a small, geologically isolated volcanic island such as Surtsey, it is desirable to determine the meter-scale topographic character of its surface units and landforms, and later a remeasurement of the same surfaces to further quantify volumetric change, subsidence, and process rates. In addition, precise measurements of sub-meter-scale topography of pristine geologic surfaces provides necessary data for the investigation of whether various geologic processes demonstrate fractal or self-affine behavior at a range of length-scales within the interval 0.1 in to 1 km. Thus Surtsey offers a unique opportunity to apply new remote sensing techniques to the measurement of the evolving surface "roughness" characteristics of pristine geologic surfaces within an historically well-monitored environment.
NASA Technical Reports Server (NTRS)
Witbeck, N. E. (Editor)
1984-01-01
A compilation is given of selected bibliographic data specifically relating to recent publications submitted by principle investigators and their associates, supported through NASA's Office of Space Science and Applications, Solar System Exploration Division, Planetary Geology and Geophysics Program. Topics include the solar system, asteroids, volcanoes, stratigraphy, remote sensing, and planetary craters.
U.S. Geological Survey Aids Federal Agencies in ObtainingCommercial Satellite and Aerial Imagery
,
2005-01-01
The U.S. Geological Survey (USGS) is a leading U.S. Federal civil agency in the implementation of the civil aspects of the Commercial Remote Sensing Space Policy (CRSSP). The USGS is responsible for collecting inter-agency near-term requirements, establishing an operational infrastructure, and supporting the policy and other Federal agencies.
NASA Astrophysics Data System (ADS)
Mwaniki, M. W.; Kuria, D. N.; Boitt, M. K.; Ngigi, T. G.
2017-04-01
Image enhancements lead to improved performance and increased accuracy of feature extraction, recognition, identification, classification and hence change detection. This increases the utility of remote sensing to suit environmental applications and aid disaster monitoring of geohazards involving large areas. The main aim of this study was to compare the effect of image enhancement applied to synthetic aperture radar (SAR) data and Landsat 8 imagery in landslide identification and mapping. The methodology involved pre-processing Landsat 8 imagery, image co-registration, despeckling of the SAR data, after which Landsat 8 imagery was enhanced by Principal and Independent Component Analysis (PCA and ICA), a spectral index involving bands 7 and 4, and using a False Colour Composite (FCC) with the components bearing the most geologic information. The SAR data were processed using textural and edge filters, and computation of SAR incoherence. The enhanced spatial, textural and edge information from the SAR data was incorporated to the spectral information from Landsat 8 imagery during the knowledge based classification. The methodology was tested in the central highlands of Kenya, characterized by rugged terrain and frequent rainfall induced landslides. The results showed that the SAR data complemented Landsat 8 data which had enriched spectral information afforded by the FCC with enhanced geologic information. The SAR classification depicted landslides along the ridges and lineaments, important information lacking in the Landsat 8 image classification. The success of landslide identification and classification was attributed to the enhanced geologic features by spectral, textural and roughness properties.
Remote sensing for site characterization
Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.; Kuehn, Friedrich; King, Trude V.; Hoerig, Bernhard; Peters, Douglas C.
2000-01-01
This volume, Remote Sensing for Site Characterization, describes the feasibility of aircraft- and satellite-based methods of revealing environmental-geological problems. A balanced ratio between explanations of the methodological/technical side and presentations of case studies is maintained. The comparison of case studies from North America and Germany show how the respective territorial conditions lead to distinct methodological approaches.
NASA Technical Reports Server (NTRS)
1990-01-01
Various papers on remote sensing (RS) for the nineties are presented. The general topics addressed include: subsurface methods, radar scattering, oceanography, microwave models, atmospheric correction, passive microwave systems, RS in tropical forests, moderate resolution land analysis, SAR geometry and SNR improvement, image analysis, inversion and signal processing for geoscience, surface scattering, rain measurements, sensor calibration, wind measurements, terrestrial ecology, agriculture, geometric registration, subsurface sediment geology, radar modulation mechanisms, radar ocean scattering, SAR calibration, airborne radar systems, water vapor retrieval, forest ecosystem dynamics, land analysis, multisensor data fusion. Also considered are: geologic RS, RS sensor optical measurements, RS of snow, temperature retrieval, vegetation structure, global change, artificial intelligence, SAR processing techniques, geologic RS field experiment, stochastic modeling, topography and Digital Elevation model, SAR ocean waves, spaceborne lidar and optical, sea ice field measurements, millimeter waves, advanced spectroscopy, spatial analysis and data compression, SAR polarimetry techniques. Also discussed are: plant canopy modeling, optical RS techniques, optical and IR oceanography, soil moisture, sea ice back scattering, lightning cloud measurements, spatial textural analysis, SAR systems and techniques, active microwave sensing, lidar and optical, radar scatterometry, RS of estuaries, vegetation modeling, RS systems, EOS/SAR Alaska, applications for developing countries, SAR speckle and texture.
Airborne and Ground-Based Optical Characterization of Legacy Underground Nuclear Test Sites
NASA Astrophysics Data System (ADS)
Vigil, S.; Craven, J.; Anderson, D.; Dzur, R.; Schultz-Fellenz, E. S.; Sussman, A. J.
2015-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is a U.S. security priority. Currently, global underground nuclear explosion monitoring relies on seismic and infrasound sensor networks to provide rapid initial detection of potential underground nuclear tests. While seismic and infrasound might be able to generally locate potential underground nuclear tests, additional sensing methods might be required to further pinpoint test site locations. Optical remote sensing is a robust approach for site location and characterization due to the ability it provides to search large areas relatively quickly, resolve surface features in fine detail, and perform these tasks non-intrusively. Optical remote sensing provides both cultural and surface geological information about a site, for example, operational infrastructure, surface fractures. Surface geological information, when combined with known or estimated subsurface geologic information, could provide clues concerning test parameters. We have characterized two legacy nuclear test sites on the Nevada National Security Site (NNSS), U20ak and U20az using helicopter-, ground- and unmanned aerial system-based RGB imagery and light detection and ranging (lidar) systems. The multi-faceted information garnered from these different sensing modalities has allowed us to build a knowledge base of how a nuclear test site might look when sensed remotely, and the standoff distances required to resolve important site characteristics.
Virtual Field Reconnaissance to enable multi-site collaboration in geoscience fieldwork in Chile.
NASA Astrophysics Data System (ADS)
Hughes, Leanne; Bateson, Luke; Ford, Jonathan; Napier, Bruce; Creixell, Christian; Contreras, Juan-Pablo; Vallette, Jane
2017-04-01
The unique challenges of geological mapping in remote terrains can make cross-organisation collaboration challenging. Cooperation between the British and Chilean Geological Surveys and the Chilean national mining company used the BGS digital Mapping Workflow and virtual field reconnaissance software (GeoVisionary) to undertake geological mapping in a complex area of Andean Geology. The international team undertook a pre-field evaluation using GeoVisionary to integrate massive volumes of data and interpret high resolution satellite imagery, terrain models and existing geological information to capture, manipulate and understand geological features and re-interpret existing maps. This digital interpretation was then taken into the field and verified using the BGS digital data capture system (SIGMA.mobile). This allowed the production of final geological interpretation and creation of a geological map. This presentation describes the digital mapping workflow used in Chile and highlights the key advantages of increased efficiency and communication to colleagues, stakeholders and funding bodies.
Jolliff, B.; Knoll, A.; Morris, R.V.; Moersch, J.; McSween, H.; Gilmore, M.; Arvidson, R.; Greeley, R.; Herkenhoff, K.; Squyres, S.
2002-01-01
Blind field tests of the Field Integration Design and Operations (FIDO) prototype Mars rover were carried out 7-16 May 2000. A Core Operations Team (COT), sequestered at the Jet Propulsion Laboratory without knowledge of test site location, prepared command sequences and interpreted data acquired by the rover. Instrument sensors included a stereo panoramic camera, navigational and hazard-avoidance cameras, a color microscopic imager, an infrared point spectrometer, and a rock coring drill. The COT designed command sequences, which were relayed by satellite uplink to the rover, and evaluated instrument data. Using aerial photos and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, and information from the rover sensors, the COT inferred the geology of the landing site during the 18 sol mission, including lithologic diversity, stratigraphic relationships, environments of deposition, and weathering characteristics. Prominent lithologic units were interpreted to be dolomite-bearing rocks, kaolinite-bearing altered felsic volcanic materials, and basalt. The color panoramic camera revealed sedimentary layering and rock textures, and geologic relationships seen in rock exposures. The infrared point spectrometer permitted identification of prominent carbonate and kaolinite spectral features and permitted correlations to outcrops that could not be reached by the rover. The color microscopic imager revealed fine-scale rock textures, soil components, and results of coring experiments. Test results show that close-up interrogation of rocks is essential to investigations of geologic environments and that observations must include scales ranging from individual boulders and outcrops (microscopic, macroscopic) to orbital remote sensing, with sufficient intermediate steps (descent images) to connect in situ and remote observations.
Efficiency Evaluation of Handling of Geologic-Geophysical Information by Means of Computer Systems
NASA Astrophysics Data System (ADS)
Nuriyahmetova, S. M.; Demyanova, O. V.; Zabirova, L. M.; Gataullin, I. I.; Fathutdinova, O. A.; Kaptelinina, E. A.
2018-05-01
Development of oil and gas resources, considering difficult geological, geographical and economic conditions, requires considerable finance costs; therefore their careful reasons, application of the most perspective directions and modern technologies from the point of view of cost efficiency of planned activities are necessary. For ensuring high precision of regional and local forecasts and modeling of reservoirs of fields of hydrocarbonic raw materials, it is necessary to analyze huge arrays of the distributed information which is constantly changing spatial. The solution of this task requires application of modern remote methods of a research of the perspective oil-and-gas territories, complex use of materials remote, nondestructive the environment of geologic-geophysical and space methods of sounding of Earth and the most perfect technologies of their handling. In the article, the authors considered experience of handling of geologic-geophysical information by means of computer systems by the Russian and foreign companies. Conclusions that the multidimensional analysis of geologicgeophysical information space, effective planning and monitoring of exploration works requires broad use of geoinformation technologies as one of the most perspective directions in achievement of high profitability of an oil and gas industry are drawn.
NASA Astrophysics Data System (ADS)
Opportunities to teach or perform postdoctoral research in the earth and atmospheric sciences under the Senior Scholar Fulbright awards program for 1984-1985 (Eos, March 1, 1983, p. 81) are available in 14 countries, according to the Council for International Exchange of Scholars.The countries and the specialization opportunities are Algeria, any specialization; Australia, mineral processing research; India, any specialization in geology or geophysics; Israel, environmental studies; Korea, any specialization; Lebanon, geophysics, geotectonics, and structural geology; Morocco, research methods in science education; Pakistan, geology, marine biology, and mineralogy; Poland, mining technology; Sudan, geology and remote sensing; Thailand, planning and environmental change; USSR, any specialization; Yugoslavia, any research specialization; and Zimbabwe, exploration geophysics and solid earth geophysics.
NASA Technical Reports Server (NTRS)
Longoria, J. F.; Jimenez, O. H.
1985-01-01
SIR-A imaging was used in geological studies of sedimentary terrains in the Sierra Madre Oriental, northeastern Mexico. Geological features such as regional strike and dip, bedding, folding and faulting were readily detected on the image. The recognition of morphostructural units in the imagery, coupled with field verification, enabled geological mapping of the region at the scale of 1:250 000. Structural profiling lead to the elaboration of a morphostructural map allowing the recognition of an echelon folds and field trends which were used to postulate the ectonic setting of the region.
Geological remote sensing in Africa
NASA Technical Reports Server (NTRS)
Sabins, Floyd F., Jr.; Bailey, G. Bryan; Abrams, Michael J.
1987-01-01
Programs using remote sensing to obtain geologic information in Africa are reviewed. Studies include the use of Landsat MSS data to evaluate petroleum resources in sedimentary rock terrains in Kenya and Sudan and the use of Landsat TM 30-m resolution data to search for mineral deposits in an ophiolite complex in Oman. Digitally enhanced multispectral SPOT data at a scale of 1:62,000 were used to map folds, faults, diapirs, bedding attitudes, and stratigraphic units in the Atlas Mountains in northern Algeria. In another study, SIR-A data over a vegetated and faulted area of Sierra Leone were compared with data collected by the Landsat MSS and TM systems. It was found that the lineaments on the SIR-A data were more easily detected.
United States Geological Survey (USGS) Natural Hazards Response
Lamb, Rynn M.; Jones, Brenda K.
2012-01-01
The primary goal of U.S. Geological Survey (USGS) Natural Hazards Response is to ensure that the disaster response community has access to timely, accurate, and relevant geospatial products, imagery, and services during and after an emergency event. To accomplish this goal, products and services provided by the National Geospatial Program (NGP) and Land Remote Sensing (LRS) Program serve as a geospatial framework for mapping activities of the emergency response community. Post-event imagery and analysis can provide important and timely information about the extent and severity of an event. USGS Natural Hazards Response will also support the coordination of remotely sensed data acquisitions, image distribution, and authoritative geospatial information production as required for use in disaster preparedness, response, and recovery operations.
Geologic and remote sensing studies of Rima Mozart
NASA Technical Reports Server (NTRS)
Coombs, Cassandra R.; Hawke, B. Ray; Wilson, Lionel
1988-01-01
Geologic, photographic, and remote sensing data on Rima Mozart are analyzed to study the processes responsible for the formation of lunar sinuous rilles. The results show that it is unlikely that a complete lava tube could have existed along the Rima Mozart rille. A total eruptive volume of 6372 cu km has been determined for an open channel or tube with an eruption rate of about 80,000 cu m/s and a duration of 947 days. Near-infrared spectral reflectance data and 2.8-cm and 70-cm radar observations indicate that volcanic activity was responsible for the formation of the rille and that pyroclastic deposits are present around Kathleen and Ann as well as at the base of the Apennines.
Carter, W.D.; Rowan, L.C.
1981-01-01
The International Geological Correlation Programme (IGCP) is a worldwide cooperative research programme that began in 1974 under the auspices of the International Union of Geological Sciences. Because of the global availability of Earth resources data collected by satellites and the great interest among geologists in taking advantage of these new sources of information, a project was begun in 1976 to improve the rate of technology transfer in the field of remote-sensing exploration for energy and mineral resources. Conducting joint workshops in cooperation with COSPAR has been an important part of this project. It is to be hoped the project will improve our capability to explore, identify, and develop new resources to meet the burgeoning demands of society. ?? 1981.
TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.
Varnes, David J.; Keaton, Jeffrey R.
1983-01-01
Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.
NASA Astrophysics Data System (ADS)
Mosher, D. C.; Baldwin, K.; Gebhardt, C.
2016-12-01
Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... may include aerial photography; remote sensing; hand-sampling of geologic materials; hand-sampling or....) and National Park Service policies concerning wilderness management and the use of motorized equipment...
Reports of Planetary Geology Program, 1981
NASA Technical Reports Server (NTRS)
Holt, H. E. (Compiler)
1981-01-01
Abstracts of 205 reports from Principal investigators of NASA's Planetary Geology Program succinctly summarize work conducted and reflect the significant accomplishments. The entries are arranged under the following topics: (1) Saturnian satellites; (2) asteroids, comets and Galilean satellites; (3) cratering processes and landform development; (4) volcanic processes and landforms; (5) Aerolian processes and landforms; (6) fluvial, preglacial, and other processes of landform development; (7) Mars polar deposits, volatiles, and climate; (8) structure, tectonics, and stratigraphy; (9) remote sensing and regolith chemistry; (10) cartography and geologic mapping; and (11) special programs.
NASA Astrophysics Data System (ADS)
Oo, Tin Ko
2011-07-01
The Mogok Stone Tract area has long been known for world famous finest ruby since 1597. The Mogok area lies in northern Myanmar and is located at about 205.99km northeast from Mandalay, the second largest city of Myanmar. The Mogok Group of metasedimentary rocks is divided into four units: (1) Wabyudaung Marble, (2) Ayenyeinchantha Calc-silicate, (3) Gwebin Quartzite, and (4) Kabe Gneiss. Igneous rocks in the Mogok area are classified into two units: (1) Kabaing Granite and (2) Pingutaung Leucogranite. The Mogok area has a complex structure involving several folds and faults. Using marbles and calc-silicates as marker horizons, a series of anticline and syncline can be identified such as Mogok syncline, Ongaing anticline, Bawpadan syncline, and Kyatpyin anticline. All the foldings show a low-angle plunge to the south. The main precious stones of the Mogok area are ruby and sapphire; and the other important semi-precious stones are spinel, topaz, peridot, garnet, apatite, beryl, tourmaline (rubellite), quartz, diopside, fluorite, and enstatite. Geological and remote sensing data are processed to extract the indicative features of gem mineralized areas: lithology, structure, and hydrothermal alteration. Density slice version of Landsat ETM band ratios 5/7 is used to map clay alterations. Filtering Landsat ETM band 5 by using edge detection filter is applied for lineament mapping. Spatial integration of various geoscience and remote sensing data sets such as geological maps, Landsat ETM images, and the location map of gem mines show the distribution of alteration zones associated with the gem mineralization in the study area. Geographic Information System (GIS) model has been designed and implemented by ARCVIEW software package based on the overlay of lithologic, lineament, and alteration vector maps. This process has resulted in delineation of most promising areas of probable gem mineralized zones as on the output map.
NASA Astrophysics Data System (ADS)
Del Soldato, Matteo; Bianchini, Silvia; Nolesini, Teresa; Frodella, William; Casagli, Nicola
2017-04-01
Multisystem remote sensing techniques were exploited to provide a comprehensive overview of Volterra (Italy) site stability with regards to its landscape, urban fabric and cultural heritage. Interferometric Synthetic Aperture Radar (InSAR) techniques allow precise measurements of Earth surface displacement, as well as the detection of building deformations on large urban areas. In the field of cultural heritage conservation Infrared thermography (IRT) provides surface temperature mapping and therefore detects various potential criticalities, such as moisture, seepage areas, cracks and structural anomalies. Between winter 2014 and spring 2015 the historical center and south-western sectors of Volterra (Tuscany region, central Italy) were affected by instability phenomena. The spatial distribution, typology and effect on the urban fabrics of the landslide phenomena were investigated by analyzing the geological and geomorphological settings, traditional geotechnical monitoring and advanced remote sensing data such as Persistent Scatterers Interferometry (PSI). The ground deformation rates and the maximum settlement values derived from SAR acquisitions of historical ENVISAT and recent COSMO-SkyMed sensors, in 2003-2009 and 2010-2015 respectively, were compared with background geological data, constructive features, in situ evidences and detailed field inspections in order to classify landslide-damaged buildings. In this way, the detected movements and their potential correspondences with recognized damages were investigated in order to perform an assessment of the built-up areas deformations and damages on Volterra. The IRT technique was applied in order to survey the surface temperature of the historical Volterra wall-enclosure, and allowed highlighting thermal anomalies on this cultural heritage element of the site. The obtained results permitted to better correlate the landslide effects of the recognized deformations in the urban fabric, in order to provide useful information for future risk mitigation strategies to be planned by the local authorities and the involved technicians and conservators.
City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component
Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.
1996-01-01
Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy
Integrated Remote Sensing Modalities for Classification at a Legacy Test Site
NASA Astrophysics Data System (ADS)
Lee, D. J.; Anderson, D.; Craven, J.
2016-12-01
Detecting, locating, and characterizing suspected underground nuclear test sites is of interest to the worldwide nonproliferation monitoring community. Remote sensing provides both cultural and surface geological information over a large search area in a non-intrusive manner. We have characterized a legacy nuclear test site at the Nevada National Security Site (NNSS) using an aerial system based on RGB imagery, light detection and ranging, and hyperspectral imaging. We integrate these different remote sensing modalities to perform pattern recognition and classification tasks on the test site. These tasks include detecting cultural artifacts and exotic materials. We evaluate if the integration of different remote sensing modalities improves classification performance.
NASA Astrophysics Data System (ADS)
Oh, Hyun-Joo; Lee, Saro; Chotikasathien, Wisut; Kim, Chang Hwan; Kwon, Ju Hyoung
2009-04-01
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.
Lateral Variations in Geologic Structure and Tectonic Setting from Remote Sensing Data
1983-05-01
bodies. Analogous magnetic anomaly patterns perhaps can be inferred, since regional lithologies are comparable with some volcanic bodies around the...32 14 Geologic map of the Katahdin Batholith . . . . . . . . . . . 34 15 Bouguer gravity map of Mai ne ... ............ . 36 16 Magnetic anomaly map... magnetic anomaly patterns perhaps can be inferred, since regional lithologies are comparable with some volcanic bodies around the plutons. Linear
ERIC Educational Resources Information Center
Rodriguez, Brandon; Jaramillo, Veronica; Wolf, Vanessa; Bautista, Esteban; Portillo, Jennifer; Brouke, Alexandra; Min, Ashley; Melendez, Andrea; Amann, Joseph; Pena-Francesch, Abdon; Ashcroft, Jared
2018-01-01
A multidisciplinary science experiment was performed in K-12 classrooms focusing on the interconnection between technology with geology and chemistry. The engagement and passion for science of over eight hundred students across twenty-one classrooms, utilizing a combination of hands-on activities using relationships between Earth and space rock…
ERIC Educational Resources Information Center
Journal of College Science Teaching, 1976
1976-01-01
Reports on many news items of importance to the scientist and educator. These include a new Engineering degree, building a biological culture analyser, remote satellite sensing in geologic exploration, and others. (GS)
NASA Technical Reports Server (NTRS)
Allen, Thomas R., Jr.
1999-01-01
Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence in remote sensing and coastal environments. Subsequent phases of the project are under planning. including seminars for regional coastal managers and public dissemination of remote sensing science through the local media and university publications.
Developing integrated methods to address complex resource and environmental issues
Smith, Kathleen S.; Phillips, Jeffrey D.; McCafferty, Anne E.; Clark, Roger N.
2016-02-08
IntroductionThis circular provides an overview of selected activities that were conducted within the U.S. Geological Survey (USGS) Integrated Methods Development Project, an interdisciplinary project designed to develop new tools and conduct innovative research requiring integration of geologic, geophysical, geochemical, and remote-sensing expertise. The project was supported by the USGS Mineral Resources Program, and its products and acquired capabilities have broad applications to missions throughout the USGS and beyond.In addressing challenges associated with understanding the location, quantity, and quality of mineral resources, and in investigating the potential environmental consequences of resource development, a number of field and laboratory capabilities and interpretative methodologies evolved from the project that have applications to traditional resource studies as well as to studies related to ecosystem health, human health, disaster and hazard assessment, and planetary science. New or improved tools and research findings developed within the project have been applied to other projects and activities. Specifically, geophysical equipment and techniques have been applied to a variety of traditional and nontraditional mineral- and energy-resource studies, military applications, environmental investigations, and applied research activities that involve climate change, mapping techniques, and monitoring capabilities. Diverse applied geochemistry activities provide a process-level understanding of the mobility, chemical speciation, and bioavailability of elements, particularly metals and metalloids, in a variety of environmental settings. Imaging spectroscopy capabilities maintained and developed within the project have been applied to traditional resource studies as well as to studies related to ecosystem health, human health, disaster assessment, and planetary science. Brief descriptions of capabilities and laboratory facilities and summaries of some applications of project products and research findings are included in this circular. The work helped support the USGS mission to “provide reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.” Activities within the project include the following:Spanned scales from microscopic to planetary;Demonstrated broad applications across disciplines;Included life-cycle studies of mineral resources;Incorporated specialized areas of expertise in applied geochemistry including mineralogy, hydrogeology, analytical chemistry, aqueous geochemistry, biogeochemistry, microbiology, aquatic toxicology, and public health; andIncorporated specialized areas of expertise in geophysics including magnetics, gravity, radiometrics, electromagnetics, seismic, ground-penetrating radar, borehole radar, and imaging spectroscopy.This circular consists of eight sections that contain summaries of various activities under the project. The eight sections are listed below:Laboratory Facilities and Capabilities, which includes brief descriptions of the various types of laboratories and capabilities used for the project;Method and Software Development, which includes summaries of remote-sensing, geophysical, and mineralogical methods developed or enhanced by the project;Instrument Development, which includes descriptions of geophysical instruments developed under the project;Minerals, Energy, and Climate, which includes summaries of research that applies to mineral or energy resources, environmental processes and monitoring, and carbon sequestration by earth materials;Element Cycling, Toxicity, and Health, which includes summaries of several process-oriented geochemical and biogeochemical studies and health-related research activities;Hydrogeology and Water Quality, which includes descriptions of innovative geophysical, remote-sensing, and geochemical research pertaining to hydrogeology and water-quality applications;Hazards and Disaster Assessment, which includes summaries of research and method development that were applied to natural hazards, human-caused hazards, and disaster assessments; andDatabases and Framework Studies, which includes descriptions of fundamental applications of geophysical studies and of the importance of archived data.
NASA Technical Reports Server (NTRS)
Lietzke, K. R.
1974-01-01
The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.
Microwave remote sensing from space for earth resource surveys
NASA Technical Reports Server (NTRS)
1977-01-01
The concepts of radar remote sensing and microwave radiometry are discussed and their utility in earth resource sensing is examined. The direct relationship between the character of the remotely sensed data and the level of decision making for which the data are appropriate is considered. Applications of active and a passive microwave sensing covered include hydrology, land use, mapping, vegetation classification, environmental monitoring, coastal features and processes, geology, and ice and snow. Approved and proposed microwave sensors are described and the use of space shuttle as a development platform is evaluated.
1979-12-01
Geologist Applied Engineering & Urban Geology Missouri Geological Survey May 6, 1974 Sheet 6, Appendix B For file Only DEAN LAKE SITE (Formerly Bray...time to point out these problems that you have been discussing. ,J. Hadley Williams Geologist and Chief Applied Engineering & Urban Geology Missouri...Geologist Applied Engineering & Urban Geology Missouri Geological Survey June 27, 1974 Sheet 9, Appendix B FOR FILE ONLY L • BRAYS LAKE RECONNAISSANCE PHELPS
Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Technical Reports Server (NTRS)
Schultz, Lori; Molthan, Andrew; Burks, Jason E.; Bell, Jordan; McGrath, Kevin; Cole, Tony
2016-01-01
NASA SPoRT (Short-term Prediction Research and Transition Center) provided MODIS (Moderate Resolution Imaging Spectrometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) imagery to WFOs (Weather Forecast Offices) in Alabama to support April 27th, 2011 damage assessments across the state. SPoRT was awarded a NASA Applied Science: Disasters Feasibility award to investigate the applicability of including remote sensing imagery and derived products into the NOAA/NWS (National Oceanic and Atmospheric Administration/National Weather System) Damage Assessment Toolkit (DAT). Proposal team was awarded the 3-year proposal to implement a web mapping service and associate data feeds from the USGS (U.S. Geological Survey) to provide satellite imagery and derived products directly to the NWS thru the DAT. In the United States, NOAA/NWS is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geo-location, and aggregation of various damage indicators collected during storm surveys.
Shore zone land use and land cover: Central Atlantic Regional Ecological Test Site
Dolan, R.; Hayden, B.P.; Vincent, C.L.
1974-01-01
Anderson's 1972 United States Geological Survey classification in modified form was applied to the barrier-island coastline within the CARETS region. High-altitude, color-infrared photography of December, 1972, and January, 1973, served as the primary data base in this study. The CARETS shore zone studied was divided into six distinct geographical regions; area percentages for each class in the modified Anderson classification are presented. Similarities and differences between regions are discussed within the framework of man's modification of these landscapes. The results of this study are presented as a series of 19 maps of land-use categories. Recommendations are made for a remote-sensing system for monitoring the CARETS shore zone within the context of the dynamics of the landscapes studied.
An integrated remote sensing approach for identifying ecological range sites. [parker mountain
NASA Technical Reports Server (NTRS)
Jaynes, R. A.
1983-01-01
A model approach for identifying ecological range sites was applied to high elevation sagebrush-dominated rangelands on Parker Mountain, in south-central Utah. The approach utilizes map information derived from both high altitude color infrared photography and LANDSAT digital data, integrated with soils, geological, and precipitation maps. Identification of the ecological range site for a given area requires an evaluation of all relevant environmental factors which combine to give that site the potential to produce characteristic types and amounts of vegetation. A table is presented which allows the user to determine ecological range site based upon an integrated use of the maps which were prepared. The advantages of identifying ecological range sites through an integrated photo interpretation/LANDSAT analysis are discussed.
Radar polarimetry - Analysis tools and applications
NASA Technical Reports Server (NTRS)
Evans, Diane L.; Farr, Tom G.; Van Zyl, Jakob J.; Zebker, Howard A.
1988-01-01
The authors have developed several techniques to analyze polarimetric radar data from the NASA/JPL airborne SAR for earth science applications. The techniques determine the heterogeneity of scatterers with subregions, optimize the return power from these areas, and identify probable scattering mechanisms for each pixel in a radar image. These techniques are applied to the discrimination and characterization of geologic surfaces and vegetation cover, and it is found that their utility varies depending on the terrain type. It is concluded that there are several classes of problems amenable to single-frequency polarimetric data analysis, including characterization of surface roughness and vegetation structure, and estimation of vegetation density. Polarimetric radar remote sensing can thus be a useful tool for monitoring a set of earth science parameters.
Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Pour, Amin Beiranvand; Hashim, Mazlan
2014-08-01
The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.
Desert Research and Technology Studies (RATS) Local and Remote Test Sites
NASA Technical Reports Server (NTRS)
Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean
2007-01-01
Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
Commerical Remote Sensing Data Contract
,
2005-01-01
The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.
A coastal and marine digital library at USGS
Lightsom, Fran
2003-01-01
The Marine Realms Information Bank (MRIB) is a distributed geolibrary [NRC, 1999] from the U.S. Geological Survey (USGS) and the Woods Hole Oceanographic Institution (WHOI), whose purpose is to classify, integrate, and facilitate access to Earth systems science information about ocean, lake, and coastal environments. Core MRIB services are: (1) the search and display of information holdings by place and subject, and (2) linking of information assets that exist in remote physical locations. The design of the MRIB features a classification system to integrate information from remotely maintained sources. This centralized catalogue organizes information using 12 criteria: locations, geologic time, physiographic features, biota, disciplines, research methods, hot topics, project names, agency names, authors, content type, and file type. For many of these fields, MRIB has developed classification hierarchies.
Paleogene Vertebrate Paleontology, Geology and Remote Sensing in the Wind River Basin
NASA Technical Reports Server (NTRS)
Stucky, R. K.; Krishtalka, L.
1985-01-01
Biostratigraphic and lithostratigraphic studies were used to correlate different events in the geologic evolution of the northeastern part of the Wind River Basin and have suggested several conclusions. Laterally equivalent exposures of the Lysite member from Cedar Ridge to Bridger Creek show a gradation in lithology from interbedded boulder conglomerates and sandstones to interbedded lenticular sandstones and mudstones to interbedded carbonaceous shales, coals and tabular sandstones. This gradation suggests a shift from alluvial fan to braided stream to paludal or lacustrine sedimentary environments during the late early Eocene. The Lysite and Lost Cabin members of the Wind River Formation are in fault contact in the Bridger Creek area and may intertongue to the east along Cedar Ridge. Ways in which remote sensing could be used in these studies are discussed.
Tanaka, K.L.; Skinner, J.A.; Crumpler, L.S.; Dohm, J.M.
2009-01-01
We photogeologically mapped the SP Mountain region of the San Francisco Volcanic Field in northern Arizona, USA to evaluate and improve the fidelity of approaches used in geologic mapping of Mars. This test site, which was previously mapped in the field, is chiefly composed of Late Cenozoic cinder cones, lava flows, and alluvium perched on Permian limestone of the Kaibab Formation. Faulting and folding has deformed the older rocks and some of the volcanic materials, and fluvial erosion has carved drainage systems and deposited alluvium. These geologic materials and their formational and modificational histories are similar to those for regions of the Martian surface. We independently prepared four geologic maps using topographic and image data at resolutions that mimic those that are commonly used to map the geology of Mars (where consideration was included for the fact that Martian features such as lava flows are commonly much larger than their terrestrial counterparts). We primarily based our map units and stratigraphic relations on geomorphology, color contrasts, and cross-cutting relationships. Afterward, we compared our results with previously published field-based mapping results, including detailed analyses of the stratigraphy and of the spatial overlap and proximity of the field-based vs. remote-based (photogeologic) map units, contacts, and structures. Results of these analyses provide insights into how to optimize the photogeologic mapping of Mars (and, by extension, other remotely observed planetary surfaces). We recommend the following: (1) photogeologic mapping as an excellent approach to recovering the general geology of a region, along with examination of local, high-resolution datasets to gain insights into the complexity of the geology at outcrop scales; (2) delineating volcanic vents and lava-flow sequences conservatively and understanding that flow abutment and flow overlap are difficult to distinguish in remote data sets; (3) taking care to understand that surficial materials (such as alluvium and volcanic ash deposits) are likely to be under-mapped yet are important because they obscure underlying units and contacts; (4) where possible, mapping multiple contact and structure types based on their varying certainty and exposure that reflect the perceived accuracy of the linework; (5) reviewing the regional context and searching for evidence of geologic activity that may have affected the map area yet for which evidence within the map area may be absent; and (6) for multi-authored maps, collectively analyzing the mapping relations, approaches, and methods throughout the duration of the mapping project with the objective of achieving a solid, harmonious product.
NASA Astrophysics Data System (ADS)
Bradley, Eliza Swan
Methane is an important greenhouse gas for which uncertainty in local emission strengths necessitates improved source characterizations. Although CH4 plume mapping did not motivate the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) design and municipal air quality monitoring stations were not intended for studying marine geological seepage, these assets have capabilities that can make them viable for studying concentrated (high flux, highly heterogeneous) CH4 sources, such as the Coal Oil Point (COP) seep field (˜0.015 Tg CH4 yr-1) offshore Santa Barbara, California. Hourly total hydrocarbon (THC) data, spanning 1990 to 2008 from an air pollution station located near COP, were analyzed and showed geologic CH4 emissions as the dominant local source. A band ratio approach was developed and applied to high glint AVIRIS data over COP, resulting in local-scale mapping of natural atmospheric CH4 plumes. A Cluster-Tuned Matched Filter (CTMF) technique was applied to Gulf of Mexico AVIRIS data to detect CH4 venting from offshore platforms. Review of 744 platform-centered CTMF subsets was facilitated through a flexible PHP-based web portal. This dissertation demonstrates the value of investigating municipal air quality data and imaging spectrometry for gathering insight into concentrated methane source emissions and highlights how flexible web-based solutions can help facilitate remote sensing research.
Spectroscopic remote sensing for material identification, vegetation characterization, and mapping
Kokaly, Raymond F.; Lewis, Paul E.; Shen, Sylvia S.
2012-01-01
Identifying materials by measuring and analyzing their reflectance spectra has been an important procedure in analytical chemistry for decades. Airborne and space-based imaging spectrometers allow materials to be mapped across the landscape. With many existing airborne sensors and new satellite-borne sensors planned for the future, robust methods are needed to fully exploit the information content of hyperspectral remote sensing data. A method of identifying and mapping materials using spectral feature analyses of reflectance data in an expert-system framework called MICA (Material Identification and Characterization Algorithm) is described. MICA is a module of the PRISM (Processing Routines in IDL for Spectroscopic Measurements) software, available to the public from the U.S. Geological Survey (USGS) at http://pubs.usgs.gov/of/2011/1155/. The core concepts of MICA include continuum removal and linear regression to compare key diagnostic absorption features in reference laboratory/field spectra and the spectra being analyzed. The reference spectra, diagnostic features, and threshold constraints are defined within a user-developed MICA command file (MCF). Building on several decades of experience in mineral mapping, a broadly-applicable MCF was developed to detect a set of minerals frequently occurring on the Earth's surface and applied to map minerals in the country-wide coverage of the 2007 Afghanistan HyMap data set. MICA has also been applied to detect sub-pixel oil contamination in marshes impacted by the Deepwater Horizon incident by discriminating the C-H absorption features in oil residues from background vegetation. These two recent examples demonstrate the utility of a spectroscopic approach to remote sensing for identifying and mapping the distributions of materials in imaging spectrometer data.
NASA Astrophysics Data System (ADS)
Fallatah, O.; Ahmed, M.; Akanda, A. S.; Boving, T.; Cardace, D.
2017-12-01
Abstract: The Saq aquifer system represents one of the most significant transboundary aquifers in the Arabian Peninsula that extends between northern parts of Saudi Arabia, Iraq and Jordan. Recent studies show that the Saq aquifer system is witnessing rapid groundwater depletions of -6.52 ± 0.29 mm/year (-3.49 ± 0.15 km3/year) that are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells. In addition, the region is receiving record low amounts of precipitation in recent years. Thus, quantifying the groundwater recharge rate of the Saq is essential to sustainable present and future utilization of the groundwater resources in that system. In this study, we develop and apply an integrated Geophysical, Geochemical, and Remote Sensing-based approach to quantify the recharge rates of the Saq aquifer system given the areal distribution of the Saq transboundary aquifer system, the interaction between the Saq aquifer and the overlying aquifers, as well as the very limited rates of recharge through precipitation. Specifically, we set out to accomplish the following: (1) delineate and examine the areal extent of the Saq aquifer recharge domains using geologic, climatic, and remote sensing data; (2) investigate the origin of, and recent contributions to, the groundwater in the Saq aquifer system by examining the isotopic compositions of groundwater samples collected from the Saq aquifer; and (3) estimate, to the first order, the magnitude of modern recharge utilizing the Gravity Recovery and Climate Experiment (GRACE) data and rainfall time-series of the region. Results from this paper will help us to apply the suitable location for drilling and determine the best extraction scenarios.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.; Stiles, J. A.; Frost, F. S.; Shanmugam, K. S.; Smith, S. A.; Narayanan, V.; Holtzman, J. C. (Principal Investigator)
1982-01-01
Computer-generated radar simulations and mathematical geologic terrain models were used to establish the optimum radar sensor operating parameters for geologic research. An initial set of mathematical geologic terrain models was created for three basic landforms and families of simulated radar images were prepared from these models for numerous interacting sensor, platform, and terrain variables. The tradeoffs between the various sensor parameters and the quantity and quality of the extractable geologic data were investigated as well as the development of automated techniques of digital SAR image analysis. Initial work on a texture analysis of SEASAT SAR imagery is reported. Computer-generated radar simulations are shown for combinations of two geologic models and three SAR angles of incidence.
A generalized geologic map of Mars
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A generalized geologic map of Mars has been constructed largely on the basis of differences in the topography of the surface. A number of topographic features on Mars whose form is highly diagnostic of their origin are shown. Of particular note are the shield volcanoes and lava plains. In some areas, the original features have been considerably modified by subsequent erosional and tectonic processes. These have not, however, resulted in homogenization of the planet's surface, but rather have emphasized its variegated character by leaving a characteristic imprint in specific areas. The topography of the planet, therefore, lends itself well to remote geologic interpretation.
NASA Technical Reports Server (NTRS)
Settle, M.; Chavez, P.; Kieffer, H. H.; Everett, J. R.; Kahle, A. B.; Kitcho, C. A.; Milton, N. M.; Mouat, D. A.
1983-01-01
The geological applications of remote sensing technology are discussed, with emphasis given to the analysis of data from the Thematic Mapper (TM) instrument onboard the Landsat 4 satellite. The flight history and design characteristics of the Landsat 4/TM are reviewed, and some difficulties endountered in the interpretation of raw TM data are discussed, including: the volume of data; residual noise; detector-to-detector striping; and spatial misregistration between measurements. Preliminary results of several geological, lithological, geobotanical mapping experiments are presented as examples of the geological applications of the TM, and some areas for improving the guality of TM imagery are identified.
National Satellite Land Remote Sensing Data Archive
Faundeen, John L.; Kelly, Francis P.; Holm, Thomas M.; Nolt, Jenna E.
2013-01-01
The National Satellite Land Remote Sensing Data Archive (NSLRSDA) resides at the U.S. Geological Survey's (USGS) Earth Resources Observation and Science (EROS) Center. Through the Land Remote Sensing Policy Act of 1992, the U.S. Congress directed the Department of the Interior (DOI) to establish a permanent Government archive containing satellite remote sensing data of the Earth's land surface and to make this data easily accessible and readily available. This unique DOI/USGS archive provides a comprehensive, permanent, and impartial observational record of the planet's land surface obtained throughout more than five decades of satellite remote sensing. Satellite-derived data and information products are primary sources used to detect and understand changes such as deforestation, desertification, agricultural crop vigor, water quality, invasive plant species, and certain natural hazards such as flood extent and wildfire scars.
NASA Astrophysics Data System (ADS)
Morris, Kevin Peter
Accurate mapping of geological structures is important in numerous applications, ranging from mineral exploration through to hydrogeological modelling. Remotely sensed data can provide synoptic views of study areas enabling mapping of geological units within the area. Structural information may be derived from such data using standard manual photo-geologic interpretation techniques, although these are often inaccurate and incomplete. The aim of this thesis is, therefore, to compile a suite of automated and interactive computer-based analysis routines, designed to help a the user map geological structure. These are examined and integrated in the context of an expert system. The data used in this study include Digital Elevation Model (DEM) and Airborne Thematic Mapper images, both with a spatial resolution of 5m, for a 5 x 5 km area surrounding Llyn Cow lyd, Snowdonia, North Wales. The geology of this area comprises folded and faulted Ordo vician sediments intruded throughout by dolerite sills, providing a stringent test for the automated and semi-automated procedures. The DEM is used to highlight geomorphological features which may represent surface expressions of the sub-surface geology. The DEM is created from digitized contours, for which kriging is found to provide the best interpolation routine, based on a number of quantitative measures. Lambertian shading and the creation of slope and change of slope datasets are shown to provide the most successful enhancement of DEMs, in terms of highlighting a range of key geomorphological features. The digital image data are used to identify rock outcrops as well as lithologically controlled features in the land cover. To this end, a series of standard spectral enhancements of the images is examined. In this respect, the least correlated 3 band composite and a principal component composite are shown to give the best visual discrimination of geological and vegetation cover types. Automatic edge detection (followed by line thinning and extraction) and manual interpretation techniques are used to identify a set of 'geological primitives' (linear or arc features representing lithological boundaries) within these data. Inclusion of the DEM data provides the three-dimensional co-ordinates of these primitives enabling a least-squares fit to be employed to calculate dip and strike values, based, initially, on the assumption of a simple, linearly dipping structural model. A very large number of scene 'primitives' is identified using these procedures, only some of which have geological significance. Knowledge-based rules are therefore used to identify the relevant. For example, rules are developed to identify lake edges, forest boundaries, forest tracks, rock-vegetation boundaries, and areas of geomorphological interest. Confidence in the geological significance of some of the geological primitives is increased where they are found independently in both the DEM and remotely sensed data. The dip and strike values derived in this way are compared to information taken from the published geological map for this area, as well as measurements taken in the field. Many results are shown to correspond closely to those taken from the map and in the field, with an error of < 1°. These data and rules are incorporated into an expert system which, initially, produces a simple model of the geological structure. The system also provides a graphical user interface for manual control and interpretation, where necessary. Although the system currently only allows a relatively simple structural model (linearly dipping with faulting), in the future it will be possible to extend the system to model more complex features, such as anticlines, synclines, thrusts, nappes, and igneous intrusions.
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States
Horton, John D.; San Juan, Carma A.; Stoeser, Douglas B.
2017-06-30
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi. org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale.
Remote sensing strategies for global resource exploration and environmental management
NASA Astrophysics Data System (ADS)
Henderson, Frederick B.
Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources. If, however, satellite producing countries follow the Russian and Indian lead and restrict civil satellite data as tools of their national security and economic policies, remote sensing technology may become internationally competitive in space, redundant, prohibitively expensive, and generally unavailable to the world community.
NASA Technical Reports Server (NTRS)
Stewart, R. K.; Sabins, F. F., Jr.; Rowan, L. C.; Short, N. M.
1975-01-01
Papers from private industry reporting applications of remote sensing to oil and gas exploration were presented. Digitally processed LANDSAT images were successfully employed in several geologic interpretations. A growing interest in digital image processing among the geologic user community was shown. The papers covered a wide geographic range and a wide technical and application range. Topics included: (1) oil and gas exploration, by use of radar and multisensor studies as well as by use of LANDSAT imagery or LANDSAT digital data, (2) mineral exploration, by mapping from LANDSAT and Skylab imagery and by LANDSAT digital processing, (3) geothermal energy studies with Skylab imagery, (4) environmental and engineering geology, by use of radar or LANDSAT and Skylab imagery, (5) regional mapping and interpretation, and digital and spectral methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-10
... in support of oil and gas exploration and development, including electromagnetic surveys, deep... surveys, electromagnetic surveys, magnetic surveys, gravity surveys, remote sensing surveys, marine...
Remote sensing with spaceborne synthetic aperture imaging radars: A review
NASA Technical Reports Server (NTRS)
Cimino, J. B.; Elachi, C.
1983-01-01
A review is given of remote sensing with Spaceborne Synthetic Aperture Radars (SAR's). In 1978, a spaceborne SA was flown on the SEASAT satellite. It acquired high resulution images over many regions in North America and the North Pacific. The acquired data clearly demonstrate the capability of spaceborne SARs to: image and track polar ice floes; image ocean surface patterns including swells, internal waves, current boundaries, weather boundaries and vessels; and image land features which are used to acquire information about the surface geology and land cover. In 1981, another SAR was flown on the second shuttle flight. This Shuttle Imaging Radar (SIR-A) acquired land and ocean images over many areas around the world. The emphasis of the SIR-A experiment was mainly toward geologic mapping. Some of the key results of the SIR-A experiment are given.
U.S. Geological Survey land remote sensing activities
Frederick, Doyle G.
1983-01-01
The U.S. Geological Survey (USGS) and the Department of the Interior (DOI) were among the earliest to recognize the potential applications of satellite land remote sensing for management of the country's land and water resources…not only as a user but also as a program participant responsible for final data processing, product generation, and data distribution. With guidance from Dr. William T. Pecora, who was the Survey's Director at that time and later Under Secretary of Interior, the Earth Resources Observation Systems (EROS) Program was established in 1966 as a focal point for these activities within the Department. Dr. Pecora was among the few who could envision a role for the Survey and the Department as active participants in programs yet to come--like the Landsat, Magsat, Seasat and, most recently, Shuttle Imaging Radar programs.
NASA Technical Reports Server (NTRS)
1984-01-01
Among the topics discussed are NASA's land remote sensing plans for the 1980s, the evolution of Landsat 4 and the performance of its sensors, the Landsat 4 thematic mapper image processing system radiometric and geometric characteristics, data quality, image data radiometric analysis and spectral/stratigraphic analysis, and thematic mapper agricultural, forest resource and geological applications. Also covered are geologic applications of side-looking airborne radar, digital image processing, the large format camera, the RADARSAT program, the SPOT 1 system's program status, distribution plans, and simulation program, Space Shuttle multispectral linear array studies of the optical and biological properties of terrestrial land cover, orbital surveys of solar-stimulated luminescence, the Space Shuttle imaging radar research facility, and Space Shuttle-based polar ice sounding altimetry.
NASA Astrophysics Data System (ADS)
Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara
2010-05-01
Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta Valley, NW-Italy), for preventing and recovering measures; 3) geological and geomorphological controlling factors of seismicity, to provide microzonation maps and scenarios for co-seismic response of instable zones (Dronero, NW- Italian Alps); 4) earthquake effects on ground and infrastructures, in order to register early assessment for awareness situations and for compile damage inventories (Asti-Alessandria seismic events, 2000, 2001, 2003). The research results has been able to substantiate early warning models by structuring geodatabases on natural disasters, and to support humanitarian relief and disaster management activities by creating and testing SRG2, a mobile-GIS application for field-data collection on natural hazards and risks.
Agricultural and hydrological applications of radar
NASA Technical Reports Server (NTRS)
Ulaby, F. T.
1976-01-01
Program objectives, covering a wide range of disciplines and activities in radar remote sensing, include radar systems development and analysis, data processing and display, and data interpretation in geology, geography and oceanography. Research was focused on the evaluation of radar remote sensing applications in hydrology and agriculture based on data acquired with the Microwave Active Spectrometer (MAS) system. The title, author(s) and abstract of each of the 62 technical reports generated under this contract are appended.
Nineteen hundred seventy three significant accomplishments. [Landsat satellite data applications
NASA Technical Reports Server (NTRS)
1974-01-01
Data collected by the Skylab remote sensing satellites was used to develop applications techniques and to combine automatic data classification with statistical clustering methods. Continuing research was concentrated in the correlation and registration of data products and in the definition of the atmospheric effects on remote sensing. The causes of errors encountered in the automated classification of agricultural data are identified. Other applications in forestry, geography, environmental geology, and land use are discussed.
From LIDAR Scanning to 3d FEM Analysis for Complex Surface and Underground Excavations
NASA Astrophysics Data System (ADS)
Chun, K.; Kemeny, J.
2017-12-01
Light detection and ranging (LIDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease to use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of three-dimensional numerical model that can be used in FEM analysis. To date, however, straightforward techniques in reconstructing numerical model from the scanned data of underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating from LIDAR scanning to finite element numerical analysis, specifically converting LIDAR 3D point clouds of object containing complex surface geometry into finite element model. This methodology has been applied to the Kartchner Caverns in Arizona for the stability analysis. Numerical simulations were performed using the finite element code ABAQUS. The results indicate that the highlights of our technologies obtained from LIDAR is effective and provide reference for other similar engineering project in practice.
1979-06-01
failure and other information. These reports were prepared by personnel from the Mis- souri Geology and Land Survey, Applied Engineering and Urban...34Report of the National Lead Stifling Basin Washout, Madison County, Missouri", Applied Engineering and Urban Geology, Geo- logy and Land Survey, 30...failure and other information are contained in reports by personnel from the Missouri Geology and Land Survey, Applied Engineering and Urban Geology
NASA Technical Reports Server (NTRS)
1980-01-01
Remote sensing and meteorological observations of satellites are covered. Development of an oceanographic atlas, prediction of droughts, and results of geological surveys using satellite data are discussed.
Geology of the Shakespeare quadrangle (H03), Mercury
NASA Astrophysics Data System (ADS)
Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P.
2017-09-01
A 1:3M geological map of the H03 Shakespeare quadrangle of Mercury has been compiled through photointerpretation of the remotely sensed images of the NASA MESSENGER mission. This quadrangle is characterized by the occurrence of three main types of plains materials and four basin materials, pertaining to the Caloris basin, the largest impact crater on Mercury's surface. The geologic boundaries have been redefined compared to the previous 1:5M map of the quadrangle and the craters have been classified privileging their stratigraphic order rather than morphological appearance. The abundant tectonic landforms have been interpreted and mapped as thrusts or wrinkle ridges.
Notes on the geology of northeastern New Mexico
St. John, O.
1876-01-01
During the season of 1869, in the progress of his extended reconnaissance of the Rocky Mountains, Dr. Hayden visited this region, from whom we have authentic account of its general geological features, and their intimate relation to those prevailing in other and similar districts to the north and south. A few months' residence in this part of the country in 1874-'75* afforded the writer opportunity to become somewhat familiar with its geological features; and the purpose of the present communication is to present such facts as may tend to contribute something toward a similar knowledge of remote and perhaps hitherto rarely-visited localities, and their connection with already examined districts.
NASA Astrophysics Data System (ADS)
Rathbun, K.; Ukstins, I.; Drop, S.
2017-12-01
Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This suggests that satellite-based mapping of ejecta may have limited utility at small craters due to limitations in source resolution compared to the geology of the site in question.
Registration and rectification needs of geology
NASA Technical Reports Server (NTRS)
Chavez, P. S., Jr.
1982-01-01
Geologic applications of remotely sensed imaging encompass five areas of interest. The five areas include: (1) enhancement and analysis of individual images; (2) work with small area mosaics of imagery which have been map projection rectified to individual quadrangles; (3) development of large area mosaics of multiple images for several counties or states; (4) registration of multitemporal images; and (5) data integration from several sensors and map sources. Examples for each of these types of applications are summarized.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.
1982-01-01
Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.
Exploring the Martian Highlands using a Rover-Deployed Ground Penetrating Radar
NASA Technical Reports Server (NTRS)
Grant, J. A.; Schutz, A. E.; Campbell, B. A.
2001-01-01
The Martian highlands record a long and often complex history of geologic activity that has shaped the planet over time. Results of geologic mapping and new data from the Mars Global Surveyor spacecraft reveal layered surfaces created by multiple processes that are often mantled by eolian deposits. Knowledge of the near-surface stratigraphy as it relates to evolution of surface morphology will provide critical context for interpreting rover/lander remote sensing data and for defining the geologic setting of a highland lander. Rover-deployed ground penetrating radar (GPR) can directly measure the range and character of in situ radar properties, thereby helping to constrain near-surface geology and structure. As is the case for most remote sensing instruments, a GPR may not detect water unambiguously on Mars. Nevertheless, any local, near-surface occurrence of liquid water will lead to large, easily detected dielectric contrasts. Moreover, definition of stratigraphy and setting will help in evaluating the history of aqueous activity and where any water might occur and be accessible. GPR data can also be used to infer the degree of any post-depositional pedogenic alteration or weathering, thereby enabling assessment of pristine versus secondary morphology. Most importantly perhaps, GPR can provide critical context for other rover and orbital instruments/data sets. Hence, rover-deployment of a GPR deployment should enable 3-D mapping of local stratigraphy and could guide subsurface sampling.
NASA Astrophysics Data System (ADS)
Koide, Kaoru; Koike, Katsuaki
2012-10-01
This study developed a geobotanical remote sensing method for detecting high water table zones using differences in the conditions of forest trees induced by groundwater supply in a humid warm-temperate region. A new vegetation index (VI) termed added green band NDVI (AgbNDVI) was proposed to discriminate the differences. The AgbNDVI proved to be more sensitive to water stress on green vegetation than existing VIs, such as SAVI and EVI2, and possessed a strong linear correlation with the vegetation fraction. To validate a proposed vegetation index method, a 23 km2 study area was selected in the Tono region of Gifu prefecture, central Japan. The AgbNDVI values were calculated from atmospheric corrected SPOT HRV data. To correctly extract high VI points, the influence factors on forest tree growth were identified using the AgbNDVI values, DEM and forest type data; the study area was then divided into 555 domains chosen from a combination of the influence factors and forest types. Thresholds for extracting high VI points were defined for each domain based on histograms of AgbNDVI values. By superimposing the high VI points on topographic and geologic maps, most high VI points are clearly located on either concave or convex slopes, and are found to be proximal to geologic boundaries—particularly the boundary between the Pliocene gravel layer and the Cretaceous granite, which should act as a groundwater flow path. In addition, field investigations support the correctness of the high VI points, because they are located around groundwater seeps and in high water table zones where the growth increments and biomass of trees are greater than at low VI points.
The Martian Goes To College: Open Inquiry with Science Fiction in the Classroom.
NASA Astrophysics Data System (ADS)
Beatty, L.; Patterson, J. D.
2015-12-01
Storytelling is an ancient art; one that can get lost in the reams of data available in a typical geology or astronomy classroom. But storytelling draws us to a magical place. Our students, with prior experience in either a geology or astronomy course, were invited to explore Mars in a special topics course at Johnson County Community College through reading The Martian by Andy Weir. As they traveled with astronaut Mark Watney, the students used Google Mars, Java Mission-planning and Analysis for Remote Sensing (JMARS), and learning modules from the Mars for Earthlings web site to investigate the terrain and the processes at work in the past and present on Mars. Our goal was to apply their understanding of processes on Earth in order to explain and predict what they observed on Mars courtesy of the remote sensing opportunities available from Viking, Pathfinder, the Mars Exploration Rovers, and Maven missions; sort of an inter-planetary uniformitarianism. Astronaut Mark Watney's fictional journey from Acidalia Planitia to Schiaparelli Crater was analyzed using learning modules in Mars for Earthlings and exercises that we developed based on Google Mars, JMARS, Rotating Sky Explorer, and Science Friday podcasts. Each student also completed an individual project that either focused on a particular region that Astronaut Mark Watney traveled through or a problem that he faced. Through this open-inquiry learning style, they determined some processes that shaped Mars such as crater impacts, volcanism, fluid flow, mass movement, and groundwater sapping and also investigated the efficacy of solar energy as a power source based on location and the likelihood of regolith potential as a mineral matter source for soil.
Scholl, David William
1978-01-01
The Geological Survey 's marine geology investigations in the Pacific-Arctic area are presented in this report in the context of the underlying socio-economic problem of expanding the domestic production of oil and gas and other mineral and hard- and soft-rock resources while maintaining acceptable standards in the marine environment. The primary mission of the Survey 's Pacific-Arctic Branch of Marine Geology is to provide scientifically interpreted information about the (1) resource potential, (2) geo-environmental setting, and (3) overall geologic characteristics of the continental margins (that is, the continental shelf, slope and rise) and adjacent deeper water and shallower coastal areas off California, Oregon, Washington, Alaska and Hawaii and also, where it is of interest to the U.S. Government, more remote deep-sea areas of the Pacific-Arctic realm. (Sinha-OEIS)
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.
1976-01-01
The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.
Landsat ETM+ False-Color Image Mosaics of Afghanistan
Davis, Philip A.
2007-01-01
In 2005, the U.S. Agency for International Development and the U.S. Trade and Development Agency contracted with the U.S. Geological Survey to perform assessments of the natural resources within Afghanistan. The assessments concentrate on the resources that are related to the economic development of that country. Therefore, assessments were initiated in oil and gas, coal, mineral resources, water resources, and earthquake hazards. All of these assessments require geologic, structural, and topographic information throughout the country at a finer scale and better accuracy than that provided by the existing maps, which were published in the 1970's by the Russians and Germans. The very rugged terrain in Afghanistan, the large scale of these assessments, and the terrorist threat in Afghanistan indicated that the best approach to provide the preliminary assessments was to use remotely sensed, satellite image data, although this may also apply to subsequent phases of the assessments. Therefore, the first step in the assessment process was to produce satellite image mosaics of Afghanistan that would be useful for these assessments. This report discusses the production of the Landsat false-color image database produced for these assessments, which was produced from the calibrated Landsat ETM+ image mosaics described by Davis (2006).
Calibrated Landsat ETM+ nonthermal-band image mosaics of Afghanistan
Davis, Philip A.
2006-01-01
In 2005, the U.S. Agency for International Development and the U.S. Trade and Development Agency contracted with the U.S. Geological Survey to perform assessments of the natural resources within Afghanistan. The assessments concentrate on the resources that are related to the economic development of that country. Therefore, assessments were initiated in oil and gas, coal, mineral resources, water resources, and earthquake hazards. All of these assessments require geologic, structural, and topographic information throughout the country at a finer scale and better accuracy than that provided by the existing maps, which were published in the 1970s by the Russians and Germans. The very rugged terrain in Afghanistan, the large scale of these assessments, and the terrorist threat in Afghanistan indicated that the best approach to provide the preliminary assessments was to use remotely sensed, satellite image data, although this may also apply to subsequent phases of the assessments. Therefore, the first step in the assessment process was to produce satellite image mosaics of Afghanistan that would be useful for these assessments. This report discusses the production and characteristics of the fundamental satellite image databases produced for these assessments, which are calibrated image mosaics of all six Landsat nonthermal (reflected) bands.
Kermisch, Céline; Depaus, Christophe
2018-02-01
The ethical matrix is a participatory tool designed to structure ethical reflection about the design, the introduction, the development or the use of technologies. Its collective implementation, in the context of participatory decision-making, has shown its potential usefulness. On the contrary, its implementation by a single researcher has not been thoroughly analyzed. The aim of this paper is precisely to assess the strength of ethical matrixes implemented by a single researcher as a tool for conceptual normative analysis related to technological choices. Therefore, the ethical matrix framework is applied to the management of high-level radioactive waste, more specifically to retrievable and non-retrievable geological disposal. The results of this analysis show that the usefulness of ethical matrixes is twofold and that they provide a valuable input for further decision-making. Indeed, by using ethical matrixes, implicit ethically relevant issues were revealed-namely issues of equity associated with health impacts and differences between close and remote future generations regarding ethical impacts. Moreover, the ethical matrix framework was helpful in synthesizing and comparing systematically the ethical impacts of the technologies under scrutiny, and hence in highlighting the potential ethical conflicts.
Tanaka, Kenneth L.; Skinner, James A.; Dohm, James M.; Irwin, Rossman P.; Kolb, Eric J.; Fortezzo, Corey M.; Platz, Thomas; Michael, Gregory G.; Hare, Trent M.
2014-01-01
This global geologic map of Mars, which records the distribution of geologic units and landforms on the planet's surface through time, is based on unprecedented variety, quality, and quantity of remotely sensed data acquired since the Viking Orbiters. These data have provided morphologic, topographic, spectral, thermophysical, radar sounding, and other observations for integration, analysis, and interpretation in support of geologic mapping. In particular, the precise topographic mapping now available has enabled consistent morphologic portrayal of the surface for global mapping (whereas previously used visual-range image bases were less effective, because they combined morphologic and albedo information and, locally, atmospheric haze). Also, thermal infrared image bases used for this map tended to be less affected by atmospheric haze and thus are reliable for analysis of surface morphology and texture at even higher resolution than the topographic products.
NASA's Applied Remote Sensing Training (ARSET) Webinar Series
Atmospheric Science Data Center
2016-07-12
NASA's Applied Remote Sensing Training (ARSET) Webinar Series Tuesday, July 12, 2016 ... you of a free training opportunity: Introduction to Remote Sensing for Air Quality Applications Webinar Series Beginning in ...
Dye, Dennis G.; Bogle, Rian
2016-05-26
Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.
Flood- and drought-related natural hazards activities of the U.S. Geological Survey in New England
Lombard, Pamela J.
2016-03-23
Tools for natural hazard assessment and mitigation • Light detection and ranging (lidar) remote sensing technology • StreamStats Web-based tool for streamflow statistics • Flood inundation mapper
The relationship between orbital, earth-based, and sample data for lunar landing sites
NASA Technical Reports Server (NTRS)
Clark, P. E.; Hawke, B. R.; Basu, A.
1990-01-01
Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.
Next-generation Strategies for Human Lunar Sorties
NASA Technical Reports Server (NTRS)
Cohen, B. A.
2013-01-01
The science community has had success in remote field experiences using two distinctly different models for humans-in-the-loop: the Apollo Science Support team (science backroom), and the robotic exploration of Mars. In the Apollo experience, the science team helped train the crew, designed geologic traverses, and made real-time decisions by reviewing audio and video transmissions and providing recommendations for geologic sampling. In contrast, the Mars Exploration Rover (MER) and Mars Science Lab (MSL) missions have been conducted entirely robotically, with significant time delays between science- driven decisions and remote field activities. Distinctive operations methods and field methodologies were developed for MER/MSL [1,2] because of the reliance on the "backroom" science team (rather than astronaut crew members) to understand the surroundings. Additionally, data are relayed to the team once per day, giving the team many hours or even days to assimilate the data and decide on a plan of action.
Real time remote monitoring and pre-warning system for Highway landslide in mountain area.
Zhang, Yonghui; Li, Hongxu; Sheng, Qian; Wu, Kai; Chen, Guoliang
2011-06-01
The wire-pulling trigger displacement meter with precision of 1 mm and the grid pluviometer with precision of 0.1 mm are used to monitor the surface displacement and rainfall for Highway slope, and the measured data are transferred to the remote computer in real time by general packet radio service (GPRS) net of China telecom. The wire-pulling trigger displacement meter, grid pluviometer, data acquisition and transmission unit, and solar power supply device are integrated to form a comprehensive monitoring hardware system for Highway landslide in mountain area, which proven to be economical, energy-saving, automatic and high efficient. Meantime, based on the map and geographic information system (MAPGIS) platform, the software system is also developed for three dimensional (3D) geology modeling and visualization, data inquiring and drawing, stability calculation, displacement forecasting, and real time pre-warning. Moreover, the pre-warning methods based on monitoring displacement and rainfall are discussed. The monitoring and forecasting system for Highway landslide has been successfully applied in engineering practice to provide security for Highway transportation and construction and reduce environment disruption. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California
NASA Technical Reports Server (NTRS)
Kierein-Young, K. S.; Kruse, F. A.
1992-01-01
Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.
NASA Astrophysics Data System (ADS)
Rutishauser, A.; Sharp, M. J.; Blankenship, D. D.; Skidmore, M. L.; Grima, C.; Schroeder, D. M.; Greenbaum, J. S.; Dowdeswell, J. A.; Young, D. A.
2017-12-01
Robotic exploration and remote sensing of the solar system have identified the presence of liquid water beneath ice on several planetary bodies, with evidence for elevated salinity in certain cases. Subglacial water systems beneath Earth's glaciers and ice sheets may provide terrestrial analogs for microbial habitats in such extreme environments, especially those with higher salinity. Geological data suggest that several ice caps and glaciers in the eastern Canadian High Arctic are partially underlain by evaporite-rich sedimentary rocks, and subglacial weathering of these rocks is potentially conducive to the formation of hypersaline subglacial waters. Here, we combine airborne geophysical data with geological constraints to identify and characterize hypersaline subglacial water systems beneath ice caps in Canada's Queen Elizabeth Islands. High relative bedrock reflectivity and specularity anomalies that are apparent in radio-echo sounding data indicate multiple locations where subglacial water is present in areas where modeled ice temperatures at the glacier bed are well below the pressure melting point. This suggests that these water systems are hypersaline, with solute concentrations that significantly depress the freezing point of water. From combined interpretations of geological and airborne-magnetic data, we define the geological context within which these systems have developed, and identify possible solute-sources for the inferred brine-rich water systems. We also derive subglacial hydraulic potential gradients using airborne laser altimetry and ice thickness data, and apply water routing models to derive subglacial drainage pathways. These allow us to identify marine-terminating glaciers where outflow of the brine-rich waters may be anticipated. These hypersaline subglacial water systems beneath Canadian Arctic ice caps and glaciers may represent robust microbial habitats, and potential analogs for brines that may exist beneath ice masses on planetary bodies elsewhere in the Solar System.
NASA Astrophysics Data System (ADS)
Hetz, G.; Mushkin, A.; Blumberg, D. G.; Baer, G.; Trabelsky, E.
2012-12-01
Alluvial fan surfaces respond to geologic and climate changes as they record the deposition and erosion processes that govern their evolution, which amongst others is manifested in the micro and meso scale topography of the surface. Remote sensing provides a regional view that is very useful for mapping. Some previous publications have demonstrated that relative dating can also be achieved by remote sensing using techniques common in planetary geology such as overlap relationships. This work focuses on the use of radar backscatter as suggested originally by Evans et al., (1992) to map ages but here we will try to provide an absolute geologic age. The objective of this paper is to demonstrate the use of radar backscatter to constrain surface roughness as a calibrated proxy for estimating age of alluvial surfaces. With the unique regional spatial perspective provided by spaceborne imaging, we aim at providing a new and complementary regional perspective for studying neotectonic and recent landscape evolution processes as well as paleoclimate. Moreover, the method (by radar backscattering measure) can be applied to the geomorphology of other planets. The current study is located in the southeastern part of the Negev desert, Israel on the late Pleistocene - Holocene Shehoret alluvial fan sequence. High resolution (0.5 cm) 3D roughness measurements were collected using a ground-based LIDAR (Leica HDS 3000) and these show a robust relationship between independently obtained OSL surface age and surface roughness; the fan surfaces become smoother with time over 103-105 yr timescales. Spaceborne backscatter radar data respond primarily to surface slope, roughness at a scale comparable to the radar wavelength, and other parameters such as dielectric properties of the surface. Therefore, radar can provide a good quantitative indication of surface roughness in arid zones, where vegetation cover is low. Preliminary results show a relationship between surface age and roughness and the radar cross section extracted from polarimetric spaceborne data. The best result is found in cross polarization (HV), L-band measured at an incidence angle of 38°.
Clark, Roger N.; Swayze, Gregg A.; Livo, K. Eric; Kokaly, Raymond F.; Sutley, Steve J.; Dalton, J. Brad; McDougal, Robert R.; Gent, Carol A.
2003-01-01
Imaging spectroscopy is a tool that can be used to spectrally identify and spatially map materials based on their specific chemical bonds. Spectroscopic analysis requires significantly more sophistication than has been employed in conventional broadband remote sensing analysis. We describe a new system that is effective at material identification and mapping: a set of algorithms within an expert system decision‐making framework that we call Tetracorder. The expertise in the system has been derived from scientific knowledge of spectral identification. The expert system rules are implemented in a decision tree where multiple algorithms are applied to spectral analysis, additional expert rules and algorithms can be applied based on initial results, and more decisions are made until spectral analysis is complete. Because certain spectral features are indicative of specific chemical bonds in materials, the system can accurately identify and map those materials. In this paper we describe the framework of the decision making process used for spectral identification, describe specific spectral feature analysis algorithms, and give examples of what analyses and types of maps are possible with imaging spectroscopy data. We also present the expert system rules that describe which diagnostic spectral features are used in the decision making process for a set of spectra of minerals and other common materials. We demonstrate the applications of Tetracorder to identify and map surface minerals, to detect sources of acid rock drainage, and to map vegetation species, ice, melting snow, water, and water pollution, all with one set of expert system rules. Mineral mapping can aid in geologic mapping and fault detection and can provide a better understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes. Environmental site assessment, such as mapping source areas of acid mine drainage, has resulted in the acceleration of site cleanup, saving millions of dollars and years in cleanup time. Imaging spectroscopy data and Tetracorder analysis can be used to study both terrestrial and planetary science problems. Imaging spectroscopy can be used to probe planetary systems, including their atmospheres, oceans, and land surfaces.
NASA Technical Reports Server (NTRS)
Hickey, James C.; Birnie, Richard W.; Zhao, Mei-Xun
2001-01-01
Development of methods to identify the physical and chemical character of materials on the earth's surface is one of the foci of hyperspectral remote sensing activities. Enhancing the ability to elucidate changes in foliar chemistry that relate to the health of a plant is a benefit to plant physiologists, foresters, and plant ecologists, as well as geologist and environmental scientists. Vegetation covers the landscape throughout the temperate and tropical regions of the earth. The existence of vegetation in these areas presents special problems to remote sensing systems since geologic bedrock and alteration zones are masked. At times, however, alterations in the soil/sediment geochemical environment result in foliar chemical changes that are detectable via remote sensing. Examples include monitoring of chlorophyll reflectance/fluorescence and equivalent water thickness indices as indicators of drought-induced plant stress. Another processing and interpretation approach used with hyperspectral data has been principal components analysis (PCA). Rowan et al. used PCA to identify absorption feature patterns obtained from vegetated areas with discrete bedrock geology or mineralization as the substrate. Many researchers highlight the need to advance our ability for hyperspectral imaging in vegetated areas as a near-term priority.
Savoca, Mark E.; Senay, Gabriel B.; Maupin, Molly A.; Kenny, Joan F.; Perry, Charles A.
2013-01-01
Remote-sensing technology and surface-energy-balance methods can provide accurate and repeatable estimates of actual evapotranspiration (ETa) when used in combination with local weather datasets over irrigated lands. Estimates of ETa may be used to provide a consistent, accurate, and efficient approach for estimating regional water withdrawals for irrigation and associated consumptive use (CU), especially in arid cropland areas that require supplemental water due to insufficient natural supplies from rainfall, soil moisture, or groundwater. ETa in these areas is considered equivalent to CU, and represents the part of applied irrigation water that is evaporated and/or transpired, and is not available for immediate reuse. A recent U.S. Geological Survey study demonstrated the application of the remote-sensing-based Simplified Surface Energy Balance (SSEB) model to estimate 10-year average ETa at 1-kilometer resolution on national and regional scales, and compared those ETa values to the U.S. Geological Survey’s National Water-Use Information Program’s 1995 county estimates of CU. The operational version of the operational SSEB (SSEBop) method is now used to construct monthly, county-level ETa maps of the conterminous United States for the years 2000, 2005, and 2010. The performance of the SSEBop was evaluated using eddy covariance flux tower datasets compiled from 2005 datasets, and the results showed a strong linear relationship in different land cover types across diverse ecosystems in the conterminous United States (correlation coefficient [r] ranging from 0.75 to 0.95). For example, r for woody savannas (0.75), grassland (0.75), forest (0.82), cropland (0.84), shrub land (0.89), and urban (0.95). A comparison of the remote-sensing SSEBop method for estimating ETa and the Hamon temperature method for estimating potential ET (ETp) also was conducted, using regressions of all available county averages of ETa for 2005 and 2010, and yielded correlations of r = 0.60 and r = 0.71, respectively. Correlations generally are stronger in the Southeast where ETa is close to ETp. SSEBop ETa provides more spatial detail and accuracy in the Southwest where irrigation is practiced in a smaller proportion of the region.
Nelson, Janice S.
2010-01-01
The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To communicate with us, or for more information about EROS, contact: Communications and Outreach, USGS EROS Center, 47914 252nd Street, Sioux Falls, South Dakota 57198, jsnelson@usgs.gov, http://eros.usgs.gov/.
NASA Astrophysics Data System (ADS)
Abedi, Maysam; Gholami, Ali; Norouzi, Gholam-Hossain
2013-03-01
Previous studies have shown that a well-known multi-criteria decision making (MCDM) technique called Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE II) to explore porphyry copper deposits can prioritize the ground-based exploratory evidential layers effectively. In this paper, the PROMETHEE II method is applied to airborne geophysical (potassium radiometry and magnetometry) data, geological layers (fault and host rock zones), and various extracted alteration layers from remote sensing images. The central Iranian volcanic-sedimentary belt is chosen for this study. A stable downward continuation method as an inverse problem in the Fourier domain using Tikhonov and edge-preserving regularizations is proposed to enhance magnetic data. Numerical analysis of synthetic models show that the reconstructed magnetic data at the ground surface exhibits significant enhancement compared to the airborne data. The reduced-to-pole (RTP) and the analytic signal filters are applied to the magnetic data to show better maps of the magnetic anomalies. Four remote sensing evidential layers including argillic, phyllic, propylitic and hydroxyl alterations are extracted from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images in order to map the altered areas associated with porphyry copper deposits. Principal component analysis (PCA) based on six Enhanced Thematic Mapper Plus (ETM+) images is implemented to map iron oxide layer. The final mineral prospectivity map based on desired geo-data set indicates adequately matching of high potential zones with previous working mines and copper deposits.
Rowan, L.C.; Offield, T.W.; Watson, R.D.; Cannon, P.J.; Grolier, H.J.; Pohn, H.A.; Watson, Kenneth
1970-01-01
Field Sites have been selected for controlled experiments to analyze physical and chemical parameters affecting the response of electromagnetic radiation to geological materials. Considerations in the selection of the sites are the availability of good exposures of nearly monomineralic rocks, level of geologic understanding, and ease of access. Seven sites, where work is underway or planned, contain extensive outcrops of the following rocks: stanstone, limestone, dolomite, and gypsum. Field measurement of quartz have been conducted at four sites.
Geothermal Target Areas in Colorado as Identified by Remote Sensing Techniques
Khalid Hussein
2012-02-01
This layer contains the areas identified as targets of potential geothermal activity. The Criteria used to identify the target areas include: hot/warm surface exposures modeled from ASTER/Landsat satellite imagery and geological characteristics, alteration mineral commonly associated with hot springs (clays, Si, and FeOx) modeled from ASTER and Landsat data, Colorado Geological Survey (CGS) known thermal hot springs/wells and heat-flow data points, Colorado deep-seated fault zones, weakened basement identified from isostatic gravity data, and Colorado sedimentary and topographic characteristics.
Lidar vegetation mapping in national parks: Gulf Coast Network
Brock, John C.; Palaseanu-Lovejoy, Monica; Segura, Martha
2011-01-01
Airborne lidar (Light Detection and Ranging) is an active remote sensing technique used to collect accurate elevation data over large areas. Lidar provides an extremely high level of regional topographic detail, which makes this technology an essential component of U.S. Geological Survey (USGS) science strategy. The USGS Coastal and Marine Geology Program (CMGP) has collaborated with the National Aeronautics and Space Administration (NASA) and the National Park Service (NPS) to acquire dense topographic lidar data in a variety of coastal environments.
Laboratory exercises, remote sensing of the environment
NASA Technical Reports Server (NTRS)
Mintzer, O.; Ray, J.
1981-01-01
The exercises are designed to convey principles and theory of remote sensing, and methodologies of its application to civil engineering and environmental concerns, including agronomy, geography, geology, wildlife, forestry, hydrology, and other related fields. During the exercises the student is introduced to several types of remote sensing represented by imagery from conventional format: panchromatic, black-and-white infrared, color, and infrared, 35mm aerial photography, thermal infrared, radar, multispectral scanner, and LANDSAT. Upon completion of the exercises the student is expected to know: (1) the electromagnetic spectrum, its various wavelength sub-sections and their uses as sensors, (2) the limitations of each sensor, (3) the interpretation techniques used for extracting data from the various types of imagery, and (4) the cost effectiveness of remote sensing procedures for acquiring and evaluating data of the natural environment.
Arvidson, R. E.; Acton, C.; Blaney, D.; Bowman, J.; Kim, S.; Klingelhofer, G.; Marshall, J.; Niebur, C.; Plescia, J.; Saunders, R.S.; Ulmer, C.T.
1998-01-01
Experiments with the Rocky 7 rover were performed in the Mojave Desert to better understand how to conduct rover-based, long-distance (kilometers) geological traverses on Mars. The rover was equipped with stereo imaging systems for remote sensing science and hazard avoidance and 57Fe Mo??ssbauer and nuclear magnetic resonance spectrometers for in situ determination of mineralogy of unprepared rock and soil surfaces. Laboratory data were also obtained using the spectrometers and an X ray diffraction (XRD)/XRF instrument for unprepared samples collected from the rover sites. Simulated orbital and descent image data assembled for the test sites were found to be critical for assessing the geologic setting, formulating hypotheses to be tested with rover observations, planning traverses, locating the rover, and providing a regional context for interpretation of rover-based observations. Analyses of remote sensing and in situ observations acquired by the rover confirmed inferences made from orbital and simulated descent images that the Sunshine Volcanic Field is composed of basalt flows. Rover data confirmed the idea that Lavic Lake is a recharge playa and that an alluvial fan composed of sediments with felsic compositions has prograded onto the playa. Rover-based discoveries include the inference that the basalt flows are mantled with aeolian sediment and covered with a dense pavement of varnished basalt cobbles. Results demonstrate that the combination of rover remote sensing and in situ analytical observations will significantly increase our understanding of Mars and provide key connecting links between orbital and descent data and analyses of returned samples. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Mackens, Sonja; Klitzsch, Norbert; Grützner, Christoph; Klinger, Riccardo
2017-09-01
Detailed information on shallow sediment distribution in basins is required to achieve solutions for problems in Quaternary geology, geomorphology, neotectonics, (geo)archaeology, and climatology. Usually, detailed information is obtained by studying outcrops and shallow drillings. Unfortunately, such data are often sparsely distributed and thus cannot characterise entire basins in detail. Therefore, they are frequently combined with remote sensing methods to overcome this limitation. Remote sensing can cover entire basins but provides information of the land surface only. Geophysical methods can close the gap between detailed sequences of the shallow sediment inventory from drillings at a few spots and continuous surface information from remote sensing. However, their interpretation in terms of sediment types is often challenging, especially if permafrost conditions complicate their interpretation. Here we present an approach for the joint interpretation of the geophysical methods ground penetrating radar (GPR) and capacitive coupled resistivity (CCR), drill core, and remote sensing data. The methods GPR and CCR were chosen because they allow relatively fast surveying and provide complementary information. We apply the approach to the middle Orkhon Valley in central Mongolia where fluvial, alluvial, and aeolian processes led to complex sediment architecture. The GPR and CCR data, measured on profiles with a total length of about 60 km, indicate the presence of two distinct layers over the complete surveying area: (i) a thawed layer at the surface, and (ii) a frozen layer below. In a first interpretation step, we establish a geophysical classification by considering the geophysical signatures of both layers. We use sedimentological information from core logs to relate the geophysical classes to sediment types. This analysis reveals internal structures of Orkhon River sediments, such as channels and floodplain sediments. We also distinguish alluvial fan deposits and aeolian sediments by their distinct geophysical signature. With this procedure we map aeolian sediments, debris flow sediments, floodplains, and channel sediments along the measured profiles in the entire basin. We show that the joint interpretation of drillings and geophysical profile measurements matches the information from remote sensing data, i.e., the sediment architecture of vast areas can be characterised by combining these techniques. The method presented here proves powerful for characterising large areas with minimal effort and can be applied to similar settings.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3362, Shin-Dand (415) and Tulak (416) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3670, Jarm-Keshem (223) and Zebak (224) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3166, Jaldak (701) and Maruf-Nawa (702) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3366, Gizab (513) and Nawer (514) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3364, Pasa-Band (417) and Kejran (418) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3464, Shahrak (411) and Kasi (412) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
False-Color-Image Map of Quadrangle 3266, Ourzgan (519) and Moqur (520) Quadrangles, Afghanistan
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Davis, Philip A.; Turner, Kenzie J.
2007-01-01
This map is a false-color rendition created from Landsat 7 Enhanced Thematic Mapper Plus imagery collected between 1999 and 2002. The false colors were generated by applying an adaptive histogram equalization stretch to Landsat bands 7 (displayed in red), 4 (displayed in green), and 2 (displayed in blue). These three bands contain most of the spectral differences provided by Landsat imagery and, therefore, provide the most discrimination between surface materials. Landsat bands 4 and 7 are in the near-infrared and short-wave-infrared regions, respectively, where differences in absorption of sunlight by different surface materials are more pronounced than in visible wavelengths. Cultural data were extracted from files downloaded from the Afghanistan Information Management Service (AIMS) Web site (http://www.aims.org.af). The AIMS files were originally derived from maps produced by the Afghanistan Geodesy and Cartography Head Office (AGCHO). Cultural features were not derived from the Landsat base and consequently do not match it precisely. This map is part of a series that includes a geologic map, a topographic map, a Landsat natural-color-image map, and a Landsat false-color-image map for the USGS/AGS (U.S. Geological Survey/Afghan Geological Survey) quadrangles covering Afghanistan. The maps for any given quadrangle have the same open-file report (OFR) number but a different letter suffix, namely, -A, -B, -C, and -D for the geologic, topographic, Landsat natural-color, and Landsat false-color maps, respectively. The OFR numbers range in sequence from 1092 to 1123. The present map series is to be followed by a second series, in which the geology is reinterpreted on the basis of analysis of remote-sensing data, limited fieldwork, and library research. The second series is to be produced by the USGS in cooperation with the AGS and AGCHO.
Geologic Map of Wupatki National Monument and Vicinity, Coconino County, Northern Arizona
Billingsley, George H.; Priest, Susan S.; Felger, Tracey J.
2007-01-01
Introduction The geologic map of Wupatki National Monument is a cooperative effort between the U.S. Geological Survey, the National Park Service, and the Navajo Nation to provide geologic information for resource management officials of the National Park Service, U.S. Forest Service, Navajo Indian Reservation (herein the Navajo Nation), and visitor information services at Wupatki National Monument, Arizona. Funding for the map was provided in part by the Water Rights Branch of the Water Resources Division of the National Park Service. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928)-871-6587. Wupatki National Monument lies within the USGS 1:24,000-scale Wupatki NE, Wupatki SE, Wupatki SW, Gray Mountain, East of SP Mountain, and Campbell Francis Wash quadrangles in northern Arizona. The map is bounded approximately by longitudes 111? 16' to 111? 32' 30' W. and latitudes 35? 30' to 35? 37' 40' N. The map area is in Coconino County on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). The map area is locally subdivided into three physiographic parts, the Coconino Plateau, the Little Colorado River Valley, and the San Francisco Volcanic Field as defined by Billingsley and others (1997) [fig. 1]. Elevations range from 4,220 ft (1,286 m) at the Little Colorado River near the northeast corner of the map area to about 6,100 ft (1,859 m) at the southwest corner of the map area. The small community of Gray Mountain is about 16 mi (26 km) northwest of Wupatki National Monument Visitor Center, and Flagstaff, Arizona, the nearest metropolitan area, is about 24 mi (38 km) southwest of the Visitor Center (fig. 1). U.S. Highway 89 provides access to the west entrance of Wupatki National Monument. A paved Coconino County road provides a loop from Wupatki National Monument south to Sunset Crater National Monument and back to U.S. Highway 89 about 10 mi (16 km) north of Flagstaff, Arizona. Access to Coconino National Forest is via dirt roads maintained by the National Forest Service. Several unimproved dirt roads on Babbitt Ranch lands provide limited access to remote areas north of Wupatki National Monument. Travel is mostly restricted to paved roads within Wupatki National Monument, and a dirt road that crosses the Little Colorado River provides access to the Navajo Nation area east and northeast of the Little Colorado River. The Little Colorado River crossing is not bridged and can be impassable when the river is flowing. Four-wheel-drive vehicles are recommended but not necessary for travel in remote parts of the Navajo Nation. Extra food and water are highly recommended for travel in this sandy area. Land ownership north of Wupatki National Monument forms a checkerboard pattern between private and State land. Coconino National Forest manages lands south of Wupatki National Monument and the National Park Service manages Wupatki National Monument. The Leupp and Tolani Lake Chapters of the Navajo Nation manage the area northeast and east of the Little Colorado River (see land management boundaries on map). The geologic map of Wupatki National Monument provides updated geologic framework information for this part of the Colorado Plateau. The geologic information supports Federal, State, and private land managers when conducting geologic, biologic, and hydrologic investigations and will support future and ongoing geologic and associated scientific investigations of all disciplines within the Wupatki National Monument area.
Applied Use Value of Scientific Information for Management of Ecosystem Services
NASA Astrophysics Data System (ADS)
Raunikar, R. P.; Forney, W.; Bernknopf, R.; Mishra, S.
2012-12-01
The U.S. Geological Survey has developed and applied methods for quantifying the value of scientific information (VOI) that are based on the applied use value of the information. In particular the applied use value of U.S. Geological Survey information often includes efficient management of ecosystem services. The economic nature of U.S. Geological Survey scientific information is largely equivalent to that of any information, but we focus application of our VOI quantification methods on the information products provided freely to the public by the U.S. Geological Survey. We describe VOI economics in general and illustrate by referring to previous studies that use the evolving applied use value methods, which includes examples of the siting of landfills in Louden County, the mineral exploration efficiencies of finer resolution geologic maps in Canada, and improved agricultural production and groundwater protection in Eastern Iowa possible with Landsat moderate resolution satellite imagery. Finally, we describe the adaptation of the applied use value method to the case of streamgage information used to improve the efficiency of water markets in New Mexico.
Application of Remote Sensing for the Analysis of Environmental Changes in Albania
NASA Astrophysics Data System (ADS)
Frasheri, N.; Beqiraj, G.; Bushati, S.; Frasheri, A.
2016-08-01
In the paper there is presented a review of remote sensing studies carried out for investigation of environmental changes in Albania. Using, often simple methodologies and general purpose image processing software, and exploiting free Internet archives of satellite imagery, significant results were obtained for hot areas of environmental changes. Such areas include sea coasts experiencing sea transgression, temporal variations of vegetation and aerosols, lakes, landslides and regional tectonics. Internet archives of European Space Agency ESA and USA Geological Service USGS are used.
Geologic evaluation of remote sensing data, site 157, Awza-Borrego Desert, California
NASA Technical Reports Server (NTRS)
Wolfe, E. W.
1969-01-01
Remote sensing data were obtained at site 157 in May 1968 under mission 73 of the NASA aircraft program. The site is located in an area of high temperatures and extreme aridity immediately west of the Imperial Valley, Southern California. Site 157 is partially surrounded by pre-Cenozoic crystalline rocks exposed in the Fish Creek, Vallecito, and Tierra Blanca Mountains. The study area itself is underlain by more than 20,000 feet of sedimentary strata of late Cenozoic age.
Mapping products of Titan's surface
Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouelic, Stephane; Lorenz, Ralf D.; Perry, Jason; Brown, Robert H.; Lebreton, Jean-Pierre
2009-01-01
Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.
NASA Technical Reports Server (NTRS)
Hauff, Phoebe L.; Coulter, David W.; Peters, Douglas C.; Sares, Matthew A.; Prosh, Eric C.; Henderson, Frederick B., III; Bird, David
2004-01-01
The Colorado Geological Survey and the co-authors of this paper were awarded one of 15 NASA Broad Agency Announcement (BAA) grants in 2001. The project focuses on the use of hyperspectral remote sensing to map acid-generating minerals that affect water quality within a watershed, and to identify the relative contributions of natural and anthropogenic sources to that drainage. A further objective is to define the most cost-effective remote sensing instrument configuration for this application.
Patterns of reflected radiance associated with geobotanical anomalies
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stone, T. A.; Francica, J. R.
1985-01-01
This paper summarizes three remote sensing experiments in which changes in remotely measured reflected radiance patterns of vegetation correlated with changes in geology. In two cases using airborne spectroradiometer data, changes in the physical properties of a uniform species correlated with zones of porphyry copper mineralization. In another case using Landsat digital data, changes were detected in the distribution and density of a number of species and combined with soil brightness data to produce a composite index useful for distinguishing lithologies.
NASA Technical Reports Server (NTRS)
Vittor, B. A. (Editor)
1975-01-01
Federal, State, local, universities and private companies were polled to determine their needs for remote sensing data. A total of 62 users were polled. Poll results are given in tables. A comprehensive research program was developed to satisfy user needs, and is examined for the disciplines of Geology, Water Resources, Archaeology, Geography, and Conservation. An investigation of silt plume discharge from Mobile Bay is also examined. Sample poll forms used in the surveys are shown.
Joint Workshop on New Technologies for Lunar Resource Assessment
NASA Technical Reports Server (NTRS)
Elphic, Rick C. (Editor); Mckay, David S. (Editor)
1992-01-01
The workshop included talks on NASA's and DOE's role in Space Exploration Initiative, lunar geology, lunar resources, the strategy for the first lunar outpost, and an industry perspective on lunar resources. The sessions focused on four major aspects of lunar resource assessment: (1) Earth-based remote sensing of the Moon; (2) lunar orbital remote sensing; (3) lunar lander and roving investigations; and (4) geophysical and engineering consideration. The workshop ended with a spirited discussion of a number of issues related to resource assessment.
A potential hyperspectral remote sensing imager for water quality measurements
NASA Astrophysics Data System (ADS)
Zur, Yoav; Braun, Ofer; Stavitsky, David; Blasberger, Avigdor
2003-04-01
Utilization of Pan Chromatic and Multi Spectral Remote Sensing Imagery is wide spreading and becoming an established business for commercial suppliers of such imagery like ISI and others. Some emerging technologies are being used to generate Hyper-Spectral imagery (HSI) by aircraft as well as other platforms. The commercialization of such technology for Remote Sensing from space is still questionable and depends upon several parameters including maturity, cost, market reception and many others. HSI can be used in a variety of applications in agriculture, urban mapping, geology and others. One outstanding potential usage of HSI is for water quality monitoring, a subject studied in this paper. Water quality monitoring is becoming a major area of interest in HSI due to the increase in water demand around the globe. The ability to monitor water quality in real time having both spatial and temporal resolution is one of the advantages of Remote Sensing. This ability is not limited only for measurements of oceans and inland water, but can be applied for drinking and irrigation water reservoirs as well. HSI in the UV-VNIR has the ability to measure a wide range of constituents that define water quality. Among the constituents that can be measured are the pigment concentration of various algae, chlorophyll a and c, carotenoids and phycocyanin, thus enabling to define the algal phyla. Other parameters that can be measured are TSS (Total Suspended Solids), turbidity, BOD (Biological Oxygen Demand), hydrocarbons, oxygen demand. The study specifies the properties of such a space borne device that results from the spectral signatures and the absorption bands of the constituents in question. Other parameters considered are the repetition of measurements, the spatial aspects of the sensor and the SNR of the sensor in question.
The Oasis impact structure, Libya: geological characteristics from ALOS PALSAR-2 data interpretation
NASA Astrophysics Data System (ADS)
van Gasselt, Stephan; Kim, Jung Rack; Choi, Yun-Soo; Kim, Jaemyeong
2017-02-01
Optical and infrared remote sensing may provide first-order clues for the identification of potential impact structures on the Earth. Despite the free availability of at least optical image data at highest resolution, research has shown that remote sensing analysis always remains inconclusive and extensive groundwork is needed for the confirmation of the impact origin of such structures. Commonly, optical image data and digital terrain models have been employed mainly for such remote sensing studies of impact structures. With the advent of imaging radar data, a few excursions have been made to also employ radar datasets. Despite its long use, capabilities of imaging radar for studying surface and subsurface structures have not been exploited quantitatively when applied for the identification and description of such features due to the inherent complexity of backscatter processes. In this work, we make use of higher-level derived radar datasets in order to gain clearer qualitative insights that help to describe and identify potential impact structures. We make use of high-resolution data products from the ALOS PALSAR-1 and ALOS PALSAR-2 L-band sensors to describe the heavily eroded Oasis impact structure located in the Libyan Desert. While amplitude radar data with single polarization have usually been utilized to accompany the suite of remote sensing datasets when interpreting impact structures in the past, we conclude that the integration of amplitude data with HH/HV/HH-HV polarization modes in standard and, in particular, in Ultra-Fine mode, as well as entropy-alpha decomposition data, significantly helps to identify and discriminate surface units based on their consolidation. Based on the overarching structural pattern, we determined the diameter of the eroded Oasis structure at 15.6 ± 0.5 km.
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
Global geologic applications of the Space Shuttle earth observations photography database
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh; Helfert, Michael; Evans, Cynthia; Wilkinson, M. J.; Pitts, David; Amsbury, David
1993-01-01
The advantages of the astronaut photography during Space Shuttle missions are briefly examined, and the scope and applications of the Space Shuttle earth observations photography database are discussed. The global and multidisciplinary nature of the data base is illustrated by several examples of geologic applications. These include the eruption of Mount Pinatubo (Philippine Islands), heat flow and ice cover on Lake Baikal in Siberia (Russia), and windblown dust in South America. It is noted that hand-held photography from the U.S. Space Shuttle provides unique remotely-sensed data for geologic applications because of the combination of varying perspectives, look angles, and illumination, and changing resolution resulting from different lenses and altitudes.
A bibliography of planetary geology principal investigators and their associates, 1982 - 1983
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1984-01-01
This bibliography cites recent publications by principal investigators and their associates, supported through NASA's Office of Space Science and Applications, Earth and Planetary Exploration Division, Planetary Geology Program. It serves as a companion piece to NASA TM-85127, ""Reports of Planetary Programs, 1982". Entries are listed under the following subject areas: solar system, comets, asteroids, meteorites and small bodies; geologic mapping, geomorphology, and stratigraphy; structure, tectonics, and planetary and satellite evolutions; impact craters; volcanism; fluvial, mass wasting, glacial and preglacial studies; Eolian and Arid climate studies; regolith, volatiles, atmosphere, and climate, radar; remote sensing and photometric studies; and cartography, photogrammetry, geodesy, and altimetry. An author index is provided.
Eastern Sahara Geology from Orbital Radar: Potential Analog to Mars
NASA Technical Reports Server (NTRS)
Farr, T. G.; Paillou, P.; Heggy, E.
2004-01-01
Much of the surface of Mars has been intensely reworked by aeolian processes and key evidence about the history of the Martian environment seems to be hidden beneath a widespread layer of debris (paleo lakes and rivers, faults, impact craters). In the same way, the recent geological and hydrological history of the eastern Sahara is still mainly hidden under large regions of wind-blown sand which represent a possible terrestrial analog to Mars. The subsurface geology there is generally invisible to optical remote sensing techniques, but radar images obtained from the Shuttle Imaging Radar (SIR) missions were able to penetrate the superficial sand layer to reveal parts of paleohydrological networks in southern Egypt.
NASA Technical Reports Server (NTRS)
1982-01-01
Evaluating of the combined utility of narrowband and multispectral imaging in both the infrared and visible for the lithologic identification of geologic materials, and of the combined utility of multispectral imaging in the visible and infrared for lithologic mapping on a global bases are near term recommendations for future imaging capabilities. Long term recommendations include laboratory research into methods of field sampling and theoretical models of microscale mixing. The utility of improved spatial and spectral resolutions and radiometric sensitivity is also suggested for the long term. Geobotanical remote sensing research should be conducted to (1) separate geological and botanical spectral signatures in individual picture elements; (2) study geobotanical correlations that more fully simulate natural conditions; and use test sites designed to test specific geobotanical hypotheses.
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
Biography of Professor M. El-Bahay Issawi
NASA Astrophysics Data System (ADS)
Abdeen, Mamdouh M.
2017-12-01
Prof. Mohamed El-Bahay Issawi is a remarkable geologist and is without doubt one of the most important Egyptian geologists ever. His work in the Western Desert is extensive and legendary, and it is hard to imagine any single geologist ever again matching the extent of his field work in that remote region. He has had an enormously productive career involving a wide variety of research and applied topics. He discovered the Abu Tartur phosphate deposits, iron ore deposits of the Bahariya Oasis, and the Kalabsha kaolin deposits south of Aswan. He did extensive field work and aerial-photo mapping of the Western Desert over many years and authored many carefully documented papers that are still cited today. He wrote several books about the Phanerozoic geology of Egypt. Prof. Issawi has served his science and his nation over his long and outstanding career.
Incorporating Geographic Information Science in the BSc Environ-mental Science Program in Botswana
NASA Astrophysics Data System (ADS)
Akinyemi, Felicia O.
2018-05-01
Critical human capacity in Geographic Information Science (GISc) is developed at the Botswana International University of Science and Technology, a specialized, research university. Strategies employed include GISc courses offered each semester to students from various programs, the conduct of field-based projects, enrolment in online courses, geo-spatial initiatives with external partners, and final year research projects utilizing geospatial technologies. A review is made of available GISc courses embedded in the Bachelor of Science Environmental Science program. GISc courses are incorporated in three Bachelor degree programs as distinct courses. Geospatial technologies are employed in several other courses. Student researches apply GIS and Remote Sensing methods to environmental and geological themes. The overarching goals are to equip students in various disciplines to utilize geospatial technologies, and enhance their spatial thinking and reasoning skills.
Corrêa, Claudia V S; Reis, Fábio A G V; Giordano, Lucilia C; Bressane, Adriano; Chaves, Camila J; Amaral, Ana Maria C DO; Brito, Hermes D; Medeiros, Gerson A DE
2017-01-01
The geo-environmental zoning represents an important strategy in the territorial management. However, it requires a logical and structured procedure. Therefore, an approach using physiographic compartmentalization is proposed and applied as case study in a region covered by the topographic maps of São José dos Campos and Jacareí, Brazil. This region has great geological and geomorphological peculiarities, beyond being a place with large human interventions because of its quickly economic growth. The methodology is based on photointerpretation techniques and remote sensing in GIS environment. As a result, seven geo-environmental zones were obtained from a weighted integration by multicriteria analysis of physiographic units with land-use classes. In conclusion, taking into account potentialities and limitations, the proposed approach can be considered able to support sustainable decision-making, being applicable in other regions.
Elliott, James E.; Trautwein, C.M.; Wallace, C.A.; Lee, G.K.; Rowan, L.C.; Hanna, W.F.
1993-01-01
The Butte 1?x2 ? quadrangle in west-central Montana was investigated as part of the U.S. Geological Survey's Conterminous United States Mineral Assessment Program (CUSMAP). These investigations included geologic mapping, geochemical surveys, gravity and aeromagnetic surveys, examinations of mineral deposits, and specialized geochronologic and remote-sensing studies. The data collected during these studies were compiled, combined with available published and unpublished data, analyzed, and used in a mineral-resource assessment of the quadrangle. The results, including data, interpretations, and mineral-resource assessments for nine types of mineral deposits, are published separately as a folio of maps. These maps are accompanied by figures, tables, and explanatory text. This circular provides background information on the Butte quadrangle, summarizes the studies and published maps, and lists a selected bibliography of references pertinent to the geology, geochemistry, geophysics, and mineral resources of the quadrangle. The Butte quadrangle, which includes the world-famous Butte mining district, has a long history of mineral production. Many mining districts within the quadrangle have produced large quantities of many commodities; the most important in dollar value of production were copper, gold, silver, lead, zinc, manganese, molybdenum, and phosphate. At present, mines at several locations produce copper, molybdenum, gold, silver, lead, zinc, and phosphate. Exploration, mainly for gold, has indicated the presence of other mineral deposits that may be exploited in the future. The results of the investigations by the U.S. Geological Survey indicate that many areas of the quadrangle are highly favorable for the occurrence of additional undiscovered resources of gold, silver, copper, molybdenum, tungsten, and other metals in several deposit types.
NASA Astrophysics Data System (ADS)
Liao, Z.; Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.; Sassa, K.; Karnawati, D.; Fathani, F.
2010-12-01
Recent advancements in the availability of remotely sensed datasets provide an opportunity to advance the predictability of rainfall-triggered landslides at larger spatial scales. An early-warning system based on a physical landslide model and remote sensing information is used to simulate the dynamical response of the soil water content to the spatiotemporal variability of rainfall in complex terrain. The system utilizes geomorphologic datasets including a 30-meter ASTER DEM, a 1-km downscaled FAO soil map, and satellite-based Tropical Rainfall Measuring Mission (TRMM) precipitation. The applied physical model SLIDE (SLope-Infiltration-Distributed Equilibrium) defines a direct relationship between a factor of safety and the rainfall depth on an infinite slope. This prototype model is applied to a case study in Honduras during Hurricane Mitch in 1998 and a secondary case of typhoon-induced shallow landslides over Java Island, Indonesia. In Honduras, two study areas were selected which cover approximately 1,200 square kilometers and where a high density of shallow landslides occurred. The results were quantitatively evaluated using landslide inventory data compiled by the United States Geological Survey (USGS) following Hurricane Mitch, and show a good agreement between the modeling results and observations. The success rate for accurately estimating slope failure locations reached as high as 78% and 75%, while the error indices were 35% and 49%, respectively for each of the two selected study areas. Advantages and limitations of this application are discussed with respect to future assessment and challenges of performing a slope-stability estimation using coarse data at 1200 square kilometers. In Indonesia, the system has been applied over the whole Java Island. The prototyped early-warning system has been enhanced by integration of a susceptibility mapping and a precipitation forecasting model (i.e. Weather Research Forecast). The performance has been evaluated using a local landslide inventory, and results show that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events in this case.
Expert system-based mineral mapping using AVIRIS
NASA Technical Reports Server (NTRS)
Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.
1992-01-01
Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.
Reports of planetary geology program, 1979 - 1980. [bibliographies
NASA Technical Reports Server (NTRS)
Wirth, P.; Greeley, R.; Dalli, R.
1980-01-01
Abstracts of 145 reports are compiled addressing the morphology, geochemistry, and stratigraphy of planetary surfaces with some specific examinations of volcanic, aeolian, fluvial, and periglacial processes and landforms. In addition, reports on cartography and remote sensing of planet surfaces are included.
Geology of the Great Smoky Mountains National Park, Tennessee and North Carolina
King, Philip Burke; Neuman, Robert B.; Hadley, Jarvis B.
1968-01-01
Every year, thousands of our fellow Americans visit Great Smoky Mountains National Park, in the heart of the southern Appalachian highlands. All visitors find refreshment in this mountain wilderness, some of them are also inspired by its deeper meanings - by observing the varied forests and other living things of the mountains, and by contemplating the long ages of the past during which the mountains and their living things must have evolved. These past ages can be deciphered by geologic study, which interprets first of all how the land has been shaped into its present form, and more remotely, the nature and history of the rocks from which the land has been carved. The account which follows deals primarily with this more remote part of the geologic story - the rocks which compose the mountains. How the present mountains came into being is a later chapter of the story, interesting in itself, which deserves its own presentation in another place. The present account summarizes the results of a long investigation of the rocks of the Great Smoky Mountains (1946-55) by geologists of the staff of the U.S. Geological Survey, in collaboration with those of the Tennessee Division of Geology. The technical details of this investigation have already been set forth at length in professional papers of the U.S. Geological Survey. The present account contains the gist of these findings about the rocks of the mountains, and is accompanied by a map and structure sections in which the surface and underground extent of the rocks are displayed. This summary, by cutting through the many technical problems involved, will be useful to students interested in geology and the other natural sciences, and to a wider audience as well. Even so, to portray adequately the rocks of the mountains and their history involves at least some recourse to geologic terminology, so that all the assertions made herein may not be comprehensible to the general reader. As an aid to the reader, a glossary of the geologic terms used is therefore included at the end. For those readers who desire more detailed information regarding the findings so briefly summarized in this account, reference should be made to the more lengthy professional papers on which the account is based.
Remote Sensing as a First Step in Geothermal Exploration in the Xilingol Volcanic Field in NE China
NASA Astrophysics Data System (ADS)
Peng, F.; Huang, S.; Xiong, Y.
2013-12-01
Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Geological structures play an important role in the transfer and storage of geothermal energy. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting techniques, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, RS and GIS techniques are utilized to prospect the geothermal energy potential in Xilingol, a Cenozoic volcanic area in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with a single-channel algorithm. Prior to the LST retrieval, the imagery data are preprocessed to eliminate abnormal values by reference to the normalized difference vegetation index (NDVI) and the improved normalized water index (MNDWI) on the ENVI platform developed by ITT Visual Information Solutions. Linear and circular geological structures are then inferred through visual interpretation of the LST maps with references to the existing geological maps in conjunction with the computer automatic interpretation features such as lineament frequency, lineament density, and lineament intersection. Several useful techniques such as principal component analysis (PCA), image classification, vegetation suppression, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote sensing images. The result shows that the major faults in the study area are mainly NEE oriented. Hidden faults and deep structures are inferred from the analysis of distribution regularities of linear and circular structures. Especially, the swarms of craters northwest to the Dalinuoer Lake appear to be controlled by some NEE trending hidden basement fractures. The intersecting areas of the NEE linear structures with NW trending structures overlapped by the circular structures are the favorable regions for geothermal resources. Seven areas have been preliminarily identified as the targets for further prospecting geothermal energy based on the visual interpretation of the geological structures. The study shows that RS and GIS have great application potential in the geothermal exploration in volcanic areas and will promote the exploration of renewable energy resources of great potential.
Landsat and SPOT data for oil exploration in North-Western China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishidai, Takashi
1996-07-01
Satellite remote sensing technology has been employed by Japex to provide information related to oil exploration programs for many years. Since the beginning of the 1980`s, regional geological interpretation through to advanced studies using satellite imagery with high spectral and spatial resolutions (such as Landsat TM and SPOT HRV), have been carried out, for both exploration programs and for scientific research. Advanced techniques (including analysis of airborne hyper-multispectral imaging sensor data) as well as conventional photogeological techniques were used throughout these programs. The first program using remote sensing technology in China focused on the Tarim Basin, Xinjiang Uygur Autonomous Region,more » and was carried out using Landsat MSS data. Landsat MSS imagery allows us to gain useful preliminary geological information about an area of interest, prior to field studies. About 90 Landsat scenes cover the entire Xinjiang Uygru Autonomous Region, this allowed us to give comprehensive overviews of 3 hydrocarbon-bearing basins (Tarim, Junggar, and Turpan-Hami) in NW China. The overviews were based on the interpretations and assessments of the satellite imagery and on a synthesis of the most up-to-date accessible geological and geophysical data as well as some field works. Pairs of stereoscopic SPOT HRV images were used to generate digital elevation data with a 40 in grid cover for part of the Tarim Basin. Topographic contour maps, created from this digital elevation data, at scales of 1:250,000 and 1:100,000 with contour intervals of 100 m and 50 m, allowed us to make precise geological interpretation, and to carry out swift and efficient geological field work. Satellite imagery was also utilized to make medium scale to large scale image maps, not only to interpret geological features but also to support field workers and seismic survey field operations.« less
The Geologic Story of Yellowstone National Park
Keefer, William Richard
1971-01-01
In the aftermath of the Civil War, the United States expanded the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the Geological and Geographical Survey of the Territories was organized within the Department of the Interior, and staffed by a group of hardy, pioneering scientists under the leadership of geologist F. V. Hayden. During the summer of 1871, these men, accompanied by photographer William H. Jackson and artist Thomas Moran, made a reconnaissance geological study of the legendary and mysterious 'Yellowstone Wonderland' in remote northwestern Wyoming Territory. The scientific reports and illustrations prepared by Hayden and his colleagues, supplementing the startling accounts that had been published by members of the famous Washburn-Doane Expedition a year earlier, erased all doubts that this unique land was eminently worthy of being set aside 'for the benefit and enjoyment of the people.' By Act of Congress on March 1, 1872, our first National Park was established. During the past century, 50 million people have toured Yellowstone National Park, marveling at its never-ending display of natural wonders. No doubt many have paused to wonder about the origin of these unusual and complex geological features - a question, needless to say, that has intrigued and challenged scientists from the very first days of the Hayden Survey. During the past decade a group of U. S. Geological Survey scientists, in cooperation with the National Park Service and aided by the interest of the National Aeronautics and Space Administration in remote sensing of the geologic phenomena, has been probing the depths and farthest corners of the Park seeking more of the answers. Some of the results of this work, and those of earlier studies, are described in this book to provide a better understanding and enjoyment of this great National Park.
Geostatistics: a common link between medical geography, mathematical geology, and medical geology
Goovaerts, P.
2015-01-01
Synopsis Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential ‘causes’ of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level. PMID:25722963
Geostatistics: a common link between medical geography, mathematical geology, and medical geology.
Goovaerts, P
2014-08-01
Since its development in the mining industry, geostatistics has emerged as the primary tool for spatial data analysis in various fields, ranging from earth and atmospheric sciences to agriculture, soil science, remote sensing, and more recently environmental exposure assessment. In the last few years, these tools have been tailored to the field of medical geography or spatial epidemiology, which is concerned with the study of spatial patterns of disease incidence and mortality and the identification of potential 'causes' of disease, such as environmental exposure, diet and unhealthy behaviours, economic or socio-demographic factors. On the other hand, medical geology is an emerging interdisciplinary scientific field studying the relationship between natural geological factors and their effects on human and animal health. This paper provides an introduction to the field of medical geology with an overview of geostatistical methods available for the analysis of geological and health data. Key concepts are illustrated using the mapping of groundwater arsenic concentration across eleven Michigan counties and the exploration of its relationship to the incidence of prostate cancer at the township level.
Remote sensing of permafrost and geological hazards in Alaska
NASA Technical Reports Server (NTRS)
Ferrians, O. J., Jr. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The study of the ERTS-1 imagery of Alaska indicates the following: that areas of different topographic expression affecting the distribution and character of permafrost can be distinguished clearly; that on the Arctic North Slope, regional differences in the distribution and character of permafrost-related oriented thaw lakes can be observed; that the distribution of certain types of geologic materials having a significant effect on the character of permafrost can be delineated on a regional scale; and that the resolution of the imagery is adequate to identify large scale geologic hazards such as landslides, glacier-dammed lakes, aufeis fields, etc. The information concerning the distribution and character of permafrost and geologic hazards to the gained in accomplishing the objectives of this project will be an invaluable aid in solving engineering-geologic and environmental problems related to route and site selection for structures such as roads, railroads, pipelines, and large installations; to distribution of natural construction materials; and to construction and maintenance.
Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production
Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
1979-10-31
construction is to be carried on in the vicinity. 34 - - -- - Figure 13 - Geologic Interpretation of Part of the Upper Amazon Basin ( Peru ) Figure 14 - Radar...and how to proceed still remains under review. Likely some of you are aware of the concept called the National Oceanic Satellite System. It would serve...radar to emphasize the surface evidence of underground geological phenomena has proved itself of great value. Figure 13 shows an area in the upper Amazon
Application of LANDSAT satellite imagery for iron ore prospecting in the Western Desert of Egypt
NASA Technical Reports Server (NTRS)
Elshazly, E. M.; Abdelhady, M. A.; Elghawaby, M. A.; Khawasik, S. M.
1977-01-01
Prospecting for iron ore occurrences was conducted by the Remote Sensing Center in Bahariya Oasis-El Faiyum area covering some 100,000 km squared in the Western Desert of Egypt. LANDSAT-1 satellite images were utilized as the main tool in the regional prospecting of the iron ores. The delineation of the geological units and geological structure through the interpretation of the images corroborated by field observations and structural analysis led to the discovery of new iron ore occurrences in the area of investigation.
Appraising U.S. Geological Survey science records
Faundeen, John L.
2010-01-01
The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center has legislative charters to preserve and make accessible land remote sensing records important to the United States. This essay explains the appraisal process developed by EROS to ensure the science records it holds and those offered to it align with those charters. The justifications behind the questions employed to weed and to complement the EROS archive are explained along with the literature reviewed supporting their inclusion. Appraisal results are listed by individual collection and include the recommendations accepted by EROS management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, J.M.
Remote sensing allows the petroleum industry to make better and quicker interpretations of geological and environmental conditions in areas of present and future operations. Often remote sensing (including aerial photographs) is required because existing maps are out-of-date, too small of scale, or provide only limited information. Implementing remote sensing can lead to lower project costs and reduced risk. The same satellite and airborne data can be used effectively for both geological and environmental applications. For example, earth scientists can interpret new lithologic, structural, and geomorphic information from near-infrared and radar imagery in terrains as diverse as barren desert and tropicalmore » jungle. Environmental applications with these and other imagery include establishing baselines, assessing impact by documenting changes through time, and mapping land-use, habitat, and vegetation. Higher resolution sensors provide an up-to-date overview of onshore and offshore petroleum facilities, whereas sensors capable of oblique viewing can be used to generate topographic maps. Geological application in Yemen involved merging Landsat TM and SPOT imagery to obtain exceptional lithologic discrimination. In the Congo, a topographic map to plan field operations was interpreted from the overlapping radar strips. Landsat MSS and TM, SPOT, and Russian satellite images with new aerial photographs are being used in the Tengiz supergiant oil field of Kazakhstan to help establish an environmental baseline, generate a base map, locate wells, plan facilities, and support a geographical information system (GIS). In the Niger delta, Landsat TM and SPOT are being used to plan pipeline routes and seismic lines, and to monitor rapid shoreline changes and population growth. Accurate coastlines, facility locations, and shoreline types are being extracted from satellite images for use in oil spill models.« less
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C–band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr-1 was measured. PMID:22389620
Delacourt, Christophe; Raucoules, Daniel; Le Mouélic, Stéphane; Carnec, Claudie; Feurer, Denis; Allemand, Pascal; Cruchet, Marc
2009-01-01
Slope instabilities are one of the most important geo-hazards in terms of socio-economic costs. The island of La Réunion (Indian Ocean) is affected by constant slope movements and huge landslides due to a combination of rough topography, wet tropical climate and its specific geological context. We show that remote sensing techniques (Differential SAR Interferometry and correlation of optical images) provide complementary means to characterize landslides on a regional scale. The vegetation cover generally hampers the analysis of C-band interferograms. We used JERS-1 images to show that the L-band can be used to overcome the loss of coherence observed in Radarsat C-band interferograms. Image correlation was applied to optical airborne and SPOT 5 sensors images. The two techniques were applied to a landslide near the town of Hellbourg in order to assess their performance for detecting and quantifying the ground motion associated to this landslide. They allowed the mapping of the unstable areas. Ground displacement of about 0.5 m yr(-1) was measured.
Aeromagnetic Survey in Afghanistan: A Website for Distribution of Data
Abraham, Jared D.; Anderson, Eric D.; Drenth, Benjamin J.; Finn, Carol A.; Kucks, Robert P.; Lindsay, Charles R.; Phillips, Jeffrey D.; Sweeney, Ronald E.
2007-01-01
Afghanistan's geologic setting indicates significant natural resource potential While important mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information of the geological setting of an area without the need to be physically located on the ground. Due to the security situation and the large areas of the country of Afghanistan that has not been covered with geophysical exploration methods a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.
U.S. Geological Survey shrub/grass products provide new approach to shrubland monitoring
Young, Steven M.
2017-12-11
In the Western United States, shrubland ecosystems provide vital ecological, hydrological, biological, agricultural, and recreational services. However, disturbances such as livestock grazing, exotic species invasion, conversion to agriculture, climate change, urban expansion, and energy development are altering these ecosystems.Improving our understanding of how shrublands are distributed, where they are changing, the extent of the historical change, and likely future change directions is critical for successful management of these ecosystems. Remote-sensing technologies provide the most likely data source for large-area monitoring of ecosystem disturbance—both near-real time and historically. A monitoring framework supported by remote-sensing data can offer efficient and accurate analysis of change across a range of spatial and temporal scales.The U.S. Geological Survey has been working to develop new remote-sensing data, tools, and products to characterize and monitor these changing shrubland landscapes. Nine individual map products (components) have been developed that quantify the percent of shrub, sagebrush, big sagebrush, herbaceous, annual herbaceous, litter, bare ground, shrub height, and sagebrush height at 1-percent intervals in each 30-meter grid cell. These component products are designed to be combined and customized to widely support different applications in rangeland monitoring, analysis of wildlife habitat, resource inventory, adaptive management, and environmental review.
Radar studies related to the earth resources program. [remote sensing programs
NASA Technical Reports Server (NTRS)
Holtzman, J.
1972-01-01
The radar systems research discussed is directed toward achieving successful application of radar to remote sensing problems in such areas as geology, hydrology, agriculture, geography, forestry, and oceanography. Topics discussed include imaging radar and evaluation of its modification, study of digital processing for synthetic aperture system, digital simulation of synthetic aperture system, averaging techniques studies, ultrasonic modeling of panchromatic system, panchromatic radar/radar spectrometer development, measuring octave-bandwidth response of selected targets, scatterometer system analysis, and a model Fresnel-zone processor for synthetic aperture imagery.
Mapping products of Titan's surface: Chapter 19
Stephan, Katrin; Jaumann, Ralf; Karkoschka, Erich; Kirk, Randolph L.; Barnes, Jason W.; Tomasko, Martin G.; Turtle, Elizabeth P.; Le Corre, Lucille; Langhans, Mirjam; Le Mouélic, Stéphane; Lorenz, Ralph D.; Perry, Jason; Brown, Robert; Lebreton, Jean-Pierre; Waite, J. Hunter
2010-01-01
Remote sensing instruments aboard the Cassini spacecraft have been observed the surface of Titan globally in the infrared and radar wavelength ranges as well as locally by the Huygens instruments revealing a wealth of new morphological features indicating a geologically active surface. We present a summary of mapping products of Titan's surface derived from data of the remote sensing instruments onboard the Cassini spacecraft (ISS, VIMS, RADAR) as well as the Huygens probe (DISR) that were achieved during the nominal Cassini mission including an overview of Titan's recent nomenclature.
Delineation of geological problems for use in urban planning. [in Alabama using remote sensors
NASA Technical Reports Server (NTRS)
Hughes, T. H.; Bloss, P.; Fambrough, R.; Stow, S. H.; Hooks, W. G.; Freehafer, D.; Sutley, D.
1976-01-01
Activities of the University of Alabama in support of state and local planning commissions are reported. Demonstrations were given of the various types of remotely sensed images available from U-2, Skylab, and LANDSAT; and their uses and limitations were discussed. Techniques to be used in determining flood prone areas were provided for environmental studies. A rapid, inexpensive method for study was developed by which imagery is copied on 35 mm film and projected on existing topographic maps for measuring delta volume and growth.
Preliminary study of Kelso Dunes using AVIRIS, TM, and AIRSAR
NASA Technical Reports Server (NTRS)
Xu, Pung; Blumberg, Dan G.; Greeley, Ronald
1995-01-01
Remote sensing of sand dunes helps in the understanding of aeolian process and provides important information about the regional geologic history, environmental change, and desertification. Remotely sensed data combined with field studies are valuable in studying dune morphology, regional aeolian dynamics, and aeolian depositional history. In particular, active and inactive sands of the Kelso Dunes have been studied using landsat TM and AIRSAR. In this report, we describe the use of AVIRIS data to study the Kelso dunes and to compare the AVIRIS information with that from TM and AIRSAR.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07
Pearson, D.K.; Gary, R.H.; Wilson, Z.D.
2007-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.
Interdisciplinary Research for Undergraduates at the Center for Great Lakes Studies.
ERIC Educational Resources Information Center
Nealson, Kenneth H.
1988-01-01
Describes a research program that has active areas of research ranging from hydrology, water chemistry, geology, gene cloning, satellite image analysis and remote sensing, and molecular biology. Provides information on selection procedures, design of program, benefits, and names of participants. (RT)
NASA Astrophysics Data System (ADS)
Ferrière, L.; Lubala, F. R. T.; Osinski, G. R.; Kaseti, P. K.
2011-03-01
Our detailed analysis of the Luizi structure, combining a remote sensing study with geological field observations and petrographic examination of rock samples collected during our 2010 field campaign allows us to confirm its meteorite impact origin.
NASA Astrophysics Data System (ADS)
Forte, F.; Strobl, R. O.; Pennetta, L.
2006-07-01
The impact of calamitous meteoric events and their interaction with the geological and geomorphological environment represent a current problem of the Supersano-Ruffano-Nociglia Graben in southern Italy. Indeed, severe floods take place on a frequent basis not only in autumn and winter, but in summer also. These calamities are not only triggered by exceptional events, but are also amplified by peculiar geological and morpho-structural characteristics of the Graben. Flooding often affects vast agricultural areas and consequently, water-scooping machines cannot remove the rainwater. These events cause warnings and emergency states, involving people as well as socio economic goods. This study represents an application of a vanguard technique for loss estimation and flood vulnerability analysis, integrating a geographic information system (GIS) with aerial photos and remote sensing methods. The analysis results clearly show that the Graben area is potentially at greatest flood vulnerability, while along the Horsts the flood vulnerability is lower.
NASA Technical Reports Server (NTRS)
Winikka, C. C.; Schumann, H. H.
1975-01-01
Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.
Remote sensing applied to land-use studies in Wyoming
NASA Technical Reports Server (NTRS)
Breckenridge, R. M.; Marrs, R. W.; Murphy, D. J.
1973-01-01
Impending development of Wyoming's vast fuel resources requires a quick and efficient method of land use inventory and evaluation. Preliminary evaluations of ERTS-1 imagery have shown that physiographic and land use inventory maps can be compiled by using a combination of visual and automated interpretation techniques. Test studies in the Powder River Basin showed that ERTS image interpretations can provide much of the needed physiographic and land use information. Water impoundments as small as one acre were detected and water bodies larger than five acres could be mapped and their acreage estimated. Flood plains and irrigated lands were successfully mapped, and some individual crops were identified and mapped. Coniferous and deciduous trees were mapped separately using color additive analysis on the ERTS multispectral imagery. Gross soil distinctions were made with the ERTS imagery, and were found to be closely related to the bedrock geology. Several broad unstable areas were identified. These were related to specific geologic and slope conditions and generally extended through large regions. Some new oil fields and all large open-cut coal mines were mapped. The most difficult task accomplished was that of mapping urban areas. Work in the urban areas provides a striking example of snow enhancement and the detail available from a snow enhanced image.
Lauer, Donald T.; Chu, Liangcai
1992-01-01
A Protocol established between the National Bureau of Surveying and Mapping, People's Republic of China (PRC) and the U.S. Geological Survey, United States of America (US), resulted in the exchange of scientific personnel, technical training, and exploration of the processing of remotely sensed data. These activities were directed toward the application of remotely sensed data to surveying and mapping. Data were processed and various products were generated for the Black Hills area in the US and the Ningxiang area of the PRC. The results of these investigations defined applicable processes in the creation of satellite image maps, land use maps, and the use of ancillary data for further map enhancements.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.
NASA Technical Reports Server (NTRS)
Morrison, D. B. (Editor); Scherer, D. J.
1977-01-01
Papers are presented on a variety of techniques for the machine processing of remotely sensed data. Consideration is given to preprocessing methods such as the correction of Landsat data for the effects of haze, sun angle, and reflectance and to the maximum likelihood estimation of signature transformation algorithm. Several applications of machine processing to agriculture are identified. Various types of processing systems are discussed such as ground-data processing/support systems for sensor systems and the transfer of remotely sensed data to operational systems. The application of machine processing to hydrology, geology, and land-use mapping is outlined. Data analysis is considered with reference to several types of classification methods and systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
Recent advances in remote-sensing technology and applications are examined in reviews and reports. Topics addressed include the use of Landsat TM data to assess suspended-sediment dispersion in a coastal lagoon, the use of sun incidence angle and IR reflectance levels in mapping old-growth coniferous forests, information-management systems, Large-Format-Camera soil mapping, and the economic potential of Landsat TM winter-wheat crop-condition assessment. Consideration is given to measurement of ephemeral gully erosion by airborne laser ranging, the creation of a multipurpose cadaster, high-resolution remote sensing and the news media, the role of vegetation in the global carbon cycle, PC applications in analytical photogrammetry,more » multispectral geological remote sensing of a suspected impact crater, fractional calculus in digital terrain modeling, and automated mapping using GP-based survey data.« less
Segment fusion of ToF-SIMS images.
Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A
2016-06-08
The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.
Major risk from rapid, large-volume landslides in Europe (EU Project RUNOUT)
NASA Astrophysics Data System (ADS)
Kilburn, Christopher R. J.; Pasuto, Alessandro
2003-08-01
Project RUNOUT has investigated methods for reducing the risk from large-volume landslides in Europe, especially those involving rapid rates of emplacement. Using field data from five test sites (Bad Goisern and Köfels in Austria, Tessina and Vajont in Italy, and the Barranco de Tirajana in Gran Canaria, Spain), the studies have developed (1) techniques for applying geomorphological investigations and optical remote sensing to map landslides and their evolution; (2) analytical, numerical, and cellular automata models for the emplacement of sturzstroms and debris flows; (3) a brittle-failure model for forecasting catastrophic slope failure; (4) new strategies for integrating large-area Global Positioning System (GPS) arrays with local geodetic monitoring networks; (5) methods for raising public awareness of landslide hazards; and (6) Geographic Information System (GIS)-based databases for the test areas. The results highlight the importance of multidisciplinary studies of landslide hazards, combining subjects as diverse as geology and geomorphology, remote sensing, geodesy, fluid dynamics, and social profiling. They have also identified key goals for an improved understanding of the physical processes that govern landslide collapse and runout, as well as for designing strategies for raising public awareness of landslide hazards and for implementing appropriate land management policies for reducing landslide risk.
NASA Astrophysics Data System (ADS)
Afanasyeva, Natalia I.; Welser, Leslie; Bruch, Reinhard F.; Kano, Angelique; Makhine, Volodymyr
1999-10-01
A new infrared (IR) interferometric method has been developed in conjunction with low-loss, flexible optical fibers, sensors, and probes. This combination of fiber optical sensors and Fourier Transform (FT) spectrometers can be applied to many fields, including (1) noninvasive medical diagnostics of cancer and other different diseases in vivo, (2) minimally invasive bulk diagnostics of tissue, (3) remote monitoring of tissue, chemical processes, and environment, (4) surface analysis of polymers and other materials, (5) characterization of the quality of food, pharmacological products, cosmetics, paper, and other wood-related products, as well as (6) agricultural, forensic, geological, mining, and archeological field measurements. In particular, our nondestructive, fast, compact, portable, remote and highly sensitive diagnostics tools are very promising for subsurface analysis at the molecular level without sample preparation. For example, this technique is ideal for different types of soft porous foams, rough polymers, and rock surfaces. Such surfaces, as well as living tissue, are very difficult to investigate by traditional FTIR methods. We present here FEW-FTIR spectra of polymers, banana and grapefruit peels, and living tissues detected directly at surfaces. In addition, results on the vibrational spectral analysis of normal and pathological skin tissue in the region of 850 - 4000 cm-1 are discussed.
Understanding USGS user needs and Earth observing data use for decision making
NASA Astrophysics Data System (ADS)
Wu, Z.
2016-12-01
US Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) project in the Land Remote Sensing (LRS) program, collaborating with the National Oceanic and Atmospheric Administration (NOAA) to jointly develop the supporting information infrastructure - The Earth Observation Requirements Evaluation Systems (EORES). RCA-EO enables us to collect information on current data products and projects across the USGS and evaluate the impacts of Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. EORES allows users to query, filter, and analyze usage and impacts of Earth observation data at different organizational level within the bureau. We engaged over 500 subject matter experts and evaluated more than 1000 different Earth observing data sources and products. RCA-EO provides a comprehensive way to evaluate impacts of Earth observing data on USGS mission areas and programs through the survey of 345 key USGS products and services. We paid special attention to user feedback about Earth observing data to inform decision making on improving user satisfaction. We believe the approach and philosophy of RCA-EO can be applied in much broader scope to derive comprehensive knowledge of Earth observing systems impacts and usage and inform data products development and remote sensing technology innovation.
What Lies Beneath Can Be Imaged
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Tim
The Hanford Site was quickly established to help end World War II, making history for producing the plutonium used in the world’s first nuclear weapons. Throughout the Cold War years, Hanford employees produced plutonium for most of the more than 60,000 weapons in the U.S. nuclear arsenal stockpile. Today, the once highly active nuclear reactors are shut down. And the mission at Hanford turned full-circle as scientists, engineers and specialists work to clean up our nation’s most contaminated nuclear site. PNNL Computational Geophysicist Tim Johnson is helping decision-makers understand the complexity and breadth of the contamination in soils at Hanford.more » Tim and others are applying remote, high-resolution geophysical imaging to determine the extent of contamination in the soil below the surface and understand the processes controlling its movement. They also provide real-time imaging of remediation processes that are working to limit the movement of contaminants below the surface and toward water resources. Geophysical imaging simply means that PNNL scientists are combining the techniques of geology, physics, mathematics and chemistry with supercomputer modeling to create three-dimensional images of the waste and its movement. These real-time, remote images are essential in reducing the uncertainty associated with cleanup costs and remediation technologies.« less
Looking at Earth observation impacts with fresh eyes: a Landsat example
NASA Astrophysics Data System (ADS)
Wu, Zhuoting; Snyder, Greg; Quirk, Bruce; Stensaas, Greg; Vadnais, Carolyn; Babcock, Michael; Dale, Erin; Doucette, Peter
2016-05-01
The U. S. Geological Survey (USGS) initiated the Requirements, Capabilities and Analysis for Earth Observations (RCA-EO) activity in the Land Remote Sensing (LRS) program to provide a structured approach to collect, store, maintain, and analyze user requirements and Earth observing system capabilities information. RCA-EO enables the collection of information on current key Earth observation products, services, and projects, and to evaluate them at different organizational levels within an agency, in terms of how reliant they are on Earth observation data from all sources, including spaceborne, airborne, and ground-based platforms. Within the USGS, RCA-EO has engaged over 500 subject matter experts in this assessment, and evaluated the impacts of more than 1000 different Earth observing data sources on 345 key USGS products and services. This paper summarizes Landsat impacts at various levels of the organizational structure of the USGS and highlights the feedback of the subject matter experts regarding Landsat data and Landsat-derived products. This feedback is expected to inform future Landsat mission decision making. The RCA-EO approach can be applied in a much broader scope to derive comprehensive knowledge of Earth observing system usage and impacts, to inform product and service development and remote sensing technology innovation beyond the USGS.
Introduction to This Special Issue on Geostatistics and Geospatial Techniques in Remote Sensing
NASA Technical Reports Server (NTRS)
Atkinson, Peter; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)
2000-01-01
The germination of this special Computers & Geosciences (C&G) issue began at the Royal Geographical Society (with the Institute of British Geographers) (RGS-IBG) annual meeting in January 1997 held at the University of Exeter, UK. The snow and cold of the English winter were tempered greatly by warm and cordial discussion of how to stimulate and enhance cooperation on geostatistical and geospatial research in remote sensing 'across the big pond' between UK and US researchers. It was decided that one way forward would be to hold parallel sessions in 1998 on geostatistical and geospatial research in remote sensing at appropriate venues in both the UK and the US. Selected papers given at these sessions would be published as special issues of C&G on the UK side and Photogrammetric Engineering and Remote Sensing (PE&RS) on the US side. These issues would highlight the commonality in research on geostatistical and geospatial research in remote sensing on both sides of the Atlantic Ocean. As a consequence, a session on "Geostatistics and Geospatial Techniques for Remote Sensing of Land Surface Processes" was held at the RGS-IBG annual meeting in Guildford, Surrey, UK in January 1998, organized by the Modeling and Advanced Techniques Special Interest Group (MAT SIG) of the Remote Sensing Society (RSS). A similar session was held at the Association of American Geographers (AAG) annual meeting in Boston, Massachusetts in March 1998, sponsored by the AAG's Remote Sensing Specialty Group (RSSG). The 10 papers that make up this issue of C&G, comprise 7 papers from the UK and 3 papers from the LIS. We are both co-editors of each of the journal special issues, with the lead editor of each journal issue being from their respective side of the Atlantic. The special issue of PE&RS (vol. 65) that constitutes the other half of this co-edited journal series was published in early 1999, comprising 6 papers by US authors. We are indebted to the International Association for Mathematical Geology for allowing us to use C&G as a vehicle to convey how geostatistics and geospatial techniques can be used to analyze remote sensing and other types of spatial data. We see this special issue of C&G. and its complementary issue of PE&RS. as a testament to the vitality and interest in the application of geostatistical and geospatial techniques in remote sensing. We also see these special journal issues as the beginning of a fruitful. and hopefully long-term relationship, between American and British geographers and other researchers interested in geostatistical and geospatial techniques applied to remote sensing and other spatial data.
NASA Technical Reports Server (NTRS)
Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.
1987-01-01
High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).
Recognition of a porphyry system using ASTER data in Bideghan - Qom province (central of Iran)
NASA Astrophysics Data System (ADS)
Feizi, F.; Mansouri, E.
2014-07-01
The Bideghan area is located south of the Qom province (central of Iran). The most impressive geological features in the studied area are the Eocene sequences which are intruded by volcanic rocks with basic compositions. Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER) image processing have been used for hydrothermal alteration mapping and lineaments identification in the investigated area. In this research false color composite, band ratio, Principal Component Analysis (PCA), Least Square Fit (LS-Fit) and Spectral Angel Mapping (SAM) techniques were applied on ASTER data and argillic, phyllic, Iron oxide and propylitic alteration zones were separated. Lineaments were identified by aid of false color composite, high pass filters and hill-shade DEM techniques. The results of this study demonstrate the usefulness of remote sensing method and ASTER multi-spectral data for alteration and lineament mapping. Finally, the results were confirmed by field investigation.
Long regional magnetotelluric profile crossing geotectonic structures of central Poland
NASA Astrophysics Data System (ADS)
Stefaniuk, M.; Pokorski, J.; Wojdyla, M.
2009-04-01
Introduction The magnetotelluric survey was made along a regional profile, which runs across Poland from south-west to north-east during 2005-2006 years. The profile crosses major geological structures of Central Poland, including the Variscan Externides and Variscan foredeep, the Transeuropean Suture Zone and the marginal zone of East European Craton. The main objectives of the project include identification of sub-Zechstein sedimentary structures and evaluation of resistivity distribution within the deep crust, especially at the contact of East European Precambrian Craton and Central Europe Paleozoic structures. The length of the profile is about 700 km; 161 deep magnetotelluric sounding sites were made with a medium spacing of about 4 km. Data acquisition and processing The recording of the components of natural electromagnetic field was made with a broad range of frequencies, varying from 0.0003 Hz up to 575 Hz with use of MT-1 system of Electromagnetic Instruments Incorporation. This frequency band allowed obtaining the information about geology ranging from a few dozen meters to approximately 100 km, depending on the vertical distribution of the resistivity inside geological medium. To reduce the electromagnetic noise, magnetic and electric remote reference was applied. A remote reference site was located at a distance of over 100 km of field sites. Processing of the recorded data included the estimation of the components of impedance tensor (Zxx, Zxy, Zyx and Zyy ), with use of robust type procedures. The components of the impedance tensor allowed in a subsequent step for calculation of field curves for two orientations of the measurement system (XY - described further as the TM mode and YX - TE mode) and additional parameters of the medium like skew, strike, pole diagrams etc. Recording of the vertical component of electromagnetic field (Hz) allowed calculation of tipper parameter T. Magnetotelluric soundings interpretation Geophysical interpretation of MT sounding data was made based on 1D and 2D inversion. The upper part of the geological section is built of relatively flat layers, hence a 1D interpretation model could be effectively applied. Starting models for 1D inversion were constructed based on results of electromagnetic well-logging and some well-documented seismic horizons. Initial models for 2D inversion were constructed with the use of results of 1D magnetotelluric sounding inversion and structural model of the upper part of cross-section based on seismic data interpretation. 2D inversion was performed in two steps with use of NLCG and SBI algorithms. At first step of inversion high-frequency range of data was used and constraints based on borehole data was applied. Inversion in second step was made with starting model constructed based on results of first one and with stabilizing resistivity distribution in upper part of cross-section. Of great interest is varied resistivity of the formation resting between the Zechstein evaporate complex, and the crystalline basement. Interpretation of results of magnetotelluric soundings provide a lot of new information. The main tectonic boundaries were distinguished and location of sediments of different lithology reflected in resistivity differentiation was defined. Some new deep tectonic elements were recognized at the zone of Fore-Sudetic Block and Fore-Sudetic Monocline. Substantial differentiation of resistivity of crystalline massif of the East European Craton basement was discovered. Zones of low resistivity are probably connected with development of metamorphic processes or reflects location of big faults. Geological cross- section based on resistivity distribution was constructed. Deep model of regional structures based on resistivity distribution was suggested as well. Acknowledgments. This paper was based on results of investigations carried out by the PBG Geophysical Exploration Company Ltd. financed by the Minister of Environment through National Found for Environment Protection and Water Resources. The authors used also results of statutory research of Department of General Geology, Environment Protection and Geotourism, UST AGH, financed by the Minister of Science and Higher Education (project no 11.11.140.447). Geophysical interpretation was carried out using softwares by EMI, and Geosystem WingLinkTM.
NASA Astrophysics Data System (ADS)
Wei, Jiali; Liu, Xiangnan; Ding, Chao; Liu, Meiling; Jin, Ming; Li, Dongdong
2017-01-01
In remote sensing petrology fields, studies have mainly concentrated on spectroscopy remote sensing research, and methods to identify minerals and rocks are mainly based on the analysis and enhancement of spectral features. Few studies have reported the application of thermodynamics for lithology identification. This paper aims to establish a thermal characteristic index (TCI) to explore rock thermal behavior responding to defined environmental systems. The study area is located in the northern Qinghai Province, China, on the northern edge of the Qinghai-Tibet Plateau, where mafic-ultramafic rock, quartz-rich rock, alkali granite rock and carbonate rock are well exposed; the pixel samples of these rocks and vegetation were obtained based on relevant indices and geological maps. The scatter plots of TCI indicate that mafic-ultramafic rock and quartz-rich rock can be well extracted from other surface objects when interference from vegetation is lower. On account of the complexity of environmental systems, three periods of TCI were used to construct a three-dimensional scatter plot, named the multi-temporal thermal feature space (MTTFS) model. Then, the Bayes discriminant analysis algorithm was applied to the MTTFS model to extract rocks quantitatively. The classification accuracy of mafic-ultramafic rock is more than 75% in both training data and test data, which suggests TCI can act as a sensitive indicator to distinguish rocks and the MTTFS model can accurately extract mafic-ultramafic rock from other surface objects. We deduce that the use of thermodynamics is promising in lithology identification when an effective index is constructed and an appropriated model is selected.
Enabling Remote Activity: Using mobile technology for remote participation in geoscience fieldwork
NASA Astrophysics Data System (ADS)
Davies, Sarah; Collins, Trevor; Gaved, Mark; Bartlett, Jessica; Valentine, Chris; McCann, Lewis
2010-05-01
Field-based activities are regarded as essential to the development of a range of professional and personal skills within the geosciences. Students enjoy field activities, preferring these to learning with simulations (Spicer and Stratford 2001), and these improve deeper learning and understanding (Kern and Carpenter, 1984; Elkins and Elkins, 2007). However, some students find it difficult to access these field-based learning opportunities. Field sites may be remote and often require travel across uneven, challenging or potentially dangerous terrain. Mobility-impaired students are particularly limited in their opportunities to participate in field-based learning activities and, as higher education institutions have a responsibility to provide inclusive opportunities for students (UK Disability Discrimination Act 1995, UK Special Education Needs and Disability Rights Act 2001), the need for inclusive fieldwork learning is being increasingly recognised. The Enabling Remote Activity (ERA) project has been investigating how mobile communications technologies might allow field learning experiences to be brought to students who would otherwise find it difficult to participate, and also to enhance activities for all participants. It uses a rapidly deployable, battery-powered wireless network to transmit video, audio, and high resolution still images to connect participants at an accessible location with participants in the field. Crucially, the system uses a transient wireless network, allowing multiple locations to be explored during a field visit, and for plans to be changed dynamically if required. Central to the concept is the requirement for independent investigative learning: students are enabled to participate actively in the learning experience and to direct the investigations, as opposed to being simply remote viewers of the experience. Two ways of using the ERA system have been investigated: remote access and collaborative groupwork. In 2006 and 2008 remote access was used to enable mobility-impaired students to take part in and complete a field course. This involved connecting the student in an accessible vehicle located close to the field site, via a wireless network, to a geologist in the field. The geologist worked alongside the general body of students and the field tutor as each geological site was investigated. Two-way communications allowed the student to guide the geologist to provide video panoramas of the area, to select areas of interest for further study and to obtain high resolution images of specific points. The students were able to work through the field activities alongside the rest of the student group. A collaborative groupwork trial (2007) was used to connect two groups of students; one in an accessible laboratory, the other at a field site. Traditionally, students collect data in the field and analyze it on return to the laboratory; this system proposes a more rapid collection and analysis procedure, with information being transmitted between sites with field and laboratory participants having their own distinct, significant roles within the learning activity. This project recently received an award at the 2008 Handheld Learning Conference and a HEFCE sponsored Open University Teaching Award. In contrast to the use of ‘virtual fieldwork' that aims to provide simulations or a resource for a student to use, the focus of this project is on how technology can be used to support actual fieldwork activities. This approach has been trialled now over three field seasons, with students using the system to remotely participate in fieldwork activities. Interviews with tutors and students have shown that this was perceived as valuable and allowed participants to achieve the learning objectives of the course alongside their peers. The challenges of remote fieldwork concern the co-ordination of students' activities, the integration of remote and field activities and practical issues of lightweight, easy-to-use, robust technologies and the provision of a reliable communications network. References Elkins, J.T. & Elkins, N.M.L. (2007) Teaching geology in the field: significant geoscience concept gains in entirely field-based introductory geology courses. Journal of Geoscience Education, 55 (2), 126-132. Kern, E. and Carpenter, J. (2004). Enhancement of student values, interests and attitudes in Earth Science through a field-oriented approach. Journal of Geological Education, 32 (5), 299-305. Spicer, J. I. and Stratford, J. (2001) Student perceptions of a virtual field trip to replace a real field trip. Journal of Computer Assisted Learning, 17(4), 345-354.
Aeromagnetic surveys in Afghanistan: An updated website for distribution of data
Shenwary, Ghulam Sakhi; Kohistany, Abdul Hakim; Hussain, Sardar; Ashan, Said; Mutty, Abdul Salam; Daud, Mohammad Ahmad; Wussow, Michael D.; Sweeney, Ronald E.; Phillips, Jeffrey D.; Lindsay, Charles R.; Kucks, Robert P.; Finn, Carol A.; Drenth, Benjamin J.; Anderson, Eric D.; Abraham, Jared D.; Liang, Robert T.; Jarvis, James L.; Gardner, Joan M.; Childers, Vicki A.; Ball, David C.; Brozena, John M.
2011-01-01
Because of its geologic setting, Afghanistan has the potential to contain substantial natural resources. Although valuable mineral deposits and petroleum resources have been identified, much of the country's potential remains unknown. Airborne geophysical surveys are a well accepted and cost effective method for obtaining information about the geological setting of an area without the need to be physically located on the ground. Owing to the current security situation and the large areas of the country that have not been evaluated by geophysical exploration methods, a regional airborne geophysical survey was proposed. Acting upon the request of the Islamic Republic of Afghanistan Ministry of Mines, the U.S. Geological Survey contracted with the Naval Research Laboratory to jointly conduct an airborne geophysical and remote sensing survey of Afghanistan.
Application of backpack Lidar to geological cross-section measurement
NASA Astrophysics Data System (ADS)
Lin, Jingyu; Wang, Ran; Xiao, Zhouxuan; Li, Lu; Yao, Weihua; Han, Wei; Zhao, Baolin
2017-11-01
As the traditional geological cross section measurement, the artificial traverse method was recently substituted by using point coordinates data. However, it is still the crux of the matter that how to acquire the high-precision point coordinates data quickly and economically. Thereby, the backpack Lidar is presented on the premise of the principle of using point coordinates in this issue. Undoubtedly, Lidar technique, one of booming and international active remote sensing techniques, is a powerful tool in obtaining precise topographic information, high-precision 3-D coordinates and building a real 3-D model. With field practice and date processing indoors, it is essentially accomplished that geological sections maps could be generated simply, accurately and automatically in the support of relevant software such as ArcGIS and LiDAR360.
Geochemical and spectral characterization of naturally altered rock surfaces
NASA Technical Reports Server (NTRS)
Chang, L. L. Y.; Sommer, S. E.; Buckingham, W. F.
1981-01-01
The possibility of using the visible-near infrared region for compositional analysis of remotely sensed rock surfaces is studied. This would allow mapping rock type both on the Earth's surface and on other planetary surfaces. Reflectance spectroscopy, economic geology, optical depth determination, and X-ray diffraction mineralogy are discussed.
[Activities of Dept. of Geological Sciences, Colorado University
NASA Technical Reports Server (NTRS)
Bilham, Roger
1997-01-01
Using remotely sensed data and GPS observations we completed a study of neotectonic processes responsible for landscape changes in an area of active extensional deformation and volcanism. The findings from this study describe the extensional processes operating in the region of the Afar triple junction and the northern Ethiopian rift.
NASA Technical Reports Server (NTRS)
1994-01-01
After concluding an oil exploration agreement with the Republic of Yemen, Chevron International needed detailed geologic and topographic maps of the area. Chevron's remote sensing team used imagery from Landsat and SPOT, combining images into composite views. The project was successfully concluded and resulted in greatly improved base maps and unique topographic maps.
Satellite observations of temporal terrestrial features
NASA Technical Reports Server (NTRS)
Rabchevsky, G. A.
1972-01-01
The application of satellite data to earth resources and environmental studies and the effects of resolution of the photographs and imagery are discussed. The nature of the data acquired by manned space flight and unmanned satellites is described. Specific applications of remotely sensed data for oceanography, hydrology, geography, and geology are examined.
76 FR 14392 - GeoLogics Corporation; Transfer of Data
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... of LISA from remote locations, i.e., Denver field office, reduce inefficiencies created by the... (7502P), Office of Pesticide Programs, 20460-0001; telephone number: (703) 305-8338; e-mail address... Laboratory lnformation and Study Audit (LISA) to aid them in targeting future inspections and tracking and...
Analysis of Mining Terrain Deformation Characteristics with Deformation Information System
NASA Astrophysics Data System (ADS)
Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr
2014-05-01
Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on the case study of a coal mining region in SW Poland where it has been applied to study characteristics and map mining induced ground deformations in a city in the last two decades of underground coal extraction and in the first decade after the end of mining. The mining subsidence area and its deformation parameters (tilt and curvature) have been calculated and the latter classified and mapped according to the Polish regulations. In addition possible areas of ground deformation have been indicated based on multivariate spatial data analysis of geological and mining operation characteristics with the geographically weighted regression method.
The Gars Programme And The Integrated Global Observing Strategy For Geohazards
NASA Astrophysics Data System (ADS)
Marsh, S.; Paganini, M.; Missotten, R.; Palazzo, F.
UNESCO and the IUGS have funded the Geological Applications of Remote Sensing Programme (GARS) since 1984. Its aim is to assess the value and utility of remotely sensed data for geoscience, whilst at the same time building capacity in developing countries. It has run projects in Africa on geological mapping, in Latin America on landslide hazards and in Asia on volcanic hazards. It is a main sponsor of the Integrated Global Observing Strategy (IGOS) for Geohazards. The societal impact of geological and related geophysical hazards is enormous. Every year volcanoes, earthquakes, landslides and subsidence claim thousands of lives, injure thousands more, devastate homes and destroy livelihoods. Damaged infrastructure and insurance premiums increase these costs. As population increases, more people live in hazardous areas and the impact grows. The World Summit on Sustainable Development recognised that systematic, joint international observations under initiatives like the Integrated Global Observing Strategy form the basis for an integrated approach to hazard mitigation and preparedness. In this context, the IGOS Partners developed this geohazards theme. Its goal is to integrate disparate, multidisciplinary, applied research into global, operational systems by filling gaps in organisation, observation and knowledge. It has four strategic objectives; building global capacity to mitigate geohazards; improving mapping, monitoring and forecasting, based on satellite and ground-based observations; increasing preparedness, using integrated geohazards information products and improved geohazards models; and promoting global take-up of local best practice in geohazards management. Gaps remain between what is known and the knowledge required to answer citizen's questions, what is observed and what must be observed to provide the necessary information for hazard mitigation and current data integration and the integration needed to make useful geohazard information products. An action plan is proposed that is designed to close these gaps. Priority actions are to: begin networking within the geohazards community; improve topographic data provision using existing observations and secure continuity of C- and L-Band radar interferometry with the space agencies; assess the potential for existing data to be integrated into geohazard products and services; evaluate ways to improve databases with their managing agencies; and initiate research that increases geohazards knowledge. This paper presents the strategy and describes the action plan that will implement it over the next decade, as a key part of the GARS Programme.
Cooperative research in terrestrial planetary geology and geophysics
NASA Technical Reports Server (NTRS)
1994-01-01
This final report for the period of July 1991 to August 1994 covered a variety of topics concerning the study of Earth and Mars. The Earth studies stressed the interpretation of the MAGSAT crustal magnetic anomalies in order to determine the geological structure, mineralogical composition, magnetic nature, and the historical background of submarine features, and also featured work in the area of terrestrial remote sensing. Mars research included the early evolution of the Martian atmosphere and hydrosphere and the investigations of the large Martian impact basins. Detailed summaries of the research is included, along with lists of the publications resulting from this research.
Towards a Good Education in Very Remote Australia: Is it Just a Case of Moving the Desks Around?
ERIC Educational Resources Information Center
Guenther, John; Bat, Melodie
2013-01-01
The education system, as it relates to very remote Aboriginal and Torres Strait Islander communities in Australia, faces challenges. While considerable resources have been applied to very remote schools, results in terms of enrollments, attendance and learning outcomes have changed little, despite the effort applied. The Cooperative Research…
Uncertainty in structural interpretation: Lessons to be learnt
NASA Astrophysics Data System (ADS)
Bond, Clare E.
2015-05-01
Uncertainty in the interpretation of geological data is an inherent element of geology. Datasets from different sources: remotely sensed seismic imagery, field data and borehole data, are often combined and interpreted to create a geological model of the sub-surface. The data have limited resolution and spatial distribution that results in uncertainty in the interpretation of the data and in the subsequent geological model(s) created. Methods to determine the extent of interpretational uncertainty of a dataset, how to capture and express that uncertainty, and consideration of uncertainties in terms of risk have been investigated. Here I review the work that has taken place and discuss best practice in accounting for uncertainties in structural interpretation workflows. Barriers to best practice are reflected on, including the use of software packages for interpretation. Experimental evidence suggests that minimising interpretation error through the use of geological reasoning and rules can help decrease interpretation uncertainty; through identification of inadmissible interpretations and in highlighting areas of uncertainty. Understanding expert thought processes and reasoning, including the use of visuospatial skills, during interpretation may aid in the identification of uncertainties, and in the education of new geoscientists.
Nelson, Janice S.
2011-01-01
The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To communicate with us, or for more information about EROS, contact: Communications and Outreach, USGS EROS Center, 47914 252nd Street, Sioux Falls, South Dakota 57198, jsnelson@usgs.gov, http://eros.usgs.gov/.
NASA Technical Reports Server (NTRS)
Cooper, B. L.; Hoffman, J. H.; Allen, Carlton C.; McKay, David S.
1998-01-01
There are two important reasons to explore the Moon. First, we would like to know more about the Moon itself: its history, its geology, its chemistry, and its diversity. Second, we would like to apply this knowledge to a useful purpose. namely finding and using lunar resources. As a result of the recent Clementine and Lunar Prospector missions, we now have global data on the regional surface mineralogy of the Moon, and we have good reason to believe that water exists in the lunar polar regions. However, there is still very little information about the subsurface. If we wish to go to the lunar polar regions to extract water, or if we wish to go anywhere else on the Moon and extract (or learn) anything at all, we need information in three dimensions an understanding of what lies below the surface, both shallow and deep. The terrestrial mining industry provides an example of the logical steps that lead to an understanding of where resources are located and their economic significance. Surface maps are examined to determine likely locations for detailed study. Geochemical soil sample surveys, using broad or narrow grid patterns, are then used to gather additional data. Next, a detailed surface map is developed for a selected area, along with an interpretation of the subsurface structure that would give rise to the observed features. After that, further sampling and geophysical exploration are used to validate and refine the original interpretation, as well as to make further exploration/ mining decisions. Integrating remotely sensed, geophysical, and sample datasets gives the maximum likelihood of a correct interpretation of the subsurface geology and surface morphology. Apollo-era geophysical and automated sampling experiments sought to look beyond the upper few microns of the lunar surface. These experiments, including ground-penetrating radar and spectrometry, proved the usefulness of these methods for determining the best sites for lunar bases and lunar mining operations.
NASA Astrophysics Data System (ADS)
Othman, A.; Sultan, M.; Gebremichael, E.; Sefry, S.; Yanar, R.; Alharbi, H.; Albalawi, S.; Emil, M. K.; Pankratz, H. G.
2016-12-01
Over the past two decades, land deformation phenomena and related losses in public and private property were reported from the northern part of the Kingdom of Saudi Arabia in Al Jowf region (100,212 km²; from lat: 29.25°N to 30.90°N, from long: 37.60°E to 40.70°E). We applied an integrated approach (geotechnical, geology, remote sensing, geodesy, hydrogeology, and GIS) to identify areas affected by these phenomena, quantify the nature and magnitude of deformation, investigate the factors controlling the deformation, and recommend solutions for these problems. We applied a three-fold approach in three different areas (Alisawiyah, Wadi Alsarhan, and Sakaka areas) to accomplish the following: (1) assess the spatial distribution of land deformation and quantify deformation rates using InSAR methods Persistent Scatterer Interferometry (PSI) and Small BAseline Subsets (SBAS); (2) generate a GIS database to encompass all relevant data and derived products (e.g., remote sensing, geology, geotechnical, GPS, groundwater extraction rates, distribution of urban areas, etc.), and (3) correlate findings from the InSAR exercise with relevant spatial and temporal datasets in search of causal effects. Findings revealed the following: (1) high and consistent subsidence rates (5 to 13 mm/yr) from multiple interferometric techniques; (2) subsided areas correlated largely with the distribution of irrigated agricultural land over alluvial and unconfined aquifers (e.g., Tawil and Jauf aquifers), areas characterized by high and a progressive increase in groundwater extraction (1.2 bcm/yr) as evidenced from the satellite-based temporal distribution of irrigated lands (area irrigated lands: 1998: 37,737 ha; 2013: 70,869 ha); (3) high subsidence rates ( 8 mm/yr) were also detected over urban areas (e.g., Sakaka, Dumat Aljandal, and Tubarjal ), subsidence being caused by disposal of wastewater in the subsurface leading to rise in water tables, dissolution of substrate rocks/sediments (e.g., carbonates, evaporates, sabkhas), and settling of buildings and infrastructures; (4) presence of numerous sinkholes within the Aruma formation (limestone and dolomite) that appear as incoherent circular domains (diameter range: 20 to 50 m) on the derived radar products within subsiding areas (subsidence rates: up to 6 mm/yr).
NASA Astrophysics Data System (ADS)
Black, M.; Riley, T. R.; Fleming, A. H.; Ferrier, G.; Fretwell, P.; Casanovas, P.
2015-12-01
Antarctica is a unique and geographically remote environment. Traditional field campaigns investigating geology and vegetation in the region encounter numerous challenges including the harsh polar climate, the invasive nature of the work, steep topography and high infrastructure costs. Additionally, such field campaigns are often limited in terms of spatial and temporal resolution, and particularly, the topographical challenges presented in the Antarctic mean that many areas remain inaccessible. Remote Sensing, particularly hyperspectral imaging, may provide a solution to overcome the difficulties associated with field based mapping in the Antarctic. Planned satellite launches, such as EnMAP and HyspIRI, if successful, will yield large-scale, repeated hyperspectral imagery of Antarctica. Hyperspectral imagery has proven mapping capabilities and can yield greater information than can be attained using multispectral data. As a precursor to future satellite imagery, we utilise hyperspectral imagery from the first known airborne hyperspectral survey carried out in the Antarctic by the British Antarctic Survey and partners in 2011. Multiple imaging spectrometers were simultaneously deployed covering the visible, shortwave and thermal infrared regions of the electromagnetic spectrum. Additional data was generated during a field campaign deploying multiple ground spectrometers covering the same wavelengths as the airborne imagers. We utilise this imagery to assess the current challenges and propose some new solutions for mapping vegetation and geology, which may be directly applicable to future satellite hyperspectral imagery in the Antarctic.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] Released 28 May 2003Mangala Vallis one of the large outflow channels that channeled large quantities of water into the northern lowlands, long ago on geological timescales. This valley is one of the few in the southern hemisphere, as well as one of the few west of the Tharsis bulge. A closer look at the channel shows more recent weathering of the old water channel: the walls of the channel show small, dark slope streaks that form in dusty areas; and much of the surrounding terrain has subtle linear markings trending from the upper left to the lower right, which are probably features sculpted and streamlined by the wind. Geology still shapes the surface of Mars today, but its methods over the eons have changed.Image information: VIS instrument. Latitude -6, Longitude 209.6 East (150.4 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Research in remote sensing of agriculture, earth resources, and man's environment
NASA Technical Reports Server (NTRS)
Landgrebe, D. A.
1974-01-01
Research performed on NASA and USDA remote sensing projects are reviewed and include: (1) the 1971 Corn Blight Watch Experiment; (2) crop identification; (3) soil mapping; (4) land use inventories; (5) geologic mapping; and (6) forest and water resources data collection. The extent to which ERTS images and airborne data were used is indicated along with computer implementation. A field and laboratory spectroradiometer system is described together with the LARSYS software system, both of which were widely used during the research. Abstracts are included of 160 technical reports published as a result of the work.
Slonecker, E. Terrence; Fisher, Gary B.
2009-01-01
This project is a research collaboration between the U.S. Environmental Protection Agency (EPA) Office of Inspector General (OIG) and the U.S. Geological Survey (USGS) Eastern Geographic Science Center (EGSC), for the purpose of evaluating the utility of hyperspectral remote sensing technology for post-closure monitoring of residual contamination at delisted and closed hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act [CERCLA (also known as 'Superfund')] of 1980 and the Superfund Amendments and Reauthorization Act (SARA) of 1986.
Wetland fire remote sensing research--The Greater Everglades example
Jones, John W.
2012-01-01
Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.
CARS technique for geological exploration of hydrocarbons deposits
NASA Astrophysics Data System (ADS)
Zhevlakov, A. P.; Bespalov, Victor; Elizarov, V. V.; Grishkanich, A. S.; Kascheev, S. V.; Makarov, E. A.; Bogoslovsky, S. A.; Il'inskiy, A. A.
2014-10-01
We developed a Raman lidar with ultraspectral resolution for automatic airborne monitoring of pipeline leaks and for oil and gas exploration. Experiments were carried out under the CARS circuit. Minimal concentrations of 200 ppb of heavy hydrocarbon gas have been remotely measured in laboratory tests. Test flights indicate that a sensitivity of 6 ppm for methane and 2 ppm for hydrogen sulfide has been reached for leakage detection. As estimations have shown the reliability of heavy hydrocarbon gas detection by the integration method of seismic prospecting and remote laser sensing in CARS circuit can exceed 80%.
The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM)
Slonecker, Terry; Jones, Daniel K.; Pellerin, Brian A.
2016-01-01
Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles.
The new Landsat 8 potential for remote sensing of colored dissolved organic matter (CDOM).
Slonecker, E Terrence; Jones, Daniel K; Pellerin, Brian A
2016-06-30
Due to a combination of factors, such as a new coastal/aerosol band and improved radiometric sensitivity of the Operational Land Imager aboard Landsat 8, the atmospherically-corrected Surface Reflectance product for Landsat data, and the growing availability of corrected fDOM data from U.S. Geological Survey gaging stations, moderate-resolution remote sensing of fDOM may now be achievable. This paper explores the background of previous efforts and shows preliminary examples of the remote sensing and data relationships between corrected fDOM and Landsat 8 reflectance values. Although preliminary results before and after Hurricane Sandy are encouraging, more research is needed to explore the full potential of Landsat 8 to continuously map fDOM in a number of water profiles. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.
2012-12-01
Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.
Remote Sensing Soil Moisture Analysis by Unmanned Aerial Vehicles Digital Imaging
NASA Astrophysics Data System (ADS)
Yeh, C. Y.; Lin, H. R.; Chen, Y. L.; Huang, S. Y.; Wen, J. C.
2017-12-01
In recent years, remote sensing analysis has been able to apply to the research of climate change, environment monitoring, geology, hydro-meteorological, and so on. However, the traditional methods for analyzing wide ranges of surface soil moisture of spatial distribution surveys may require plenty resources besides the high cost. In the past, remote sensing analysis performed soil moisture estimates through shortwave, thermal infrared ray, or infrared satellite, which requires lots of resources, labor, and money. Therefore, the digital image color was used to establish the multiple linear regression model. Finally, we can find out the relationship between surface soil color and soil moisture. In this study, we use the Unmanned Aerial Vehicle (UAV) to take an aerial photo of the fallow farmland. Simultaneously, we take the surface soil sample from 0-5 cm of the surface. The soil will be baking by 110° C and 24 hr. And the software ImageJ 1.48 is applied for the analysis of the digital images and the hue analysis into Red, Green, and Blue (R, G, B) hue values. The correlation analysis is the result from the data obtained from the image hue and the surface soil moisture at each sampling point. After image and soil moisture analysis, we use the R, G, B and soil moisture to establish the multiple regression to estimate the spatial distributions of surface soil moisture. In the result, we compare the real soil moisture and the estimated soil moisture. The coefficient of determination (R2) can achieve 0.5-0.7. The uncertainties in the field test, such as the sun illumination, the sun exposure angle, even the shadow, will affect the result; therefore, R2 can achieve 0.5-0.7 reflects good effect for the in-suit test by using the digital image to estimate the soil moisture. Based on the outcomes of the research, using digital images from UAV to estimate the surface soil moisture is acceptable. However, further investigations need to be collected more than ten days (four times a day) data to verify the relation between the image hue and the soil moisture for reliable moisture estimated model. And it is better to use the digital single lens reflex camera to prevent the deformation of the image and to have a better auto exposure. Keywords: soil, moisture, remote sensing
NASA Astrophysics Data System (ADS)
Chowdari, Swarnapriya; Singh, Bijendra; Rao, B. Nageswara; Kumar, Niraj; Singh, A. P.; Chandrasekhar, D. V.
2017-08-01
Intracratonic South Rewa Gondwana Basin occupies the northern part of NW-SE trending Son-Mahanadi rift basin of India. The new gravity data acquired over the northern part of the basin depicts WNW-ESE and ENE-WSW anomaly trends in the southern and northern part of the study area respectively. 3D inversion of residual gravity anomalies has brought out undulations in the basement delineating two major depressions (i) near Tihki in the north and (ii) near Shahdol in the south, which divided into two sub-basins by an ENE-WSW trending basement ridge near Sidi. Maximum depth to the basement is about 5.5 km within the northern depression. The new magnetic data acquired over the basin has brought out ENE-WSW to E-W trending short wavelength magnetic anomalies which are attributed to volcanic dykes and intrusive having remanent magnetization corresponding to upper normal and reverse polarity (29N and 29R) of the Deccan basalt magnetostratigrahy. Analysis of remote sensing and geological data also reveals the predominance of ENE-WSW structural faults. Integration of remote sensing, geological and potential field data suggest reactivation of ENE-WSW trending basement faults during Deccan volcanism through emplacement of mafic dykes and sills. Therefore, it is suggested that South Rewa Gondwana basin has witnessed post rift tectonic event due to Deccan volcanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, D.W.
1989-03-01
The US Geological Survey's remote sensing instrument for regional imaging of the deep sea floor (> 400 m water depth) is the GLORIA (Geologic Long-Range Inclined Asdic) sidescan sonar system, designed and operated by the British Institute of Oceanographic Sciences. A 30-sec sweep rate provides for a swath width of approximately 45 km, depending on water depth. The return signal is digitally recorded as 8 bit data to provide a cross-range pixel dimension of 50 m. Postcruise image processing is carried out by using USGS software. Processing includes precision water-column removal, geometric and radiometric corrections, and contrast enhancement. Mosaicking includesmore » map grid fitting, concatenation, and tone matching. Seismic reflection profiles, acquired along track during the survey, are image correlative and provide a subsurface dimension unique to marine remote sensing. Generally GLORIA image interpretation is based on brightness variations which are largely a function of (1) surface roughness at a scale of approximately 1 m and (2) slope changes of more than about 4/degrees/ over distances of at least 50 m. Broader, low-frequency changes in slope that cannot be detected from the Gloria data can be determined from seismic profiles. Digital files of bathymetry derived from echo-sounder data can be merged with GLORIA image data to create relief models of the sea floor for geomorphic interpretation of regional slope effects.« less
1978-11-01
Williams, Chief Applied Engineering & Urban Geology Geology & Land Survey October 8, 1976 I Chart 2-11 APPENDIX _______--row]h NO. 1 : UPS7TREAM FACE 01...be cut out as indicated by the maintenance people. Otherwise the dam looks to be in a very good condition. I Edwin E. Luzten, Geologist Applied ... Engineering & Urban Geology Missouri Geological Survey lJuly 1i, 1973 hI I Chart 2-7 I ... . , ---- -i- - 3~ i Mf itS 0 I C)E R S. BON D .1%A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spudis, P.D.
1984-11-15
The geology of the Apollo 16 site is reconsidered on the basis of data from photogeology, geochemical remote sensing, and lunar samples. The site possesses an upper surface of anorthositic gabbro and related rocks. Mafic components were deposited as basin ejecta. The events involved in its geological evolution were the Nectaris impact and the Imbrium impact. The role of large, local craters in the history of the region was to serve as topographic depressions to accumulate basin ejecta. The most abundant melt composition at Apollo 16 is an aluminous variety of LKFM basalt supplied by the Nectaris impact as ejectedmore » basin impact melt. The mafic LKFM melt may have been supplied by the Imbrium impact. More aluminous melt groups are probably derived from local, small craters. The remainder of the deposits in the region are composed of anorthositic clastic debris derived from the Nectaris basin, the local crustal substrate, and Imbrium and other basins.« less
NASA Technical Reports Server (NTRS)
1982-01-01
End user concerns about the content and accessibility of libraries of remote sensing data in general are addressed. Recommendations pertaining to the United States' satellite remote sensing programs urge: (1) the continuation of the NASA/EROS Data Center program to convert pre-1979 scenes to computer readable tapes and create a historical archive of this valuable data; (2) improving the EROS archive by adding geologically interesting scenes, data from other agencies (including previously classified data), and by adopting a policy to retire data from the archive; (3) establishing a computer data base inquiry system that includes remote sensing data from all publically available sources; (4) capability for prepurchase review and evaluation; (5) a flexible price structure; and (6) adoption of standard digital data products format. Information about LANDSAT 4, the status of worldwide LANDSAT receiving stations, future non-U.S. remote sensing satellites, a list of sources for LANDSAT data, and the results of a survey of GEOSAT members' remote sensing data processing systems are also considered.
Microwave remote sensing from space
NASA Technical Reports Server (NTRS)
Carver, K. R.; Elachi, C.; Ulaby, F. T.
1985-01-01
Spaceborne microwave remote sensors provide perspectives of the earth surface and atmosphere which are of unique value in scientific studies of geomorphology, oceanic waves and topography, atmospheric water vapor and temperatures, vegetation classification and stress, ice types and dynamics, and hydrological characteristics. Microwave radars and radiometers offer enhanced sensitivities to the geometrical characteristics of the earth's surface and its cover, to water in all its forms - soil and vegetation moisture, ice, wetlands, oceans, and atmospheric water vapor, and can provide high-resolution imagery of the earth's surface independent of cloud cover or sun angle. A brief review of the historical development and principles of active and passive microwave remote sensing is presented, with emphasis on the unique characteristics of the information obtainable in the microwave spectrum and the value of this information to global geoscientific studies. Various spaceborne microwave remote sensors are described, with applications to geology, planetology, oceanography, glaciology, land biology, meteorology, and hydrology. A discussion of future microwave remote sensor technological developments and challenges is presented, along with a summary of future missions being planned by several countries.
NASA Astrophysics Data System (ADS)
Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.
2014-03-01
Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforest. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forest, possibly through changes in plant species composition.
NASA Astrophysics Data System (ADS)
Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.
2014-07-01
Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforests. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forests, possibly through changes in plant species composition.
Introduction to TETHYS—an interdisciplinary GIS database for studying continental collisions
NASA Astrophysics Data System (ADS)
Khan, S. D.; Flower, M. F. J.; Sultan, M. I.; Sandvol, E.
2006-05-01
The TETHYS GIS database is being developed as a way to integrate relevant geologic, geophysical, geochemical, geochronologic, and remote sensing data bearing on Tethyan continental plate collisions. The project is predicated on a need for actualistic model 'templates' for interpreting the Earth's geologic record. Because of their time-transgressive character, Tethyan collisions offer 'actualistic' models for features such as continental 'escape', collision-induced upper mantle flow magmatism, and marginal basin opening, associated with modern convergent plate margins. Large integrated geochemical and geophysical databases allow for such models to be tested against the geologic record, leading to a better understanding of continental accretion throughout Earth history. The TETHYS database combines digital topographic and geologic information, remote sensing images, sample-based geochemical, geochronologic, and isotopic data (for pre- and post-collision igneous activity), and data for seismic tomography, shear-wave splitting, space geodesy, and information for plate tectonic reconstructions. Here, we report progress on developing such a database and the tools for manipulating and visualizing integrated 2-, 3-, and 4-d data sets with examples of research applications in progress. Based on an Oracle database system, linked with ArcIMS via ArcSDE, the TETHYS project is an evolving resource for researchers, educators, and others interested in studying the role of plate collisions in the process of continental accretion, and will be accessible as a node of the national Geosciences Cyberinfrastructure Network—GEON via the World-Wide Web and ultra-high speed internet2. Interim partial access to the data and metadata is available at: http://geoinfo.geosc.uh.edu/Tethys/ and http://www.esrs.wmich.edu/tethys.htm. We demonstrate the utility of the TETHYS database in building a framework for lithospheric interactions in continental collision and accretion.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
NASA Astrophysics Data System (ADS)
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
NASA Astrophysics Data System (ADS)
Agoes Nugroho, Indra; Kurniawahidayati, Beta; Syahputra Mulyana, Reza; Saepuloh, Asep
2017-12-01
Remote sensing is one of the methods for geothermal exploration. This method can be used to map the geological structures, manifestations, and predict the geothermal potential area. The results from remote sensing were used as guidance for the next step exploration. Analysis of target in remote sensing is an efficient method to delineate geothermal surface manifestation without direct contact to the object. The study took a place in District Merangin, Jambi Province, Indonesia. The area was selected due to existing of Merangin volcanic complex composed by Mounts Sumbing and Hulunilo with surface geothermal manifestations presented by hot springs and hot pools. The location of surface manifestations could be related with local and regional structures of Great Sumatra Fault. The methods used in this study were included identification of volcanic products, lineament extraction, and lineament density quantification. The objective of this study is to delineate the potential zones for sitting the geothermal working site based on Thermal Infrared and Synthetic Aperture Radar (SAR) sensors. The lineament-related to geological structures, was aimed for high lineament density, is using ALOS - PALSAR (Advanced Land Observing Satellite - The Phased Array type L-band Synthetic Aperture Radar) level 1.1. The Normalized Difference Vegetation Index (NDVI) analysis was used to predict the vegetation condition using Landsat 8 OLI-TIRS (The Operational Land Imager - Thermal Infrared Sensor). The brightness temperature was extracted from TIR band to estimate the surface temperature. Geothermal working area identified based on index overlay method from extracted parameter of remote sensing data was located at the western part of study area (Graho Nyabu area). This location was identified because of the existence of high surface temperature about 30°C, high lineament density about 4 - 4.5 km/km2 and low NDVI values less than 0.3.
NASA Astrophysics Data System (ADS)
Sataer, G.; Sultan, M.; Yellich, J. A.; Becker, R.; Emil, M. K.; Palaseanu, M.
2017-12-01
Throughout the 20th century and into the 21st century, significant losses of residential, commercial and governmental property were reported along the shores of the Great Lakes region due to one or more of the following factors: high lake levels, wave actions, groundwater discharge. A collaborative effort (Western Michigan University, University of Toledo, Michigan Geological Survey [MGS], United States Geological Survey [USGS], National Oceanographic and Atmospheric Administration [NOAA]) is underway to examine the temporal topographic variations along the shoreline and the adjacent bluff extending from the City of South Haven in the south to the City of Saugatuck in the north within the Allegan County. Our objectives include two main tasks: (1) identification of the timing of, and the areas, witnessing slope failure and shoreline erosion, and (2) investigating the factors causing the observed failures and erosion. This is being accomplished over the study area by: (1) detecting and measuring slope subsidence rates (velocities along line of site) and failures using radar interferometric persistent scatter (PS) techniques applied to ESA's European Remote Sensing (ERS) satellites, ERS-1 and -2 (spatial resolution: 25 m) that were acquired in 1995 to 2007, (2) extracting temporal high resolution (20 cm) digital elevation models (DEM) for the study area from temporal imagery acquired by Unmanned Aerial Vehicles (UAVs), and applying change detection techniques to the extracted DEMs, (3) detecting change in elevation and slope profiles extracted from two LIDAR Coastal National Elevation Database (CoNED) DEMs (spatial resolution: 0.5m), acquired on 2008 and 2012, and (4) spatial and temporal correlation of the detected changes in elevation with relevant data sets (e.g., lake levels, precipitation, groundwater levels) in search of causal effects.
Leveraging Machine Learning to Estimate Soil Salinity through Satellite-Based Remote Sensing
NASA Astrophysics Data System (ADS)
Welle, P.; Ravanbakhsh, S.; Póczos, B.; Mauter, M.
2016-12-01
Human-induced salinization of agricultural soils is a growing problem which now affects an estimated 76 million hectares and causes billions of dollars of lost agricultural revenues annually. While there are indications that soil salinization is increasing in extent, current assessments of global salinity levels are outdated and rely heavily on expert opinion due to the prohibitive cost of a worldwide sampling campaign. A more practical alternative to field sampling may be earth observation through remote sensing, which takes advantage of the distinct spectral signature of salts in order to estimate soil conductivity. Recent efforts to map salinity using remote sensing have been met with limited success due to tractability issues of managing the computational load associated with large amounts of satellite data. In this study, we use Google Earth Engine to create composite satellite soil datasets, which combine data from multiple sources and sensors. These composite datasets contain pixel-level surface reflectance values for dates in which the algorithm is most confident that the surface contains bare soil. We leverage the detailed soil maps created and updated by the United States Geological Survey as label data and apply machine learning regression techniques such as Gaussian processes to learn a smooth mapping from surface reflection to noisy estimates of salinity. We also explore a semi-supervised approach using deep generative convolutional networks to leverage the abundance of unlabeled satellite images in producing better estimates for salinity values where we have relatively fewer measurements across the globe. The general method results in two significant contributions: (1) an algorithm that can be used to predict levels of soil salinity in regions without detailed soil maps and (2) a general framework that serves as an example for how remote sensing can be paired with extensive label data to generate methods for prediction of physical phenomenon.
NASA Technical Reports Server (NTRS)
Anderson, R. B.; Morris, R. V.; Clegg, S. M.; Bell, J. F., III; Humphries, S. D.; Wiens, R. C.
2011-01-01
The ChemCam instrument selected for the Curiosity rover is capable of remote laser-induced breakdown spectroscopy (LIBS).[1] We used a remote LIBS instrument similar to ChemCam to analyze 197 geologic slab samples and 32 pressed-powder geostandards. The slab samples are well-characterized and have been used to validate the calibration of previous instruments on Mars missions, including CRISM [2], OMEGA [3], the MER Pancam [4], Mini-TES [5], and Moessbauer [6] instruments and the Phoenix SSI [7]. The resulting dataset was used to compare multivariate methods for quantitative LIBS and to determine the effect of grain size on calculations. Three multivariate methods - partial least squares (PLS), multilayer perceptron artificial neural networks (MLP ANNs) and cascade correlation (CC) ANNs - were used to generate models and extract the quantitative composition of unknown samples. PLS can be used to predict one element (PLS1) or multiple elements (PLS2) at a time, as can the neural network methods. Although MLP and CC ANNs were successful in some cases, PLS generally produced the most accurate and precise results.
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa
2017-12-01
Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.
The University of Kansas Applied Sensing Program: An operational perspective
NASA Technical Reports Server (NTRS)
Martinko, E. A.
1981-01-01
The Kansas applied remote sensing (KARS) program conducts demonstration projects and applied research on remote sensing techniques which enable local, regional, state and federal agency personnel to better utilize available satellite and airborne remote sensing systems. As liason with Kansas agencies for the Earth Resources Laboratory (ERL), Kansas demonstration project, KARS coordinated interagency communication, field data collection, hands-on training, and follow-on technical assistance and worked with Kansas agency personnel in evaluating land cover maps provided by ERL. Short courses are being conducted to provide training in state-of-the-art remote sensing technology for university faculty, state personnel, and persons from private industry and federal government. Topics are listed which were considered in intensive five-day courses covering the acquisition, interpretation, and application of information derived through remote sensing with specific training and hands-on experience in image interpretation and the analysis of LANDSAT data are listed.
NASA Astrophysics Data System (ADS)
Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.
2016-12-01
Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.
Developing an Augmented Reality Environment for Earth Science Education
NASA Astrophysics Data System (ADS)
Pratt, M. J.; Skemer, P. A.; Arvidson, R. E.
2017-12-01
The emerging field of augmented reality (AR) provides new and exciting ways to explore geologic phenomena for research and education. The primary advantage of AR is that it allows users to physically explore complex three-dimensional structures that were previously inaccessible, for example a remote geologic outcrop or a mineral structure at the atomic scale. It is used, for example, with OnSight software during tactical operations to plan the Mars Curiosity rover's traverses by providing virtual views to walk through terrain and the rover at true scales. This mode of physical exploration allows users more freedom to investigate and understand the 3D structure than is possible on a flat computer screen, or within a static PowerPoint presentation during a classroom lecture. The Microsoft HoloLens headset provides the most-advanced, mobile AR platform currently available to developers. The Fossett Laboratory for Virtual Planetary Exploration at Washington University in St. Louis has applied this technology, coupled with photogrammetric software and the Unity 3D gaming engine, to develop photorealistic environments of 3D geologic outcrops from around the world. The untethered HoloLens provides an ideal platform for a classroom setting as it allows for shared experiences of the holograms of interest, projecting them in the same location for all users to explore. Furthermore, the HoloLens allows for face-to-face communication during use that is important in teaching, a feature that virtual reality does not allow. Our development of an AR application includes the design of an online database of photogrammetric outcrop models curated for the current limitations of AR technology. This database will be accessible to both those wishing to submit models, and is free to those wishing to use the application for teaching, outreach or research purposes.
Nasa's Land Remote Sensing Plans for the 1980's
NASA Technical Reports Server (NTRS)
Higg, H. C.; Butera, K. M.; Settle, M.
1985-01-01
Research since the launch of LANDSAT-1 has been primarily directed to the development of analysis techniques and to the conduct of applications studies designed to address resource information needs in the United States and in many other countries. The current measurement capabilities represented by MSS, TM, and SIR-A and B, coupled with the present level of remote sensing understanding and the state of knowledge in the discipline earth sciences, form the foundation for NASA's Land Processes Program. Science issues to be systematically addressed include: energy balance, hydrologic cycle, biogeochemical cycles, biological productivity, rock cycle, landscape development, geological and botanical associations, and land surface inventory, monitoring, and modeling. A global perspective is required for using remote sensing technology for problem solving or applications context. A successful model for this kind of activity involves joint research with a user entity where the user provides a test site and ground truth and NASA provides the remote sensing techniques to be tested.
Portable Laser Spectrometer for Airborne and Ground-Based Remote Sensing of Geological CO2 Emissions
NASA Technical Reports Server (NTRS)
Queisser, Manuel; Burton, Mike; Allan, Graham R.; Chiarugi, Antonio
2017-01-01
A 24 kilogram, suitcase-sized, CW (Continuous Wave) Laser Remote Sensing Spectrometer (LARSS) with an approximately 2-kilometer range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online-offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio
2017-07-15
A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.
NASA Astrophysics Data System (ADS)
Lin, H.; Zhang, X.; Wu, X.; Tarnas, J. D.; Mustard, J. F.
2018-04-01
Quantitative analysis of hydrated minerals from hyperspectral remote sensing data is fundamental for understanding Martian geologic process. Because of the difficulties for selecting endmembers from hyperspectral images, a sparse unmixing algorithm has been proposed to be applied to CRISM data on Mars. However, it's challenge when the endmember library increases dramatically. Here, we proposed a new methodology termed Target Transformation Constrained Sparse Unmixing (TTCSU) to accurately detect hydrous minerals on Mars. A new version of target transformation technique proposed in our recent work was used to obtain the potential detections from CRISM data. Sparse unmixing constrained with these detections as prior information was applied to CRISM single-scattering albedo images, which were calculated using a Hapke radiative transfer model. This methodology increases success rate of the automatic endmember selection of sparse unmixing and could get more accurate abundances. CRISM images with well analyzed in Southwest Melas Chasma was used to validate our methodology in this study. The sulfates jarosite was detected from Southwest Melas Chasma, the distribution is consistent with previous work and the abundance is comparable. More validations will be done in our future work.
On the statistical properties and tail risk of violent conflicts
NASA Astrophysics Data System (ADS)
Cirillo, Pasquale; Taleb, Nassim Nicholas
2016-06-01
We examine statistical pictures of violent conflicts over the last 2000 years, providing techniques for dealing with the unreliability of historical data. We make use of a novel approach to deal with fat-tailed random variables with a remote but nonetheless finite upper bound, by defining a corresponding unbounded dual distribution (given that potential war casualties are bounded by the world population). This approach can also be applied to other fields of science where power laws play a role in modeling, like geology, hydrology, statistical physics and finance. We apply methods from extreme value theory on the dual distribution and derive its tail properties. The dual method allows us to calculate the real tail mean of war casualties, which proves to be considerably larger than the corresponding sample mean for large thresholds, meaning severe underestimation of the tail risks of conflicts from naive observation. We analyze the robustness of our results to errors in historical reports. We study inter-arrival times between tail events and find that no particular trend can be asserted. All the statistical pictures obtained are at variance with the prevailing claims about ;long peace;, namely that violence has been declining over time.
NASA Astrophysics Data System (ADS)
McIntyre, M. L.; Naar, D. F.; Carder, K. L.; Howd, P. A.; Lewis, J. M.; Donahue, B. T.; Chen, F. R.
2002-12-01
There is growing interest in applying optical remote sensing techniques to shallow-water geological applications such as bathymetry and bottom characterization. Model inversions of hyperspectral remote-sensing reflectance imagery can provide estimates of bottom albedo and depth. This research was conducted in support of the HyCODE (Hyperspectral Coupled Ocean Dynamics Experiment) project in order to test optical sensor performance and the use of a hyperspectral remote-sensing reflectance algorithm for shallow waters in estimating bottom depths and reflectance. The objective of this project was to compare optically derived products of bottom depths and reflectance to shipborne acoustic measurements of bathymetry and backscatter. A set of three high-resolution, multibeam surveys within an 18 km by 1.5 km shore-perpendicular transect 5 km offshore of Sarasota, Florida were collected at water depths ranging from 8 m to 16 m. These products are compared to bottom depths derived from aircraft remote-sensing data collected with the AVIRIS (Airborne Visible-Infrared Imaging Spectrometer) instrument data by means of a semi-analytical remote sensing reflectance model. The pixel size of the multibeam bathymetry and AVIRIS data are 0.25 m and 10 m, respectively. When viewed at full resolution, the multibeam bathymetry data show small-scale sedimentary bedforms (wavelength ~10m, amplitude ~1m) that are not observed in the lower resolution hyperspectral bathymetry. However, model-derived bottom depths agree well with a smoothed version of the multibeam bathymetry. Depths derived from shipborne hyperspectral measurements were accurate within 13%. In areas where diver observations confirmed biological growth and bioturbation, derived bottom depths were less accurate. Acoustic backscatter corresponds well with the aircraft hyperspectral imagery and in situ measurements of bottom reflectance. Acoustic backscatter was used to define the distribution of different bottom types. Acoustic backscatter imagery corresponds well with the AVIRIS data in the middle to outer study area, implying a close correspondence between seafloor character and optical reflectance. AVIRIS data in the inner study area show poorer correspondence with the acoustic facies, indicating greater water column effects (turbidity). Acoustic backscatter as a proxy for bottom albedo, in conjunction with multibeam bathymetry data, will allow for more precise modeling of the optical signal in coastal environments.
A data base of geologic field spectra
NASA Technical Reports Server (NTRS)
Kahle, A. B.; Goetz, A. F. H.; Paley, H. N.; Alley, R. E.; Abbott, E. A.
1981-01-01
It is noted that field samples measured in the laboratory do not always present an accurate picture of the ground surface sensed by airborne or spaceborne instruments because of the heterogeneous nature of most surfaces and because samples are disturbed and surface characteristics changed by collection and handling. The development of new remote sensing instruments relies on the analysis of surface materials in their natural state. The existence of thousands of Portable Field Reflectance Spectrometer (PFRS) spectra has necessitated a single, all-inclusive data base that permits greatly simplified searching and sorting procedures and facilitates further statistical analyses. The data base developed at JPL for cataloging geologic field spectra is discussed.
Upgraded airborne scanner for commercial remote sensing
NASA Astrophysics Data System (ADS)
Chang, Sheng-Huei; Rubin, Tod D.
1994-06-01
Traditional commercial remote sensing has focused on the geologic market, with primary focus on mineral identification and mapping in the visible through short-wave infrared spectral regions (0.4 to 2.4 microns). Commercial remote sensing users now demand airborne scanning capabilities spanning the entire wavelength range from ultraviolet through thermal infrared (0.3 to 12 microns). This spectral range enables detection, identification, and mapping of objects and liquids on the earth's surface and gases in the air. Applications requiring this range of wavelengths include detection and mapping of oil spills, soil and water contamination, stressed vegetation, and renewable and non-renewable natural resources, and also change detection, natural hazard mitigation, emergency response, agricultural management, and urban planning. GER has designed and built a configurable scanner that acquires high resolution images in 63 selected wave bands in this broad wavelength range.
NASA Astrophysics Data System (ADS)
Gang, Zhang; Fansong, Meng; Jianzhong, Wang; Mingtao, Ding
2018-02-01
Determining magnetotelluric impedance precisely and accurately is fundamental to valid inversion and geological interpretation. This study aims to determine the minimum value of signal-to-noise ratio (SNR) which maintains the effectiveness of remote reference technique. Results of standard time series simulation, addition of different Gaussian noises to obtain the different SNR time series, and analysis of the intermediate data, such as polarization direction, correlation coefficient, and impedance tensor, show that when the SNR value is larger than 23.5743, the polarization direction disorder at morphology and a smooth and accurate sounding carve value can be obtained. At this condition, the correlation coefficient value of nearly complete segments between the base and remote station is larger than 0.9, and impedance tensor Zxy presents only one aggregation, which meet the natural magnetotelluric signal characteristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-01-01
Theoretical and experimental data which have defined and/or extended the effectiveness of remote sensing operations are explored, with consideration given to both scientific and commercial activities. The remote sensing of soil moisture, the sea surface, and oil slicks is discussed, as are programs using satellites for studying geodynamics and geodesy, currents and waves, and coastal zones. NASA, Canadian, and Japanese radar and microwave passive and active systems are described, together with algorithms and techniques for image processing and classification. The SAR-580 project is outlined, and attention is devoted to satellite applications in investigations of the structure of the atmosphere, agriculturemore » and land use, and geology. Design and performance features of various optical scanner, radar, and multispectral data processing systems and procedures are detailed.« less
Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop
NASA Technical Reports Server (NTRS)
Vane, G. (Editor); Goetz, A. F. H. (Editor)
1985-01-01
The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Shih, N. C.; Hsieh, Y. C.
2016-12-01
Geologic maps have provided fundamental information for many scientific and engineering applications in human societies. Geologic maps directly influence the reliability of research results or the robustness of engineering projects. In the past, geologic maps were mainly produced by field geologists through direct field investigations and 2D topographic maps. However, the quality of traditional geologic maps was significantly compromised by field conditions, particularly, when the map area is covered by heavy forest canopies. Recent developments in airborne LiDAR technology may virtually remove trees or buildings, thus, providing a useful data set for improving geological mapping. Because high-quality topographic information still needs to be interpreted in terms of geology, there are many fundamental questions regarding how to best apply the data set for high-resolution geological mapping. In this study, we aim to test the quality and reliability of high-resolution geologic maps produced by recent technological methods through an example from the fold-and-thrust belt in northern Taiwan. We performed the geological mapping by applying the LiDAR-derived DEM, self-developed program tools and many layers of relevant information at interactive 3D environments. Our mapping results indicate that the proposed methods will considerably improve the quality and consistency of the geologic maps. The study also shows that in order to gain consistent mapping results, future high-resolution geologic maps should be produced at interactive 3D environments on the basis of existing geologic maps.
NASA Technical Reports Server (NTRS)
Stoker, Carol
1994-01-01
This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary geologists participated in the mission simulation. The scientific goal of the science mission was to determine what could be learned about the geologic context of the site using the capabilities of imaging and mobility provided by the Marsokhod system in these two modes of operation. I will discuss the lessons learned from these experiments in terms of the strategy for performing Mars surface exploration using rovers. This research is supported by the Solar System Exploration Exobiology, Geology, and Advanced Technology programs.
NASA Technical Reports Server (NTRS)
Stow, S. H.; Price, R. C.; Hoehner, F.; Wielchowsky, C.
1976-01-01
The feasibility of using aerial photography for lithologic differentiation in a heavily vegetated region is investigated using multispectral imagery obtained from LANDSAT satellite and aircraft-borne photography. Delineating and mapping of localized vegetal zones can be accomplished by the use of remote sensing because a difference in morphology and physiology results in different natural reflectances or signatures. An investigation was made to show that these local plant zones are affected by altitude, topography, weathering, and gullying; but are controlled by lithology. Therefore, maps outlining local plant zones were used as a basis for lithologic map construction.
NASA Technical Reports Server (NTRS)
Thome, Kurt; Goldberg, Mitch; Mita, Dath; Stensaas, Gregory L.
2013-01-01
The National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), the United States Department of Agriculture (USDA), and the United States Geological Survey (USGS), and their associates and partners, are directly responsible for establishing and leading a unique interagency team of scientists and engineers who work together to evaluate and enhance the quality remote sensing data for commercial and government use. This team is called "the Joint Agency Commercial Imagery Evaluation (JACIE) team". The team works together to define, prioritize, assign, and assess civil and commercial image quality and jointly sponsors an annual JACIE Civil Commercial Imagery Evaluation workshop with participation support from the remote sensing calibration and validation science community.
Horizontal sliding of kilometre-scale hot spring area during the 2016 Kumamoto earthquake
Tsuji, Takeshi; Ishibashi, Jun’ichiro; Ishitsuka, Kazuya; Kamata, Ryuichi
2017-01-01
We report horizontal sliding of the kilometre-scale geologic block under the Aso hot springs (Uchinomaki area) caused by vibrations from the 2016 Kumamoto earthquake (Mw 7.0). Direct borehole observations demonstrate the sliding along the horizontal geological formation at ~50 m depth, which is where the shallowest hydrothermal reservoir developed. Owing to >1 m northwest movement of the geologic block, as shown by differential interferometric synthetic aperture radar (DInSAR), extensional open fissures were generated at the southeastern edge of the horizontal sliding block, and compressional deformation and spontaneous fluid emission from wells were observed at the northwestern edge of the block. The temporal and spatial variation of the hot spring supply during the earthquake can be explained by the horizontal sliding and borehole failures. Because there was no strain accumulation around the hot spring area prior to the earthquake and gravitational instability could be ignored, the horizontal sliding along the low-frictional formation was likely caused by seismic forces from the remote earthquake. The insights derived from our field-scale observations may assist further research into geologic block sliding in horizontal geological formations. PMID:28218298
The roles of humans and robots as field geologists on the Moon
NASA Technical Reports Server (NTRS)
Spudis, Paul D.; Taylor, G. Jeffrey
1992-01-01
The geologic exploration of the Moon will be one of the primary scientific functions of any lunar base program. Geologic reconnaissance, the broad-scale characterization of processes and regions, is an ongoing effort that has already started and will continue after base establishment. Such reconnaissance is best done by remote sensing from lunar orbit and simple, automated, sample return missions of the Soviet Luna class. Field study, in contrast, requires intensive work capabilities and the guiding influence of human intelligence. We suggest that the most effective way to accomplish the goals of geologic field study on the Moon is through the use of teleoperated robots, under the direct control of a human geologists who remains at the lunar base, or possibly on Earth. These robots would have a global traverse range, could possess sensory abilities optimized for geologic field work, and would accomplish surface exploration goals without the safety and life support concerns attendance with the use of human geologists on the Moon. By developing the capability to explore any point on the Moon immediately after base establishment, the use of such teleoperated, robotic field geologists makes the single-site lunar base into a 'global' base from the viewpoint of geologic exploration.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
.... Abstract In 2008, the USGS's Land Remote Sensing (LRS) Program initiated a study to determine the users, uses, and benefits of Landsat imagery. Before that study, there had been very limited assessments of...: Users, Uses, and Benefits of Landsat Satellite Imagery AGENCY: United States Geological Survey (USGS...
The relationship of multispectral satellite imagery to immediate fire effects
Andrew T. Hudak; Penelope Morgan; Michael J. Bobbitt; Allstair M. S. Smith; Sarah A. Lewis; Leigh B. Lentile; Peter R. Robichaud; Jess T. Clark; Randy A. McKinley
2007-01-01
The Forest Service Remote Sensing Applications Center (RSAC) and the U.S. Geological Survey Earth Resources Observation and Science (EROS) Data Center produce Burned Area Reflectance Classification (BARC) maps for use by Burned Area Emergency Response (BAER) teams in rapid response to wildfires. BAER teams desire maps indicative of fire effects on soils, but green and...
Klein, T.L.; Church, S.E.; Caine, Jonathan S.; Schmidt, T.S.; deWitt, E.H.
2008-01-01
Cooperative studies by USDA Forest Service, National Park Service supported by the USGS Mineral Resources Program (MRP), and National Cooperative Geologic Mapping Programs (NCGMP) contributed to the mineral-resource assessment and included regional geologic mapping at the scale 1:100,000, collection and geochemical studies of stream sediments, surface water, and bedrock samples, macroinvertebrate and biofilm studies in the riparian environment, remote-sensing studies, and geochronology. Geoscience information available as GIS layers has improved understanding of the distribution of metallic, industrial, and aggregate resources, location of areas that have potential for their discovery or development, helped to understand the relation of tectonics, magmatism, and paleohydrology to the genesis of the metal deposits in the region, and provided insight on the geochemical and environmental effects that historical mining and natural, mineralized rock exposures have on surface water, ground water, and aquatic life.
Asbestos occurrence in the Eagle C-4 quadrangle, Alaska
Foster, Helen Laura
1969-01-01
An asbestos occurrence was discovered in a remote part of the Eagle quadrangle, Alaska, in the summer of 1968 during geologic reconnaissance in connection with the U.S. Geological Survey's Heavy Metals program. The exposed part of the deposit consists of large joint blocks of serpentine which are cut by closely spaced subparallel veins. Most of the veins are about ? inch thick, and they consist of cross-fiber chrysotile asbestos. The asbestos appears to be of commercial quality, but the total quantity is unknown. The asbestos occurs in a serpentinized ultramafic mass which appears to intrude metamorphic rocks. Many other serpentinized ultramafic masses are known in the Eagle quadrangle, but this is the first one in which considerable asbestos has been found. The deposit is of importance because it shows that geologic conditions are locally favorable for the formation of asbestos in the Yukon-Tanana Upland, and hope of finding commercial asbestos deposits thus seems possible.
Initial evaluation of the geologic applications of ERTS-1 imagery for New Mexico
NASA Technical Reports Server (NTRS)
Vonderlinden, K.; Kottlowski, F. E.
1973-01-01
Coverage of approximately one-third of the test site, the state of New Mexico, had been received by January 31, 1973 and all of the images received were MSS products. Features noted during visual inspection of 91/2 x 91/2 prints include major structural forms, vegetation patterns, drainage patterns and outcrops of geologic formations having marked color contrasts. The Border Hills Structural Zone and the Y-O Structural Zone are prominently reflected in coverage of the Pecos Valley. A study of available maps and remote sensing material covering the Deming-Columbus area indicated that the limit of detection and the resolution of MSS products are not as good as those of aerial photographs, geologic maps, and manned-satellite photographs. The limit of detection of high contrast features on MSS prints in approximately 1000 feet or 300 meters for linear features and about 18 acres for roughly circular areas.
Geologic remote sensing - New technology, new information
NASA Technical Reports Server (NTRS)
Kruse, F. A.
1992-01-01
Results of geologic studies using data collected by the NASA/JPL Thermal Infrared Imaging Spectrometer (TIMS), Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Airborne Synthetic Aperture Radar (AIRSAR) are discussed. These instruments represent prototypes for the Earth Observing System (EOS) satellite instruments ASTER, High Resolution Imaging Spectrometer (HIRIS), and EOS SAR. Integrated analysis of this data type is one of the keys to successful geologic research using EOS. TIMS links the physical properties of surface materials in the 8-12-*mm region to their composition. Calibrated aircraft data make direct lithological mapping possible. AVIRIS, an analog for HIRIS, provides quantitative information about the surface composition of materials based on their detailed visible and infrared spectral signatures (0.4-2.45 mm). Calibrated AVIRIS data make direct identification of minerals possible. The AIRSAR provides additional complementary information about the surface morphology of rocks and soils.
Photogrammetry - Remote Sensing and Geoinformation
NASA Astrophysics Data System (ADS)
Lazaridou, M. A.; Patmio, E. N.
2012-07-01
Earth and its environment are studied by different scientific disciplines as geosciences, science of engineering, social sciences, geography, etc. The study of the above, beyond pure scientific interest, is useful for the practical needs of man. Photogrammetry and Remote Sensing (defined by Statute II of ISPRS) is the art, science, and technology of obtaining reliable information from non-contact imaging and other sensor systems about the Earth and its environment, and other physical objects and of processes through recording, measuring, analyzing and representation. Therefore, according to this definition, photogrammetry and remote sensing can support studies of the above disciplines for acquisition of geoinformation. This paper concerns basic concepts of geosciences (geomorphology, geology, hydrology etc), and the fundamentals of photogrammetry-remote sensing, in order to aid the understanding of the relationship between photogrammetry-remote sensing and geoinformation and also structure curriculum in a brief, concise and coherent way. This curriculum can represent an appropriate research and educational outline and help to disseminate knowledge in various directions and levels. It resulted from our research and educational experience in graduate and post-graduate level (post-graduate studies relative to the protection of environment and protection of monuments and historical centers) in the Lab. of Photogrammetry - Remote Sensing in Civil Engineering Faculty of Aristotle University of Thessaloniki.
ERIC Educational Resources Information Center
Hatheway, Allen W.
1978-01-01
Engineering geology remains a potpourri of applied classical geology, and 1977 witnessed an upswing in demand for these services. Traditional foundation-related work was slight, but construction related to national needs increased briskly. Major cities turned to concerns of transit waste-water treatment and solid-waste disposal. (Author/MA)
McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy
2017-09-27
Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the conterminous United States) using lower spatial resolution (1 kilometer) Moderate Resolution Imaging Spectroradiometer (MODIS) data. Model accuracies ranging from 80 to 95 percent on daily to annual time scales have been shown in numerous studies that validated ETa estimates from SSEBop against eddy covariance measurements. The METRIC and SSEBop models can incorporate low and high spatial resolution data from MODIS and Landsat, but the high spatiotemporal resolution of ETa estimates using Landsat data over large extents takes immense computing power. Cloud computing is providing an opportunity for processing an increasing amount of geospatial “big data” in a decreasing period of time. For example, Google Earth EngineTM has been used to implement METRIC with automated calibration for regional-scale estimates of ETa using Landsat data. The U.S. Geological Survey also is using Google Earth EngineTM to implement SSEBop for estimating ETa in the United States at a continental scale using Landsat data.
Processing-optimised imaging of analog geological models by electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Ortiz Alemán, C.; Espíndola-Carmona, A.; Hernández-Gómez, J. J.; Orozco Del Castillo, MG
2017-06-01
In this work, the electrical capacitance tomography (ECT) technique is applied in monitoring internal deformation of geological analog models, which are used to study structural deformation mechanisms, in particular for simulating migration and emplacement of allochtonous salt bodies. A rectangular ECT sensor was used for internal visualization of analog geologic deformation. The monitoring of analog models consists in the reconstruction of permittivity images from the capacitance measurements obtained by introducing the model inside the ECT sensor. A simulated annealing (SA) algorithm is used as a reconstruction method, and is optimized by taking full advantage of some special features in a linearized version of this inverse approach. As a second part of this work our SA image reconstruction algorithm is applied to synthetic models, where its performance is evaluated in comparison to other commonly used algorithms such as linear back-projection and iterative Landweber methods. Finally, the SA method is applied to visualise two simple geological analog models. Encouraging results were obtained in terms of the quality of the reconstructed images, as interfaces corresponding to main geological units in the analog model were clearly distinguishable in them. We found reliable results quite useful for real time non-invasive monitoring of internal deformation of analog geological models.
Application of Laser Scanning for Creating Geological Documentation
NASA Astrophysics Data System (ADS)
Buczek, Michał; Paszek, Martyna; Szafarczyk, Anna
2018-03-01
A geological documentation is based on the analyses obtained from boreholes, geological exposures, and geophysical methods. It consists of text and graphic documents, containing drilling sections, vertical crosssections through the deposit and various types of maps. The surveying methods (such as LIDAR) can be applied in measurements of exposed rock layers, presented in appendices to the geological documentation. The laser scanning allows obtaining a complete profile of exposed surfaces in a short time and with a millimeter accuracy. The possibility of verifying the existing geological cross-section with laser scanning was tested on the example of the AGH experimental mine. The test field is built of different lithological rocks. Scans were taken from a single station, under favorable measuring conditions. The analysis of the signal intensity allowed to divide point cloud into separate geological layers. The results were compared with the geological profiles of the measured object. The same approach was applied to the data from the Vietnamese hard coal open pit mine Coc Sau. The thickness of exposed coal bed deposits and gangue layers were determined from the obtained data (point cloud) in combination with the photographs. The results were compared with the geological cross-section.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery
Qi, Baogui; Zhuang, Yin; Chen, He; Chen, Liang
2018-01-01
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited. PMID:29693585
Earth Observations from the International Space Station: Benefits for Humanity
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2015-01-01
The International Space Station (ISS) is a unique terrestrial remote sensing platform for observation of the Earth's land surface, oceans, and atmosphere. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted active and passive remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous, sun-synchronous sensor systems in higher altitude polar orbits. Beginning in May 2012, NASA ISS sensor systems have been available to respond to requests for data through the International Charter, Space and Major Disasters, also known as the "International Disaster Charter" or IDC. Data from digital handheld cameras, multispectral, and hyperspectral imaging systems has been acquired in response to IDC activations and delivered to requesting agencies through the United States Geological Survey. The characteristics of the ISS for Earth observation will be presented, including past, current, and planned NASA, International Partner, and commercial remote sensing systems. The role and capabilities of the ISS for humanitarian benefit, specifically collection of remotely sensed disaster response data, will be discussed.
On-Board, Real-Time Preprocessing System for Optical Remote-Sensing Imagery.
Qi, Baogui; Shi, Hao; Zhuang, Yin; Chen, He; Chen, Liang
2018-04-25
With the development of remote-sensing technology, optical remote-sensing imagery processing has played an important role in many application fields, such as geological exploration and natural disaster prevention. However, relative radiation correction and geometric correction are key steps in preprocessing because raw image data without preprocessing will cause poor performance during application. Traditionally, remote-sensing data are downlinked to the ground station, preprocessed, and distributed to users. This process generates long delays, which is a major bottleneck in real-time applications for remote-sensing data. Therefore, on-board, real-time image preprocessing is greatly desired. In this paper, a real-time processing architecture for on-board imagery preprocessing is proposed. First, a hierarchical optimization and mapping method is proposed to realize the preprocessing algorithm in a hardware structure, which can effectively reduce the computation burden of on-board processing. Second, a co-processing system using a field-programmable gate array (FPGA) and a digital signal processor (DSP; altogether, FPGA-DSP) based on optimization is designed to realize real-time preprocessing. The experimental results demonstrate the potential application of our system to an on-board processor, for which resources and power consumption are limited.
Remote Sensing is a scientific discipline of non-contact monitoring. It includes a range of technologies that span from aerial photography to advanced spectral imaging and analytical methods. This Session is designed to demonstrate contemporary practical applications of remote se...
HYPGEO - A collaboration between geophysics and remote sensing for mineral exploration
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Frei, Michaela; Petersen, Hauke; Papenfuß, Anne; Ibs-von Seht, Malte; Stolz, Ronny; Queitsch, Matthias; Buchholz, Peter; Siemon, Bernhard
2017-04-01
The German Federal Institute for Geosciences and Natural Resources (BGR) aims to promote and design application oriented, generic techniques for the detection and 3D-characterisation of mineral deposits. Most newly developed mineral mining structures are still exploiting near surface sources. Since exploration and exploitation of mineral resources are increasingly under public review concerning environmental issues and social acceptance, non-invasive methods using satellites, fixed-wing aircraft, helicopters or unmanned aerial vehicles are preferred techniques within this investigation. Therefore, a data combination of helicopter-borne gamma ray spectrometry, hyperspectral imagery and full tensor gradient magnetometry is being evaluated. Test areas are open pit mining structures in Aznalcollar and Tharsis within the Pyrite Belt of southern Spain. First test flights using gamma-ray spectrometry and gradient magnetometry using SQUID-based sensors have been performed. Hyperspectral imagery has been applied on ground. Rock and core samples from the mines have been taken or investigated for further analysis. The basic idea is to combine surface triggered signals from gamma-ray spectrometry and hyperspectral imagery to enhance the detection of shallow mineralisation structures. In order to investigate whether these structures are connected with near-surface ore veins, gradient magnetometry was applied to model subsurface formations. To verify that good correlations between the applied methods are given, open pit mining structures were chosen, where the mineral content and the local to regional geology is well known.
Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.
2011-01-01
We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.
Applying soil property information for watershed assessment.
NASA Astrophysics Data System (ADS)
Archer, V.; Mayn, C.; Brown, S. R.
2017-12-01
The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.
NASA Technical Reports Server (NTRS)
Kochel, R. Craig
1988-01-01
An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.
Unmanned Mine of the 21st Centuries
NASA Astrophysics Data System (ADS)
Semykina, Irina; Grigoryev, Aleksandr; Gargayev, Andrey; Zavyalov, Valeriy
2017-11-01
The article is analytical. It considers the construction principles of the automation system structure which realize the concept of «unmanned mine». All of these principles intend to deal with problems caused by a continuous complication of mining-and-geological conditions at coalmine such as the labor safety and health protection, the weak integration of different mining automation subsystems and the deficiency of optimal balance between a quantity of resource and energy consumed by mining machines and their throughput. The authors describe the main problems and neck stage of mining machines autonomation and automation subsystem. The article makes a general survey of the applied «unmanned technology» in the field of mining such as the remotely operated autonomous complexes, the underground positioning systems of mining machines using infrared radiation in mine workings etc. The concept of «unmanned mine» is considered with an example of the robotic road heading machine. In the final, the authors analyze the techniques and methods that could solve the task of underground mining without human labor.
NASA Technical Reports Server (NTRS)
Bechtold, I. C. (Principal Investigator); Reynolds, J. T.; Archer, R. L.; Wagner, C. G.
1975-01-01
The author has identified the following significant results. Film positives (70mm) from all six S190A multispectral photographic camera stations for any one scene can be registered and analyzed in a color additive viewer. Using a multispectral viewer, S190A and B films can be projected directly onto published geologic and topographic maps at scales as large as 1:62,500 and 1:24,000 without significant loss of detail. S190A films and prints permit the detection of faults, fractures, and other linear features not visible in any other space imagery. S192 MSS imagery can be useful for rock-type discrimination studies and delineation of linear patterns and arcuate anomalies. Anomalous color reflectances and arcuate color patterns revealed mineralized zones, copper deposits, vegetation, and volcanic rocks in various locations such as Panamint Range (CA), Greenwater (Death Valley), Lava Mountains (CA), northwestern Arizona, and Coso Hot Springs (CA).
The use of the Space Shuttle for land remote sensing
NASA Technical Reports Server (NTRS)
Thome, P. G.
1982-01-01
The use of the Space Shuttle for land remote sensing will grow significantly during the 1980's. The main use will be for general land cover and geological mapping purposes by worldwide users employing specialized sensors such as: high resolution film systems, synthetic aperture radars, and multispectral visible/IR electronic linear array scanners. Because these type sensors have low Space Shuttle load factors, the user's preference will be for shared flights. With this strong preference and given the present prognosis for Space Shuttle flight frequency as a function of orbit inclination, the strongest demand will be for 57 deg orbits. However, significant use will be made of lower inclination orbits. Compared with freeflying satellites, Space Shuttle mission investment requirements will be significantly lower. The use of the Space Shuttle for testing R and D land remote sensors will replace the free-flying satellites for most test programs.
Delineation of fault zones using imaging radar
NASA Technical Reports Server (NTRS)
Toksoz, M. N.; Gulen, L.; Prange, M.; Matarese, J.; Pettengill, G. H.; Ford, P. G.
1986-01-01
The assessment of earthquake hazards and mineral and oil potential of a given region requires a detailed knowledge of geological structure, including the configuration of faults. Delineation of faults is traditionally based on three types of data: (1) seismicity data, which shows the location and magnitude of earthquake activity; (2) field mapping, which in remote areas is typically incomplete and of insufficient accuracy; and (3) remote sensing, including LANDSAT images and high altitude photography. Recently, high resolution radar images of tectonically active regions have been obtained by SEASAT and Shuttle Imaging Radar (SIR-A and SIR-B) systems. These radar images are sensitive to terrain slope variations and emphasize the topographic signatures of fault zones. Techniques were developed for using the radar data in conjunction with the traditional types of data to delineate major faults in well-known test sites, and to extend interpretation techniques to remote areas.
The Scientific and Societal Need for Accurate Global Remote Sensing of Marine Suspended Sediments
NASA Technical Reports Server (NTRS)
Acker, James G.
2006-01-01
Population pressure, commercial development, and climate change are expected to cause continuing alteration of the vital oceanic coastal zone environment. These pressures will influence both the geology and biology of the littoral, nearshore, and continental shelf regions. A pressing need for global observation of coastal change processes is an accurate remotely-sensed data product for marine suspended sediments. The concentration, delivery, transport, and deposition of sediments is strongly relevant to coastal primary production, inland and coastal hydrology, coastal erosion, and loss of fragile wetland and island habitats. Sediment transport and deposition is also related to anthropogenic activities including agriculture, fisheries, aquaculture, harbor and port commerce, and military operations. Because accurate estimation of marine suspended sediment concentrations requires advanced ocean optical analysis, a focused collaborative program of algorithm development and assessment is recommended, following the successful experience of data refinement for remotely-sensed global ocean chlorophyll concentrations.
Slonecker, E. Terrence; Fisher, Gary B.
2011-01-01
This report represents a remote sensing research effort conducted by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency (EPA) for the EPA Office of Inspector General. The objective of this investigation was to explore the efficacy of remote sensing as a technology for postclosure monitoring of hazardous waste sites as defined under the Comprehensive Environmental Response Compensation and Liability Act of 1980 (Public Law 96-510, 42 U.S.C. §9601 et seq.), also known as \\"Superfund.\\" Five delisted Superfund sites in Maryland and Virginia were imaged with a hyperspectral sensor and visited for collection of soil, water, and spectral samples and inspection of general site conditions. This report evaluates traditional and hyperspectral imagery and field spectroscopic measurement techniques in the characterization and analysis of fugitive (anthropogenic, uncontrolled) contamination at previously remediated hazardous waste disposal sites.
A manual for inexpensive methods of analyzing and utilizing remote sensor data
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barr, D. J.
1978-01-01
Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.
The geographic applications program of the U. S. Geological Survey
Gerlach, Arch C.
1969-01-01
The fundamental objective of modern Geography is to improve man's level of living through a better understanding of man-environment inter actions. Related goals of the USGS program for applications of remote sensor data to Geographical research are: (1) the analysis and improvement of land use, with special emphasis on urban problems; and (2) more effective use of the total available energy budget, including insolation, mineral fuels, atomic energy, human resources, and mental energy, all of which are integrated into man-environment interactions. The collection of data through remote sensors in air craft and spacecraft is financed largely by funds from NASA, and is part of the much broader EROS Program of the Department of the Interior. Results to date have achieved much toward the identification of remote sensor signatures for Earth features and human activities, and toward evaluation of instruments for collecting essential information.
A methodology for dam inventory and inspection with remotely sensed data
NASA Technical Reports Server (NTRS)
Berger, J. P.; Philipson, W. R.; Liang, T.
1979-01-01
A methodology is presented to increase the efficiency and accuracy of dam inspection by incorporating remote sensing techniques into field-based monitoring programs. The methodology focuses on New York State and places emphasis on readily available remotely sensed data aerial photographs and Landsat data. Aerial photographs are employed in establishing a state-wide data base, referenced on county highway and U.S. Geological Survey 1:24,000 scale, topographic maps. Data base updates are conducted by county or region, using aerial photographs or Landsat as a primary source of information. Field investigations are generally limited to high-hazard or special problem dams, or to dams which cannot be assessed adequately with aerial photographs. Although emphasis is placed on available data, parameters for acquiring new aircraft data for assessing dam condition are outlined. Large scale (1:10,000) vertical, stereoscopic, color-infrared photography, flown during the spring or fall, is recommended.
Lidar-revised geologic map of the Des Moines 7.5' quadrangle, King County, Washington
Tabor, Rowland W.; Booth, Derek B.
2017-11-06
This map is an interpretation of a modern lidar digital elevation model combined with the geology depicted on the Geologic Map of the Des Moines 7.5' Quadrangle, King County, Washington (Booth and Waldron, 2004). Booth and Waldron described, interpreted, and located the geology on the 1:24,000-scale topographic map of the Des Moines 7.5' quadrangle. The base map that they used was originally compiled in 1943 and revised using 1990 aerial photographs; it has 25-ft contours, nominal horizontal resolution of about 40 ft (12 m), and nominal mean vertical accuracy of about 10 ft (3 m). Similar to many geologic maps, much of the geology in the Booth and Waldron (2004) map was interpreted from landforms portrayed on the topographic map. In 2001, the Puget Sound Lidar Consortium obtained a lidar-derived digital elevation model (DEM) for much of the Puget Sound area, including the entire Des Moines 7.5' quadrangle. This new DEM has a horizontal resolution of about 6 ft (2 m) and a mean vertical accuracy of about 1 ft (0.3 m). The greater resolution and accuracy of the lidar DEM compared to topography constructed from air-photo stereo models have much improved the interpretation of geology, even in this heavily developed area, especially the distribution and relative age of some surficial deposits. For a brief description of the light detection and ranging (lidar) remote sensing method and this data acquisition program, see Haugerud and others (2003).
Geologic studies in Alaska by the U.S. Geological Survey, 1988
Dover, James H.; Galloway, John P.
1989-01-01
This volume continues the annual series of U.S. Geological Survey (USGS) reports on geologic investigations in Alaska. Since 1975, when the first of these collections of short papers appeared under the title "The United States Geological Survey in Alaska: Accomplishments during 1975," the series has been published as USGS circulars. This bulletin departs from the circular style, in part to provide a more flexible format for longer reports with more depth of content, better documentation, and broader scope than is possible for circular articles.The 13 papers in this bulletin represent a sampling of research activities carried out in Alaska by the USGS over the past few years. The topics addressed range from mineral resource studies (including natural gas) and geochemistry, Quaternary geology, basic stratigraphic and structural problems, and the use of computer graphics in geologic map preparation, to the application of geochronology to regional tectonic problems. Geographic areas represented are numbered on figure 1 and include the North Slope (1) and Brooks Range (2, 3) of Arctic Alaska, Seward Peninsula (4), interior Alaska (5-9), and remote locations of the Alaska Peninsula (10, 11) and southeast Alaska (12, 13).Two bibliographies following the reports of investigations list (1) reports about Alaska in USGS publications released in 1988 and (2) reports about Alaska by USGS authors in publications outside the USGS in 1988. A bibliography and index of the short papers in past USGS circulars devoted to Geological Research and Accomplishments in Alaska (1975-1986) is published as USGS Open-File Report 87-420.
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 STORAGE
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION
The chapter discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of t...
Zisk, S H; Carr, M H; Masursky, H; Shorthill, R W; Thompson, T W
1971-08-27
Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter-and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennine Mountains scarp.
Lunar Apennine-Hadley region: Geological implications of earth-based radar and infrared measurements
Zisk, S.H.; Carr, M.H.; Masursky, H.; Shorthill, R.W.; Thompson, T.W.
1971-01-01
Recently completed high-resolution radar maps of the moon contain information on the decimeter-scale structure of the surface. When this information is combined with eclipse thermal-enhancement data and with high-resolution Lunar Orbiter photography, the surface morphology is revealed in some detail. A geological history for certain features and subareas can be developed, which provides one possible framework for the interpretation of the findings from the Apollo 15 landing. Frequency of decimeter- and meter-size blocks in and around lunar craters, given by the remote-sensed data, supports a multilayer structure in the Palus Putredinis mare region, as well as a great age for the bordering Apennins Mountains scarp.
Metallic-mineral assessment of the Aban Al Ahmar quadrangle, sheet 25F, Kingdom of Saudi Arabia
Kamilli, Robert J.; Arnold, Mark A.; Cole, James C.; Kleinkopf, M. Dean; Lee, Keenan; Miller, William R.; Raines, Gary L.; ,; ,
1990-01-01
Comprehensive detailed interdisciplinary study assesses the metallic-mineral-resource potential in the Aban Al Ahmar Quadrangle of the Kingdom of Saudi Arabia, located in the eastern margin of the northeastern Arabian Shield, utilizing techniques of geophysics, geologic mapping, remote sensing and geochemistry. The landscape of the study area is characterized by isolated mountain groups, inselbergs, and local tracts of dissected hills separated by broad, low-relief peneplain. Topics covered include mining and exploration history; geological setting; interpretation of geophysical anomalies; limonitic hydrothermally altered and mineralized rocks; geochemical interpretation; mineral resource potential; skarn deposiits associated with intermediate igneous rocks; gold deposits; tin/tungsten skarn deposits; etc.
Access routes to the U.S. Geological Survey's EROS Data Center, Sioux Falls, South Dakota
,
1976-01-01
The EROS Data Center is a part of the Earth Resources Observation Systems (EROS) Program of the Department of the Interior, managed by the U.S. Geological Survey. It is the national center for the processing anddissemination of spacecraft and aircraft acquired photographic imagery and electronic data of the Earth's resources. The center also trains and assists users in the application of such data. The EROS Data Center provides access to Landsat data, aerial photography acquired by the U.S. Department of the Interior, and photography and other remotely sensed data acquired by the National Aeronautics and Space Administration (NASA) from research aircraft and from Skylab, Apollo, and Gemini spacecraft.
MER Field Geologic Traverse in Gusev Crater, Mars: Initial Results From the Perspective of Spirit
NASA Technical Reports Server (NTRS)
Crumpler, L.; Cabrol, N.; desMarais, D.; Farmer, J.; Golmbek, M.; Grant, J.; Greely, R.; Grotzinger, J.; Haskin, L.; Arvidson, R.
2004-01-01
This report casts the initial results of the traverse and science investigations by the Mars Exploration Rover (MER) Spirit at Gusev crater [1] in terms of data sets commonly used in field geologic investigations: Local mapping of geologic features, analyses of selected samples, and their location within the local map, and the regional context of the field traverse in terms of the larger geologic and physiographic region. These elements of the field method are represented in the MER characterization of the Gusev traverse by perspective-based geologic/morphologic maps, the placement of the results from Mossbauer, APXS, Microscopic Imager, Mini-TES and Pancam multispectral studies in context within this geologic/ morphologic map, and the placement of the overall traverse in the context of narrow-angle MOC (Mars Orbiter Camera) and descent images. A major campaign over a significance fraction of the mission will be the first robotic traverse of the ejecta from a Martian impact crater along an approximate radial from the crater center. The Mars Exploration Rovers have been conceptually described as 'robotic field geologists', that is, a suite of instruments with mobility that enables far-field traverses to multiple sites located within a regional map/image base at which in situ analyses may be done. Initial results from MER, where the field geologic method has been used throughout the initial course of the investigation, confirm that this field geologic model is applicable for remote planetary surface exploration. The field geologic method makes use of near-field geologic characteristics ('outcrops') to develop an understanding of the larger geologic context through continuous loop of rational steps focused on real-time hypothesis identification and testing. This poster equates 'outcrops' with the locations of in situ investigations and 'regional context' with the geology over distance of several kilometers. Using this fundamental field geologic method, we have identified the basic local geologic materials on the floor of Gusev at this site, their compositions and likely lithologies, origins, processes that have modified these materials, and their potential significance in the interpretation of the regional geology both spatially and temporally.
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.
2012-01-01
The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic sediments derived from an extensive region of Mars can provide important, detailed understanding of early martian geological and climatological history. Interrogating clastic "sediments" from the Earth, Moon and asteroids has allowed discovery of new crustal units, identification of now-vanished crust, and determination of the geological history of extensive, remote regions. Returned sample of martian fluvial and/or aeolian sediments, for example from Gale crater, could be "read like a book" in terrestrial laboratories to provide truly revolutionary new insights into early martian geological and climatological evolution.
NASA Astrophysics Data System (ADS)
Crumpler, L. S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R. V.; Bell, J. F., III; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N. A.; Haldemann, A.; Lewis, Kevin W.; Wang, A. E.; Schröder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, R.; Guinness, E. A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhöfer, G.; McEwen, A.; Rice, J. W., Jr.; Rice, M.; deSouza, P.; Hurowitz, J.
2011-07-01
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
Crumpler, L.S.; Arvidson, R. E.; Squyres, S. W.; McCoy, T.; Yingst, A.; Ruff, S.; Farrand, W.; McSween, Y.; Powell, M.; Ming, D. W.; Morris, R.V.; Bell, J.F.; Grant, J.; Greeley, R.; DesMarais, D.; Schmidt, M.; Cabrol, N.A.; Haldemann, A.; Lewis, Kevin W.; Wang, A.E.; Schroder, C.; Blaney, D.; Cohen, B.; Yen, A.; Farmer, J.; Gellert, Ralf; Guinness, E.A.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; McEwen, A.; Rice, J. W.; Rice, M.; deSouza, P.; Hurowitz, J.
2011-01-01
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well-preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.
NASA Astrophysics Data System (ADS)
Jia, D.; Feng, Y.; Liu, J.; Yao, X.; Zhang, Z.; Ye, T.
2017-12-01
1. Working BackgroundCurrent Status of Geological Prospecting: Detecting boundaries and bottoms, making ore search nearby; Seeing the stars, not seeing the Moon; Deep prospecting, undesirable results. The reasons of these problems are the regional metallogenic backgroud unclear and the metallogenic backgroud of the exploration regions unknown. Accordingly, Development and Research Center, CGS organized a geological setting research, in detail investigate metallogenic geological features and acquire mineralization information. 2. Technical SchemeCore research content is prediction elements of Metallogenic Structure. Adopt unified technical requirements from top to bottom, and technical route from bottom to top; Divide elements of mineral forecast and characteristics of geological structure into five elements for research and expression; Make full use of geophysical, geochemical and remote sensing inferences for the interpretation of macro information. After eight years the great project was completed. 3. Main AchievementsInnovation of basic maps compilation content of geological background, reinforce of geological structure data base of potentiality valuation. Preparation of geotectonic facies maps in different scales and professions, providing brand-new geologic background for potentiality assessment, promoting Chinese geotectonic research to the new height. Preparation of 3,375 geological structure thematic base maps of detecting working area in 6 kinds of prediction methods, providing base working maps, rock assemblage, structure of the protolith of geologic body / mineralization / ore controlling for mineral prediction of 25 ores. Enrichment and development of geotectonic facies analysis method, establishment of metallogenic background research thoughts and approach system for assessment of national mineral resources potentiality for the first time. 4. Application EffectOrientation——More and better results with less effort. Positioning——Have a definite object in view. Heart calm down——Confidence.
Gao, Xuanbo; Chang, Zhenyang; Dai, Wei; Tong, Ting; Zhang, Wanfeng; He, Sheng; Zhu, Shukui
2014-10-01
Abundant geochemical information can be acquired by analyzing the chemical compositions of petroleum geological samples. The information obtained from the analysis provides scientifical evidences for petroleum exploration. However, these samples are complicated and can be easily influenced by physical (e. g. evaporation, emulsification, natural dispersion, dissolution and sorption), chemical (photodegradation) and biological (mainly microbial degradation) weathering processes. Therefore, it is very difficult to analyze the petroleum geological samples and they cannot be effectively separated by traditional gas chromatography/mass spectrometry. A newly developed separation technique, comprehensive two-dimensional gas chromatography (GC x GC), has unique advantages in complex sample analysis, and recently it has been applied to petroleum geological samples. This article mainly reviews the research progres- ses in the last five years, the main problems and the future research about GC x GC applied in the area of petroleum geology.
Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan
2016-01-01
Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Time-Lapse Motion Picture Technique Applied to the Study of Geological Processes.
Miller, R D; Crandell, D R
1959-09-25
Light-weight, battery-operated timers were built and coupled to 16-mm motion-picture cameras having apertures controlled by photoelectric cells. The cameras were placed adjacent to Emmons Glacier on Mount Rainier. The film obtained confirms the view that exterior time-lapse photography can be applied to the study of slow-acting geologic processes.
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr. (Principal Investigator); Boeovarsson, A.; Frioriksson, S.; Palmason, G.; Rist, S.; Sigtryggsson, H.; Saemundsson, K.; Thorarinsson, S.; Thorsteinsson, I.
1973-01-01
The author has identified the following significant results. The wide variety of geological and geophysical phenomena which can be observed in Iceland, and particularly their very direct relation to the management of the country's natural resources, has provided great impetus to the use of ERTS-1 imagery to measure and map the dynamic natural phenomena in Iceland. MSS imagery is being used to study a large variety of geological and geophysical eruptive products, geologic structure, volcanic geomorphology, hydrologic, oceanographic, and agricultural phenomena of Iceland. Some of the preliminary results from this research projects are: (1) a large number of geological and volcanic features can be studied from ERTS-1 imagery, particularly imagery acquired at low sun angle, which had not previously been recognized; (2) under optimum conditions the ERTS-1 satellite can discern geothermal areas by their snow melt pattern or warm spring discharge into frozen lakes; (3) various maps at scales of 1:1 million and 1:500,000 can be updated and made more accurate with ERTS-1 imagery; (4) the correlation of water reserves with snowcover can improve the basis for planning electrical production in the management of water resources; (5) false-color composites (MSS) permitted the mapping of four types of vegetation: forested; grasslands, reclaimed, and cultivated areas, and the seasonal change of the vegetation, all of high value to rangeland management.
2-D magnetotelluric experiment to investigate the Nassugtoqidian orogeny in South-East Greenland
NASA Astrophysics Data System (ADS)
Heincke, Björn; Chen, Jin; Riisager, Peter; Kolb, Jochen; Jørgensen, Asta F.
2015-04-01
The northwest-trending Palaeoproterozoic Nagssugtoqidian orogen extends over 250 km along the east coast of Greenland in the area around the village Tasiilaq. The geological evolution of this area closely compares with the ones of the Lewisian complex of Scotland and the Nagssugtoqidian orogen in western Greenland and, hence, leads to the suggestion that they belong to the same continental-scale orogenic belt. However, an accurate correlation across the inland ice is challenging and still ambiguous and therefore more detailed knowledge about the individual orogens might help to understand their relationship. Details about the large-scale tectonic evolution during the Nagssugtoqidian orogeny in this remote Arctic region are not known due to complex geology, relatively coarse geological mapping and the lack of extensive geophysical investigations. E.g. the vergence of the orogen, subduction-related magmatism and accretion history are matters of ongoing discussion (Kalsbeek et al., 1993; Nutman et al., 2008 and Kolb, 2013). We performed a 2-D magnetotelluric (MT) experiment across the southern part of the orogen along the Sermilik Fjord in order to improve our understanding of the orogenic process in general and to better constrain the location and vergence of the suture zone. However, because of the rough climate and the lack of infrastructure, this study is considered as a first test to investigate how MT surveys can be most efficiently performed in this remote part of the world. The NE-SW trending profile consists of eight MT stations and has a total length of ~70 km using long period LEMI-420 systems. The quality of the data is severely affected by polar electrojets that do not satisfy the plane wave assumptions, which is typical for regions close to the magnetic poles. In order to reduce the distortion from these signals onto the impedance estimates, we tested different advanced processing schemes. In addition to the more conventional robust response function estimator BIRRP from Chave and Thomson (2004), we applied a recent technique that is based on empirical mode decomposition EMD proposed by Chen et al. (2012). This method works rather in the time than in the frequency domain and appears promising to reduce the impact of such time limited noise signals typically associated with electrojets. As first results, we present obtained impedance estimates, induction vectors and dimensionality analysis. Experience from this first feasibility study will be to develop strategies for larger MT surveys for the challenging conditions in Greenland.
75 FR 60134 - Notice of a Revision of a Currently Approved Information Collection (1028-0091)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-29
.... The U.S. Geological Survey's (USGS) Land Remote Sensing (LRS) Program has been briefed on the results... information about the uses and the values of a defined population of users who obtain imagery from the Earth... Number: 1028-0091. Title: Users, Uses, and Value of Landsat Satellite Imagery. Type of Request: This is a...
NASA Technical Reports Server (NTRS)
1972-01-01
Earth resources requirements to be investigated by Skylab missions 1 through 4 are presented tabularly. Areas to be investigated include: (1) agriculture, range, and forestry; (2) geology; (3) continental water resources; (4) ocean investigations; (5) atmospheric investigations; (6) coastal zones, shoals, and bays; (7) remote sensing techniques; and (8) cartography.
Geologic studies of Yellowstone National Park imagery using an electronic image enhancement system
NASA Technical Reports Server (NTRS)
Smedes, H. W.
1970-01-01
The image enhancement system is described, as well as the kinds of enhancement attained. Results were obtained from various kinds of remote sensing imagery (mainly black and white multiband, color, color infrared, thermal infrared, and side-looking K-band radar) of parts of Yellowstone National Park. Possible additional fields of application of these techniques are considered.
NASA Technical Reports Server (NTRS)
1975-01-01
Mission plans and objectives of the ERTS 2 Satellite are presented. ERTS 2 follow-on investigations in various scientific disciplines including agriculture, meteorology, land-use, geology, water resources, oceanography, and environment are discussed. Spacecraft design and its sensors are described along with the Delta launch vehicle and launch operations. Applications identified from ERTS 1 investigations are summarized.
Holm-Denoma, Christopher S.; Hofstra, Albert H.; Rockwell, Barnaby W.; Noble, Paula J.
2012-01-01
Geologic mapping and remote sensing across north-central Nevada enable recognition of a thick sheet of Middle and Upper Ordovician Valmy Formation quartzite that structurally overlies folded and faulted Ordovician through Devonian stratigraphic units of the Roberts Mountains allochthon. In the northern Independence Mountains and nearby Double Mountain area, the Valmy Formation is in fault contact with Ordovician through Silurian, predominantly clastic, sedimentary rocks of the Roberts Mountains allochthon that were deformed prior to, or during, emplacement of the Valmy thrust sheet. Similar structural relations are recognized discontinuously for 200 kilometers along the strike of the Roberts Mountains allochthon in mapping guided by regional remote-sensing-based (ASTER) quartz maps. Overall thicknesses of deformed Roberts Mountains allochthon units between the base of the Valmy and the top of underlying carbonate rocks that host large Carlin-type gold deposits varies on the order of hundreds of meters but is not known to exceed 700 meters. The base of the Valmy thrust sheet is a complimentary datum in natural resource exploration and mineral resource assessment for concealed Carlin-type gold deposits.
NASA Astrophysics Data System (ADS)
Grigoriev, V. F.; Korotaev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereshchenko, E. D.; Tereshchenko, P. E.; Schors, Yu. G.
2013-05-01
The first Russian six-component seafloor electromagnetic (EM) receivers were tested in an experiment carried out in Kola Bay in the Barents Sea. The signals transmitted by a remote high-power ELF source at several frequencies in the decahertz range were recorded by six receivers deployed on the seafloor along the profile crossing the Kola Bay. Although not all the stations successfully recorded all the six components due to technical failures, the quality of the data overall is quite suitable for interpretation. The interpretation was carried out by the three-dimensional (3D) modeling of an electromagnetic field with neural network inversion. The a priori geoelectrical model of Kola Bay, which was reconstructed by generalizing the previous geological and geophysical data, including the data of the ground magnetotelluric sounding and magnetovariational profiling, provided the EM fields that are far from those measured in the experiment. However, by a step-by-step modification of the initial model, we achieved quite a satisfactory fit. The resulting model provides the basis for introducing the corrections into the previous notions concerning the regional geological and geophysical structure of the region and particularly the features associated with fault tectonics.
Remotely sensed data available from the US Geological Survey EROS Data Center
Dwyer, John L.; Qu, J.J.; Gao, W.; Kafatos, M.; Murphy , R.E.; Salomonson, V.V.
2006-01-01
The Center for Earth Resources Observation Systems (EROS) is a field center of the geography discipline within the US geological survey (USGS) of the Department of the Interior. The EROS Data Center (EDC) was established in the early 1970s as the nation’s principal archive of remotely sensed data. Initially the EDC was responsible for the archive, reproduction, and distribution of black-and-white and color-infrared aerial photography acquired under numerous mapping programs conducted by various Federal agencies including the USGS, Department of Agriculture, Environmental Protection Agency, and NASA. The EDC was also designated the central archive for data acquired by the first satellite sensor designed for broad-scale earth observations in support of civilian agency needs for earth resource information. A four-band multispectral scanner (MSS) and a return-beam vidicon (RBV) camera were initially flown on the Earth Resources Technology Satellite-1, subsequently designated Landsat-1. The synoptic coverage, moderate spatial resolution, and multi-spectral view provided by these data stimulated scientists with an unprecedented perspective from which to study the Earth’s surface and to understand the relationships between human activity and natural systems.
NASA Astrophysics Data System (ADS)
Mallast, U.; Gloaguen, R.; Geyer, S.; Rödiger, T.; Siebert, C.
2011-08-01
In this paper we present a semi-automatic method to infer groundwater flow-paths based on the extraction of lineaments from digital elevation models. This method is especially adequate in remote and inaccessible areas where in-situ data are scarce. The combined method of linear filtering and object-based classification provides a lineament map with a high degree of accuracy. Subsequently, lineaments are differentiated into geological and morphological lineaments using auxiliary information and finally evaluated in terms of hydro-geological significance. Using the example of the western catchment of the Dead Sea (Israel/Palestine), the orientation and location of the differentiated lineaments are compared to characteristics of known structural features. We demonstrate that a strong correlation between lineaments and structural features exists. Using Euclidean distances between lineaments and wells provides an assessment criterion to evaluate the hydraulic significance of detected lineaments. Based on this analysis, we suggest that the statistical analysis of lineaments allows a delineation of flow-paths and thus significant information on groundwater movements. To validate the flow-paths we compare them to existing results of groundwater models that are based on well data.
NASA Technical Reports Server (NTRS)
Walters, R. L.; Eastmond, R. J.; Barr, B. G.
1973-01-01
Project summaries and project reports are presented in the area of satellite remote sensing as applied to local, regional, and national environmental programs. Projects reports include: (1) Douglas County applications program; (2) vegetation damage and heavy metal concentration in new lead belt; (3) evaluating reclamation of strip-mined land; (4) remote sensing applied to land use planning at Clinton Reservoir; and (5) detailed land use mapping in Kansas City, Kansas.
SUBSURFACE PROPERTY RIGHTS: IMPLICATIONS FOR GEOLOGIC CO2 SEQUESTRATION (PRESENTATION)
The paper discusses subsurface property rights as they apply to geologic sequestration (GS) of carbon dioxide (CO2). GS projects inject captured CO2 into deep (greater than ~1 km) geologic formations for the explicit purpose of avoiding atmospheric emission of CO2. Because of the...
NASA Technical Reports Server (NTRS)
Tilmann, S. E.; Enslin, W. R.; Hill-Rowley, R.
1977-01-01
A computer-based information system is described designed to assist in the integration of commonly available spatial data for regional planning and resource analysis. The Resource Analysis Program (RAP) provides a variety of analytical and mapping phases for single factor or multi-factor analyses. The unique analytical and graphic capabilities of RAP are demonstrated with a study conducted in Windsor Township, Eaton County, Michigan. Soil, land cover/use, topographic and geological maps were used as a data base to develope an eleven map portfolio. The major themes of the portfolio are land cover/use, non-point water pollution, waste disposal, and ground water recharge.
Incorporating Applied Undergraduate Research in Senior to Graduate Level Remote Sensing Courses
ERIC Educational Resources Information Center
Henley, Richard B.; Unger, Daniel R.; Kulhavy, David L.; Hung, I-Kuai
2016-01-01
An Arthur Temple College of Forestry and Agriculture (ATCOFA) senior spatial science undergraduate student engaged in a multi-course undergraduate research project to expand his expertise in remote sensing and assess the applied instruction methodology employed within ATCOFA. The project consisted of performing a change detection…
NASA Astrophysics Data System (ADS)
Zimmermann, Robert; Brandmeier, Melanie; Andreani, Louis; Gloaguen, Richard
2015-04-01
Remote sensing data can provide valuable information about ore deposits and their alteration zones at surface level. High spectral and spatial resolution of the data is essential for detailed mapping of mineral abundances and related structures. Carbonatites are well known for hosting economic enrichments in REE, Ta, Nb and P (Jones et al. 2013). These make them a preferential target for exploration for those critical elements. In this study we show how combining geomorphic, textural and spectral data improves classification result. We selected a site with a well-known occurrence in northern Namibia: the Epembe dyke. For analysis LANDSAT 8, SRTM and airborne hyperspectral (HyMap) data were chosen. The overlapping data allows a multi-scale and multi-resolution approach. Results from data analysis were validated during fieldwork in 2014. Data was corrected for atmospherical and geometrical effects. Image classification, mineral mapping and tectonic geomorphology allow a refinement of the geological map by lithological mapping in a second step. Detailed mineral abundance maps were computed using spectral unmixing techniques. These techniques are well suited to map abundances of carbonate minerals, but not to discriminate the carbonatite itself from surrounding rocks with similar spectral signatures. Thus, geometric indices were calculated using tectonic geomorphology and textures. For this purpose the TecDEM-toolbox (SHAHZAD & GLOAGUEN 2011) was applied to the SRTM-data for geomorphic analysis. Textural indices (e.g. uniformity, entropy, angular second moment) were derived from HyMap and SRTM by a grey-level co-occurrence matrix (CLAUSI 2002). The carbonatite in the study area is ridge-forming and shows a narrow linear feature in the textural bands. Spectral and geometric information were combined using kohonen Self-Organizing Maps (SOM) for unsupervised clustering. The resulting class spectra were visually compared and interpreted. Classes with similar signatures were merged according to geological context. The major conclusions are: 1. Carbonate minerals can be mapped using spectral unmixing techniques. 2. Carbonatites are associated with specific geometric pattern 3. The combination of spectral and geometric information improves classification result and reduces misclassification. References Clausi, D. A. (2002): An analysis of co-occurrence texture statistics as a function of grey-level quantization. - Canadian Journal of Remote Sensing, 28 (1), 45-62 Jones, A. P., Genge, M. and Carmody, L (2013): Carbonate Melts and Carbonatites. - Reviews in Mineralogy & Geochemistry, 75, 289-322 Shahzad, F. & Gloaguen, R. (2011): TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 2: Surface dynamics and basin analysis. - Computers and Geosciences, 37 (2), 261-271
Remote determination of the velocity index and mean streamwise velocity profiles
NASA Astrophysics Data System (ADS)
Johnson, E. D.; Cowen, E. A.
2017-09-01
When determining volumetric discharge from surface measurements of currents in a river or open channel, the velocity index is typically used to convert surface velocities to depth-averaged velocities. The velocity index is given by, k=Ub/Usurf, where Ub is the depth-averaged velocity and Usurf is the local surface velocity. The USGS (United States Geological Survey) standard value for this coefficient, k = 0.85, was determined from a series of laboratory experiments and has been widely used in the field and in laboratory measurements of volumetric discharge despite evidence that the velocity index is site-specific. Numerous studies have documented that the velocity index varies with Reynolds number, flow depth, and relative bed roughness and with the presence of secondary flows. A remote method of determining depth-averaged velocity and hence the velocity index is developed here. The technique leverages the findings of Johnson and Cowen (2017) and permits remote determination of the velocity power-law exponent thereby, enabling remote prediction of the vertical structure of the mean streamwise velocity, the depth-averaged velocity, and the velocity index.
NASA Astrophysics Data System (ADS)
Schlerf, M.; Mallick, K.; Hassler, S. K.; Blume, T.; Ronellenfitsch, F.; Gerhards, M.; Udelhoven, T.; Weiler, M.
2017-12-01
Accurate estimations of spatially explicit daily Evapotranspiration (ET) may help water managers quantifying the water requirements of agricultural crops or trees. Airborne remote sensing may provide suitable ET maps, but uncertainties need to be better understood. In this study we compared high spatial resolution remotely sensed ET maps for 7 July 2016 with sap flow measurements over 32 forest stands located in the Attert catchment, Luxembourg. Forest stands differed in terms of species (Quercus robur, Fagus sylvatica), geology (schist, marl, sandstone), and geomorphology (slope position, plain, valley). Within each plot, at 1-3 trees the sap flow velocity (cm per hour) was measured between 8 am and 8 pm in 10 min intervals and averaged into a single value per plot and converted into values of volume flux (litres per day). Remotely sensed ET maps were derived by integrating airborne thermal infrared (TIR) images with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC1.2, Mallick et al. 2016). Airborne TIR images were acquired under clear sky conditions at 9:12, 10:08, 13:56, 14:50, 15:54, and 18:41 local time using a hyperspectral-thermal instrument. Images were geometrically corrected, calibrated, mosaicked, and converted to surface radiometric temperature. Surface temperature maps in conjunction with meteorological measurements recorded in the forest plots (air temperature, global radiation, relative humidity) were used as input to STIC1.2, for simultaneously estimating ET, sensible heat flux as well as surface and aerodynamic conductances. Instantaneous maps of ET were converted into daily ET maps and compared with the sap flow measurements. Results reveal a significant correspondence between remote sensing and field measured ET. The differences in the magnitude of predicted versus observed ET was found to be associated the biophysical conductances, radiometric surface temperature, and ecohydrological characteristics of the underlying landscape. Forest plots reveal differences in ET depending on the underlying geology and the slope position. Airborne remote sensing offers new ways of estimating the diurnal course of plant transpiration over entire landscapes and is an important bridging technology before high resolution TIR sensors will come into space.