Linear algebraic methods applied to intensity modulated radiation therapy.
Crooks, S M; Xing, L
2001-10-01
Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.
FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.
Chiropractic biophysics technique: a linear algebra approach to posture in chiropractic.
Harrison, D D; Janik, T J; Harrison, G R; Troyanovich, S; Harrison, D E; Harrison, S O
1996-10-01
This paper discusses linear algebra as applied to human posture in chiropractic, specifically chiropractic biophysics technique (CBP). Rotations, reflections and translations are geometric functions studied in vector spaces in linear algebra. These mathematical functions are termed rigid body transformations and are applied to segmental spinal movement in the literature. Review of the literature indicates that these linear algebra concepts have been used to describe vertebral motion. However, these rigid body movers are presented here as applying to the global postural movements of the head, thoracic cage and pelvis. The unique inverse functions of rotations, reflections and translations provide a theoretical basis for making postural corrections in neutral static resting posture. Chiropractic biophysics technique (CBP) uses these concepts in examination procedures, manual spinal manipulation, instrument assisted spinal manipulation, postural exercises, extension traction and clinical outcome measures.
The Matrix Pencil and its Applications to Speech Processing
2007-03-01
Elementary Linear Algebra ” 8th edition, pp. 278, 2000 John Wiley & Sons, Inc., New York [37] Wai C. Chu, “Speech Coding Algorithms”, New Jeresy: John...Ben; Daniel, James W.; “Applied Linear Algebra ”, pp. 342-345, 1988 Prentice Hall, Englewood Cliffs, NJ [35] Haykin, Simon “Applied Linear Adaptive...ABSTRACT Matrix Pencils facilitate the study of differential equations resulting from oscillating systems. Certain problems in linear ordinary
Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-31
Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less
Stability of Linear Equations--Algebraic Approach
ERIC Educational Resources Information Center
Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.
2012-01-01
This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…
Calculating Required Substructure Damping to Meet Prescribed System Damping Levels
2007-06-01
Rorres, Elementary Linear Algebra . New Jersey: John Wiley & Sons, 2005. 2. Klaus-Jurgen Bathe, Finite Element Procedures. New Jersey: Prentice Hall...will be covered in the explanation of orthogonal complement. The definitions are extracted from the book “ Linear Algebra and its Applications” by...TA = left nullspace of A; dimension m-r Applying the first part of the fundamental theorem of Linear Algebra we can now talk about the orthogonal
Constitutive relations in optics in terms of geometric algebra
NASA Astrophysics Data System (ADS)
Dargys, A.
2015-11-01
To analyze the electromagnetic wave propagation in a medium the Maxwell equations should be supplemented by constitutive relations. At present the classification of linear constitutive relations is well established in tensorial-matrix and exterior p-form calculus. Here the constitutive relations are found in the context of Clifford geometric algebra. For this purpose Cl1,3 algebra that conforms with relativistic 4D Minkowskian spacetime is used. It is shown that the classification of linear optical phenomena with the help of constitutive relations in this case comes from the structure of Cl1,3 algebra itself. Concrete expressions for constitutive relations which follow from this algebra are presented. They can be applied in calculating the propagation properties of electromagnetic waves in any anisotropic, linear and nondissipative medium.
Identification of Large Space Structures on Orbit
1986-09-01
requires only the eigenvector corresponding to the eigenvector 93 .:. ,S --- k’.’ L derivative being calculated. However, a set of linear algebraic ...Journal of Guidance, Control and Dynamics. 204. Noble, B. and J. W. Daniel, Applied Linear Algebra , Prentice-Hall, Inc., 1977. 205. Nurre, G. S., R. S...4.2.1. Linear Relationships . . . . . . . . . . 114 4.2.2. Nonlinear Relationships . . . . . . . . . 120 4.3. Series Expansion Methods
Principal Component Analysis: Resources for an Essential Application of Linear Algebra
ERIC Educational Resources Information Center
Pankavich, Stephen; Swanson, Rebecca
2015-01-01
Principal Component Analysis (PCA) is a highly useful topic within an introductory Linear Algebra course, especially since it can be used to incorporate a number of applied projects. This method represents an essential application and extension of the Spectral Theorem and is commonly used within a variety of fields, including statistics,…
A Framework for Mathematical Thinking: The Case of Linear Algebra
ERIC Educational Resources Information Center
Stewart, Sepideh; Thomas, Michael O. J.
2009-01-01
Linear algebra is one of the unavoidable advanced courses that many mathematics students encounter at university level. The research reported here was part of the first author's recent PhD study, where she created and applied a theoretical framework combining the strengths of two major mathematics education theories in order to investigate the…
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.
2008-01-01
Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, R.
2018-03-01
A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.
Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners.
Hendler, R W; Shrager, R I
1994-01-01
Singular value decomposition (SVD) is deeply rooted in the theory of linear algebra, and because of this is not readily understood by a large group of researchers who could profit from its application. In this paper, we discuss the subject on a level that should be understandable to scientists who are not well versed in linear algebra. However, because it is necessary that certain key concepts in linear algebra be appreciated in order to comprehend what is accomplished by SVD, we present the section, 'Bare basics of linear algebra'. This is followed by a discussion of the theory of SVD. Next we present step-by-step examples to illustrate how SVD is applied to deconvolute a titration involving a mixture of three pH indicators. One noiseless case is presented as well as two cases where either a fixed or varying noise level is present. Finally, we discuss additional deconvolutions of mixed spectra based on the use of the pseudoinverse.
ERIC Educational Resources Information Center
Gonzalez-Vega, Laureano
1999-01-01
Using a Computer Algebra System (CAS) to help with the teaching of an elementary course in linear algebra can be one way to introduce computer algebra, numerical analysis, data structures, and algorithms. Highlights the advantages and disadvantages of this approach to the teaching of linear algebra. (Author/MM)
NASA Astrophysics Data System (ADS)
Risnawati; Khairinnisa, S.; Darwis, A. H.
2018-01-01
The purpose of this study was to develop a CORE model-based worksheet with recitation task that were valid and practical and could facilitate students’ communication skills in Linear Algebra course. This study was conducted in mathematics education department of one public university in Riau, Indonesia. Participants of the study were media and subject matter experts as validators as well as students from mathematics education department. The objects of this study are students’ worksheet and students’ mathematical communication skills. The results of study showed that: (1) based on validation of the experts, the developed students’ worksheet was valid and could be applied for students in Linear Algebra courses; (2) based on the group trial, the practicality percentage was 92.14% in small group and 90.19% in large group, so the worksheet was very practical and could attract students to learn; and (3) based on the post test, the average percentage of ideals was 87.83%. In addition, the results showed that the students’ worksheet was able to facilitate students’ mathematical communication skills in linear algebra course.
Benhammouda, Brahim
2016-01-01
Since 1980, the Adomian decomposition method (ADM) has been extensively used as a simple powerful tool that applies directly to solve different kinds of nonlinear equations including functional, differential, integro-differential and algebraic equations. However, for differential-algebraic equations (DAEs) the ADM is applied only in four earlier works. There, the DAEs are first pre-processed by some transformations like index reductions before applying the ADM. The drawback of such transformations is that they can involve complex algorithms, can be computationally expensive and may lead to non-physical solutions. The purpose of this paper is to propose a novel technique that applies the ADM directly to solve a class of nonlinear higher-index Hessenberg DAEs systems efficiently. The main advantage of this technique is that; firstly it avoids complex transformations like index reductions and leads to a simple general algorithm. Secondly, it reduces the computational work by solving only linear algebraic systems with a constant coefficient matrix at each iteration, except for the first iteration where the algebraic system is nonlinear (if the DAE is nonlinear with respect to the algebraic variable). To demonstrate the effectiveness of the proposed technique, we apply it to a nonlinear index-three Hessenberg DAEs system with nonlinear algebraic constraints. This technique is straightforward and can be programmed in Maple or Mathematica to simulate real application problems.
Asymptotic aspect of derivations in Banach algebras.
Roh, Jaiok; Chang, Ick-Soon
2017-01-01
We prove that every approximate linear left derivation on a semisimple Banach algebra is continuous. Also, we consider linear derivations on Banach algebras and we first study the conditions for a linear derivation on a Banach algebra. Then we examine the functional inequalities related to a linear derivation and their stability. We finally take central linear derivations with radical ranges on semiprime Banach algebras and a continuous linear generalized left derivation on a semisimple Banach algebra.
ERIC Educational Resources Information Center
Zandieh, Michelle; Ellis, Jessica; Rasmussen, Chris
2017-01-01
As part of a larger study of student understanding of concepts in linear algebra, we interviewed 10 university linear algebra students as to their conceptions of functions from high school algebra and linear transformation from their study of linear algebra. An overarching goal of this study was to examine how linear algebra students see linear…
The Growing Importance of Linear Algebra in Undergraduate Mathematics.
ERIC Educational Resources Information Center
Tucker, Alan
1993-01-01
Discusses the theoretical and practical importance of linear algebra. Presents a brief history of linear algebra and matrix theory and describes the place of linear algebra in the undergraduate curriculum. (MDH)
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Coherent population transfer in multilevel systems with magnetic sublevels. II. Algebraic analysis
NASA Astrophysics Data System (ADS)
Martin, J.; Shore, B. W.; Bergmann, K.
1995-07-01
We extend previous theoretical work on coherent population transfer by stimulated Raman adiabatic passage for states involving nonzero angular momentum. The pump and Stokes fields are either copropagating or counterpropagating with the corresponding linearly polarized electric-field vectors lying in a common plane with the magnetic-field direction. Zeeman splitting lifts the magnetic sublevel degeneracy. We present an algebraic analysis of dressed-state properties to explain the behavior noted in numerical studies. In particular, we discuss conditions which are likely to lead to a failure of complete population transfer. The applied strategy, based on simple methods of linear algebra, will also be successful for other types of discrete multilevel systems, provided the rotating-wave and adiabatic approximation are valid.
The preconditioned Gauss-Seidel method faster than the SOR method
NASA Astrophysics Data System (ADS)
Niki, Hiroshi; Kohno, Toshiyuki; Morimoto, Munenori
2008-09-01
In recent years, a number of preconditioners have been applied to linear systems [A.D. Gunawardena, S.K. Jain, L. Snyder, Modified iterative methods for consistent linear systems, Linear Algebra Appl. 154-156 (1991) 123-143; T. Kohno, H. Kotakemori, H. Niki, M. Usui, Improving modified Gauss-Seidel method for Z-matrices, Linear Algebra Appl. 267 (1997) 113-123; H. Kotakemori, K. Harada, M. Morimoto, H. Niki, A comparison theorem for the iterative method with the preconditioner (I+Smax), J. Comput. Appl. Math. 145 (2002) 373-378; H. Kotakemori, H. Niki, N. Okamoto, Accelerated iteration method for Z-matrices, J. Comput. Appl. Math. 75 (1996) 87-97; M. Usui, H. Niki, T.Kohno, Adaptive Gauss-Seidel method for linear systems, Internat. J. Comput. Math. 51(1994)119-125 [10
Investigating Students' Modes of Thinking in Linear Algebra: The Case of Linear Independence
ERIC Educational Resources Information Center
Çelik, Derya
2015-01-01
Linear algebra is one of the most challenging topics to learn and teach in many countries. To facilitate the teaching and learning of linear algebra, priority should be given to epistemologically analyze the concepts that the undergraduate students have difficulty in conceptualizing and to define their ways of reasoning in linear algebra. After…
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
Contextualizing symbol, symbolizing context
NASA Astrophysics Data System (ADS)
Maudy, Septiani Yugni; Suryadi, Didi; Mulyana, Endang
2017-08-01
When students learn algebra for the first time, inevitably they are experiencing transition from arithmetic to algebraic thinking. Once students could apprehend this essential mathematical knowledge, they are cultivating their ability in solving daily life problems by applying algebra. However, as we dig into this transitional stage, we identified possible students' learning obstacles to be dealt with seriously in order to forestall subsequent hindrance in studying more advance algebra. We come to realize this recurring problem as we undertook the processes of re-personalization and re-contextualization in which we scrutinize the very basic questions: 1) what is variable, linear equation with one variable and their relationship with the arithmetic-algebraic thinking? 2) Why student should learn such concepts? 3) How to teach those concepts to students? By positioning ourselves as a seventh grade student, we address the possibility of children to think arithmetically when confronted with the problems of linear equation with one variable. To help them thinking algebraically, Bruner's modes of representation developed contextually from concrete to abstract were delivered to enhance their interpretation toward the idea of variables. Hence, from the outset we designed the context for student to think symbolically initiated by exploring various symbols that could be contextualized in order to bridge student traversing the arithmetic-algebraic fruitfully.
Schwarz maps of algebraic linear ordinary differential equations
NASA Astrophysics Data System (ADS)
Sanabria Malagón, Camilo
2017-12-01
A linear ordinary differential equation is called algebraic if all its solution are algebraic over its field of definition. In this paper we solve the problem of finding closed form solution to algebraic linear ordinary differential equations in terms of standard equations. Furthermore, we obtain a method to compute all algebraic linear ordinary differential equations with rational coefficients by studying their associated Schwarz map through the Picard-Vessiot Theory.
Signal Processing for Radar Target Tracking and Identification
1996-12-01
Computes the likelihood for various potential jump moves. 12. matrix_mult.m: Parallel implementation of linear algebra ... Elementary Lineary Algebra with Applications, John Wiley k Sons, Inc., New York, 1987. [9] A. K. Bhattacharyya, and D. L. Sengupta, Radar Cross...Miller, ’Target Tracking and Recognition Using Jump-Diffusion Processes," ARO’s 11th Army Conf. on Applied Mathemat- ics and Computing, June 8-11
Conditional Independence in Applied Probability.
ERIC Educational Resources Information Center
Pfeiffer, Paul E.
This material assumes the user has the background provided by a good undergraduate course in applied probability. It is felt that introductory courses in calculus, linear algebra, and perhaps some differential equations should provide the requisite experience and proficiency with mathematical concepts, notation, and argument. The document is…
Computer Program For Linear Algebra
NASA Technical Reports Server (NTRS)
Krogh, F. T.; Hanson, R. J.
1987-01-01
Collection of routines provided for basic vector operations. Basic Linear Algebra Subprogram (BLAS) library is collection from FORTRAN-callable routines for employing standard techniques to perform basic operations of numerical linear algebra.
ERIC Educational Resources Information Center
Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.
2010-01-01
This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…
On differential operators generating iterative systems of linear ODEs of maximal symmetry algebra
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2017-06-01
Although every iterative scalar linear ordinary differential equation is of maximal symmetry algebra, the situation is different and far more complex for systems of linear ordinary differential equations, and an iterative system of linear equations need not be of maximal symmetry algebra. We illustrate these facts by examples and derive families of vector differential operators whose iterations are all linear systems of equations of maximal symmetry algebra. Some consequences of these results are also discussed.
1993-05-31
program. In paper [28], we give a brief and elementary proof of a result of Hoffman [1952) about approximate solutions to systems, of linear inequalities...UCLA, Vestvood, CA, February 1993. " Linear Problems: Formulation and Solution," International Linear Algebra Society, Pensacola, FL, May 1993. Denise S...thresAold If there is a number h and a linear k-separator w assigning a real number to each vertex so that for any subset S of vertices, the sum of w
Assessing non-uniqueness: An algebraic approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, Don W.
Geophysical inverse problems are endowed with a rich mathematical structure. When discretized, most differential and integral equations of interest are algebraic (polynomial) in form. Techniques from algebraic geometry and computational algebra provide a means to address questions of existence and uniqueness for both linear and non-linear inverse problem. In a sense, the methods extend ideas which have proven fruitful in treating linear inverse problems.
Derive Workshop Matrix Algebra and Linear Algebra.
ERIC Educational Resources Information Center
Townsley Kulich, Lisa; Victor, Barbara
This document presents the course content for a workshop that integrates the use of the computer algebra system Derive with topics in matrix and linear algebra. The first section is a guide to using Derive that provides information on how to write algebraic expressions, make graphs, save files, edit, define functions, differentiate expressions,…
Computing Gröbner Bases within Linear Algebra
NASA Astrophysics Data System (ADS)
Suzuki, Akira
In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both of S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
ERIC Educational Resources Information Center
Aydin, Sinan
2014-01-01
Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…
Private algebras in quantum information and infinite-dimensional complementarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crann, Jason, E-mail: jason-crann@carleton.ca; Laboratoire de Mathématiques Paul Painlevé–UMR CNRS 8524, UFR de Mathématiques, Université Lille 1–Sciences et Technologies, 59655 Villeneuve d’Ascq Cédex; Kribs, David W., E-mail: dkribs@uoguelph.ca
We introduce a generalized framework for private quantum codes using von Neumann algebras and the structure of commutants. This leads naturally to a more general notion of complementary channel, which we use to establish a generalized complementarity theorem between private and correctable subalgebras that applies to both the finite and infinite-dimensional settings. Linear bosonic channels are considered and specific examples of Gaussian quantum channels are given to illustrate the new framework together with the complementarity theorem.
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Krogh, F. T.; Gold, S. S.; Kincaid, D. R.; Sullivan, J.; Williams, E.; Hanson, R. J.; Haskell, K.; Dongarra, J.; Moler, C. B.
1982-01-01
The Basic Linear Algebra Subprograms (BLAS) library is a collection of 38 FORTRAN-callable routines for performing basic operations of numerical linear algebra. BLAS library is portable and efficient source of basic operations for designers of programs involving linear algebriac computations. BLAS library is supplied in portable FORTRAN and Assembler code versions for IBM 370, UNIVAC 1100 and CDC 6000 series computers.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
Proceedings from four sessions of the Summer Conference for College Teachers on Applied Mathematics are presented. The four sessions were: (1) Applications of Elementary Calculus, (2) Applications of Linear Algebra, (3) Applications of Elementary Differential Equations, and (4) Applications of Probability and Statistics. Nine lectures were given…
Short Round Sub-Linear Zero-Knowledge Argument for Linear Algebraic Relations
NASA Astrophysics Data System (ADS)
Seo, Jae Hong
Zero-knowledge arguments allows one party to prove that a statement is true, without leaking any other information than the truth of the statement. In many applications such as verifiable shuffle (as a practical application) and circuit satisfiability (as a theoretical application), zero-knowledge arguments for mathematical statements related to linear algebra are essentially used. Groth proposed (at CRYPTO 2009) an elegant methodology for zero-knowledge arguments for linear algebraic relations over finite fields. He obtained zero-knowledge arguments of the sub-linear size for linear algebra using reductions from linear algebraic relations to equations of the form z = x *' y, where x, y ∈ Fnp are committed vectors, z ∈ Fp is a committed element, and *' : Fnp × Fnp → Fp is a bilinear map. These reductions impose additional rounds on zero-knowledge arguments of the sub-linear size. The round complexity of interactive zero-knowledge arguments is an important measure along with communication and computational complexities. We focus on minimizing the round complexity of sub-linear zero-knowledge arguments for linear algebra. To reduce round complexity, we propose a general transformation from a t-round zero-knowledge argument, satisfying mild conditions, to a (t - 2)-round zero-knowledge argument; this transformation is of independent interest.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
Teaching Linear Algebra: Must the Fog Always Roll In?
ERIC Educational Resources Information Center
Carlson, David
1993-01-01
Proposes methods to teach the more difficult concepts of linear algebra. Examines features of the Linear Algebra Curriculum Study Group Core Syllabus, and presents problems from the core syllabus that utilize the mathematical process skills of making conjectures, proving the results, and communicating the results to colleagues. Presents five…
An Inquiry-Based Linear Algebra Class
ERIC Educational Resources Information Center
Wang, Haohao; Posey, Lisa
2011-01-01
Linear algebra is a standard undergraduate mathematics course. This paper presents an overview of the design and implementation of an inquiry-based teaching material for the linear algebra course which emphasizes discovery learning, analytical thinking and individual creativity. The inquiry-based teaching material is designed to fit the needs of a…
1980-09-08
February 1979 through 31 March 1980 Title of Research: NUMERICAL LINEAR ALGEBRA Principal Investigators: Gene H. Golub James H. Wilkinson Research...BEFORE COMPLETING FORM 2 OTAgSSION NO. 3. RECIPIENT’S CATALOG NUMBER ITE~ btitle) ~qEE NUMERICAL LINEAR ALGEBRA #I ~ f#7&/8 PER.ORMING ORG. REPORT NUM 27R 7
Total Quality Management in the Classroom: Applications to University-Level Mathematics.
ERIC Educational Resources Information Center
Williams, Frank
1995-01-01
Describes a Total Quality Management-based system of instruction that is used in a variety of undergraduate mathematics courses. The courses that incorporate this approach include mathematics appreciation, introductory calculus, and advanced applied linear algebra. (DDR)
Linear {GLP}-algebras and their elementary theories
NASA Astrophysics Data System (ADS)
Pakhomov, F. N.
2016-12-01
The polymodal provability logic {GLP} was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free {GLP}-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable [1]. For every positive integer n we solve the corresponding question for the logics {GLP}_n that are the fragments of {GLP} with n modalities. We prove that the elementary theory of the free {GLP}_n-algebra generated by the constants \\mathbf{0}, \\mathbf{1} is decidable for all n. We introduce the notion of a linear {GLP}_n-algebra and prove that all free {GLP}_n-algebras generated by the constants \\mathbf{0}, \\mathbf{1} are linear. We also consider the more general case of the logics {GLP}_α whose modalities are indexed by the elements of a linearly ordered set α: we define the notion of a linear algebra and prove the latter result in this case.
NASA Astrophysics Data System (ADS)
Krsolarlak, Ilona
We analyze a certain class of von Neumann algebras generated by selfadjoint elements , for satisfying the general commutation relations:
Visualizing the inner product space ℝm×n in a MATLAB-assisted linear algebra classroom
NASA Astrophysics Data System (ADS)
Caglayan, Günhan
2018-05-01
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space ? in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools that complement the algebraic approach. As implemented in linear algebra lessons in a university in the Unites States, the article also incorporates algebraic and visual work of students who experienced these activities with MATLAB software. The connection between the Frobenius norm and the Euclidean norm is also emphasized.
Linear Algebra and Image Processing
ERIC Educational Resources Information Center
Allali, Mohamed
2010-01-01
We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)
Resources for Teaching Linear Algebra. MAA Notes Volume 42.
ERIC Educational Resources Information Center
Carlson, David, Ed.; And Others
This book takes the position that the teaching of elementary linear algebra can be made more effective by emphasizing applications, exposition, and pedagogy. It includes the recommendations of the Linear Algebra Curriculum Study Group with their core syllabus for the first course, and the thoughts of mathematics faculty who have taught linear…
Emphasizing Language and Visualization in Teaching Linear Algebra
ERIC Educational Resources Information Center
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-01-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his…
ERIC Educational Resources Information Center
Montiel, Mariana; Bhatti, Uzma
2010-01-01
This article presents an overview of some issues that were confronted when delivering an online second Linear Algebra course (assuming a previous Introductory Linear Algebra course) to graduate students enrolled in a Secondary Mathematics Education program. The focus is on performance in one particular aspect of the course: "change of basis" and…
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
Linear Algebra Revisited: An Attempt to Understand Students' Conceptual Difficulties
ERIC Educational Resources Information Center
Britton, Sandra; Henderson, Jenny
2009-01-01
This article looks at some of the conceptual difficulties that students have in a linear algebra course. An overview of previous research in this area is given, and the various theories that have been espoused regarding the reasons that students find linear algebra so difficult are discussed. Student responses to two questions testing the ability…
Operator pencil passing through a given operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biggs, A., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk; Khudaverdian, H. M., E-mail: khudian@manchester.ac.uk, E-mail: adam.biggs@student.manchester.ac.uk
Let Δ be a linear differential operator acting on the space of densities of a given weight λ{sub 0} on a manifold M. One can consider a pencil of operators Π-circumflex(Δ)=(Δ{sub λ}) passing through the operator Δ such that any Δ{sub λ} is a linear differential operator acting on densities of weight λ. This pencil can be identified with a linear differential operator Δ-circumflex acting on the algebra of densities of all weights. The existence of an invariant scalar product in the algebra of densities implies a natural decomposition of operators, i.e., pencils of self-adjoint and anti-self-adjoint operators. We studymore » lifting maps that are on one hand equivariant with respect to divergenceless vector fields, and, on the other hand, with values in self-adjoint or anti-self-adjoint operators. In particular, we analyze the relation between these two concepts, and apply it to the study of diff (M)-equivariant liftings. Finally, we briefly consider the case of liftings equivariant with respect to the algebra of projective transformations and describe all regular self-adjoint and anti-self-adjoint liftings. Our constructions can be considered as a generalisation of equivariant quantisation.« less
Generalized Clifford Algebras as Algebras in Suitable Symmetric Linear Gr-Categories
NASA Astrophysics Data System (ADS)
Cheng, Tao; Huang, Hua-Lin; Yang, Yuping
2016-01-01
By viewing Clifford algebras as algebras in some suitable symmetric Gr-categories, Albuquerque and Majid were able to give a new derivation of some well known results about Clifford algebras and to generalize them. Along the same line, Bulacu observed that Clifford algebras are weak Hopf algebras in the aforementioned categories and obtained other interesting properties. The aim of this paper is to study generalized Clifford algebras in a similar manner and extend the results of Albuquerque, Majid and Bulacu to the generalized setting. In particular, by taking full advantage of the gauge transformations in symmetric linear Gr-categories, we derive the decomposition theorem and provide categorical weak Hopf structures for generalized Clifford algebras in a conceptual and simpler manner.
The Linear Algebra Curriculum Study Group Recommendations for the First Course in Linear Algebra.
ERIC Educational Resources Information Center
Carlson, David; And Others
1993-01-01
Presents five recommendations of the Linear Algebra Curriculum Study Group: (1) The syllabus must respond to the client disciplines; (2) The first course should be matrix oriented; (3) Faculty should consider the needs and interests of students; (4) Faculty should use technology; and (5) At least one follow-up course should be required. Provides a…
Variational data assimilation system "INM RAS - Black Sea"
NASA Astrophysics Data System (ADS)
Parmuzin, Eugene; Agoshkov, Valery; Assovskiy, Maksim; Giniatulin, Sergey; Zakharova, Natalia; Kuimov, Grigory; Fomin, Vladimir
2013-04-01
Development of Informational-Computational Systems (ICS) for Data Assimilation Procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The problems discussed above are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for Personal Computers (PC). Special problems and questions arise while effective ICS versions for PC are being developed. These problems and questions can be solved with applying modern methods of numerical mathematics and by solving "parallelism problem" using OpenMP technology and special linear algebra packages. In this work the results on the ICS development for PC-ICS "INM RAS - Black Sea" are presented. In the work the following problems and questions are discussed: practical problems that can be studied by ICS; parallelism problems and their solutions with applying of OpenMP technology and the linear algebra packages used in ICS "INM - Black Sea"; Interface of ICS. The results of ICS "INM RAS - Black Sea" testing are presented. Efficiency of technologies and methods applied are discussed. The work was supported by RFBR, grants No. 13-01-00753, 13-05-00715 and by The Ministry of education and science of Russian Federation, project 8291, project 11.519.11.1005 References: [1] V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 5-31 [2] E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 69-94 [3] V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, 95-111 [4] V.I. Agoshkov, S.V. Giniatulin, G.V. Kuimov. OpenMP technology and linear algebra packages in the variation data assimilation systems. - Abstracts of the 1-st China-Russia Conference on Numerical Algebra with Applications in Radiactive Hydrodynamics, Beijing, China, October 16-18, 2012. [5] Zakharova N.B., Agoshkov V.I., Parmuzin E.I., The new method of ARGO buoys system observation data interpolation. Russian Journal of Numerical Analysis and Mathematical Modelling. Vol. 28, Issue 1, 2013.
Linear Equations. [Student Worksheets for Vocational Agricultural Courses].
ERIC Educational Resources Information Center
Jewell, Larry R.
This learning module provides students with practice in applying algebraic operations to vocational agriculture. The module consists of unit objectives, definitions, information, problems to solve, worksheets suitable for various levels of vocational agriculture instruction, and answer keys for the problems and worksheets. This module, which…
ERIC Educational Resources Information Center
Wawro, Megan Jean
2011-01-01
In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…
NASA Technical Reports Server (NTRS)
Ito, Kazufumi
1987-01-01
The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.
Bisimulation equivalence of differential-algebraic systems
NASA Astrophysics Data System (ADS)
Megawati, Noorma Yulia; Schaft, Arjan van der
2018-01-01
In this paper, the notion of bisimulation relation for linear input-state-output systems is extended to general linear differential-algebraic (DAE) systems. Geometric control theory is used to derive a linear-algebraic characterisation of bisimulation relations, and an algorithm for computing the maximal bisimulation relation between two linear DAE systems. The general definition is specialised to the case where the matrix pencil sE - A is regular. Furthermore, by developing a one-sided version of bisimulation, characterisations of simulation and abstraction are obtained.
Parallel Algorithms for Least Squares and Related Computations.
1991-03-22
for dense computations in linear algebra . The work has recently been published in a general reference book on parallel algorithms by SIAM. AFO SR...written his Ph.D. dissertation with the principal investigator. (See publication 6.) • Parallel Algorithms for Dense Linear Algebra Computations. Our...and describe and to put into perspective a selection of the more important parallel algorithms for numerical linear algebra . We give a major new
University of Chicago School Mathematics Project (UCSMP) Algebra. WWC Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2009
2009-01-01
University of Chicago School Mathematics Project (UCSMP) Algebra is a one-year course covering three primary topics: (1) linear and quadratic expressions, sentences, and functions; (2) exponential expressions and functions; and (3) linear systems. Topics from geometry, probability, and statistics are integrated with the appropriate algebra.…
Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.
Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper
2002-08-01
A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.
Discovering Authorities and Hubs in Different Topological Web Graph Structures.
ERIC Educational Resources Information Center
Meghabghab, George
2002-01-01
Discussion of citation analysis on the Web considers Web hyperlinks as a source to analyze citations. Topics include basic graph theory applied to Web pages, including matrices, linear algebra, and Web topology; and hubs and authorities, including a search technique called HITS (Hyperlink Induced Topic Search). (Author/LRW)
Biology As a Source for Algebra Equations: Insects
ERIC Educational Resources Information Center
Horak, Virginia M.
2005-01-01
The activity developed in an integrated high school course that was team-taught by both mathematics and science teachers examines linear equations developed from relationships in biology. These equations provide students with opportunities to see the way mathematics could be used to describe biological relationships, and then apply to solve…
Numerical linear algebra in data mining
NASA Astrophysics Data System (ADS)
Eldén, Lars
Ideas and algorithms from numerical linear algebra are important in several areas of data mining. We give an overview of linear algebra methods in text mining (information retrieval), pattern recognition (classification of handwritten digits), and PageRank computations for web search engines. The emphasis is on rank reduction as a method of extracting information from a data matrix, low-rank approximation of matrices using the singular value decomposition and clustering, and on eigenvalue methods for network analysis.
2007-03-01
mathematical frame- 1-6 work of linear algebra and functional analysis [122, 33], while Kalman-Bucy filtering [96, 32] is an especially important...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, March 2002. 85. Hoffman, Kenneth and Ray Kunze. Linear Algebra (Second Edition...Engineering, Air Force Institute of Technology (AU), Wright- Patterson AFB, Ohio, December 1989. 189. Strang, Gilbert. Linear Algebra and Its Applications
Emphasizing language and visualization in teaching linear algebra
NASA Astrophysics Data System (ADS)
Hannah, John; Stewart, Sepideh; Thomas, Mike
2013-06-01
Linear algebra with its rich theoretical nature is a first step towards advanced mathematical thinking for many undergraduate students. In this paper, we consider the teaching approach of an experienced mathematician as he attempts to engage his students with the key ideas embedded in a second-year course in linear algebra. We describe his approach in both lectures and tutorials, and how he employed visualization and an emphasis on language to encourage conceptual thinking. We use Tall's framework of three worlds of mathematical thinking to reflect on the effect of these activities in students' learning. An analysis of students' attitudes to the course and their test and examination results help to answer questions about the value of such an approach, suggesting ways forward in teaching linear algebra.
NASA Astrophysics Data System (ADS)
Zhou, L.-Q.; Meleshko, S. V.
2017-07-01
The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.
Commentary on A General Curriculum in Mathematics for Colleges.
ERIC Educational Resources Information Center
Committee on the Undergraduate Program in Mathematics, Berkeley, CA.
This document constitutes a complete revision of the report of the same name first published in 1965. A new list of basic courses is described, consisting of Calculus I, Calculus II, Elementary Linear Algebra, Multivariable Calculus I, Linear Algebra, and Introductory Modern Algebra. Commentaries outline the content and spirit of these courses in…
ERIC Educational Resources Information Center
Yildiz Ulus, Aysegul
2013-01-01
This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…
Algebraic multigrid methods applied to problems in computational structural mechanics
NASA Technical Reports Server (NTRS)
Mccormick, Steve; Ruge, John
1989-01-01
The development of algebraic multigrid (AMG) methods and their application to certain problems in structural mechanics are described with emphasis on two- and three-dimensional linear elasticity equations and the 'jacket problems' (three-dimensional beam structures). Various possible extensions of AMG are also described. The basic idea of AMG is to develop the discretization sequence based on the target matrix and not the differential equation. Therefore, the matrix is analyzed for certain dependencies that permit the proper construction of coarser matrices and attendant transfer operators. In this manner, AMG appears to be adaptable to structural analysis applications.
The Role of Proof in Comprehending and Teaching Elementary Linear Algebra.
ERIC Educational Resources Information Center
Uhlig, Frank
2002-01-01
Describes how elementary linear algebra can be taught successfully while introducing students to the concept and practice of mathematical proof. Suggests exploring the concept of solvability of linear systems first via the row echelon form (REF). (Author/KHR)
1979-09-01
without determinantal divisors, Linear and Multilinear Algebra 7(1979), 107-109. 4. The use of integral operators in number theory (with C. Ryavec and...Gersgorin revisited, to appear in Letters in Linear Algebra. 15. A surprising determinantal inequality for real matrices (with C.R. Johnson), to appear in...Analysis: An Essay Concerning the Limitations of Some Mathematical Methods in the Social , Political and Biological Sciences, David Berlinski, MIT Press
NASA Astrophysics Data System (ADS)
Saito, Asaki; Yasutomi, Shin-ichi; Tamura, Jun-ichi; Ito, Shunji
2015-06-01
We introduce a true orbit generation method enabling exact simulations of dynamical systems defined by arbitrary-dimensional piecewise linear fractional maps, including piecewise linear maps, with rational coefficients. This method can generate sufficiently long true orbits which reproduce typical behaviors (inherent behaviors) of these systems, by properly selecting algebraic numbers in accordance with the dimension of the target system, and involving only integer arithmetic. By applying our method to three dynamical systems—that is, the baker's transformation, the map associated with a modified Jacobi-Perron algorithm, and an open flow system—we demonstrate that it can reproduce their typical behaviors that have been very difficult to reproduce with conventional simulation methods. In particular, for the first two maps, we show that we can generate true orbits displaying the same statistical properties as typical orbits, by estimating the marginal densities of their invariant measures. For the open flow system, we show that an obtained true orbit correctly converges to the stable period-1 orbit, which is inherently possessed by the system.
Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions
NASA Astrophysics Data System (ADS)
Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.
2018-04-01
A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.
A Comparison Study between a Traditional and Experimental Program.
ERIC Educational Resources Information Center
Dogan, Hamide
This paper is part of a dissertation defended in January 2001 as part of the author's Ph.D. requirement. The study investigated the effects of use of Mathematica, a computer algebra system, in learning basic linear algebra concepts, It was done by means of comparing two first year linear algebra classes, one traditional and one Mathematica…
Optical systolic solutions of linear algebraic equations
NASA Technical Reports Server (NTRS)
Neuman, C. P.; Casasent, D.
1984-01-01
The philosophy and data encoding possible in systolic array optical processor (SAOP) were reviewed. The multitude of linear algebraic operations achievable on this architecture is examined. These operations include such linear algebraic algorithms as: matrix-decomposition, direct and indirect solutions, implicit and explicit methods for partial differential equations, eigenvalue and eigenvector calculations, and singular value decomposition. This architecture can be utilized to realize general techniques for solving matrix linear and nonlinear algebraic equations, least mean square error solutions, FIR filters, and nested-loop algorithms for control engineering applications. The data flow and pipelining of operations, design of parallel algorithms and flexible architectures, application of these architectures to computationally intensive physical problems, error source modeling of optical processors, and matching of the computational needs of practical engineering problems to the capabilities of optical processors are emphasized.
A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets
2014-11-01
linear hybrid systems by linear algebraic methods. In SAS, volume 6337 of LNCS, pages 373–389. Springer, 2010. [19] E. W. Mayr. Membership in polynomial...383–394, 2009. [31] A. Tarski. A decision method for elementary algebra and geometry. Bull. Amer. Math. Soc., 59, 1951. [32] A. Tiwari. Abstractions...A Hierarchy of Proof Rules for Checking Differential Invariance of Algebraic Sets Khalil Ghorbal1 Andrew Sogokon2 André Platzer1 November 2014 CMU
Libraries for Software Use on Peregrine | High-Performance Computing | NREL
-specific libraries. Libraries List Name Description BLAS Basic Linear Algebra Subroutines, libraries only managing hierarchically structured data. LAPACK Standard Netlib offering for computational linear algebra
ERIC Educational Resources Information Center
Ertekin, E.; Solak, S.; Yazici, E.
2010-01-01
The aim of this study is to identify the effects of formalism in teaching on primary and secondary school mathematics teacher trainees' algebraic and geometric interpretations of the notions of linear dependency/independency. Quantitative research methods are drawn in order to determine differences in success levels between algebraic and geometric…
Implementing Linear Algebra Related Algorithms on the TI-92+ Calculator.
ERIC Educational Resources Information Center
Alexopoulos, John; Abraham, Paul
2001-01-01
Demonstrates a less utilized feature of the TI-92+: its natural and powerful programming language. Shows how to implement several linear algebra related algorithms including the Gram-Schmidt process, Least Squares Approximations, Wronskians, Cholesky Decompositions, and Generalized Linear Least Square Approximations with QR Decompositions.…
Lie algebras and linear differential equations.
NASA Technical Reports Server (NTRS)
Brockett, R. W.; Rahimi, A.
1972-01-01
Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Mathematical modelling in engineering: an alternative way to teach Linear Algebra
NASA Astrophysics Data System (ADS)
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-10-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic classroom approach in which students modelled real-world problems and turn gain a deeper knowledge of the Linear Algebra subject. Considering that most students are digital natives, we use the e-portfolio as a tool of communication between students and teachers, besides being a good place making the work visible. In this article, we present an overview of the design and implementation of a project-based learning for a Linear Algebra course taught during the 2014-2015 at the 'ETSEIB'of Universitat Politècnica de Catalunya (UPC).
Operator bases, S-matrices, and their partition functions
NASA Astrophysics Data System (ADS)
Henning, Brian; Lu, Xiaochuan; Melia, Tom; Murayama, Hitoshi
2017-10-01
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. In this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce a partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most na¨ıve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.
Embodied, Symbolic and Formal Thinking in Linear Algebra
ERIC Educational Resources Information Center
Stewart, Sepideh; Thomas, Michael O. J.
2007-01-01
Students often find their first university linear algebra experience very challenging. While coping with procedural aspects of the subject, solving linear systems and manipulating matrices, they may struggle with crucial conceptual ideas underpinning them, making it very difficult to progress in more advanced courses. This research has sought to…
Some Applications Of Semigroups And Computer Algebra In Discrete Structures
NASA Astrophysics Data System (ADS)
Bijev, G.
2009-11-01
An algebraic approach to the pseudoinverse generalization problem in Boolean vector spaces is used. A map (p) is defined, which is similar to an orthogonal projection in linear vector spaces. Some other important maps with properties similar to those of the generalized inverses (pseudoinverses) of linear transformations and matrices corresponding to them are also defined and investigated. Let Ax = b be an equation with matrix A and vectors x and b Boolean. Stochastic experiments for solving the equation, which involves the maps defined and use computer algebra methods, have been made. As a result, the Hamming distance between vectors Ax = p(b) and b is equal or close to the least possible. We also share our experience in using computer algebra systems for teaching discrete mathematics and linear algebra and research. Some examples for computations with binary relations using Maple are given.
An Example of Competence-Based Learning: Use of Maxima in Linear Algebra for Engineers
ERIC Educational Resources Information Center
Diaz, Ana; Garcia, Alfonsa; de la Villa, Agustin
2011-01-01
This paper analyses the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is…
Algebraic Approaches for Scalable End-to-End Monitoring and Diagnosis
NASA Astrophysics Data System (ADS)
Zhao, Yao; Chen, Yan
The rigidity of the Internet architecture led to flourish in the research of end-to-end based systems. In this chapter, we describe a linear algebra-based end-to-end monitoring and diagnosis system. We first propose a tomography-based overlay monitoring system (TOM). Given n end hosts, TOM selectively monitors a basis set of O(nlogn) paths out of all n(n - 1) end-to-end paths. Any end-to-end path can be written as a unique linear combination of paths in the basis set. Consequently, by monitoring loss rates for the paths in the basis set, TOM infers loss rates for all end-to-end paths. Furthermore, leveraging on the scalable measurements from the TOM system, we propose the Least-biased End-to-End Network Diagnosis (in short, LEND) system. We define a minimal identifiable link sequence (MILS) as a link sequence of minimal length whose properties can be uniquely identified from end-to-end measurements. LEND applies an algebraic approach to find out the MILSes and infers the properties of the MILSes efficiently. This also means LEND system achieves the finest diagnosis granularity under the least biased statistical assumptions.
Deriving the Regression Equation without Using Calculus
ERIC Educational Resources Information Center
Gordon, Sheldon P.; Gordon, Florence S.
2004-01-01
Probably the one "new" mathematical topic that is most responsible for modernizing courses in college algebra and precalculus over the last few years is the idea of fitting a function to a set of data in the sense of a least squares fit. Whether it be simple linear regression or nonlinear regression, this topic opens the door to applying the…
HLM in Cluster-Randomised Trials--Measuring Efficacy across Diverse Populations of Learners
ERIC Educational Resources Information Center
Hegedus, Stephen; Tapper, John; Dalton, Sara; Sloane, Finbarr
2013-01-01
We describe the application of Hierarchical Linear Modelling (HLM) in a cluster-randomised study to examine learning algebraic concepts and procedures in an innovative, technology-rich environment in the US. HLM is applied to measure the impact of such treatment on learning and on contextual variables. We provide a detailed description of such…
The algebraic criteria for the stability of control systems
NASA Technical Reports Server (NTRS)
Cremer, H.; Effertz, F. H.
1986-01-01
This paper critically examines the standard algebraic criteria for the stability of linear control systems and their proofs, reveals important previously unnoticed connections, and presents new representations. Algebraic stability criteria have also acquired significance for stability studies of non-linear differential equation systems by the Krylov-Bogoljubov-Magnus Method, and allow realization conditions to be determined for classes of broken rational functions as frequency characteristics of electrical network.
ERIC Educational Resources Information Center
Keller, Edward L.
This unit, which looks at applications of linear algebra to population studies, is designed to help pupils: (1) understand an application of matrix algebra to the study of populations; (2) see how knowledge of eigen values and eigen vectors is useful in studying powers of matrices; and (3) be briefly exposed to some difficult but interesting…
Gauss Elimination: Workhorse of Linear Algebra.
1995-08-05
linear algebra computation for solving systems, computing determinants and determining the rank of matrix. All of these are discussed in varying contexts. These include different arithmetic or algebraic setting such as integer arithmetic or polynomial rings as well as conventional real (floating-point) arithmetic. These have effects on both accuracy and complexity analyses of the algorithm. These, too, are covered here. The impact of modern parallel computer architecture on GE is also
Linear maps preserving maximal deviation and the Jordan structure of quantum systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamhalter, Jan
2012-12-15
In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less
Efficient linear algebra routines for symmetric matrices stored in packed form.
Ahlrichs, Reinhart; Tsereteli, Kakha
2002-01-30
Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.
NASA Astrophysics Data System (ADS)
Souleymanou, Abbagari; Thomas, B. Bouetou; Timoleon, C. Kofane
2013-08-01
The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention.
Algebra for Gifted Third Graders.
ERIC Educational Resources Information Center
Borenson, Henry
1987-01-01
Elementary school children who are exposed to a concrete, hands-on experience in algebraic linear equations will more readily develop a positive mind-set and expectation for success in later formal, algebraic studies. (CB)
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
Symmetric linear systems - An application of algebraic systems theory
NASA Technical Reports Server (NTRS)
Hazewinkel, M.; Martin, C.
1983-01-01
Dynamical systems which contain several identical subsystems occur in a variety of applications ranging from command and control systems and discretization of partial differential equations, to the stability augmentation of pairs of helicopters lifting a large mass. Linear models for such systems display certain obvious symmetries. In this paper, we discuss how these symmetries can be incorporated into a mathematical model that utilizes the modern theory of algebraic systems. Such systems are inherently related to the representation theory of algebras over fields. We will show that any control scheme which respects the dynamical structure either implicitly or explicitly uses the underlying algebra.
Capelli bitableaux and Z-forms of general linear Lie superalgebras.
Brini, A; Teolis, A G
1990-01-01
The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048
Student Learning of Basis, Span and Linear Independence in Linear Algebra
ERIC Educational Resources Information Center
Stewart, Sepideh; Thomas, Michael O. J.
2010-01-01
One of the earlier, more challenging concepts in linear algebra at university is that of basis. Students are often taught procedurally how to find a basis for a subspace using matrix manipulation, but may struggle with understanding the construct of basis, making further progress harder. We believe one reason for this is because students have…
Application of laser speckle to randomized numerical linear algebra
NASA Astrophysics Data System (ADS)
Valley, George C.; Shaw, Thomas J.; Stapleton, Andrew D.; Scofield, Adam C.; Sefler, George A.; Johannson, Leif
2018-02-01
We propose and simulate integrated optical devices for accelerating numerical linear algebra (NLA) calculations. Data is modulated on chirped optical pulses and these propagate through a multimode waveguide where speckle provides the random projections needed for NLA dimensionality reduction.
Constructive Learning in Undergraduate Linear Algebra
ERIC Educational Resources Information Center
Chandler, Farrah Jackson; Taylor, Dewey T.
2008-01-01
In this article we describe a project that we used in our undergraduate linear algebra courses to help our students successfully master fundamental concepts and definitions and generate interest in the course. We describe our philosophy and discuss the projects overall success.
UCSMP Algebra. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"University of Chicago School Mathematics Project (UCSMP) Algebra," designed to increase students' skills in algebra, is appropriate for students in grades 7-10, depending on the students' incoming knowledge. This one-year course highlights applications, uses statistics and geometry to develop the algebra of linear equations and inequalities, and…
Building Generalized Inverses of Matrices Using Only Row and Column Operations
ERIC Educational Resources Information Center
Stuart, Jeffrey
2010-01-01
Most students complete their first and only course in linear algebra with the understanding that a real, square matrix "A" has an inverse if and only if "rref"("A"), the reduced row echelon form of "A", is the identity matrix I[subscript n]. That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix…
Computer Algebra Systems in Undergraduate Instruction.
ERIC Educational Resources Information Center
Small, Don; And Others
1986-01-01
Computer algebra systems (such as MACSYMA and muMath) can carry out many of the operations of calculus, linear algebra, and differential equations. Use of them with sketching graphs of rational functions and with other topics is discussed. (MNS)
Conical Lens for 5-Inch/54 Gun Launched Missile
1981-06-01
Propagation, Interferenceand Diffraction of Light, 2nd ed. (revised), p. 121-124, Pergamon Press, 1964. 10. Anton , Howard, Elementary Linear Algebra , p. 1-21...equations is nonlinear in x, but is linear in the coefficients. Therefore, the techniques of linear algebra can be used on equation (F-13). The method...This thesis assumes the air to be homogenous, isotropic, linear , time indepen- dent (HILT) and free of shock waves in order to investigate the
An Integrity Framework for Image-Based Navigation Systems
2010-06-01
Anton H. and Rorres C. Elementary Linear Algebra . New York, NY: John Wiley & Sons, Inc., 2000. 4. Arthur T. “The Disparity of Parity, Determining...107. Spilker , James J.J. Digital Communications by Satellite. Englewood Cliffs NJ: Prentice Hall, 1977. 108. Strang G. Linear Algebra and its...2.3 The Linearized and Extended Kalman Filters . . . . . . 22 2.3.1 State and Measurement Model Equations . . . 23 2.3.2 The Linearized Kalman Filter
Journal Writing: Enlivening Elementary Linear Algebra.
ERIC Educational Resources Information Center
Meel, David E.
1999-01-01
Examines the various issues surrounding the implementation of journal writing in an undergraduate linear algebra course. Identifies the benefits of incorporating journal writing into an undergraduate mathematics course, which are supported with students' comments from their journals and their reflections on the process. Contains 14 references.…
NASA Astrophysics Data System (ADS)
Saveliev, M. V.; Vershik, A. M.
1989-12-01
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations of Z-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras “continuum Lie algebras.” The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.
The method of Ritz applied to the equation of Hamilton. [for pendulum systems
NASA Technical Reports Server (NTRS)
Bailey, C. D.
1976-01-01
Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.
Some estimation formulae for continuous time-invariant linear systems
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Sidhu, G. S.
1975-01-01
In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.
Error-Detecting Identification Codes for Algebra Students.
ERIC Educational Resources Information Center
Sutherland, David C.
1990-01-01
Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)
Applications of Maple To Algebraic Cryptography.
ERIC Educational Resources Information Center
Sigmon, Neil P.
1997-01-01
Demonstrates the use of technology to enhance the appreciation of applications involving abstract algebra. The symbolic manipulator Maple can perform computations required for a linear cryptosystem. One major benefit of this process is that students can encipher and decipher messages using a linear cryptosystem without becoming confused and…
Mathematical Modelling in Engineering: A Proposal to Introduce Linear Algebra Concepts
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea; Gómez Urgelles, Joan; Fortuny Aymemí, Josep
2016-01-01
The modern dynamic world requires that basic science courses for engineering, including linear algebra, emphasise the development of mathematical abilities primarily associated with modelling and interpreting, which are not exclusively calculus abilities. Considering this, an instructional design was created based on mathematical modelling and…
Noise limitations in optical linear algebra processors.
Batsell, S G; Jong, T L; Walkup, J F; Krile, T F
1990-05-10
A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.
Modules as Learning Tools in Linear Algebra
ERIC Educational Resources Information Center
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff; Loch, Sergio
2014-01-01
This paper reports on the experience of STEM and mathematics faculty at four different institutions working collaboratively to integrate learning theory with curriculum development in a core undergraduate linear algebra context. The faculty formed a Professional Learning Community (PLC) with a focus on learning theories in mathematics and…
A note on probabilistic models over strings: the linear algebra approach.
Bouchard-Côté, Alexandre
2013-12-01
Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.
The algebra of supertraces for 2+1 super de Sitter gravity
NASA Technical Reports Server (NTRS)
Urrutia, L. F.; Waelbroeck, H.; Zertuche, F.
1993-01-01
The algebra of the observables for 2+1 super de Sitter gravity, for one genus of the spatial surface is calculated. The algebra turns out to be an infinite Lie algebra subject to non-linear constraints. The constraints are solved explicitly in terms of five independent complex supertraces. These variables are the true degrees of freedom of the system and their quantized algebra generates a new structure which is referred to as a 'central extension' of the quantum algebra SU(2)q.
NASA Astrophysics Data System (ADS)
Man, Yiu-Kwong
2010-10-01
In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided.
A Linear Algebraic Approach to Teaching Interpolation
ERIC Educational Resources Information Center
Tassa, Tamir
2007-01-01
A novel approach for teaching interpolation in the introductory course in numerical analysis is presented. The interpolation problem is viewed as a problem in linear algebra, whence the various forms of interpolating polynomial are seen as different choices of a basis to the subspace of polynomials of the corresponding degree. This approach…
Motivating the Concept of Eigenvectors via Cryptography
ERIC Educational Resources Information Center
Siap, Irfan
2008-01-01
New methods of teaching linear algebra in the undergraduate curriculum have attracted much interest lately. Most of this work is focused on evaluating and discussing the integration of special computer software into the Linear Algebra curriculum. In this article, I discuss my approach on introducing the concept of eigenvectors and eigenvalues,…
Teaching Linear Algebra: Proceeding More Efficiently by Staying Comfortably within Z
ERIC Educational Resources Information Center
Beaver, Scott
2015-01-01
For efficiency in a linear algebra course the instructor may wish to avoid the undue arithmetical distractions of rational arithmetic. In this paper we explore how to write fraction-free problems of various types including elimination, matrix inverses, orthogonality, and the (non-normalizing) Gram-Schmidt process.
A Linear Algebra Measure of Cluster Quality.
ERIC Educational Resources Information Center
Mather, Laura A.
2000-01-01
Discussion of models for information retrieval focuses on an application of linear algebra to text clustering, namely, a metric for measuring cluster quality based on the theory that cluster quality is proportional to the number of terms that are disjoint across the clusters. Explains term-document matrices and clustering algorithms. (Author/LRW)
The Transformation App Redux: The Notion of Linearity
ERIC Educational Resources Information Center
Domenick, Anthony
2015-01-01
The notion of linearity is perhaps the most fundamental idea in algebraic thinking. It sets the transition to functions and culminates with the instantaneous rate of change in calculus. Despite its simplicity, this concept poses complexities to a considerable number of first semester college algebra students. The purpose of this observational…
Optical linear algebra processors: noise and error-source modeling.
Casasent, D; Ghosh, A
1985-06-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Inverse Modelling Problems in Linear Algebra Undergraduate Courses
ERIC Educational Resources Information Center
Martinez-Luaces, Victor E.
2013-01-01
This paper will offer an analysis from a theoretical point of view of mathematical modelling, applications and inverse problems of both causation and specification types. Inverse modelling problems give the opportunity to establish connections between theory and practice and to show this fact, a simple linear algebra example in two different…
Using Technology to Facilitate Reasoning: Lifting the Fog from Linear Algebra
ERIC Educational Resources Information Center
Berry, John S.; Lapp, Douglas A.; Nyman, Melvin A.
2008-01-01
This article discusses student difficulties in grasping concepts from linear algebra. Using an example from an interview with a student, we propose changes that might positively impact student understanding of concepts within a problem-solving context. In particular, we illustrate barriers to student understanding and suggest technological…
Mathematical Modelling in Engineering: An Alternative Way to Teach Linear Algebra
ERIC Educational Resources Information Center
Domínguez-García, S.; García-Planas, M. I.; Taberna, J.
2016-01-01
Technological advances require that basic science courses for engineering, including Linear Algebra, emphasize the development of mathematical strengths associated with modelling and interpretation of results, which are not limited only to calculus abilities. Based on this consideration, we have proposed a project-based learning, giving a dynamic…
Space and frequency-multiplexed optical linear algebra processor - Fabrication and initial tests
NASA Technical Reports Server (NTRS)
Casasent, D.; Jackson, J.
1986-01-01
A new optical linear algebra processor architecture is described. Space and frequency-multiplexing are used to accommodate bipolar and complex-valued data. A fabricated laboratory version of this processor is described, the electronic support system used is discussed, and initial test data obtained on it are presented.
Optical linear algebra processors - Noise and error-source modeling
NASA Technical Reports Server (NTRS)
Casasent, D.; Ghosh, A.
1985-01-01
The modeling of system and component noise and error sources in optical linear algebra processors (OLAPs) are considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output produced as a function of various component errors and noise. A digital simulator for this model is discussed.
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Symmetries of the Space of Linear Symplectic Connections
NASA Astrophysics Data System (ADS)
Fox, Daniel J. F.
2017-01-01
There is constructed a family of Lie algebras that act in a Hamiltonian way on the symplectic affine space of linear symplectic connections on a symplectic manifold. The associated equivariant moment map is a formal sum of the Cahen-Gutt moment map, the Ricci tensor, and a translational term. The critical points of a functional constructed from it interpolate between the equations for preferred symplectic connections and the equations for critical symplectic connections. The commutative algebra of formal sums of symmetric tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced from the canonical Poisson bracket on the space of functions on the cotangent bundle polynomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to be compatible, and the required Lie algebras are constructed as central extensions of their! linear combinations restricted to formal sums of symmetric tensors whose first order term is a multiple of the differential of its zeroth order term.
Numerical methods on some structured matrix algebra problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-06-01
This proposal concerned the design, analysis, and implementation of serial and parallel algorithms for certain structured matrix algebra problems. It emphasized large order problems and so focused on methods that can be implemented efficiently on distributed-memory MIMD multiprocessors. Such machines supply the computing power and extensive memory demanded by the large order problems. We proposed to examine three classes of matrix algebra problems: the symmetric and nonsymmetric eigenvalue problems (especially the tridiagonal cases) and the solution of linear systems with specially structured coefficient matrices. As all of these are of practical interest, a major goal of this work was tomore » translate our research in linear algebra into useful tools for use by the computational scientists interested in these and related applications. Thus, in addition to software specific to the linear algebra problems, we proposed to produce a programming paradigm and library to aid in the design and implementation of programs for distributed-memory MIMD computers. We now report on our progress on each of the problems and on the programming tools.« less
Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras
NASA Astrophysics Data System (ADS)
Zhang, Tianjie; Gao, Xing; Guo, Li
2016-10-01
The Hopf algebra and the Rota-Baxter algebra are the two algebraic structures underlying the algebraic approach of Connes and Kreimer to renormalization of perturbative quantum field theory. In particular, the Hopf algebra of rooted trees serves as the "baby model" of Feynman graphs in their approach and can be characterized by certain universal properties involving a Hochschild 1-cocycle. Decorated rooted trees have also been applied to study Feynman graphs. We will continue the study of universal properties of various spaces of decorated rooted trees with such a 1-cocycle, leading to the concept of a cocycle Hopf algebra. We further apply the universal properties to equip a free Rota-Baxter algebra with the structure of a cocycle Hopf algebra.
Mathematics in the Real World.
ERIC Educational Resources Information Center
Borenstein, Matt
1997-01-01
The abstract nature of algebra causes difficulties for many students. Describes "Real-World Data," an algebra course designed for students with low grades in algebra and provides multidisciplinary experiments (linear functions and variations; quadratic, square-root, and inverse relations; and exponential and periodic variation)…
ERIC Educational Resources Information Center
van Herwaarden, Onno A.; Gielen, Joseph L. W.
2002-01-01
Focuses on students showing a lack of conceptual insight while using computer algebra systems (CAS) in the setting of an elementary calculus and linear algebra course for first year university students in social sciences. The use of a computer algebra environment has been incorporated into a more traditional course but with special attention on…
Operator bases, S-matrices, and their partition functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Brian; Lu, Xiaochuan; Melia, Tom
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
Operator bases, S-matrices, and their partition functions
Henning, Brian; Lu, Xiaochuan; Melia, Tom; ...
2017-10-27
Relativistic quantum systems that admit scattering experiments are quantitatively described by effective field theories, where S-matrix kinematics and symmetry considerations are encoded in the operator spectrum of the EFT. Here in this paper we use the S-matrix to derive the structure of the EFT operator basis, providing complementary descriptions in (i) position space utilizing the conformal algebra and cohomology and (ii) momentum space via an algebraic formulation in terms of a ring of momenta with kinematics implemented as an ideal. These frameworks systematically handle redundancies associated with equations of motion (on-shell) and integration by parts (momentum conservation). We introduce amore » partition function, termed the Hilbert series, to enumerate the operator basis — correspondingly, the S-matrix — and derive a matrix integral expression to compute the Hilbert series. The expression is general, easily applied in any spacetime dimension, with arbitrary field content and (linearly realized) symmetries. In addition to counting, we discuss construction of the basis. Simple algorithms follow from the algebraic formulation in momentum space. We explicitly compute the basis for operators involving up to n = 5 scalar fields. This construction universally applies to fields with spin, since the operator basis for scalars encodes the momentum dependence of n-point amplitudes. We discuss in detail the operator basis for non-linearly realized symmetries. In the presence of massless particles, there is freedom to impose additional structure on the S- matrix in the form of soft limits. The most naÏve implementation for massless scalars leads to the operator basis for pions, which we confirm using the standard CCWZ formulation for non-linear realizations. Finally, although primarily discussed in the language of EFT, some of our results — conceptual and quantitative — may be of broader use in studying conformal field theories as well as the AdS/CFT correspondence.« less
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
Deformations of vector-scalar models
NASA Astrophysics Data System (ADS)
Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash
2018-02-01
Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.
Andries, Erik; Hagstrom, Thomas; Atlas, Susan R; Willman, Cheryl
2007-02-01
Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularization. Here, we examine the ill-posedness involved in the linear discrimination of cancer gene expression data with respect to outcome and tumor subclasses. We show that a filter factor representation, based upon Singular Value Decomposition, yields insight into the numerical ill-posedness of the hyperplane-based separation when applied to gene expression data. We also show that this representation yields useful diagnostic tools for guiding the selection of classifier parameters, thus leading to improved performance.
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Students' Use of Computational Thinking in Linear Algebra
ERIC Educational Resources Information Center
Bagley, Spencer; Rabin, Jeffrey M.
2016-01-01
In this work, we examine students' ways of thinking when presented with a novel linear algebra problem. Our intent was to explore how students employ and coordinate three modes of thinking, which we call computational, abstract, and geometric, following similar frameworks proposed by Hillel (2000) and Sierpinska (2000). However, the undergraduate…
Undergraduate Mathematics Students' Emotional Experiences in Linear Algebra Courses
ERIC Educational Resources Information Center
Martínez-Sierra, Gustavo; García-González, María del Socorro
2016-01-01
Little is known about students' emotions in the field of Mathematics Education that go beyond students' emotions in problem solving. To start filling this gap this qualitative research has the aim to identify emotional experiences of undergraduate mathematics students in Linear Algebra courses. In order to obtain data, retrospective focus group…
Avoiding Communication in Dense Linear Algebra
2013-08-16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.1 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6...and parallelizing Strassen’s matrix multiplication algorithm (Chapter 11). 6 Chapter 2 Preliminaries 2.1 Notation and Definitions In this section we...between computations and algo- rithms). The following definition is based on [56]: Definition 2.1. A classical algorithm in linear algebra is one that
Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving
ERIC Educational Resources Information Center
Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.
2016-01-01
This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…
Student Connections of Linear Algebra Concepts: An Analysis of Concept Maps
ERIC Educational Resources Information Center
Lapp, Douglas A.; Nyman, Melvin A.; Berry, John S.
2010-01-01
This article examines the connections of linear algebra concepts in a first course at the undergraduate level. The theoretical underpinnings of this study are grounded in the constructivist perspective (including social constructivism), Vernaud's theory of conceptual fields and Pirie and Kieren's model for the growth of mathematical understanding.…
ERIC Educational Resources Information Center
Williams-Candek, Maryellen
2016-01-01
How better to begin the study of linear equations in an algebra class than to determine what students already know about the subject? A seventh-grade algebra class in a suburban school undertook a project early in the school year that was completed before they began studying linear relations and functions. The project, which might have been…
Transforming an Introductory Linear Algebra Course with a TI-92 Hand-Held Computer.
ERIC Educational Resources Information Center
Quesada, Antonio R.
2003-01-01
Describes how the introduction of the TI-92 transformed a traditional first semester linear algebra course into a matrix-oriented course that emphasized conceptual understanding, relevant applications, and numerical issues. Indicates an increase in students' overall performance as they found the calculator very useful, believed it helped them…
ERIC Educational Resources Information Center
Wawro, Megan; Sweeney, George F.; Rabin, Jeffrey M.
2011-01-01
This paper reports on a study investigating students' ways of conceptualizing key ideas in linear algebra, with the particular results presented here focusing on student interactions with the notion of subspace. In interviews conducted with eight undergraduates, we found students' initial descriptions of subspace often varied substantially from…
Advanced Linear Algebra: A Call for the Early Introduction of Complex Numbers
ERIC Educational Resources Information Center
Garcia, Stephan Ramon
2017-01-01
A second course in linear algebra that goes beyond the traditional lower-level curriculum is increasingly important for students of the mathematical sciences. Although many applications involve only real numbers, a solid understanding of complex arithmetic often sheds significant light. Many instructors are unaware of the opportunities afforded by…
An Authentic Task That Models Quadratics
ERIC Educational Resources Information Center
Baron, Lorraine M.
2015-01-01
As students develop algebraic reasoning in grades 5 to 9, they learn to recognize patterns and understand expressions, equations, and variables. Linear functions are a focus in eighth-grade mathematics, and by algebra 1, students must make sense of functions that are not linear. This article describes how students worked through a classroom task…
Lack of Set Theory Relevant Prerequisite Knowledge
ERIC Educational Resources Information Center
Dogan-Dunlap, Hamide
2006-01-01
Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students' mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a…
Mat-Rix-Toe: Improving Writing through a Game-Based Project in Linear Algebra
ERIC Educational Resources Information Center
Graham-Squire, Adam; Farnell, Elin; Stockton, Julianna Connelly
2014-01-01
The Mat-Rix-Toe project utilizes a matrix-based game to deepen students' understanding of linear algebra concepts and strengthen students' ability to express themselves mathematically. The project was administered in three classes using slightly different approaches, each of which included some editing component to encourage the…
Using Cognitive Tutor Software in Learning Linear Algebra Word Concept
ERIC Educational Resources Information Center
Yang, Kai-Ju
2015-01-01
This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…
Student Reactions to Learning Theory Based Curriculum Materials in Linear Algebra--A Survey Analysis
ERIC Educational Resources Information Center
Cooley, Laurel; Vidakovic, Draga; Martin, William O.; Dexter, Scott; Suzuki, Jeff
2016-01-01
In this report we examine students' perceptions of the implementation of carefully designed curriculum materials (called modules) in linear algebra courses at three different universities. The curricular materials were produced collaboratively by STEM and mathematics education faculty as members of a professional learning community (PLC) over…
Partially Flipped Linear Algebra: A Team-Based Approach
ERIC Educational Resources Information Center
Carney, Debra; Ormes, Nicholas; Swanson, Rebecca
2015-01-01
In this article we describe a partially flipped Introductory Linear Algebra course developed by three faculty members at two different universities. We give motivation for our partially flipped design and describe our implementation in detail. Two main features of our course design are team-developed preview videos and related in-class activities.…
Definitions Are Important: The Case of Linear Algebra
ERIC Educational Resources Information Center
Berman, Abraham; Shvartsman, Ludmila
2016-01-01
In this paper we describe an experiment in a linear algebra course. The aim of the experiment was to promote the students' understanding of the studied concepts focusing on their definitions. It seems to be a given that students should understand concepts' definitions before working substantially with them. Unfortunately, in many cases they do…
Visual, Algebraic and Mixed Strategies in Visually Presented Linear Programming Problems.
ERIC Educational Resources Information Center
Shama, Gilli; Dreyfus, Tommy
1994-01-01
Identified and classified solution strategies of (n=49) 10th-grade students who were presented with linear programming problems in a predominantly visual setting in the form of a computerized game. Visual strategies were developed more frequently than either algebraic or mixed strategies. Appendix includes questionnaires. (Contains 11 references.)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, R., E-mail: rutwig@mat.ucm.e
2008-05-15
By means of contractions of Lie algebras, we obtain new classes of indecomposable quasiclassical Lie algebras that satisfy the Yang-Baxter equations in its reformulation in terms of triple products. These algebras are shown to arise naturally from noncompact real simple algebras with nonsimple complexification, where we impose that a nondegenerate quadratic Casimir operator is preserved by the limiting process. We further consider the converse problem and obtain sufficient conditions on integrable cocycles of quasiclassical Lie algebras in order to preserve nondegenerate quadratic Casimir operators by the associated linear deformations.
The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning
NASA Astrophysics Data System (ADS)
Syarifuddin, H.
2018-04-01
This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.
Many-core graph analytics using accelerated sparse linear algebra routines
NASA Astrophysics Data System (ADS)
Kozacik, Stephen; Paolini, Aaron L.; Fox, Paul; Kelmelis, Eric
2016-05-01
Graph analytics is a key component in identifying emerging trends and threats in many real-world applications. Largescale graph analytics frameworks provide a convenient and highly-scalable platform for developing algorithms to analyze large datasets. Although conceptually scalable, these techniques exhibit poor performance on modern computational hardware. Another model of graph computation has emerged that promises improved performance and scalability by using abstract linear algebra operations as the basis for graph analysis as laid out by the GraphBLAS standard. By using sparse linear algebra as the basis, existing highly efficient algorithms can be adapted to perform computations on the graph. This approach, however, is often less intuitive to graph analytics experts, who are accustomed to vertex-centric APIs such as Giraph, GraphX, and Tinkerpop. We are developing an implementation of the high-level operations supported by these APIs in terms of linear algebra operations. This implementation is be backed by many-core implementations of the fundamental GraphBLAS operations required, and offers the advantages of both the intuitive programming model of a vertex-centric API and the performance of a sparse linear algebra implementation. This technology can reduce the number of nodes required, as well as the run-time for a graph analysis problem, enabling customers to perform more complex analysis with less hardware at lower cost. All of this can be accomplished without the requirement for the customer to make any changes to their analytics code, thanks to the compatibility with existing graph APIs.
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
Algebraic special functions and SO(3,2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celeghini, E., E-mail: celeghini@fi.infn.it; Olmo, M.A. del, E-mail: olmo@fta.uva.es
2013-06-15
A ladder structure of operators is presented for the associated Legendre polynomials and the sphericas harmonics. In both cases these operators belong to the irreducible representation of the Lie algebra so(3,2) with quadratic Casimir equals to −5/4. As both are also bases of square-integrable functions, the universal enveloping algebra of so(3,2) is thus shown to be homomorphic to the space of linear operators acting on the L{sup 2} functions defined on (−1,1)×Z and on the sphere S{sup 2}, respectively. The presence of a ladder structure is suggested to be the general condition to obtain a Lie algebra representation defining inmore » this way the “algebraic special functions” that are proposed to be the connection between Lie algebras and square-integrable functions so that the space of linear operators on the L{sup 2} functions is homomorphic to the universal enveloping algebra. The passage to the group, by means of the exponential map, shows that the associated Legendre polynomials and the spherical harmonics support the corresponding unitary irreducible representation of the group SO(3,2). -- Highlights: •The algebraic ladder structure is constructed for the associated Legendre polynomials (ALP). •ALP and spherical harmonics support a unitary irreducible SO(3,2)-representation. •A ladder structure is the condition to get a Lie group representation defining “algebraic special functions”. •The “algebraic special functions” connect Lie algebras and L{sup 2} functions.« less
Ghosh, A
1988-08-01
Lanczos and conjugate gradient algorithms are important in computational linear algebra. In this paper, a parallel pipelined realization of these algorithms on a ring of optical linear algebra processors is described. The flow of data is designed to minimize the idle times of the optical multiprocessor and the redundancy of computations. The effects of optical round-off errors on the solutions obtained by the optical Lanczos and conjugate gradient algorithms are analyzed, and it is shown that optical preconditioning can improve the accuracy of these algorithms substantially. Algorithms for optical preconditioning and results of numerical experiments on solving linear systems of equations arising from partial differential equations are discussed. Since the Lanczos algorithm is used mostly with sparse matrices, a folded storage scheme to represent sparse matrices on spatial light modulators is also described.
ERIC Educational Resources Information Center
Payton, Spencer D.
2017-01-01
This study aimed to explore how inquiry-oriented teaching could be implemented in an introductory linear algebra course that, due to various constraints, may not lend itself to inquiry-oriented teaching. In particular, the course in question has a traditionally large class size, limited amount of class time, and is often coordinated with other…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun
2014-12-05
As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
2018-02-06
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switchingmore » technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. In conclusion, we also show that the strategy is efficient and scales optimally with problem size.« less
Some Applications of Algebraic System Solving
ERIC Educational Resources Information Center
Roanes-Lozano, Eugenio
2011-01-01
Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…
ERIC Educational Resources Information Center
Lin, Cheng-Yao; Kuo, Yu-Chun; Ko, Yi-Yin
2015-01-01
The purpose of this study was to investigate elementary pre-service teachers' content knowledge in algebra (Linear Equation, Quadratic Equation, Functions, System Equations and Polynomials) as well as their technological pedagogical content knowledge (TPACK) in teaching algebra. Participants were 79 undergraduate pre-service teachers who were…
Ten-Year-Old Students Solving Linear Equations
ERIC Educational Resources Information Center
Brizuela, Barbara; Schliemann, Analucia
2004-01-01
In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…
Measuring the Readability of Elementary Algebra Using the Cloze Technique.
ERIC Educational Resources Information Center
Kulm, Gerald
The relationship to readability of ten variables characterizing structural properties of mathematical prose was investigated in elementary algebra textbooks. Readability was measured by algebra student's responses to two forms of cloze tests. Linear and currilinear correlations were calculated between each structural variable and the cloze test.…
ERIC Educational Resources Information Center
Novak, Melissa A.
2017-01-01
The purpose of this qualitative practitioner research study was to describe middle school algebra students' experiences of learning linear functions through kinesthetic movement. Participants were comprised of 8th grade algebra students. Practitioner research was used because I wanted to improve my teaching so students will have more success in…
Boyko, Vyacheslav M; Popovych, Roman O; Shapoval, Nataliya M
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach.
A Practical Approach to Inquiry-Based Learning in Linear Algebra
ERIC Educational Resources Information Center
Chang, J.-M.
2011-01-01
Linear algebra has become one of the most useful fields of mathematics since last decade, yet students still have trouble seeing the connection between some of the abstract concepts and real-world applications. In this article, we propose the use of thought-provoking questions in lesson designs to allow two-way communications between instructors…
Boyko, Vyacheslav M.; Popovych, Roman O.; Shapoval, Nataliya M.
2013-01-01
Lie symmetries of systems of second-order linear ordinary differential equations with constant coefficients are exhaustively described over both the complex and real fields. The exact lower and upper bounds for the dimensions of the maximal Lie invariance algebras possessed by such systems are obtained using an effective algebraic approach. PMID:23564972
ERIC Educational Resources Information Center
Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou
2018-01-01
This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…
Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations
ERIC Educational Resources Information Center
Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie
2015-01-01
The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…
ERIC Educational Resources Information Center
Dorier, Jean-Luc; Robert, Aline; Rogalski, Marc
2002-01-01
Underlines the common points in F. Uhlig's approach published in an earlier issue of this journal about the question of proof in linear algebra. Describes some of his ideas in a new light and gives perspective for a further didactical development of Uhlig's first experiments. (Author/KHR)
Mathematical Modelling and the Learning Trajectory: Tools to Support the Teaching of Linear Algebra
ERIC Educational Resources Information Center
Cárcamo Bahamonde, Andrea Dorila; Fortuny Aymemí, Josep Maria; Gómez i Urgellés, Joan Vicenç
2017-01-01
In this article we present a didactic proposal for teaching linear algebra based on two compatible theoretical models: emergent models and mathematical modelling. This proposal begins with a problematic situation related to the creation and use of secure passwords, which leads students toward the construction of the concepts of spanning set and…
A Modified Approach to Team-Based Learning in Linear Algebra Courses
ERIC Educational Resources Information Center
Nanes, Kalman M.
2014-01-01
This paper documents the author's adaptation of team-based learning (TBL), an active learning pedagogy developed by Larry Michaelsen and others, in the linear algebra classroom. The paper discusses the standard components of TBL and the necessary changes to those components for the needs of the course in question. There is also an empirically…
ERIC Educational Resources Information Center
Hannah, John; Stewart, Sepideh; Thomas, Michael
2016-01-01
Linear algebra is one of the first abstract mathematics courses that students encounter at university. Research shows that many students find the dense presentation of definitions, theorems and proofs difficult to comprehend. Using a case study approach, we report on a teaching intervention based on Tall's three worlds (embodied, symbolic and…
Creating Discussions with Classroom Voting in Linear Algebra
ERIC Educational Resources Information Center
Cline, Kelly; Zullo, Holly; Duncan, Jonathan; Stewart, Ann; Snipes, Marie
2013-01-01
We present a study of classroom voting in linear algebra, in which the instructors posed multiple-choice questions to the class and then allowed a few minutes for consideration and small-group discussion. After each student in the class voted on the correct answer using a classroom response system, a set of clickers, the instructor then guided a…
An Example of Inquiry in Linear Algebra: The Roles of Symbolizing and Brokering
ERIC Educational Resources Information Center
Zandieh, Michelle; Wawro, Megan; Rasmussen, Chris
2017-01-01
In this paper we address practical questions such as: How do symbols appear and evolve in an inquiry-oriented classroom? How can an instructor connect students with traditional notation and vocabulary without undermining their sense of ownership of the material? We tender an example from linear algebra that highlights the roles of the instructor…
Linear Algebra and the Experiences of a "Flipper"
ERIC Educational Resources Information Center
Wright, Sarah E.
2015-01-01
This paper describes the linear algebra class I taught during Spring 2014 semester at Adelphi University. I discuss the details of how I flipped the class and incorporated elements of inquiry-based learning as well as the reasoning behind specific decisions I made. I give feedback from the students on the success of the course and provide my own…
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2017-08-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spotz, William F.
PyTrilinos is a set of Python interfaces to compiled Trilinos packages. This collection supports serial and parallel dense linear algebra, serial and parallel sparse linear algebra, direct and iterative linear solution techniques, algebraic and multilevel preconditioners, nonlinear solvers and continuation algorithms, eigensolvers and partitioning algorithms. Also included are a variety of related utility functions and classes, including distributed I/O, coloring algorithms and matrix generation. PyTrilinos vector objects are compatible with the popular NumPy Python package. As a Python front end to compiled libraries, PyTrilinos takes advantage of the flexibility and ease of use of Python, and the efficiency of themore » underlying C++, C and Fortran numerical kernels. This paper covers recent, previously unpublished advances in the PyTrilinos package.« less
2016-03-04
summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
Algebraic methods are used to construct the exact solution P of the linear matrix equation PA + BP = - C, where A, B, and C are matrices with real entries. The emphasis of this equation is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The paper is divided into six sections which include the proof of the basic lemma, the Liapunov equation, and the computer implementation for the rational, integer and modular algorithms. Two numerical examples are given and the entire calculation process is depicted.
Algebraic methods for the solution of some linear matrix equations
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1979-01-01
The characterization of polynomials whose zeros lie in certain algebraic domains (and the unification of the ideas of Hermite and Lyapunov) is the basis for developing finite algorithms for the solution of linear matrix equations. Particular attention is given to equations PA + A'P = Q (the Lyapunov equation) and P - A'PA = Q the (discrete Lyapunov equation). The Lyapunov equation appears in several areas of control theory such as stability theory, optimal control (evaluation of quadratic integrals), stochastic control (evaluation of covariance matrices) and in the solution of the algebraic Riccati equation using Newton's method.
Deriving the Regression Line with Algebra
ERIC Educational Resources Information Center
Quintanilla, John A.
2017-01-01
Exploration with spreadsheets and reliance on previous skills can lead students to determine the line of best fit. To perform linear regression on a set of data, students in Algebra 2 (or, in principle, Algebra 1) do not have to settle for using the mysterious "black box" of their graphing calculators (or other classroom technologies).…
Exact Baker-Campbell-Hausdorff formula for the contact Heisenberg algebra
NASA Astrophysics Data System (ADS)
Bravetti, Alessandro; Garcia-Chung, Angel; Tapias, Diego
2017-03-01
In this work we introduce the contact Heisenberg algebra which is the restriction of the Jacobi algebra on contact manifolds to the linear and constant functions. We give the exact expression of its corresponding Baker-Campbell-Hausdorff formula. We argue that this result is relevant to the quantization of contact systems.
Algebraic Generalization Strategies Used by Kuwaiti Pre-Service Teachers
ERIC Educational Resources Information Center
Alajmi, Amal Hussain
2016-01-01
This study reports on the algebraic generalization strategies used by elementary and middle/high school pre-service mathematics teachers in Kuwait. They were presented with 9 tasks that involved linear, exponential, and quadratic situations. The results showed that these pre-service teachers had difficulty in generalizing algebraic rules in all 3…
Introduction to Matrix Algebra, Student's Text, Unit 23.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
NASA Astrophysics Data System (ADS)
Paldus, J.; Li, X.
1992-10-01
Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.
General algebraic method applied to control analysis of complex engine types
NASA Technical Reports Server (NTRS)
Boksenbom, Aaron S; Hood, Richard
1950-01-01
A general algebraic method of attack on the problem of controlling gas-turbine engines having any number of independent variables was utilized employing operational functions to describe the assumed linear characteristics for the engine, the control, and the other units in the system. Matrices were used to describe the various units of the system, to form a combined system showing all effects, and to form a single condensed matrix showing the principal effects. This method directly led to the conditions on the control system for noninteraction so that any setting disturbance would affect only its corresponding controlled variable. The response-action characteristics were expressed in terms of the control system and the engine characteristics. The ideal control-system characteristics were explicitly determined in terms of any desired response action.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
On τ-Compactness of Products of τ-Measurable Operators
NASA Astrophysics Data System (ADS)
Bikchentaev, Airat M.
2017-12-01
Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Hewitt, T.
1985-08-01
This note describes some experiments on simple, dense linear algebra algorithms. These experiments show that the CRAY X-MP is capable of small-grain multitasking arising from standard implementations of LU and Cholesky decomposition. The implementation described here provides the ''fastest'' execution rate for LU decomposition, 718 MFLOPS for a matrix of order 1000.
ERIC Educational Resources Information Center
Caglayan, Günhan
2018-01-01
This linear algebra note offers teaching and learning ideas in the treatment of the inner product space R[superscript m x n] in a technology-supported learning environment. Classroom activities proposed in this note demonstrate creative ways of integrating MATLAB technology into various properties of Frobenius inner product as visualization tools…
ERIC Educational Resources Information Center
Selinski, Natalie E.; Rasmussen, Chris; Wawro, Megan; Zandieh, Michelle
2014-01-01
The central goals of most introductory linear algebra courses are to develop students' proficiency with matrix techniques, to promote their understanding of key concepts, and to increase their ability to make connections between concepts. In this article, we present an innovative method using adjacency matrices to analyze students' interpretation…
BLAS- BASIC LINEAR ALGEBRA SUBPROGRAMS
NASA Technical Reports Server (NTRS)
Krogh, F. T.
1994-01-01
The Basic Linear Algebra Subprogram (BLAS) library is a collection of FORTRAN callable routines for employing standard techniques in performing the basic operations of numerical linear algebra. The BLAS library was developed to provide a portable and efficient source of basic operations for designers of programs involving linear algebraic computations. The subprograms available in the library cover the operations of dot product, multiplication of a scalar and a vector, vector plus a scalar times a vector, Givens transformation, modified Givens transformation, copy, swap, Euclidean norm, sum of magnitudes, and location of the largest magnitude element. Since these subprograms are to be used in an ANSI FORTRAN context, the cases of single precision, double precision, and complex data are provided for. All of the subprograms have been thoroughly tested and produce consistent results even when transported from machine to machine. BLAS contains Assembler versions and FORTRAN test code for any of the following compilers: Lahey F77L, Microsoft FORTRAN, or IBM Professional FORTRAN. It requires the Microsoft Macro Assembler and a math co-processor. The PC implementation allows individual arrays of over 64K. The BLAS library was developed in 1979. The PC version was made available in 1986 and updated in 1988.
1980-06-01
sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426
2015-11-30
matrix determinant. This definition is given in many linear algebra texts (see e.g. Bretscher (2001)). Definition 3.1 : Suppose we have an n-by-n...Processing, 2, 767 Blanchard P., Greenaway A., Anderton R., Appleby R., 1996, J. Opt. Soc. Am. A, 13, 1593 Bretscher O., 2001, Linear Algebra with...frequencies are not co- linear ) and one piston phase. This particular solution will then differ from the true solution by a phase ramp in the Fourier
A new S-type eigenvalue inclusion set for tensors and its applications.
Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing
2016-01-01
In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitanidis, Peter
As large-scale, commercial storage projects become operational, the problem of utilizing information from diverse sources becomes more critically important. In this project, we developed, tested, and applied an advanced joint data inversion system for CO 2 storage modeling with large data sets for use in site characterization and real-time monitoring. Emphasis was on the development of advanced and efficient computational algorithms for joint inversion of hydro-geophysical data, coupled with state-of-the-art forward process simulations. The developed system consists of (1) inversion tools using characterization data, such as 3D seismic survey (amplitude images), borehole log and core data, as well as hydraulic,more » tracer and thermal tests before CO 2 injection, (2) joint inversion tools for updating the geologic model with the distribution of rock properties, thus reducing uncertainty, using hydro-geophysical monitoring data, and (3) highly efficient algorithms for directly solving the dense or sparse linear algebra systems derived from the joint inversion. The system combines methods from stochastic analysis, fast linear algebra, and high performance computing. The developed joint inversion tools have been tested through synthetic CO 2 storage examples.« less
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
Communication Avoiding and Overlapping for Numerical Linear Algebra
2012-05-08
future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve scalability by reducing...linear algebra problems to future exascale systems, communication cost must be avoided or overlapped. Communication-avoiding 2.5D algorithms improve...will continue to grow relative to the cost of computation. With exascale computing as the long-term goal, the community needs to develop techniques
ERIC Educational Resources Information Center
Samuel, Koji; Mulenga, H. M.; Angel, Mukuka
2016-01-01
This paper investigates the challenges faced by secondary school teachers and pupils in the teaching and learning of algebraic linear equations. The study involved 80 grade 11 pupils and 15 teachers of mathematics, drawn from 4 selected secondary schools in Mufulira district, Zambia in Central Africa. A descriptive survey method was employed to…
ERIC Educational Resources Information Center
Grenier-Boley, Nicolas
2014-01-01
Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…
Exact solution of some linear matrix equations using algebraic methods
NASA Technical Reports Server (NTRS)
Djaferis, T. E.; Mitter, S. K.
1977-01-01
A study is done of solution methods for Linear Matrix Equations including Lyapunov's equation, using methods of modern algebra. The emphasis is on the use of finite algebraic procedures which are easily implemented on a digital computer and which lead to an explicit solution to the problem. The action f sub BA is introduced a Basic Lemma is proven. The equation PA + BP = -C as well as the Lyapunov equation are analyzed. Algorithms are given for the solution of the Lyapunov and comment is given on its arithmetic complexity. The equation P - A'PA = Q is studied and numerical examples are given.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
Matrix form of Legendre polynomials for solving linear integro-differential equations of high order
NASA Astrophysics Data System (ADS)
Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.
2017-04-01
This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.
Building generalized inverses of matrices using only row and column operations
NASA Astrophysics Data System (ADS)
Stuart, Jeffrey
2010-12-01
Most students complete their first and only course in linear algebra with the understanding that a real, square matrix A has an inverse if and only if rref(A), the reduced row echelon form of A, is the identity matrix I n . That is, if they apply elementary row operations via the Gauss-Jordan algorithm to the partitioned matrix [A | I n ] to obtain [rref(A) | P], then the matrix A is invertible exactly when rref(A) = I n , in which case, P = A -1. Many students must wonder what happens when A is not invertible, and what information P conveys in that case. That question is, however, seldom answered in a first course. We show that investigating that question emphasizes the close relationships between matrix multiplication, elementary row operations, linear systems, and the four fundamental spaces associated with a matrix. More important, answering that question provides an opportunity to show students how mathematicians extend results by relaxing hypotheses and then exploring the strengths and limitations of the resulting generalization, and how the first relaxation found is often not the best relaxation to be found. Along the way, we introduce students to the basic properties of generalized inverses. Finally, our approach should fit within the time and topic constraints of a first course in linear algebra.
Graph C ∗-algebras and Z2-quotients of quantum spheres
NASA Astrophysics Data System (ADS)
Hajac, Piotr M.; Matthes, Rainer; Szymański, Wojciech
2003-06-01
We consider two Z2-actions on the Podleś generic quantum spheres. They yield, as noncommutative quotient spaces, the Klimek-Lesmewski q-disc and the quantum real projective space, respectively. The C ∗-algebas of all these quantum spaces are described as graph C ∗-algebras. The K-groups of the thus presented C ∗-algebras are then easily determined from the general theory of graph C ∗-algebas. For the quantum real projective space, we also recall the classification of the classes of irreducible ∗-representations of its algebra and give a linear basis for this algebra.
Towards classical spectrum generating algebras for f-deformations
NASA Astrophysics Data System (ADS)
Kullock, Ricardo; Latini, Danilo
2016-01-01
In this paper we revise the classical analog of f-oscillators, a generalization of q-oscillators given in Man'ko et al. (1997) [8], in the framework of classical spectrum generating algebras (SGA) introduced in Kuru and Negro (2008) [9]. We write down the deformed Poisson algebra characterizing the entire family of non-linear oscillators and construct its general solution algebraically. The latter, covering the full range of f-deformations, shows an energy dependence both in the amplitude and the frequency of the motion.
NASA Astrophysics Data System (ADS)
Majid, Shahn
2002-05-01
Here is a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes for the Part III pure mathematics course at Cambridge University, the book is suitable as a primary text for graduate courses in quantum groups or supplementary reading for modern courses in advanced algebra. The material assumes knowledge of basic and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The volume is a primer for mathematicians but it will also be useful for mathematical physicists.
Algebraic approach to electronic spectroscopy and dynamics.
Toutounji, Mohamad
2008-04-28
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponential operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a(+). While exp(a(+)) translates coherent states, exp(a(+)a(+)) operation on coherent states has always been a challenge, as a(+) has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F(tau(1),tau(2),tau(3),tau(4)), of which the optical nonlinear response function may be procured, as evaluating F(tau(1),tau(2),tau(3),tau(4)) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.
ERIC Educational Resources Information Center
Jepsen, Charles H.
1991-01-01
Presented are solutions to variations of a combinatorics problem from a recent International Mathematics Olympiad. In particular, the matrix algebra solution illustrates an interaction among the undergraduate areas of geometry, combinatorics, linear algebra, and group theory. (JJK)
Finite-dimensional integrable systems: A collection of research problems
NASA Astrophysics Data System (ADS)
Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.
2017-05-01
This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.
A characterization of positive linear maps and criteria of entanglement for quantum states
NASA Astrophysics Data System (ADS)
Hou, Jinchuan
2010-09-01
Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.
A model for rotorcraft flying qualities studies
NASA Technical Reports Server (NTRS)
Mittal, Manoj; Costello, Mark F.
1993-01-01
This paper outlines the development of a mathematical model that is expected to be useful for rotorcraft flying qualities research. A computer model is presented that can be applied to a range of different rotorcraft configurations. The algorithm computes vehicle trim and a linear state-space model of the aircraft. The trim algorithm uses non linear optimization theory to solve the nonlinear algebraic trim equations. The linear aircraft equations consist of an airframe model and a flight control system dynamic model. The airframe model includes coupled rotor and fuselage rigid body dynamics and aerodynamics. The aerodynamic model for the rotors utilizes blade element theory and a three state dynamic inflow model. Aerodynamics of the fuselage and fuselage empennages are included. The linear state-space description for the flight control system is developed using standard block diagram data.
Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian
2016-09-28
We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.
Analysis of Information Content in High-Spectral Resolution Sounders using Subset Selection Analysis
NASA Technical Reports Server (NTRS)
Velez-Reyes, Miguel; Joiner, Joanna
1998-01-01
In this paper, we summarize the results of the sensitivity analysis and data reduction carried out to determine the information content of AIRS and IASI channels. The analysis and data reduction was based on the use of subset selection techniques developed in the linear algebra and statistical community to study linear dependencies in high dimensional data sets. We applied the subset selection method to study dependency among channels by studying the dependency among their weighting functions. Also, we applied the technique to study the information provided by the different levels in which the atmosphere is discretized for retrievals and analysis. Results from the method correlate well with intuition in many respects and point out to possible modifications for band selection in sensor design and number and location of levels in the analysis process.
Algebraic Algorithm Design and Local Search
1996-12-01
method for performing algorithm design that is more purely algebraic than that of KIDS. This method is then applied to local search. Local search is a...synthesis. Our approach was to follow KIDS in spirit, but to adopt a pure algebraic formalism, supported by Kestrel’s SPECWARE environment (79), that...design was developed that is more purely algebraic than that of KIDS. This method was then applied to local search. A general theory of local search was
Newton's method: A link between continuous and discrete solutions of nonlinear problems
NASA Technical Reports Server (NTRS)
Thurston, G. A.
1980-01-01
Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.
Decomposition Theory in the Teaching of Elementary Linear Algebra.
ERIC Educational Resources Information Center
London, R. R.; Rogosinski, H. P.
1990-01-01
Described is a decomposition theory from which the Cayley-Hamilton theorem, the diagonalizability of complex square matrices, and functional calculus can be developed. The theory and its applications are based on elementary polynomial algebra. (KR)
NASA Astrophysics Data System (ADS)
Renteln, Paul
2013-11-01
Preface; 1. Linear algebra; 2. Multilinear algebra; 3. Differentiation on manifolds; 4. Homotopy and de Rham cohomology; 5. Elementary homology theory; 6. Integration on manifolds; 7. Vector bundles; 8. Geometric manifolds; 9. The degree of a smooth map; Appendixes; References; Index.
Pole-placement Predictive Functional Control for under-damped systems with real numbers algebra.
Zabet, K; Rossiter, J A; Haber, R; Abdullah, M
2017-11-01
This paper presents the new algorithm of PP-PFC (Pole-placement Predictive Functional Control) for stable, linear under-damped higher-order processes. It is shown that while conventional PFC aims to get first-order exponential behavior, this is not always straightforward with significant under-damped modes and hence a pole-placement PFC algorithm is proposed which can be tuned more precisely to achieve the desired dynamics, but exploits complex number algebra and linear combinations in order to deliver guarantees of stability and performance. Nevertheless, practical implementation is easier by avoiding complex number algebra and hence a modified formulation of the PP-PFC algorithm is also presented which utilises just real numbers while retaining the key attributes of simple algebra, coding and tuning. The potential advantages are demonstrated with numerical examples and real-time control of a laboratory plant. Copyright © 2017 ISA. All rights reserved.
An Algebraic Approach to Inference in Complex Networked Structures
2015-07-09
44], [45],[46] where the shift is the elementary non-trivial filter that generates, under an appropriate notion of shift invariance, all linear ... elementary filter, and its output is a graph signal with the value at vertex n of the graph given approximately by a weighted linear combination of...AFRL-AFOSR-VA-TR-2015-0265 An Algebraic Approach to Inference in Complex Networked Structures Jose Moura CARNEGIE MELLON UNIVERSITY Final Report 07
Labeled trees and the efficient computation of derivations
NASA Technical Reports Server (NTRS)
Grossman, Robert; Larson, Richard G.
1989-01-01
The effective parallel symbolic computation of operators under composition is discussed. Examples include differential operators under composition and vector fields under the Lie bracket. Data structures consisting of formal linear combinations of rooted labeled trees are discussed. A multiplication on rooted labeled trees is defined, thereby making the set of these data structures into an associative algebra. An algebra homomorphism is defined from the original algebra of operators into this algebra of trees. An algebra homomorphism from the algebra of trees into the algebra of differential operators is then described. The cancellation which occurs when noncommuting operators are expressed in terms of commuting ones occurs naturally when the operators are represented using this data structure. This leads to an algorithm which, for operators which are derivations, speeds up the computation exponentially in the degree of the operator. It is shown that the algebra of trees leads naturally to a parallel version of the algorithm.
Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners
Li, Ruipeng; Saad, Yousef
2017-08-01
This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less
Low-Rank Correction Methods for Algebraic Domain Decomposition Preconditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ruipeng; Saad, Yousef
This study presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits domain decomposition (DD) and low-rank corrections. The DD approach decouples the matrix and, once inverted, a low-rank approximation is applied by exploiting the Sherman--Morrison--Woodbury formula, which yields two variants of the preconditioning methods. The low-rank expansion is computed by the Lanczos procedure with reorthogonalizations. Numerical experiments indicate that, when combined with Krylov subspace accelerators, this preconditioner can be efficient and robust for solving symmetric sparse linear systems. Comparisonsmore » with pARMS, a DD-based parallel incomplete LU (ILU) preconditioning method, are presented for solving Poisson's equation and linear elasticity problems.« less
A Mathematics Software Database Update.
ERIC Educational Resources Information Center
Cunningham, R. S.; Smith, David A.
1987-01-01
Contains an update of an earlier listing of software for mathematics instruction at the college level. Topics are: advanced mathematics, algebra, calculus, differential equations, discrete mathematics, equation solving, general mathematics, geometry, linear and matrix algebra, logic, statistics and probability, and trigonometry. (PK)
ERIC Educational Resources Information Center
Benjamin, Carl; And Others
Presented are student performance objectives, a student progress chart, and assignment sheets with objective and diagnostic measures for the stated performance objectives in College Algebra I. Topics covered include: sets; vocabulary; linear equations; inequalities; real numbers; operations; factoring; fractions; formulas; ratio, proportion, and…
HAL/S - The programming language for Shuttle
NASA Technical Reports Server (NTRS)
Martin, F. H.
1974-01-01
HAL/S is a higher order language and system, now operational, adopted by NASA for programming Space Shuttle on-board software. Program reliability is enhanced through language clarity and readability, modularity through program structure, and protection of code and data. Salient features of HAL/S include output orientation, automatic checking (with strictly enforced compiler rules), the availability of linear algebra, real-time control, a statement-level simulator, and compiler transferability (for applying HAL/S to additional object and host computers). The compiler is described briefly.
NASA Astrophysics Data System (ADS)
Tie, Lin
2017-08-01
In this paper, the controllability problem of two-dimensional discrete-time multi-input bilinear systems is completely solved. The homogeneous and the inhomogeneous cases are studied separately and necessary and sufficient conditions for controllability are established by using a linear algebraic method, which are easy to apply. Moreover, for the uncontrollable systems, near-controllability is considered and similar necessary and sufficient conditions are also obtained. Finally, examples are provided to demonstrate the results of this paper.
Communication: Finding destructive interference features in molecular transport junctions.
Reuter, Matthew G; Hansen, Thorsten
2014-11-14
Associating molecular structure with quantum interference features in electrode-molecule-electrode transport junctions has been difficult because existing guidelines for understanding interferences only apply to conjugated hydrocarbons. Herein we use linear algebra and the Landauer-Büttiker theory for electron transport to derive a general rule for predicting the existence and locations of interference features. Our analysis illustrates that interferences can be directly determined from the molecular Hamiltonian and the molecule-electrode couplings, and we demonstrate its utility with several examples.
Semilinear (topological) spaces and applications
NASA Technical Reports Server (NTRS)
Prakash, P.; Sertel, M. R.
1971-01-01
Semivector spaces are defined and some of their algebraic aspects are developed including some structure theory. These spaces are then topologized to obtain semilinear topological spaces for which a hierarchy of local convexity axioms is identified. A number of fixed point and minmax theorems for spaces with various local convexity properties are established. The spaces of concern arise naturally as various hyperspaces of linear and semilinear (topological) spaces. It is indicated briefly how all this can be applied in socio-economic analysis and optimization.
Mathematical Techniques for Nonlinear System Theory.
1981-09-01
This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of
Particle-like structure of coaxial Lie algebras
NASA Astrophysics Data System (ADS)
Vinogradov, A. M.
2018-01-01
This paper is a natural continuation of Vinogradov [J. Math. Phys. 58, 071703 (2017)] where we proved that any Lie algebra over an algebraically closed field or over R can be assembled in a number of steps from two elementary constituents, called dyons and triadons. Here we consider the problems of the construction and classification of those Lie algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise compatible base dyons and triadons. We describe the maximal families of pairwise compatible base dyons and triadons called clusters, and, as a consequence, we give a complete description of the coaxial Lie algebras. The remarkable fact is that dyons and triadons in clusters are self-organised in structural groups which are surrounded by casings and linked by connectives. We discuss generalisations and applications to the theory of deformations of Lie algebras.
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
First integrals and parametric solutions of third-order ODEs admitting {\\mathfrak{sl}(2, {R})}
NASA Astrophysics Data System (ADS)
Ruiz, A.; Muriel, C.
2017-05-01
A complete set of first integrals for any third-order ordinary differential equation admitting a Lie symmetry algebra isomorphic to sl(2, {R}) is explicitly computed. These first integrals are derived from two linearly independent solutions of a linear second-order ODE, without additional integration. The general solution in parametric form can be obtained by using the computed first integrals. The study includes a parallel analysis of the four inequivalent realizations of sl(2, {R}) , and it is applied to several particular examples. These include the generalized Chazy equation, as well as an example of an equation which admits the most complicated of the four inequivalent realizations.
Model predictive control of P-time event graphs
NASA Astrophysics Data System (ADS)
Hamri, H.; Kara, R.; Amari, S.
2016-12-01
This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.
Instability of the cored barotropic disc: the linear eigenvalue formulation
NASA Astrophysics Data System (ADS)
Polyachenko, E. V.
2018-05-01
Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.
On representations of the filiform Lie superalgebra Lm,n
NASA Astrophysics Data System (ADS)
Wang, Qi; Chen, Hongjia; Liu, Wende
2015-11-01
In this paper, we study the representations for the filiform Lie superalgebras Lm,n, a particular class of nilpotent Lie superalgebras. We determine the minimal dimension of a faithful module over Lm,n using the theory of linear algebra. In addition, using the method of Feingold and Frenkel (1985), we construct some finite and infinite dimensional modules over Lm,n on the Grassmann algebra and the mixed Clifford-Weyl algebra.
Special Year on Numerical Linear Algebra
1988-09-01
ORNL) Worley, Pat (ORNL) A special acknowledgement should go to Mary Drake (UT) and Mitzy Denson (ORNL) who carried the burden of making the innumerable...a time step appropriate for the regular cells with no stability restriction. Entrance to Y-12 requires a pass. Contact Mitzy Denson (615) 574-3125 to...requires a pass. Contact Mitzy Denson (615) 574-3125 to obtain one. ’This seminar is part of the Special Year on Numerical Linear Algebra sponsored by the
Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform
2002-09-01
mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance
USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.
1977-09-27
reduces to an infinite system of linear homogeneous algebraic equations and leads to Mathieu functions of the k-th order. The solution is convergent in...cylinder walls to be infinitesimally thin ideal conductors. The problem is reduced to a system of Fredholm linear algebraic equations of the second...EXPECTED DEVELOPMENTS OF TRANSISTORIZED LOW-NOISE MICROWAVE AMPLIFIERS Prague SDELOVACI TECHNIKA in Czech Vol 25, No 2, Feb 77 pp 47-49 TALLO, ANTON
Maia, Julio Daniel Carvalho; Urquiza Carvalho, Gabriel Aires; Mangueira, Carlos Peixoto; Santana, Sidney Ramos; Cabral, Lucidio Anjos Formiga; Rocha, Gerd B
2012-09-11
In this study, we present some modifications in the semiempirical quantum chemistry MOPAC2009 code that accelerate single-point energy calculations (1SCF) of medium-size (up to 2500 atoms) molecular systems using GPU coprocessors and multithreaded shared-memory CPUs. Our modifications consisted of using a combination of highly optimized linear algebra libraries for both CPU (LAPACK and BLAS from Intel MKL) and GPU (MAGMA and CUBLAS) to hasten time-consuming parts of MOPAC such as the pseudodiagonalization, full diagonalization, and density matrix assembling. We have shown that it is possible to obtain large speedups just by using CPU serial linear algebra libraries in the MOPAC code. As a special case, we show a speedup of up to 14 times for a methanol simulation box containing 2400 atoms and 4800 basis functions, with even greater gains in performance when using multithreaded CPUs (2.1 times in relation to the single-threaded CPU code using linear algebra libraries) and GPUs (3.8 times). This degree of acceleration opens new perspectives for modeling larger structures which appear in inorganic chemistry (such as zeolites and MOFs), biochemistry (such as polysaccharides, small proteins, and DNA fragments), and materials science (such as nanotubes and fullerenes). In addition, we believe that this parallel (GPU-GPU) MOPAC code will make it feasible to use semiempirical methods in lengthy molecular simulations using both hybrid QM/MM and QM/QM potentials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Sandoval-Santana, J.C.; Cardoso, J.L.
We discuss the one-dimensional, time-dependent general quadratic Hamiltonian and the bi-dimensional charged particle in time-dependent electromagnetic fields through the Lie algebraic approach. Such method consists in finding a set of generators that form a closed Lie algebra in terms of which it is possible to express a quantum Hamiltonian and therefore the evolution operator. The evolution operator is then the starting point to obtain the propagator as well as the explicit form of the Heisenberg picture position and momentum operators. First, the set of generators forming a closed Lie algebra is identified for the general quadratic Hamiltonian. This algebra ismore » later extended to study the Hamiltonian of a charged particle in electromagnetic fields exploiting the similarities between the terms of these two Hamiltonians. These results are applied to the solution of five different examples: the linear potential which is used to introduce the Lie algebraic method, a radio frequency ion trap, a Kanai–Caldirola-like forced harmonic oscillator, a charged particle in a time dependent magnetic field, and a charged particle in constant magnetic field and oscillating electric field. In particular we present exact analytical expressions that are fitting for the study of a rotating quadrupole field ion trap and magneto-transport in two-dimensional semiconductor heterostructures illuminated by microwave radiation. In these examples we show that this powerful method is suitable to treat quadratic Hamiltonians with time dependent coefficients quite efficiently yielding closed analytical expressions for the propagator and the Heisenberg picture position and momentum operators. -- Highlights: •We deal with the general quadratic Hamiltonian and a particle in electromagnetic fields. •The evolution operator is worked out through the Lie algebraic approach. •We also obtain the propagator and Heisenberg picture position and momentum operators. •Analytical expressions for a rotating quadrupole field ion trap are presented. •Exact solutions for magneto-transport in variable electromagnetic fields are shown.« less
Probing the Locality of Excited States with Linear Algebra.
Etienne, Thibaud
2015-04-14
This article reports a novel theoretical approach related to the analysis of molecular excited states. The strategy introduced here involves gathering two pieces of physical information, coming from Hilbert and direct space operations, into a general, unique quantum mechanical descriptor of electronic transitions' locality. Moreover, the projection of Hilbert and direct space-derived indices in an Argand plane delivers a straightforward way to visually probe the ability of a dye to undergo a long- or short-range charge-transfer. This information can be applied, for instance, to the analysis of the electronic response of families of dyes to light absorption by unveiling the trend of a given push-pull chromophore to increase the electronic cloud polarization magnitude of its main transition with respect to the size extension of its conjugated spacer. We finally demonstrate that all the quantities reported in this article can be reliably approximated by a linear algebraic derivation, based on the contraction of detachment/attachment density matrices from canonical to atomic space. This alternative derivation has the remarkable advantage of a very low computational cost with respect to the previously used numerical integrations, making fast and accurate characterization of large molecular systems' excited states easily affordable.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Algorithms for computations of Loday algebras' invariants
NASA Astrophysics Data System (ADS)
Hussain, Sharifah Kartini Said; Rakhimov, I. S.; Basri, W.
2017-04-01
The paper is devoted to applications of some computer programs to study structural determination of Loday algebras. We present how these computer programs can be applied in computations of various invariants of Loday algebras and provide several computer programs in Maple to verify Loday algebras' identities, the isomorphisms between the algebras, as a special case, to describe the automorphism groups, centroids and derivations.
Numerical Problem Solving Using Mathcad in Undergraduate Reaction Engineering
ERIC Educational Resources Information Center
Parulekar, Satish J.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment
ERIC Educational Resources Information Center
Young, Brent R.; van der Lee, James H.; Svrcek, William Y.
2006-01-01
Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…
Improving Machining Accuracy of CNC Machines with Innovative Design Methods
NASA Astrophysics Data System (ADS)
Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.
2018-03-01
The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.
NASA Astrophysics Data System (ADS)
Özen, Kahraman Esen; Tosun, Murat
2018-01-01
In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Algebraic approach to electronic spectroscopy and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toutounji, Mohamad
Lie algebra, Zassenhaus, and parameter differentiation techniques are utilized to break up the exponential of a bilinear Hamiltonian operator into a product of noncommuting exponential operators by the virtue of the theory of Wei and Norman [J. Math. Phys. 4, 575 (1963); Proc. Am. Math. Soc., 15, 327 (1964)]. There are about three different ways to find the Zassenhaus exponents, namely, binomial expansion, Suzuki formula, and q-exponential transformation. A fourth, and most reliable method, is provided. Since linearly displaced and distorted (curvature change upon excitation/emission) Hamiltonian and spin-boson Hamiltonian may be classified as bilinear Hamiltonians, the presented algebraic algorithm (exponentialmore » operator disentanglement exploiting six-dimensional Lie algebra case) should be useful in spin-boson problems. The linearly displaced and distorted Hamiltonian exponential is only treated here. While the spin-boson model is used here only as a demonstration of the idea, the herein approach is more general and powerful than the specific example treated. The optical linear dipole moment correlation function is algebraically derived using the above mentioned methods and coherent states. Coherent states are eigenvectors of the bosonic lowering operator a and not of the raising operator a{sup +}. While exp(a{sup +}) translates coherent states, exp(a{sup +}a{sup +}) operation on coherent states has always been a challenge, as a{sup +} has no eigenvectors. Three approaches, and the results, of that operation are provided. Linear absorption spectra are derived, calculated, and discussed. The linear dipole moment correlation function for the pure quadratic coupling case is expressed in terms of Legendre polynomials to better show the even vibronic transitions in the absorption spectrum. Comparison of the present line shapes to those calculated by other methods is provided. Franck-Condon factors for both linear and quadratic couplings are exactly accounted for by the herein calculated linear absorption spectra. This new methodology should easily pave the way to calculating the four-point correlation function, F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}), of which the optical nonlinear response function may be procured, as evaluating F({tau}{sub 1},{tau}{sub 2},{tau}{sub 3},{tau}{sub 4}) is only evaluating the optical linear dipole moment correlation function iteratively over different time intervals, which should allow calculating various optical nonlinear temporal/spectral signals.« less
Linear systems with structure group and their feedback invariants
NASA Technical Reports Server (NTRS)
Martin, C.; Hermann, R.
1977-01-01
A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.
BLAS (Basic Linear Algebra Subroutines), Linear Algebra Modules and Supercomputers.
1984-12-31
the BLAS, Dodson and Lewis C.Remarks on "A. Proposal for a New Set of BLAS", Hanson D. Standard MSC/ NASTRAN Kernels, Komzsik E. Summary of Functions...Fortran names and that character string arguments for the BLAS could provide incr-ased naturalrness in the n3aL,’cs. D ’:andard MSC/ NASTRAN Kernels. Louis...Komnzsik, 8 pages. NASTRAN is a very large structural engineering system marketed by MacNeal- Schwvrdler Corp. (MSC). They are interested in
Computer programs for the solution of systems of linear algebraic equations
NASA Technical Reports Server (NTRS)
Sequi, W. T.
1973-01-01
FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.
[Relations between biomedical variables: mathematical analysis or linear algebra?].
Hucher, M; Berlie, J; Brunet, M
1977-01-01
The authors, after a short reminder of one pattern's structure, stress on the possible double approach of relations uniting the variables of this pattern: use of fonctions, what is within the mathematical analysis sphere, use of linear algebra profiting by matricial calculation's development and automatiosation. They precise the respective interests on these methods, their bounds and the imperatives for utilization, according to the kind of variables, of data, and the objective for work, understanding phenomenons or helping towards decision.
Optical linear algebra processors - Architectures and algorithms
NASA Technical Reports Server (NTRS)
Casasent, David
1986-01-01
Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.
1992-02-01
Newsletter, Vol. 5, No. 1, January 1983 be translated from HAL’S. 4. Klumpp, Allan R., An Ada Linear Algebra Software development costs for using the...a linear algebra approach to As noted above, the concept of the problem and address the problem of unitdimensional analysis extends beyond problems...you will join us again next year. The 11th Annual Conference on Ada Technology (1993) will be held here at the Hyatt Regency - Crystal City
Mathematical biology modules based on modern molecular biology and modern discrete mathematics.
Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.
Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics
Davies, Robin; Hodge, Terrell; Enyedi, Alexander
2010-01-01
We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955
Invariant algebraic surfaces for a virus dynamics
NASA Astrophysics Data System (ADS)
Valls, Claudia
2015-08-01
In this paper, we provide a complete classification of the invariant algebraic surfaces and of the rational first integrals for a well-known virus system. In the proofs, we use the weight-homogeneous polynomials and the method of characteristic curves for solving linear partial differential equations.
Secondary School Mathematics Curriculum Improvement Study Information Bulletin 7.
ERIC Educational Resources Information Center
Secondary School Mathematics Curriculum Improvement Study, New York, NY.
The background, objectives, and design of Secondary School Mathematics Curriculum Improvement Study (SSMCIS) are summarized. Details are given of the content of the text series, "Unified Modern Mathematics," in the areas of algebra, geometry, linear algebra, probability and statistics, analysis (calculus), logic, and computer…
NASA Technical Reports Server (NTRS)
Geddes, K. O.
1977-01-01
If a linear ordinary differential equation with polynomial coefficients is converted into integrated form then the formal substitution of a Chebyshev series leads to recurrence equations defining the Chebyshev coefficients of the solution function. An explicit formula is presented for the polynomial coefficients of the integrated form in terms of the polynomial coefficients of the differential form. The symmetries arising from multiplication and integration of Chebyshev polynomials are exploited in deriving a general recurrence equation from which can be derived all of the linear equations defining the Chebyshev coefficients. Procedures for deriving the general recurrence equation are specified in a precise algorithmic notation suitable for translation into any of the languages for symbolic computation. The method is algebraic and it can therefore be applied to differential equations containing indeterminates.
NASA Technical Reports Server (NTRS)
Patel, R. V.; Toda, M.; Sridhar, B.
1977-01-01
The paper deals with the problem of expressing the robustness (stability) property of a linear quadratic state feedback (LQSF) design quantitatively in terms of bounds on the perturbations (modeling errors or parameter variations) in the system matrices so that the closed-loop system remains stable. Nonlinear time-varying and linear time-invariant perturbations are considered. The only computation required in obtaining a measure of the robustness of an LQSF design is to determine the eigenvalues of two symmetric matrices determined when solving the algebraic Riccati equation corresponding to the LQSF design problem. Results are applied to a complex dynamic system consisting of the flare control of a STOL aircraft. The design of the flare control is formulated as an LQSF tracking problem.
NASA Astrophysics Data System (ADS)
Larese, D.; Iachello, F.
2011-06-01
A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other ``floppy`` (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analysing the spectroscopy signatures of ground state QPT, excited state QPT, and quantum monodromy.The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri- and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH_3NCO and GeH_3NCO. Extraction of potential functions is completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.
Problems Relating Mathematics and Science in the High School.
ERIC Educational Resources Information Center
Morrow, Richard; Beard, Earl
This document contains various science problems which require a mathematical solution. The problems are arranged under two general areas. The first (algebra I) contains biology, chemistry, and physics problems which require solutions related to linear equations, exponentials, and nonlinear equations. The second (algebra II) contains physics…
Now & Then: Roger Whitmore, Police Officer.
ERIC Educational Resources Information Center
Barnes, Sue; Michalowicz, Karen Dee
1995-01-01
Discusses police officers' use of mathematics when reconstructing an accident scene; and the history of algebra, including al-Khwarizmi's works on the theory of equations, the Rhind Papyrus, a Chinese and an Indian manuscript on systems of linear and quadratic equations, and Diophantus'"syncopated algebra." (10 references) (EK)
Smooth function approximation using neural networks.
Ferrari, Silvia; Stengel, Robert F
2005-01-01
An algebraic approach for representing multidimensional nonlinear functions by feedforward neural networks is presented. In this paper, the approach is implemented for the approximation of smooth batch data containing the function's input, output, and possibly, gradient information. The training set is associated to the network adjustable parameters by nonlinear weight equations. The cascade structure of these equations reveals that they can be treated as sets of linear systems. Hence, the training process and the network approximation properties can be investigated via linear algebra. Four algorithms are developed to achieve exact or approximate matching of input-output and/or gradient-based training sets. Their application to the design of forward and feedback neurocontrollers shows that algebraic training is characterized by faster execution speeds and better generalization properties than contemporary optimization techniques.
Structure of Lie point and variational symmetry algebras for a class of odes
NASA Astrophysics Data System (ADS)
Ndogmo, J. C.
2018-04-01
It is known for scalar ordinary differential equations, and for systems of ordinary differential equations of order not higher than the third, that their Lie point symmetry algebras is of maximal dimension if and only if they can be reduced by a point transformation to the trivial equation y(n)=0. For arbitrary systems of ordinary differential equations of order n ≥ 3 reducible by point transformations to the trivial equation, we determine the complete structure of their Lie point symmetry algebras as well as that for their variational, and their divergence symmetry algebras. As a corollary, we obtain the maximal dimension of the Lie point symmetry algebra for any system of linear or nonlinear ordinary differential equations.
NASA Astrophysics Data System (ADS)
Parand, Kourosh; Mahdi Moayeri, Mohammad; Latifi, Sobhan; Delkhosh, Mehdi
2017-07-01
In this paper, a spectral method based on the four kinds of rational Chebyshev functions is proposed to approximate the solution of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet. First, by using the quasilinearization method (QLM), the model which is a nonlinear ordinary differential equation is converted to a sequence of linear ordinary differential equations (ODEs). By applying the proposed method on the ODEs in each iteration, the equations are converted to a system of linear algebraic equations. The results indicate the high accuracy and convergence of our method. Moreover, the effects of the Eyring-Powell fluid material parameters are discussed.
Processes and Reasoning in Representations of Linear Functions
ERIC Educational Resources Information Center
Adu-Gyamfi, Kwaku; Bossé, Michael J.
2014-01-01
This study examined student actions, interpretations, and language in respect to questions raised regarding tabular, graphical, and algebraic representations in the context of functions. The purpose was to investigate students' interpretations and specific ways of working within table, graph, and the algebraic on notions fundamental to a…
Teaching Algebraic Equations to Middle School Students with Intellectual Disabilities
ERIC Educational Resources Information Center
Baker, Joshua N.; Rivera, Christopher J.; Morgan, Joseph John; Reese, Noelle
2015-01-01
The purpose of this study was to replicate similar instructional techniques of Jimenez, Browder, and Courtade (2008) using a single-subject multiple-probe across participants design to investigate the effects of task analytic instruction coupled with semi-concrete representations to teach linear algebraic equations to middle school students with…
Generalized Heisenberg algebra and (non linear) pseudo-bosons
NASA Astrophysics Data System (ADS)
Bagarello, F.; Curado, E. M. F.; Gazeau, J. P.
2018-04-01
We propose a deformed version of the generalized Heisenberg algebra by using techniques borrowed from the theory of pseudo-bosons. In particular, this analysis is relevant when non self-adjoint Hamiltonians are needed to describe a given physical system. We also discuss relations with nonlinear pseudo-bosons. Several examples are discussed.
The Jukes-Cantor Model of Molecular Evolution
ERIC Educational Resources Information Center
Erickson, Keith
2010-01-01
The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…
A new application of algebraic geometry to systems theory
NASA Technical Reports Server (NTRS)
Martin, C. F.; Hermann, R.
1976-01-01
Following an introduction to algebraic geometry, the dominant morphism theorem is stated, and the application of this theorem to systems-theoretic problems, such as the feedback problem, is discussed. The Gaussian elimination method used for solving linear equations is shown to be an example of a dominant morphism.
Racing against Time: Using Technology To Explore Distance, Rate, and Time.
ERIC Educational Resources Information Center
Essex, N. Kathryn; Lambdin, Diana V.; McGraw, Rebecca H.
2002-01-01
Investigates ways to analyze change in various contexts. Focuses on computer technology providing contexts for children's investigations of patterns of change and helping to develop foundational ideas of algebra and calculus. Discusses relationships between patterns of change, fundamental algebraic notions as linear and nonlinear functions, and…
Thinking Visually about Algebra
ERIC Educational Resources Information Center
Baroudi, Ziad
2015-01-01
Many introductions to algebra in high school begin with teaching students to generalise linear numerical patterns. This article argues that this approach needs to be changed so that students encounter variables in the context of modelling visual patterns so that the variables have a meaning. The article presents sample classroom activities,…
ERIC Educational Resources Information Center
Caglayan, Günhan
2013-01-01
This study is about prospective secondary mathematics teachers' understanding and sense making of representational quantities generated by algebra tiles, the quantitative units (linear vs. areal) inherent in the nature of these quantities, and the quantitative addition and multiplication operations--referent preserving versus referent…
Learning to Apply Algebra in the Community for Adults with Intellectual Developmental Disabilities
ERIC Educational Resources Information Center
Rodriguez, Anthony M.
2016-01-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This…
ERIC Educational Resources Information Center
Egodawatte, Gunawardena; Stoilescu, Dorian
2015-01-01
The purpose of this mixed-method study was to investigate grade 11 university/college stream mathematics students' difficulties in applying conceptual knowledge, procedural skills, strategic competence, and algebraic thinking in solving routine (instructional) algebraic problems. A standardized algebra test was administered to thirty randomly…
Optical Linear Algebra for Computational Light Transport
NASA Astrophysics Data System (ADS)
O'Toole, Matthew
Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
Applied Mathematical Modules for Use in a Linear Algebra Service Course
1990-05-01
H . (1977). Elements of ohysical chemistry. Reading, MA: Addison-Wesley. Rorres , C . & Anton , H . (1984). Applications...k t)r+ v A142"+ c -- + C Vt +1 t+ C c tKc cos t 2= 113 123 313 32-3 51 2 V - cu-14sin r t) 232 _E _ VL3 h 3kx3 Cl t + c1 _3 t c + 3 =11-3 12 3 31 6... H " O H H H o 0 0 H H H H H H Ao, //o\\ H HH H
On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
NASA Astrophysics Data System (ADS)
Kashirin, A. A.; Taltykina, M. Yu.
2017-09-01
Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.
A note on derivations of Murray-von Neumann algebras.
Kadison, Richard V; Liu, Zhe
2014-02-11
A Murray-von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray-von Neumann algebras. We show that the "extended derivations" of a Murray-von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray-von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer's seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Super-Laplacians and their symmetries
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2017-05-01
A super-Laplacian is a set of differential operators in superspace whose highestdimensional component is given by the spacetime Laplacian. Symmetries of super-Laplacians are given by linear differential operators of arbitrary finite degree and are determined by superconformal Killing tensors. We investigate these in flat superspaces. The differential operators determining the symmetries give rise to algebras which can be identified in many cases with the tensor algebras of the relevant superconformal Lie algebras modulo certain ideals. They have applications to Higher Spin theories.
Anti-commutative Gröbner-Shirshov basis of a free Lie algebra
NASA Astrophysics Data System (ADS)
Bokut, L. A.; Chen, Yuqun; Li, Yu
2009-03-01
One of the natural ways to prove that the Hall words (Philip Hall, 1933) consist of a basis of a free Lie algebra is a direct construction: to start with a linear space spanned by Hall words, to define the Lie product of Hall words, and then to check that the product yields the Lie identities (Marshall Hall, 1950). Here we suggest another way using the Composition-Diamond lemma for free anti-commutative (non-associative) algebras (A.I. Shirshov, 1962).
Cryptographic Properties of Monotone Boolean Functions
2016-01-01
Algebraic attacks on stream ciphers with linear feedback, in: Advances in Cryptology (Eurocrypt 2003), Lecture Notes in Comput. Sci. 2656, Springer, Berlin...spectrum, algebraic immu- nity MSC 2010: 06E30, 94C10, 94A60, 11T71, 05E99 || Communicated by: Carlo Blundo 1 Introduction Let F 2 be the prime eld of...7]. For the reader’s convenience, we recall some basic notions below. Any f ∈ Bn can be expressed in algebraic normal form (ANF) as f(x 1 , x 2
Block iterative restoration of astronomical images with the massively parallel processor
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, Don J.
1987-01-01
A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.
LAPACKrc: Fast linear algebra kernels/solvers for FPGA accelerators
NASA Astrophysics Data System (ADS)
Gonzalez, Juan; Núñez, Rafael C.
2009-07-01
We present LAPACKrc, a family of FPGA-based linear algebra solvers able to achieve more than 100x speedup per commodity processor on certain problems. LAPACKrc subsumes some of the LAPACK and ScaLAPACK functionalities, and it also incorporates sparse direct and iterative matrix solvers. Current LAPACKrc prototypes demonstrate between 40x-150x speedup compared against top-of-the-line hardware/software systems. A technology roadmap is in place to validate current performance of LAPACKrc in HPC applications, and to increase the computational throughput by factors of hundreds within the next few years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael Allen; Marker, Bryan
This report summarizes the progress made as part of a one year lab-directed research and development (LDRD) project to fund the research efforts of Bryan Marker at the University of Texas at Austin. The goal of the project was to develop new techniques for automatically tuning the performance of dense linear algebra kernels. These kernels often represent the majority of computational time in an application. The primary outcome from this work is a demonstration of the value of model driven engineering as an approach to accurately predict and study performance trade-offs for dense linear algebra computations.
Basic linear algebra subprograms for FORTRAN usage
NASA Technical Reports Server (NTRS)
Lawson, C. L.; Hanson, R. J.; Kincaid, D. R.; Krogh, F. T.
1977-01-01
A package of 38 low level subprograms for many of the basic operations of numerical linear algebra is presented. The package is intended to be used with FORTRAN. The operations in the package are dot products, elementary vector operations, Givens transformations, vector copy and swap, vector norms, vector scaling, and the indices of components of largest magnitude. The subprograms and a test driver are available in portable FORTRAN. Versions of the subprograms are also provided in assembly language for the IBM 360/67, the CDC 6600 and CDC 7600, and the Univac 1108.
NASA Astrophysics Data System (ADS)
Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.
2016-06-01
A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.
Rómoli, Santiago; Serrano, Mario Emanuel; Ortiz, Oscar Alberto; Vega, Jorge Rubén; Eduardo Scaglia, Gustavo Juan
2015-07-01
Based on a linear algebra approach, this paper aims at developing a novel control law able to track reference profiles that were previously-determined in the literature. A main advantage of the proposed strategy is that the control actions are obtained by solving a system of linear equations. The optimal controller parameters are selected through Monte Carlo Randomized Algorithm in order to minimize a proposed cost index. The controller performance is evaluated through several tests, and compared with other controller reported in the literature. Finally, a Monte Carlo Randomized Algorithm is conducted to assess the performance of the proposed controller. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Ermakov's Superintegrable Toy and Nonlocal Symmetries
NASA Astrophysics Data System (ADS)
Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.
2005-11-01
We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.
ERIC Educational Resources Information Center
Chang, Yu-Liang; Huang, Yu-I
2014-01-01
The intention of this study was to improve the learning deficiency in algebraic learning and to enhance Taiwanese middle students' learning achievement and interest in algebra. By using a grade skipping experimental design, the research team intended to find out an effective way to benefit these students' leaning in abstract algebraic concepts.…
Investigating Integer Restrictions in Linear Programming
ERIC Educational Resources Information Center
Edwards, Thomas G.; Chelst, Kenneth R.; Principato, Angela M.; Wilhelm, Thad L.
2015-01-01
Linear programming (LP) is an application of graphing linear systems that appears in many Algebra 2 textbooks. Although not explicitly mentioned in the Common Core State Standards for Mathematics, linear programming blends seamlessly into modeling with mathematics, the fourth Standard for Mathematical Practice (CCSSI 2010, p. 7). In solving a…
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2006-10-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Differential Geometry and Lie Groups for Physicists
NASA Astrophysics Data System (ADS)
Fecko, Marián.
2011-03-01
Introduction; 1. The concept of a manifold; 2. Vector and tensor fields; 3. Mappings of tensors induced by mappings of manifolds; 4. Lie derivative; 5. Exterior algebra; 6. Differential calculus of forms; 7. Integral calculus of forms; 8. Particular cases and applications of Stoke's Theorem; 9. Poincaré Lemma and cohomologies; 10. Lie Groups - basic facts; 11. Differential geometry of Lie Groups; 12. Representations of Lie Groups and Lie Algebras; 13. Actions of Lie Groups and Lie Algebras on manifolds; 14. Hamiltonian mechanics and symplectic manifolds; 15. Parallel transport and linear connection on M; 16. Field theory and the language of forms; 17. Differential geometry on TM and T*M; 18. Hamiltonian and Lagrangian equations; 19. Linear connection and the frame bundle; 20. Connection on a principal G-bundle; 21. Gauge theories and connections; 22. Spinor fields and Dirac operator; Appendices; Bibliography; Index.
Global identifiability of linear compartmental models--a computer algebra algorithm.
Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C
1998-01-01
A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.
Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C
2010-09-21
We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.
Asymptotic identity in min-plus algebra: a report on CPNS.
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions.
Asymptotic Identity in Min-Plus Algebra: A Report on CPNS
Li, Ming; Zhao, Wei
2012-01-01
Network calculus is a theory initiated primarily in computer communication networks, especially in the aspect of real-time communications, where min-plus algebra plays a role. Cyber-physical networking systems (CPNSs) are recently developing fast and models in data flows as well as systems in CPNS are, accordingly, greatly desired. Though min-plus algebra may be a promising tool to linearize any node in CPNS as can be seen from its applications to the Internet computing, there are tough problems remaining unsolved in this regard. The identity in min-plus algebra is one problem we shall address. We shall point out the confusions about the conventional identity in the min-plus algebra and present an analytical expression of the asymptotic identity that may not cause confusions. PMID:21822446
A note on derivations of Murray–von Neumann algebras
Kadison, Richard V.; Liu, Zhe
2014-01-01
A Murray–von Neumann algebra is the algebra of operators affiliated with a finite von Neumann algebra. In this article, we first present a brief introduction to the theory of derivations of operator algebras from both the physical and mathematical points of view. We then describe our recent work on derivations of Murray–von Neumann algebras. We show that the “extended derivations” of a Murray–von Neumann algebra, those that map the associated finite von Neumann algebra into itself, are inner. In particular, we prove that the only derivation that maps a Murray–von Neumann algebra associated with a factor of type II1 into that factor is 0. Those results are extensions of Singer’s seminal result answering a question of Kaplansky, as applied to von Neumann algebras: The algebra may be noncommutative and may even contain unbounded elements. PMID:24469831
Line defect Schur indices, Verlinde algebras and U(1) r fixed points
NASA Astrophysics Data System (ADS)
Neitzke, Andrew; Yan, Fei
2017-11-01
Given an N=2 superconformal field theory, we reconsider the Schur index ℐ L ( q) in the presence of a half line defect L. Recently Cordova-Gaiotto-Shao found that ℐ L ( q) admits an expansion in terms of characters of the chiral algebra A introduced by Beem et al., with simple coefficients υ L, β ( q). We report a puzzling new feature of this expansion: the q → 1 limit of the coefficients υ L, β ( q) is linearly related to the vacuum expectation values 〈 L〉 in U(1) r -invariant vacua of the theory compactified on S 1. This relation can be expressed algebraically as a commutative diagram involving three algebras: the algebra generated by line defects, the algebra of functions on U(1) r -invariant vacua, and a Verlindelike algebra associated to A . Our evidence is experimental, by direct computation in the Argyres-Douglas theories of type ( A 1, A 2), ( A 1, A 4), ( A 1, A 6), ( A 1, D 3) and ( A 1, D 5). In the latter two theories, which have flavor symmetries, the Verlinde-like algebra which appears is a new deformation of algebras previously considered.
Bicycles, Birds, Bats and Balloons: New Applications for Algebra Classes.
ERIC Educational Resources Information Center
Yoshiwara, Bruce; Yoshiwara, Kathy
This collection of activities is intended to enhance the teaching of college algebra through the use of modeling. The problems use real data and involve the representation and interpretation of the data. The concepts addressed include rates of change, linear and quadratic regression, and functions. The collection consists of eight problems, four…
A Third Grader's Way of Thinking about Linear Function Tables
ERIC Educational Resources Information Center
Martinez, Mara; Brizuela, Barbara M.
2006-01-01
This paper is inscribed within the research effort to produce evidence regarding primary school students' learning of algebra. Given the results obtained so far in the research community, we are convinced that young elementary school students can successfully learn algebra. Moreover, children this young can make use of different representational…
Unification of the general non-linear sigma model and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, J. de; Halpern, M.B.
1997-06-01
The Virasoro master equation describes a large set of conformal field theories known as the affine-Virasoro constructions, in the operator algebra (affinie Lie algebra) of the WZW model, while the einstein equations of the general non-linear sigma model describe another large set of conformal field theories. This talk summarizes recent work which unifies these two sets of conformal field theories, together with a presumable large class of new conformal field theories. The basic idea is to consider spin-two operators of the form L{sub ij}{partial_derivative}x{sup i}{partial_derivative}x{sup j} in the background of a general sigma model. The requirement that these operators satisfymore » the Virasoro algebra leads to a set of equations called the unified Einstein-Virasoro master equation, in which the spin-two spacetime field L{sub ij} cuples to the usual spacetime fields of the sigma model. The one-loop form of this unified system is presented, and some of its algebraic and geometric properties are discussed.« less
Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions
NASA Astrophysics Data System (ADS)
Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel
2018-04-01
Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.
Control logic to track the outputs of a command generator or randomly forced target
NASA Technical Reports Server (NTRS)
Trankle, T. L.; Bryson, A. E., Jr.
1977-01-01
A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
ORACLS: A system for linear-quadratic-Gaussian control law design
NASA Technical Reports Server (NTRS)
Armstrong, E. S.
1978-01-01
A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.
Floares, Alexandru George
2008-01-01
Modeling neural networks with ordinary differential equations systems is a sensible approach, but also very difficult. This paper describes a new algorithm based on linear genetic programming which can be used to reverse engineer neural networks. The RODES algorithm automatically discovers the structure of the network, including neural connections, their signs and strengths, estimates its parameters, and can even be used to identify the biophysical mechanisms involved. The algorithm is tested on simulated time series data, generated using a realistic model of the subthalamopallidal network of basal ganglia. The resulting ODE system is highly accurate, and results are obtained in a matter of minutes. This is because the problem of reverse engineering a system of coupled differential equations is reduced to one of reverse engineering individual algebraic equations. The algorithm allows the incorporation of common domain knowledge to restrict the solution space. To our knowledge, this is the first time a realistic reverse engineering algorithm based on linear genetic programming has been applied to neural networks.
ERIC Educational Resources Information Center
Alexander, John W., Jr.; Rosenberg, Nancy S.
This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…
NASA Astrophysics Data System (ADS)
Abo-Ezz, E. R.; Essa, K. S.
2016-04-01
A new linear least-squares approach is proposed to interpret magnetic anomalies of the buried structures by using a new magnetic anomaly formula. This approach depends on solving different sets of algebraic linear equations in order to invert the depth ( z), amplitude coefficient ( K), and magnetization angle ( θ) of buried structures using magnetic data. The utility and validity of the new proposed approach has been demonstrated through various reliable synthetic data sets with and without noise. In addition, the method has been applied to field data sets from USA and India. The best-fitted anomaly has been delineated by estimating the root-mean squared (rms). Judging satisfaction of this approach is done by comparing the obtained results with other available geological or geophysical information.
ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations
NASA Astrophysics Data System (ADS)
Merkel, M.; Niyonzima, I.; Schöps, S.
2017-12-01
Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.A.
This report is a sequel to ORNL/CSD-106 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. Beginning with the previous supplement, the subject has been restricted to Numerical Linear Algebra, roughly characterized by the American Mathematical Society's classification sections 15 and 65F but with little coverage of infinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some consideration is given to the uses of graph theory in Numerical Linear Algebra, particularly with respect to algorithms for sparse matrix computations. The period coveredmore » by this report is roughly the calendar year 1982 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications lagging actual appearance dates by up to nearly half a year. The review citations are limited to the Mathematical Reviews (MR).« less
ADART: an adaptive algebraic reconstruction algorithm for discrete tomography.
Maestre-Deusto, F Javier; Scavello, Giovanni; Pizarro, Joaquín; Galindo, Pedro L
2011-08-01
In this paper we suggest an algorithm based on the Discrete Algebraic Reconstruction Technique (DART) which is capable of computing high quality reconstructions from substantially fewer projections than required for conventional continuous tomography. Adaptive DART (ADART) goes a step further than DART on the reduction of the number of unknowns of the associated linear system achieving a significant reduction in the pixel error rate of reconstructed objects. The proposed methodology automatically adapts the border definition criterion at each iteration, resulting in a reduction of the number of pixels belonging to the border, and consequently of the number of unknowns in the general algebraic reconstruction linear system to be solved, being this reduction specially important at the final stage of the iterative process. Experimental results show that reconstruction errors are considerably reduced using ADART when compared to original DART, both in clean and noisy environments.
Descriptions of Free and Freeware Software in the Mathematics Teaching
NASA Astrophysics Data System (ADS)
Antunes de Macedo, Josue; Neves de Almeida, Samara; Voelzke, Marcos Rincon
2016-05-01
This paper presents the analysis and the cataloging of free and freeware mathematical software available on the internet, a brief explanation of them, and types of licenses for use in teaching and learning. The methodology is based on the qualitative research. Among the different types of software found, it stands out in algebra, the Winmat, that works with linear algebra, matrices and linear systems. In geometry, the GeoGebra, which can be used in the study of functions, plan and spatial geometry, algebra and calculus. For graphing, can quote the Graph and Graphequation. With Graphmatica software, it is possible to build various graphs of mathematical equations on the same screen, representing cartesian equations, inequalities, parametric among other functions. The Winplot allows the user to build graphics in two and three dimensions functions and mathematical equations. Thus, this work aims to present the teachers some free math software able to be used in the classroom.
NASA Astrophysics Data System (ADS)
Lai, Siyan; Xu, Ying; Shao, Bo; Guo, Menghan; Lin, Xiaola
2017-04-01
In this paper we study on Monte Carlo method for solving systems of linear algebraic equations (SLAE) based on shared memory. Former research demostrated that GPU can effectively speed up the computations of this issue. Our purpose is to optimize Monte Carlo method simulation on GPUmemoryachritecture specifically. Random numbers are organized to storein shared memory, which aims to accelerate the parallel algorithm. Bank conflicts can be avoided by our Collaborative Thread Arrays(CTA)scheme. The results of experiments show that the shared memory based strategy can speed up the computaions over than 3X at most.
An Ada Linear-Algebra Software Package Modeled After HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, Allan R.; Lawson, Charles L.
1990-01-01
New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.
Negative base encoding in optical linear algebra processors
NASA Technical Reports Server (NTRS)
Perlee, C.; Casasent, D.
1986-01-01
In the digital multiplication by analog convolution algorithm, the bits of two encoded numbers are convolved to form the product of the two numbers in mixed binary representation; this output can be easily converted to binary. Attention is presently given to negative base encoding, treating base -2 initially, and then showing that the negative base system can be readily extended to any radix. In general, negative base encoding in optical linear algebra processors represents a more efficient technique than either sign magnitude or 2's complement encoding, when the additions of digitally encoded products are performed in parallel.
ERIC Educational Resources Information Center
Foley, Greg
2011-01-01
Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…
Functional Thinking Ways in Relation to Linear Function Tables of Elementary School Students
ERIC Educational Resources Information Center
Tanisli, Dilek
2011-01-01
One of the basic components of algebraic thinking is functional thinking. Functional thinking involves focusing on the relationship between two (or more) varying quantities and such thinking facilitates the studies on both algebra and the notion of function. The development of functional thinking of students should start in the early grades and it…
Diagonalization and Jordan Normal Form--Motivation through "Maple"[R
ERIC Educational Resources Information Center
Glaister, P.
2009-01-01
Following an introduction to the diagonalization of matrices, one of the more difficult topics for students to grasp in linear algebra is the concept of Jordan normal form. In this note, we show how the important notions of diagonalization and Jordan normal form can be introduced and developed through the use of the computer algebra package…
ERIC Educational Resources Information Center
Hegedus, Stephen J.; Kaput, James J.
2004-01-01
We present two vignettes of classroom episodes that exemplify new activity structures for introducing core algebra ideas such as linear functions, slope as rate and parametric variation within a new educational technology environment that combines two kinds of classroom technology affordances, one based in dynamic representation and the other…
Recent Turbulence Model Advances Applied to Multielement Airfoil Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.
2000-01-01
A one-equation linear turbulence model and a two-equation nonlinear explicit algebraic stress model (EASM) are applied to the flow over a multielement airfoil. The effect of the K-epsilon and K-omega forms of the two-equation model are explored, and the K-epsilon form is shown to be deficient in the wall-bounded regions of adverse pressure gradient flows. A new K-omega form of EASM is introduced. Nonlinear terms present in EASM are shown to improve predictions of turbulent shear stress behind the trailing edge of the main element and near midflap. Curvature corrections are applied to both the one- and two-equation turbulence models and yield only relatively small local differences in the flap region, where the flow field undergoes the greatest curvature. Predictions of maximum lift are essentially unaffected by the turbulence model variations studied.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, Kenneth; Jain, Abhinandan
1989-01-01
A recently developed spatial operator algebra, useful for modeling, control, and trajectory design of manipulators is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high level framework for describing the dynamic and kinematic behavior of a manipulator and control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately derived from the abstract operator expressions by inspection. Thus, the transition from an abstract problem formulation and solution to the detailed mechanizaton of specific algorithms is greatly simplified. The analytical formulation of the operator algebra, as well as its implementation in the Ada programming language are discussed.
Chirikjian; Wang
2000-07-01
Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.
Proteus-MOC: A 3D deterministic solver incorporating 2D method of characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marin-Lafleche, A.; Smith, M. A.; Lee, C.
2013-07-01
A new transport solution methodology was developed by combining the two-dimensional method of characteristics with the discontinuous Galerkin method for the treatment of the axial variable. The method, which can be applied to arbitrary extruded geometries, was implemented in PROTEUS-MOC and includes parallelization in group, angle, plane, and space using a top level GMRES linear algebra solver. Verification tests were performed to show accuracy and stability of the method with the increased number of angular directions and mesh elements. Good scalability with parallelism in angle and axial planes is displayed. (authors)
Adaptive Identification by Systolic Arrays.
1987-12-01
BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK
Linearized gravity in terms of differential forms
NASA Astrophysics Data System (ADS)
Baykal, Ahmet; Dereli, Tekin
2017-01-01
A technique to linearize gravitational field equations is developed in which the perturbation metric coefficients are treated as second rank, symmetric, 1-form fields belonging to the Minkowski background spacetime by using the exterior algebra of differential forms.
High-Order Automatic Differentiation of Unmodified Linear Algebra Routines via Nilpotent Matrices
NASA Astrophysics Data System (ADS)
Dunham, Benjamin Z.
This work presents a new automatic differentiation method, Nilpotent Matrix Differentiation (NMD), capable of propagating any order of mixed or univariate derivative through common linear algebra functions--most notably third-party sparse solvers and decomposition routines, in addition to basic matrix arithmetic operations and power series--without changing data-type or modifying code line by line; this allows differentiation across sequences of arbitrarily many such functions with minimal implementation effort. NMD works by enlarging the matrices and vectors passed to the routines, replacing each original scalar with a matrix block augmented by derivative data; these blocks are constructed with special sparsity structures, termed "stencils," each designed to be isomorphic to a particular multidimensional hypercomplex algebra. The algebras are in turn designed such that Taylor expansions of hypercomplex function evaluations are finite in length and thus exactly track derivatives without approximation error. Although this use of the method in the "forward mode" is unique in its own right, it is also possible to apply it to existing implementations of the (first-order) discrete adjoint method to find high-order derivatives with lowered cost complexity; for example, for a problem with N inputs and an adjoint solver whose cost is independent of N--i.e., O(1)--the N x N Hessian can be found in O(N) time, which is comparable to existing second-order adjoint methods that require far more problem-specific implementation effort. Higher derivatives are likewise less expensive--e.g., a N x N x N rank-three tensor can be found in O(N2). Alternatively, a Hessian-vector product can be found in O(1) time, which may open up many matrix-based simulations to a range of existing optimization or surrogate modeling approaches. As a final corollary in parallel to the NMD-adjoint hybrid method, the existing complex-step differentiation (CD) technique is also shown to be capable of finding the Hessian-vector product. All variants are implemented on a stochastic diffusion problem and compared in-depth with various cost and accuracy metrics.
W-algebra for solving problems with fuzzy parameters
NASA Astrophysics Data System (ADS)
Shevlyakov, A. O.; Matveev, M. G.
2018-03-01
A method of solving the problems with fuzzy parameters by means of a special algebraic structure is proposed. The structure defines its operations through operations on real numbers, which simplifies its use. It avoids deficiencies limiting applicability of the other known structures. Examples for solution of a quadratic equation, a system of linear equations and a network planning problem are given.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Extensions of algebraic image operators: An approach to model-based vision
NASA Technical Reports Server (NTRS)
Lerner, Bao-Ting; Morelli, Michael V.
1990-01-01
Researchers extend their previous research on a highly structured and compact algebraic representation of grey-level images which can be viewed as fuzzy sets. Addition and multiplication are defined for the set of all grey-level images, which can then be described as polynomials of two variables. Utilizing this new algebraic structure, researchers devised an innovative, efficient edge detection scheme. An accurate method for deriving gradient component information from this edge detector is presented. Based upon this new edge detection system researchers developed a robust method for linear feature extraction by combining the techniques of a Hough transform and a line follower. The major advantage of this feature extractor is its general, object-independent nature. Target attributes, such as line segment lengths, intersections, angles of intersection, and endpoints are derived by the feature extraction algorithm and employed during model matching. The algebraic operators are global operations which are easily reconfigured to operate on any size or shape region. This provides a natural platform from which to pursue dynamic scene analysis. A method for optimizing the linear feature extractor which capitalizes on the spatially reconfiguration nature of the edge detector/gradient component operator is discussed.
Attitude control with realization of linear error dynamics
NASA Technical Reports Server (NTRS)
Paielli, Russell A.; Bach, Ralph E.
1993-01-01
An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.
Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.
Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris
2012-06-01
In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.
Valdés-Martiní, José R; Marrero-Ponce, Yovani; García-Jacas, César R; Martinez-Mayorga, Karina; Barigye, Stephen J; Vaz d'Almeida, Yasser Silveira; Pham-The, Hai; Pérez-Giménez, Facundo; Morell, Carlos A
2017-06-07
In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational program with the same name was initially developed. However, this in house software barely offered the functionalities required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usability impractical. Therefore, the present manuscript introduces the QuBiLS-MAS (acronym for Quadratic, Bilinear and N-Linear mapS based on graph-theoretic electronic-density Matrices and Atomic weightingS) software designed to compute topological (0-2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom- and bond-based relations. The QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological constraints (cut-offs) to take into account particular inter-atomic relations; (c) six additional atomic properties to be used as weighting schemes in the calculation of the molecular vectors; (d) four new local-fragments to consider molecular regions of interest; (e) number of lone-pair electrons in chemical structure defined by diagonal coefficients in matrix representations; and (f) several aggregation operators (invariants) applied over atom/bond-level descriptors in order to compute global indices. This software permits the parallel computation of the indices, contains a batch processing module and data curation functionalities. This program was developed in Java v1.7 using the Chemistry Development Kit library (version 1.4.19). The QuBiLS-MAS software consists of two components: a desktop interface (GUI) and an API library allowing for the easy integration of the latter in chemoinformatics applications. The relevance of the novel extensions and generalizations implemented in this software is demonstrated through three studies. Firstly, a comparative Shannon's entropy based variability study for the proposed QuBiLS-MAS and the DRAGON indices demonstrates superior performance for the former. A principal component analysis reveals that the QuBiLS-MAS approach captures chemical information orthogonal to that codified by the DRAGON descriptors. Lastly, a QSAR study for the binding affinity to the corticosteroid-binding globulin using Cramer's steroid dataset is carried out. From these analyses, it is revealed that the QuBiLS-MAS approach for atom-pair relations yields similar-to-superior performance with regard to other QSAR methodologies reported in the literature. Therefore, the QuBiLS-MAS approach constitutes a useful tool for the diversity analysis of chemical compound datasets and high-throughput screening of structure-activity data.
Transport synthetic acceleration with opposing reflecting boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zika, M.R.; Adams, M.L.
2000-02-01
The transport synthetic acceleration (TSA) scheme is extended to problems with opposing reflecting boundary conditions. This synthetic method employs a simplified transport operator as its low-order approximation. A procedure is developed that allows the use of the conjugate gradient (CG) method to solve the resulting low-order system of equations. Several well-known transport iteration algorithms are cast in a linear algebraic form to show their equivalence to standard iterative techniques. Source iteration in the presence of opposing reflecting boundary conditions is shown to be equivalent to a (poorly) preconditioned stationary Richardson iteration, with the preconditioner defined by the method of iteratingmore » on the incident fluxes on the reflecting boundaries. The TSA method (and any synthetic method) amounts to a further preconditioning of the Richardson iteration. The presence of opposing reflecting boundary conditions requires special consideration when developing a procedure to realize the CG method for the proposed system of equations. The CG iteration may be applied only to symmetric positive definite matrices; this condition requires the algebraic elimination of the boundary angular corrections from the low-order equations. As a consequence of this elimination, evaluating the action of the resulting matrix on an arbitrary vector involves two transport sweeps and a transmission iteration. Results of applying the acceleration scheme to a simple test problem are presented.« less
Complementary Reliability-Based Decodings of Binary Linear Block Codes
NASA Technical Reports Server (NTRS)
Fossorier, Marc P. C.; Lin, Shu
1997-01-01
This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.
Matrix preconditioning: a robust operation for optical linear algebra processors.
Ghosh, A; Paparao, P
1987-07-15
Analog electrooptical processors are best suited for applications demanding high computational throughput with tolerance for inaccuracies. Matrix preconditioning is one such application. Matrix preconditioning is a preprocessing step for reducing the condition number of a matrix and is used extensively with gradient algorithms for increasing the rate of convergence and improving the accuracy of the solution. In this paper, we describe a simple parallel algorithm for matrix preconditioning, which can be implemented efficiently on a pipelined optical linear algebra processor. From the results of our numerical experiments we show that the efficacy of the preconditioning algorithm is affected very little by the errors of the optical system.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Application of symbolic and algebraic manipulation software in solving applied mechanics problems
NASA Technical Reports Server (NTRS)
Tsai, Wen-Lang; Kikuchi, Noboru
1993-01-01
As its name implies, symbolic and algebraic manipulation is an operational tool which not only can retain symbols throughout computations but also can express results in terms of symbols. This report starts with a history of symbolic and algebraic manipulators and a review of the literatures. With the help of selected examples, the capabilities of symbolic and algebraic manipulators are demonstrated. These applications to problems of applied mechanics are then presented. They are the application of automatic formulation to applied mechanics problems, application to a materially nonlinear problem (rigid-plastic ring compression) by finite element method (FEM) and application to plate problems by FEM. The advantages and difficulties, contributions, education, and perspectives of symbolic and algebraic manipulation are discussed. It is well known that there exist some fundamental difficulties in symbolic and algebraic manipulation, such as internal swelling and mathematical limitation. A remedy for these difficulties is proposed, and the three applications mentioned are solved successfully. For example, the closed from solution of stiffness matrix of four-node isoparametrical quadrilateral element for 2-D elasticity problem was not available before. Due to the work presented, the automatic construction of it becomes feasible. In addition, a new advantage of the application of symbolic and algebraic manipulation found is believed to be crucial in improving the efficiency of program execution in the future. This will substantially shorten the response time of a system. It is very significant for certain systems, such as missile and high speed aircraft systems, in which time plays an important role.
ERIC Educational Resources Information Center
Wawro, Megan; Rasmussen, Chris; Zandieh, Michelle; Sweeney, George Franklin; Larson, Christine
2012-01-01
In this paper we present an innovative instructional sequence for an introductory linear algebra course that supports students' reinvention of the concepts of span, linear dependence, and linear independence. Referred to as the Magic Carpet Ride sequence, the problems begin with an imaginary scenario that allows students to build rich imagery and…
Designing Cognitively Diagnostic Assessment for Algebraic Content Knowledge and Thinking Skills
ERIC Educational Resources Information Center
Zhang, Zhidong
2018-01-01
This study explored a diagnostic assessment method that emphasized the cognitive process of algebra learning. The study utilized a design and a theory-driven model to examine the content knowledge. Using the theory driven model, the thinking skills of algebra learning was also examined. A Bayesian network model was applied to represent the theory…
A Hypothetical Learning Trajectory for Conceptualizing Matrices as Linear Transformations
ERIC Educational Resources Information Center
Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle
2017-01-01
In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the "Italicizing…
Generalized conformal realizations of Kac-Moody algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmkvist, Jakob
2009-01-15
We present a construction which associates an infinite sequence of Kac-Moody algebras, labeled by a positive integer n, to one single Jordan algebra. For n=1, this reduces to the well known Kantor-Koecher-Tits construction. Our generalization utilizes a new relation between different generalized Jordan triple systems, together with their known connections to Jordan and Lie algebras. Applied to the Jordan algebra of Hermitian 3x3 matrices over the division algebras R, C, H, O, the construction gives the exceptional Lie algebras f{sub 4}, e{sub 6}, e{sub 7}, e{sub 8} for n=2. Moreover, we obtain their infinite-dimensional extensions for n{>=}3. In the casemore » of 2x2 matrices, the resulting Lie algebras are of the form so(p+n,q+n) and the concomitant nonlinear realization generalizes the conformal transformations in a spacetime of signature (p,q)« less
NASA Astrophysics Data System (ADS)
Fuaad, Norain Farhana Ahmad; Nopiah, Zulkifli Mohd; Tawil, Norgainy Mohd; Othman, Haliza; Asshaari, Izamarlina; Osman, Mohd Hanif; Ismail, Nur Arzilah
2014-06-01
In engineering studies and researches, Mathematics is one of the main elements which express physical, chemical and engineering laws. Therefore, it is essential for engineering students to have a strong knowledge in the fundamental of mathematics in order to apply the knowledge to real life issues. However, based on the previous results of Mathematics Pre-Test, it shows that the engineering students lack the fundamental knowledge in certain topics in mathematics. Due to this, apart from making improvements in the methods of teaching and learning, studies on the construction of questions (items) should also be emphasized. The purpose of this study is to assist lecturers in the process of item development and to monitor the separation of items based on Blooms' Taxonomy and to measure the reliability of the items itself usingRasch Measurement Model as a tool. By using Rasch Measurement Model, the final exam questions of Engineering Mathematics II (Linear Algebra) for semester 2 sessions 2012/2013 were analysed and the results will provide the details onthe extent to which the content of the item providesuseful information about students' ability. This study reveals that the items used in Engineering Mathematics II (Linear Algebra) final exam are well constructed but the separation of the items raises concern as it is argued that it needs further attention, as there is abig gap between items at several levels of Blooms' cognitive skill.
The algebra of complex 2 × 2 matrices and a general closed Baker-Campbell-Hausdorff formula
NASA Astrophysics Data System (ADS)
Foulis, D. L.
2017-07-01
We derive a closed formula for the Baker-Campbell-Hausdorff series expansion in the case of complex 2×2 matrices. For arbitrary matrices A and B, and a matrix Z such that \\exp Z = \\exp A \\exp B , our result expresses Z as a linear combination of A and B, their commutator [A, B] , and the identity matrix I. The coefficients in this linear combination are functions of the traces and determinants of A and B, and the trace of their product. The derivation proceeds purely via algebraic manipulations of the given matrices and their products, making use of relations developed here, based on the Cayley-Hamilton theorem, as well as a characterization of the consequences of [A, B] and/or its determinant being zero or otherwise. As a corollary of our main result we also derive a closed formula for the Zassenhaus expansion. We apply our results to several special cases, most notably the parametrization of the product of two SU(2) matrices and a verification of the recent result of Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) for complex 2×2 matrices, in this latter case deriving also the related Zassenhaus formula which turns out to be quite simple. We then show that this simple formula should be valid for all matrices and operators.
Optimal linear-quadratic control of coupled parabolic-hyperbolic PDEs
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2017-10-01
This paper focuses on the optimal control design for a system of coupled parabolic-hypebolic partial differential equations by using the infinite-dimensional state-space description and the corresponding operator Riccati equation. Some dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the linear-quadratic (LQ)-optimal control problem. A state LQ-feedback operator is computed by solving the operator Riccati equation, which is converted into a set of algebraic and differential Riccati equations, thanks to the eigenvalues and the eigenvectors of the parabolic operator. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ-optimal controller designed in the early portion of the paper is implemented for the original nonlinear model. Numerical simulations are performed to show the controller performances.
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1977-01-01
It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.
Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems
NASA Astrophysics Data System (ADS)
Campoamor-Stursberg, Rutwig
2017-03-01
Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.
Gordan—Capelli series in superalgebras
Brini, Andrea; Palareti, Aldopaolo; Teolis, Antonio G. B.
1988-01-01
We derive two Gordan—Capelli series for the supersymmetric algebra of the tensor product of two [unk]2-graded [unk]-vector spaces U and V, being [unk] a field of characteristic zero. These expansions yield complete decompositions of the supersymmetric algebra regarded as a pl(U)- and a pl(V)- module, where pl(U) and pl(V) are the general linear Lie superalgebras of U and V, respectively. PMID:16593911
ERIC Educational Resources Information Center
Foley, Greg
2014-01-01
A problem that illustrates two ways of computing the break-even radius of insulation is outlined. The problem is suitable for students who are taking an introductory module in heat transfer or transport phenomena and who have some previous knowledge of the numerical solution of non- linear algebraic equations. The potential for computer algebra,…
Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campoamor-Stursberg, Rutwig, E-mail: rutwig@ucm.es
Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.
Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System
ERIC Educational Resources Information Center
Schmidt, Karsten
2008-01-01
In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…
NASA Astrophysics Data System (ADS)
Rosita, N. T.
2018-03-01
The purpose of this study is to analyse algebraic reasoning ability using the SOLO model as a theoretical framework to assess students’ algebraic reasoning abilities of Field Dependent cognitive (FD), Field Independent (FI) and Gender perspectives. The method of this study is a qualitative research. The instrument of this study is the researcher himself assisted with algebraic reasoning tests, the problems have been designed based on NCTM indicators and algebraic reasoning according to SOLO model. While the cognitive style of students is determined using Group Embedded Figure Test (GEFT), as well as interviews on the subject as triangulation. The subjects are 15 female and 15 males of the sixth semester students of mathematics education, STKIP Sebelas April. The results of the qualitative data analysis is that most subjects are at the level of unistructural and multi-structural, subjects at the relational level have difficulty in forming a new linear pattern. While the subjects at the extended abstract level are able to meet all the indicators of algebraic reasoning ability even though some of the answers are not perfect yet. Subjects of FI tend to have higher algebraic reasoning abilities than of the subject of FD.
Graph theory applied to noise and vibration control in statistical energy analysis models.
Guasch, Oriol; Cortés, Lluís
2009-06-01
A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.
NASA Astrophysics Data System (ADS)
Ermilov, A. S.; Zobov, V. E.
2007-12-01
To experimentally realize quantum computations on d-level basic elements (qudits) at d > 2, it is necessary to develop schemes for the technical realization of elementary logical operators. We have found sequences of selective rotation operators that represent the operators of the quantum Fourier transform (Walsh-Hadamard matrices) for d = 3-10. For the prime numbers 3, 5, and 7, the well-known method of linear algebra is applied, whereas, for the factorable numbers 6, 9, and 10, the representation of virtual spins is used (which we previously applied for d = 4, 8). Selective rotations can be realized, for example, by means of pulses of an RF magnetic field for systems of quadrupole nuclei or laser pulses for atoms and ions in traps.
Global exponential stability of octonion-valued neural networks with leakage delay and mixed delays.
Popa, Călin-Adrian
2018-06-08
This paper discusses octonion-valued neural networks (OVNNs) with leakage delay, time-varying delays, and distributed delays, for which the states, weights, and activation functions belong to the normed division algebra of octonions. The octonion algebra is a nonassociative and noncommutative generalization of the complex and quaternion algebras, but does not belong to the category of Clifford algebras, which are associative. In order to avoid the nonassociativity of the octonion algebra and also the noncommutativity of the quaternion algebra, the Cayley-Dickson construction is used to decompose the OVNNs into 4 complex-valued systems. By using appropriate Lyapunov-Krasovskii functionals, with double and triple integral terms, the free weighting matrix method, and simple and double integral Jensen inequalities, delay-dependent criteria are established for the exponential stability of the considered OVNNs. The criteria are given in terms of complex-valued linear matrix inequalities, for two types of Lipschitz conditions which are assumed to be satisfied by the octonion-valued activation functions. Finally, two numerical examples illustrate the feasibility, effectiveness, and correctness of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Identifiability Results for Several Classes of Linear Compartment Models.
Meshkat, Nicolette; Sullivant, Seth; Eisenberg, Marisa
2015-08-01
Identifiability concerns finding which unknown parameters of a model can be estimated, uniquely or otherwise, from given input-output data. If some subset of the parameters of a model cannot be determined given input-output data, then we say the model is unidentifiable. In this work, we study linear compartment models, which are a class of biological models commonly used in pharmacokinetics, physiology, and ecology. In past work, we used commutative algebra and graph theory to identify a class of linear compartment models that we call identifiable cycle models, which are unidentifiable but have the simplest possible identifiable functions (so-called monomial cycles). Here we show how to modify identifiable cycle models by adding inputs, adding outputs, or removing leaks, in such a way that we obtain an identifiable model. We also prove a constructive result on how to combine identifiable models, each corresponding to strongly connected graphs, into a larger identifiable model. We apply these theoretical results to several real-world biological models from physiology, cell biology, and ecology.
ERIC Educational Resources Information Center
Blakley, G. R.
1982-01-01
Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)
Linear time-invariant controller design for two-channel decentralized control systems
NASA Technical Reports Server (NTRS)
Desoer, Charles A.; Gundes, A. Nazli
1987-01-01
This paper analyzes a linear time-invariant two-channel decentralized control system with a 2 x 2 strictly proper plant. It presents an algorithm for the algebraic design of a class of decentralized compensators which stabilize the given plant.
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
García-Jacas, César R; Marrero-Ponce, Yovani; Acevedo-Martínez, Liesner; Barigye, Stephen J; Valdés-Martiní, José R; Contreras-Torres, Ernesto
2014-07-05
The present report introduces the QuBiLS-MIDAS software belonging to the ToMoCoMD-CARDD suite for the calculation of three-dimensional molecular descriptors (MDs) based on the two-linear (bilinear), three-linear, and four-linear (multilinear or N-linear) algebraic forms. Thus, it is unique software that computes these tensor-based indices. These descriptors, establish relations for two, three, and four atoms by using several (dis-)similarity metrics or multimetrics, matrix transformations, cutoffs, local calculations and aggregation operators. The theoretical background of these N-linear indices is also presented. The QuBiLS-MIDAS software was developed in the Java programming language and employs the Chemical Development Kit library for the manipulation of the chemical structures and the calculation of the atomic properties. This software is composed by a desktop user-friendly interface and an Abstract Programming Interface library. The former was created to simplify the configuration of the different options of the MDs, whereas the library was designed to allow its easy integration to other software for chemoinformatics applications. This program provides functionalities for data cleaning tasks and for batch processing of the molecular indices. In addition, it offers parallel calculation of the MDs through the use of all available processors in current computers. The studies of complexity of the main algorithms demonstrate that these were efficiently implemented with respect to their trivial implementation. Lastly, the performance tests reveal that this software has a suitable behavior when the amount of processors is increased. Therefore, the QuBiLS-MIDAS software constitutes a useful application for the computation of the molecular indices based on N-linear algebraic maps and it can be used freely to perform chemoinformatics studies. Copyright © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Bardini, Caroline; Pierce, Robyn U.; Stacey, Kaye
2004-01-01
This study analyses some of the consequences of adopting a functional/modelling approach to the teaching of algebra. The teaching of one class of 17 students was observed over five weeks, with 15 students undertaking both pre- and post-tests and 6 students and the teacher being interviewed individually. Use of graphics calculators made the…
Algebraic Riccati equations in zero-sum differential games
NASA Technical Reports Server (NTRS)
Johnson, T. L.; Chao, A.
1974-01-01
The procedure for finding the closed-loop Nash equilibrium solution of two-player zero-sum linear time-invariant differential games with quadratic performance criteria and classical information pattern may be reduced in most cases to the solution of an algebraic Riccati equation. Based on the results obtained by Willems, necessary and sufficient conditions for existence of solutions to these equations are derived, and explicit conditions for a scalar example are given.
Photoionization cross section by Stieltjes imaging applied to coupled cluster Lanczos pseudo-spectra
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick
2013-09-01
A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.
Cukras, Janusz; Coriani, Sonia; Decleva, Piero; Christiansen, Ove; Norman, Patrick
2013-09-07
A recently implemented asymmetric Lanczos algorithm for computing (complex) linear response functions within the coupled cluster singles (CCS), coupled cluster singles and iterative approximate doubles (CC2), and coupled cluster singles and doubles (CCSD) is coupled to a Stieltjes imaging technique in order to describe the photoionization cross section of atoms and molecules, in the spirit of a similar procedure recently proposed by Averbukh and co-workers within the Algebraic Diagrammatic Construction approach. Pilot results are reported for the atoms He, Ne, and Ar and for the molecules H2, H2O, NH3, HF, CO, and CO2.
Power-law scaling of extreme dynamics near higher-order exceptional points
NASA Astrophysics Data System (ADS)
Zhong, Q.; Christodoulides, D. N.; Khajavikhan, M.; Makris, K. G.; El-Ganainy, R.
2018-02-01
We investigate the extreme dynamics of non-Hermitian systems near higher-order exceptional points in photonic networks constructed using the bosonic algebra method. We show that strong power oscillations for certain initial conditions can occur as a result of the peculiar eigenspace geometry and its dimensionality collapse near these singularities. By using complementary numerical and analytical approaches, we show that, in the parity-time (PT ) phase near exceptional points, the logarithm of the maximum optical power amplification scales linearly with the order of the exceptional point. We focus in our discussion on photonic systems, but we note that our results apply to other physical systems as well.
Mathematical biodescriptors of proteomics maps: background and applications.
Basak, Subhash C; Gute, Brian D
2008-05-01
This article reviews recent developments in the formulation and application of biodescriptors to characterize proteomics maps. Such biodescriptors can be derived by applying techniques from discrete mathematics (graph theory, linear algebra and information theory). This review focuses on the development of biodescriptors for proteomics maps derived from 2D gel electrophoresis. Preliminary results demonstrated that such descriptors have a reasonable ability to differentiate between proteomics patterns that result from exposure to closely related individual chemicals and complex mixtures, such as the jet fuel JP-8. Further research is required to evaluate the utility of these proteomics-based biodescriptors for drug discovery and predictive toxicology.
The elastic theory of shells using geometric algebra
Lasenby, J.; Agarwal, A.
2017-01-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible. PMID:28405404
New infinite-dimensional hidden symmetries for heterotic string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.
An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy
NASA Astrophysics Data System (ADS)
Matsushima, Masatomo; Ohmiya, Mayumi
2009-09-01
The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.
On recent advances and future research directions for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Soliman, M. O.; Manhardt, P. D.
1986-01-01
This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
The elastic theory of shells using geometric algebra.
Gregory, A L; Lasenby, J; Agarwal, A
2017-03-01
We present a novel derivation of the elastic theory of shells. We use the language of geometric algebra, which allows us to express the fundamental laws in component-free form, thus aiding physical interpretation. It also provides the tools to express equations in an arbitrary coordinate system, which enhances their usefulness. The role of moments and angular velocity, and the apparent use by previous authors of an unphysical angular velocity, has been clarified through the use of a bivector representation. In the linearized theory, clarification of previous coordinate conventions which have been the cause of confusion is provided, and the introduction of prior strain into the linearized theory of shells is made possible.
Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems
NASA Technical Reports Server (NTRS)
Downie, John D.; Goodman, Joseph W.
1989-01-01
The accuracy requirements of optical processors in adaptive optics systems are determined by estimating the required accuracy in a general optical linear algebra processor (OLAP) that results in a smaller average residual aberration than that achieved with a conventional electronic digital processor with some specific computation speed. Special attention is given to an error analysis of a general OLAP with regard to the residual aberration that is created in an adaptive mirror system by the inaccuracies of the processor, and to the effect of computational speed of an electronic processor on the correction. Results are presented on the ability of an OLAP to compete with a digital processor in various situations.
Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta
2013-08-01
We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.
Choreographing Patterns and Functions
ERIC Educational Resources Information Center
Hawes, Zachary; Moss, Joan; Finch, Heather; Katz, Jacques
2012-01-01
In this article, the authors begin with a description of an algebraic dance--the translation of composite linear growing patterns into choreographed movement--which was the last component of a research-based instructional unit that focused on fostering an understanding of linear functional rules through geometric growing patterns and…
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
NASA Astrophysics Data System (ADS)
Wilkie, Karina J.; Ayalon, Michal
2018-02-01
A foundational component of developing algebraic thinking for meaningful calculus learning is the idea of "function" that focuses on the relationship between varying quantities. Students have demonstrated widespread difficulties in learning calculus, particularly interpreting and modeling dynamic events, when they have a poor understanding of relationships between variables. Yet, there are differing views on how to develop students' functional thinking over time. In the Australian curriculum context, linear relationships are introduced to lower secondary students with content that reflects a hybrid of traditional and reform algebra pedagogy. This article discusses an investigation into Australian secondary students' understanding of linear functional relationships from Years 7 to 12 (approximately 12 to 18 years old; n = 215) in their approaches to three tasks (finding rate of change, pattern generalisation and interpretation of gradient) involving four different representations (table, geometric growing pattern, equation and graph). From the findings, it appears that these students' knowledge of linear functions remains context-specific rather than becoming connected over time.
Lattice Virasoro algebra and corner transfer matrices in the Baxter eight-vertex model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itoyama, H.; Thacker, H.B.
1987-04-06
A lattice Virasoro algebra is constructed for the Baxter eight-vertex model. The operator L/sub 0/ is obtained from the logarithm of the corner transfer matrix and is given by the first moment of the XYZ spin-chain Hamiltonian. The algebra is valid even when the Hamiltonian includes a mass term, in which case it represents lattice coordinate transformations which distinguish between even and odd sublattices. We apply the quantum inverse scattering method to demonstrate that the Virasoro algebra follows from the Yang-Baxter relations.
Topologically massive gravity and galilean conformal algebra: a study of correlation functions
NASA Astrophysics Data System (ADS)
Bagchi, Arjun
2011-02-01
The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.
Measurements and mathematical formalism of quantum mechanics
NASA Astrophysics Data System (ADS)
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
ERIC Educational Resources Information Center
Senarat, Somprasong; Tayraukham, Sombat; Piyapimonsit, Chatsiri; Tongkhambanjong, Sakesan
2013-01-01
The purpose of this research is to develop a multidimensional computerized adaptive test for diagnosing the cognitive process of grade 7 students in learning algebra by applying multidimensional item response theory. The research is divided into 4 steps: 1) the development of item bank of algebra, 2) the development of the multidimensional…
NASA Astrophysics Data System (ADS)
Průša, Vít; Řehoř, Martin; Tůma, Karel
2017-02-01
The response of mechanical systems composed of springs and dashpots to a step input is of eminent interest in the applications. If the system is formed by linear elements, then its response is governed by a system of linear ordinary differential equations. In the linear case, the mathematical method of choice for the analysis of the response is the classical theory of distributions. However, if the system contains nonlinear elements, then the classical theory of distributions is of no use, since it is strictly limited to the linear setting. Consequently, a question arises whether it is even possible or reasonable to study the response of nonlinear systems to step inputs. The answer is positive. A mathematical theory that can handle the challenge is the so-called Colombeau algebra. Building on the abstract result by Průša and Rajagopal (Int J Non-Linear Mech 81:207-221, 2016), we show how to use the theory in the analysis of response of nonlinear spring-dashpot and spring-dashpot-mass systems.
Application of linear logic to simulation
NASA Astrophysics Data System (ADS)
Clarke, Thomas L.
1998-08-01
Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.
Learning to Apply Algebra in the Community for Adults With Intellectual Developmental Disabilities.
Rodriguez, Anthony M
2016-02-01
Students with intellectual and developmental disabilities (IDD) are routinely excluded from algebra and other high-level mathematics courses. High school students with IDD take courses in arithmetic and life skills rather than having an opportunity to learn algebra. Yet algebra skills can support the learning of money and budgeting skills. This study explores the feasibility of algebra instruction for adults with IDD through an experimental curriculum. Ten individuals with IDD participated in a 6-week course framing mathematics concepts within the context of everyday challenges in handling money. The article explores classroom techniques, discusses student strategies, and proposes possible avenues for future research analyzing mathematics instructional design strategies for individuals with IDD.
Applied Algebra: The Modeling Technique of Least Squares
ERIC Educational Resources Information Center
Zelkowski, Jeremy; Mayes, Robert
2008-01-01
The article focuses on engaging students in algebra through modeling real-world problems. The technique of least squares is explored, encouraging students to develop a deeper understanding of the method. (Contains 2 figures and a bibliography.)
An Application of Cartesian Graphing to Seismic Exploration.
ERIC Educational Resources Information Center
Robertson, Douglas Frederick
1992-01-01
Describes how college students enrolled in a course in elementary algebra apply graphing and algebra to data collected from a seismic profile to uncover the structure of a subterranean rock formation. Includes steps guiding the activity. (MDH)
Mathematical Modeling of Chemical Stoichiometry
ERIC Educational Resources Information Center
Croteau, Joshua; Fox, William P.; Varazo, Kristofoland
2007-01-01
In beginning chemistry classes, students are taught a variety of techniques for balancing chemical equations. The most common method is inspection. This paper addresses using a system of linear mathematical equations to solve for the stoichiometric coefficients. Many linear algebra books carry the standard balancing of chemical equations as an…
Quantum monodromy and quantum phase transitions in floppy molecules
NASA Astrophysics Data System (ADS)
Larese, Danielle
2012-10-01
A simple algebraic Hamiltonian has been used to explore the vibrational and rotational spectra of the skeletal bending modes of HCNO, BrCNO, NCNCS, and other "floppy" (quasi-linear or quasi-bent) molecules. These molecules have large-amplitude, low-energy bending modes and champagne-bottle potential surfaces, making them good candidates for observing quantum phase transitions (QPT). We describe the geometric phase transitions from bent to linear in these and other non-rigid molecules, quantitatively analyzing the spectroscopic signatures of ground state QPT, excited state QPT, and quantum monodromy. The algebraic framework is ideal for this work because of its small calculational effort yet robust results. Although these methods have historically found success with tri-and four-atomic molecules, we now address five-atomic and simple branched molecules such as CH3NCO and GeH3NCO. Extraction of potential functions are completed for several molecules, resulting in predictions of barriers to linearity and equilibrium bond angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luszczek, Piotr R; Tomov, Stanimire Z; Dongarra, Jack J
We present an efficient and scalable programming model for the development of linear algebra in heterogeneous multi-coprocessor environments. The model incorporates some of the current best design and implementation practices for the heterogeneous acceleration of dense linear algebra (DLA). Examples are given as the basis for solving linear systems' algorithms - the LU, QR, and Cholesky factorizations. To generate the extreme level of parallelism needed for the efficient use of coprocessors, algorithms of interest are redesigned and then split into well-chosen computational tasks. The tasks execution is scheduled over the computational components of a hybrid system of multi-core CPUs andmore » coprocessors using a light-weight runtime system. The use of lightweight runtime systems keeps scheduling overhead low, while enabling the expression of parallelism through otherwise sequential code. This simplifies the development efforts and allows the exploration of the unique strengths of the various hardware components.« less
First-Order System Least Squares for the Stokes Equations, with Application to Linear Elasticity
NASA Technical Reports Server (NTRS)
Cai, Z.; Manteuffel, T. A.; McCormick, S. F.
1996-01-01
Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the two- and three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H(exp 1) product norm appropriately weighted by the Reynolds number. This immediately yields optimal discretization error estimates for finite element spaces in this norm and optimal algebraic convergence estimates for multiplicative and additive multigrid methods applied to the resulting discrete systems. Both estimates are uniform in the Reynolds number. Moreover, our pressure-perturbed form of the generalized Stokes equations allows us to develop an analogous result for the Dirichlet problem for linear elasticity with estimates that are uniform in the Lame constants.
NASA Technical Reports Server (NTRS)
Chen, L. T.
1975-01-01
A general method for analyzing aerodynamic flows around complex configurations is presented. By applying the Green function method, a linear integral equation relating the unknown, small perturbation potential on the surface of the body, to the known downwash is obtained. The surfaces of the aircraft, wake and diaphragm (if necessary) are divided into small quadrilateral elements which are approximated with hyperboloidal surfaces. The potential and its normal derivative are assumed to be constant within each element. This yields a set of linear algebraic equations and the coefficients are evaluated analytically. By using Gaussian elimination method, equations are solved for the potentials at the centroids of elements. The pressure coefficient is evaluated by the finite different method; the lift and moment coefficients are evaluated by numerical integration. Numerical results are presented, and applications to flutter are also included.
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
NASA Astrophysics Data System (ADS)
Hamhalter, Jan; Turilova, Ekaterina
2014-10-01
It is shown that any order isomorphism between the structures of unital associative JB subalgebras of JB algebras is given naturally by a partially linear Jordan isomorphism. The same holds for nonunital subalgebras and order isomorphisms preserving the unital subalgebra. Finally, we recover usual action of time evolution group on a von Neumann factor from group of automorphisms of the structure of Abelian subalgebras.
Electrokinetics Models for Micro and Nano Fluidic Impedance Sensors
2010-11-01
primitive Differential-Algebraic Equations (DAEs), used to process and interpret the experimentally measured electrical impedance data (Sun and Morgan...field, and species respectively. A second-order scheme was used to calculate the ionic species distribution. The linearized algebraic equations were...is governed by the Poisson equation 2 0 0 r i i i F z cε ε φ∇ + =∑ where ε0 and εr are, respectively, the electrical permittivity in the vacuum
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
Feedback stabilization of an oscillating vertical cylinder by POD Reduced-Order Model
NASA Astrophysics Data System (ADS)
Tissot, Gilles; Cordier, Laurent; Noack, Bernd R.
2015-01-01
The objective is to demonstrate the use of reduced-order models (ROM) based on proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations are first solved with a finite element method, in which the moving cylinder is introduced via an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level, the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic regulator framework is employed. After linearization of the POD-ROM around the steady flow state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati equation. Finally, when the optimal feedback control is applied, it is shown that the flow converges rapidly to the steady state. In addition, a vanishing control is obtained proving the efficiency of the control approach.
Boolean Operations with Prism Algebraic Patches
Bajaj, Chandrajit; Paoluzzi, Alberto; Portuesi, Simone; Lei, Na; Zhao, Wenqi
2009-01-01
In this paper we discuss a symbolic-numeric algorithm for Boolean operations, closed in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches (A-patches). This approach uses a linear polyhedron as a first approximation of both the arguments and the result. On each triangle of a boundary representation of such linear approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with given normal vectors. The boundary representation only stores the vertices of the initial triangulation and their external vertex normals. In order to represent also flat and/or sharp local features, the corresponding normal-per-face and/or normal-per-edge may be also given, respectively. The topology is described by storing, for each curved triangle, the two triples of pointers to incident vertices and to adjacent triangles. For each triangle, a scaffolding prism is built, produced by its extreme vertices and normals, which provides a containment volume for the curved interpolating A-patch. When looking for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial within each such prism is generated, and intersected with the analogous 0-sets of the other curved polyhedron, when two prisms have non-empty intersection. The intersection curves of the boundaries are traced and used to decompose each boundary into the 3 standard classes of subpatches, denoted in, out and on. While tracing the intersection curves, the locally refined triangulation of intersecting patches is produced, and added to the boundary representation. PMID:21516262
Numerical Methods for Forward and Inverse Problems in Discontinuous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartier, Timothy P.
The research emphasis under this grant's funding is in the area of algebraic multigrid methods. The research has two main branches: 1) exploring interdisciplinary applications in which algebraic multigrid can make an impact and 2) extending the scope of algebraic multigrid methods with algorithmic improvements that are based in strong analysis.The work in interdisciplinary applications falls primarily in the field of biomedical imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid for solving linear systems that result from highly heterogeneous finite element method models of the human head. The results in this work also give promise tomore » medical advances possible with software that may be developed. Research to extend the scope of algebraic multigrid has been focused in several areas. In collaboration with researchers at the University of Colorado, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive multigrid with subcycling via complementary grids. This method has very cheap computing costs per iterate and is showing promise as a preconditioner for conjugate gradient. Recent work with Los Alamos National Laboratory concentrates on developing algorithms that take advantage of the recent advances in adaptive multigrid research. The results of the various efforts in this research could ultimately have direct use and impact to researchers for a wide variety of applications, including, astrophysics, neuroscience, contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth, and flow in heterogeneous porous media. This work has already led to basic advances in computational mathematics and numerical linear algebra and will continue to do so into the future.« less
Optimization techniques for integrating spatial data
Herzfeld, U.C.; Merriam, D.F.
1995-01-01
Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.
Using MathCAD to Teach One-Dimensional Graphs
ERIC Educational Resources Information Center
Yushau, B.
2004-01-01
Topics such as linear and nonlinear equations and inequalities, compound inequalities, linear and nonlinear absolute value equations and inequalities, rational equations and inequality are commonly found in college algebra and precalculus textbooks. What is common about these topics is the fact that their solutions and graphs lie in the real line…
Discovering Linear Equations in Explicit Tables
ERIC Educational Resources Information Center
Burton, Lauren
2017-01-01
When teaching algebra concepts to middle school students, the author often hears questions that echo her own past confusion as a young student learning to write linear equations using data tables that show only input and output values. Students, expected to synthesize the relationship between these values in symbolic representation, grow…
From the Laboratory to the Classroom: A Technology-Intensive Curriculum for Functions and Graphs.
ERIC Educational Resources Information Center
Magidson, Susan
1992-01-01
Addresses the challenges, risks, and rewards of teaching about linear functions in a technology-rich environment from a constructivist perspective. Describes an algebra class designed for junior high school students that focuses of the representations and real-world applications of linear functions. (MDH)
Reading between the Lines: Teaching Linear Algebra
ERIC Educational Resources Information Center
Lewis, Jennifer M.; Blunk, Merrie L.
2012-01-01
This paper compares lessons on linear equations from the same curriculum materials taught by two teachers of different levels of mathematical knowledge for teaching (MKT). The analysis indicates that the mathematical quality of instruction in these two classrooms appears to be a function of differences in MKT. Although the two teachers were…
Li, Jing; Hong, Wenxue
2014-12-01
The feature extraction and feature selection are the important issues in pattern recognition. Based on the geometric algebra representation of vector, a new feature extraction method using blade coefficient of geometric algebra was proposed in this study. At the same time, an improved differential evolution (DE) feature selection method was proposed to solve the elevated high dimension issue. The simple linear discriminant analysis was used as the classifier. The result of the 10-fold cross-validation (10 CV) classification of public breast cancer biomedical dataset was more than 96% and proved superior to that of the original features and traditional feature extraction method.
Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna
2016-02-01
optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear ...would expect that linear combinations of them in a neighborhood around would also have low sidelobes. The algorithms in this paper exploit this
Natural differential operations on manifolds: an algebraic approach
NASA Astrophysics Data System (ADS)
Katsylo, P. I.; Timashev, D. A.
2008-10-01
Natural algebraic differential operations on geometric quantities on smooth manifolds are considered. A method for the investigation and classification of such operations is described, the method of IT-reduction. With it the investigation of natural operations reduces to the analysis of rational maps between k-jet spaces, which are equivariant with respect to certain algebraic groups. On the basis of the method of IT-reduction a finite generation theorem is proved: for tensor bundles \\mathscr{V},\\mathscr{W}\\to M all the natural differential operations D\\colon\\Gamma(\\mathscr{V})\\to\\Gamma(\\mathscr{W}) of degree at most d can be algebraically constructed from some finite set of such operations. Conceptual proofs of known results on the classification of natural linear operations on arbitrary and symplectic manifolds are presented. A non-existence theorem is proved for natural deformation quantizations on Poisson manifolds and symplectic manifolds.Bibliography: 21 titles.
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
Dini, Paolo; Nehaniv, Chrystopher L; Egri-Nagy, Attila; Schilstra, Maria J
2013-05-01
Interaction computing (IC) aims to map the properties of integrable low-dimensional non-linear dynamical systems to the discrete domain of finite-state automata in an attempt to reproduce in software the self-organizing and dynamically stable properties of sub-cellular biochemical systems. As the work reported in this paper is still at the early stages of theory development it focuses on the analysis of a particularly simple chemical oscillator, the Belousov-Zhabotinsky (BZ) reaction. After retracing the rationale for IC developed over the past several years from the physical, biological, mathematical, and computer science points of view, the paper presents an elementary discussion of the Krohn-Rhodes decomposition of finite-state automata, including the holonomy decomposition of a simple automaton, and of its interpretation as an abstract positional number system. The method is then applied to the analysis of the algebraic properties of discrete finite-state automata derived from a simplified Petri net model of the BZ reaction. In the simplest possible and symmetrical case the corresponding automaton is, not surprisingly, found to contain exclusively cyclic groups. In a second, asymmetrical case, the decomposition is much more complex and includes five different simple non-abelian groups whose potential relevance arises from their ability to encode functionally complete algebras. The possible computational relevance of these findings is discussed and possible conclusions are drawn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Multiple shooting algorithms for jump-discontinuous problems in optimal control and estimation
NASA Technical Reports Server (NTRS)
Mook, D. J.; Lew, Jiann-Shiun
1991-01-01
Multiple shooting algorithms are developed for jump-discontinuous two-point boundary value problems arising in optimal control and optimal estimation. Examples illustrating the origin of such problems are given to motivate the development of the solution algorithms. The algorithms convert the necessary conditions, consisting of differential equations and transversality conditions, into algebraic equations. The solution of the algebraic equations provides exact solutions for linear problems. The existence and uniqueness of the solution are proved.
Pawlak Algebra and Approximate Structure on Fuzzy Lattice
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties. PMID:25152922
Pawlak algebra and approximate structure on fuzzy lattice.
Zhuang, Ying; Liu, Wenqi; Wu, Chin-Chia; Li, Jinhai
2014-01-01
The aim of this paper is to investigate the general approximation structure, weak approximation operators, and Pawlak algebra in the framework of fuzzy lattice, lattice topology, and auxiliary ordering. First, we prove that the weak approximation operator space forms a complete distributive lattice. Then we study the properties of transitive closure of approximation operators and apply them to rough set theory. We also investigate molecule Pawlak algebra and obtain some related properties.
NASA Astrophysics Data System (ADS)
Matone, Marco
2016-11-01
Recently it has been introduced an algorithm for the Baker-Campbell-Hausdorff (BCH) formula, which extends the Van-Brunt and Visser recent results, leading to new closed forms of BCH formula. More recently, it has been shown that there are 13 types of such commutator algebras. We show, by providing the explicit solutions, that these include the generators of the semisimple complex Lie algebras. More precisely, for any pair, X, Y of the Cartan-Weyl basis, we find W, linear combination of X, Y, such that exp (X) exp (Y)=exp (W). The derivation of such closed forms follows, in part, by using the above mentioned recent results. The complete derivation is provided by considering the structure of the root system. Furthermore, if X, Y, and Z are three generators of the Cartan-Weyl basis, we find, for a wide class of cases, W, a linear combination of X, Y and Z, such that exp (X) exp (Y) exp (Z)=exp (W). It turns out that the relevant commutator algebras are type 1c-i, type 4 and type 5. A key result concerns an iterative application of the algorithm leading to relevant extensions of the cases admitting closed forms of the BCH formula. Here we provide the main steps of such an iteration that will be developed in a forthcoming paper.
Finite Element Based Structural Damage Detection Using Artificial Boundary Conditions
2007-09-01
C. (2005). Elementary Linear Algebra . New York: John Wiley and Sons. Avitable, Peter (2001, January) Experimental Modal Analysis, A Simple Non...variables under consideration. 3 Frequency sensitivities are the basis for a linear approximation to compute the change in the natural frequencies of a...THEORY The general problem statement for a non- linear constrained optimization problem is: To minimize ( )f x Objective Function Subject to
Control Strategies for Guided Collective Motion
2015-01-30
Control, Atlanta, GA, USA, December 2010, pp. 5468-5473. [19] C. Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition...work addresses and analyses deviated linear cyclic pursuit in which an Distribution Code A: Approved for public release, distribution is unlimited...Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and Asynchronous Heterogeneous Cyclic
Turbulence Model Predictions of Strongly Curved Flow in a U-Duct
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Gatski, Thomas B.; Morrison, Joseph H.
2000-01-01
The ability of three types of turbulence models to accurately predict the effects of curvature on the flow in a U-duct is studied. An explicit algebraic stress model performs slightly better than one- or two-equation linear eddy viscosity models, although it is necessary to fully account for the variation of the production-to-dissipation-rate ratio in the algebraic stress model formulation. In their original formulations, none of these turbulence models fully captures the suppressed turbulence near the convex wall, whereas a full Reynolds stress model does. Some of the underlying assumptions used in the development of algebraic stress models are investigated and compared with the computed flowfield from the full Reynolds stress model. Through this analysis, the assumption of Reynolds stress anisotropy equilibrium used in the algebraic stress model formulation is found to be incorrect in regions of strong curvature. By the accounting for the local variation of the principal axes of the strain rate tensor, the explicit algebraic stress model correctly predicts the suppressed turbulence in the outer part of the boundary layer near the convex wall.
Difficulties in initial algebra learning in Indonesia
NASA Astrophysics Data System (ADS)
Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja
2014-12-01
Within mathematics curricula, algebra has been widely recognized as one of the most difficult topics, which leads to learning difficulties worldwide. In Indonesia, algebra performance is an important issue. In the Trends in International Mathematics and Science Study (TIMSS) 2007, Indonesian students' achievement in the algebra domain was significantly below the average student performance in other Southeast Asian countries such as Thailand, Malaysia, and Singapore. This fact gave rise to this study which aims to investigate Indonesian students' difficulties in algebra. In order to do so, a literature study was carried out on students' difficulties in initial algebra. Next, an individual written test on algebra tasks was administered, followed by interviews. A sample of 51 grade VII Indonesian students worked the written test, and 37 of them were interviewed afterwards. Data analysis revealed that mathematization, i.e., the ability to translate back and forth between the world of the problem situation and the world of mathematics and to reorganize the mathematical system itself, constituted the most frequently observed difficulty in both the written test and the interview data. Other observed difficulties concerned understanding algebraic expressions, applying arithmetic operations in numerical and algebraic expressions, understanding the different meanings of the equal sign, and understanding variables. The consequences of these findings on both task design and further research in algebra education are discussed.
Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices
NASA Astrophysics Data System (ADS)
Polstyanko, Sergey V.; Lee, Jin-Fa
1998-03-01
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.
Styopin, Nikita E; Vershinin, Anatoly V; Zingerman, Konstantin M; Levin, Vladimir A
2016-09-01
Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
NASA Astrophysics Data System (ADS)
Chernyshov, A. D.; Goryainov, V. V.; Danshin, A. A.
2018-03-01
The stress problem for the elastic wedge-shaped cutter of finite dimensions with mixed boundary conditions is considered. The differential problem is reduced to the system of linear algebraic equations by applying twice the fast expansions with respect to the angular and radial coordinate. In order to determine the unknown coefficients of fast expansions, the pointwise method is utilized. The problem solution derived has explicit analytical form and it’s valid for the entire domain including its boundary. The computed profiles of the displacements and stresses in a cross-section of the cutter are provided. The stress field is investigated for various values of opening angle and cusp’s radius.
Lectures on algebraic system theory: Linear systems over rings
NASA Technical Reports Server (NTRS)
Kamen, E. W.
1978-01-01
The presentation centers on four classes of systems that can be treated as linear systems over a ring. These are: (1) discrete-time systems over a ring of scalars such as the integers; (2) continuous-time systems containing time delays; (3) large-scale discrete-time systems; and (4) time-varying discrete-time systems.
The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations
ERIC Educational Resources Information Center
Tahir, Salma; Cavanagh, Michael
2010-01-01
This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…
NASA Technical Reports Server (NTRS)
Packard, A. K.; Sastry, S. S.
1986-01-01
A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.
Three Interpretations of the Matrix Equation Ax = b
ERIC Educational Resources Information Center
Larson, Christine; Zandieh, Michelle
2013-01-01
Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…
Synthesizing Strategies Creatively: Solving Linear Equations
ERIC Educational Resources Information Center
Ponce, Gregorio A.; Tuba, Imre
2015-01-01
New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…
An Application of the Vandermonde Determinant
ERIC Educational Resources Information Center
Xu, Junqin; Zhao, Likuan
2006-01-01
Eigenvalue is an important concept in Linear Algebra. It is well known that the eigenvectors corresponding to different eigenvalues of a square matrix are linear independent. In most of the existing textbooks, this result is proven using mathematical induction. In this note, a new proof using Vandermonde determinant is given. It is shown that this…
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
Enlarged symmetry algebras of spin chains, loop models, and S-matrices
NASA Astrophysics Data System (ADS)
Read, N.; Saleur, H.
2007-08-01
The symmetry algebras of certain families of quantum spin chains are considered in detail. The simplest examples possess m states per site ( m⩾2), with nearest-neighbor interactions with U(m) symmetry, under which the sites transform alternately along the chain in the fundamental m and its conjugate representation m¯. We find that these spin chains, even with arbitrary coefficients of these interactions, have a symmetry algebra A much larger than U(m), which implies that the energy eigenstates fall into sectors that for open chains (i.e., free boundary conditions) can be labeled by j=0,1,…,L, for the 2 L-site chain such that the degeneracies of all eigenvalues in the jth sector are generically the same and increase rapidly with j. For large j, these degeneracies are much larger than those that would be expected from the U(m) symmetry alone. The enlarged symmetry algebra A(2L) consists of operators that commute in this space of states with the Temperley-Lieb algebra that is generated by the set of nearest-neighbor interaction terms; A(2L) is not a Yangian. There are similar results for supersymmetric chains with gl(m+n|n) symmetry of nearest-neighbor interactions, and a richer representation structure for closed chains (i.e., periodic boundary conditions). The symmetries also apply to the loop models that can be obtained from the spin chains in a spacetime or transfer matrix picture. In the loop language, the symmetries arise because the loops cannot cross. We further define tensor products of representations (for the open chains) by joining chains end to end. The fusion rules for decomposing the tensor product of representations labeled j and j take the same form as the Clebsch-Gordan series for SU(2). This and other structures turn the symmetry algebra A into a ribbon Hopf algebra, and we show that this is "Morita equivalent" to the quantum group U(sl) for m=q+q. The open-chain results are extended to the cases |m|<2 for which the algebras are no longer semisimple; these possess continuum limits that are critical (conformal) field theories, or massive perturbations thereof. Such models, for open and closed boundary conditions, arise in connection with disordered fermions, percolation, and polymers (self-avoiding walks), and certain non-linear sigma models, all in two dimensions. A product operation is defined in a related way for the Temperley-Lieb representations also, and the fusion rules for this are related to those for A or U(sl) representations; this is useful for the continuum limits also, as we discuss in a companion paper.
Algebraic approach to small-world network models
NASA Astrophysics Data System (ADS)
Rudolph-Lilith, Michelle; Muller, Lyle E.
2014-01-01
We introduce an analytic model for directed Watts-Strogatz small-world graphs and deduce an algebraic expression of its defining adjacency matrix. The latter is then used to calculate the small-world digraph's asymmetry index and clustering coefficient in an analytically exact fashion, valid nonasymptotically for all graph sizes. The proposed approach is general and can be applied to all algebraically well-defined graph-theoretical measures, thus allowing for an analytical investigation of finite-size small-world graphs.
Birman—Wenzl—Murakami Algebra and Topological Basis
NASA Astrophysics Data System (ADS)
Zhou, Cheng-Cheng; Xue, Kang; Wang, Gang-Cheng; Sun, Chun-Fang; Du, Gui-Jiao
2012-02-01
In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley—Lieb algebra (TLA), then a family of 9 × 9-matrix representations of Birman—Wenzl—Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.
Intuitionistic fuzzy n-fold KU-ideal of KU-algebra
NASA Astrophysics Data System (ADS)
Mostafa, Samy M.; Kareem, Fatema F.
2018-05-01
In this paper, we apply the notion of intuitionistic fuzzy n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionistic fuzzy closed ideal and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, a few results of intuitionistic fuzzy n-fold KU-ideals of a KU-algebra under homomorphism are discussed.
ERIC Educational Resources Information Center
Schultz, James E.; Waters, Michael S.
2000-01-01
Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)
Identifiability of large-scale non-linear dynamic network models applied to the ADM1-case study.
Nimmegeers, Philippe; Lauwers, Joost; Telen, Dries; Logist, Filip; Impe, Jan Van
2017-06-01
In this work, both the structural and practical identifiability of the Anaerobic Digestion Model no. 1 (ADM1) is investigated, which serves as a relevant case study of large non-linear dynamic network models. The structural identifiability is investigated using the probabilistic algorithm, adapted to deal with the specifics of the case study (i.e., a large-scale non-linear dynamic system of differential and algebraic equations). The practical identifiability is analyzed using a Monte Carlo parameter estimation procedure for a 'non-informative' and 'informative' experiment, which are heuristically designed. The model structure of ADM1 has been modified by replacing parameters by parameter combinations, to provide a generally locally structurally identifiable version of ADM1. This means that in an idealized theoretical situation, the parameters can be estimated accurately. Furthermore, the generally positive structural identifiability results can be explained from the large number of interconnections between the states in the network structure. This interconnectivity, however, is also observed in the parameter estimates, making uncorrelated parameter estimations in practice difficult. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Parand, K.; Latifi, S.; Moayeri, M. M.; Delkhosh, M.
2018-05-01
In this study, we have constructed a new numerical approach for solving the time-dependent linear and nonlinear Fokker-Planck equations. In fact, we have discretized the time variable with Crank-Nicolson method and for the space variable, a numerical method based on Generalized Lagrange Jacobi Gauss-Lobatto (GLJGL) collocation method is applied. It leads to in solving the equation in a series of time steps and at each time step, the problem is reduced to a problem consisting of a system of algebraic equations that greatly simplifies the problem. One can observe that the proposed method is simple and accurate. Indeed, one of its merits is that it is derivative-free and by proposing a formula for derivative matrices, the difficulty aroused in calculation is overcome, along with that it does not need to calculate the General Lagrange basis and matrices; they have Kronecker property. Linear and nonlinear Fokker-Planck equations are given as examples and the results amply demonstrate that the presented method is very valid, effective, reliable and does not require any restrictive assumptions for nonlinear terms.
Direct localization of poles of a meromorphic function from measurements on an incomplete boundary
NASA Astrophysics Data System (ADS)
Nara, Takaaki; Ando, Shigeru
2010-01-01
This paper proposes an algebraic method to reconstruct the positions of multiple poles in a meromorphic function field from measurements on an arbitrary simple arc in it. A novel issue is the exactness of the algorithm depending on whether the arc is open or closed, and whether it encloses or does not enclose the poles. We first obtain a differential equation that can equivalently determine the meromorphic function field. From it, we derive linear equations that relate the elementary symmetric polynomials of the pole positions to weighted integrals of the field along the simple arc and end-point terms of the arc when it is an open one. Eliminating the end-point terms based on an appropriate choice of weighting functions and a combination of the linear equations, we obtain a simple system of linear equations for solving the elementary symmetric polynomials. We also show that our algorithm can be applied to a 2D electric impedance tomography problem. The effects of the proximity of the poles, the number of measurements and noise on the localization accuracy are numerically examined.
Computational algebraic geometry of epidemic models
NASA Astrophysics Data System (ADS)
Rodríguez Vega, Martín.
2014-06-01
Computational Algebraic Geometry is applied to the analysis of various epidemic models for Schistosomiasis and Dengue, both, for the case without control measures and for the case where control measures are applied. The models were analyzed using the mathematical software Maple. Explicitly the analysis is performed using Groebner basis, Hilbert dimension and Hilbert polynomials. These computational tools are included automatically in Maple. Each of these models is represented by a system of ordinary differential equations, and for each model the basic reproductive number (R0) is calculated. The effects of the control measures are observed by the changes in the algebraic structure of R0, the changes in Groebner basis, the changes in Hilbert dimension, and the changes in Hilbert polynomials. It is hoped that the results obtained in this paper become of importance for designing control measures against the epidemic diseases described. For future researches it is proposed the use of algebraic epidemiology to analyze models for airborne and waterborne diseases.
Quantization of Poisson Manifolds from the Integrability of the Modular Function
NASA Astrophysics Data System (ADS)
Bonechi, F.; Ciccoli, N.; Qiu, J.; Tarlini, M.
2014-10-01
We discuss a framework for quantizing a Poisson manifold via the quantization of its symplectic groupoid, combining the tools of geometric quantization with the results of Renault's theory of groupoid C*-algebras. This setting allows very singular polarizations. In particular, we consider the case when the modular function is multiplicatively integrable, i.e., when the space of leaves of the polarization inherits a groupoid structure. If suitable regularity conditions are satisfied, then one can define the quantum algebra as the convolution algebra of the subgroupoid of leaves satisfying the Bohr-Sommerfeld conditions. We apply this procedure to the case of a family of Poisson structures on , seen as Poisson homogeneous spaces of the standard Poisson-Lie group SU( n + 1). We show that a bihamiltonian system on defines a multiplicative integrable model on the symplectic groupoid; we compute the Bohr-Sommerfeld groupoid and show that it satisfies the needed properties for applying Renault theory. We recover and extend Sheu's description of quantum homogeneous spaces as groupoid C*-algebras.
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
Enhanced asymptotic symmetry algebra of (2 +1 ) -dimensional flat space
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Riegler, Max
2017-02-01
In this paper we present a new set of asymptotic boundary conditions for Einstein gravity in (2 +1 ) -dimensions with a vanishing cosmological constant that are a generalization of the Barnich-Compère boundary conditions [G. Barnich and G. Compere, Classical Quantum Gravity 24, F15 (2007), 10.1088/0264-9381/24/5/F01]. These new boundary conditions lead to an asymptotic symmetry algebra that is generated by a bms3 algebra and two affine u ^(1 ) current algebras. We then apply these boundary conditions to topologically massive gravity (TMG) and determine how the presence of the gravitational Chern-Simons term affects the central extensions of the asymptotic symmetry algebra. We furthermore determine the thermal entropy of solutions obeying our new boundary conditions for both Einstein gravity and TMG.
Plethystic vertex operators and boson-fermion correspondences
NASA Astrophysics Data System (ADS)
Fauser, Bertfried; Jarvis, Peter D.; King, Ronald C.
2016-10-01
We study the algebraic properties of plethystic vertex operators, introduced in (2010 J. Phys. A: Math. Theor. 43 405202), underlying the structure of symmetric functions associated with certain generalized universal character rings of subgroups of the general linear group, defined to stabilize tensors of Young symmetry type characterized by a partition of arbitrary shape π. Here we establish an extension of the well-known boson-fermion correspondence involving Schur functions and their associated (Bernstein) vertex operators: for each π, the modes generated by the plethystic vertex operators and their suitably constructed duals, satisfy the anticommutation relations of a complex Clifford algebra. The combinatorial manipulations underlying the results involve exchange identities exploiting the Hopf-algebraic structure of certain symmetric function series and their plethysms.
Directed Abelian algebras and their application to stochastic models.
Alcaraz, F C; Rittenberg, V
2008-10-01
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma_(tau)=32 ). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma_(tau)=1.780+/-0.005 .
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-01-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
A look at scalable dense linear algebra libraries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.
1992-08-01
We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less
Effective quadrature formula in solving linear integro-differential equations of order two
NASA Astrophysics Data System (ADS)
Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.
2017-08-01
In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.
Bayesian least squares deconvolution
NASA Astrophysics Data System (ADS)
Asensio Ramos, A.; Petit, P.
2015-11-01
Aims: We develop a fully Bayesian least squares deconvolution (LSD) that can be applied to the reliable detection of magnetic signals in noise-limited stellar spectropolarimetric observations using multiline techniques. Methods: We consider LSD under the Bayesian framework and we introduce a flexible Gaussian process (GP) prior for the LSD profile. This prior allows the result to automatically adapt to the presence of signal. We exploit several linear algebra identities to accelerate the calculations. The final algorithm can deal with thousands of spectral lines in a few seconds. Results: We demonstrate the reliability of the method with synthetic experiments and we apply it to real spectropolarimetric observations of magnetic stars. We are able to recover the magnetic signals using a small number of spectral lines, together with the uncertainty at each velocity bin. This allows the user to consider if the detected signal is reliable. The code to compute the Bayesian LSD profile is freely available.
On buffer overflow duration in a finite-capacity queueing system with multiple vacation policy
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-buffer queueing system with Poisson arrivals and generally distributed processing times, operating under multiple vacation policy, is considered. Each time when the system becomes empty, the service station takes successive independent and identically distributed vacation periods, until, at the completion epoch of one of them, at least one job waiting for service is detected in the buffer. Applying analytical approach based on the idea of embedded Markov chain, integral equations and linear algebra, the compact-form representation for the cumulative distribution function (CDF for short) of the first buffer overflow duration is found. Hence, the formula for the CDF of next such periods is obtained. Moreover, probability distributions of the number of job losses in successive buffer overflow periods are found. The considered queueing system can be efficienly applied in modelling energy saving mechanisms in wireless network communication.
A proof for loop-law constraints in stoichiometric metabolic networks
2012-01-01
Background Constraint-based modeling is increasingly employed for metabolic network analysis. Its underlying assumption is that natural metabolic phenotypes can be predicted by adding physicochemical constraints to remove unrealistic metabolic flux solutions. The loopless-COBRA approach provides an additional constraint that eliminates thermodynamically infeasible internal cycles (or loops) from the space of solutions. This allows the prediction of flux solutions that are more consistent with experimental data. However, it is not clear if this approach over-constrains the models by removing non-loop solutions as well. Results Here we apply Gordan’s theorem from linear algebra to prove for the first time that the constraints added in loopless-COBRA do not over-constrain the problem beyond the elimination of the loops themselves. Conclusions The loopless-COBRA constraints can be reliably applied. Furthermore, this proof may be adapted to evaluate the theoretical soundness for other methods in constraint-based modeling. PMID:23146116
Implicity restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations
NASA Technical Reports Server (NTRS)
Sorensen, Danny C.
1996-01-01
Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.
Design of Linear Quadratic Regulators and Kalman Filters
NASA Technical Reports Server (NTRS)
Lehtinen, B.; Geyser, L.
1986-01-01
AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.
Prediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Gatski, Thomas B.
2000-01-01
Three-dimensional transonic flow over a delta wing is investigated with a focus on the effect of transition and influence of turbulence stress anisotropies. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition or are fully turbulent are performed. To assess the effect of the turbulent stress anisotropy, comparisons are made between predictions from the algebraic stress model and the linear eddy viscosity models. Both transition location and turbulent stress anisotropy significantly affect the 3D flow field. The most significant effect is found to be the modeling of transition location. At a Mach number of 0.90, the computed solution changes character from steady to unsteady depending on transition onset. Accounting for the anisotropies in the turbulent stresses also considerably impacts the flow, most notably in the outboard region of flow separation.
Generalizing a Categorization of Students' Interpretations of Linear Kinematics Graphs
ERIC Educational Resources Information Center
Bollen, Laurens; De Cock, Mieke; Zuza, Kristina; Guisasola, Jenaro; van Kampen, Paul
2016-01-01
We have investigated whether and how a categorization of responses to questions on linear distance-time graphs, based on a study of Irish students enrolled in an algebra-based course, could be adopted and adapted to responses from students enrolled in calculus-based physics courses at universities in Flanders, Belgium (KU Leuven) and the Basque…
Insights into the School Mathematics Tradition from Solving Linear Equations
ERIC Educational Resources Information Center
Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth
2015-01-01
In this article, we explore how the solving of linear equations is represented in English-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…
The Effects of Multiple Linked Representations on Students' Learning of Linear Relationships
ERIC Educational Resources Information Center
Ozgun-Koca, S. Asli
2004-01-01
The focus of this study was on comparing three groups of Algebra I 9th-year students: one group using linked representation software, the second group using similar software but with semi-linked representations, and the control group in order to examine the effects on students' understanding of linear relationships. Data collection methods…
ERIC Educational Resources Information Center
Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.
This text presents lessons relating specific mathematical concepts to the ideas, skills, and tasks pertinent to the health care field. Among other concepts covered are linear functions, vectors, trigonometry, and statistics. Many of the lessons use data acquired during science experiments as the basis for exercises in mathematics. Lessons present…
Linear and Quadratic Change: A Problem from Japan
ERIC Educational Resources Information Center
Peterson, Blake E.
2006-01-01
In the fall of 2003, the author conducted research on the student teaching process in Japan. The basis for most of the lessons observed was rich mathematics problems. Upon returning to the US, the author used one such problem while teaching an algebra 2 class. This article introduces that problem, which gives rise to both linear and quadratic…
Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations
ERIC Educational Resources Information Center
Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln
2007-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…
ERIC Educational Resources Information Center
Dobbs, David E.
2012-01-01
This note explains how Emil Artin's proof that row rank equals column rank for a matrix with entries in a field leads naturally to the formula for the nullity of a matrix and also to an algorithm for solving any system of linear equations in any number of variables. This material could be used in any course on matrix theory or linear algebra.
Studies in Mathematics, Volume X. Applied Mathematics in the High School.
ERIC Educational Resources Information Center
Schiffer, Max M.
This publication contains a sequence of lectures given to high school mathematics teachers by the author. Applications of mathematics emphasized are elementary algebra, geometry, and matrix algebra. Included are: (1) an introduction concerning teaching applications of mathematics; (2) Chapter 1: Mechanics for the High School Student; (3) Chapter…
Hungry for Early Spatial and Algebraic Reasoning
ERIC Educational Resources Information Center
Cross, Dionne I.; Adefope, Olufunke; Lee, Mi Yeon; Perez, Arnulfo
2012-01-01
Tasks that develop spatial and algebraic reasoning are crucial for learning and applying advanced mathematical ideas. In this article, the authors describe how two early childhood teachers used stories as the basis for a unit that supports spatial reasoning in kindergartners and first graders. Having mathematical experiences that go beyond…
Opening the Door on Triangular Numbers
ERIC Educational Resources Information Center
McMartin, Kimberley; McMaster, Heather
2016-01-01
As an alternative to looking solely at linear functions, a three-lesson learning progression developed for Year 6 students that incorporates triangular numbers to develop children's algebraic thinking is described and evaluated.
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.
NASA Astrophysics Data System (ADS)
Nordtvedt, Kenneth
2018-01-01
In the author's previous publications, a recursive linear algebraic method was introduced for obtaining (without gravitational radiation) the full potential expansions for the gravitational metric field components and the Lagrangian for a general N-body system. Two apparent properties of gravity— Exterior Effacement and Interior Effacement—were defined and fully enforced to obtain the recursive algebra, especially for the motion-independent potential expansions of the general N-body situation. The linear algebraic equations of this method determine the potential coefficients at any order n of the expansions in terms of the lower-order coefficients. Then, enforcing Exterior and Interior Effacement on a selecedt few potential series of the full motion-independent potential expansions, the complete exterior metric field for a single, spherically-symmetric mass source was obtained, producing the Schwarzschild metric field of general relativity. In this fourth paper of this series, the complete spatial metric's motion-independent potentials for N bodies are obtained using enforcement of Interior Effacement and knowledge of the Schwarzschild potentials. From the full spatial metric, the complete set of temporal metric potentials and Lagrangian potentials in the motion-independent case can then be found by transfer equations among the coefficients κ( n, α) → λ( n, ɛ) → ξ( n, α) with κ( n, α), λ( n, ɛ), ξ( n, α) being the numerical coefficients in the spatial metric, the Lagrangian, and the temporal metric potential expansions, respectively.
1986-05-01
league baseball playoffs 106. World Series 116. Which of the following mathematics 107. NBA basketball and technical courses, if any, did you take and pass...baseball playoffs 94. World Series (Mark all that apply) 95. NBA bdsketball A. Elementary Algebra B. Plane Geometry e 96. College basketball C...in high school? 108. College basketball (Mark all that apply) 109. NHL hockey A. Elementary Algebra 110. Professional wrestling S. Plane Geometry C
Control Strategies for Guided Collective Motion
2015-02-27
Rorres and H. Anton , “ Elementary linear algebra applications version,” 9th Edition, Wiley India Pvt. Ltd., 2011. [20] S.H. Strogatz, “From Kuramoto to... linear cyclic pursuit in which an agent pursues its leader with an angle of deviation. The sufficient conditions for the stability of such systems are...Generalized Hierarchical Cyclic Pursuit 6. D. Mukherjee and D. Ghose: Deviated Linear Cyclic Pursuit 7. D. Mukherjee and D. Ghose; On Synchronous and
Discrete Methods and their Applications
1993-02-03
problem of finding all near-optimal solutions to a linear program. In paper [18], we give a brief and elementary proof of a result of Hoffman [1952) about...relies only on linear programming duality; second, we obtain geometric and algebraic representations of the bounds that are determined explicitly in...same. We have studied the problem of finding the minimum n such that a given unit interval graph is an n--graph. A linear time algorithm to compute
1976-06-01
United States Naval Postgraduate School, Monterey , California, 1974. 6. Anton , H., Elementary Linear Algebra , John Wiley & Sons, 1973. 7. Parrat, L. G...CONVERTER ln(laser & bias) PULSE HEIGHT ANALYZER © LINEAR AMPLIFIER SAMPLE TRIGGER OSCILLATOR early ln(laser & bias) SCINTILLOMETERS recent BACKGROUND...DEMODULATOR LASER CALIBRATION BOX LASER OR CAL VOLTAGE LOG CONVERTER LN (LASER OR CAL VOLT) LINEAR AMPLIFIER uLN (LASER OR CAL VOLT) PULSE HEIGHTEN ANALYZER V
An improved error bound for linear complementarity problems for B-matrices.
Gao, Lei; Li, Chaoqian
2017-01-01
A new error bound for the linear complementarity problem when the matrix involved is a B -matrix is presented, which improves the corresponding result in (Li et al. in Electron. J. Linear Algebra 31(1):476-484, 2016). In addition some sufficient conditions such that the new bound is sharper than that in (García-Esnaola and Peña in Appl. Math. Lett. 22(7):1071-1075, 2009) are provided.
SD-CAS: Spin Dynamics by Computer Algebra System.
Filip, Xenia; Filip, Claudiu
2010-11-01
A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jongen, T.; Machiels, L.; Gatski, T. B.
1997-01-01
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coriolis-modified eddy-viscosity model, a realizable algebraic stress model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the turbulent model validation. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.
Rational solutions of CYBE for simple compact real Lie algebras
NASA Astrophysics Data System (ADS)
Pop, Iulia; Stolin, Alexander
2007-04-01
In [A.A. Stolin, On rational solutions of Yang-Baxter equation for sl(n), Math. Scand. 69 (1991) 57-80; A.A. Stolin, On rational solutions of Yang-Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533-548; A. Stolin, A geometrical approach to rational solutions of the classical Yang-Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347-357] a theory of rational solutions of the classical Yang-Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u,v)={Ω}/{u-v}+t1∧t2+⋯+t∧t2n, where Ω denotes the quadratic Casimir element of g and {ti} are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.
NASA Astrophysics Data System (ADS)
Hardiani, N.; Budayasa, I. K.; Juniati, D.
2018-01-01
The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.
Final Report: Subcontract B623868 Algebraic Multigrid solvers for coupled PDE systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannick, J.
The Pennsylvania State University (“Subcontractor”) continued to work on the design of algebraic multigrid solvers for coupled systems of partial differential equations (PDEs) arising in numerical modeling of various applications, with a main focus on solving the Dirac equation arising in Quantum Chromodynamics (QCD). The goal of the proposed work was to develop combined geometric and algebraic multilevel solvers that are robust and lend themselves to efficient implementation on massively parallel heterogeneous computers for these QCD systems. The research in these areas built on previous works, focusing on the following three topics: (1) the development of parallel full-multigrid (PFMG) andmore » non-Galerkin coarsening techniques in this frame work for solving the Wilson Dirac system; (2) the use of these same Wilson MG solvers for preconditioning the Overlap and Domain Wall formulations of the Dirac equation; and (3) the design and analysis of algebraic coarsening algorithms for coupled PDE systems including Stokes equation, Maxwell equation and linear elasticity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, J.A.
This report is a sequel to ORNL/CSD-96 in the ongoing supplements to Professor A.S. Householder's KWIC Index for Numerical Algebra. With this supplement, the coverage has been restricted to Numerical Linear Algebra and is now roughly characterized by the American Mathematical Society's classification section 15 and 65F but with little coverage of inifinite matrices, matrices over fields of characteristics other than zero, operator theory, optimization and those parts of matrix theory primarily combinatorial in nature. Some recognition is made of the uses of graph theory in Numerical Linear Algebra, particularly as regards their use in algorithms for sparse matrix computations.more » The period covered by this report is roughly the calendar year 1981 as measured by the appearance of the articles in the American Mathematical Society's Contents of Mathematical Publications. The review citations are limited to the Mathematical Reviews (MR) and Das Zentralblatt fur Mathematik und Ihre Grenzgebiete (ZBL). Future reports will be made more timely by closer ovservation of the few journals which supply the bulk of the listings rather than what appears to be too much reliance on secondary sources. Some thought is being given to the physical appearance of these reports and the author welcomes comments concerning both their appearance and contents.« less
Algebraic solutions of shape-invariant position-dependent effective mass systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk
2016-06-15
Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less
Computer Classification of Triangles and Quadrilaterals--A Challenging Application
ERIC Educational Resources Information Center
Dennis, J. Richard
1978-01-01
Two computer exercises involving the classification of geometric figures are given. The mathematics required is relatively simple but comes from several areas--synthetic geometry, analytic geometry, and linear algebra. (MN)
Diagnosing students' misconceptions in algebra: results from an experimental pilot study.
Russell, Michael; O'Dwyer, Laura M; Miranda, Helena
2009-05-01
Computer-based diagnostic assessment systems hold potential to help teachers identify sources of poor performance and to connect teachers and students to learning activities designed to help advance students' conceptual understandings. The present article presents findings from a study that examined how students' performance in algebra and their overcoming of common algebraic misconceptions were affected by the use of a diagnostic assessment system that focused on important algebra concepts. This study used a four-group randomized cluster trial design in which teachers were assigned randomly to one of four groups: a "business as usual" control group, a partial intervention group that was provided with access to diagnostic tests results, a partial intervention group that was provided with access to the learning activities, and a full intervention group that was given access to the test results and learning activities. Data were collected from 905 students (6th-12th grade) nested within 44 teachers. We used hierarchical linear modeling techniques to compare the effects of full, partial, and no (control) intervention on students' algebraic ability and misconceptions. The analyses indicate that full intervention had a net positive effect on ability and misconception measures.
Alphan, Hakan
2011-11-01
The aim of this study is to compare various image algebra procedures for their efficiency in locating and identifying different types of landscape changes on the margin of a Mediterranean coastal plain, Cukurova, Turkey. Image differencing and ratioing were applied to the reflective bands of Landsat TM datasets acquired in 1984 and 2006. Normalized Difference Vegetation index (NDVI) and Principal Component Analysis (PCA) differencing were also applied. The resulting images were tested for their capacity to detect nine change phenomena, which were a priori defined in a three-level classification scheme. These change phenomena included agricultural encroachment, sand dune afforestation, coastline changes and removal/expansion of reed beds. The percentage overall accuracies of different algebra products for each phenomenon were calculated and compared. The results showed that some of the changes such as sand dune afforestation and reed bed expansion were detected with accuracies varying between 85 and 97% by the majority of the algebra operations, while some other changes such as logging could only be detected by mid-infrared (MIR) ratioing. For optimizing change detection in similar coastal landscapes, underlying causes of these changes were discussed and the guidelines for selecting band and algebra operations were provided. Copyright © 2011 Elsevier Ltd. All rights reserved.
An LMI approach for the Integral Sliding Mode and H∞ State Feedback Control Problem
NASA Astrophysics Data System (ADS)
Bezzaoucha, Souad; Henry, David
2015-11-01
This paper deals with the state feedback control problem for linear uncertain systems subject to both matched and unmatched perturbations. The proposed control law is based on an the Integral Sliding Mode Control (ISMC) approach to tackle matched perturbations as well as the H∞ paradigm for robustness against unmatched perturbations. The proposed method also parallels the work presented in [1] which addressed the same problem and proposed a solution involving an Algebraic Riccati Equation (ARE)-based formulation. The contribution of this paper is concerned by the establishment of a Linear Matrix Inequality (LMI)-based solution which offers the possibility to consider other types of constraints such as 𝓓-stability constraints (pole assignment-like constraints). The proposed methodology is applied to a pilot three-tank system and experiment results illustrate the feasibility. Note that only a few real experiments have been rarely considered using SMC in the past. This is due to the high energetic behaviour of the control signal. It is important to outline that the paper does not aim at proposing a LMI formulation of an ARE. This is done since 1971 [2] and further discussed in [3] where the link between AREs and ARIs (algebraic Riccati inequality) is established for the H∞ control problem. The main contribution of this paper is to establish the adequate LMI-based methodology (changes of matrix variables) so that the ARE that corresponds to the particular structure of the mixed ISMC/H∞ structure proposed by [1] can be re-formulated within the LMI paradigm.