Science.gov

Sample records for applied optics warsaw

  1. Diffractometry and scatterometry at the Institute of Applied Optics, Warsaw

    NASA Astrophysics Data System (ADS)

    Daszkiewicz, Marek

    1994-10-01

    The last 25 years of activity of the Wasaw Institute of Applied Optics (Instytut Optyki Stosowanej - IOS) (formerly Central Optical Laboratory) in diffractometry and scatterometry is presented. The methods of investigations and different types of apparatuses (especially diffractometers) developed in IOS are described. Examples of practical applications of diffractometry and scatterometry are shown.

  2. Optical and microphysical properties of mineral dust and biomass burning aerosol observed over Warsaw on 10th July 2013

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona; Veselovskii, Igor; Baars, Holger

    2016-04-01

    Biomass burning aerosol originating from Canadian forest fires was widely observed over Europe in July 2013. Favorable weather conditions caused long-term westward flow of smoke from Canada to Western and Central Europe. During this period, PollyXT lidar of the University of Warsaw took wavelength dependent measurements in Warsaw. On July 10th short event of simultaneous advection of Canadian smoke and Saharan dust was observed at different altitudes over Warsaw. Different origination of both air masses was indicated by backward trajectories from HYSPLIT model. Lidar measurements performed with various wavelength (1064, 532, 355 nm), using also Raman and depolarization channels for VIS and UV allowed for distinguishing physical differences of this two types of aerosols. Optical properties acted as input for retrieval of microphysical properties. Comparisons of microphysical and optical properties of biomass burning aerosols and mineral dust observed will be presented.

  3. Sport and Other Motor Activities of Warsaw Students

    ERIC Educational Resources Information Center

    Biernat, Elzbieta

    2011-01-01

    Study aim: To assess the engagement of students of Warsaw university schools in sports and in recreational motor activities. Material and methods: A cohort (n = 1100) of students attending B.S. or M.S. courses at 6 university schools in Warsaw were studied by applying questionnaire techniques. The questions pertained to participation in…

  4. NATO-Warsaw Pact

    SciTech Connect

    Not Available

    1988-12-01

    The North Atlantic Treaty Organization's peacetime deterrent position is good, and its conventional capabilities have improved over the last decade but they should be better says the Conventional Defense Study Group. It discussed the many factors NATO's success or failure would depend on and concluded that neither side has such an overwhelming advantage that victory is assured for one or the other. Although most scenarios favor the Warsaw Pact as the victor rather than NATO, group participants believe that Warsaw Pact forces might not have a substantial advantage in manpower or division strength in a short-preparation or medium warning attack. Some suggested solutions to improving NATO's conventional capabilities are discussed. They include the following: encouraging Europeans to assume greater responsibility for their defense, such as creating physical barriers to delay a Warsaw Pact advance; increasing emphasis on conventional war-fighting in Nato planning; using dumb weapons to conserve limited stocks of smart munitions; and using arms control measures, either reciprocal or negotiated, to reduce troop size.

  5. [Determinants of migration to Warsaw].

    PubMed

    Kucinski, K; Rakowski, W

    1990-01-01

    The authors examine trends and determinants of internal migration to Warsaw, Poland. Consideration is given to occupational and socioeconomic status of migrants, rural-urban migration, and effects of migration on marriage. (SUMMARY IN ENG AND RUS)

  6. NATO-Warsaw Pact

    SciTech Connect

    Not Available

    1990-04-01

    If proposals to reduce conventional forces and equipment in Europe are adopted, how much of a peace dividend will the United States and its NATO allies reap This report discussed how GAO looked at the savings associated with a conventional forces reduction treaty and found that only a limited NATO peace dividend will result directly from the treaty proposals. Further, this dividend will not be shared equally by all NATO allies. Under the treaty, only the United States and the Soviet Union are required to make troop cuts. U.S. savings would result from the DOD decision to reduce the total number of its forces rather than simply relocate personnel from Europe. Implementing a Conventional Armed Forces in Europe treaty will be a complex task that will result in all NATO allies incurring certain costs. For example, verifying compliance with the treaty may require extensive NATO inspection and monitoring of Warsaw Pact force levels and treaty-limited equipment. NATO will incur additional costs in complying with treaty provisions that require the destruction of many conventional weapons.

  7. Hermann Mooser, Typhus, Warsaw 1941.

    PubMed

    Lindenmann, Jean

    2002-01-01

    Hermann Mooser (1891-1971), a Swiss rickettsiologist, sent his friend Peyton Rous (1879-1970) of the Rockefeller Institute (New York) a telegram on November 3, 1941, asking for financial help for the manufacture of typhus vaccine in Zurich for the Warsaw Ghetto. His explanatory letter from November 4 reached Rous too late to have any influence on the negative decision (by the Rockefeller Foundation and the American Red Cross) in this matter. Contrary to Weindling's affirmation Mooser was neither in Warsaw in 1941, nor was he a member of the Swiss Sanitary Missions to the eastern front.

  8. Applied optics to engineering photonics: a retrospective

    NASA Astrophysics Data System (ADS)

    Tatam, Ralph P.

    2011-12-01

    This paper provides a short overview of the time I spent as a member of the Applied Optics Group at the University of Kent (1985-1989) followed by a review of my research during my time at Cranfield University (1989 to date).

  9. NATO-Warsaw Pact. Force mobilization

    SciTech Connect

    Simon, J.

    1988-01-01

    Recent demographic and economic trends present mobilization problems for both the North Atlantic Treaty Organization and the Warsaw Pact. When the United States and the Soviet Union agreed to rid Europe of intermediate-range nuclear weapons, their agreement increased the emphasis on conventional force balances-thus creating anew strains within and between the alliances. These developments make the time ripe for a comprehensive study of NATO and Warsaw Pact capabilities to mobilize their conventional forces. This book draws upon essays prepared for the NATO-Warsaw Pact conference. In these essays, Us and European specialists discuss developments and vulnerabilities in the blocs. They address four issues: (1) mobilization and reinforcement, (2) developments in front-line states, (3) communications and transportation problems, and (4) difficulties on the flanks. These individual studies and the book as a whole represent the most current and thorough examination of NATO-Warsaw Pact capabilities available today.

  10. Thermal conditions of Warsaw botanical gardens

    NASA Astrophysics Data System (ADS)

    Baranowski, Jarosław; Adamczyk, Anna

    2011-01-01

    The aim of the paper is to present the air temperature differences in Warsaw over the period 1951-1998 between different city structures: botanical gardens in the city centre and of suburban location, compact development in the city center and the suburbs. The trend of growing yearly mean air temperature in Warsaw was confirmed. The air temperature in the botanical garden in the city centre is of 0.4°C higher than outside the city. However, the thermal regime of the botanical garden in Powsin (which is of peripheral location) does not differ from rural conditions.

  11. Applied physics: Optical trapping for space mirrors.

    PubMed

    McGloin, David

    2014-02-27

    Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.

  12. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  13. Optical high-performance computing: introduction to the JOSA A and Applied Optics feature.

    PubMed

    Caulfield, H John; Dolev, Shlomi; Green, William M J

    2009-08-01

    The feature issues in both Applied Optics and the Journal of the Optical Society of America A focus on topics of immediate relevance to the community working in the area of optical high-performance computing.

  14. (Optical characterization techniques applied to ceramic oxides)

    SciTech Connect

    Abraham, M.M.

    1990-10-15

    The traveler collaborated with M.J.M. Leask, J.M. Baker, B. Bleaney, and others at the Clarendon Laboratory, Oxford University, Oxford, UK, to Study Tetragonal rare-earth phosphates and vanadates by optical and magnetic spectroscopy. This work is related to similar studies that have been performed at ORNL by the Synthesis and Properties of Novel Materials Group in the Solid State Division.

  15. Optical correlator techniques applied to robotic vision

    NASA Technical Reports Server (NTRS)

    Hine, Butler P., III; Reid, Max B.; Downie, John D.

    1991-01-01

    Vision processing is one of the most computationally intensive tasks required of an autonomous robot. The data flow from a single typical imaging sensor is roughly 60 Mbits/sec, which can easily overload current on-board processors. Optical correlator-based processing can be used to perform many of the functions required of a general robotic vision system, such as object recognition, tracking, and orientation determination, and can perform these functions fast enough to keep pace with the incoming sensor data. We describe a hybrid digital electronic/analog optical robotic vision processing system developed at Ames Research Center to test concepts and algorithms for autonomous construction, inspection, and maintenance of space-based habitats. We discuss the system architecture design and implementation, its performance characteristics, and our future plans. In particular, we compare the performance of the system to a more conventional all digital electronic system developed concurrently. The hybrid system consistently outperforms the digital electronic one in both speed and robustness.

  16. Teaching applied optics at the Univ. of Minho

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1995-10-01

    In this communication we make a brief presentation of the branch of Applied Optics of the University of Mihno's undergraduate course of Applied Physics. The course of Applied Physics began in the year 1988/89. Previously we had just a course devoted to the formation of future physics and chemistry teachers at high school level. The Applied Physics course specialized in Optics appeared due to the growth of the physics department and due to request from the industry. The Applied Physics course has two specialization's on the field of applied optics: Optometry; and Optics and Lasers. The topics covered in the two first years of the course ar common to the two branches. On the second semester of the third year the students must choose between either one. The number of students on the Optometry branch was usually almost four times the number of Applied Optics and Lasers students. Nevertheless this tendency is rapidly changing. A short analysis of the result obtained will be presented focusing on last couple of years' advances. Presented will also be the results of an inquest made on students's opinions about the quality of the course, and their own performance and expectations.

  17. Trends in optical coherence tomography applied to medical imaging

    NASA Astrophysics Data System (ADS)

    Podoleanu, Adrian G.

    2014-01-01

    The number of publications on optical coherence tomography (OCT) continues to double every three years. Traditionally applied to imaging the eye, OCT is now being extended to fields outside ophthalmology and optometry. Widening its applicability, progress in the core engine of the technology, and impact on development of novel optical sources, make OCT a very active and rapidly evolving field. Trends in the developments of different specific devices, such as optical sources, optical configurations and signal processing will be presented. Encompassing studies on both the configurations as well as on signal processing themes, current research in Kent looks at combining spectral domain with time domain imaging for long axial range and simultaneous imaging at several depths. Results of the collaborative work of the Applied Optics Group in Kent with organisers of this conference will be presented, with reference to 3D monitoring of abfraction.

  18. Applied study of optical interconnection link in computer cluster

    NASA Astrophysics Data System (ADS)

    Zhou, Ge; Tian, Jindong; Zhang, Nan; Jing, Wencai; Li, Haifeng

    2000-10-01

    In this paper, some study results to apply fiber link to a computer cluster are presented. The research is based on a ring network topology for a cluster system, which is connected by gigabit/s virtual parallel optical fiber link (VPOFLink) and its driver is for Linux Operating System, the transmission protocol of VPOFLink is compliant with Ethernet standard. We have studied the effect of different types of motherboard on transmission rate of the VPOFLink, and have analyzed the influence of optical interconnection network topology and computer networks protocol on the performance of this optical interconnection computer cluster. The round-trip transmission bandwidth of the VPOFLink have been tested, and the factors that limit transmission bandwidth, such as modes of forwarding data packets in the optical interconnection ring networks, and the size of the link buffer etc., are investigated.

  19. Studies on integrated optics at the State Institute of Applied Optics Scientific Manufacturing Organization

    NASA Astrophysics Data System (ADS)

    Mirumyants, S. O.; Pryakhin, Yu. A.

    1994-02-01

    This paper gives a brief history of how reseach and development in integrated optics has evolved and progressed at the State Institute of Applied Optics Scientific Manufacturing Organization. Systems developed for basic integrated-optics modules in the 0.5-5 micrometer spectral range are presented, and it is shown that they can be used, in particular, to detect laser radiation and to create miniature high-frequency sensors of wavefront normals, of linear displacements, and of rotation angle and rate.

  20. [Demographic projections for Warsaw voivodship to the year 2000].

    PubMed

    Kondrat, W; Rakowski, W

    1989-01-01

    The authors present population projections to the year 2000 for the voivodship of Warsaw, Poland. Consideration is given to natural increase and migration. Some recommendations for future social and economic policies are made. (SUMMARY IN ENG AND RUS)

  1. Stefanie jablonska, the iron lady of warsaw

    PubMed

    Thivolet

    1999-12-01

    Among the founders of immuno-dermatology, a prominent place is occupied by Stefanie Jablonska, Professor of Dermatology in Warsaw. Despite all the difficulties which her country has known, she has been able to work, train many students, travel the whole world over and survive all the crises. She is always on the go and the years have left no mark on her. From the time of my nomination as Professor of Dermatology I had occasion to see her at the Hopital St-Louis where the monthly meetings united many French and foreign dermatologists. From our first contact we got on well. She attended certain of my lectures, criticized with interest and supported the beginnings of my career. She believed that dermatology could no longer be content with clinical description, which was where the French reputation in dermatology lay. It was now necessary to give a larger role to biological research. And this is what I tried to do in adding a research laboratory to the clinical service I directed.

  2. Polarization-sensitive optical coherence tomography applied to intervertebral disk

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, Peter; Gangnus, Sergei V.

    2003-07-01

    Polarization-sensitive optical coherence tomography (PSOCT) is a powerful new optical imaging modality that is sensitive to the birefringence properties of tissues. It thus has potential applications in studying the large-scale ordering of collagen fibers within connective tisues and changes related to pathology. As a tissue for study by PSOCT, intervertebral disk respresents an interesting system as the collagen organization is believed to show pronounced variations with depth, on a spatial scale of about 100 μm. We have used a polarization-sensitive optical coherence tomography system to measure the birefringence properties of bovine caudal intervertebral disk and compared this with equine flexor tendon. The result for equine tendon, δ = (3.0 +/- 0.5)x10-3 at 1.3 μm, is in broad agreement with values reported for bovine tendon, while bovine intervertebral disk displays a birefringence of about half this, δ = 1.2 x 10-3 at 1.3 μm. While tendon appears to show a uniform fast-axis over 0.8 mm depth, intervertebral disk shows image contrast at all orientations relative to a linearly polarized input beam, suggesting a variation in fast-axis orientation with depth. These initial results suggest that PSOCT could be a useful tool to study collagen organization within this tissue and its variation with applied load and disease.

  3. Understanding and applying open-path optical sensing data

    NASA Astrophysics Data System (ADS)

    Virag, Peter; Kricks, Robert J.

    1999-02-01

    During the last 10 years, open-path air monitors have evolved to yield reliable and effective measurements of single and multiple compounds on a real-time basis. To many individuals within the optical remote sensing community, the attributes of open-path and its the potential uses seem unlimited. Then why has the market has been stagnant for the last few years? The reason may center on how open-path information is applied and how well the end user understands that information. We constantly try to compare open-path data to risk/health or safety levels that are based for use at a single point and for a specific averaging period often far longer than a typical open-path data point. Often this approach is perceived as putting a square peg in a round hole. This perception may be well founded, as open-path data at times may need to go through extensive data manipulation and assumptions before it can be applied. This paper will review pervious open-path monitoring programs and their success in applying the data collected. We will also look at how open-path data is being currently used, some previous pitfalls in data use, alternate methods of data interpretation, and how open-path data can be best practically applied to fit current needs.

  4. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  5. Lidar Measurements of Canadian Forest Fire Smoke Episode Observed in July 2013 over Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Janicka, Lucja; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Baars, Holger; Engelmann, Ronny; Heese, Birgit

    2016-06-01

    This paper presents a preliminary study of aerosol optical properties of air-mass advected on 10th July 2013 from Canada above Warsaw, Poland, during the forest fire event that occurred in Quebec at the beginning of July 2013. The observations were conducted with use of the modern version of 8-channel PollyXT lidar capable of measuring at 3β+2α+2δ+VW and interpreted with available information from the MACC model, the CALIPSO and MODIS satellite sensors, the AERONET data products and the data gathered within the Poland-AOD network.

  6. Physics and agriculture: applied optics to plant fertilization and breeding

    NASA Astrophysics Data System (ADS)

    Diomandé, K.; Soro, P. A.; Zoro, G. H.; Krou, V. A.

    2011-08-01

    The economy of Côte d'Ivoire rests on the agriculture. In order to contribute to the development of this agriculture, we have oriented our research field on applied optics to agriculture. Then, our research concerns mainly the Laser Induced chlorophyll fluorescence in plants. A simple laser-induced fluorescence set up has been designed and built at the Laboratory of Crystallography and Molecular Physics (LaCPM) at the University of Cocody (Abidjan, COTE D'IVOIRE). With this home set up we first have studied the fluorescence spectra of the "chlorophyll" to characterize the potassium deficiency in oil palm (Elaeis guineensis Jacq,). However, we found that the results differed for samples along terraced plots. The study of this phenomenon called "border effect", has enabled us to realize that sampling should be done after two rows of safety in each plot. We also applied the Laser Induced chlorophyll fluorescence technique to improve the plant breeding. For this, we have characterized the rubber tree seedlings in nurseries. And so we have highlighted those sensible to drought and resistant ones.

  7. Spatial demographic trends and patterns in the Warsaw urban region.

    PubMed

    Potrykowska, A

    1992-01-01

    The relationship between the age and sex structure of the Warsaw urban region of Poland and the population dynamics of this area is analyzed. "The process of spatial population development in the Warsaw urban region is of a cyclical nature. Starting from 1948-1950, the changes in the proportions of the population increase between the core and the remaining parts of the region oscillated over time. These trends can be interpreted with reference to the basic components of population change--natural increase and net migration, as well as policy-related factors."

  8. The Warsaw Ghetto: A Shattered Window on the Holocaust.

    ERIC Educational Resources Information Center

    Burstin, Barbara Stern

    1980-01-01

    Reviews literature about the Warsaw ghetto uprising in April, 1943, in which Jewish resistance fighters fought to the last against the Nazi war machine. The author notes that history textbooks at both high school and college levels give virtually no mention of the revolt. (Author/KC)

  9. [Past trends in demographic development in Warsaw voivodship].

    PubMed

    Stokowski, F

    1989-01-01

    Population size and growth in the voivodship of Warsaw, Poland, are described using data for the period 1950-1987. Factors considered include age, sex, fertility, natural increase, and migration. Data are provided separately for urban and rural areas. (SUMMARY IN ENG AND RUS)

  10. Optical fiber smart structures applied to secure containers

    SciTech Connect

    Sliva, P.; Gordon, N.R.; Stahl, K.A.; Simmon, K.L.; Anheier, N.C.

    1994-07-01

    A prototype secure container was prepared that uses continually monitored optical fiber as the smart structure. A small ({approx}7.6 cm {times} 10.2 cm {times} 12.7 cm), matchbox-shaped container consisting of an inner drawer within an outer shell was fabricated from polymer resin. The optical fiber was sandwiched between additional non-optical, strength-promoting fibers and embedded into the polymer. The additional non-optical fiber provides strength to the container, protects the optical fiber from damage, hides the fiber and acts as a decoy. The optical fiber was wound with a winding density such that a high probability of fiber damage would be expected if the container was penetrated.

  11. Medical students' aptitude toward smoking in Warsaw, Strasbourg and Teheran.

    PubMed

    Machowicz, Rafal; Ciechanska, Joanna; Zycinska, Katarzyna; Mahboobi, Nastaran; Wnekowicz, Emilia; Obrowski, Michael H; Zielonka, Tadeusz M

    2013-01-01

    Cigarette smoking is a leading cause of preventable death in the world. Medical students play a role in smoking prevention especially as future physicians, but also as role models in society. Their approach, although influenced by medical education, is based on cultural and socio-economic background. The aim of this study was to analyze smoking habits, prevalence and attitudes towards smoking cessation in medical students from three different countries: Poland, France and Iran. A questionnaire on tobacco smoking was distributed among medical students from three Medical Universities: in Warsaw, Strasbourg and Teheran. The study population consisted of 1,036 students: 499 from Poland, 367 from France and 170 from Iran. The percentage of smokers among medical students was 14% in Warsaw, 14.4% in Strasbourg and 3.5% in Teheran. The prevalence of ex-smokers was 13.6%, 18%, and 1.2% respectively. The use of nicotine replacement therapy or pharmacological aid in smoking cessation was 9% in Warsaw, 7% in Strasbourg, and none in Teheran. In Strasbourg students willing to choose surgical specialization were more likely to be smoking with OR 2.6 (95% CI 1.4-5.0). Never-smokers were more likely than actual smokers to discourage their friends and family from smoking. In Warsaw OR was 3.8 (95% CI 2.0-7.2), in Strasbourg 6.2 (2.6-14.4) and 7.2 (1.0-82.6) in Teheran. In conclusion, similarities in smoking prevalence and attitudes between medical students in Warsaw and Strasbourg were observed, while in Teheran the percentage of smokers reported was much lower. Pharmacological aid or nicotine replacement therapy in smoking cessation was rarely used among medical students.

  12. Tactile-optical 3D sensor applying image processing

    NASA Astrophysics Data System (ADS)

    Neuschaefer-Rube, Ulrich; Wissmann, Mark

    2009-01-01

    The tactile-optical probe (so-called fiber probe) is a well-known probe in micro-coordinate metrology. It consists of an optical fiber with a probing element at its end. This probing element is adjusted in the imaging plane of the optical system of an optical coordinate measuring machine (CMM). It can be illuminated through the fiber by a LED. The position of the probe is directly detected by image processing algorithms available in every modern optical CMM and not by deflections at the fixation of the probing shaft. Therefore, the probing shaft can be very thin and flexible. This facilitates the measurement with very small probing forces and the realization of very small probing elements (diameter: down to 10 μm). A limitation of this method is that at present the probe does not have full 3D measurement capability. At the Physikalisch-Technische Bundesanstalt (PTB), several arrangements and measurement principles for a full 3D tactile-optical probe have been implemented and tested successfully in cooperation with Werth-Messtechnik, Giessen, Germany. This contribution provides an overview of the results of these activities.

  13. Optical design of low glare luminaire applied for tunnel light

    NASA Astrophysics Data System (ADS)

    Tsai, M. S.; Lee, X. H.; Lo, Y. C.; Sun, C. C.

    2014-09-01

    In this study, a low glare and high-efficient tunnel lighting design which consists of a cluster light-emitting diode and a free-form lens is presented. Most of the energy emitted from the proposed luminaire is transmitted onto the surface of the road in front of drivers, and the probability that the energy is emitted directly into drivers' eyes is low. Compared with traditional fluorescent lamps, the proposed luminaire, of which the optical utilization factor, optical efficiency, and uniformity are, respectively, 44%, 92.5%, and 0.72, performs favorably in traffic safety, energy saving, and glare reduction.

  14. Geometric and Applied Optics, Science (Experimental): 5318.04.

    ERIC Educational Resources Information Center

    Sanderson, Robert C.

    This unit of instruction presents a laboratory-oriented course which relates the sources and behaviors of light to man's control and uses of light. Successful completion of Algebra I and Plane Geometry is strongly recommended as indicators of success. The course is recommended if the student plans further studies in science, optical technology, or…

  15. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  16. Methodologies used by Warsaw Pact countries (except USSR) in obtaining US technologies. Student report

    SciTech Connect

    Cheeseman, R.J.

    1987-04-01

    The Warsaw Pact countries obtain U.S. technologies by legal and illegal means. Methods of collection include espionage, overt collection, acquisition by scientific and educational exchange participants, and illegal trade activities. Examples of methods used by the Warsaw Pact countries (except the USSR) are provided. The US faces barriers to preventing loss of its technologies. Among these are resistance from US business interests, insufficient cooperation between US government agencies and overseas allies, lack of US counterintelligence personnel, and the openess of American society. The study concludes that the Warsaw Pact's countries have narrowed NATO's qualitative lead in weaponry as a result of the Warsaw Pact's acquisition effort.

  17. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    NASA Astrophysics Data System (ADS)

    Schukar, Vivien G.; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R.

    2012-08-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions.

  18. Apply lightweight recognition algorithms in optical music recognition

    NASA Astrophysics Data System (ADS)

    Pham, Viet-Khoi; Nguyen, Hai-Dang; Nguyen-Khac, Tung-Anh; Tran, Minh-Triet

    2015-02-01

    The problems of digitalization and transformation of musical scores into machine-readable format are necessary to be solved since they help people to enjoy music, to learn music, to conserve music sheets, and even to assist music composers. However, the results of existing methods still require improvements for higher accuracy. Therefore, the authors propose lightweight algorithms for Optical Music Recognition to help people to recognize and automatically play musical scores. In our proposal, after removing staff lines and extracting symbols, each music symbol is represented as a grid of identical M ∗ N cells, and the features are extracted and classified with multiple lightweight SVM classifiers. Through experiments, the authors find that the size of 10 ∗ 12 cells yields the highest precision value. Experimental results on the dataset consisting of 4929 music symbols taken from 18 modern music sheets in the Synthetic Score Database show that our proposed method is able to classify printed musical scores with accuracy up to 99.56%.

  19. Photogrammetry at the Warsaw University of Technology - Past and Present

    NASA Astrophysics Data System (ADS)

    Zawieska, Dorota; Kurczyński, Zdzisław

    2016-06-01

    The Department of Photogrammetry, Remote Sensing and Geographic Information Systems at the Warsaw University of Technology is one of six organizational units of the Faculty of Geodesy and Cartography. The photogrammetry has been under interest of scientists in Faculty for over 90 years. The last decades has been characterized by the incredible development of photogrammetric technologies, mainly towards wide automation and popularization of derivative products for processing data acquired at satellite, aerial, and terrestrial levels. The paper presents achievements of scientists employed in Photogrammetric Research Group during last decades related to projects that were carried out in this department.

  20. Intra-metropolitan migration in the Warsaw agglomeration.

    PubMed

    Rykiel, Z

    1984-01-01

    "Two questions of intra-metropolitan migration are analyzed in the paper, intra-metropolitan hierarchy and intra-metropolitan spatial barriers. The former embraces four detailed questions: ranking of centers; spatial pattern of hierarchical subordination; degree of unequivocalness of the subordinations, or degree of dominance; and degree of hierarchicality of interrelationships. Two specialties of the Warsaw [Poland] agglomeration are discussed, the influence of the present crisis, and the administrative restrictions to migration to the city, or the spatial barriers. Social connotations of the latter are also presented."

  1. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... treaty known as the Warsaw Convention may be applicable to their entire journey including the portion... death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... injury under the Warsaw Convention. (a)(1) In addition to the other requirements of this subpart,...

  2. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... treaty known as the Warsaw Convention may be applicable to their entire journey including the portion... death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... injury under the Warsaw Convention. (a)(1) In addition to the other requirements of this subpart,...

  3. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... treaty known as the Warsaw Convention may be applicable to their entire journey including the portion... death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... injury under the Warsaw Convention. (a)(1) In addition to the other requirements of this subpart,...

  4. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... treaty known as the Warsaw Convention may be applicable to their entire journey including the portion... death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... injury under the Warsaw Convention. (a)(1) In addition to the other requirements of this subpart,...

  5. 14 CFR 221.105 - Special notice of limited liability for death or injury under the Warsaw Convention.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... treaty known as the Warsaw Convention may be applicable to their entire journey including the portion... death or injury under the Warsaw Convention. 221.105 Section 221.105 Aeronautics and Space OFFICE OF THE... injury under the Warsaw Convention. (a)(1) In addition to the other requirements of this subpart,...

  6. APPLIED OPTICS. Overcoming Kerr-induced capacity limit in optical fiber transmission.

    PubMed

    Temprana, E; Myslivets, E; Kuo, B P-P; Liu, L; Ataie, V; Alic, N; Radic, S

    2015-06-26

    Nonlinear optical response of silica imposes a fundamental limit on the information transfer capacity in optical fibers. Communication beyond this limit requires higher signal power and suppression of nonlinear distortions to prevent irreversible information loss. The nonlinear interaction in silica is a deterministic phenomenon that can, in principle, be completely reversed. However, attempts to remove the effects of nonlinear propagation have led to only modest improvements, and the precise physical mechanism preventing nonlinear cancellation remains unknown. We demonstrate that optical carrier stability plays a critical role in canceling Kerr-induced distortions and that nonlinear wave interaction in silica can be substantially reverted if optical carriers possess a sufficient degree of mutual coherence. These measurements indicate that fiber information capacity can be notably increased over previous estimates.

  7. The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof

    2012-01-01

    The WIG20 index-the index of the 20 biggest companies traded on the Warsaw Stock Exchange-reached the global maximum on 29th October 2007. I have used the local DFA (Detrended Functional Analysis) to obtain the Hurst exponent (diffusion exponent) and investigate the signature of anti-correlation of share price evolution around the maximum. The analysis was applied to the share price evolution for variable DFA parameters. For many values of parameters, the evidence of anti-correlation near the WIG20 maximum was pointed out.

  8. The Lvov-Warsaw School: The forgotten tradition of historical psychology.

    PubMed

    Citlak, Amadeusz

    2016-05-01

    This article is an attempt to reconstruct the psychological achievements of the representatives of the Lvov-Warsaw School of historical psychology, virtually forgotten and unknown in the world's psychological literature. Kazimierz Twardowski (1866-1938), founder of the school, developed a philosophical and psychological program on the basis of (among other things) the theory of actions and products, including the research program that is now included in the thread of historical psychology. His student, Wladyslaw Witwicki (1878-1948), developed the cratism theory (the theory of power) on the basis Twardowski's assumptions, providing an alternative to Alfred Adler's theory of striving for superiority while also declaring it a few years before Adler. The consequence of Witwicki's theory and the methodological assumptions was the creation of psychobiography: the first nonpsychoanalytical psychobiography of Socrates (Witwicki, 1909, 1922) and the psychobiography of Jesus Christ (Witwicki, 1958). The school's activities weakened for political reasons, particularly the outbreak of the First World War. The members of the school dispersed after 1918, and they lost international connections with the world of science. Their significant achievements in the field of psychology remained unknown to psychologists for nearly a century. In this article, I would like to present the school's unique but unfinished program of reconstructing mental life through the psychological interpretation of cultural products (literature, arts, diaries), and its value for the practice of research in historical psychology. This program required additional development, but because of the war this never happened. Some of the school's theoretical findings and the first attempts to apply them have still significant value and show us the originality of Lvov-Warsaw School psychology. PMID:27100926

  9. [Smoking among patients of selected specialist clinics of Miedzylesie Specialist Hospital in Warsaw].

    PubMed

    Pytka, Dorota; Doboszyńska, Anna

    2011-01-01

    The purpose of the study is to examine the issue of smoking among patients of selected clinics of the Miedzylesie Specialist Hospital in Warsaw, assessment of nicotine addiction of smokers and motivation to give up smoking. The survey was carried out in June and July 2009 after obtaining the consent of the Director of Miedzylesie Specialist Hospital in Warsaw. The survey was participated in by 100 patients of selected specialist clinics. The survey was carried out on the basis of a questionnaire consisting of 7 questions. Furthermore, the "Test of motivation to give up smoking" (Schneider's test) and the "Assessment of nicotine addiction level" (Fagerström's test), published in the "Consensus regarding recognition and treatment of nicotine addiction", were used. When processing data, the descriptive statistics were applied. Those surveyed included 53 former cigarette smokers 47 active smokers and. In the group of former smokers, 19 people still were exposed to passive smoking. In the past, the problem regarded 41 people. Thirty former smokers smoked cigarettes among non-smokers, including young children (18 people) and when pregnant and breastfeeding (2 people). Also 30 respondents smoked despite medical contraindications and bad conscience. For 27 people, expenditures on cigarettes constituted a considerable burden of their respective household budgets, and 20 said that it was a significant item in their expenditures. Smokers have been smoking cigarettes for 30 years, on average 20 cigarettes a day. Those patients began to smoke at the age of 20. Thirty one active smokers exposed other people to passive smoking and 38 respondents smoked cigarettes despite medical contraindications and with bad conscience. For 22 people, expenditures related to smoking are a considerable burden of the household budget and for 21 people, it is a significant expenditure. Almost one half of the patients smoke cigarettes although they should brake off smoking for medical reasons. Most

  10. The Lvov-Warsaw School: The forgotten tradition of historical psychology.

    PubMed

    Citlak, Amadeusz

    2016-05-01

    This article is an attempt to reconstruct the psychological achievements of the representatives of the Lvov-Warsaw School of historical psychology, virtually forgotten and unknown in the world's psychological literature. Kazimierz Twardowski (1866-1938), founder of the school, developed a philosophical and psychological program on the basis of (among other things) the theory of actions and products, including the research program that is now included in the thread of historical psychology. His student, Wladyslaw Witwicki (1878-1948), developed the cratism theory (the theory of power) on the basis Twardowski's assumptions, providing an alternative to Alfred Adler's theory of striving for superiority while also declaring it a few years before Adler. The consequence of Witwicki's theory and the methodological assumptions was the creation of psychobiography: the first nonpsychoanalytical psychobiography of Socrates (Witwicki, 1909, 1922) and the psychobiography of Jesus Christ (Witwicki, 1958). The school's activities weakened for political reasons, particularly the outbreak of the First World War. The members of the school dispersed after 1918, and they lost international connections with the world of science. Their significant achievements in the field of psychology remained unknown to psychologists for nearly a century. In this article, I would like to present the school's unique but unfinished program of reconstructing mental life through the psychological interpretation of cultural products (literature, arts, diaries), and its value for the practice of research in historical psychology. This program required additional development, but because of the war this never happened. Some of the school's theoretical findings and the first attempts to apply them have still significant value and show us the originality of Lvov-Warsaw School psychology.

  11. Experimental scrambling and noise reduction applied to the optical encryption of QR codes.

    PubMed

    Barrera, John Fredy; Vélez, Alejandro; Torroba, Roberto

    2014-08-25

    In this contribution, we implement two techniques to reinforce optical encryption, which we restrict in particular to the QR codes, but could be applied in a general encoding situation. To our knowledge, we present the first experimental-positional optical scrambling merged with an optical encryption procedure. The inclusion of an experimental scrambling technique in an optical encryption protocol, in particular dealing with a QR code "container", adds more protection to the encoding proposal. Additionally, a nonlinear normalization technique is applied to reduce the noise over the recovered images besides increasing the security against attacks. The opto-digital techniques employ an interferometric arrangement and a joint transform correlator encrypting architecture. The experimental results demonstrate the capability of the methods to accomplish the task.

  12. [The assessment of health behaviours among Warsaw Medical University students].

    PubMed

    Ostrowska, Alicja; Szewczyńiski, Jerzy A

    2002-01-01

    Some health behaviours among 228 students of Warsaw Medical University (130 women and 98 men) using anonymous questionnaire were examined. Percentage of smokers among female and male students was similar (13.1% and 14.3% respectively). Among respondents the greatest frequency of drinking alcohol was from a few times weekly to a few times monthly. Male students drunk alcohol more often than female ones. Beer was prefered by men, wine and beer--by women. Only male students (10.2%) used drugs (amphetamine, marihuana). About 1/3 of respondents did not do any sports. Female students had better knowledge about objective factors of their health status (blood pressure, blood glucose and cholesterol level) compared to males ones. PMID:17474607

  13. [Preliminary evaluation of biological-sanitary contamination of grass lawns and children's playgrounds in Warsaw in 1991].

    PubMed

    Zurawska-Olszewska, J; Misiak, G

    1994-01-01

    This paper presents results of microbiological investigations of grass lawns and sand playgrounds in selected parks, Jordan gardens, squares, large inhabited complexes, creches and kindergartens on the territory of four parts of Warsaw (Zoliborz, Saska Kepa, Sródmieście and Mokotów). Following indexes were subjected to analysis: titer of bacteria from the coli group of general and fecal type, bacteria from the genus Clostridium and Salmonella and number of bacteria from Enterococcus species. In sanitary evaluation of tested material criteria proposed by National Institute of Hygiene (1970) and Institute of Rural Medicine (1990) were applied. Among tested materials, 50% of grass lawns and 40% of sand playgrounds were considered as unsanitary and dangerous (disqualified by all indexes). It was found that presence of Salmonella in all cases was connected with existence of large numbers of other members of Enterobacteriaceae family (10(3)-10(5) CFU/Ig.s soil) and of E. faecalis (10(2)-10(3) CFU/Ig. s. soil). Identified bacteria from genus Salmonella were most frequently represented by S. arizonae (90%) S. choleraesuis and other (10%). Comparison of own results with data obtained by Warsaw Sanitary-Epidemiological Station from previous years indicates worsening of sanitary status of green lawns and sand playgrounds in Warsaw City aglomeration. Continuously present high numbers of bacteria of sand playgrounds in kindergartens and creches is disturbing. In this situation there is an urgent need of systematic sanitary investigations of soil in natural conditions on territories a large agglomerations for determination of size of danger of contamination and preoparation of appropriate prevention.

  14. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  15. [The evolution of life expectancy in the capital city of Warsaw in 1931-1980].

    PubMed

    Kedelski, M

    1983-03-01

    The author presents estimates of life expectancy in Warsaw, Poland, by age and sex for the period 1931-1980. The estimates involve modifications of previously calculated life tables for 1931 to ensure greater compatibility with more recent estimates.

  16. The tunable electronic structure and optic absorption properties of phosphorene by a normally applied electric field

    NASA Astrophysics Data System (ADS)

    Yang, Mou; Duan, Hou-Jian; Wang, Rui-Qiang

    2016-10-01

    We studied the electronic structure and optical absorption properties of phosphorene (a monolayer black phosphorus) under a normally applied electric field. The electric field enlarges the energy gap, weakens the effective mass anisotropy, and increases the effective mass component along the armchair direction (x-direction) for both conduction and valence bands but provides little change to the component along the zigzag direction (y-direction). The band edge optical absorption is completely polarized in the x-direction, and decreases when increasing the electric field. If the exciting frequency is beyond the energy gap, the absorption for the y-polarized light becomes nonzero, but the absorption is still highly polarized.

  17. Burden of disease caused by local transport in Warsaw, Poland

    PubMed Central

    Tainio, Marko

    2015-01-01

    Transport is a major source of air pollution, noise, injuries and physical activity in the urban environment. The quantification of the health risks and benefits arising from these factors would provide useful information for the planning of cost-effective mitigation actions. In this study we quantified the burden of disease caused by local transport in the city of Warsaw, Poland. The disability-adjusted life-years (DALYs) were estimated for transport related air pollution (particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a]pyrene (BaP), cadmium, lead and nickel), noise, injuries and physical activity. Exposure to these factors was based on local and international data, and the exposure-response functions (ERFs) were based on published reviews and recommendations. The uncertainties were quantified and propagated with the Monte Carlo method. Local transport generated air pollution, noise and injuries were estimated to cause approximately 58,000 DALYs in the study area. From this burden 44% was due to air pollution and 46% due to noise. Transport related physical activity was estimated to cause a health benefit of 17,000 DALYs. Main quantified uncertainties were related to disability weight for the annoyance (due to noise) and to the ERFs for fine particulate matter (PM2.5) air pollution and walking. The results indicate that the health burden of transport could be mitigated by reducing motorized transport, which causes air pollution and noise, and by encouraging walking and cycling in the study area. PMID:26516622

  18. Warsaw conference on emerging infections in central and eastern Europe.

    PubMed

    Balinska, M A

    2000-04-01

    On March 28-29, 2000, epidemiologists and microbiologists convened in Warsaw, Poland, to discuss emerging, re-emerging, and drug-resistant infections in central and eastern Europe. Delegates were from the Czech Republic, Greece, Hungary, Latvia, Poland, Romania, Russia, and Yugoslavia, with the exception of the US and the UK and other worst affected countries in central-eastern Europe. It has been documented that the cause of diphtheria epidemics in several countries in the mid-1990s resulted from the breakdown of vaccination campaigns following social dislocation. Currently, diphtheria morbidity has declined through targeted vaccination programs, although fundamental socioeconomic problems continue to threaten public health. Other infectious diseases raised during the conference were the evolution of tuberculosis and HIV/AIDS, which remains largely unpredictable. In addition, the growing incidence of multidrug-resistant tuberculosis is documented in several countries. Among the major problems in tuberculosis control include late diagnosis, nonexistent or erratic drug supplies and unreliable reporting. The syringe ecosystem in both healthcare settings and injecting drug users were singled out as the vectors of sharp increase in HIV/AIDS infection. Throughout the conference, the recurrent theme was on the overriding importance of providing specialized training and the building up of networks of public health specialists.

  19. Lessons from Norovirus Outbreak in Warsaw, Poland, December 2012.

    PubMed

    Kamińska, Sylwia; Kruszewska, Żaneta; Lejbrandt, Elżbieta; Sadkowska-Todys, Małgorzata

    2014-12-01

    Efficient foodborne outbreak investigations are important for identification of gaps in food safety and public health practice. This article reports on an investigation of a gastroenteritis outbreak linked to catering food following a Christmas reception at the National Institute of Public Health-National Institute of Hygiene (NIPH-NIH) in Warsaw in December 2012. Of 192 employees eating food at the catering event, 97 (50.5%) developed symptoms. Persons eating dishes with recipes containing frozen carrots were five times more likely to develop gastrointestinal symptoms compared to those who did not eat carrots. Laboratory analysis identified norovirus in stool samples taken from symptomatic persons. Leftover food was not available for testing. The investigators did not collect stool specimens from food handlers and did not conduct trace backs for the suspected food ingredients. This investigation underlines the need for a revision of an existing procedures and importance of their complementation with detailed instructions for the local public health authorities for effective completion of foodborne outbreaks investigations in Poland.

  20. Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie

    2015-08-01

    Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.

  1. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  2. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  3. Nighttime lidar water vapor mixing ratio profiling over Warsaw - impact of the relative humidity profile on cloud formation

    NASA Astrophysics Data System (ADS)

    Costa Surós, Montserrat; Stachlewska, Iwona S.

    2016-04-01

    A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.

  4. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  5. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging

    PubMed Central

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J. Alexander; Bargmann, Cornelia I.

    2016-01-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a “precise color” MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans. PMID:27231594

  6. Multifocus microscopy with precise color multi-phase diffractive optics applied in functional neuronal imaging.

    PubMed

    Abrahamsson, Sara; Ilic, Rob; Wisniewski, Jan; Mehl, Brian; Yu, Liya; Chen, Lei; Davanco, Marcelo; Oudjedi, Laura; Fiche, Jean-Bernard; Hajj, Bassam; Jin, Xin; Pulupa, Joan; Cho, Christine; Mir, Mustafa; El Beheiry, Mohamed; Darzacq, Xavier; Nollmann, Marcelo; Dahan, Maxime; Wu, Carl; Lionnet, Timothée; Liddle, J Alexander; Bargmann, Cornelia I

    2016-03-01

    Multifocus microscopy (MFM) allows high-resolution instantaneous three-dimensional (3D) imaging and has been applied to study biological specimens ranging from single molecules inside cells nuclei to entire embryos. We here describe pattern designs and nanofabrication methods for diffractive optics that optimize the light-efficiency of the central optical component of MFM: the diffractive multifocus grating (MFG). We also implement a "precise color" MFM layout with MFGs tailored to individual fluorophores in separate optical arms. The reported advancements enable faster and brighter volumetric time-lapse imaging of biological samples. In live microscopy applications, photon budget is a critical parameter and light-efficiency must be optimized to obtain the fastest possible frame rate while minimizing photodamage. We provide comprehensive descriptions and code for designing diffractive optical devices, and a detailed methods description for nanofabrication of devices. Theoretical efficiencies of reported designs is ≈90% and we have obtained efficiencies of > 80% in MFGs of our own manufacture. We demonstrate the performance of a multi-phase MFG in 3D functional neuronal imaging in living C. elegans.

  7. Temperature and pressure fiber-optic sensors applied to minimally invasive diagnostics and therapies

    NASA Astrophysics Data System (ADS)

    Hamel, Caroline; Pinet, Éric

    2006-02-01

    We present how fiber-optic temperature or pressure sensors could be applied to minimally invasive diagnostics and therapies. For instance a miniature pressure sensor based on micro-optical mechanical systems (MOMS) could solve most of the problems associated with fluidic pressure transduction presently used for triggering purposes. These include intra-aortic balloon pumping (IABP) therapy and other applications requiring detection of fast and/or subtle fluid pressure variations such as for intracranial pressure monitoring or for urology diagnostics. As well, miniature temperature sensors permit minimally invasive direct temperature measurement in diagnostics or therapies requiring energy transfer to living tissues. The extremely small size of fiber-optic sensors that we have developed allows quick and precise in situ measurements exactly where the physical parameters need to be known. Furthermore, their intrinsic immunity to electromagnetic interference (EMI) allows for the safe use of EMI-generating therapeutic or diagnostic equipments without compromising the signal quality. With the trend of ambulatory health care and the increasing EMI noise found in modern hospitals, the use of multi-parameter fiber-optic sensors will improve constant patient monitoring without any concern about the effects of EMI disturbances. The advantages of miniature fiberoptic sensors will offer clinicians new monitoring tools that open the way for improved diagnostic accuracy and new therapeutic technologies.

  8. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    NASA Astrophysics Data System (ADS)

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-07-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer-Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  9. Applying UV cameras for SO2 detection to distant or optically thick volcanic plumes

    USGS Publications Warehouse

    Kern, Christoph; Werner, Cynthia; Elias, Tamar; Sutton, A. Jeff; Lübcke, Peter

    2013-01-01

    Ultraviolet (UV) camera systems represent an exciting new technology for measuring two dimensional sulfur dioxide (SO2) distributions in volcanic plumes. The high frame rate of the cameras allows the retrieval of SO2 emission rates at time scales of 1 Hz or higher, thus allowing the investigation of high-frequency signals and making integrated and comparative studies with other high-data-rate volcano monitoring techniques possible. One drawback of the technique, however, is the limited spectral information recorded by the imaging systems. Here, a framework for simulating the sensitivity of UV cameras to various SO2 distributions is introduced. Both the wavelength-dependent transmittance of the optical imaging system and the radiative transfer in the atmosphere are modeled. The framework is then applied to study the behavior of different optical setups and used to simulate the response of these instruments to volcanic plumes containing varying SO2 and aerosol abundances located at various distances from the sensor. Results show that UV radiative transfer in and around distant and/or optically thick plumes typically leads to a lower sensitivity to SO2 than expected when assuming a standard Beer–Lambert absorption model. Furthermore, camera response is often non-linear in SO2 and dependent on distance to the plume and plume aerosol optical thickness and single scatter albedo. The model results are compared with camera measurements made at Kilauea Volcano (Hawaii) and a method for integrating moderate resolution differential optical absorption spectroscopy data with UV imagery to retrieve improved SO2 column densities is discussed.

  10. Near real-time measurement of forces applied by an optical trap to a rigid cylindrical object

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-07-01

    An automated data acquisition and processing system is established to measure the force applied by an optical trap to an object of unknown composition in real time. Optical traps have been in use for the past 40 years to manipulate microscopic particles, but the magnitude of applied force is often unknown and requires extensive instrument characterization. Measuring or calculating the force applied by an optical trap to nonspherical particles presents additional difficulties which are also overcome with our system. Extensive experiments and measurements using well-characterized objects were performed to verify the system performance.

  11. Warsaw high-preferring (WHP) and Warsaw low-preferring (WLP) lines of rats selectively bred for high and low voluntary ethanol intake: preliminary phenotypic characterization.

    PubMed

    Dyr, Wanda; Kostowski, Wojciech

    2008-05-01

    The Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) lines were bred from Wistar foundation stock to obtain lines of rats that differ in their preference for ethanol solutions. The WHP line has met several major criteria for an animal model of alcoholism. The WHP rats voluntarily drink excessive amounts of ethanol while the WLP rats consume negligible amounts of ethanol. The WHP rats attain physiologically active blood ethanol concentrations with chronic free-choice drinking. They also develop subtle but visible signs of physical dependence (the withdrawal signs). The patterns of ethanol consumption in WHP and WLP lines are stable in time and independent of the manner of access to ethanol solutions. Notably, when exposed to the increasing ethanol concentrations WHP rats gradually increased total ethanol intake whereas the WLP rats consumed invariably very low amounts of ethanol. Furthermore, the WHP rats show an increased responsiveness to the stimulatory effects of low dose of ethanol.

  12. Multi-spectral optical simulation system applied in hardware-in-the-loop

    NASA Astrophysics Data System (ADS)

    Yu, Hong; Lei, Jie; Gao, Yang; Liu, Yang

    2009-07-01

    The Multi-spectral simulation system has been constructed at Beijing Simulation Center (BSC) for hardware-in-the-loop (HWIL) testing of optical and infrared seekers, in single-band and dual-band, or even multi-band. This multi-spectral simulation facility consists primarily of several projectors and a wide-angular simulation mechanism, the projector technologies utilized at BSC include a broadband point source collimator, a laser echo simulator and a visible scene projection system. These projectors can be used individually with the wide-angular simulation mechanism, or any combination of both or all of three can be used according to different needs. The configuration and performance of each technology are reviewed in the paper. Future plans include two IR imaging projectors which run at high frame frequency. The multi-spectral optical simulation system has been successfully applied for visible and IR imaging seekers testing in HWIL simulation. The laser echo simulator hardware will be applied soon.

  13. The Warsaw School of Economics: The Faculty of Foreign Trade: An International Business Discussion Case.

    ERIC Educational Resources Information Center

    Stoever, William A.

    1997-01-01

    A study examined the problems faced by the Warsaw School of Economics (Poland), a prestigious university that must change rapidly from a training ground for central planners and bureaucrats into a Western-style business school. Issues include course offerings, mix of academic and practitioner-oriented courses, language of instruction, and the role…

  14. "Not Bread Alone": Clandestine Schooling and Resistance in the Warsaw Ghetto during the Holocaust.

    ERIC Educational Resources Information Center

    Kardos, Susan M.

    2002-01-01

    In the Warsaw Ghetto during the Holocaust, clandestine schooling became a form of resistance to Nazi attempts to eradicate Jewish culture. A variety of community groups provided schooling that attempted to give a sense of normalcy as well as hope. (Contains 144 endnotes.) (SK)

  15. [Socio-demographic and spatial structures within commuting range of Warsaw].

    PubMed

    Rakowski, W; Gocal, T

    1989-01-01

    Using official data for 1983, the authors describe the geographic and socioeconomic zones of influence that the city of Warsaw, Poland, exerts on surrounding areas. Special attention is paid to the effects of commuting for work to and from the city on regional labor markets. Some demographic characteristics of commuters are discussed. (SUMMARY IN ENG AND RUS)

  16. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    NASA Astrophysics Data System (ADS)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  17. Resonant state expansion applied to two-dimensional open optical systems

    NASA Astrophysics Data System (ADS)

    Doost, M. B.; Langbein, W.; Muljarov, E. A.

    2013-04-01

    The resonant state expansion (RSE), a rigorous perturbative method in electrodynamics, is applied to two-dimensional open optical systems. The analytically solvable homogeneous dielectric cylinder is used as an unperturbed system, and its Green's function is shown to contain a cut in the complex frequency plane, which is included in the RSE basis. The complex eigenfrequencies of modes are calculated using the RSE for a selection of perturbations which mix unperturbed modes of different orbital momentum, such as half-cylinder, thin-film, and thin-wire perturbation, demonstrating the accuracy and convergency of the method. The resonant states for the thin-wire perturbation are shown to reproduce an approximative analytical solution.

  18. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics

    SciTech Connect

    Fu Tairan; Cheng Xiaofang; Yang Zangjian

    2008-11-10

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution.

  19. Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics.

    PubMed

    Fu, Tairan; Cheng, Xiaofang; Yang, Zangjian

    2008-11-10

    We present a theoretical analysis of two-color pyrometry applied to optical diagnostics. A two-color pyrometer built with a single CCD is advantageous due to the simple system design. We evaluate the possibility and degree of ill-conditionness on the basis of measurement uncertainties for different measurement approaches of this two-color system. We classify measurement approaches. The corresponding ill-conditionness criterion is established. The greater the criterion value is, the worse the ill-conditioned degree of solution is. So, the optimum choice of measurement approach for the two-color system is achieved through intercomparison of the criterion values. Numerical examples are also given to illustrate this point. The theoretical analysis not only provides an effective way of evaluating different measurement approaches, but also may help us to better understand the influences that determine the choices between wavelength/waveband measurements and calibration/noncalibration modes for temperature and soot distribution. PMID:19002237

  20. Optical Image Analysis Applied to Pore Network Quantification of Sandstones Under Experimental CO2 Injection

    NASA Astrophysics Data System (ADS)

    Berrezueta, E.; González, L.; Ordóñez, B.; Luquot, L.; Quintana, L.; Gallastegui, G.; Martínez, R.; Olaya, P.; Breitner, D.

    2015-12-01

    This research aims to propose a protocol for pore network quantification in sandstones applying the Optical Image Analysis (OIA) procedure, which guarantees the measurement reproducibility and its reliability. Two geological formations of sandstone, located in Spain and potentially suitable for CO2 sequestration, were selected for this study: a) the Cretaceous Utrillas unit, at the base of the Cenozoic Duero Basin and b) a Triassic unit at the base of the Cenozoic Guadalquivir Basin. Sandstone samples were studied before and after the CO2 experimental injection using Optical and scanning electronic microscopy (SEM), while the quantification of petrographic changes was done with OIA. The first phase of the rersearch consisted on a detailed mineralogical and petrographic study of the sandstones (before and after CO2-injection), for which we observed thin sections. Later, the methodological and experimental processes of the investigation were focused on i) adjustment and calibration of OIA tools; ii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers), using 7 images of the same mineral scene (6 in crossed polarizer and 1 in parallel polarizer); and iii) automated identification and segmentation of pore in 2D mineral images, generating applications by executable macros. Finally, once the procedure protocols had been, the compiled data was interpreted through an automated approach and the qualitative petrography was carried out. The quantification of changes in the pore network through OIA (porosity increase ≈ 2.5%) has allowed corroborate the descriptions obtained by SEM and microscopic techniques, which consisted in an increase in the porosity when CO2 treatment occurs. Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. This research offers numerical

  1. A 10-year global gridded Aerosol Optical Thickness Reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Campbell, J. R.; Curtis, C. A.; Hegg, D.; Hyer, E. J.; Sessions, W.; Shi, Y.; Turk, J.

    2013-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need of a best-available fused product on a regular grid for numerous climate and applied applications. Remote sensing and modeling technologies have now advanced to a point where aerosol data assimilation is an operational reality at numerous centers. It is inevitable that, like meteorological reanalyses, aerosol reanalyses will see heavy use in the near future. A first long term, 2003-2012 global 1x1 degree and 6-hourly aerosol optical thickness (AOT) reanalysis product has been generated. The goal of this effort is not only for climate applications, but to generate a dataset that can be used by the US Navy to understand operationally hindering aerosol events, aerosol impacts on numerical weather prediction, and application of electro-optical technologies. The reanalysis utilizes Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled collection 5 Moderate Resolution Imaging Spectroradiometer (MODIS) AOD with minor corrections from Multi-angle Imaging SpectroRaditometer (MISR). A subset of this product includes Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar assimilation since its launch in mid-2006. Surface aerosol sources, including dust and smoke, in the aerosol model have been regionally tuned so that fine and coarse mode AOTs best match those resolve by ground-based Aerosol Robotic Network (AERONET). The AOT difference between the model and satellite AOT is then used to adjust other aerosol processes, eg., sources, dry deposition, etc. Aerosol wet deposition is constrained with satellite-retrieved precipitation. The final AOT reanalysis is shown to exhibit good agreement with AERONET. Here we review the development of the reanalysis and consider issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses. Considerations are also made for extending such work

  2. Performance evaluation of gratings applied by genetic algorithm for the real-time optical interconnection

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Seon; Kim, Nam; Suh, HoHyung; Jeon, Seok Hee

    2000-03-01

    In this paper, gratings to apply for the optical interconnection are designed using a genetic algorithm (GA) for a robust and efficient schema. The real-time optical interconnection system architecture is composed with LC-SLM, CCD array detector, IBM-PC, He-Ne laser, and Fourier transform lens. A pixelated binary phase grating is displayed on LC-SLM and could interconnect incoming beams to desired output spots freely by real-time. So as to adapt a GA for finding near globally-cost solutions, a chromosome is coded as a binary integer of length 32 X 32, the stochastic tournament method for decreasing the stochastic sampling error is performed, and a single-point crossover having 16 X 16 block size is used. The characteristics on the several parameters are analyzed in the desired grating design. Firstly, as the analysis of the effect on the probability of crossover, a designed grating when the probability of crossover is 0.75 has a 74.7[%] high diffraction efficiency and a 1.73 X 10-1 uniformity quantitatively, where the probability of mutation is 0.001 and the population size is 300. Secondly, on the probability of mutation, a designed grating when the probability of mutation is 0.001 has a 74.4[%] high efficiency and a 1.61 X 10-1 uniformity quantitatively, where the probability of crossover is 1.0 and the population size is 300. Thirdly, on the population size, a designed grating when the population size is 300 and the generation is 400 has above 74[%] diffraction efficiency, where the probability of mutation is 0.001 and the probability of crossover is 1.0.

  3. Intense laser effects on the optical properties of asymmetric GaAs double quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Bejan, Doina; Niculescu, Ecaterina Cornelia

    2016-06-01

    We investigated the combined effects of a non-resonant intense laser field and a static electric field on the electronic structure and the nonlinear optical properties (absorption, optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact density-matrix formalism under steady state conditions using the effective mass approximation. Our results show that: (i) the electronic structure and optical properties are sensitive to the dressed potential; (ii) under applied electric fields, an increase of the laser intensity induces a redshift of the optical absorption and rectification spectra; (iii) the augment of the electric field strength leads to a blueshift of the spectra; (iv) for high electric fields the optical spectra show a shoulder-like feature, related with the occurrence of an anti-crossing between the two first excited levels.

  4. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish

    PubMed Central

    Correia, Teresa; Yin, Jun; Ramel, Marie-Christine; Andrews, Natalie; Katan, Matilda; Bugeon, Laurence; Dallman, Margaret J.; McGinty, James; Frankel, Paul; French, Paul M. W.; Arridge, Simon

    2015-01-01

    Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds. PMID:26308086

  5. Optical microsystem for analysis of diffuse reflectance and fluorescence signals applied to early gastrointestinal cancer detection.

    PubMed

    Pimenta, Sara; Castanheira, Elisabete M S; Minas, Graça

    2015-01-30

    The detection of cancer at its earliest stage is crucial in order to increase the probability of a successful treatment. Optical techniques, specifically diffuse reflectance and fluorescence, may considerably improve the ability to detect pre-cancerous lesions. These techniques have high sensitivity to some biomarkers present on the tissues, providing morphological and biochemical information of normal and diseased tissue. The development of a chip sized spectroscopy microsystem, based on these techniques, will greatly improve the early diagnosis of gastrointestinal cancers. The main innovation is the detection of the spectroscopic signals using only few, but representative, spectral bands allowing for miniaturization. This paper presents the mathematical models, its validation and analysis for retrieving data of the measured spectroscopic signals. These models were applied to a set of phantoms clearly representative of gastrointestinal tissues, leading to a more accurate diagnostic by a pathologist. Moreover, it was demonstrated that the models can use the reconstructed spectroscopic signals based only on its extraction on those specific spectral bands. As a result, the viability of the spectroscopy microsystem implementation was proved.

  6. Statistical Track-Before-Detect Methods Applied to Faint Optical Observations of Resident Space Objects

    NASA Astrophysics Data System (ADS)

    Fujimoto, K.; Yanagisawa, T.; Uetsuhara, M.

    Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., "string of pearls") approach to track detection for low SNR data. Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4. Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements

  7. Activity of RWC Warsaw in the contest of next Solar Maximum

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Stanislawska, Iwona; Klos, Zbigniew

    RWC Warsaw is operating as the Heliogeophysical Prediction Service of Space Research Centre Polish Academy of Sciences is involved in current collection of large portion of data received directly from various international observatories and Polish operated geophysical stations. The monitoring of radio wave propagation conditions over Poland is continuously carried out with the ionosonde in Warsaw. On the basis of continuous flow of data daily expected influence of heliogeofisical activity on monthly forecasts of communication conditions trough-out the world is prepared for Governmental and commercial customers. The SRC-developed software package for data processing and system of prediction of HF communication was continuously modified. Look forward the future the RWC‘s Warsaw team is involved in European space weather common programs and programs like COST and those related to Framework programs of UE. Our focus is on space weather as "a space weather services" with well defined service products - demand oriented and recognized as Space Weather Service Provider for communication, navigation and aviation to support the operational phase of selected needs. The associated disturbances in Earth's magnetic field produced large gradients in the total electron content (TEC) in the mid-latitudes crucial for GNSS signal in space application for different field of science are example of our interest.

  8. A psychochemical weapon considered by the Warsaw Pact: a research note.

    PubMed

    Rózsa, Lajos

    2009-01-01

    Contrary to widespread rumours during the Cold War era, little, if any, evidence existed in the scientific literature to support the view that the Soviet Union or its Warsaw Pact allies considered the use of psychochemical weapons militarily. The Hungarian State Archives have recently opened up declassified records of Hungary's State Defence Council meetings held between 1962 and 1978. Materials submitted to the Council include reports about the coordinative meetings of the Warsaw Pact military medical services. Research into possible countermeasures against psychotropic drugs is listed as a research priority assigned to Hungary in 1962. Hungary rejected this task in 1963, but joined the ongoing project again in 1965. Methylamphetamine was produced in Budapest for use as an experimental model of such weapons. Within the context of contemporary western research, this drug was considered to be an effective interrogation tool. Similarly to the CIA, Hungary also failed to develop an antidote against it and the project was terminated, fruitlessly, in 1972. These documents serve as evidence that a Warsaw Pact forum had, in fact, been considering a psychochemical weapon as a "warfare agent."

  9. A psychochemical weapon considered by the Warsaw Pact: a research note.

    PubMed

    Rózsa, Lajos

    2009-01-01

    Contrary to widespread rumours during the Cold War era, little, if any, evidence existed in the scientific literature to support the view that the Soviet Union or its Warsaw Pact allies considered the use of psychochemical weapons militarily. The Hungarian State Archives have recently opened up declassified records of Hungary's State Defence Council meetings held between 1962 and 1978. Materials submitted to the Council include reports about the coordinative meetings of the Warsaw Pact military medical services. Research into possible countermeasures against psychotropic drugs is listed as a research priority assigned to Hungary in 1962. Hungary rejected this task in 1963, but joined the ongoing project again in 1965. Methylamphetamine was produced in Budapest for use as an experimental model of such weapons. Within the context of contemporary western research, this drug was considered to be an effective interrogation tool. Similarly to the CIA, Hungary also failed to develop an antidote against it and the project was terminated, fruitlessly, in 1972. These documents serve as evidence that a Warsaw Pact forum had, in fact, been considering a psychochemical weapon as a "warfare agent." PMID:19142819

  10. New method to determine the optical rotatory dispersion of inorganic crystals applied to some samples of Carpathian Quartz.

    PubMed

    Dimitriu, Dan Gheorghe; Dorohoi, Dana Ortansa

    2014-10-15

    A new method to determine the optical rotatory dispersion (ORD) in the visible range, based on a channeled spectrum obtained with a uniax inorganic crystal introduced between two crossed polarizers with its optical axis parallel to the light propagation direction is detailed in this paper. When the studied inorganic crystals are transparent, this method permits the estimation of the optical rotatory dispersion in the visible range, for which the cheap polarizers are available. The speed of the measurements is very high, because the estimations are made from the channeled spectrum obtained for a single arrangement of the optical components. By using a computer, ORD is quickly determined for the visible range. The results obtained by this method for some Carpathian Quartz samples are consistent with those from literature. The proposed method can be also applied in UV and IR spectral ranges, when the anisotropic layers are transparent and the linearly polarized radiations can be obtained.

  11. Was the drought of 2015 on the River Vistula in Warsaw the lowest ever observed?

    NASA Astrophysics Data System (ADS)

    Kowalski, Hubert; Magnuszewski, Artur; Romanowicz, Renata

    2016-04-01

    The River Vistula has a hydrological regime controlled by rainfall and snowmelt. The flood of 22 V 2010 r. had the highest discharge ever measured in Warsaw (Q=5898 m3/s). After this flood extreme low flows occurred in 12 IX 2012 (Q=172 m3/s) and in 28 VIII 2015 (157 m3/s). The low flow of 2015 set the lowest stage record (H=42 cm). The conditions during the low flow were favourable for archaeologists working on the River Vistula channel and banks. A group of archaeologists from the University of Warsaw discovered in the middle of the channel at 517 km a treasury of 17 century marbles and other finds. In 1656 Poland was in the state of war with Sweden. Marble sculptures were stolen and evacuated by the Swedish army from Warsaw to Gdansk harbor down the River Vistula. The barge transporting marbles sunk, leaving the treasure in the channel of the River Vistula. Since that time until now, the water levels in the river were too high to discover the treasures. The question is whether the drought of 2015 was the lowest in history and to what extent the lowest ever observed stage is related to the process of channel erosion in a regulated reach of the river. The specific conditions at the archaeological site have been studied using both long term hydrological data and hydrodynamic the 2D model CCHE2D, to the estimate erosion rate and velocities. The results show that the bottom erosion is quite strong and has caused lowering of the river bottom by 205 cm since 1919 (first rating curve published). The River Vistula reach in Warsaw forms a narrowing, called a "corset" which is controlled by the geological structures (river over flood terraces and glacial sills). Additionally the channel has been regulated by hydrotechnical structures and dredging work. The sequence of the 2010 year flood that increased the erosion rate in the reach and two deep low flows in 2012 and 2015 were favourable for archaeologists working in Warsaw on the River Vistula. The hydraulic conditions

  12. Wavelet image processing applied to optical and digital holography: past achievements and future challenges

    NASA Astrophysics Data System (ADS)

    Jones, Katharine J.

    2005-08-01

    The link between wavelets and optics goes back to the work of Dennis Gabor who both invented holography and developed Gabor decompositions. Holography involves 3-D images. Gabor decompositions involves 1-D signals. Gabor decompositions are the predecessors of wavelets. Wavelet image processing of holography, both optical holography and digital holography, will be examined with respect to past achievements and future challenges.

  13. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics.

  14. Huygens-Feynman-Fresnel principle as the basis of applied optics.

    PubMed

    Gitin, Andrey V

    2013-11-01

    The main relationships of wave optics are derived from a combination of the Huygens-Fresnel principle and the Feynman integral over all paths. The stationary-phase approximation of the wave relations gives the correspondent relations from the point of view of geometrical optics. PMID:24216640

  15. Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland--contamination and bioaccumulation study.

    PubMed

    Wojtkowska, Małgorzata; Karwowska, Ewa; Chmielewska, Iwona; Bekenova, Kundyz; Wanot, Ewa

    2015-12-01

    This research covered an evaluation of the copper and cadmium concentrations in bottom sediments dredged from one of the ponds in Warsaw. The samples of sediments, soil, and plants were analyzed in terms of Cu and Cd content. The research concerned the heap of dredged bottom sediments from Wyścigi Pond, Warsaw, Poland. Two boreholes were made to obtain sediment cores with depths of A 162.5 cm and B 190.0 cm. The cores were divided into 10 sub-samples with a thickness of about 15-20 cm. A control sample of soil was taken from the horse racecourse several hundred meters away from the heap. The vegetation was sampled directly from the heap. The predominating plants were tested: Urtica dioica, Glechoma hederacea, Euonymus verrucosus, and Drepanocladus aduncus. A control sample of U. dioica taken outside of the heap was also tested. The commercial PHYTOTOXKIT microbiotest was applied to evaluate the influence of heavy metal-contaminated sediments (used as soil) on germination and growth of the chosen test plants. The analyses of cadmium and copper concentrations revealed that the metal concentration in sediments was diverse at different depths of sampling, probably reflecting their concentration in stored layers of sediments. Moreover, the metal content in core A was four to five times lower than that in core B, which reveals heterogeneity of the sediments in the tested heap. In core A, the copper concentration ranged from 4.7 to 13.4 mg/kg d.w. (average 8.06 ± 0.71 mg/kg d.w.), while in core B, it ranged from 9.2 to 82.1 mg/kg d.w. (average 38.56 ± 2.6 mg/kg d.w.). One of the results of the heavy metal presence in soils is their bioaccumulation in plants. Comparing plant growth, more intensive growth of roots was observed in the case of plants growing on the control (reference) soil than those growing on sediments. The intensive development of both primary and lateral roots was noticed. During this early growth, metal accumulation in plants occurred

  16. Optical properties of thin gold films applied to Schottky barrier solar cells

    NASA Technical Reports Server (NTRS)

    YEH Y. M.

    1974-01-01

    The Schottky barrier solar cell is considered a possible candidate for converting solar to electrical energy both for space and terrestrial applications. Knowledge of the optical constants of the ultrathin metal film used in the cell is essential for analyzing and designing higher efficiency Schottky barrier cells. The optical constants of 7.5 -nm (75-A) gold films on gallium arsenide have been obtained. In addition, the absolute collection efficiency of Schottky barrier solar cells has been determined from measured spectral response and optical constants of the gold film.

  17. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method

    PubMed Central

    Gonzalez-Andrades, Miguel; Cardona, Juan de la Cruz; Ionescu, Ana Maria; Mosse, Charles A.; Brown, Robert A.

    2015-01-01

    Purpose Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts. Methods Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method. Results All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3±2.8%, with a blurring index (BI) of 50.6±4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring. Conclusions This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair. PMID:26566050

  18. Image processing techniques applied to the detection of optic disk: a comparison

    NASA Astrophysics Data System (ADS)

    Kumari, Vijaya V.; Narayanan, Suriya N.

    2010-02-01

    In retinal image analysis, the detection of optic disk is of paramount importance. It facilitates the tracking of various anatomical features and also in the extraction of exudates, drusens etc., present in the retina of human eye. The health of retina crumbles with age in some people during the presence of exudates causing Diabetic Retinopathy. The existence of exudates increases the risk for age related macular Degeneration (AMRD) and it is the leading cause for blindness in people above the age of 50.A prompt diagnosis when the disease is at the early stage can help to prevent irreversible damages to the diabetic eye. Screening to detect diabetic retinopathy helps to prevent the visual loss. The optic disk detection is the rudimentary requirement for the screening. In this paper few methods for optic disk detection were compared which uses both the properties of optic disk and model based approaches. They are uniquely used to give accurate results in the retinal images.

  19. Gerchberg-Saxton algorithm applied to a translational-variant optical setup.

    PubMed

    Amézquita-Orozco, Ricardo; Mejía-Barbosa, Yobani

    2013-08-12

    The standard Gerchberg-Saxton (GS) algorithm is normally used to find the phase (measured on two different parallel planes) of a propagating optical field (usually far-field propagation), given that the irradiance information on those planes is known. This is mostly used to calculate the modulation function of a phase mask so that when illuminated by a plane wave, it produces a known far-field irradiance distribution, or the equivalent, to calculate the phase mask to be used in a Fourier optical system so the desired pattern is obtained on the image plane. There are some extensions of the GS algorithm that can be used when the transformations that describe the optical setup are non-unitary, for example the Yang-Gu algorithm, but these are usually demonstrated using nonunitary translational-invariant optical systems. In this work a practical approach to use the GS algorithm is presented, where raytracing together with the Huygens-Fresnel principle are used to obtain the transformations that describe the optical system, so the calculation can be made when the field is propagated through a translational-variant optical system (TVOS) of arbitrary complexity. Some numerical results are shown for a system where a microscope objective composed by 5 lenses is used. PMID:23938827

  20. Adaptive optics applied to coherent anti-Stokes Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Girkin, John M.; Poland, Simon P.; Wright, Amanda J.; Freudiger, Christian; Evans, Conor L.; Xie, X. Sunney

    2008-02-01

    We report on the use of adaptive optics in coherent anti-Stokes Raman scattering microscopy (CARS) to improve the image brightness and quality at increased optical penetration depths in biological material. The principle of the technique is to shape the incoming wavefront in such a way that it counteracts the aberrations introduced by imperfect optics and the varying refractive index of the sample. In recent years adaptive optics have been implemented in multiphoton and confocal microscopy. CARS microscopy is proving to be a powerful tool for non-invasive and label-free biomedical imaging with vibrational contrast. As the contrast mechanism is based on a 3 rd order non-linear optical process, it is highly susceptible to aberrations, thus CARS signals are commonly lost beyond the depth of ~100 μm in tissue. We demonstrate the combination of adaptive optics and CARS microscopy for deep-tissue imaging using a deformable membrane mirror. A random search optimization algorithm using the CARS intensity as the figure of merit determined the correct mirror-shape in order to correct for the aberrations. We highlight two different methods of implementation, using a look up table technique and by performing the optimizing in situ. We demonstrate a significant increase in brightness and image quality in an agarose/polystyrene-bead sample and white chicken muscle, pushing the penetration depth beyond 200 μm.

  1. Ethanol-induced conditioned taste aversion in Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats.

    PubMed

    Dyr, Wanda; Wyszogrodzka, Edyta; Paterak, Justyna; Siwińska-Ziółkowska, Agnieszka; Małkowska, Anna; Polak, Piotr

    2016-03-01

    The aversive action of the pharmacological properties of ethanol was studied in selectively bred Warsaw Alcohol High-Preferring (WHP) and Warsaw Alcohol Low-Preferring (WLP) rats. For this study, a conditioned-taste aversion test was used. Male WHP and WLP rats were submitted to daily 20-min sessions for 5 days, in which a saccharin solution (1.0 g/L) was available (pre-conditioning phase). Next, this drinking was paired with the injection of ethanol (0, 0.5, 1.0 g/kg), intraperitoneally [i.p.] immediately after removal of the saccharin bottle (conditioning phase). Afterward, the choice between the saccharin solution and water was extended for 18 subsequent days for 20-min daily sessions (post-conditioning phase). Both doses of ethanol did not produce an aversion to saccharin in WLP and WHP rats in the conditioning phase. However, injection of the 1.0 g/kg dose of ethanol produced an aversion in WLP rats that was detected by a decrease in saccharin intake at days 1, 3, 7, and 10 of the post-conditioning phase, with a decrease in saccharin preference for 16 days of the post-conditioning phase. Conditioned taste aversion, measured as a decrease in saccharin intake and saccharin preference, was only visible in WHP rats at day 1 and day 3 of the post-conditioning phase. This difference between WLP and WHP rats was apparent despite similar blood ethanol levels in both rat lines following injection of 0.5 and 1.0 g/kg of ethanol. These results may suggest differing levels of aversion to the post-ingestional effects of ethanol between WLP and WHP rats. These differing levels of aversion may contribute to the selected line difference in ethanol preference in WHP and WLP rats.

  2. Spatial distribution and conservation of speckled hind and warsaw grouper in the Atlantic Ocean off the southeastern U.S.

    PubMed

    Farmer, Nicholas A; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28-33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25-27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3-8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14-29% of speckled

  3. Spatial Distribution and Conservation of Speckled Hind and Warsaw Grouper in the Atlantic Ocean off the Southeastern U.S.

    PubMed Central

    Farmer, Nicholas A.; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28–33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25–27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3–8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14–29% of

  4. Spatial distribution and conservation of speckled hind and warsaw grouper in the Atlantic Ocean off the southeastern U.S.

    PubMed

    Farmer, Nicholas A; Karnauskas, Mandy

    2013-01-01

    There is broad interest in the development of efficient marine protected areas (MPAs) to reduce bycatch and end overfishing of speckled hind (Epinephelus drummondhayi) and warsaw grouper (Hyporthodus nigritus) in the Atlantic Ocean off the southeastern U.S. We assimilated decades of data from many fishery-dependent, fishery-independent, and anecdotal sources to describe the spatial distribution of these data limited stocks. A spatial classification model was developed to categorize depth-grids based on the distribution of speckled hind and warsaw grouper point observations and identified benthic habitats. Logistic regression analysis was used to develop a quantitative model to predict the spatial distribution of speckled hind and warsaw grouper as a function of depth, latitude, and habitat. Models, controlling for sampling gear effects, were selected based on AIC and 10-fold cross validation. The best-fitting model for warsaw grouper included latitude and depth to explain 10.8% of the variability in probability of detection, with a false prediction rate of 28-33%. The best-fitting model for speckled hind, per cross-validation, included latitude and depth to explain 36.8% of the variability in probability of detection, with a false prediction rate of 25-27%. The best-fitting speckled hind model, per AIC, also included habitat, but had false prediction rates up to 36%. Speckled hind and warsaw grouper habitats followed a shelf-edge hardbottom ridge from North Carolina to southeast Florida, with speckled hind more common to the north and warsaw grouper more common to the south. The proportion of habitat classifications and model-estimated stock contained within established and proposed MPAs was computed. Existing MPAs covered 10% of probable shelf-edge habitats for speckled hind and warsaw grouper, protecting 3-8% of speckled hind and 8% of warsaw grouper stocks. Proposed MPAs could add 24% more probable shelf-edge habitat, and protect an additional 14-29% of speckled

  5. Segment Orientation and Optical Birefringence of Amorphous Polymers Under Tensile Deformation: Novel Computational Method applied to Different Glassy Polycarbonates

    NASA Astrophysics Data System (ADS)

    Natarajan, Upendra; Sulatha, M. S.

    2005-03-01

    Orientation dependent optical properties of Bisphenol A polycarbonate and two aliphatic substituted polycarbonates in glassy phase have been studied by atomistic modeling using molecular mechanics simulations under tensile deformation. Probability distributions and orientation functions show that phenylene rings and carbonate groups vectors along the main chain orient towards stretching direction following deformation. Interchain packing of rings and carbonates become ordered with strain. Efficient computational approach for calculation of optical birefringence of amorphous polymers is presented and applied to the polycarbonates in detail. Polarizability anisotropy of the polymer segments and chain as a function of deformation is calculated by combining information on the conformations and group polarizabilities, and used to estimate birefringence during deformation. Simulated and experimental values for segment orientation and bulk birefringence are in very good agreement. Effect of the optical properties of atomic groups on bulk birefringence is brought forth for the first time by molecular simulation for polymers other than polyethylene.

  6. Doppler optical coherence microscopy and tomography applied to inner ear mechanics

    SciTech Connect

    Page, Scott; Freeman, Dennis M.; Ghaffari, Roozbeh

    2015-12-31

    While it is clear that cochlear traveling waves underlie the extraordinary sensitivity, frequency selectivity, and dynamic range of mammalian hearing, the underlying micromechanical mechanisms remain unresolved. Recent advances in low coherence measurement techniques show promise over traditional laser Doppler vibrometry and video microscopy, which are limited by low reflectivities of cochlear structures and restricted optical access. Doppler optical coherence tomography (DOCT) and Doppler optical coherence microscopy (DOCM) both utilize a broadband source to limit constructive interference of scattered light to a small axial depth called a coherence gate. The coherence gate can be swept axially to image and measure sub-nanometer motions of cochlear structures throughout the cochlear partition. The coherence gate of DOCT is generally narrower than the confocal gate of the focusing optics, enabling increased axial resolution (typically 15 μm) within optical sections of the cochlear partition. DOCM, frequently implemented in the time domain, centers the coherence gate on the focal plane, achieving enhanced lateral and axial resolution when the confocal gate is narrower than the coherence gate. We compare these two complementary systems and demonstrate their utility in studying cellular and micromechanical mechanisms involved in mammalian hearing.

  7. Organization of the cord blood bank in Warsaw, Poland: current status and future prospects.

    PubMed

    Pojda, Z; Machaj, E; Debski, R; Oldak, T; Cesarz, R; Krawczyk, E; Braun, B

    1998-07-01

    The preliminary results of the currently established cord blood bank in Warsaw, Poland have been reported. 163 cord blood samples (mean volume 102 ml) were collected during/or after delivery of the placenta. Average cell numbers per sample were as follows: WBC 13.4 x 10(8); BFU-E 5.7 x 10(4); GM-CFC 4.1 x 10(5); CD34+ 4.5 x 10(6). The quantities and quality of collected cells are suitable for their use for clinical transplantation.

  8. Superluminal, luminal, and subluminal nondiffracting pulses applied to free-space optical systems: theoretical description.

    PubMed

    Garay-Avendaño, Roger L; Zamboni-Rached, Michel

    2016-03-01

    In this paper, we show theoretically nondiffracting pulses with arbitrary peak velocities that are suitable for data signal transmission without distortion over long distances using different techniques of signal modulation. Our results provide closed-form analytical solutions to the wave equation describing superluminal, luminal, and subluminal ideal nondiffracting pulses with frequency spectra commonly used in the field of optical communications. PMID:26974644

  9. Fiber-optic technologies for advanced thermo-therapy applied ex vivo to liver tumors

    NASA Astrophysics Data System (ADS)

    Tosi, D.; Perrone, G.; Vallan, A.; Braglia, A.; Liu, Y.; Macchi, E. G.; Braschi, G.; Gallati, M.; Cigada, A.; Poeggel, S.; Duraibabu, D. B.; Leen, G.; Lewis, E.

    2015-07-01

    Thermal ablation, using radiofrequency, microwave, and laser sources, is a common treatment for hepatic tumors. Sensors allow monitoring, at the point of treatment, the evolution of thermal ablation procedures. We present optical fiber sensors that allow advanced capabilities for recording the biophysical phenomena occurring in the tissue in real time. Distributed or quasi-distributed thermal sensors allow recording temperature with spatial resolution ranging from 0.1 mm to 5 mm. In addition, a thermally insensitive pressure sensor allows recording pressure rise, supporting advanced treatment of encapsulated tumors. Our investigation is focused on two case studies: (1) radiofrequency ablation of hepatic tissue, performed on a phantom with a stem-shaped applicator; (2) laser ablation of a liver phantom, performed with a fiber laser. The main measurement results are discussed, comparing the technologies used for the investigation, and drawing the potential for using optical fiber sensors for "smart"-ablation.

  10. Proven high-reliability assembly methods applied to avionics fiber-optics high-speed transceivers

    NASA Astrophysics Data System (ADS)

    Lauzon, Jocelyn; Leduc, Lorrain; Bessette, Daniel; Bélanger, Nicolas; Larose, Robert; Dion, Bruno

    2012-06-01

    Harsh environment avionics applications require operating temperature ranges that can extend to, and exceed -50 to 115°C. For obvious maintenance, management and cost arguments, product lifetimes as long as 20 years are also sought. This leads to mandatory long-term hermeticity that cannot be obtained with epoxy or silicone sealing; but only with glass seal or metal solder or brazing. A hermetic design can indirectly result in the required RF shielding of the component. For fiber-optics products, these specifications need to be compatible with the smallest possible size, weight and power consumption. The products also need to offer the best possible high-speed performances added to the known EMI immunity in the transmission lines. Fiber-optics transceivers with data rates per fiber channel up to 10Gbps are now starting to be offered on the market for avionics applications. Some of them are being developed by companies involved in the "normal environment" telecommunications market that are trying to ruggedize their products packaging in order to diversify their customer base. Another approach, for which we will present detailed results, is to go back to the drawing boards and design a new product that is adapted to proven MIL-PRF-38534 high-reliability packaging assembly methods. These methods will lead to the introduction of additional requirements at the components level; such as long-term high-temperature resistance for the fiber-optic cables. We will compare both approaches and demonstrate the latter, associated with the redesign, is the preferable one. The performance of the fiber-optic transceiver we have developed, in terms of qualification tests such as temperature cycling, constant acceleration, hermeticity, residual gaz analysis, operation under random vibration and mechanical shocks and accelerated lifetime tests will be presented. The tests are still under way, but so far, we have observed no performance degradation of such a product after more than

  11. Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor

    NASA Astrophysics Data System (ADS)

    Cameron, Brent D.; Baba, Justin S.; Cote, Gerard L.

    2000-05-01

    The application of optical polarimetry, using the anterior chamber of the eye as the sensing site, is being investigated as a potential method to develop a noninvasive physiological glucose monitor. First, we present results characterizing the optical rotatory dispersion of the main optically active analytes found within the aqueous humor of the eye including, glucose, albumin, and ascorbic acid. This information is used in conjunction with multiple linear regression to demonstrate how multispectral polarimetry can be used to minimize glucose prediction error in samples containing varying physiological concentrations of glucose and albumin. For this multispectral study, a novel dual wavelength (532 nm and 635 nm) polarimeter was designed and constructed. This sensor is novel in that it provides simultaneous measurements using a 532 nm laser in an open- loop configuration and a 635 nm laser in a closed-loop configuration. In addition, we present in vivo results using New Zealand White rabbits that indicate the time delay between blood and aqueous human glucose levels is below ten minutes. Lastly, we provide preliminary in vivo polarimetric results and discuss the main issues currently hindering the measurement of glucose.

  12. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    NASA Astrophysics Data System (ADS)

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  13. Measuring the effects of topically applied skin optical clearing agents and modeling the effects and consequences for laser therapies

    NASA Astrophysics Data System (ADS)

    Verkruysse, Wim; Khan, Misbah; Choi, Bernard; Svaasand, Lars O.; Nelson, J. Stuart

    2005-04-01

    Human skin prepared with an optical clearing agent manifests reduced scattering as a result of de-hydration and refractive index matching. This has potentially large effects for laser therapies of several skin lesions such as port wine stain, hair removal and tattoo removal. With most topically applied clearing agents the clearing effect is limited because they penetrate poorly through the intact superficial skin layer (stratum corneum). Agent application modi other than topical are impractical and have limited the success of optical clearing in laser dermatology. In recent reports, however, a mixture of lipofylic and hydrofylic agents was shown to successfully penetrate through the intact stratum corneum layer which has raised new interest in this field. Immediately after application, the optical clearing effect is superficial and, as the agent diffuses through the skin, reduced scattering is manifested in deeper skin layers. For practical purposes as well as to maximize therapeutic success, it is important to quantify the reduced scattering as well as the trans-cutaneous transport dynamics of the agent. We determined the time and tissue depth resolved effects of optically cleared skin by inserting a microscopic reflector array in the skin. Depth dependent light intensity was measured by quantifying the signal of the reflector array with optical coherence tomography. A 1-dimensional mass diffusion model was used to estimate a trans-cutaneous transport diffusion constant for the clearing agent mixture. The results are used in Monte Carlo modeling to determine the optimal time of laser treatment after topical application of the optical clearing agent.

  14. Seasonal variability in intake of fish oil dietary supplements among inhabitants of Warsaw.

    PubMed

    Kolanowski, Wojciech

    2008-04-01

    The aim of this study was to estimate the rate of sale and intake level of dietary supplements containing fish oil among inhabitants of Warsaw. The survey was carried out during 25 months in the years 2004 to 2006 in 3 selected drugstores localized in the central areas of Warsaw. The amount of fish oil, level of omega-3 long-chain polyunsaturated fatty acids declared on the label, price and rate of sale of particular supplements, as well as the reasons why customers purchased the supplements were collected and analyzed. The rate of sale of fish oil supplements was low; however, it showed a tendency for increase during the time of evaluation. Strong seasonal variability of supplements sale and therefore intake were observed. The highest levels for these parameters occurred from October to February and the lowest from May to July. The most often purchased supplements were fish liver oil capsules. The main reason for fish oil supplement purchases was medical recommendations. The health benefits of fish liver oil were known among customers of drugstores; however, the term omega-3 was almost unknown.

  15. Basic Science B.D. (before Drosophila): Cytology at Warsaw University (Poland).

    PubMed

    Kloc, Malgorzata

    2008-01-01

    The majority of modern research in cell and developmental biology is based almost exclusively on seven model organisms: mouse, zebra fish, Xenopus laevis frog, Drosophila fly, Caenorabditis elegans worm, Arabidopsis plant and yeast. Although the validity and practicality of these model systems and their impact on scientific progress are undeniable, the combination of goal-oriented science and the use of the model systems introduces, a priori, a dangerous limitation to scientific discovery. Consequently, many astonishing phenomena occurring in non-model organisms are either never studied or, disappear from scientific consciousness. A perfect example is the fate of the important studies by Professor Zygmunt Kraczkiewicz on chromatin diminution in Cecidomyiidae (Diptera) conducted before World War II and continued by his team until early 1990 in the Department of Cytology at Warsaw University in Poland. These light and electron microscopy studies have not been elevated to the molecular level, and although they deserve to be extensively studied and cited by researchers working in the field of soma and germ cell differentiation and specification, they have been, within the past 40 years, nearly completely wiped out of scientific memory. This article presents a short summary of this important research in the historical context of pre- and post-war science at Warsaw University in Poland.

  16. Vistula River bed erosion processes and their influence on Warsaw's flood safety

    NASA Astrophysics Data System (ADS)

    Magnuszewski, A.; Moran, S.

    2015-03-01

    Large cities have historically been well protected against floods as a function of their importance to society. In Warsaw, Poland, located on a narrow passage of the Vistula River valley, urban flood disasters were not unusual. Beginning at the end of the 19th century, the construction of river embankment and training works caused the narrowing of the flood passage path in the downtown reach of the river. The process of bed erosion lowered the elevation of the river bed by 205 cm over the 20th century, and the consequences of bed lowering are reflected by the rating curve change. Conditions of the flood passage have been analysed by the CCHE2D hydrodynamic model both in retro-modelling and scenario simulation modelling. The high water mark of the 1844 flood and iterative calculations in retro-modelling made possible estimation of the discharge, Q = 8250 m3 s-1. This highest observed historical flood in a natural river has been compared to recent conditions of the Vistula River in Warsaw by scenario modelling. The result shows dramatic changes in water surface elevation, velocities, and shear stress. The vertical velocity in the proximity of Port Praski gauge at km 513 can reach 3.5 m s-1, a very high value for a lowland river. The average flow conveyance is improving due to channel erosion but also declining in the case of extreme floods due to high resistance from vegetation on the flood plains.

  17. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  18. Mustiscaling Analysis applied to field Water Content through Distributed Fiber Optic Temperature sensing measurements

    NASA Astrophysics Data System (ADS)

    Benitez Buelga, Javier; Rodriguez-Sinobas, Leonor; Sanchez, Raul; Gil, Maria; Tarquis, Ana M.

    2014-05-01

    signal variation, or to see at which scales signals are most correlated. This can give us an insight into the dominant processes An alternative to both of the above methods has been described recently. Relative entropy and increments in relative entropy has been applied in soil images (Bird et al., 2006) and in soil transect data (Tarquis et al., 2008) to study scale effects localized in scale and provide the information that is complementary to the information about scale dependencies found across a range of scales. We will use them in this work to describe the spatial scaling properties of a set of field water content data measured in an extension of a corn field, in a plot of 500 m2 and an spatial resolution of 25 cm. These measurements are based on an optics cable (BruggSteal) buried on a ziz-zag deployment at 30cm depth. References Bird, N., M.C. Díaz, A. Saa, and A.M. Tarquis. 2006. A review of fractal and multifractal analysis of soil pore-scale images. J. Hydrol. 322:211-219. Kravchenko, A.N., R. Omonode, G.A. Bollero, and D.G. Bullock. 2002. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Sci. Soc. Am. J. 66:235-243. Lark, R.M., A.E. Milne, T.M. Addiscott, K.W.T. Goulding, C.P. Webster, and S. O'Flaherty. 2004. Scale- and location-dependent correlation of nitrous oxide emissions with soil properties: An analysis using wavelets. Eur. J. Soil Sci. 55:611-627. Lark, R.M., S.R. Kaffka, and D.L. Corwin. 2003. Multiresolution analysis of data on electrical conductivity of soil using wavelets. J. Hydrol. 272:276-290. Lark, R. M. and Webster, R. 1999. Analysis and elucidation of soil variation using wavelets. European J. of Soil Science, 50(2): 185-206. Mandelbrot, B.B. 1982. The fractal geometry of nature. W.H. Freeman, New York. Percival, D.B., and A.T. Walden. 2000. Wavelet methods for time series analysis. Cambridge Univ. Press, Cambridge, UK. Tarquis, A.M., N.R. Bird, A.P. Whitmore, M.C. Cartagena, and

  19. Anisotropic optical distribution of powder phosphor materials applied in medical imaging instrumentation

    NASA Astrophysics Data System (ADS)

    Liaparinos, P. F.

    2016-02-01

    Image quality for medical purposes is related to the useful diagnostic information that can be extracted from an image. The performance of indirect X-ray detectors, which in turn affects the quality of the medical image, can be significantly influenced by the characteristics of the phosphor, employed to convert incident radiation into emitted light. Given the technological and medical importance of phosphor materials, understanding the fundamental effects of optical anisotropy is crucial. The purpose of the present paper was to examine the influence of optical anisotropy in optical diffusion within the powder phosphor-based X-ray detectors. The present investigation was based on Mie scattering theory and Monte Carlo simulation techniques. The variation of the anisotropy factor was examined for: (1) light wavelengths in the range 400-700 nm, (2) particle refractive index between 1.5 and 2 and (3) three regions of particle sizes: nanoscale (from 10 up to 100 nm), submicron scale (from 100 nm up to 1 μm), and microscale (from 1 up to 10 μm). In addition, optical diffusion performance was carried out considering: (a) anisotropy factor values 0.2, 0.5, 0.8 which represent different aspects of light propagation after scattering and (b) phosphors of different layer thickness, 100 (thin layer) and 300 μm (thick layer), respectively. Results showed that the highest variation on the anisotropy factor was observed in the submicron scale, and, in particular, for grain diameters between 100 and 600 nm (increase from 0.1 up to 0.8). In addition, Monte Carlo simulations showed that the spread of light photons decreases (i.e., high spatial resolution) with the decrease in the anisotropy factor. In particular, the FWHM was found to decrease with the anisotropy factor: (1) 11.4 % at 100 μm and 4.2 %, at 300 μm layer thickness, for light extinction coefficient 0.217 μm-1 and (2) 1.9 % at 100 μm and 2.0 %, at 300 μm layer thickness, for light extinction coefficient 3 μm-1

  20. The early-stage diagnosis of albinic embryos by applying optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yang, Bor-Wen; Wang, Shih-Yuan; Wang, Yu-Yen; Cai, Jyun-Jhang; Chang, Chung-Hao

    2013-09-01

    Albinism is a kind of congenital disease of abnormal metabolism. Poecilia reticulata (guppy fish) is chosen as the model to study the development of albinic embryos as it is albinic, ovoviviparous and with short life period. This study proposed an imaging method for penetrative embryo investigation using optical coherence tomography. By imaging through guppy mother’s reproduction purse, we found the embryo’s eyes were the early-developed albinism features. As human’s ocular albinism typically appear at about four weeks old, it is the time to determine if an embryo will grow into an albino.

  1. Optical fiber imaging for high speed plasma motion diagnostics: Applied to low voltage circuit breakers

    SciTech Connect

    McBride, J. W.; Balestrero, A.; Tribulato, G.; Ghezzi, L.; Cross, K. J.

    2010-05-15

    An integrated portable measurement system is described for the study of high speed and high temperature unsteady plasma flows such as those found in the vicinity of high current switching arcs. An array of optical fibers allows the formation of low spatial resolution images, with a maximum capture rate of 1x10{sup 6} images per second (1 MHz), with 8 bit intensity resolution. Novel software techniques are reported to allow imaging of the arc; and to measure arc trajectories. Results are presented on high current (2 kA) discharge events in a model test fixture and on the application to a commercial low voltage circuit breaker.

  2. A statistical model for road surface friction forecasting applying optical road weather measurements

    NASA Astrophysics Data System (ADS)

    Hippi, M.; Juga, I.; Nurmi, P.

    2009-09-01

    Road surface friction is defined as the grip between car tyre and underlying surface. Poor friction often plays a crucial role in wintertime car accidents. Friction can decrease dramatically during snowfall or when wet road surface temperature falls below zero. Even a thin layer of ice or snow can decrease friction substantially increasing the risk of accidents. Many studies have shown that road surface temperature, road conditions and friction can fluctuate dramatically within short distances under specific weather situations. Friction or grip can be improved with road maintenance activities like salting and gritting. Salting will melt the ice or snow layer, whereas gritting will improve the grip. Salting is effective only above -5C temperatures. Light snowfall together with low temperatures can result in very slippery driving conditions. Finnish Road Administration's observing network covers c. 500 road weather stations in Finland. Almost 100 of them are equipped with optical sensors (in winter 2008-2009). The number of optical sensors has increased remarkably during past few years. The optical measuring devices are Vaisala DSC111 sensors which measure the depth of water, snow and ice on the road surface and also produce an estimate of the state of road and prevailing friction. Observation data from road weather stations with optical sensors were collected from winter 2007/08, and a couple of representative (from a weather perspective) stations were selected for detailed statistical analysis. The purpose of the study was to find a statistical relationship between the observed values and, especially, the correlation between friction and other road weather parameters. Consequently, a model based on linear regression was developed. With the model friction being the dependent variable, the independent variables having highest correlations were the composite of ice and snow (water content) on the road, and the road surface temperature. In the case of a wet road

  3. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement

    NASA Astrophysics Data System (ADS)

    Noda, Naoki; Kamimura, Shinji

    2008-02-01

    With conventional light microscopy, precision in the measurement of the displacement of a specimen depends on the signal-to-noise ratio when we measure the light intensity of magnified images. This implies that, for the improvement of precision, getting brighter images and reducing background light noise are both inevitably required. For this purpose, we developed a new optics for laser dark-field illumination. For the microscopy, we used a laser beam and a pair of axicons (conical lenses) to get an optimal condition for dark-field observations. The optics was applied to measuring two dimensional microbead displacements with subnanometer precision. The bandwidth of our detection system overall was 10kHz. Over most of this bandwidth, the observed noise level was as small as 0.1nm/√Hz.

  4. From hyperons to applied optics: {open_quotes}Winston Cones{close_quotes} during and after ZGS era

    SciTech Connect

    Swallow, E.C. |

    1994-12-31

    This paper discusses developments in light collection which had their origin in efforts to construct high performance gas Cerenkov detectors for precision studies of hyperon beta decays at the ZGS. The resulting devices, know generally as {open_quotes}compound parabolic concentrators,{close_quotes} have found applications ranging from nuclear and particle physics experiments to solar energy concentration, instrument illumination, and understanding the optics of visual receptors. Interest in these devices and the ideas underlying them stimulated the development of a substantial new subfield of physics: nonimaging optics. This progression provides an excellent example of some ways in which unanticipated - and often unanticipatable - applied science and {open_quotes}practical{close_quotes} devices naturally emerge from first-rate basic science. The characteristics of this process suggest that the term {open_quotes}spinoff{close_quotes} commonly used to denote it is misleading and in need of replacement.

  5. APPLYING OPEN-PATH OPTICAL SPECTROSCOPY TO HEAVY-DUTY DIESEL EMISSIONS

    EPA Science Inventory

    Non-dispersive infrared absorption has been used to measure gaseous emissions for both stationary and mobile sources. Fourier transform infrared spectroscopy has been used for stationary sources as both extractive and open-path methods. We have applied the open-path method for bo...

  6. New light-trapping concept by means of several optical components applied to compact holographic 3D concentration solar module

    NASA Astrophysics Data System (ADS)

    Villamarín Villegas, Ayalid M.; Pérez López, Francisco J.; Calo López, Antonio; Rodríguez San Segundo, Hugo-José

    2014-05-01

    A new light-trapping concept is presented, which joins broad bandwidth volume phase reflection holograms (VPRH) working together with three other optical components: specifically designed three-dimensional (3D) cavities, Total Internal Reflection (TIR) within an optical medium, and specular reflection by means of a highly reflective surface. This concept is applied to the design and development of both low concentration photovoltaic (LCPV) and solar thermal modules reaching a concentration factor of up to 3X. Higher concentrations are feasible for use in concentrated solar power (CSP) devices. The whole system is entirely made of polymeric materials (except for the solar cells or fluid carrying pipes), thus reducing cost by up to 40%. The module concentrates solar light onto solar cells - or fluid carrying pipes - with no need for active tracking of the sun, covering the whole seasonal and daily incident angle spectrum while it also minimizes optical losses. In this work we analyze the first experimentally measured optical characteristics and performance of VPRH in dichromated gelatin film (DCG) in our concept. The VPRH can reach high diffraction efficiencies (˜98%, ignoring Fresnel reflection losses). Thanks to specifically designed raw material, coating and developing process specifications, also very broad selective spectral (higher than 300 nm) and angular bandwidths (˜+20º) per grating are achieved. The VPRH was optimized to use silicon solar cells, but designs for other semiconductor devices or for fluid heating are feasible. The 3D shape, the hologram's and reflective surface's optical quality, the TIR effect and the correct coupling of all the components are key to high performance of the concentration solar module.

  7. Ultrafast Rotation of Light Fields Applied to Highly Non-Linear Optics

    NASA Astrophysics Data System (ADS)

    Quéré, Fabien

    2014-05-01

    Femtosecond laser beams can exhibit spatio-temporal couplings (STC), i.e. a temporal dependence of their spatial properties, or vice versa. Although these couplings have long been considered as detrimental for high-intensity and ultrafast experiments, moderate and controlled STC provide a powerful means of controlling high-intensity laser-matter interactions. This talk will first explain the basics of a particular STC, where the propagation direction of laser light rotates in time on the femtosecond time scale. Laser pulses with such ultrafast wavefront rotation can be used to generate attosecond pulses of light through non-linear optical processes. We show that these pulses, periodically generated in each laser cycle, can then be emitted in spatially separated beamlets. This effects provides a new type of light sources called attosecond lighthouses, and can be exploited for ultrafast measurements with femtosecond resolution, in a scheme called photonic streaking.

  8. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    PubMed

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics.

  9. Laser-electron beam interaction applied to optical amplifiers and oscillators

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Piestrup, M. A.

    1976-01-01

    Momentum modulation of a relativistic electron beam by a Nd:YAG laser is demonstrated. The electrons, at 100 MeV energy, interact with the laser light in helium gas at standard temperature and pressure. At an angle of 6.55 mrad between the two wavevectors, corresponding to the Cerenkov angle, a given electron remains in a field of constant phase as it passes through the light beam. The experimental arrangement is illustrated showing the trajectories of the electron and light. The particle momentum is measured by a mass spectrometer, and the angle between the wavevectors is controlled by a rotatable mirror. Experimental results indicate that momentum modulation of an electron beam may be used for amplification. A possible configuration for an optical klystron is illustrated.

  10. Indoor air pollution from solid fuels and peripheral blood DNA methylation: findings from a population study in Warsaw, Poland.

    PubMed

    Tao, Meng-Hua; Zhou, Jiachen; Rialdi, Alexander P; Martinez, Regina; Dabek, Joanna; Scelo, Ghislaine; Lissowska, Jolanta; Chen, Jia; Boffetta, Paolo

    2014-10-01

    DNA methylation is a potential mechanism linking indoor air pollution to adverse health effects. Fetal and early-life environmental exposures have been associated with altered DNA methylation and play a critical role in progress of diseases in adulthood. We investigated whether exposure to indoor air pollution from solid fuels at different lifetime periods was associated with global DNA methylation and methylation at the IFG2/H19 imprinting control region (ICR) in a population-based sample of non-smoking women from Warsaw, Poland. Global methylation and IFG2/H19 ICR methylation were assessed in peripheral blood DNA from 42 non-smoking women with Luminometric Methylation Assay (LUMA) and quantitative pyrosequencing, respectively. Linear regression models were applied to estimate associations between indoor air pollution and DNA methylation in the blood. Compared to women without exposure, the levels of LUMA methylation for women who had ever exposed to both coal and wood were reduced 6.70% (95% CI: -13.36, -0.04). Using both coal and wood before age 20 was associated with 6.95% decreased LUMA methylation (95% CI: -13.79, -0.11). Further, the negative correlations were more significant with exposure to solid fuels for cooking before age 20. There were no clear associations between indoor solid fuels exposure before age 20 and through the lifetime and IFG2/H19 ICR methylation. Our study of non-smoking women supports the hypothesis that exposure to indoor air pollution from solid fuels, even early-life exposure, has the capacity to modify DNA methylation that can be detected in peripheral blood.

  11. Short Communications Prepared for the Second Congress of the International Association for the Scientific Study of Mental Deficiency (Warsaw, 1970).

    ERIC Educational Resources Information Center

    Academy of Pedagogical Sciences of the USSR, Moscow. Inst. of Defectology.

    Presented are 24 brief papers prepared by members of the Institute of Defectology in the Soviet Union for a congress on the scientific study of mental deficiency held in Warsaw in 1970. Major papers have the following titles: "Principal Directions of the Study of Anomalous Children in the U.S.S.R.", "Etiopathogenesis and Classification of…

  12. Secondary Students' Understanding of NATO and the Warsaw Pact: The Educational Implications of Research Conducted in Three NATO Nations.

    ERIC Educational Resources Information Center

    Galfo, Armand J.

    Three research projects were conducted over a three year period among secondary school students in the United Kingdom, the United States (Virginia), and West Germany in order to determine students' understanding the 40-year confrontation between the North Atlantic Treaty Organization (NATO) and the Warsaw Pact. These studies included 1991 students…

  13. Optical Flow Applied to Time-Lapse Image Series to Estimate Glacier Motion in the Southern Patagonia Ice Field

    NASA Astrophysics Data System (ADS)

    Lannutti, E.; Lenzano, M. G.; Toth, C.; Lenzano, L.; Rivera, A.

    2016-06-01

    In this work, we assessed the feasibility of using optical flow to obtain the motion estimation of a glacier. In general, former investigations used to detect glacier changes involve solutions that require repeated observations which are many times based on extensive field work. Taking into account glaciers are usually located in geographically complex and hard to access areas, deploying time-lapse imaging sensors, optical flow may provide an efficient solution at good spatial and temporal resolution to describe mass motion. Several studies in computer vision and image processing community have used this method to detect large displacements. Therefore, we carried out a test of the proposed Large Displacement Optical Flow method at the Viedma Glacier, located at South Patagonia Icefield, Argentina. We collected monoscopic terrestrial time-lapse imagery, acquired by a calibrated camera at every 24 hour from April 2014 until April 2015. A filter based on temporal correlation and RGB color discretization between the images was applied to minimize errors related to changes in lighting, shadows, clouds and snow. This selection allowed discarding images that do not follow a sequence of similarity. Our results show a flow field in the direction of the glacier movement with acceleration in the terminus. We analyzed the errors between image pairs, and the matching generally appears to be adequate, although some areas show random gross errors related to the presence of changes in lighting. The proposed technique allowed the determination of glacier motion during one year, providing accurate and reliable motion data for subsequent analysis.

  14. Versatile optical coherence tomography system applied to the imaging of teeth

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.; Podoleanu, Adrian Gh.; Rogers, John A.; Higham, Susan M.; Dunne, Shane; Jackson, David A.

    2002-06-01

    The utility of a versatile multifunctional standalone Optical Coherence Tomography (OCT)/confocal system for imaging dental tissue was investigated. The system can collect A-scan (reflectivity versus depth graph), longitudinal (B-scan) and en-face (C-scan) OCT images, simultaneously with a confocal image. The power to the sample was 250(mu) W, wavelength (lambda) =850 nm and the depth resolution in air was 16 micrometers . The OCT images showed caries lesions as volumes of reduced reflectivity. Transversal images (C-scan) showed the en-face slices of the tooth tissue like in confocal microscopy. Longitudinal images showed the depth of the lesion into the tooth tissue as well as the different structural layers of sound tooth in the same way as seen in ultrasound images. A-scans performed in locations selected in the en-face images provided quantitative data about the reflectivity versus depth. The confocal channel was extremely useful for guidance and it has also shown the integral of the intensity over depth at transversal locations. We concluded that OCT proved capable to detect an early caries lesion, to show the depth of the lesion into the tissue, and quantitatively assess the degree of demineralization.

  15. Excimer laser ablation lithography applied to the fabrication of reflective diffractive optics

    NASA Astrophysics Data System (ADS)

    Flury, M.; Benatmane, A.; Gérard, P.; Montgomery, P. C.; Fontaine, J.; Engel, T.; Schunck, J. P.; Fogarassy, E.

    2003-03-01

    We propose a low cost technique for the production of diffractive optical elements (DOE). These elements are devoted to high power lasers beam shaping in the mid-infrared wavelengths. This process called laser ablation lithography (LAL), may seem similar to laser beam writing (LBW) in the way the whole DOE's design is reproduced pixel by pixel on the substrate placed on a computer controlled XY translation stage. A first difference is that the photoresist is not exposed with UV light but is directly ablated with short excimer laser pulses. Furthermore, with LAL technique the size of the smallest pixel ( 5 μm×5 μm) is more than 10 times greater than those produced by LBW. We discuss in details the experimental set-up for LAL and demonstrate that it gives a resolution up to 10 times greater than photolithography with flexible masks. This makes LAL a promising solution for the production of DOE for use with Nd:YAG lasers. New applications of DOEs are finally introduced with high power lasers sources, such as laser marking or multi-point brazing.

  16. High Resolution Numerical Model of Optically Heated Float-Zone Crystal Growth with Applied Magnetic Field

    NASA Astrophysics Data System (ADS)

    Huang, Yue; Houchens, Brent

    2008-11-01

    During optically heated float-zone crystal growth processing, thermocapillary forces drive a flow in the melt. This steady, axisymmetric base flow is susceptible to instabilities, resulting in defects as the final crystal is solidified from the melt. To damp these instabilities, a magnetic field is employed. The stability of this flow, neglecting buoyancy, is studied with a full-zone model. The velocity and temperature fields are calculated by a spectral collocation method using Chebyshev polynomials as basis functions. Obtaining accurate base flows is crucial to the success of the subsequent stability analysis. A 2nd order vorticity transport representation is compared with a 4th order stream function representation. At low Hartmann numbers, the results are in good agreement. However, as resolution demands increase, the 2nd order vorticity transport formulation yields a better numerical representation by avoiding large computational errors caused by 4th and 3rd derivatives of Chebyshev terms in the 4th order stream function representation. This allows the stability analysis to be carried out at larger Hartmann numbers, where the critical thermocapillary Reynolds number is much greater.

  17. Historic Buildings of the Warsaw University of Technology - Selected Issues of Renovation, Modernisation and Adaptation

    NASA Astrophysics Data System (ADS)

    Wagner, Anna Agata

    2016-06-01

    The historic buildings of the Warsaw University of Technology display not only outstanding architectural values, but are also representative of the trends in preservation, restoration, and adaptation that were prevalent at the time of their modernization. The post-war rebuilding of the WUT was more akin to modernization than reconstruction. But the freedom to shape modern architectural forms in the 1960s and '70s brought with it a lack of respect for their historic environment. A change in the approach to historic buildings and their integration with modern architecture came in the late 1970s. The most recent modernization of the WUT's historic buildings, especially after Poland's accession to the EU, resulted in many good examples of proper, harmonious integration between the `modern' and the `traditional'.

  18. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  19. Results from a first production of enhanced Silicon Sensor Test Structures produced by ITE Warsaw

    NASA Astrophysics Data System (ADS)

    Bergauer, T.; Dragicevic, M.; Frey, M.; Grabiec, P.; Grodner, M.; Hänsel, S.; Hartmann, F.; Hoffmann, K.-H.; Hrubec, J.; Krammer, M.; Kucharski, K.; Macchiolo, A.; Marczewski, J.

    2009-01-01

    Monitoring the manufacturing process of silicon sensors is essential to ensure stable quality of the produced detectors. During the CMS silicon sensor production we were utilising small Test Structures (TS) incorporated on the cut-away of the wafers to measure certain process-relevant parameters. Experience from the CMS production and quality assurance led to enhancements of these TS. Another important application of TS is the commissioning of new vendors. The measurements provide us with a good understanding of the capabilities of a vendor's process. A first batch of the new TS was produced at the Institute of Electron Technology in Warsaw Poland. We will first review the improvements to the original CMS test structures and then discuss a selection of important measurements performed on this first batch.

  20. Optical coherence tomography applied to the evaluation of wear of composite resin for posterior teeth

    NASA Astrophysics Data System (ADS)

    Mota, Cláudia C. B. O.; Guerra, Bruna A.; Machado, Brena S. A.; Cabral, Adolfo J.; Gomes, Anderson S. L.

    2015-06-01

    Resin composites are widely used as restorative materials due to their excellent aesthetical and mechanical properties. Posterior teeth are constantly submitted to occlusal stress and upon restoration require more resistant resins. The aim of this study was to analyze in vitro the wear suffered over time by restorations in resin composite in posterior teeth, by Optical Coherence Tomography (OCT). 30 molars had occlusal cavities prepared and were randomly divided into three groups (n=10) and restored with resin composite: G1: Filtek P90 (3M/ESPE), G2: Tetric N-Ceram (Ivoclar Vivadent); G3: Filtek P60 (3M/ESPE). Specimens were subjected to initial analysis by OCT (OCP930SR, Thorlabs, axial resolution 6.2 μm) and stereoscopic microscope. Specimens were submitted to thermocycling (500 cycles, 5-55 °C) and subjected to simulated wear through a machine chewing movements (Wear Machine WM001), projecting four years of use. After mechanical cycles, the specimens were submitted to a second evaluation by the OCT and stereoscopic microscopy. As a result, it was observed that 90% of the restorations of both groups had fractures and/or points of stress concentration, considered niches for early dissemination of new fracture lines. It was also found that G1 and G2 had more points of stress concentration, whereas G3 had a higher incidence of fracture lines already propagated. It was concluded that the G3 showed more brittle behavior at the masticatory wear when compared to G1 and G2.

  1. Blob identification algorithms applied to laser speckle to characterize optical turbulence

    NASA Astrophysics Data System (ADS)

    Cauble, Galen D.; Wayne, David T.

    2015-09-01

    Laser beam speckle resulting from atmospheric turbulence contains information about the propagation channel. The number and size of the speckle cells can be used to infer the spatial coherence and thus the Cn2 along a path. The challenge with this technique is the rapidly evolving speckle pattern and non-uniformity of the speckle cells. In this paper we investigate modern blob counting techniques used in biology, microscopy, and medical imaging. These methods are then applied to turbulent speckle images to estimate the number and size of the speckle cells. Speckle theory is reviewed for different beam types and different regimes of turbulence. Algorithms are generated to calculate path Cn2 from speckle information and path geometry. The algorithms are tested on speckle images from experimental data collected over a turbulent 1km path and compared to Cn2 measurements collected in parallel.

  2. Parallel optical read-out of micromechanical pillars applied to prostate specific membrane antigen detection.

    PubMed

    Tardivo, Martina; Toffoli, Valeria; Fracasso, Giulio; Borin, Daniele; Dal Zilio, Simone; Colusso, Andrea; Carrato, Sergio; Scoles, Giacinto; Meneghetti, Moreno; Colombatti, Marco; Lazzarino, Marco

    2015-10-15

    Micro and nanomechanical resonators represent a promising platform for proteins label-free detection because of their extreme sensitivity, fast response and low cost. Micro-pillars are columnar resonators that can be easily arranged in dense arrays of several thousand sensors in a squared mm. To exploit such a large density, however, a method for tracking independently micropillars resonance frequency is required. Here we present a detection method based on CCD imaging and software image analysis, which can measure the resonance frequency of tens of pillars in parallel. Acquiring simultaneously the frequency shift of up to 40 sensors and applying a proper statistical analysis, we were able to overcome the variability of the single measures improving the device sensitivity at low analyte concentration range. As a proof of concept, this method has been tested for the detection of a tumor marker, the Prostate Specific Membrane Antigen (PSMA). Pillars have been functionalized with an antibody against PSMA. The tumor marker (PSMA) has been detected in a range of concentrations between 300 pM and 100 nM, in buffer and in diluted bovine serum. The sensitivity of our method was limited only by the affinity constant of the antigen-antibody recognition. Moreover, this detection technique demonstrated to be effective in the 1-6 nM range, which is the window of PSMA concentration of clinical interest.

  3. A polypeptide-DNA hybrid with selective linking capability applied to single molecule nano-mechanical measurements using optical tweezers.

    PubMed

    Moayed, Fatemeh; Mashaghi, Alireza; Tans, Sander J

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications.

  4. Studying the reversal mode of the magnetization vector versus applied field angle using generalized magneto-optical ellipsometry

    SciTech Connect

    Pufall, M. R.; Berger, A.

    1999-10-26

    The authors used the technique of vector Generalized Magneto-optical Ellipsometry to study the behavior of the magnetization vector of a 50 Co thin film as a function of external field magnitude and direction. With this method, which determines the both the direction and magnitude of the magnetization, averaged over the 1 mm incident laser beam, they were able to determine the relative contributions of magnetization rotation and domain formation to the reversal of M. The Co sample had a uniaxial in-plane anisotropy. The authors found that when the angle between the applied field and the easy axis was greater than {approximately} 40 degrees, the reversal occurred primarily by rotation of the magnetization, accompanied by a small reduction of the magnitude of M. In this angular region, the critical field-the field at which there is a large jump in the angle of M -- as a function of applied field angle followed a coherent rotation model. However, at applied field angles less than 40 degrees to the easy axis, they found a larger reduction in {vert_bar}M{vert_bar} occurring before and during the jump in the magnetization angle. The jump also occurred at fields much lower than those predicted by the coherent rotation model, indicating a reversal mode initiated by domain formation.

  5. A Polypeptide-DNA Hybrid with Selective Linking Capability Applied to Single Molecule Nano-Mechanical Measurements Using Optical Tweezers

    PubMed Central

    Tans, Sander J.

    2013-01-01

    Many applications in biosensing, biomaterial engineering and single molecule biophysics require multiple non-covalent linkages between DNA, protein molecules, and surfaces that are specific yet strong. Here, we present a novel method to join proteins and dsDNA molecule at their ends, in an efficient, rapid and specific manner, based on the recently developed linkage between the protein StrepTactin (STN) and the peptide StrepTag II (ST). We introduce a two-step approach, in which we first construct a hybrid between DNA and a tandem of two STs peptides (tST). In a second step, this hybrid is linked to polystyrene bead surfaces and Maltose Binding Protein (MBP) using STN. Furthermore, we show the STN-tST linkage is more stable against forces applied by optical tweezers than the commonly used biotin-Streptavidin (STV) linkage. It can be used in conjunction with Neutravidin (NTV)-biotin linkages to form DNA tethers that can sustain applied forces above 65 pN for tens of minutes in a quarter of the cases. The method is general and can be applied to construct other surface-DNA and protein-DNA hybrids. The reversibility, high mechanical stability and specificity provided by this linking procedure make it highly suitable for single molecule mechanical studies, as well as biosensing and lab on chip applications. PMID:23336001

  6. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  7. Development of resonator analysis applied in hybrid slab laser with consideration of optical gain and thermal lens effect.

    PubMed

    Ma, Xingkun; Huang, Lei; Gong, Mali; Liu, Qiang; Zhang, Haitao; Yan, Ping

    2013-07-10

    By introducing the rate equations and light intensity propagating equations into the fast Fourier transform-based calculation, the optical gain served as the connection between the light field and light intensity, its influence over mode pattern was studied. Thermal lens effect was also investigated by means of finite element analysis. The analysis was applied to a slab laser with a hybrid cavity. A similar experimental study was also carried out in the laboratory. TEM(00) mode with sidelobes along the unstable direction was observed both in the calculation and experiment. As predicted in the analysis, the homogeneity of the pump light improved the beam quality. Numerical and experimental results of pump threshold and slope efficiency were also presented. PMID:23852199

  8. Development studies towards an 11-year global gridded aerosol optical thickness reanalysis for climate and applied applications

    NASA Astrophysics Data System (ADS)

    Lynch, P.; Reid, J. S.; Westphal, D. L.; Zhang, J.; Hogan, T. F.; Hyer, E. J.; Curtis, C. A.; Hegg, D. A.; Shi, Y.; Campbell, J. R.; Rubin, J. I.; Sessions, W. R.; Turk, F. J.; Walker, A. L.

    2015-12-01

    While standalone satellite and model aerosol products see wide utilization, there is a significant need in numerous climate and applied applications for a fused product on a regular grid. Aerosol data assimilation is an operational reality at numerous centers, and like meteorological reanalyses, aerosol reanalyses will see significant use in the near future. Here we present a standardized 2003-2013 global 1° × 1° and 6 hourly modal aerosol optical thickness (AOT) reanalysis product. This dataset can be applied to basic and applied earth system science studies of significant aerosol events, aerosol impacts on numerical weather prediction, and electro-optical propagation and sensor performance, among other uses. This paper describes the science of how to develop and score an aerosol reanalysis product. This reanalysis utilizes a modified Navy Aerosol Analysis and Prediction System (NAAPS) at its core and assimilates quality controlled retrievals of AOT from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua and the Multi-angle Imaging SpectroRadiometer (MISR) on Terra. The aerosol source functions, including dust and smoke, were regionally tuned to obtain the best match between the model fine and coarse mode AOTs and the Aerosol Robotic Network (AERONET) AOTs. Other model processes, including deposition, were tuned to minimize the AOT difference between the model and satellite AOT. Aerosol wet deposition in the tropics is driven with satellite retrieved precipitation, rather than the model field. The final reanalyzed fine and coarse mode AOT at 550 nm is shown to have good agreement with AERONET observations, with global mean root mean square error around 0.1 for both fine and coarse mode AOTs. This paper includes a discussion of issues particular to aerosol reanalyses that make them distinct from standard meteorological reanalyses, considerations for extending such a reanalysis outside of the NASA A-Train era, and examples of how the

  9. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  10. [Activity of sanitary surveillances/offices in Warsaw at the time of the second republic of Poland].

    PubMed

    Berner, Włodzimierz

    2006-01-01

    At the time of the Second Republic of Poland, Warsaw, the capital of the rebirth country, was a neglected town as regards sanitary conditions. The genesis of this situation dates back to the period of the national bondage by the Russian partitioner, and since 1915 by the German invader who did not care about the problems associated with public health. The sanitary and hygienic conditions worsened significantly in 1916, after incorporating into Warsaw large out-of-town regions whose housing was of the rural character with numerous wooden cottages, field roads, without any sanitary sewage system. Poor municipal sanitary-maintenance conditions and infectious diseases spreading in Warsaw made the Town Authorities implement preventive action and entrust sanitary surveillances with this difficult task. These surveillances were set up at the time of the First World War, and after 1920 were changed into sanitary offices. Their duties included control of acute infectious diseases, sanitary inspection of living quarters, sites of production and selling of food articles, plants, service outlets, shops of a different character, as well as surveillance of food purchased by the inhabitants. In each sanitary office a doctor was employed who supervised the work of one, two or three sanitary inspectors. PMID:17682766

  11. [Activity of sanitary surveillances/offices in Warsaw at the time of the second republic of Poland].

    PubMed

    Berner, Włodzimierz

    2006-01-01

    At the time of the Second Republic of Poland, Warsaw, the capital of the rebirth country, was a neglected town as regards sanitary conditions. The genesis of this situation dates back to the period of the national bondage by the Russian partitioner, and since 1915 by the German invader who did not care about the problems associated with public health. The sanitary and hygienic conditions worsened significantly in 1916, after incorporating into Warsaw large out-of-town regions whose housing was of the rural character with numerous wooden cottages, field roads, without any sanitary sewage system. Poor municipal sanitary-maintenance conditions and infectious diseases spreading in Warsaw made the Town Authorities implement preventive action and entrust sanitary surveillances with this difficult task. These surveillances were set up at the time of the First World War, and after 1920 were changed into sanitary offices. Their duties included control of acute infectious diseases, sanitary inspection of living quarters, sites of production and selling of food articles, plants, service outlets, shops of a different character, as well as surveillance of food purchased by the inhabitants. In each sanitary office a doctor was employed who supervised the work of one, two or three sanitary inspectors.

  12. Combined therapy: surgery and intraoperative HDR brachytherapy for locally advanced and recurrent rectal cancer. Practical experience of Brachytherapy Department in Warsaw

    PubMed Central

    Radziszewski, Jakub; Lyczek, Jaroslaw; Kawczynska, Maria; Kulik, Anna

    2009-01-01

    Purpose Patients with locally advanced and recurrent rectal cancer have a dismal prognosis. The aim of proposed combined therapy – surgery and intraoperative brachytherapy, is to improve results of already applied methods and to define optimal group of patients for this treatment. We introduce practical experience of Brachytherapy Department in Cancer Centre – Institute in Warsaw. Material and methods Patients with primary T4NxM0 rectal cancer and isolated local pelvic recurrence were qualified for therapy. Between January 2005 and September 2008, 13 patients were included: 4 with primary cancer and 9 with recurrence, median age of 56. After surgical resection intraoperative radiotherapy was delivered with boost of high dose rate brachytherapy of 20Gy dose to the tumor bed. Results Primary point of the study is to evaluate impact of applied therapy on local control (LC), overall survival (OS) and disease free survival (DFS). Median follow-up is 16 months. Four of the patients died and 3 survivors are disease-free. There was no case of perioperative mortality. Conclusions A multimodality approach, using surgical resection with intra operative brachytherapy improves local control as well as patients survival in comparison with historical treatment group. Combined therapy is related to high morbidity, but low mortality. The preliminary observations seem to correspond with other authors data.

  13. Synthesis and evaluation of sensitizer drug photorelease chemistry: Micro-optic method applied to singlet oxygen generation and drug delivery

    NASA Astrophysics Data System (ADS)

    Ghosh, Goutam

    This thesis summarizes a new micro-optic method for singlet oxygen generation and sensitizer drug delivery, which include i) synthesis and evaluation of a first generation device for drug delivery from native and fluorinated silica probe tips, ii) synthesis of PEG conjugated sensitizers to study phototoxicity in ovarian cancer cells, and iii) synthesis and evaluation of tris-PEGylated chlorin conjugated fluorinated silica for its future integration into the device to use as a 2nd generation device. A first generation micro-optic device was developed that works by sparging O2 gas and light generating cytotoxic singlet oxygen that cleaves the covalently attached drug (sensitizer) from the probe tip at the distal end of the fiber. The aim is to develop a 1st and 2nd generation device for site specific delivery of photosensitizer and singlet oxygen to overcome the challenges involved in systemic administration of the sensitizer. Synthesis and evaluation of drug (pheophorbide-a) delivery applying micro-optic method from native and fluorinated silica probe tip was achieved. The amount of sensitizer photocleavage depends on the loading level of sensitizer onto the probe tips. We also found that photorelease efficiency depends on the nature of the solvents where sensitizer is photocleaved. For example, no photorelease was observed in an aqueous solvent where sensitizer remained adsorbed to the native silica probe-tip. But, 90% photocleavage was obtained in octanol. A significant amount of photosensitizer (formate ester of pyropheophorbide- a) diffused into the liposome when photocleavage study was carried out in liposome. Substantial increase of photorelease was observed in organic solvent when pyropheophorbide-a (PPa) sensitizer was attached to the partially fluorinated porous Vycor glass. We also explored sensitizer photorelease from the fluorinated silica surface at various temperatures and we found that autocatalytic photorelease happened at room temperature and above

  14. Parasitic infections detected by FLOTAC in zoo mammals from Warsaw, Poland.

    PubMed

    Maesano, Gianpaolo; Capasso, Michele; Ianniello, Davide; Cringoli, Giuseppe; Rinaldi, Laura

    2014-06-01

    The aim of this study was to estimate the occurrence of intestinal parasites in groups of mammals kept in the Warsaw zoological garden (Poland). 71 pools of fecal samples were analyzed using the FLOTAC techniques. 48% of animals were positive and 47% of positivities showed multiple infections. Toxocara cati (71.4%) was found in felines; marsupials were infected with Coccidia (90%). Giardia spp. (24.0%), Blastocystis spp. (12.3%), Iodamoeba spp. (10.0%), Enterobius vermicularis (6.0%) and Entamoeba coli (3.3%) were found in primates. Gastrointestinal strongyles (60.5%) were prevalent in ruminants which resulted positive also to Coccidia (Eimeria spp. = 50.0%), Trichuris spp. (25.0%) and Nematodirus (14.0%). Strongyles (34.0%) were the most frequent parasites in monogastric herbivores, followed by Parascaris equorum (17.0%). None of the animals showed any symptom associated with gastrointestinal parasitic infections. According to our results the need to prevent, diagnose, control, and treat intestinal parasitism trough specific control programs is mandatory for animal welfare in order to limit the spread of parasitic infections in animals and humans.

  15. Interstellar Neutral Helium in the Heliosphere from IBEX Observations. II. The Warsaw Test Particle Model (WTPM)

    NASA Astrophysics Data System (ADS)

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P.

    2015-10-01

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  16. Psychiatric hospitalizations for affective disorders in Warsaw, Poland: Effect of season and intensity of sunlight.

    PubMed

    Dominiak, Monika; Swiecicki, Lukasz; Rybakowski, Janusz

    2015-09-30

    The purpose of this study was to assess any associations between the number of hospitalizations for affective disorders, seasons of the year and the intensity of sunlight in Poland, a country with a very changeable climate and significant seasonal fluctuations. We analyzed 2837 admissions with affective disorders hospitalized in the Institute of Psychiatry and Neurology in Warsaw, between 2002 and 2010 (mania, n=380, mixed episode, n=131, bipolar depression, n=736, recurrent depression, n=681, single depressive episode, n=909). For each diagnostic group admission time series were created and categorized into subgroups according to sex and age, and these were analyzed by means of the Autoregressive Integrated Moving Average (ARIMA) method. Regression models and correlations were used to assess the influence of the intensity of sunlight on the number of hospitalizations. Most mania admissions were noted in spring/summer months and in midwinter, mixed episode-late spring and winter, and depression (bipolar, recurrent and single depressive episode)-spring and autumn months. The association between frequency of admissions and monthly hours of sunshine was observed in some age and sex subgroups of patients with bipolar disorder and single depressive episode. The results support the seasonality of admissions of patients with affective disorders.

  17. Suicide Attempts During Heavy Drinking Episodes Among Individuals Entering Alcohol Treatment in Warsaw, Poland

    PubMed Central

    Klimkiewicz, Anna; Ilgen, Mark A.; Bohnert, Amy S.B.; Jakubczyk, Andrzej; Wojnar, Marcin; Brower, Kirk J.

    2012-01-01

    Aims: Acute alcohol intoxication itself may act as a trigger for suicidal thoughts and attempts among individuals at risk and may influence the potential lethality of the suicide attempt. This study in alcohol-dependent patients compared the correlates of suicide attempts during a heavy drinking episode with those of suicide attempts during relative sobriety. Methods: In two outpatient and two residential alcohol treatment programs in Warsaw, Poland, 113 patients who reported a suicide attempt during their lifetime were interviewed. The analyses focused on the patients’ most serious suicide attempts and on whether these occurred during a heavy drinking episode. Results: Over two-thirds of the patients reported that their most serious suicide attempt occurred during a period of heavy drinking. A multivariable logistic model indicated that the following factors significantly distinguished those patients whose most serious suicide attempt occurred during a heavy drinking episode: male gender, younger current age, greater severity of alcohol dependence and the attempt being unplanned. Conclusion: Among the patients in treatment for alcohol dependence who made a suicide attempt, the most serious attempt was likely to have been unplanned and committed by men when it occurred during a heavy drinking episode. PMID:22691386

  18. INTERSTELLAR NEUTRAL HELIUM IN THE HELIOSPHERE FROM IBEX OBSERVATIONS. II. THE WARSAW TEST PARTICLE MODEL (WTPM)

    SciTech Connect

    Sokół, J. M.; Kubiak, M. A.; Bzowski, M.; Swaczyna, P.

    2015-10-15

    We have developed a refined and optimized version of the Warsaw Test Particle Model of interstellar neutral gas in the heliosphere, specially tailored for analysis of IBEX-Lo observations. The former version of the model was used in the analysis of neutral He observed by IBEX that resulted in an unexpected conclusion that the interstellar neutral He flow vector was different than previously thought and that a new population of neutral He, dubbed the Warm Breeze, exists in the heliosphere. It was also used in the reanalysis of Ulysses observations that confirmed the original findings on the flow vector, but suggested a significantly higher temperature. The present version of the model has two strains targeted for different applications, based on an identical paradigm, but differing in the implementation and in the treatment of ionization losses. We present the model in detail and discuss numerous effects related to the measurement process that potentially modify the resulting flux of ISN He observed by IBEX, and identify those of them that should not be omitted in the simulations to avoid biasing the results. This paper is part of a coordinated series of papers presenting the current state of analysis of IBEX-Lo observations of ISN He. Details of the analysis method are presented by Swaczyna et al. and results of the analysis are presented by Bzowski et al.

  19. Parasitic infections detected by FLOTAC in zoo mammals from Warsaw, Poland.

    PubMed

    Maesano, Gianpaolo; Capasso, Michele; Ianniello, Davide; Cringoli, Giuseppe; Rinaldi, Laura

    2014-06-01

    The aim of this study was to estimate the occurrence of intestinal parasites in groups of mammals kept in the Warsaw zoological garden (Poland). 71 pools of fecal samples were analyzed using the FLOTAC techniques. 48% of animals were positive and 47% of positivities showed multiple infections. Toxocara cati (71.4%) was found in felines; marsupials were infected with Coccidia (90%). Giardia spp. (24.0%), Blastocystis spp. (12.3%), Iodamoeba spp. (10.0%), Enterobius vermicularis (6.0%) and Entamoeba coli (3.3%) were found in primates. Gastrointestinal strongyles (60.5%) were prevalent in ruminants which resulted positive also to Coccidia (Eimeria spp. = 50.0%), Trichuris spp. (25.0%) and Nematodirus (14.0%). Strongyles (34.0%) were the most frequent parasites in monogastric herbivores, followed by Parascaris equorum (17.0%). None of the animals showed any symptom associated with gastrointestinal parasitic infections. According to our results the need to prevent, diagnose, control, and treat intestinal parasitism trough specific control programs is mandatory for animal welfare in order to limit the spread of parasitic infections in animals and humans. PMID:24827109

  20. Bulgarian military neurosurgery: from Warsaw Pact to the North Atlantic Treaty Organization.

    PubMed

    Enchev, Yavor; Eftimov, Tihomir

    2010-05-01

    After 45 years as a closest ally of the Soviet Union in the Warsaw Pact, founded mainly against the US and the Western Europe countries, and 15 years of democratic changes, since 2004 Bulgaria has been a full member of NATO and an equal and trusted partner of its former enemies. The unprecedented transformation has affected all aspects of the Bulgarian society. As a function of the Bulgarian Armed Forces, Bulgarian military medicine and in particular Bulgarian military neurosurgery is indivisibly connected with their development. The history of Bulgarian military neurosurgery is the history of the transition from the Union of Soviet Socialist Republics military system and military medicine to NATO standards in every aspect. The career of the military neurosurgeon in Bulgaria is in many ways similar to that of the civilian neurosurgeon, but there are also many peculiarities. The purpose of this study was to outline the background and the history of Bulgarian military neurosurgery as well as its future trends in the conditions of world globalization.

  1. Micro-optics for simultaneous multi-spectral imaging applied to chemical/biological and IED detection

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele

    2012-06-01

    Using diffractive micro-lenses configured in an array and placed in close proximity to the focal plane array will enable a small compact simultaneous multispectral imaging camera. This approach can be applied to spectral regions from the ultraviolet (UV) to the long-wave infrared (LWIR). The number of simultaneously imaged spectral bands is determined by the number of individually configured diffractive optical micro-lenses (lenslet) in the array. Each lenslet images at a different wavelength determined by the blaze and set at the time of manufacturing based on application. In addition, modulation of the focal length of the lenslet array with piezoelectric or electro-static actuation will enable spectral band fill-in allowing hyperspectral imaging. Using the lenslet array with dual-band detectors will increase the number of simultaneous spectral images by a factor of two when utilizing multiple diffraction orders. Configurations and concept designs will be presented for detection application for biological/chemical agents, buried IED's and reconnaissance. The simultaneous detection of multiple spectral images in a single frame of data enhances the image processing capability by eliminating temporal differences between colors and enabling a handheld instrument that is insensitive to motion.

  2. Teaching lens, optical systems, and opto-mechanical systems design at the Irvine Center for Applied Competitive Technologies (CACT)

    NASA Astrophysics Data System (ADS)

    Doushkina, Valentina V.; Silberman, Donn M.

    2007-09-01

    For well over a decade, the Laser Electro-Optics Technology (LET) program has been teaching introductory laser and optics classes at Irvine Valley College (IVC). At the beginning of the telecom boom, the Irvine CACT was established to teach optics fabrication to support the many optics fabrication businesses in Southern California. In the past few years, these two programs have merged - with some help from the Optics Institute of Southern California (OISC) - and grown under the newly established Advanced Technology and Education Park (ATEP). IVC and ATEP are both operated by the South Orange County Community College District (SOCCCD). This year a new program of three courses was established to teach, in sequence, lens, optical systems and optomechanical systems design. This paper reviews the reasons for establishing these courses and their content, the students' motivations for taking them and their employers' incentives for encouraging the students.

  3. Simplification approach to detect urban areas vulnerable to flash floods using GIS: a case study Warsaw

    NASA Astrophysics Data System (ADS)

    Wicht, Marzena; Osińska-Skotak, Katarzyna

    2016-04-01

    The aim of this study is to develop a consistent methodology to determine urban areas that are particularly vulnerable to the effects of torrential rains. They are, as a result of climate change, more and more prevalent in the temperate climate, usually spring - summer from mid-May to late August - and involve the risk of flash floods. In recent years, the increase in the incidence of such phenomena is noticeable throughout the whole Europe. It is assumed that through the analysis of environmental and infrastructural conditions, using the developed methodology, it is possible to determine areas vulnerable to flooding due to torrential rains. This may lead to a better management, quicker response in case of a phenomenon, and even to take measures to prevent the occurrence of adverse effects of torrential rains (for instance modernization of the urban drainage system and development of methods to get rid of rapidly collected water). Designation of areas particularly vulnerable to the effects of heavy rains can be achieved by adapting hydrological models, but they require an appropriate adjustment and highly accurate input data: (based on spot or radar measurements of precipitation, land cover, soil type, humidity, wind speed, vegetation species in a given area, growing season, the roughness and porosity of the cover and soil moisture) but such detailed data are generally hard to obtain or not available for less developed areas. It could also be achieved by performing spatial analysis in GIS, which is a more simplified form of modelling, but it gives results more quickly and the methodology can be adapted to the commonly available data. A case study of Warsaw's district Powiśle has been undertaken for three epochs - from 2008 to 2010 and areas, that are particularly vulnerable to the effects of flash floods and heavy rains, have been designated.

  4. Grain-size dependence of the magnetic properties of street dusts from Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Winkler, Aldo; Sagnotti, Leonardo

    2015-04-01

    In recent years, in connection with a substantial development of transportation in urban areas, vehicular traffic increased its importance as source of pollution and consequent cause of health problems in urban environments. In fact, it is well established that the concentration and size of pollution related particulate matter (PM) are important factors affecting human health. The aim of this study is to identify the variations of the magnetic properties and of the chemical composition of different granulometric fractions from street dusts collected at four locations in Warsaw: the city center, a suburb, a tramline and a big crossroad. Dust samples were mechanically sieved and classified using the laboratory shaker with a standard sieve set (0.5 mm, 0.25 mm, 0.1 mm and 0.071 mm). Data show a distribution of magnetic susceptibility (χ) in the wide range of 80-370 × 10-8 m3kg-1. Comparison of magnetic parameters shows that the street dust contains the pollution characteristics for air and soil. The samples were characterized by uniform magnetic mineralogy, typical for fine-grained magnetite, in a grain size range between pseudo-single-domain and fine multi-domain, with a small contribution from ultrafine superparamagnetic particles (~2-3.5 %). The street dust contains, as usual for the urban areas, spherical magnetic particles produced by fossil fuel combustion processes and mixture of irregular angular iron-oxides grains containing other elements. The magnetic susceptibility and hysteresis properties of the dusts have been analyzed in detail; the temperature variation of the saturation of remanent magnetization and of the magnetic susceptibility revealed that the main magnetic mineral, for all the fractions, is almost stoichiometric magnetite, with the finest fractions (d=0.1 mm, 0.071 mm and d

  5. Field-dependent magneto-optical Kerr effect spectroscopy applied to the magnetic component diagnosis of a rubrene/Ni system.

    PubMed

    Li, Wen; Fronk, Michael; Albrecht, Manfred; Franke, Mechthild; Zahn, Dietrich R T; Salvan, Georgeta

    2014-07-28

    Polar magneto-optical Kerr effect (MOKE) spectroscopy in the energy range from 1.75 eV to 5 eV at different magnetic field strength was applied to study Ni nanostructures formed on rubrene nanoislands. The magnetic hysteresis curves measured by MOKE change the shape depending on the photon energy and therefore deviate from those measured by superconducting quantum interference device (SQUID) magnetometry. Similar optical effects were previously observed in inorganic heterostructures. Our observations show that it correlates to the change in lineshape of the MOKE rotation and ellipticity spectra as a function of magnetic field strength. We show that this spectral dependence on magnetic field can be exploited to separate the contributions of two magnetic components to the magneto-optical spectra and hysteresis. The proposed model does not require the a priori knowledge of the (magneto-)optical constants of the heterostructure and its components. PMID:25089464

  6. Magneto-optical study of the intermediate state in type-I superconductors: Effects of sample shape and applied current

    SciTech Connect

    Hoberg, Jacob Ray

    2008-01-01

    The magnetic flux structures in the intermediate state of bulk, pinning-free Type-I superconductors are studied using a high resolution magneto-optical imaging technique. Unlike most previous studies, this work focuses on the pattern formation of the coexisting normal and superconducting phases in the intermediate state. The influence of various parameters such as sample shape, structure defects (pinning) and applied current are discussed in relation to two distinct topologies: flux tubes (closed topology) and laminar (open topology). Imaging and magnetization measurements performed on samples of different shapes (cones, hemispheres and slabs), show that contrary to previous beliefs, the tubular structure is the equilibrium topology, but it is unstable toward defects and flux motion. Moreover, the application of current into a sample with the geometric barrier can replace an established laminar structure with flux tubes. At very high currents, however, there exists a laminar 'stripe pattern.' Quantitative analysis of the mean tube diameter is shown to be in good agreement with the prediction proposed by Goren and Tinkham. This is the first time that this model has been confirmed experimentally. Further research into the flux tube phase shows a direct correlation with the current loop model proposed in the 1990's by Goldstein, Jackson and Dorsey. There also appears a range of flux tube density that results in a suprafroth structure, a well-formed polygonal mesh, which behaves according to the physics of foams, following standard statistical laws such as von Neumann and Lewis. The reaction of flux structures to a fast-ramped magnetic field was also studied. This provided an alignment of the structure not normally observed at slow ramp rates.

  7. Optical spectroscopy applied to the analysis of medieval and post-medieval plain flat glass fragments excavated in Belgium

    NASA Astrophysics Data System (ADS)

    Meulebroeck, W.; Wouters, H.; Baert, K.; Ceglia, A.; Terryn, H.; Nys, K.; Thienpont, H.

    2010-04-01

    Window glass fragments from four Belgian sites were studied and for a set of eighty-five samples the UV-VIS-NIR transmission spectra were analyzed. This collection contains historical and archaeological finds originating from religious buildings namely the Basilica of Our Lady of Hanswijk in Mechelen (17th-20thc) and the Church of Our Lady in Bruges (16th-20thc) as well as from secular buildings as a private house/Antwerp (18th-1948) and the castle of Middelburg-in-Flanders (1448-17thc). All sites contain material on the hinge point between the medieval and the industrial tradition. The variation in composition of the analyzed samples can be explained by the use of different glassmaking recipes, more specifically the use of different raw materials. The composition of window glass differs essentially in the type of flux, using a potash rich fluxing agent until the post-medieval times and industrial soda from the 19th century onwards. A second difference concerns the iron impurities in the glass. For all fragments a clear compositional classification could be made based on the iron concentration. These conclusions were based on archaeological research and drawn after submitting samples to expensive, complex, time-consuming and destructive chemical analyzing methods. Our study indicates that similar conclusions could be made applying the proposed optical based methodology for plain window glass. As a whole, the obtained results make it possible to cluster the fragments for a particular site based on three different sensing parameters: the UV absorption edge, the color and the presence of characteristic absorption bands. This information helps in identifying trends to date window glass collections and indicating the use of different raw materials, production technologies and/or provenance.

  8. Validation of an optical model applied to the beam down CSP facility at the Masdar Institute Solar Platform

    NASA Astrophysics Data System (ADS)

    Grange, Benjamin; Kumar, Vikas; Torres, Juliana Beltran; Perez, Victor G.; Armstrong, Peter R.; Slocum, Alexander; Calvet, Nicolas

    2016-05-01

    In the framework of the CSPonD Demo project, the optical characterization of the Beam Down Optical Experiment (BDOE) heliostats field is an important step to certify the required power is provided. To achieve this goal, an experiment involving a single heliostat is carried out. The results of the experiment and the comparison with simulated results are presented in this paper. Only the reflection on the heliostat is observed in order to have a better assessment of its optical performance. The heliostat reflectance is modified and the experimental and simulated concentration distribution are confronted. Results indicate that the shapes of the concentration distributions are quite similar, hence validating the optical model respects the geometry of the BDOE. Moreover these results lead to an increase of the optimized heliostat reflectance when the incident angle on the heliostat decreases. Further investigation is required to validate this method with all the individual heliostats of the BDOE solar field.

  9. In vivo skin absorption dynamics of topically applied pharmaceuticals monitored by fiber-optic diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hong; Jheon, Sanghoon; Kim, Jong-Ki

    2007-03-01

    A simple non-invasive ultra-violet/visible (UV/vis) diffusive reflectance spectroscopy combined with fiber-optics was investigated to elicit the dynamics of skin penetration in vivo of a pharmaceutical, aminolevulinic acid polyethylene glycol cream (5-ALA-PEG cream). Temporal data of the reflectance, R( λ), were measured from a bare skin region and from a skin region treated with 5-ALA cream. The difference in apparent optical density [(ΔAOD) = Δ log[1/ R( λ)

  10. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s-1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  11. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Maciel, M. J.; Costa, C. G.; Silva, M. F.; Gonçalves, S. B.; Peixoto, A. C.; Ribeiro, A. Fernando; Wolffenbuttel, R. F.; Correia, J. H.

    2016-08-01

    This paper reports on the development of a technology for the wafer-level fabrication of an optical Michelson interferometer, which is an essential component in a micro opto-electromechanical system (MOEMS) for a miniaturized optical coherence tomography (OCT) system. The MOEMS consists on a titanium dioxide/silicon dioxide dielectric beam splitter and chromium/gold micro-mirrors. These optical components are deposited on 45° tilted surfaces to allow the horizontal/vertical separation of the incident beam in the final micro-integrated system. The fabrication process consists of 45° saw dicing of a glass substrate and the subsequent deposition of dielectric multilayers and metal layers. The 45° saw dicing is fully characterized in this paper, which also includes an analysis of the roughness. The optimum process results in surfaces with a roughness of 19.76 nm (rms). The actual saw dicing process for a high-quality final surface results as a compromise between the dicing blade’s grit size (#1200) and the cutting speed (0.3 mm s‑1). The proposed wafer-level fabrication allows rapid and low-cost processing, high compactness and the possibility of wafer-level alignment/assembly with other optical micro components for OCT integrated imaging.

  12. Evaluation of optical and electronic properties of silicon nano-agglomerates embedded in SRO: applying density functional theory

    PubMed Central

    2014-01-01

    In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films. PMID:25276105

  13. SITHON: A Wireless Network of in Situ Optical Cameras Applied to the Early Detection-Notification-Monitoring of Forest Fires

    PubMed Central

    Tsiourlis, Georgios; Andreadakis, Stamatis; Konstantinidis, Pavlos

    2009-01-01

    The SITHON system, a fully wireless optical imaging system, integrating a network of in-situ optical cameras linking to a multi-layer GIS database operated by Control Operating Centres, has been developed in response to the need for early detection, notification and monitoring of forest fires. This article presents in detail the architecture and the components of SITHON, and demonstrates the first encouraging results of an experimental test with small controlled fires over Sithonia Peninsula in Northern Greece. The system has already been scheduled to be installed in some fire prone areas of Greece. PMID:22408536

  14. Penetration studies of topically applied substances: Optical determination of the amount of stratum corneum removed by tape stripping.

    PubMed

    Lademann, J; Ilgevicius, A; Zurbau, O; Liess, H D; Schanzer, S; Weigmann, H J; Antoniou, C; Pelchrzim, R V; Sterry, W

    2006-01-01

    Tape stripping is a standard measuring method for the investigation of the dermatopharmacokinetics of topically applied substances using adhesive films. These tape strips are successively applied and removed from the skin after application and penetration of topically applied substances. Thus, layers of corneocytes and some amount of topical applied substances are removed. The amount of substances and the amount of stratum corneum removed with a single tape strip has to be determined for the calculation of the penetration profile. The topically applied substances removed from the skin can be determined by classical analytical methods like high-pressure liquid chromatography, mass spectroscopy, and spectroscopic measurements. The amount of corneocytes on the tape strips can be easily detected by their pseudoabsorption. In the present paper, an easy and cheap corneocyte density analyzer is presented that is based on a slide projector. Comparing the results of the measurements obtained by the corneocyte density analyzer and by uv-visible spectrometry, identical results were obtained.

  15. Turbulence statistics applied to calculate expected turbulence-induced scintillation effects on electro-optical systems in different climatic regions

    NASA Astrophysics Data System (ADS)

    Weiss-Wrana, Karin R.

    2005-08-01

    The refractive-index structure parameter Cn2 is the parameter most commonly used to describe the optically active turbulence. In the past, FGAN-FOM carried out long-term experiments in moderate climate (Central Europe, Germany), arid (summer), and semiarid (winter) climate (Middle East, Israel). Since Cn2 usually changes as a function of time of day and of season its influence on electro-optical systems should be expressed in a statistical way. We composed a statistical data base of Cn2 values. The cumulative frequency of occurrence was calculated for a time interval of two hours around noon (time of strongest turbulence), at night, and around sunrise (time of weakest turbulence) for an arbitrarily selected period of one month in summer and in winter. In October 2004 we extended our long-term turbulence experiments to subarctic climate (North Europe, Norway). First results of our turbulence measurement over snow-covered terrain indicate Cn2 values which are similar or even higher than measured values in Central European winter. The statistical data base was used to calculate the expected turbulence-induced aperture-averaged scintillation index for free-space optical systems (FSO system) in different climates. The calculations were performed for commercially available FSO systems with wavelength of 785 nm and 1.55 µm respectively and with aperture diameters of the receiver of 60 mm and 150 mm for horizontal path at two heights, 2.3 m and 10 m above ground.

  16. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  17. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters

    NASA Astrophysics Data System (ADS)

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K.

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response.

  18. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.

    PubMed

    Yousefi, Siavash; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K

    2013-08-01

    Lymphatic vessels are a part of the circulatory system that collect plasma and other substances that have leaked from the capillaries into interstitial fluid (lymph) and transport lymph back to the circulatory system. Since lymph is transparent, lymphatic vessels appear as dark hallow vessel-like regions in optical coherence tomography (OCT) cross sectional images. We propose an automatic method to segment lymphatic vessel lumen from OCT structural cross sections using eigenvalues of Hessian filters. Compared to the existing method based on intensity threshold, Hessian filters are more selective on vessel shape and less sensitive to intensity variations and noise. Using this segmentation technique along with optical micro-angiography allows label-free noninvasive simultaneous visualization of blood and lymphatic vessels in vivo. Lymphatic vessels play an important role in cancer, immune system response, inflammatory disease, wound healing and tissue regeneration. Development of imaging techniques and visualization tools for lymphatic vessels is valuable in understanding the mechanisms and studying therapeutic methods in related disease and tissue response. PMID:23922124

  19. The influence of voltage applied between the electrodes on optical and morphological properties of the InGaN thin films grown by thermionic vacuum arc.

    PubMed

    Özen, Soner; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2016-01-01

    The aim of this research is to investigate the optical and morphological properties of the InGaN thin films deposited onto amorphous glass substrates in two separate experiments with two different voltages applied between the electrodes, i.e. 500 and 600 V by means of the thermionic vacuum arc technique. This technique is original for thin film deposition and it enables thin film production in a very short period of time. The optical and morphological properties of the films were investigated by using field emission scanning electron microscope, atomic force microscope, spectroscopic ellipsometer, reflectometer, spectrophotometer, and optical tensiometer. Optical properties were also supported by empirical relations. The deposition rates were calculated as 3 and 3.3 nm/sec for 500 and 600 V, respectively. The increase in the voltage also increased the refractive index, grain size, root mean square roughness and surface free energy. According to the results of the wetting experiments, InGaN samples were low-wettable, also known as hydrophobic.

  20. Donor impurity-related linear and nonlinear intraband optical absorption coefficients in quantum ring: effects of applied electric field and hydrostatic pressure.

    PubMed

    Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A

    2012-01-01

    : The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497

  1. The effect of urban conurbation on the modification of human thermal perception, as illustrated by the example of Warsaw (Poland)

    NASA Astrophysics Data System (ADS)

    Majewski, Grzegorz; Przewoźniczuk, Wiesława; Kleniewska, Małgorzata

    2014-04-01

    As proven by scientific research, urban conurbations of a size similar to the Warsaw conurbation generate urban heat islands of an intensity of 1.5-2.5 °C, which results in changes of biometeorological conditions. It was stated that with increased distance from the city centre, the number of cold and very frosty days also increased, which is the result of the mitigating influence of UHI on thermal conditions in the city centre. The difference in the number of cold days between central and peripheral stations amounted to 15-30 %. The obtained distribution of a conurbation's thermal conditions is reflected in the spatial distribution of the obtained values of effective temperature. In the case of `warm' sensations, the frequency decreases as the distance from the centre increases, and in the case of `cold' sensations, the frequency increases with increased distance from the city centre.

  2. The use of copula functions for modeling the risk of investment in shares traded on the Warsaw Stock Exchange

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof; Błachowicz, Tomasz

    2014-11-01

    In our work copula functions and the Hurst exponent calculated using the local Detrended Fluctuation Analysis (DFA) were used to investigate the risk of investment made in shares traded on the Warsaw Stock Exchange. The combination of copula functions and the Hurst exponent calculated using local DFA is a new approach. For copula function analysis bivariate variables composed of shares prices of the PEKAO bank (a big bank with high capitalization) and other banks (PKOBP, BZ WBK, MBANK and HANDLOWY in decreasing capitalization order) and companies from other branches (KGHM-mining industry, PKNORLEN-petrol industry as well as ASSECO-software industry) were used. Hurst exponents were calculated for daily shares prices and used to predict high drops of those prices. It appeared to be a valuable indicator in the copula selection procedure, since Hurst exponent’s low values were pointing on heavily tailed copulas e.g. the Clayton one.

  3. [Calcium, magnesium, iron and zinc in drinking water and status biomarkers of these minerals among elder people from Warsaw region].

    PubMed

    Madej, Dawid; Kaluza, Joanna; Antonik, Anna; Brzozowska, Anna; Roszkowski, Wojciech

    2011-01-01

    The aim of this study was to estimate the influence of calcium, magnesium, iron and zinc contents in drinking water on chosen parameters of nutritional status of these minerals in 164 elder people, 75-80 age, living in Warsaw region. Blood, hair and saliva were collected to assess the calcium, magnesium, iron and zinc nutritional status, while the samples of drinking water were collected to determine these minerals in water Mineral concentrations in blood, hair saliva and water were assessment using the atomic spectrophotometer absorption method It was showed that contribution of drinking water to calcium, magnesium, iron and zinc intake was: 15%, 4%, 5%, 9%, respectively. The relationship between the contents of these minerals in drinking water and their levels in the blood, hair and saliva had low correlation coefficients. It probably showed that homeostasis was maintained in the human body and other factors such as demographic or lifestyle factors were important.

  4. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland.

    PubMed

    Goś, Daria; Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-08-01

    The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9-11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is "healthy as a fish" meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of "healthy fish" results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords-health and fish-which, in our opinion, makes it a good title for a successful educational program.

  5. Be Healthy as a Fish Educational Program at the International Institute of Molecular and Cell Biology in Warsaw, Poland

    PubMed Central

    Szymańska, Ewelina; Białek-Wyrzykowska, Urszula; Wiweger, Małgorzata; Kuźnicki, Jacek

    2016-01-01

    Abstract The purpose of the Be Healthy as a Fish educational program that is organized by the International Institute of Molecular and Cell Biology (IIMCB) in Warsaw, Poland, is to educate children about the ways in which zebrafish can be used as a model organism to help scientists understand the way the human body works. We introduce Be Healthy as a Fish workshops to children in fourth to sixth grades of primary school (9–11 years old), together with two kinds of materials under the same title: a book and a movie. We focus on the field of biology in a way that complements the children's classroom curriculum and encourages them to broaden their interests in biology in the future. The Be Healthy as a Fish educational program was inaugurated in 2014 at the Warsaw Science Festival. As of October 31, 2015, 526 primary school students participated in 27 workshops. Approximately 2000 people have received the book and nearly 1700 people have watched the movie. Be Healthy as a Fish: Origin of the Title There is a popular saying in Poland that someone is “healthy as a fish” meaning that one enjoys good health. Does this imply that fish are really that healthy? Obviously, some fish may not be healthy. Just like other animals and humans, they can and do get sick. However, this common and deceptive impression of “healthy fish” results from the fact that people hardly ever have an opportunity to observe a fish that is sick. Why does our educational program have such a possibly misleading title that may not always be true? We took advantage of this provocative title and commonly known expression and assigned to it a completely new meaning: fish can get sick, but they are important for human health. Notably, this catchy sentence intrinsically combines two keywords—health and fish—which, in our opinion, makes it a good title for a successful educational program. PMID:27028803

  6. Occurrence of antidepressant residues in the sewage-impacted Vistula and Utrata rivers and in tap water in Warsaw (Poland).

    PubMed

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2014-06-01

    Antidepressants, even at low concentrations, can reveal some adverse effects on aquatic life due to disturbing homeostasis throughout the central and peripheral nervous system both in vertebrates and invertebrates. To date there have not been any reports regarding the presence of these pharmaceuticals in surface and tap waters in Eastern Europe. Therefore the aim of this study was to determine the presence of 21 antidepressant pharmaceuticals at specific points of the main Polish river - the Vistula, a smaller river of the Warsaw region - the Utrata, as well as in tap water samples of Warsaw. Samples were collected twice at one month intervals and analysed using solid-phase extraction (SPE) technique coupled with the liquid chromatography-electrospray ionisation-tandem mass spectrometer (LC-MS/MS) method operated under the multiple reaction monitoring mode (MRM). This is the first study where active compounds such as moclobemid or trazodone in the environment have been investigated. Environmental risk assessment of antidepressants in Poland was estimated on the basis of annuals sale data extracted from the NFZ (Narodowy Fundusz Zdrowia-National Health Service) base of reimbursed pharmaceuticals(1). Predicted environmental concentration (PEC) of target pharmaceuticals were compared with their measured concentration (MEC). Moreover, the application of the EMEA/CHMP guideline for environmental risk assessment of the antidepressants was discussed. The highest concentration of antidepressants was observed in the small river Utrata. In tap water only trace amounts of antidepressants including citalopram (up to 1.5ng/l), mianserin (up to 0.9ng/l), sertraline (<3.1ng/l), moclobemid (up to 0.3ng/l) and venlafaxine (up to 1.9ng/l) were detected. However this highlights their inadequate elimination in the drinking waste treatment facility. The presence of antidepressants in drinking water and the aquatic environment could have long-term effects even at low exposure level

  7. A novel elevating structure design applied on the motion behavior analysis of micro optical devices by CMOS-MEMS process

    NASA Astrophysics Data System (ADS)

    Tsai, Chien-Chung; Fan, Zhen-Hao; Lin, Pei-Hao

    2006-01-01

    The paper proposed a novel curb structure to elevate the micro optical devices by the driving force of micro array thermal actuator, MATA. The effects of spring structure and curb structure on the maximum displacements and the variation of surface flatness of the elevated micro mirror varied with operation voltage are investigated. The motion behaviors of the elevated micro mirror are stimulated and analyzed to get the maximum displacement and inclined angle of the device. The results demonstrate the wider width, longer pitch and more pitch numbers of spring structure are; the maximum displacement of the elevated micro mirror is larger. Compared the effects of spring structure and curb structure on the maximum displacement of the elevated micro mirror, there are more influence on the variation of maximum displacement due to the varied spring structure than the varied curb structure. On the other hand, the variation of surface flatness of the elevated micro mirror is more significant by the varied pitch number of spring structure and the varied width of curb structure. The maximum displacement and inclined angle of proposed micro optical device are 58.6μm and 17.04°C, respectively.

  8. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  9. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin.

    PubMed

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications. PMID:23389681

  10. Biochemical and Physiological Characterization: Development & Apply Optical Methods for Charaterizing Biochemical Protein-Protein Interactions in MR-1

    SciTech Connect

    Weiss, Shimon

    2006-08-30

    The objectives of this report are to: Develop novel site-specific protein labeling chemistries for assaying protein-protein interactions in MR-1; and development of a novel optical acquisition and data analysis method for characterizing protein-protein interactions in MR-1 model systems. Our work on analyzing protein-protein interactions in MR-1 is divided in four areas: (1) expression and labeling of MR-1 proteins; (2) general scheme for site-specific fluorescent labeling of expressed proteins; (3) methodology development for monitoring protein-protein interactions; and (4) study of protein-protein interactions in MR-1. In this final report, we give an account for our advances in all areas.

  11. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    PubMed

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found.

  12. Applying tattoo dye as a third-harmonic generation contrast agent for in vivo optical virtual biopsy of human skin

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Rung; Lin, Chen-Yu; Liao, Yi-Hua; Sun, Chi-Kuang

    2013-02-01

    Third-harmonic generation (THG) microscopy has been reported to provide intrinsic contrast in elastic fibers, cytoplasmic membrane, nucleus, actin filaments, lipid bodies, hemoglobin, and melanin in human skin. For advanced molecular imaging, exogenous contrast agents are developed for a higher structural or molecular specificity. We demonstrate the potential of the commonly adopted tattoo dye as a THG contrast agent for in vivo optical biopsy of human skin. Spectroscopy and microscopy experiments were performed on cultured cells with tattoo dyes, in tattooed mouse skin, and in tattooed human skin to demonstrate the THG enhancement effect. Compared with other absorbing dyes or nanoparticles used as exogenous THG contrast agents, tattoo dyes are widely adopted in human skin so that future clinical biocompatibility evaluation is relatively achievable. Combined with the demonstrated THG enhancement effect, tattoo dyes show their promise for future clinical imaging applications.

  13. Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures

    NASA Astrophysics Data System (ADS)

    Pâlsson, Lars-Olof; Vaughan, Helen L.; Monkman, Andrew P.

    2006-10-01

    Two related poly(phenylene-vinylene) (PPV) light-emitting polymers have been investigated by means of polarized optical spectroscopy. The purpose of the investigation was to investigate the nature of the interactions in thin films and to examine what impact the difference in side chain structure and molecular weight in poly(2'-methoxy-5-2-ethyl-hexoxy)-1,4-phenylene vinylene (MEH-PPV) and poly(2-(3',7'-dimethyloctyloxy)-5-methoxy-1,4-phenylene-vinylene) (OC1C10-PPV) has on the electronic and optical properties of the two polymers. Aligning the polymers by dispersing them in anisotropic solvents and stretched films shows that the side chains have an impact on the relative orientations of the transition dipole moments. In anisotropic solvents the linear dichroism is larger for MEH-PPV than for the related polymer OC1C10-PPV, while in stretched films the opposite situation prevails. A lower polarization of the luminescence from OC1C10-PPV, relative to MEH-PPV, was also obtained independent of alignment medium used. The data therefore suggest that while mechanical stretching may align the OC1C10-PPV to a greater degree, the emitting species is distinct from the absorbing species. The circular dichroism (CD) spectra of both polymers undergo dramatic changes when the liquid phase and the solid state (film) are compared. The solution CD spectra shows no evidence of interchain interactions; instead the spectra of both systems indicate a helical conformation of the polymers. The CD spectra of films are dramatically different with the strong Cotton effect being observed. This points to the formation of an aggregate in the film, with an associated ground state interaction, an interchain species such as a physical dimer, or a more complex higher aggregate.

  14. A Comprehensive Dust Model Applied to the Resolved Beta Pictoris Debris Disk from Optical to Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.; Gáspár, András

    2016-06-01

    We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph at 0.58 μm and HST/Wide Field Camera 3 (WFC 3) at 1.16 μm, and three in thermal emission from Spitzer/Multiband Imaging Photometer for Spitzer (MIPS) at 24 μm, Herschel/PACS at 70 μm, and Atacama Large Millimeter/submillimeter Array at 870 μm. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.

  15. The influence of applied magnetic fields on the optical properties of zero- and one-dimensional CdSe nanocrystals.

    PubMed

    Blumling, Daniel E; McGill, Stephen; Knappenberger, Kenneth L

    2013-10-01

    Shape-dependent exciton relaxation dynamics of CdSe 0-D nanocrystals and 1-D nanorods were studied using low-temperature (4.2 K), time-resolved and intensity-integrated magneto-photoluminscence (MPL) spectroscopy. Analysis of the average MPL rate constants from several different nanocrystal quantum dots and rods excited by 400 nm light in applied magnetic fields up to 17.5 T revealed size-dependent energy gaps separating bright and dark exciton fine-structure states. For 1-D nanorods under strong cross-sectional confinement and large length-to-diameter aspect ratios, efficient mixing of bright and dark exciton states was achieved using relatively low applied field strengths (≤4 T). The effect was attributed, in part, to decreased confinement of CdSe hole states associated with the long axis of the nanorod, which resulted in reduction of the energy gaps separating the bright and dark states. Increased control over the angle formed between the applied field vectors and the nanocrystal c-axis led to more efficient and uniform mixing of nanorod exciton states than for quantum dots. The findings suggest 1-D nanostructures are advantageous over 0-D ones for field-responsive applications. PMID:23945622

  16. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke

    NASA Astrophysics Data System (ADS)

    Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth

    2010-11-01

    We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.

  17. Dynamic optical interferometry applied to analyse out of plane displacement fields for crack propagation in brittle materials

    NASA Astrophysics Data System (ADS)

    Hedan, S.; Pop, O.; Valle, V.; Cottron, M.

    2006-08-01

    We propose in this paper, to analyse, the evolution of out-of-plane displacement fields for a crack propagation in brittle materials. As the crack propagation is a complex process that involves the deformation mechanisms, the out-of-plane displacement measurement gives pertinent information about the 3D effects. For investigation, we use the interferometric method. The optical device includes a laser source, a Michelson interferometer and an ultra high-speed CCD camera. To take into account the crack velocity, we dispose of a maximum frame rate of 1Mfps. The experimental tests have been carried out for a SEN (Single Edge Notch) specimen of PMMA material. The crack propagation is initiated by adding a dynamic energy given by the impact of a cutter on the initial crack. The obtained interferograms are analysed with a new phase extraction method entitled MPC [6]. This analysis, which has been developed specially for dynamic studies, gives the out-of-plane displacement with an accuracy of about 10 nm.

  18. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    NASA Astrophysics Data System (ADS)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  19. Development and Test of a 1,000 Level 3C Fiber Optic Borehole Seismic Receiver Array Applied to Carbon Sequestration

    SciTech Connect

    Paulsson, Bjorn N.P.

    2015-02-28

    To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.

  20. PLASMA-2013: International Conference on Research and Applications of Plasmas (Warsaw, Poland, 2-6 September 2013)

    NASA Astrophysics Data System (ADS)

    Sadowski, Marek J.

    2014-05-01

    The PLASMA-2013 International Conference on Research and Applications of Plasmas was held in Warsaw (Poland) from 2 to 6 September 2013. The conference was organized by the Institute of Plasma Physics and Laser Microfusion, under the auspices of the Polish Physical Society. The scope of the PLASMA conferences, which have been organized every two years since 1993, covers almost all issues of plasma physics and fusion research as well as selected problems of plasma technology. The PLASMA-2013 conference topics included: •Elementary processes and general plasma physics. •Plasmas in tokamaks and stellarators (magnetic confinement fusion). •Plasmas generated by laser beams and inertial confinement fusion. •Plasmas produced by Z-pinch and plasma-focus discharges. •Low-temperature plasma physics. •Space plasmas and laboratory astrophysics. •Plasma diagnostic methods and applications of plasmas. This conference was designed not only for plasma researchers and engineers, but also for students from all over the world, in particular for those from Central and Eastern Europe. Almost 140 participants had the opportunity to hear 9 general lectures, 11 topical talks and 26 oral presentations, as well as to see and discuss around 120 posters. From about 140 contributions, after the preparation of about 100 papers and the peer review process, only 74 papers have been accepted for publication in this topical issue. Acknowledgments Acting on behalf of the International Scientific Committee I would like to express our thanks to all the invited speakers and all the participants of the PLASMA-2013 conference for their numerous contributions. In particular, I wish to thank all of the authors of papers submitted for publication in this topical issue of Physica Scripta . Particular thanks are due to all of the reviewers for their valuable reports and comments, which helped to improve the quality of many of the papers. International Scientific Committee Marek J Sadowski, NCBJ

  1. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    NASA Astrophysics Data System (ADS)

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Côté, C.; Sarkissian, A.; Stafford, L.

    2014-03-01

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C2 molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH3)x and O-Si-(CH3)x bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O2 in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiOx. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O2 in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the average size of the titanate nanoparticles was smaller

  2. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders

    SciTech Connect

    Kilicaslan, A.; Levasseur, O.; Roy-Garofano, V.; Profili, J.; Moisan, M.; Stafford, L.; Côté, C.; Sarkissian, A.

    2014-03-21

    An atmospheric-pressure plasma sustained by an electromagnetic surface wave (SW) in the microwave regime combined with a bubbler/flash evaporator for the injection of liquid precursors was used to produce organosilicon and organotitanium nanopowders. Following the addition of hexamethyldisiloxane (HMDSO) vapors in the nominally pure argon plasma, optical emission spectra revealed the apparition of strong C{sub 2} molecular bands along with Si and Balmer H emission lines. Such features were not observed in our atmospheric-pressure Ar/HMDSO discharges controlled by dielectric barriers, indicating that microwave plasmas are characterized by much higher fragmentation levels of the precursors due to much higher electron densities. Emission spectra from the Ar/HMDSO SW plasma further showed a high-intensity continuum, the intensity of which decreased with time as powders started to form on the discharge tube walls. In presence of titanium isopropoxide (TTIP) vapors in the nominally pure Ar plasma, the emission was dominated by Ar and Ti lines, with no trace of carbon and no continuum. Fourier-Transform Infrared (FTIR) Spectroscopy of the powders formed in Ar/HMDSO plasmas showed very strong Si-(CH{sub 3}){sub x} and O-Si-(CH{sub 3}){sub x} bands, which is consistent with the formation of silicon oxycarbide. Transmission Electron Microscopy (TEM) further showed tube and sheet-like nanofeatures as well as larger structures consisting of agglomerated primary clusters. On the other hand, introduction of O{sub 2} in Ar/HMDSO plasmas produced only round-like nanoparticles with strong Si-O-Si bands and no trace of carbon, consistent with the formation of SiO{sub x}. The average size of the silica nanoparticles was 50 nm. FTIR spectra of powders formed in Ar/TTIP plasmas showed strong Ti-O signals, even without the addition of O{sub 2} in the gas phase. Corresponding TEM analysis showed nano- and agglomerated features comparable to those obtained in Ar/HMDSO although the

  3. Cooperative transients in inter-atomic correlation in the presence of an externally applied coherent field - Relation to intrinsic mirrorless optical bistability

    NASA Astrophysics Data System (ADS)

    Bowden, C. M.; Sung, C. C.

    1982-08-01

    The model presented earlier (Bowden and Sung, 1979), which predicts the circumstances under which intrinsic mirrorless optical bistability (OB) can occur due to atomic pair correlation in a small volume, is outlined and the results presented. These results, which predict a first-order phase transition in steady state for an externally driven collection of a large number of atoms far removed from thermodynamic equilibrium, form the motivation for a detailed microscopic examination of the dynamical behavior of atomic pair correlation in the presence of externally applied coherent radiation. A model is presented and results are discussed for the transient dynamic evolution of two two-level atoms separated from each other by a distance r in the presence of an externally applied coherent radiation field. The results predict collective radiation reaction, frequency shifts, relaxation in terms of the atomic separation r (assumed much larger than single atom dimensions), the externally applied field intensity and spacial uniformity of the field with respect to the inter-atomic volume.

  4. [THE PROFESSORS OF THE NATIONAL MUSEUM OF NATURAL HISTORY AND THE SOCIETY OF THE FRIENDS OF THE SCIENCES OF WARSAW (1800-1832)].

    PubMed

    Daszkiewicz, Piotr

    2015-01-01

    The National Museum of Natural History played a crucial role in the formation of Polish scientific elites in the 19th century. Many Polish students were attending in Paris natural history, botany, zoology, chemistry and mineralogy courses. The Warsaw Society of Friends of Learning was the largest scientific society and one of the most important scientific institutions in Poland. It had also an impact on the political and cultural life of the country, occupied and deprived of freedom at that time. Amongst its founders and members, could be found listeners to the lectures of Lamarck, Haüy, Vauquelin, Desfontaines, Jussieu. Moreover, seven professors of the National Museum of Natural History were elected foreign members of the Warsaw Society of Friends of Learning: Cuvier, Desfontaines, Haüy, Jussieu, Latreille, Mirbel, Vauquelin. The article analyses this choice and underlines the relationship between these scientists and Warsaw's scientists. The results of this research allow to confirm that the National Museum of Natural History was the most important foreign institution in the 19th century for Polish science, and more specifically natural sciences.

  5. Investigation of magnetically smart films applied to correct the surface profile of light weight X-ray optics in two directions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Yao, Youwei; Cao, Jian; Vaynman, Semyon; Graham, Michael E.; Liu, Tianchen; Ulmer, M. P.

    2015-09-01

    Our goal is to improve initially fabricated X-ray optics figures by applying a magnetic field to drive a magnetic smart material (MSM) coating on the non-reflecting side of the mirror. The consequent deformation of the surface should be three-dimensional. Here we will report on the results of working with a glass sample of 50x50x0.2 mm that has been coated with MSMs. The coated glass can be deformed in 3 dimensions and its surface profile was measured under our Zygo NewView white light interferometer (WLI). The driving magnetic field was produced via a pseudo-magnetic write head made up of two permanent magnet posts. The magnet posts were moved about the bottom of the glass sample with a 3-d computer controlled translation stage. The system allowed four degrees of freedom of motion, i.e., up and down, side to side, back and forth, and rotation of the posts (3.175 mm diameter) about the vertical axis to allow us to change the orientation of the magnetic field in the (horizontal) plane of the sample. We established a finite element analysis (FEA) model to predict deformations and compare with the observed results in order to guide the application of the magnetically controlled MSMs to improve the future X-ray optics figures.

  6. Impact of selected personal factors on seasonal variability of recreationist weather perceptions and preferences in Warsaw (Poland)

    NASA Astrophysics Data System (ADS)

    Lindner-Cendrowska, Katarzyna; Błażejczyk, Krzysztof

    2016-08-01

    Weather and climate are important natural resources for tourism and recreation, although sometimes they can make outdoor leisure activities less satisfying or even impossible. The aim of this work was to determine weather perception seasonal variability of people staying outdoors in urban environment for tourism and recreation, as well as to determine if personal factors influence estimation of recreationist actual biometeorological conditions and personal expectations towards weather elements. To investigate how human thermal sensations vary upon meteorological conditions typical for temperate climate, weather perception field researches were conducted in Warsaw (Poland) in all seasons. Urban recreationists' preference for slightly warm thermal conditions, sunny, windless and cloudless weather, were identified as well as PET values considered to be optimal for sightseeing were defined between 27.3 and 31.7 °C. The results confirmed existence of phenomena called alliesthesia, which manifested in divergent thermal perception of comparable biometeorological conditions in transitional seasons. The results suggest that recreationist thermal sensations differed from other interviewees' responses and were affected not only by physiological processes but they were also conditioned by psychological factors (i.e. attitude, expectations). Significant impact of respondents' place of origin and its climate on creating thermal sensations and preferences was observed. Sex and age influence thermal preferences, whereas state of acclimatization is related with thermal sensations to some point.

  7. [The problems of food adulteration in the publications of a Warsaw pharmacist Alfons Bukowski (1858-1921)].

    PubMed

    Trojanowska, Anna

    2014-01-01

    In the second half of the 19th century, the economic changes, industrial development and migration of the population from rural to urban areas in Europe, there was an increasing demand for cheap foodstuffs, which contributed to the growth of mass food production, as well as to the increase in adulteration of foodstuffs. In the Kingdom of Poland, the research on this problem was conducted by a Warsaw pharmacist and chemist, Alfons Bukowski (1858-1921), the author of the first Polish textbook on bromatology Podrqcznik do badania pokarmów (1884) ("A manual for food testing"). The methods and results of his research were published in magazines, among others, in "WiadomoSci Farmaceutyczne" ("Pharmasist News"), "Zdrowie" ("The Health") and "Czasopisma Towarzystwa Aptekarskiego" ("Journals of the Pharmasist Association"). He paid attention to the social noxiousness of the adulterations, indicating that it is especially the poor people, who buy the cheapest products that are particularly vulnerable to adulteration of foodstuffs. In this paper, there have been presented selected issues related to adulteratibn of food products, issues to which Bukowski paid particular attention, and which were significantly affected by contemporary development of food chemistry, among other the development of methods of chemical and microscopic analysis and the generation of new surrogates, which replaced the natural food products.

  8. Analysis of Deformations of the Skylight Construction at the Main Hall of the Warsaw University of Technology

    NASA Astrophysics Data System (ADS)

    Odziemczyk, Waldemar

    2015-02-01

    The paper presents technology and results of measurements of the steel construction of the skylight of the Main Hall of the Warsaw University of Technology. The new version of the automated measuring system has been used for measurements. This system is based on Leica TCRP1201+ total station and the TCcalc1200 software application, developed by the author, which operates on a laptop computer connected with the total station by the wire. Two test measurements were performed. Each of them consisted of cyclic measurement using the polar method, from one station; points located on the skylight construction, as well as control points located on concrete, bearing poles, were successively measured. Besides geometrical values (such as Hz, V angles and the slope distance D), the changes of temperature and atmospheric pressure, were also recorded. Processed results of measurements contained information concerning the behaviour of the skylight; asymmetry of horizontal displacements with respect to the X axis have been proved. Changes of parameters of the instrument telescope and changes of the instrument orientation were also stated; they were connected with changes of the temperature. The most important results of works have been presented in the form of diagrams.

  9. Geostatistical study of spatial correlations of lead and zinc concentration in urban reservoir. Study case Czerniakowskie Lake, Warsaw, Poland

    NASA Astrophysics Data System (ADS)

    Fabijańczyk, Piotr; Zawadzki, Jarosław; Wojtkowska, Małgorzata

    2016-07-01

    The article presents detailed geostatistical analysis of spatial distribution of lead and zinc concentration in water, suspension and bottom sediments of large, urban lake exposed to intensive anthropogenic pressure within a large city. Systematic chemical measurements were performed at eleven cross-sections located along Czerniakowskie Lake, the largest lake in Warsaw, the capital of Poland. During the summer, the lake is used as a public bathing area, therefore, to better evaluate human impacts, field measurements were carried out in high-use seasons. It was found that the spatial distributions of aqueous lead and zinc differ during the summer and autumn. In summer several Pb and Zn hot-spots were observed, while during autumn spatial distributions of Pb and Zn were rather homogenous throughout the entire lake. Large seasonal differences in spatial distributions of Pb and Zn were found in bottom sediments. Autumn concentrations of both heavy metals were ten times higher in comparison with summer values. Clear cross-correlations of Pb and Zn concentrations in water, suspension and bottom sediments suggest that both Pb and Zn came to Czerniakowskie Lake from the same source.

  10. E.A.O. guidelines for the use of diagnostic imaging in implant dentistry 2011. A consensus workshop organized by the European Association for Osseointegration at the Medical University of Warsaw.

    PubMed

    Harris, David; Horner, Keith; Gröndahl, Kerstin; Jacobs, Reinhilde; Helmrot, Ebba; Benic, Goran I; Bornstein, Michael M; Dawood, Andrew; Quirynen, Marc

    2012-11-01

    Diagnostics imaging is an essential component of patient selection and treatment planning in oral rehabilitation by means of osseointegrated implants. In 2002, the EAO produced and published guidelines on the use of diagnostic imaging in implant dentistry. Since that time, there have been significant developments in both the application of cone beam computed tomography as well as in the range of surgical and prosthetic applications that can potentially benefit from its use. However, medical exposure to ionizing radiation must always be justified and result in a net benefit to the patient. The as low a dose as is reasonably achievable principle must also be applied taking into account any alternative techniques that might achieve the same objectives. This paper reports on current EAO recommendations arising from a consensus meeting held at the Medical University of Warsaw (2011) to update these guidelines. Radiological considerations are detailed, including justification and optimization, with a special emphasis on the obligations that arise for those who prescribe or undertake such investigations. The paper pays special attention to clinical indications and radiographic diagnostic considerations as well as to future developments and trends.

  11. Laser induced breakdown spectroscopy (LIBS) applied to stratigrafic elemental analysis and optical coherence tomography (OCT) to damage determination of cultural heritage Brazilian coins

    NASA Astrophysics Data System (ADS)

    M. Amaral, Marcello; Raele, Marcus P.; Z. de Freitas, Anderson; Zahn, Guilherme S.; Samad, Ricardo E.; D. Vieira, Nilson, Jr.; G. Tarelho, Luiz V.

    2009-07-01

    This work presents a compositional characterization of 1939's Thousand "Réis" and 1945's One "Cruzeiro" Brazilian coins, forged on aluminum bronze alloy. The coins were irradiated by a Q-switched Nd:YAG laser with 4 ns pulse width and energy of 25mJ emitting at 1064nm reaching 3.1010Wcm-2 (assured condition for stoichiometric ablation), forming a plasma in a small fraction of the coin. Plasma emission was collected by an optical fiber system connected to an Echelle spectrometer. The capability of LIBS to remove small fraction of material was exploited and the coins were analyzed ablating layer by layer from patina to the bulk. The experimental conditions to assure reproductivity were determined by evaluation of three plasma paramethers: ionization temperature using Saha-Boltzmann plot, excitation temperature using Boltzmann plot, plasma density using Saha-Boltzmann plot and Stark broadening. The Calibration-Free LIBS technique was applied to both coins and the analytical determination of elemental composition was employed. In order to confirm the Edict Law elemental composition the results were corroborated by Neutron Activation Analysis (NAA). In both cases the results determined by CF-LIBS agreed to with the Edict Law and NAA determination. Besides the major components for the bronze alloy some other impurities were observed. Finally, in order to determine the coin damage made by the laser, the OCT (Optical Coherence Tomography) technique was used. After tree pulses of laser 54μg of coin material were removed reaching 120μm in depth.

  12. The Warsaw breakage syndrome-related protein DDX11 is required for ribosomal RNA synthesis and embryonic development.

    PubMed

    Sun, Xinliang; Chen, Hongbo; Deng, Zaian; Hu, Bo; Luo, Hui; Zeng, Xiaobin; Han, Liqiao; Cai, Guoping; Ma, Lan

    2015-09-01

    DDX11 was recently identified as a cause of Warsaw breakage syndrome (WABS). However, the functional mechanism of DDX11 and the contribution of clinically described mutations to the pathogenesis of WABS are elusive. Here, we show that DDX11 is a novel nucleolar protein that preferentially binds to hypomethylated active ribosomal DNA (rDNA) gene loci, where it interacts with upstream binding factor (UBF) and the RNA polymerase I (Pol I). DDX11 knockdown changed the epigenetic state of rDNA loci from euchromatic structures to more heterochromatic structures, reduced the activity of UBF, decreased the recruitment of UBF and RPA194 (a subunit of Pol I) to rDNA promoter, suppressed rRNA transcription and thereby inhibited growth and proliferation of HeLa cells. Importantly, two indentified WABS-derived mutants, R263Q and K897del, and a Fe-S deletion construct demonstrated significantly reduced binding abilities to rDNA promoters and lowered DNA-dependent ATPase activities compared with wild-type DDX11. Knockdown of the zebrafish ortholog of human DDX11 by morpholinos resulted in growth retardation and vertebral and craniofacial malformations in zebrafish, concomitant with the changes in histone epigenetic modifications at rDNA loci, the reduction of Pol I recruitment to the rDNA promoter and a significant decrease in nascent pre-RNA levels. These growth disruptions in zebrafish in response to DDX11 reduction showed similarities to the clinically described developmental abnormalities found in WABS patients for the first time in any vertebrate. Thus, our results indicate that DDX11 functions as a positive regulator of rRNA transcription and provides a novel insight into the pathogenesis of WABS.

  13. Energy and nutritional value of diets used in patients alimentation and their assessment by patients of selected clinical department in the Military Medical Institute in Warsaw.

    PubMed

    Kłos, Krzysztof; Bertrandt, Jerzy; Jałocha, Lukasz; Matuszewski, Tomasz; Abramowicz, Michał

    2007-01-01

    The aim of the work was laboratory assessment of energy and nutritional value of general and light diets used in patients of selected clinical department in the Military Medical Institute in Warsaw alimentation. Using questionnaire method the assessment of diets was done by patients too. Meals given to patients in hospital not always fulfilled nutritional requirements. Additional consumption of supplementary products did not always meet the requirements of proper nutrition. Half of examined patients appraised nutrition variety as good but at the same time claimed the there was not enough fruits and vegetables.

  14. [The adventures of doctor Jean Matuszinski, friend of Frédéric Chopin, from Warsaw in 1808 to Paris in 1842].

    PubMed

    Hazard, Jean

    2005-01-01

    Jean Matuszinski, a Pole born in Warsaw, happened to be the student of a Frenchman who had emigrated to Poland: Nicolas Chopin. French was still widely spoken at that time in Matuszinski's native land. For a while, Matsuzinski was even a boarder in Warsaw, lived with this Franco-Polish family and became a close friend to Nicolas' son, Frederic Chopin. He was the only one who kept in touch with Chopin, despite the many international dramatic events of the time: an insurrection in Poland rapidly squashed by the Russians. Paris became the heart of the intellectual and artistic life for Polish citizens who took refuge there. After spending some time in Germany where Jean Matuszinski received a doctorate in medicine from the university of Tubingen in 1834, he went to Paris where he was delighted to meet again with Frederic Chopin, and received another doctorate from the Faculty of Medicine of Paris. During his short medical career, he was able to observe several forms of tuberculsis: an acute that killed Frederic's younger sister, and a chronic one that affected Frederic for more than fifteen years. But Matuszinski could take care of Chopin only during the first six years of the latter's illness because himself died from a severe subacute form of tuberculosis, when he was only 33 years old.

  15. Acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw

    PubMed Central

    Dera, Paulina; Religioni, Urszula; Duda-Zalewska, Aneta; Deptała, Andrzej

    2016-01-01

    Aim of the study To check the degree of acceptance of, inclination for, and barriers in genetic testing for gene mutations that increase the risk of breast and ovarian cancers among female residents of Warsaw Material and methods This study involved 562 women between 20 and 77 years of age, all of whom were patients visiting gynaecologists practising in clinics in the City of Warsaw. The studied population was divided into six age categories. The study method was a diagnostic poll conducted with the use of an original questionnaire containing 10 multiple-choice questions. Results Nearly 70% of the women showed an interest in taking a test to detect predispositions to develop breast and ovarian cancer. More than 10% did not want to take such a test, while every fifth women was undecided. No statistically significant differences between the respondents’ willingness to pay and education were found (p = 0.05). The most frequent answer given by women in all groups was that the amount to pay was too high. Such an answer was given by 52.17% of women with primary education, 65.22% of women with vocational education, 58.61% of women with secondary education, and 41.62% of women with higher education. Conclusions Women with a confirmed increased risk of developing breast and/or ovarian cancer due to inter alia the presence of BRCA1 and BRCA2 gene mutations should pay particular attention to 1st and 2nd level prophylaxis. PMID:27095945

  16. "Eurotrain for Training." Proceedings of a European Congress on Continuing Education and Training (4th, Berlin, Germany; Warsaw, Poland; Prague, Czechoslovakia; Budapest, Hungary; Vienna, Austria, October 5-9, 1992).

    ERIC Educational Resources Information Center

    Wisser, Ulrike, Ed.; Grootings, Peter, Ed.

    1992-01-01

    A "travelling" congress was conducted in five European cities (Berlin, Warsaw, Prague, Budapest, and Vienna) to promote a mutual exchange of views between east and west. The participants stressed the growing European Community interest in current examples of cooperation with neighbors in central and eastern Europe. In addition to promoting…

  17. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field

    PubMed Central

    2012-01-01

    The exciton binding energy of an asymmetrical GaAs-Ga1−xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418

  18. Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction: applied to cluster radioactive decays

    NASA Astrophysics Data System (ADS)

    Singh, BirBikram; Bhuyan, M.; Patra, S. K.; Gupta, Raj K.

    2012-02-01

    A microscopic nucleon-nucleon (NN) interaction is derived from the popular relativistic-mean-field (RMF) theory Lagrangian and used to obtain the optical potential by folding it with the RMF densities of cluster and daughter nuclei. The NN-interaction is remarkably related to the inbuilt fundamental parameters of RMF theory, and the results of the application of the so obtained optical potential, made to exotic cluster radioactive decays and α+α scattering, are found comparable to that for the well-known, phenomenological M3Y effective NN-interaction. The RMF-based NN-interaction can also be used to calculate a number of other nuclear observables.

  19. Exciton-related nonlinear optical properties in cylindrical quantum dots with asymmetric axial potential: combined effects of hydrostatic pressure, intense laser field, and applied electric field.

    PubMed

    Zapata, Alejandro; Acosta, Ruben E; Mora-Ramos, Miguel E; Duque, Carlos A

    2012-01-01

    : The exciton binding energy of an asymmetrical GaAs-Ga1-xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions. PMID:22971418

  20. Vector boson scattering at the LHC: A study of the W W →W W channels with the Warsaw cut

    NASA Astrophysics Data System (ADS)

    Fabbrichesi, M.; Pinamonti, M.; Tonero, A.; Urbano, A.

    2016-01-01

    We study W boson scattering in the same- and opposite-sign channels under the assumption that no resonances are present in the collider processes p p →l±νll±νlj j and p p →l±νll∓νlj j , respectively. Basic selection cuts together with a restriction on the combination of the final lepton and jet momenta (the Warsaw cut) make it possible to argue that at the LHC a luminosity of 100 fb-1 and a center-of-mass energy of √{s }=13 TeV will allow us to constrain the leading effective Lagrangian coefficients at the permil level. We also discuss limits on the other coefficients of the effective Lagrangian as well as stronger constraints provided by higher energy and luminosity.

  1. [Microbial analysis of clinical material taken from patients at the Oncology Center, Maria Skłodowkda-Curie Institute in Warsaw in 1997].

    PubMed

    Fuksiewicz, A; Połowniak-Pracka, H; Ochman, E; Podsiadło, B

    1999-01-01

    An analysis was carried out of the microbiological investigations of clinical material samples obtained from the patients of two oncology centres belonging to the Warsaw Oncology Centre. Microorganisms cultured from urine, blood, catheters, smears of wounds and other materials were analysed. From 4839 clinical material samples from the Ursynów centre 1755 bacterial strains were isolated. From 423 samples from the centre in Wawelska Street 171 strains were obtained. In infections of patients from the centres the number of Gram-positive cocci was twice that of Gram-negative rods. In the investigated clinical material S. aureus was the most frequently isolated Gram-positive coccus, while E. coli was the most frequent species among Gram-negative bacteria. In the infections of oncological patients a considerable frequency was noted of yeast-like fungi, especially C. albicans. Particularly disquieting was the increasing number of isolates of C. glabrata and C. krusei strains resistant to fluconazole.

  2. The influence of optical properties of paints and coatings on the efficiency of infrared nondestructive testing applied to aluminum aircraft structures

    NASA Astrophysics Data System (ADS)

    Burleigh, D.; Vavilov, V. P.; Pawar, S. S.

    2016-07-01

    IR NDT (Infrared Nondestructive Testing) is a popular method for detecting defects in composite, ceramic, and metallic structures. The effectiveness of IR NDT depends on various thermal and optical properties of the material being tested. The thermal properties, including thermal conductivity, thermal diffusivity, specific heat and density are important and have been discussed extensively in many treatises on IR NDT. However the optical properties of the surface are equally important and while the thermal properties cannot be changed, sometimes the optical properties can be. Bare metal surfaces have high reflectivities and low emissivities, and as a result, they are generally not good candidates for IR NDT. Painted, coated, anodized, and oxidized metal surfaces can, in some cases, be successfully tested with IR NDT, but the effectiveness depends on the optical properties of the surface. It is well known by IR NDT practitioners that the easy solution to the testing of reflective materials is to paint the surface black. However, this is not always practical and it may not be permitted by the "owner" of the part. This paper demonstrates a process of analyzing the interaction of spectral curves that are relevant to the IR NDT process. This process can be used to evaluate the effectiveness of an IR NDT process for use on real parts with specific coatings and can help select a coating that may improve the effectiveness. This paper shows examples of optical properties for some typical paints and coatings that may be used on aluminum aircraft structures. It shows the spectrum of a generic incandescent radiant heat source and how the energy from this source is absorbed by several of these paints. Further, it shows the interaction between an IR camera detector response curve and the other curves. And finally, it shows how these three can be combined to produce an "IR NDT" efficiency rating for several examples.

  3. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Goushcha, Alexander; Tabbert, Bernd

    Optical detectors are applied in all fields of human activities - from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  4. Optical Detectors

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  5. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs /Ga1-xAlx As double inverse parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Al, E. B.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sökmen, I.

    2015-09-01

    The combined effects of electric and magnetic fields on the optical absorption coefficients and refractive index changes related to the intersubband transitions within the conduction band of asymmetric GaAs /Ga1-xAlxAs double inverse parabolic quantum wells are studied using the effective-mass approximation and the compact density-matrix approach. The results are presented as a function of the incident photon energy for the different values of the electromagnetic fields and the structure parameters such as quantum well width and the Al concentration at the well center. It is found that the optical absorption coefficients and the refractive index changes are strongly affected not only by the magnitudes of the electric and magnetic fields but also by the structure parameters of the system.

  6. A Novel Algorithm Applied to Common Thermal-Optical Transmission Data for Determining Mass Absorption Cross Sections of Atmospheric Black Carbon: Applications to the Indian Outflow

    NASA Astrophysics Data System (ADS)

    Andersson, A.; Sheesley, R. J.; Kirillova, E.; Gustafsson, O.

    2010-12-01

    High wintertime concentrations of black carbon aerosols (BCA) over South Asia and the Northern Indian Ocean are thought to have a large impact on the regional climate. Direct absorption of sunlight by BCAs causes heating of the atmosphere and cooling at the surface. To quantify such effects it is important to characterize a number of different properties of the aerosols. Here we present a novel application of the thermal-optical (OCEC) instrument in which the laser beam is used to obtain optical information about the aerosols. In particular, the novel algorithm accounts for non-carbon contributions to the light extinction. Combining these light extinction coefficients with the simultaneously constrained Elemental Carbon (EC) concentrations, the Mass Absorption Cross Section (MAC) is computed. Samples were collected during a continuous 14-month campaign Dec 2008 - Mar 2009 at Sinaghad in Western India and on Hanimaadhoo, the Northernmost Island in the Maldives. This data set suggests that the MAC of the BCAs are variable, sometimes by a factor of 3 compared to the mean. This observation adds to the complexity of calculating the radiative forcing for BCAs, reinforcing previous observations that parameters such as aerosol mixing state and sources need to be taken into account.

  7. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V.

    2014-09-01

    In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo - with moderate precision: correlation coefficients in the

  8. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  9. In vivo optical molecular imaging and analysis in mice using dorsal window chamber models applied to hypoxia, vasculature and fluorescent reporters

    PubMed Central

    Palmer, Gregory M; Fontanella, Andrew N; Shan, Siqing; Hanna, Gabi; Zhang, Guoqing; Fraser, Cassandra L; Dewhirst, Mark W

    2012-01-01

    Optical techniques for functional imaging in mice have a number of key advantages over other common imaging modalities such as magnetic resonance imaging, positron emission tomography or computed tomography, including high resolution, low cost and an extensive library of available contrast agents and reporter genes. A major challenge to such work is the limited penetration depth imposed by tissue turbidity. We describe a window chamber technique by which these limitations can be avoided. This facilitates the study of a wide range of processes, with potential endpoints including longitudinal gene expression, vascular remodeling and angiogenesis, and tumor growth and invasion. We further describe several quantitative imaging and analysis techniques for characterizing in vivo fluorescence properties and functional endpoints, including vascular morphology and oxygenation. The procedure takes ~2 h to complete, plus up to several weeks for tumor growth and treatment procedures. PMID:21886101

  10. Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: Effects of applied electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Al, E. B.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Ungan, F.; Kasapoglu, E.

    2016-08-01

    In the present study, the effects of electric and magnetic fields on the linear and third-order nonlinear optical absorption coefficients and relative change of the refractive index in asymmetric GaAs/GaAlAs double quantum wells under intense laser fields are theoretically investigated. The electric field is oriented along the growth direction of the heterostructure while the magnetic field is taken in-plane. The intense laser field is linear polarization along the growth direction. Our calculations are made using the effective-mass approximation and the compact density-matrix approach. Intense laser effects on the system are investigated with the use of the Floquet method with the consequent change in the confinement potential of heterostructures. Our results show that the increase of the electric and magnetic fields blue-shifts the peak positions of the total absorption coefficient and of the total refractive index while the increase of the intense laser field firstly blue-shifts the peak positions and later results in their red-shifting.

  11. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome

    PubMed Central

    Bharti, Sanjay Kumar; Khan, Irfan; Banerjee, Taraswi; Sommers, Joshua A.; Wu, Yuliang

    2015-01-01

    In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron–Sulfur (Fe–S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe–S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair. PMID:24487782

  12. Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway.

    PubMed

    Calì, Federica; Bharti, Sanjay Kumar; Di Perna, Roberta; Brosh, Robert M; Pisani, Francesca M

    2016-01-29

    We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4-5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions.

  13. Occurrence of immunosuppressive drugs and their metabolites in the sewage-impacted Vistula and Utrata Rivers and in tap water from the Warsaw region (Poland).

    PubMed

    Giebułtowicz, Joanna; Nałęcz-Jawecki, Grzegorz

    2016-04-01

    Immunosuppresive therapy following organ transplant frequently includes treatment with tacrolimus and mycophenolic acid derivatives. These pharmaceuticals may enter the environment through wastewater treatment plant (WWTP) effluents and may have a potentially harmful effect on aquatic biota. Tacrolimus, mycophenolic acid and their metabolites were measured at specific points of a large Polish river (Vistula), a smaller river (Utrata) and in tap water samples from the Warsaw region. Analysis was performed using liquid chromatography tandem mass spectrometry, after solid phase extraction for water samples, or QuEChERS extraction for sediments. Residues of tacrolimus were below quantitation limits in both water and sediment samples. However, in water samples mycophenolic acid concentrations were measured at up to 180 ng L(-1) downstream of WWTP outfalls. No immunosuppressive drugs were detected in tap water. Concentrations of mycophenolic acid exceeded the predicted no effect concentration (PNEC) value in some Polish surface water, and risk calculations predicted at least twice higher concentrations in some other countries of the European Union. To the best of the authors' knowledge, this is the first report of these immunosuppressive drug concentrations in the environment.

  14. Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk

    NASA Astrophysics Data System (ADS)

    Błażejczyk, Krzysztof; Idzikowska, Danuta; Błażejczyk, Anna

    2013-01-01

    This paper presents the results of research dealing with forecast changes in the frequency of occurrence of heat and cold stress in Warsaw (Poland) in the years 2001-2100, and the possible influence these may exert on mortality risk. Heat and cold stress were assessed by reference to the Universal Thermal Climate Index (UTC I), for which values were calculated using meteorological data derived from the MPI-M-RE MO regional climate model, at a with spatial resolution of 25 × 25 km. The simulations used boundary conditions from the EC HAMP5 Global Climate Model, for SRES scenario A1B. Predictions of mortality rate were in turn based on experimental epidemiological data from the period 1993-2002. Medical data consist of daily numbers of deaths within the age category above 64 years (TM64+). It proved possible to observe a statistically significant relationship between UTC I and mortality rates, this serving as a basis for predicting possible changes in mortality in the 21st century due to changing conditions as regards heat and cold stress.

  15. Forecast changes for heat and cold stress in Warsaw in the 21st century, and their possible influence on mortality risk

    NASA Astrophysics Data System (ADS)

    Błażejczyk, Krzysztof; Idzikowska, Danuta; Błażejczyk, Anna

    2013-01-01

    This paper presents the results of research dealing with forecast changes in the frequency of occurrence of heat and cold stress in Warsaw (Poland) in the years 2001-2100, and the possible influence these may exert on mortality risk. Heat and cold stress were assessed by reference to the U niversal T hermal C limate I ndex (UTC I), for which values were calculated using meteorological data derived from the MPI-M-RE MO regional climate model, at a with spatial resolution of 25 × 25 km. The simulations used boundary conditions from the EC HAMP5 Global Climate Model, for SRES scenario A1B. Predictions of mortality rate were in turn based on experimental epidemiological data from the period 1993-2002. Medical data consist of daily numbers of deaths within the age category above 64 years (TM64+). It proved possible to observe a statistically significant relationship between UTC I and mortality rates, this serving as a basis for predicting possible changes in mortality in the 21st century due to changing conditions as regards heat and cold stress.

  16. AN OPTICAL CATALOG OF GALAXY CLUSTERS OBTAINED FROM AN ADAPTIVE MATCHED FILTER FINDER APPLIED TO SLOAN DIGITAL SKY SURVEY DATA RELEASE 6

    SciTech Connect

    Szabo, T.; Pierpaoli, E.; Pipino, A.; Dong, F.; Gunn, J. E-mail: pierpaol@usc.edu

    2011-07-20

    We present a new cluster catalog extracted from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6) using an adaptive matched filter (AMF) cluster finder. We identify 69,173 galaxy clusters in the redshift range 0.045 {<=} z < 0.78 in 8420 deg{sup 2} of the sky. We provide angular position, redshift, richness, core, and virial radii estimates for these clusters, as well as an error analysis for each of these quantities. We also provide a catalog of more than 205,000 galaxies representing the three brightest galaxies in the r band which are possible brightest cluster galaxy (BCG) candidates. We show basic properties of the BCG candidates and study how their luminosity scales in redshift and cluster richness. We compare our catalog with the maxBCG and GMBCG catalogs, as well as with that of Wen et al. We match between 30% and 50% of clusters between catalogs over all overlapping redshift ranges. We find that the percentage of matches increases with the richness for all catalogs. We cross match the AMF catalog with available X-ray data in the same area of the sky and find 539 matches, 119 of which with temperature measurements. We present scaling relations between optical and X-ray properties and cluster center comparison. We find that both {Lambda}{sub 200} and R{sub 200} correlate well with both L{sub X} and T{sub X} , with no significant difference in trend if we restrict the matches to flux-limited X-ray samples.

  17. Lattice Boltzmann methods applied to large-scale three-dimensional virtual cores constructed from digital optical borehole images of the karst carbonate Biscayne aquifer in southeastern Florida

    USGS Publications Warehouse

    Michael Sukop,; Cunningham, Kevin J.

    2014-01-01

    Digital optical borehole images at approximately 2 mm vertical resolution and borehole caliper data were used to create three-dimensional renderings of the distribution of (1) matrix porosity and (2) vuggy megaporosity for the karst carbonate Biscayne aquifer in southeastern Florida. The renderings based on the borehole data were used as input into Lattice Boltzmann methods to obtain intrinsic permeability estimates for this extremely transmissive aquifer, where traditional aquifer test methods may fail due to very small drawdowns and non-Darcian flow that can reduce apparent hydraulic conductivity. Variogram analysis of the borehole data suggests a nearly isotropic rock structure at lag lengths up to the nominal borehole diameter. A strong correlation between the diameter of the borehole and the presence of vuggy megaporosity in the data set led to a bias in the variogram where the computed horizontal spatial autocorrelation is strong at lag distances greater than the nominal borehole size. Lattice Boltzmann simulation of flow across a 0.4 × 0.4 × 17 m (2.72 m3 volume) parallel-walled column of rendered matrix and vuggy megaporosity indicates a high hydraulic conductivity of 53 m s−1. This value is similar to previous Lattice Boltzmann calculations of hydraulic conductivity in smaller limestone samples of the Biscayne aquifer. The development of simulation methods that reproduce dual-porosity systems with higher resolution and fidelity and that consider flow through horizontally longer renderings could provide improved estimates of the hydraulic conductivity and help to address questions about the importance of scale.

  18. Lattice Boltzmann Methods Applied to Three-Dimensional Virtual Cores Constructed from Digital Optical Borehole Images of a Karst Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Lee, J. S.; Sukop, M. C.; Cunningham, K. J.

    2008-05-01

    Recovery of whole-core samples from macroporous karst carbonate is nearly impossible with conventional drilling technology. Thus, the most porous part of coreholes drilled in karst systems rarely yield whole-core samples. The consequent lack of samples for measurement of fluid-flow properties in karst carbonate aquifers impedes characterization of ground-water flow within these systems. This study uses advanced modeling techniques together with geophysical corehole data acquired from the karst carbonate Biscayne aquifer of southeastern Florida, USA, to explore a combination of innovative technologies designed to compensate for the lack of macroporous whole-core sample data. Specifically, these methods are being used to better understand the ground-water flow regime in the Biscayne aquifer. In this study, digital optical borehole image logs were compiled for test coreholes that penetrate the rocks of the Biscayne aquifer. The borehole image data were then processed to map the 3-D distribution of macropores and rock matrix present on the borehole walls using Stanford geostatistical software (SGeMS). The SGeMS program was used to compute variograms that were used as input for a computer simulation. The simulation results provided virtual 3-D renderings of the complex karst macropore network of the Biscayne aquifer that statistically replicate the borehole wall image data. These renderings provided 3-D visual records of areas of the aquifer that are composed of a carbonate eogenetic macropore system dominated by centimeter-scale vugs produced by fossil molds and voids associated with trace fossils. The vugs can coalesce over broad areas in the Biscayne aquifer to form laterally persistent zones of preferential ground-water flow. Lattice Boltzmann methods (LBMs) were used to measure the intrinsic permeability of the 3-D aquifer renderings. When using LBMs the rock matrix was assumed to be a nonporous media, thus permeability was only measured within the network of

  19. Numerical analysis of residual stresses in preforms of stress applying part for PANDA-type polarization maintaining optical fibers in view of technological imperfections of the doped zone geometry

    NASA Astrophysics Data System (ADS)

    Trufanov, Aleksandr N.; Trufanov, Nikolay A.; Semenov, Nikita V.

    2016-09-01

    The experimental data analysis of the stress applying rod section geometry for the PANDA-type polarization maintaining optical fiber has been performed. The dependencies of the change in the radial dimensions of the preform and the doping boundary on the angular coordinate have been obtained. The original algorithm of experimental data statistic analysis, which enables determination of the specimens' characteristic form of section, has been described. The influence of actual doped zone geometry on the residual stress fields formed during the stress rod preform fabrication has been investigated. It has been established that the deviation of the boundary between pure silica and the doped zone from the circular shape results in dissymmetry and local concentrations of the residual stress fields along the section, which can cause preforms destruction at high degrees of doping. The observed geometry deviations of up to 10% lead to the increase of the maximum stress intensity value by over 20%.

  20. Interstudy reproducibility of the second generation, Fourier domain optical coherence tomography in patients with coronary artery disease and comparison with intravascular ultrasound: a study applying automated contour detection.

    PubMed

    Jamil, Z; Tearney, G; Bruining, N; Sihan, K; van Soest, G; Ligthart, J; van Domburg, R; Bouma, B; Regar, E

    2013-01-01

    .36, 0.26 ± 0.54, 0.05 ± 0.47 mm(2), respectively). FD-OCT shows excellent reproducibility and very low inter-study variability in both, native and stented coronary segments. No significant differences in quantitative lumen morphometry were observed between FD-OCT and IVUS. Evaluating these results suggest that FD-OCT is a reliable imaging tool to apply in longitudinal coronary artery disease studies.

  1. Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw.

    PubMed

    Lisiewicz, M; Heimburger, R; Golimowski, J

    2000-12-18

    Twenty-seven sites, together with 23 household dust sample sites, representing the home environment, and four public room dust sample sites, representing working environment (mainly offices) have been described in this paper. The latter were examined to obtain an approximate reference to the home environment data. All the samples were collected between May and July 1997 by a vacuum-cleaner method, in the city of Warsaw, Poland. The granulometry of the dusts was determined by their separation into seven fractions in the range 8-500 microm. The concentrations of Cr, Ni, Cu, Zn, Pb, Br and Fe in the samples were investigated in fractions 8-32, 32-63 and 63-125 microm by the EDXRF technique. The results showed higher concentrations of these elements in finer fractions (8-32 microm). The Pb content in the household dusts was found to be unexpectedly low, ranging from 120 microg g(-1) for the 63-125 microm fraction, up to 210 microg g(-1) for the 8-32 microm fraction. Car exhausts could not be determined clearly as the main source of Pb in the indoor household dusts due to the lack of a Pb-Br intercorrelation. In these dusts, only Cr and Zn showed a remarkably high content of 90-100 and 1020-1070 (microg g(-1)), respectively. In the household dusts, strong intercorrelations were present in the three analysed fractions for the metal pairs: Pb-Zn, Pb-Cu, Fe-Cr, and Cu-Cr (weaker). The working environment rooms showed a higher degree of dustiness by 300%, as compared to the dwellings. The dusts collected in the working environment rooms showed slightly higher concentrations of Ni and by 50-100% higher concentrations of: Cu, Zn, Pb, Br than the analysed household dusts.

  2. Applied Enzymology.

    ERIC Educational Resources Information Center

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  3. Applied geophysics

    SciTech Connect

    Dohr, G.

    1981-01-01

    This book discusses techniques which play a predominant role in petroleum and natural gas exploration. Particular emphasis has been placed on modern seismics which today claims over 90% of man-power and financial resources in exploration. The processing of geophysical data is the most important factor in applied physics and emphasis is placed on it in the discussion of exploration problems. Chapter titles include: refraction seismics; reflection seismics; seismic field techniques; digital seismics-electronic data processing; digital seismics-practical application; recent developments, special seismic procedures; gravitational methods; magnetic methods; geoelectric methods; well-logging; and miscellaneous methods in applied geophysics (thermal methods, radioactive dating, natural radioactivity surveys, and surface detection of gas. (DMC)

  4. Applied Nanotoxicology.

    PubMed

    Hobson, David W; Roberts, Stephen M; Shvedova, Anna A; Warheit, David B; Hinkley, Georgia K; Guy, Robin C

    2016-01-01

    Nanomaterials, including nanoparticles and nanoobjects, are being incorporated into everyday products at an increasing rate. These products include consumer products of interest to toxicologists such as pharmaceuticals, cosmetics, food, food packaging, household products, and so on. The manufacturing of products containing or utilizing nanomaterials in their composition may also present potential toxicologic concerns in the workplace. The molecular complexity and composition of these nanomaterials are ever increasing, and the means and methods being applied to characterize and perform useful toxicologic assessments are rapidly advancing. This article includes presentations by experienced toxicologists in the nanotoxicology community who are focused on the applied aspect of the discipline toward supporting state of the art toxicologic assessments for food products and packaging, pharmaceuticals and medical devices, inhaled nanoparticle and gastrointestinal exposures, and addressing occupational safety and health issues and concerns. This symposium overview article summarizes 5 talks that were presented at the 35th Annual meeting of the American College of Toxicology on the subject of "Applied Nanotechnology." PMID:26957538

  5. Guided Learning Applied to Optical Mineralogy

    ERIC Educational Resources Information Center

    Driver, S. C.; Hunter, W. R.

    1975-01-01

    Describes an individual programmed study method used in a second year Geology course at the University of Melbourne. Outlines the criteria that make this instructional style useful and presents the student questionnaire used to evaluate the course. (GS)

  6. Applied Koopmanisma)

    NASA Astrophysics Data System (ADS)

    Budišić, Marko; Mohr, Ryan; Mezić, Igor

    2012-12-01

    A majority of methods from dynamical system analysis, especially those in applied settings, rely on Poincaré's geometric picture that focuses on "dynamics of states." While this picture has fueled our field for a century, it has shown difficulties in handling high-dimensional, ill-described, and uncertain systems, which are more and more common in engineered systems design and analysis of "big data" measurements. This overview article presents an alternative framework for dynamical systems, based on the "dynamics of observables" picture. The central object is the Koopman operator: an infinite-dimensional, linear operator that is nonetheless capable of capturing the full nonlinear dynamics. The first goal of this paper is to make it clear how methods that appeared in different papers and contexts all relate to each other through spectral properties of the Koopman operator. The second goal is to present these methods in a concise manner in an effort to make the framework accessible to researchers who would like to apply them, but also, expand and improve them. Finally, we aim to provide a road map through the literature where each of the topics was described in detail. We describe three main concepts: Koopman mode analysis, Koopman eigenquotients, and continuous indicators of ergodicity. For each concept, we provide a summary of theoretical concepts required to define and study them, numerical methods that have been developed for their analysis, and, when possible, applications that made use of them. The Koopman framework is showing potential for crossing over from academic and theoretical use to industrial practice. Therefore, the paper highlights its strengths in applied and numerical contexts. Additionally, we point out areas where an additional research push is needed before the approach is adopted as an off-the-shelf framework for analysis and design.

  7. Tunable Optical Filters Having Electro-optic Whispering-gallery-mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy (Inventor); Ilchenko, Vladimir (Inventor); Matsko, Andrey B. (Inventor); Maleki, Lutfollah (Inventor)

    2006-01-01

    Tunable optical filters using whispering-gallery-mode (WGM) optical resonators are described. The WGM optical resonator in a filter exhibits an electro-optical effect and hence is tunable by applying a control electrical signal.

  8. Spatial distribution of anthropogoenic pollution acumulated on tree leaves, soil and street dust in the park area in the centre of Warsaw

    NASA Astrophysics Data System (ADS)

    Dytłow, Sylwia; Górka-Kostrubiec, Beata

    2015-04-01

    The magnetic method has been successfully used to evaluate and characterise the degree of air pollution. This method is based on investigation of properties of magnetic particles of pollution such as magnetic susceptibility, parameters of hysteresis loops and temperature-dependence of magnetic parameters etc. The motivation to undertake this study was to find the distribution of pollution emitted by traffic vehicles in a green area situated in urban environment. The investigated area is the oldest public park named Saxon Garden in the centre of Warsaw, Poland. The Saxon Garden is located between the very busy main road with tram line, two local streets (low traffic volume) and big plaza without car traffic and trees. In order to quantify the degree of pollution we measured magnetic susceptibility of pollution deposited on chestnut leaves (the most abundant tree species in the park), surface of the roads (street dust) and in soil from the park area. The highest values of magnetic susceptibility of pollution were observed on tree leaves located along the edges/borders of park area (190 [m3/kg]), directly adjacent to busy roads. The lowest values of magnetic susceptibility (20 [m3/kg]) were obtained for leave samples from the borders of park, directly adjacent to plaza and roads with low traffic volume. It was observed that the intensity of magnetic susceptibility decreases with the distance of pollution source i.e. main streets. A similar distribution of intensity of magnetic susceptibility was observed for the soil samples collected from park area. With the exception of a few samples, the magnetic susceptibility of soil samples were higher than for leave samples. Our study showed that the distribution of magnetic susceptibility of soil and leave samples correlate with the intensity of magnetic susceptibility of street dust taken from the road surfaces situated along the boundary of the park area. On the basis of the detailed research of the domain structure and

  9. Applied geodesy

    SciTech Connect

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc.

  10. Organic nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  11. Optic glioma

    MedlinePlus

    Glioma - optic; Optic nerve glioma; Juvenile pilocytic astrocytoma; Brain cancer - optic glioma ... Optic gliomas are rare. The cause of optic gliomas is unknown. Most optic gliomas are slow-growing ...

  12. Optical technology for flight control systems

    NASA Technical Reports Server (NTRS)

    Mayanagi, M.

    1986-01-01

    Optical applications to the flight control system including optical data bus, sensors, and transducers are analyzed. Examples of optical data bus include airborne light optical fiber technology (ALOFT), F-5E, YA-7D, MIL-STD-1553 fiber optic data bus and NAL-optic data bus. This NAL-optic data bus is applied to STOL, and its characteristics are stressed. Principles and advantages of optical pulse-digital transducers are discussed.

  13. Grain optical properties

    NASA Technical Reports Server (NTRS)

    Hanner, Martha

    1988-01-01

    The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.

  14. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  15. Optic neuritis

    MedlinePlus

    Retro-bulbar neuritis; Multiple sclerosis - optic neuritis; Optic nerve - optic neuritis ... The exact cause of optic neuritis is unknown. The optic nerve carries visual information from your eye to the brain. The nerve can swell when ...

  16. Insights into multiple sclerosis provided by non-coding RNAs: meeting summary from the symposium 'non-coding RNAs in autoimmune disorders of the central nervous system' on 5 April 2013 in Warsaw, Poland.

    PubMed

    Mycko, Marcin P; Weiner, Howard L; Selmaj, Krzysztof W

    2014-10-01

    More than 80% of the human genome is biochemically active, whereas less than 3% of the genome encodes proteins. The emerging field of non-coding ribonucleic acids (RNAs) that are products of the genome, but do not program proteins, has revolutionized our understanding of cell biology. This was followed by a growing interest in the role of non-coding RNAs in the pathogenesis of human diseases, including multiple sclerosis (MS). In April 2013, a symposium in Warsaw, Poland, was the first meeting entirely dedicated to advances in the understanding of the roles of various subclasses of non-coding RNAs and showcased their involvement in autoimmune demyelination and MS. New mechanisms of action of small non-coding RNAs, as well as the advent of long non-coding RNAs were discussed, including the potential role of non-coding RNAs as MS biomarkers and their use for therapeutic intervention in MS.

  17. The 2009-2012 Ionosonde and IRI2012 Variability of foF 2, hmF 2, M3000F2, B 0, B1 Parameters over Warsaw

    NASA Astrophysics Data System (ADS)

    Szwabowski, Michał; Dziak-Jankowska, Beata; Pożoga, Mariusz; Tomasik, Łukasz

    2016-08-01

    This paper presents comparisons of variability and accordance of ionospheric parameters foF2, hmF2, M3000F2, B0, B1 over the middle latitude station in Warsaw (52.21°N, 21.06°E). Examination included observational data from Space Research Centre ionosonde in Poland and International Reference Ionosphere (IRI) 2012 model, for the time period of increasing solar activity from 2009 to 2012. The analysis concerned: trend, monthly median differences in twenty-four hours variability, local minima and maxima. Results are presented as tables of semi-annual data, and plots of difference in four-year period. The study indicated good agreement of foF2 and hmF2 parameters. Underestimations of B1 and M3000F2, variability of B0 parameter in Bil-2000, Gul-1987, and ABT-2009 option, were taken into consideration.

  18. [Sanitation of the health service centre in Warsaw (Samodzielny Zespół Publicznych Zakładów Lecznictwa Otwartego Warszawa-Mokotów). Financial and economic analysis].

    PubMed

    Buczak-Stec, Elzbieta

    2010-01-01

    The aim of the financial and economic analysis, conducted in March 2010, was to identify all significant factors that had a positive influence on the restructuring process in the health service centre (Samodzielny Zespół Publicznych Zakładów Lecznictwa Otwartego Warszawa--Mokotów) in Warsaw. Within the framework of the analysis, financial data form time period 1999-2009 were analyzed. Also the managing director and financial director were interviewed. Taking into consideration research results it can be stated that not a single factor but a collection of the purposeful efforts influenced the improvement of the health service centre condition. Apart from received public help, the most significant factors include: rational restructuring process, managing of personnel development, professionally managed financial department, cooperation between departments, good internal communication and use of modern management techniques. PMID:21473078

  19. Transparent electrode for optical switch

    DOEpatents

    Goldhar, J.; Henesian, M.A.

    1984-10-19

    The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

  20. Quarter Modernization of Construction Residential "New Praga" in Warsaw - Risks and Possibilities/ Modernizacja Kwartału Zabudowy Mieszkaniowej "Nowej Pragi" W Warszawie, Zagrożenia I Możliwości

    NASA Astrophysics Data System (ADS)

    Majewska, Anna; Denis, Małgorzata

    2015-06-01

    The district "New Praga" is located on the right-bank of Warsaw in North Praga which is one of the oldest districts of the city. The citizens of this district, where an analyzed building quarter is located, are people with a lower social status than the rest of Warsaw's population, who benefit from the social assistance (30%); moreover, there are a large number of crimes and high unemployment among young people in this area. These data show how difficult is to modernize this area because the improvement of a construction tissue is not enough to fully help the local community. Financial resources are needed to increase the level of education that allows finding new jobs and improves the quality of life. Afterwards, the modernization of tenements should be taken care for. Rejon "Nowa Praga" usytuowany jest na Pradze Północ, która jest jedną z najstarszych dzielnic miasta. Mieszkańcy tego rejonu, w którym usytuowany jest analizowany kwartał zabudowy, to osoby często o niższym statusie społecznym niż reszta ludności stolicy. Często są to enklawy biedy, bezrobocia i przestępczości. Teren ten jest trudny do modernizacji, ponieważ poprawa tkanki budowlanej, to nie wszystko, aby w pełni pomóc społeczności lokalnej. Potrzebne są środki finansowe również na działania społeczne, które umożliwią mieszkańcom na poprawę jakości życia. W artykule przedstawiono propozycję modernizacji wybranego kwartału zabudowy, co wymaga interdyscyplinarnego podejścia do danego zagadnienia.

  1. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1. Fully Understand the Task 2. Develop an Error Budget 3. Continuous Metrology Coverage 4. Know where you are 5. 'Test like you fly' 6. Independent Cross-Checks 7. Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  2. Rules for Optical Testing

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task: Fully Understand the Task, Develop an Error Budget, Continuous Metrology Coverage, Know where you are, Test like you fly, Independent Cross-Checks, Understand All Anomalies. These rules have been applied with great success to the inprocess optical testing and final specification compliance testing of the JWST mirrors.

  3. Rules for Optical Metrology

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2014-01-01

    Based on 30 years of optical testing experience, a lot of mistakes, a lot of learning and a lot of experience, I have defined seven guiding principles for optical testing - regardless of how small or how large the optical testing or metrology task. GUIDING PRINCIPLES 1.Fully Understand the Task 2.Develop an Error Budget 3.Continuous Metrology Coverage 4.Know where you are 5. 'Test like you fly' 6.Independent Cross-Checks 7.Understand All Anomalies. These rules have been applied with great success to the in-process optical testing and final specification compliance testing of the JWST mirrors.

  4. Acousto-optical/Magneto-optical Correlator Or Convolver

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Davis, Jeffrey A.

    1989-01-01

    Experimental system demonstrates optical processing of multiple channels of binary signals. One input channel contains signal that varies with time and applied to one-dimensional acousto-optical cell. Other input channel contains two-dimensional pattern that is stationary or can vary with time and applied to magneto-optical spatial light modulator. Output is time-varying correlation or convolution of first input with one of rows in second input.

  5. Transpiration purged optical probe

    DOEpatents

    VanOsdol, John; Woodruff, Steven

    2004-01-06

    An optical apparatus for clearly viewing the interior of a containment vessel by applying a transpiration fluid to a volume directly in front of the external surface of the optical element of the optical apparatus. The fluid is provided by an external source and transported by means of an annular tube to a capped end region where the inner tube is perforated. The perforation allows the fluid to stream axially towards the center of the inner tube and then axially away from an optical element which is positioned in the inner tube just prior to the porous sleeve. This arrangement draws any contaminants away from the optical element keeping it free of contaminants. In one of several embodiments, the optical element can be a lens, a viewing port or a laser, and the external source can provide a transpiration fluid having either steady properties or time varying properties.

  6. Optical technology in medicine and biology: Introduction

    NASA Astrophysics Data System (ADS)

    Burns, Stephen A.; Ediger, Marwood N.; Richards-Kortum, Rebecca R.

    1996-07-01

    This feature issue on Optical Technology in Medicine and Biology is the inaugural feature issue for a new section of Applied Optics devoted to the application of advanced optical techniques to problems in biology, medicine, and biotechnology. Although Applied Optics has always been open to research in these areas, the Optical Society's board of editors decided that the importance of this type of research merited a more prominent and focused presentation. As a result the Optical Technology division of Applied Optics was renamed the Optical Technology and Biomedical Optics division, and four new members were appointed to the Applied Optics editorial board. In addition, a call for papers was issued for an inaugural feature issue. The papers appearing in the current issue are those that were submitted in response to that call for papers and that passed the rite of peer review. The quality and breadth of the papers demonstrate the wisdom of the society's decision. We have important contributions affecting such diverse areas as biologic imaging, drug delivery, tissue optics, and laser surgery. In addition, Applied Optics has seen a sharp increase in the number of regular submissions involving biomedical optics, and the quality and breadth of these papers also bode well for the future of the publication. In addition there is already another joint Applied Optics/Journal of the Optical Society of America A Feature Issue in process, entitled Diffusing Photons in Turbid Media, scheduled for publication in January 1997. We invite you to read the papers and to participate in the future of Biomedical Optics and Optical Biotechnology by submitting manuscripts for review by your peers. We thank the OSA board of editors for this opportunity, and we encourage our colleagues to submit their papers directly to the Optical Society in the future and to share ideas and thoughts on this new area of Applied Optics.

  7. The possibility of establishing causes of death on the basis of the exhumed remains of prisoners executed during the communist regime in Poland: the exhumations at Powązki Military Cemetery in Warsaw.

    PubMed

    Szleszkowski, Łukasz; Thannhäuser, Agata; Szwagrzyk, Krzysztof; Jurek, Tomasz

    2015-07-01

    This study presents the results of the analysis of forensic examinations of the remains of 194 prisoners exhumed at Powązki Military Cemetery in Warsaw. In all probability, most of those buried there were judicially sentenced to death by firing squad or hanging in connection with activities of the Polish independence underground in its struggles with the postwar communist regime. Forensic medical research focussed on determining causes of death and reconstructing the mechanisms of injury leading to death. Most probable causes of death were found in 108 of 194 cases; of these, 76 were isolated gunshot wounds to the head, mostly directed to the occipital region. In 29 of 194 cases, only extensive skull fractures were observed, making it impossible to determine the mechanism of injury. The condition of these skulls do not permit the exclusion of injuries due to gunshots, which were very likely given the historical context of the studied location. In one case, it is assumed that the cause of death could be blunt force trauma to the head. In 86 of 194 cases, it was not possible to determine the cause of death. Of these cases, 20 skeletons were in such poor condition that erosive changes could have completely obliterated even very extensive head injuries leading to death. No injuries were observed that could be associated with execution by hanging.

  8. The possibility of establishing causes of death on the basis of the exhumed remains of prisoners executed during the communist regime in Poland: the exhumations at Powązki Military Cemetery in Warsaw.

    PubMed

    Szleszkowski, Łukasz; Thannhäuser, Agata; Szwagrzyk, Krzysztof; Jurek, Tomasz

    2015-07-01

    This study presents the results of the analysis of forensic examinations of the remains of 194 prisoners exhumed at Powązki Military Cemetery in Warsaw. In all probability, most of those buried there were judicially sentenced to death by firing squad or hanging in connection with activities of the Polish independence underground in its struggles with the postwar communist regime. Forensic medical research focussed on determining causes of death and reconstructing the mechanisms of injury leading to death. Most probable causes of death were found in 108 of 194 cases; of these, 76 were isolated gunshot wounds to the head, mostly directed to the occipital region. In 29 of 194 cases, only extensive skull fractures were observed, making it impossible to determine the mechanism of injury. The condition of these skulls do not permit the exclusion of injuries due to gunshots, which were very likely given the historical context of the studied location. In one case, it is assumed that the cause of death could be blunt force trauma to the head. In 86 of 194 cases, it was not possible to determine the cause of death. Of these cases, 20 skeletons were in such poor condition that erosive changes could have completely obliterated even very extensive head injuries leading to death. No injuries were observed that could be associated with execution by hanging. PMID:25227925

  9. Changing image of correlation optics: introduction.

    PubMed

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  10. Advanced Optical Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Michael, Xuejun

    The following article describes an advanced dense wavelength division multiplexing (DWDM) Optical Network developed by L-3 Photonics. The network, configured as an amplified optical bus, carries traffic simultaneously in both directions, using multiple wavelengths. As a result, data distribution is of the form peer-to-multi-peer, it is protocol independent, and it is scalable. The network leverages the rapid growth in commercial optical technologies, including wavelength division multiplexing (WDM), and when applied to military and commercial platforms such as aircraft, ships, unmanned and other vehicles, provides a cost-effective, low-weight, high-speed, and high noise-immune data distribution system.

  11. EDITORIAL: Optical orientation Optical orientation

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  12. EDITORIAL: Optical orientation Optical orientation

    NASA Astrophysics Data System (ADS)

    SAME ADDRESS *, Yuri; Landwehr, Gottfried

    2008-11-01

    priority of the discovery in the literature, which was partly caused by the existence of the Iron Curtain. I had already enjoyed contact with Boris in the 1980s when the two volumes of Landau Level Spectroscopy were being prepared [2]. He was one of the pioneers of magneto-optics in semiconductors. In the 1950s the band structure of germanium and silicon was investigated by magneto-optical methods, mainly in the United States. No excitonic effects were observed and the band structure parameters were determined without taking account of excitons. However, working with cuprous oxide, which is a direct semiconductor with a relative large energy gap, Zakharchenya and his co-worker Seysan showed that in order to obtain correct band structure parameters, it is necessary to take excitons into account [3]. About 1970 Boris started work on optical orientation. Early work by Hanle in Germany in the 1920s on the depolarization of luminescence in mercury vapour by a transverse magnetic field was not appreciated for a long time. Only in the late 1940s did Kastler and co-workers in Paris begin a systematic study of optical pumping, which led to the award of a Nobel prize. The ideas of optical pumping were first applied by Georges Lampel to solid state physics in 1968. He demonstrated optical orientation of free carriers in silicon. The detection method was nuclear magnetic resonance; optically oriented free electrons dynamically polarized the 29Si nuclei of the host lattice. The first optical detection of spin orientation was demonstrated by with the III-V semiconductor GaSb by Parsons. Due to the various interaction mechanisms of spins with their environment, the effects occurring in semiconductors are naturally more complex than those in atoms. Optical detection is now the preferred method to detect spin alignment in semiconductors. The orientation of spins in crystals pumped with circularly polarized light is deduced from the degree of circular polarization of the recombination

  13. Fibre Optic Probes For Ophthalmology

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    1986-09-01

    One of the most interesting fields of application of optical fibre technology is the medicine. Among other medical disciplines the field of ophthalmology is very interesting for these applications because of optical character of the organ of vision. After some remarks of a general nature, and concerning the needs of modern ophthalmology, we will review here our trials to apply optical fibre devices for the optical surgery, therapy and diagnosis in the ophthalmology. The devices include: optical fibre illuminators for the applications with operational probes (crioprobes, termal probes, a vitrotom etc.) and some of the diagnostic equipment (like Goldman lens etc.), optical fibre gradient microoptics for delivering of a laser beam to the appropriate internal structures of the eyeglobe, optical fibre lacrimaloscope for the screening of the lacrimal ducts and another one for the orbit. A general conception of the multitask fibre optic microprobe fcr ophthalmological applications - operations and diagnosis/1/ - concludes the work.

  14. High pressure fiber optic sensor system

    DOEpatents

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  15. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  16. Assessment of Physical Activity by Applying IPAQ Questionnaire

    ERIC Educational Resources Information Center

    Biernat, Elzbieta; Stupnicki, Romuald; Lebiedzinski, Bartlomiej; Janczewska, Lidia

    2008-01-01

    Study aim: To assess the suitability of the short 7-day IPAQ (self-completed) adapted to Polish population. Material and methods: Two surveys were conducted in 2005 on 296 random subjects (aged 20-60 years) from Warsaw and the Mazowiecki region. From these, 54 men and 79 women were requested to fill questionnaires, and 70 men and 93 women, were…

  17. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis.

    PubMed

    Pein, Miriam; Kirsanov, Dmitry; Ciosek, Patrycja; del Valle, Manel; Yaroshenko, Irina; Wesoły, Małgorzata; Zabadaj, Marcin; Gonzalez-Calabuig, Andreu; Wróblewski, Wojciech; Legin, Andrey

    2015-10-10

    Electronic tongue technology based on arrays of cross-sensitive chemical sensors and chemometric data processing has attracted a lot of researchers' attention through the last years. Several so far reported applications dealing with pharmaceutical related tasks employed different e-tongue systems to address different objectives. In this situation, it is hard to judge on the benefits and drawbacks of particular e-tongue implementations for R&D in pharmaceutics. The objective of this study was to compare the performance of six different e-tongues applied to the same set of pharmaceutical samples. For this purpose, two commercially available systems (from Insent and AlphaMOS) and four laboratory prototype systems (two potentiometric systems from Warsaw operating in flow and static modes, one potentiometric system from St. Petersburg, one voltammetric system from Barcelona) were employed. The sample set addressed in the study comprised nine different formulations based on caffeine citrate, lactose monohydrate, maltodextrine, saccharin sodium and citric acid in various combinations. To provide for the fair and unbiased comparison, samples were evaluated under blind conditions and data processing from all the systems was performed in a uniform way. Different mathematical methods were applied to judge on similarity of the e-tongues response from the samples. These were principal component analysis (PCA), RV' matrix correlation coefficients and Tuckeŕs congruency coefficients. PMID:26099261

  18. Independent comparison study of six different electronic tongues applied for pharmaceutical analysis.

    PubMed

    Pein, Miriam; Kirsanov, Dmitry; Ciosek, Patrycja; del Valle, Manel; Yaroshenko, Irina; Wesoły, Małgorzata; Zabadaj, Marcin; Gonzalez-Calabuig, Andreu; Wróblewski, Wojciech; Legin, Andrey

    2015-10-10

    Electronic tongue technology based on arrays of cross-sensitive chemical sensors and chemometric data processing has attracted a lot of researchers' attention through the last years. Several so far reported applications dealing with pharmaceutical related tasks employed different e-tongue systems to address different objectives. In this situation, it is hard to judge on the benefits and drawbacks of particular e-tongue implementations for R&D in pharmaceutics. The objective of this study was to compare the performance of six different e-tongues applied to the same set of pharmaceutical samples. For this purpose, two commercially available systems (from Insent and AlphaMOS) and four laboratory prototype systems (two potentiometric systems from Warsaw operating in flow and static modes, one potentiometric system from St. Petersburg, one voltammetric system from Barcelona) were employed. The sample set addressed in the study comprised nine different formulations based on caffeine citrate, lactose monohydrate, maltodextrine, saccharin sodium and citric acid in various combinations. To provide for the fair and unbiased comparison, samples were evaluated under blind conditions and data processing from all the systems was performed in a uniform way. Different mathematical methods were applied to judge on similarity of the e-tongues response from the samples. These were principal component analysis (PCA), RV' matrix correlation coefficients and Tuckeŕs congruency coefficients.

  19. Towards practical biocatalytic Baeyer-Villiger reactions: applying a thermostable enzyme in the gram-scale synthesis of optically-active lactones in a two-liquid-phase system

    PubMed Central

    Schulz, Frank; Leca, François; Hollmann, Frank; Reetz, Manfred T

    2005-01-01

    Baeyer-Villiger monooxygenases (BVMOs) are extremely promising catalysts useful for enantioselective oxidation reactions of ketones, but organic chemists have not used them widely due to several reasons. These include instability of the enzymes in the case of in vitro and even in vivo systems, reactant/product inhibition, problems with upscaling and the necessity of using specialized equipment. The present study shows that the thermally stable phenylacetone monooxygenase (PAMO) and recently engineered mutants can be used as a practical catalysts for enantioselective Baeyer-Villiger oxidations of several ketones on a preparative scale under in vitro conditions. For this purpose several parameters such as buffer composition, the nature of the solvent system and the co-factor regeneration system were optimized. Overall a fairly versatile and efficient catalytic system for enantioselective laboratory scale BV-oxidations of ketones was developed, which can easily be applied even by those organic chemists who are not well versed in the use of enzymes. PMID:16542025

  20. Optical sensors in environmental applications

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh

    1992-05-01

    A brief review of the development of various optical chemical sensors which can be applied in environmental analysis is presented. Only those devices which make use of the immobilized reagent phase are discussed. Immunosensors and generic techniques, such as surface plasmon resonance, are not included. Current limitations of the technology and future trends are discussed. Activities at Cranfield on environmental optical diagnostics are presented.

  1. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  2. Optical Communications

    ERIC Educational Resources Information Center

    Young, Matt

    1973-01-01

    Describes the characteristics and operational problems of optical waveguides, and concludes that the wide use of optical communications can be expected if difficulties in commercial production of components can be eliminated. (CC)

  3. Optical source transformations.

    PubMed

    Kundtz, N; Roberts, D A; Allen, J; Cummer, S; Smith, D R

    2008-12-22

    Transformation optics is a recently appreciated methodology for the design of complex media that control the propagation of electromagnetic and other types of waves. The transformation optical technique involves the use of coordinate transformations applied to some region of space, providing a conceptual means to redirect the flow of waves. Successfully designed devices to date have made use of transformations acting on passive space only; however, the technique can also be applied when source distributions (e.g., current and charge) are included within the space being transformed. In this paper we present examples of source transformations that illustrate the potential of these expanded transformation optical methods. In particular, using finite-element full-wave simulations, we confirm the restoration of dipole radiation patterns from both a distorted 'pin-wheel' antenna and a bent dipole partially occluded by a cylindrical scatterer. We propose the technique of source transformations as a powerful approach for antenna design, especially in relation to conformal antennas.

  4. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  5. Erected mirror optical switch

    DOEpatents

    Allen, James J.

    2005-06-07

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

  6. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  7. Optics outreach in Irish context

    NASA Astrophysics Data System (ADS)

    McHugh, Emer; Smith, Arlene

    2009-06-01

    The Applied Optics Group, National University of Ireland Galway is a research centre involved in programmes that cover a wide variety of topics in applied optics and imaging science, including smart optics, adaptive optics, optical scattering and propagation, and engineering optics. The Group have also developed significant outreach programmes both in Primary and Post-Primary schools. It is recognised that there is a need for innovation in Science Education in Ireland and we are committed to working extensively with schools. The main aim of these outreach programmes is to increase awareness and interest in science with students and enhance the communication skills of the researchers working in the Group. The education outreach team works closely with the relevant teachers in both Primary and Post-Primary schools to design and develop learning initiatives to match the needs of the target group of students. The learning programmes are usually delivered in the participating schools during normal class time by a team of Applied Optics specialists. We are involved in running these programmes in both Primary and Post-Primary schools where the programmes are tailored to the curriculum and concentrating on optics and light. The students may also visit the Groups research centre where presentations and laboratory tours are arranged.

  8. Method of shifting and fixing optical frequency of an optical resonator, and optical resonator made by same

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A. (Inventor); Strekalov, Dmitry V. (Inventor); Maleki, Lute (Inventor); Matsko, Andrey B. (Inventor); Iltchenko, Vladimir S. (Inventor); Martin, Jan M. (Inventor)

    2010-01-01

    A method of shifting and fixing an optical frequency of an optical resonator to a desired optical frequency, and an optical resonator made by such a method are provided. The method includes providing an optical resonator having a surface and a refractive index, and obtaining a coating composition having a predetermined concentration of a substance and having a refractive index that is substantially similar to the refractive index of the optical resonator. The coating composition inherently possesses a thickness when it is applied as a coating. The method further includes determining a coating ratio for the surface of the optical resonator and applying the coating composition onto a portion of the surface of the optical resonator based upon the determined coating ratio.

  9. Quantum Optics

    NASA Astrophysics Data System (ADS)

    Orvil Scully, Marlan; Zubairy, Muhammad Suhail

    1997-09-01

    Quantum optics has witnessed significant theoretical and experimental developments in recent years. This book provides an in-depth and wide-ranging introduction to the subject, emphasizing throughout the basic principles and their applications. The book begins by developing the basic tools of quantum optics, and goes on to show the application of these tools in a variety of quantum optical systems, including lasing without inversion, squeezed states, and atom optics. The final four chapters discuss quantum optical tests of the foundations of quantum mechanics, and particular aspects of measurement theory. Assuming only a background of standard quantum mechanics and electromagnetic theory, and containing many problems and references, this book will be invaluable to graduate students of quantum optics, as well as to researchers in this field.

  10. Optical computer motherboards

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Xu, Guoda; Bartha, John M.; Gruntman, Michael A.

    1997-09-01

    In this paper, we investigate the application of precision plastic optics into a communication/computer sub-system, such as a hybrid computer motherboard. We believe that using optical waveguides for next-generation computer motherboards can provide a high performance alternative for present multi-layer printed circuit motherboards. In response to this demand, we suggest our novel concept of a hybrid motherboard based on an internal-fiber-coupling (IFC) wavelength-division-multiplexing (WDM) optical backplane. The IFC/WDM backplane provides dedicated Tx/Rx connections, and applies low-cost, high-performance components, including CD LDs, GRIN plastic fibers, molding housing, and nonimaging optics connectors. Preliminary motherboard parameters are: speed 100 MHz/100 m, or 1 GHz/10 m; fiber loss approximately 0.01 dB/m; almost zero fan-out/fan-in optical power loss, and eight standard wavelength channels. The proposed hybrid computer motherboard, based on innovative optical backplane technology, should solve low-speed, low-parallelism bottlenecks in present electric computer motherboards.

  11. Mathematical nonlinear optics

    NASA Astrophysics Data System (ADS)

    McLaughlin, David W.

    1994-01-01

    The principal investigator, together with two post-doctoral fellows, several graduate students, and colleagues, has applied the modern mathematical theory of nonlinear waves to problems in nonlinear optics. Projects included the interaction of laser light with nematic liquid crystals, propagation through random nonlinear media, cross polarization instabilities and optical shocks for propagation along nonlinear optical fibers, and the dynamics of bistable optical switches coupled through both diffusion and diffraction. In the first project the extremely strong nonlinear response of a CW laser beam in a nematic liquid crystal medium produced striking undulation and filamentation of the CW beam which was observed experimentally and explained theoretically. In the second project the interaction of randomness with nonlinearity was investigated, as well as an effective randomness due to the simultaneous presence of many nonlinear instabilities. In the polarization problems theoretical hyperbolic structure (instabilities and homoclinic orbits) in the coupled nonlinear Schroedinger (NLS) equations was identified and used to explain cross polarization instabilities in both the focusing and defocusing cases, as well as to describe optical shocking phenomena. For the coupled bistable optical switches, a numerical code was carefully developed in two spatial and one temporal dimensions. The code was used to study the decay of temporal transients to 'on-off' steady states in a geometry which includes forward and backward longitudinal propagation, together with one dimensional transverse coupling of both electromagnetic diffraction and carrier diffusion.

  12. Applied Linguistics: Brazilian Perspectives

    ERIC Educational Resources Information Center

    Cavalcanti, Marilda C.

    2004-01-01

    The aim of this paper is to present perspectives in Applied Linguistics (AL) against the background of a historical overview of the field in Brazil. I take the stance of looking at AL as a field of knowledge and as a professional area of research. This point of view directs my reflections towards research-based Applied Linguistics carried out from…

  13. What are applied ethics?

    PubMed

    Allhoff, Fritz

    2011-03-01

    This paper explores the relationships that various applied ethics bear to each other, both in particular disciplines and more generally. The introductory section lays out the challenge of coming up with such an account and, drawing a parallel with the philosophy of science, offers that applied ethics may either be unified or disunified. The second section develops one simple account through which applied ethics are unified, vis-à-vis ethical theory. However, this is not taken to be a satisfying answer, for reasons explained. In the third section, specific applied ethics are explored: biomedical ethics; business ethics; environmental ethics; and neuroethics. These are chosen not to be comprehensive, but rather for their traditions or other illustrative purposes. The final section draws together the results of the preceding analysis and defends a disunity conception of applied ethics.

  14. Geometrical Optics

    NASA Astrophysics Data System (ADS)

    Lindlein, Norbert; Leuchs, Gerd

    This chapter shall discuss the basics and the applications of geometrical optical methods in modern optics. Geometrical optics has a long tradition and some ideas are many centuries old. Nevertheless, the invention of modern personal computers which can perform several million floating-point operations in a second also revolutionized the methods of geometrical optics and so several analytical methods lost importance whereas numerical methods such as ray tracing became very important. Therefore, the emphasis in this chapter is also on modern numerical methods such as ray tracing and some other systematic methods such as the paraxial matrix theory.

  15. Optical trapping

    PubMed Central

    Neuman, Keir C.; Block, Steven M.

    2006-01-01

    Since their invention just over 20 years ago, optical traps have emerged as a powerful tool with broad-reaching applications in biology and physics. Capabilities have evolved from simple manipulation to the application of calibrated forces on—and the measurement of nanometer-level displacements of—optically trapped objects. We review progress in the development of optical trapping apparatus, including instrument design considerations, position detection schemes and calibration techniques, with an emphasis on recent advances. We conclude with a brief summary of innovative optical trapping configurations and applications. PMID:16878180

  16. EDITORIAL: Polarization Optics

    NASA Astrophysics Data System (ADS)

    Turunen, Jari; Friesem, Asher A.; Friberg, Ari T.

    2004-03-01

    transmission of intense light enable research into the chirality of nanogratings. Pump-probe techniques allow one to visualize the effects of the nanostructure topology on the surface mode excitation. In quantum optics the coherent control of polarization may lead to new and fascinating applications. Some authors of invited papers at the conference have written review-type introductory sections—they were encouraged to do so—but all contributions are genuine research papers with original results, and were judged according to the normal publication criteria of the journal. It is our pleasure to thank all authors for making this a splendid special issue of Journal of Optics A: Pure and Applied Optics.

  17. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  18. Optical latches using optical amplifiers

    NASA Astrophysics Data System (ADS)

    Li, Wenbo; Hu, Hongyu; Dutta, Niloy K.

    2013-05-01

    Optical latches are important for a wide range of applications including communication systems, optical logic systems, optical random access memory (RAM) and encryption. All optical logic operations using quantum dot (QD) based semiconductor optical amplifier (SOA) and Mach-Zehnder interferometer (MZI) have been studied. The building block of an optical latch such as NAND gate has been fabricated and their operation experimentally demonstrated at ~ 80 GHz. A rate equation model has been developed for the QD-SOA-MZI and it has been used to analyze the Boolean logic operation. The model has been used to analyze the Set-Reset (S-R) latch and the D-Flip-Flop (DFF) devices. The DFF is the basic device for building larger logic circuits. The results show that the latches would work to speeds of ~ 250 Gb/s.

  19. QUANTUM OPTICS. Universal linear optics.

    PubMed

    Carolan, Jacques; Harrold, Christopher; Sparrow, Chris; Martín-López, Enrique; Russell, Nicholas J; Silverstone, Joshua W; Shadbolt, Peter J; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Marshall, Graham D; Thompson, Mark G; Matthews, Jonathan C F; Hashimoto, Toshikazu; O'Brien, Jeremy L; Laing, Anthony

    2015-08-14

    Linear optics underpins fundamental tests of quantum mechanics and quantum technologies. We demonstrate a single reprogrammable optical circuit that is sufficient to implement all possible linear optical protocols up to the size of that circuit. Our six-mode universal system consists of a cascade of 15 Mach-Zehnder interferometers with 30 thermo-optic phase shifters integrated into a single photonic chip that is electrically and optically interfaced for arbitrary setting of all phase shifters, input of up to six photons, and their measurement with a 12-single-photon detector system. We programmed this system to implement heralded quantum logic and entangling gates, boson sampling with verification tests, and six-dimensional complex Hadamards. We implemented 100 Haar random unitaries with an average fidelity of 0.999 ± 0.001. Our system can be rapidly reprogrammed to implement these and any other linear optical protocol, pointing the way to applications across fundamental science and quantum technologies. PMID:26160375

  20. Genetics Home Reference: Warsaw breakage syndrome

    MedlinePlus

    ... helicase. Helicases are enzymes that attach (bind) to DNA and temporarily unwind the two spiral strands (double helix) of the DNA molecule. This unwinding is necessary for copying ( replicating ) ...

  1. Camera Optics.

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    1982-01-01

    The camera presents an excellent way to illustrate principles of geometrical optics. Basic camera optics of the single-lens reflex camera are discussed, including interchangeable lenses and accessories available to most owners. Several experiments are described and results compared with theoretical predictions or manufacturer specifications.…

  2. Optical testing

    NASA Technical Reports Server (NTRS)

    Wyant, James; Hochberg, Eric; Breault, Robert; Greivenkamp, John; Hunt, Gary; Mason, Pete; Mcguire, James; Meinel, Aden; Morris, Mike; Scherr, Larry

    1992-01-01

    Optical testing is one of the most vital elements in the process of preparing an optical instrument for launch. Without well understood, well controlled, and well documented test procedures, current and future mission goals will be jeopardized. We should keep in mind that the reason we test is to provide an opportunity to catch errors, oversights, and problems on the ground, where solutions are possible and difficulties can be rectified. Consequently, it is necessary to create tractable test procedures that truly provide a measure of the performance of all optical elements and systems under conditions which are close to those expected in space. Where testing is not feasible, accurate experiments are required in order to perfect models that can exactly predict the optical performance. As we stretch the boundaries of technology to perform more complex space and planetary investigations, we must expand the technology required to test the optical components and systems which we send into space. As we expand the observational wavelength ranges, so must we expand our range of optical sources and detectors. As we increase resolution and sensitivity, our understanding of optical surfaces to accommodate more stringent figure and scatter requirements must expand. Only with research and development in these areas can we hope to achieve success in the ever increasing demands made on optical testing by the highly sophisticated missions anticipated over the next two decades. Technology assessment and development plan for surface figure, surface roughness, alignment, image quality, radiometric quantities, and stray light measurement are presented.

  3. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  4. Optical biosensors

    PubMed Central

    Damborský, Pavel; Švitel, Juraj

    2016-01-01

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. PMID:27365039

  5. Geomorphology: Pure and applied

    SciTech Connect

    Hart, M.G.

    1986-01-01

    The book summarizes the history of intellectual debate in geomorphology and describes modern developments both ''pure'' and ''applied.'' The history begins well before W.M. Davis and follows through to such debates as those concerned with the Pleistocene. Modern developments in pure geomorphology are cast in terms of chapters on form, process, materials, and methods analysis. The applied chapters concentrate on environmental hazards and resources, and their management.

  6. GREAT optics

    NASA Astrophysics Data System (ADS)

    Wagner-Gentner, Armin; Graf, Urs U.; Philipp, Martin; Rabanus, David; Stutzki, Jürgen

    2004-10-01

    The German REceiver for Astronomy at Terahertz frequencies (GREAT) is a first generation PI instrument for the SOFIA telescope, developed by a collaboration between the MPIfR, KOSMA, DLR, and the MPAe. The first three institutes each contribute one heterodyne receiver channel to operate at 1.9, 2.7 and 4.7 THz, respectively. A later addition of a e.g. 1.4 THz channel is planned. The GREAT instrument is developed to carry two cryostats at once. That means that any two of the three frequencies can be observed simultaneously. Therefore, we need to be able to quickly exchange the optics benches, the local oscillator (LO) subsystems, and the cryostats containing the mixer devices. This demands a high modularity and flexibility of our receiver concept. Our aim is to avoid the need for realignment when swapping receiver channels. After an overview of the common GREAT optics, a detailed description of several parts (optics benches, calibration units, diplexer, focal plane imager) is given. Special emphasis is given to the LO optics of the KOSMA 1.9 THz channel, because its backward wave oscillator has an astigmatic output beam profile, which has to be corrected for. We developed astigmatic off-axis mirrors to compensate this astigmatism. The mirrors are manufactured in-house on a 5 axis CNC milling machine. We use this milling machine to obtain optical components with highest surface accuracy (about 5 microns) appropriate for these wavelengths. Based on the CNC machining capabilities we present our concept of integrated optics, which means to manufacture optical subsystems monolithically. The optics benches are located on three point mounts, which in conjunction with the integrated optics concept ensure the required adjustment free optics setup.

  7. Applied Astronomy: An Optical Survey for Space Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Abercromby, K.; Rodriquez, H.

    2007-01-01

    A viewgraph is presented to discuss space debris at Geosynchronous Earth Orbit (GEO). The topics include: 1) Syncom1 launched February 14, 1963 Failed on orbit insertion 1st piece of GEO debris!; 2) Example of recent GEO payload: XM-2 Rock satellite for direct broadcast radio; 3) MODEST Michigan Orbital DEbrisSurvey Telescope the telescope formerly known as the Curtis-Schmidt; 4) GEO Debris Survey; 5) Examples of Detections; 6) Brightness Variations Common; 7) Observed Angular Rates; 8) Two Populations at GEO; 9) High Area-to-Mass Ratio Material (A/M); 10) Examples of MLI; 11) Examples of MLI Release in LEO; 12) Liou & Weaver (2005) models; 13) ESA 1-m Telescope Survey; 14) Two Telescopes March 2007 Survey and Follow-up; 15) Final Eccentricity; and 16) How control Space Debris?

  8. Fractional Hartley transform applied to optical image encryption

    NASA Astrophysics Data System (ADS)

    Jimenez, C.; Torres, C.; Mattos, L.

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibilty of proposed method.

  9. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  10. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  11. Integrated optic a.d. convertor based on bulk acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    Gottlieb, M.; Brandt, G. B.

    1980-05-01

    A method is described using integrated optics to perform high data rate a.d. conversion. The approach uses the bulk acousto-optic interaction in optical waveguides, with a segmented transducer array to deflect light in response to an analogue signal applied to phase-shifting elements at the transducer.

  12. Polychromatic optical Bloch oscillations.

    PubMed

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  13. Method for optical and mechanically coupling optical fibers

    DOEpatents

    Toeppen, J.S.

    1996-10-01

    A method and apparatus are disclosed for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass. 6 figs.

  14. Method for optical and mechanically coupling optical fibers

    SciTech Connect

    Toeppen, John S.

    1996-01-01

    A method and apparatus for splicing optical fibers. A fluorescing solder glass frit having a melting point lower than the melting point of first and second optical fibers is prepared. The solder glass frit is then attached to the end of the first optical fiber and/or the end of the second optical fiber. The ends of the optical fibers are aligned and placed in close proximity to each other. The solder glass frit is then heated to a temperature which is lower than the melting temperature of the first and second optical fibers, but which is high enough to melt the solder glass frit. A force is applied to the first and second optical fibers pushing the ends of the fibers towards each other. As the solder glass flit becomes molten, the layer of molten solder glass is compressed into a thin layer between the first and second optical fibers. The thin compressed layer of molten solder glass is allowed to cool such that the first and second optical fibers are bonded to each other by the hardened layer of solder glass.

  15. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  16. Roadmap on optical metamaterials

    NASA Astrophysics Data System (ADS)

    Urbas, Augustine M.; Jacob, Zubin; Dal Negro, Luca; Engheta, Nader; Boardman, A. D.; Egan, P.; Khanikaev, Alexander B.; Menon, Vinod; Ferrera, Marcello; Kinsey, Nathaniel; DeVault, Clayton; Kim, Jongbum; Shalaev, Vladimir; Boltasseva, Alexandra; Valentine, Jason; Pfeiffer, Carl; Grbic, Anthony; Narimanov, Evgenii; Zhu, Linxiao; Fan, Shanhui; Alù, Andrea; Poutrina, Ekaterina; Litchinitser, Natalia M.; Noginov, Mikhail A.; MacDonald, Kevin F.; Plum, Eric; Liu, Xiaoying; Nealey, Paul F.; Kagan, Cherie R.; Murray, Christopher B.; Pawlak, Dorota A.; Smolyaninov, Igor I.; Smolyaninova, Vera N.; Chanda, Debashis

    2016-09-01

    Optical metamaterials have redefined how we understand light in notable ways: from strong response to optical magnetic fields, negative refraction, fast and slow light propagation in zero index and trapping structures, to flat, thin and perfect lenses. Many rules of thumb regarding optics, such as μ = 1, now have an exception, and basic formulas, such as the Fresnel equations, have been expanded. The field of metamaterials has developed strongly over the past two decades. Leveraging structured materials systems to generate tailored response to a stimulus, it has grown to encompass research in optics, electromagnetics, acoustics and, increasingly, novel hybrid material responses. This roadmap is an effort to present emerging fronts in areas of optical metamaterials that could contribute and apply to other research communities. By anchoring each contribution in current work and prospectively discussing future potential and directions, the authors are translating the work of the field in selected areas to a wider community and offering an incentive for outside researchers to engage our community where solid links do not already exist.

  17. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on. PMID:24515019

  18. Optical transmission techniques

    NASA Astrophysics Data System (ADS)

    Vasile, Irina B.; Filip, Luminita E.; Vasile, Alexandru

    2005-08-01

    An optical transmission system is a method of transferring information in the shape of bits or symbols for the case of digital systems, and of analogue waves for the case of analogue systems, between fixed points located on a fiber optics cable. Today and in the near future there are numerous such transmission techniques available. The increase of demands for data transfer from phone subscribers can be met only by means of digital techniques applied in the local network, in addition to the use of digital telephone exchange and of the digital transmission systems in the trees network. In order to increase the quantity of information transferred through one fiber, optical multiplexing techniques have been conceived and tested. The optical multiplexing is additional to the electrical signal multiplexing. The requests for the access network will become more and more complex, a larger flexibility and a wider band being needed. For the purpose of complying with these requests, the coherent simultaneous or alternative transmission towards the optical amplifiers represents a factor of technical progress. The multiplexing with wave length division allows for more channels to be transported through the same fiber with different wave lengths, in one or both directions.

  19. PSYCHOANALYSIS AS APPLIED AESTHETICS.

    PubMed

    Richmond, Stephen H

    2016-07-01

    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed. PMID:27428582

  20. PSYCHOANALYSIS AS APPLIED AESTHETICS.

    PubMed

    Richmond, Stephen H

    2016-07-01

    The question of how to place psychoanalysis in relation to science has been debated since the beginning of psychoanalysis and continues to this day. The author argues that psychoanalysis is best viewed as a form of applied art (also termed applied aesthetics) in parallel to medicine as applied science. This postulate draws on a functional definition of modernity as involving the differentiation of the value spheres of science, art, and religion. The validity criteria for each of the value spheres are discussed. Freud is examined, drawing on Habermas, and seen to have erred by claiming that the psychoanalytic method is a form of science. Implications for clinical and metapsychological issues in psychoanalysis are discussed.

  1. On applying cognitive psychology.

    PubMed

    Baddeley, Alan

    2013-11-01

    Recent attempts to assess the practical impact of scientific research prompted my own reflections on over 40 years worth of combining basic and applied cognitive psychology. Examples are drawn principally from the study of memory disorders, but also include applications to the assessment of attention, reading, and intelligence. The most striking conclusion concerns the many years it typically takes to go from an initial study, to the final practical outcome. Although the complexity and sheer timescale involved make external evaluation problematic, the combination of practical satisfaction and theoretical stimulation make the attempt to combine basic and applied research very rewarding.

  2. Applied Astronomy: Asteroid Prospecting

    NASA Astrophysics Data System (ADS)

    Elvis, M.

    2013-09-01

    In the age of asteroid mining the ability to find promising ore-bearing bodies will be valuable. This will give rise to a new discipline- "Applied Astronomy". Just as most geologists work in industry, not in academia, the same will be true of astronomers. Just how rare or common ore-rich asteroids are likely to be, and the skills needed to assay their value, are discussed here, with an emphasis on remote - telescopic - methods. Also considered are the resources needed to conduct extensive surveys of asteroids for prospecting purposes, and the cost and timescale involved. The longer-term need for applied astronomers is also covered.

  3. Conceptual Optics

    NASA Astrophysics Data System (ADS)

    Paesler, Michael

    1997-11-01

    Conceptual Physics courses are a staple of the curriculum in many colleges and universities. Such courses stress the development of conceptual understanding without appeal to calculational demonstration of that understanding. We have developed a Conceptual Optics course with a similar thrust but a more focused subject matter: the study of light. The course differs from similar courses typically titled Light or Color in that it attempts to cover most topics taught in more conventional optics courses rather than sampling from the variety of topics among those falling under the optics rubric. The course features an extramural laboratory in which student teams are given equipment, a lab manual, and a notebook and are expected to perform various optics experiments in everyday surroundings. This and other features of the course will be discussed.

  4. Applied Music (Individual Study).

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    Background information and resources to help students in grades 9-12 in Texas pursue an individual study contract in applied music is presented. To fulfill a contract students must publicly perform from memory, with accompaniment as specified, three selections from a list of approved music for their chosen field (instrument or voice). Material…

  5. Applying to College

    ERIC Educational Resources Information Center

    Tierney, William G.

    2009-01-01

    This article suggests that unlike their well-off counterparts who apply to college in the fall and know they will go somewhere when the applications have been sent, low-income students face unique challenges that extend the process in a manner entirely different from the wealthy. The notion that college-going is a cultural interpretation is…

  6. Essays on Applied Microeconomics

    ERIC Educational Resources Information Center

    Mejia Mantilla, Carolina

    2013-01-01

    Each chapter of this dissertation studies a different question within the field of Applied Microeconomics. The first chapter examines the mid- and long-term effects of the 1998 Asian Crisis on the educational attainment of Indonesian children ages 6 to 18, at the time of the crisis. The effects are identified as deviations from a linear trend for…

  7. Applied Linguistics in Europe

    ERIC Educational Resources Information Center

    de Bot, Kees

    2004-01-01

    In this contribution developments in Applied Linguistics in Europe are linked to major social changes that have taken place over the last decades. These include: The decline of the USSR and the end of the cold war; The development of the EEC and the EU and fading of borders; The economic growth of Western Europe; Labor migration from the south to…

  8. Applied Statistics with SPSS

    ERIC Educational Resources Information Center

    Huizingh, Eelko K. R. E.

    2007-01-01

    Accessibly written and easy to use, "Applied Statistics Using SPSS" is an all-in-one self-study guide to SPSS and do-it-yourself guide to statistics. What is unique about Eelko Huizingh's approach is that this book is based around the needs of undergraduate students embarking on their own research project, and its self-help style is designed to…

  9. Applied Behavior Analysis

    ERIC Educational Resources Information Center

    Szapacs, Cindy

    2006-01-01

    Teaching strategies that work for typically developing children often do not work for those diagnosed with an autism spectrum disorder. However, teaching strategies that work for children with autism do work for typically developing children. In this article, the author explains how the principles and concepts of Applied Behavior Analysis can be…

  10. Africa and Applied Linguistics.

    ERIC Educational Resources Information Center

    Makoni, Sinfree, Ed.; Meinhof, Ulrike H., Ed.

    2003-01-01

    This collection of articles includes: "Introducing Applied Linguistics in Africa" (Sinfree Makoni and Ulrike H. Meinhof); "Language Ideology and Politics: A Critical Appraisal of French as Second Official Language in Nigeria" (Tope Omoniyi); "The Democratisation of Indigenous Languages: The Case of Malawi" (Themba Moyo); "Classroom Code-Switching…

  11. Signals: Applying Academic Analytics

    ERIC Educational Resources Information Center

    Arnold, Kimberly E.

    2010-01-01

    Academic analytics helps address the public's desire for institutional accountability with regard to student success, given the widespread concern over the cost of higher education and the difficult economic and budgetary conditions prevailing worldwide. Purdue University's Signals project applies the principles of analytics widely used in…

  12. Applying Mathematical Processes (AMP)

    ERIC Educational Resources Information Center

    Kathotia, Vinay

    2011-01-01

    This article provides insights into the "Applying Mathematical Processes" resources, developed by the Nuffield Foundation. It features Nuffield AMP activities--and related ones from Bowland Maths--that were designed to support the teaching and assessment of key processes in mathematics--representing a situation mathematically, analysing,…

  13. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  14. Ocean optics

    SciTech Connect

    Spinard, R.W.; Carder, K.L.; Perry, M.J.

    1994-12-31

    This volume is the twenty fifth in the series of Oxford Monographs in Geology and Geophysics. The propagation off light in the hydra-atmosphere systems is governed by the integral-differential Radiative Transfer Equation (RTE). Closure and inversion are the most common techniques in optical oceanography to understand the most basic principles of natural variability. Three types of closure are dealt with: scale closure, experimental closure, and instrument closure. The subject is well introduced by Spinard et al. in the Preface while Howard Gordon in Chapter 1 provides an in-depth introduction to the RTE and its inherent problems. Inherent and apparent optical properties are dealt with in Chapter 2 by John Kirk and the realities of optical closure are presented in the following chapter by Ronald Zaneveld. The balance of the papers in this volume is quite varied. The early papers deal in a very mathematical manner with the basics of radiative transfer and the relationship between inherent and optical properties. Polarization of sea water is discussed in a chapter that contains a chronological listing of discoveries in polarization, starting at about 1000 AD with the discovery of dichroic properties of crystals by the Vikings and ending with the demonstration of polarotaxis in certain marine organisms by Waterman in 1972. Chapter 12 on Raman scattering in pure water and the pattern recognition techniques presented in Chapter 13 on the optical effects of large particles may be of relevance to fields outside ocean optics.

  15. Electrifying photonic metamaterials for tunable nonlinear optics.

    PubMed

    Kang, Lei; Cui, Yonghao; Lan, Shoufeng; Rodrigues, Sean P; Brongersma, Mark L; Cai, Wenshan

    2014-08-11

    Metamaterials have not only enabled unprecedented flexibility in producing unconventional optical properties that are not found in nature, they have also provided exciting potential to create customized nonlinear media with high-order properties correlated to linear behaviour. Two particularly compelling directions are active metamaterials, whose optical properties can be purposely tailored by external stimuli in a reversible manner, and nonlinear metamaterials, which enable intensity-dependent frequency conversion of light waves. Here, by exploring the interaction of these two directions, we leverage the electrical and optical functions simultaneously supported in nanostructured metals and demonstrate electrically controlled nonlinear optical processes from a metamaterial. Both second harmonic generation and optical rectification, enhanced by the resonance behaviour in the metamaterial absorber, are modulated externally with applied voltage signals. Our results reveal an opportunity to exploit optical metamaterials as self-contained, dynamic electro-optic systems with intrinsically embedded electrical functions and optical nonlinearities.

  16. Quality in applied science

    NASA Astrophysics Data System (ADS)

    Sten, T.

    1993-12-01

    Science is in many senses a special kind of craft and only skilled craftsmen are able to distinguish good work from bad. Due to the variation in approaches, methods and even philosophical basis, it is nearly impossible to derive a general set of quality criteria for scientific work outside specific research traditions. Applied science introduces a new set of quality criteria having to do with the application of results in practical situations and policy making. A scientist doing basic research relates mainly to the scientific community of which he is a member, while in applied contract research the scientist has to consider the impact of his results both for the immediate users and upon interest groups possibly being affected. Application thus raises a whole new set of requirements having to do with business ethics, policy consequences and societal ethics in general.

  17. Optical metrology at the Optical Sciences Center: an historical review

    NASA Astrophysics Data System (ADS)

    Creath, Katherine; Parks, Robert E.

    2014-10-01

    The Optical Sciences Center (OSC) begun as a graduate-level applied optics teaching institution to support the US space effort. The making of optics representative of those used in other space programs was deemed essential. This led to the need for optical metrology: at first Hartmann tests, but almost immediately to interferometric tests using the newly invented HeNe laser. Not only were new types of interferometers needed, but the whole infrastructure that went with testing, fringe location methods, aberration removal software and contour map generation to aid the opticians during polishing needed to be developed. Over the last half century more rapid and precise methods of interferogram data reduction, surface roughness measurement, and methods of instrument calibration to separate errors from those in the optic have been pioneered at OSC. Other areas of research included null lens design and the writing of lens design software that led into the design of computer generated holograms for asphere testing. More recently work has been done on the reduction of speckle noise in interferograms, methods to test large convex aspheres, and a return to slope measuring tests to increase the dynamic range of the types of aspheric surfaces amenable to optical testing including free-form surfaces. This paper documents the history of the development of optical testing projects at OSC and highlights the contributions some of the individuals associated with new methods of testing and the infrastructure needed to support the testing. We conclude with comments about the future trends optical metrology.

  18. Optical Trapping of Nanoparticles

    PubMed Central

    Bergeron, Jarrah; Zehtabi-Oskuie, Ana; Ghaffari, Saeedeh; Pang, Yuanjie; Gordon, Reuven

    2013-01-01

    Optical trapping is a technique for immobilizing and manipulating small objects in a gentle way using light, and it has been widely applied in trapping and manipulating small biological particles. Ashkin and co-workers first demonstrated optical tweezers using a single focused beam1. The single beam trap can be described accurately using the perturbative gradient force formulation in the case of small Rayleigh regime particles1. In the perturbative regime, the optical power required for trapping a particle scales as the inverse fourth power of the particle size. High optical powers can damage dielectric particles and cause heating. For instance, trapped latex spheres of 109 nm in diameter were destroyed by a 15 mW beam in 25 sec1, which has serious implications for biological matter2,3. A self-induced back-action (SIBA) optical trapping was proposed to trap 50 nm polystyrene spheres in the non-perturbative regime4. In a non-perturbative regime, even a small particle with little permittivity contrast to the background can influence significantly the ambient electromagnetic field and induce a large optical force. As a particle enters an illuminated aperture, light transmission increases dramatically because of dielectric loading. If the particle attempts to leave the aperture, decreased transmission causes a change in momentum outwards from the hole and, by Newton's Third Law, results in a force on the particle inwards into the hole, trapping the particle. The light transmission can be monitored; hence, the trap can become a sensor. The SIBA trapping technique can be further improved by using a double-nanohole structure. The double-nanohole structure has been shown to give a strong local field enhancement5,6. Between the two sharp tips of the double-nanohole, a small particle can cause a large change in optical transmission, thereby inducing a large optical force. As a result, smaller nanoparticles can be trapped, such as 12 nm silicate spheres7 and 3.4 nm

  19. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela

    2007-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study

  20. Applied science. Introduction.

    PubMed

    Bud, Robert

    2012-09-01

    Such categories as applied science and pure science can be thought of as "ideological." They have been contested in the public sphere, exposing long-term intellectual commitments, assumptions, balances of power, and material interests. This group of essays explores the contest over applied science in Britain and the United States during the nineteenth century. The essays look at the concept in the context of a variety of neighbors, including pure science, technology, and art. They are closely related and connected to contemporary historiographic debate. Jennifer Alexander links the issues raised to a recent paper by Paul Forman. Paul Lucier and Graeme Gooday deal with the debates in the last quarter of the century in the United States and Britain, respectively. Robert Bud deals with the earlier part of the nineteenth century, with an eye specifically on the variety of concepts hybridized under the heading of "applied science." Eric Schatzberg looks at the erosion of the earlier concept of art. As a whole, the essays illuminate both long-term changes and nuanced debate and are themselves intended to provoke further reflection on science in the public sphere.

  1. Distance-learning postgraduate education in optics and optical design

    NASA Astrophysics Data System (ADS)

    Macdonald, John

    2005-02-01

    Although optics is a common area of activity among professional physicists and engineers, the subject itself is typically not a significant component of Bachelor degrees in physics or engineering. Consequently, large numbers of scientists and engineers find themselves working in the field of optics without formal education in the subject. Although such education would often prove valuable to them, it is not conveniently available via conventional full-time courses. Another group of persons includes those who are not working in an optics-related field, but would like to be, and yet cannot contemplate the cost and dislocation associated with a conventional full-time Masters course. For both these groups, a flexible Masters course in optics by distance-learning could be appropriate. It is for these reasons that interest has arisen recently in such forms of optics education. This paper describes a flexible distance-learning model for postgraduate education in optics that has been implemented at the University of Reading, England, where there has been a full-time optics Masters course in Applied and Modern Optics for almost 40 years. The model is modular and credit-based, and includes various levels of qualification from CPD to Masters. A distance-learning module on optical design is discussed as an example, and it is hoped to make this module freely available on-line via the internet to delegates at this conference for them to explore in their own time. The importance of choosing optical-design case studies appropriate to this learning style is discussed. The problem of lab work within a distance-learning optics course is described, and current and possible future solutions are discussed.

  2. Anisotropic optical film embedded with cellulose nanowhisker.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-10-01

    We investigated anisotropic optical behaviors of composite films embedded with CNWs. To control the orientation of CNWs, elongation was applied to the composite film. Morphological and mechanical analyses of the specimens were carried out to examine the influence of the applied extension. The CNWs were found to be aligned in the elongated direction, yielding remarkable anisotropic microstructure and optical properties. As the applied elongation and CNW loading increased, the resulting degree of polarization and birefringence increased due to increased interactions between the embedded particles. This study suggests a way to prepare an anisotropic optical component with nanoparticles of which the microstructures, such as orientation and filler content, can be controlled. PMID:26076646

  3. Optical DNA

    NASA Astrophysics Data System (ADS)

    Vijaywargi, Deepak; Lewis, Dave; Kirovski, Darko

    A certificate of authenticity (COA) is an inexpensive physical object with a random and unique structure S which is hard to near-exactly replicate. An inexpensive device should be able to scan object’s physical “fingerprint,” a set of features that represents S. In this paper, we explore one set of requirements that optical media such as DVDs should satisfy, to be considered as COAs. As manufacturing of such media produces inevitable errors, we use the locations and count of these errors as a “fingerprint” for each optical disc: its optical DNA. The “fingerprint” is signed using publisher’s private-key and the resulting signature is stored onto the optical medium using a post-production process. Standard DVD players with altered firmware that includes publisher’s public-key, should be able to verify the authenticity of DVDs protected with optical DNA. Our key finding is that for the proposed protocol, only DVDs with exceptional wear-and-tear characteristics would result in an inexpensive and viable anti-counterfeiting technology.

  4. Optical memory

    DOEpatents

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  5. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  6. Optical analyzer

    DOEpatents

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  7. CODEX optics

    NASA Astrophysics Data System (ADS)

    Delabre, Bernard; Manescau, Antonio

    2010-07-01

    CODEX is a high resolution spectrograph for the ESO E-ELT. A classical spectrograph can only achieve a resolution of about 120.000 on a 42 m telescope with extremely large echelle gratings and cameras. This paper describes in detail the optical concept of CODEX, which uses only optical elements size similar to those in current high resolution spectrographs. This design is based on slicers, anamorphic beams and slanted VPHG as cross dispersers. In this new version of the CODEX design, no special expensive materials as calcium fluoride or abnormal dispersion glasses are needed. The optical quality is excellent and compatible with 10K x 10K detectors with 10 μm pixels.

  8. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  9. Applied ALARA techniques

    SciTech Connect

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  10. Optically switchable natural silk

    SciTech Connect

    Krasnov, Igor Müller, Martin; Krekiehn, Nicolai R.; Jung, Ulrich; Magnussen, Olaf M.; Krywka, Christina; Zillohu, Ahnaf U.; Strunskus, Thomas; Elbahri, Mady

    2015-03-02

    An optically active bio-material is created by blending natural silk fibers with photoisomerizable chromophore molecules—azobenzenebromide (AzBr). The material converts the energy of unpolarized light directly into mechanical work with a well-defined direction of action. The feasibility of the idea to produce optically driven microsized actuators on the basis of bio-material (silk) is proven. The switching behavior of the embedded AzBr molecules was studied in terms of UV/Vis spectroscopy. To test the opto-mechanical properties of the modified fibers and the structural changes they undergo upon optically induced switching, single fiber X-ray diffraction with a micron-sized synchrotron radiation beam was combined in situ with optical switching as well as with mechanical testing and monitoring. The crystalline regions of silk are not modified by the presence of the guest molecules, hence occupy only the amorphous part of the fibers. It is shown that chromophore molecules embedded into fibers can be reversibly switched between the trans and cis conformation by illumination with light of defined wavelengths. The host fibers respond to this switching with a variation of the internal stress. The amplitude of the mechanical response is independent of the applied external stress and its characteristic time is shorter than the relaxation time of the usual mechanical response of silk.

  11. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Frederick, Martin

    2006-01-01

    This presentation highlights the NASA Applied Sciences Program. The goal of the program is to extend the results of scientific research and knowledge beyond the science community to contribute to NASA's partners' applications of national priority, such as agricultural efficiency, energy management and Homeland Security. Another purpose of the program's scientific research is to increase knowledge of the Earth-Sun system to enable improved predictions of climate, weather, and natural hazards. The program primarily optimizes benefits for citizens by contributing to partnering on applications that are used by state, local and tribal governments.

  12. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William H., Jr.; Crawford, Winifred; Short, David; Barrett, Joe; Watson, Leela

    2008-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2008 (January - March 2008). Projects described are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Peak Wind Tool for General Forecasting, (3) Situational Lightning Climatologies for Central Florida. Phase III, (4) Volume Averaged Height Integrated Radar Reflectivity (VAHIRR), (5) Impact of Local Sensors, (6) Radar Scan Strategies for the PAFB WSR-74C Replacement and (7) WRF Wind Sensitivity Study at Edwards Air Force Base.

  13. Applied Meteorology Unit (AMU)

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  14. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  15. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  16. Optical testing of condoms.

    PubMed

    Smith, S R; Lowrance, J L; Tessarotto, L A

    1999-01-01

    use of the new optical test techniques could have prevented an unexpectedly large number of condoms with significant pinhole and thin region defects from reaching the public. Optical test systems could be used to support either regulatory, quality assurance, or clinical field testing of latex or nonlatex condoms. Due to their high rate capability and level of automation, they could also be applied to 100% screening testing in the factory. The new test techniques could also be used to detect defects in a wide range of other thin sheets and membranes.

  17. Optical developments for optogenetics.

    PubMed

    Papagiakoumou, Eirini

    2013-10-01

    Brain intricacies and the difficulty that scientists encounter in revealing its function with standard approaches such as electrical stimulation of neurons have led to the exploration of new tools that enable the study of neural circuits in a remote and non-invasive way. To this end, optogenetics has initialised a revolution for neuroscience in the last decade by enabling simultaneous monitoring and stimulation of specific neuronal populations in intact brain preparations through genetically targeted expression of light sensitive proteins and molecular photoswitches. In addition to ongoing molecular probe development and optimisation, novel optical techniques hold immense potential to amplify and diversify the utility of optogenetic methods. Importantly, by improving the spatio-temporal resolution of light stimulation, neural circuits can be photoactivated in patterns mimicking endogenous physiological processes. The following synopsis addresses the possibilities and limitations of optical stimulation methods applied to and developed for activation of neuronal optogenetic tools.

  18. International Symposium on Optics and its Applications (OPTICS-2011)

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aranya B.; Calvo, Maria L.; Kazaryan, Eduard M.; Papoyan, Aram V.; Sarkisyan, Hayk A.

    2012-03-01

    OPTICS Logo PREFACE The papers selected for this volume were reported at the International Symposium 'Optics and its applications' (OPTICS-2011, Yerevan & Ashtarak, Armenia, September 5-9, 2011), http://www.ipr.sci.am/optics2011/. The Symposium was organized by the SPIE Armenian Student Chapter and major Armenian R&D organizations, universities and industrial companies working in the field of basic and applied optics: Institute for Physical Research of the National Academy of Sciences of Armenia, Yerevan State University, Russian-Armenian (Slavonic) University, and LT-PYRKAL Closed Joint Stock Company. OPTICS-2011 was primarily intended to support and promote the involvement of students and young scientists in various fields of modern optics, giving them the possibility to attend invited talks by prominent scientists and to present and discuss their own results. Furthermore, the Symposium allowed foreign participants from 14 countries to become acquainted with the achievements of optical science and technology in Armenia, which became a full member of the International Commission for Optics (ICO) in 2011. To follow this concept, the Symposium sessions were held in various host institutions. The creative and friendly ambience established at OPTICS-2011 promoted further international collaboration in the field and motivated many students to take up research in optics and photonics as a career. This volume of Journal of Physics: Conference Series covers thematic sections of the Symposium (both oral and poster), which represent the main fields of interest in optics for Armenian scientists: quantum optics & information, laser spectroscopy, optical properties of nanostructures, photonics & fiber optics, and optics of liquid crystals. Such wide coverage is consistent with the general scope of the Symposium, allowing all the students involved in optics to present, discuss and publish their recent results, and for those who are making their first steps in science to choose

  19. Optical Addressing And Clocking Of RAM's

    NASA Technical Reports Server (NTRS)

    Johnston, Alan R.; Nixon, Robert H.; Bergman, Larry A.; Esener, Sadik

    1989-01-01

    Proposed random-access-memory (RAM) addressing system, in which memory linked optically to read/write logic circuits, greatly increases computer operating speed. System - comprises addressing circuits including numerous lasers as signal sources, numerous optical gates including optical detectors associated with memory cells, and holographic element to direct light signals to desired memory-cell locations - applied to high-capacity digital systems, supercomputers, and complex microcircuits.

  20. 50 years of optics research [Invited].

    PubMed

    Schwider, Johannes

    2013-01-01

    The 50-year life span of Applied Optics covers also approximately the time I have been engaged in optics. I started in 1962 [1] with the Institute for Optics and Spectroscopy, which was one of several Academy Institutes (mission statement: "theoria cum praxi," G. Leibniz) located in Berlin-Adlershof on the area of the first airfield in Berlin dating back to the beginning of the 20th century.

  1. Device applications of cryogenic optical refrigeration

    NASA Astrophysics Data System (ADS)

    Melgaard, Seth D.; Seletskiy, Denis V.; Epstein, Richard I.; Alden, Jay V.; Sheik-Bahae, Mansoor

    2014-02-01

    With the coldest solid-state temperatures (ΔT <185K from 300K) achievable by optical refrigeration, it is now timely to apply this technology to cryogenic devices. Along with thermal management and pump absorption, this work addresses the most key engineering challenge of transferring cooling power to the payload while efficiently rejecting optical waste-heat fluorescence. We discuss our optimized design of such a thermal link, which shows excellent performance in optical rejection and thermal properties.

  2. Space optics: an introduction by the editors.

    PubMed

    Breckinridge, J B; Wood, H J

    1993-04-01

    This feature of Applied Optics consists of papers on the Hubble Space Telescope and its instruments as well as other new instruments and other new optics technology for space science. Many of the papers are an outgrowth of the papers presented at the Second Space Optics Topical Meeting, October 1991, in Williamsburg, Va. This introduction provides an overview for the papers related to the Hubble Space Telescope: measurement of the error and approaches to correct for the error.

  3. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  4. Optical electronics

    NASA Technical Reports Server (NTRS)

    Javan, A.

    1976-01-01

    The development of an optical diode consisting of a metal-dielectric-metal junction in which the high-speed electric conduction process occurs due to quantum mechanical electron tunneling across the dielectric barrier is briefly reviewed. Potential applications of the diode are discussed.

  5. Optical Crystals

    ERIC Educational Resources Information Center

    Bergsten, Ronald

    1974-01-01

    Discusses the production and structure of a sequence of optical crystals which can serve as one-, two-, and three-dimensional diffraction plates to illustrate diffraction patterns by using light rather than x-rays or particles. Applications to qualitative presentations of Laue theory at the secondary and college levels are recommended. (CC)

  6. Optical Storage.

    ERIC Educational Resources Information Center

    Vanderstar, John

    1987-01-01

    Classifies and briefly describes several types of optical storage media available today--read-only and write-once analog disks, read-only and write-once digital disks and erasable disks. The appropriateness of CD-ROM (compact disk read-only memory) for use in libraries of developing nations is discussed in terms of users' information needs and…

  7. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-03-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking.

  8. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-02-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking.

  9. Diophantine Optics

    NASA Astrophysics Data System (ADS)

    Rouan, D.

    2016-09-01

    What I call Diophantine optics is the exploitation in optics of some remarkable algebraic relations between powers of integers. The name comes from Diophantus of Alexandria, a greek mathematician, known as the father of algebra. He studied polynomial equations with integer coefficients and integer solutions, called diophantine equations. Since constructive or destructive interferences are playing with optical path differences which are multiple integer (odd or even) of λ/2 and that the complex amplitude is a highly non-linear function of the optical path difference (or equivalently of the phase), one can understand that any Taylor development of this amplitude implies powers of integers. This is the link with Diophantine equations. We show how, especially in the field of interferometry, remarkable relations between powers of integers can help to solve several problems, such as achromatization of a phase shifter or deep nulling efficiency. It appears that all the research that was conducted in this frame of thinking, relates to the field of detection of exoplanets, a very active domain of astrophysics today.

  10. Stress-engineered optical elements

    NASA Astrophysics Data System (ADS)

    Spilman, Alexis Katherine Koenig

    Stress in an optical window induces very intriguing and useful polarization effects. In particular, an applied pressure creates polarization vortices which have the potential to aid in many optical imaging applications, including lithography and confocal microscopy. A particularly fascinating double focus effect is observed when a stressed window is illuminated and analyzed with circularly polarized light. A stressed window, in such an arrangement, creates an optical system with two focal points. An overview of the history of stress birefringence and the influence of polarization vortices on optical systems is introduced. Theory of stress and strain is presented and the impact of stress and strain on an optical window is explored through finite element modeling, Jones matrix analysis, theoretical simulations and experimental methods. This thesis also explores ways in which stress is applied to a transparent window, the characterization of the effect of stressed windows in both the pupil and image planes and the influence of the induced polarization vortices on imaging. A zone plate model and mean-square estimate are presented to describe a double focus effect that is observed when the stress exceeds a certain threshold. Applications of stress-induced polarization vortices as well as future work are also discussed. The development and experimental characterization of space-variant, stress birefringent optical elements is the first such effort directed toward the creation of polarization vortices.

  11. Energy efficiency of optical grooming of QAM optical transmission channels.

    PubMed

    Bhopalwala, Mariya; Rastegarfar, Houman; Kilper, Daniel C; Wang, Michael; Bergman, Keren

    2016-02-01

    Analysis of the energy use for optical grooming of quadrature amplitude modulated signals in optical transmission systems is used to determine the potential efficiency benefits. An energy model is developed for both optical and electronic grooming and used to study the relative efficiency for three different network scenarios. The energy efficiency is evaluated considering both coherent and direct detection transceivers including power management strategies. Results indicate efficiency improvements up to an order of magnitude may be possible for 100 GBaud rates and 25-30 GBaud is a critical point at which optical grooming becomes the more efficient approach. These results are further shown to apply for the case of projected efficiency improvements in the underlying device technologies.

  12. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    NASA Astrophysics Data System (ADS)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  13. Applying robotics to HAZMAT

    NASA Technical Reports Server (NTRS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-01-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  14. Applying robotics to HAZMAT

    NASA Astrophysics Data System (ADS)

    Welch, Richard V.; Edmonds, Gary O.

    1994-02-01

    The use of robotics in situations involving hazardous materials can significantly reduce the risk of human injuries. The Emergency Response Robotics Project, which began in October 1990 at the Jet Propulsion Laboratory, is developing a teleoperated mobile robot allowing HAZMAT (hazardous materials) teams to remotely respond to incidents involving hazardous materials. The current robot, called HAZBOT III, can assist in locating characterizing, identifying, and mitigating hazardous material incidents without risking entry team personnel. The active involvement of the JPL Fire Department HAZMAT team has been vital in developing a robotic system which enables them to perform remote reconnaissance of a HAZMAT incident site. This paper provides a brief review of the history of the project, discusses the current system in detail, and presents other areas in which robotics can be applied removing people from hazardous environments/operations.

  15. Applied Healthspan Engineering

    PubMed Central

    Mendelsohn, Andrew

    2010-01-01

    Abstract According to the Homeric Hymn to Aphrodite, when Eos asked Zeus for Tithonus to be granted immortality, she forgot to ask for eternal youth. Applied Healthspan Engineering (AHE) seeks to address this problem. All organisms have a minimal level of functional reserve required to sustain life that eventually declines to a point incompatible with survival at death. AHE seeks to maintain or restore optimal functional reserve of critical tissues and organs. Tissue reserve correlates with well being. Diet, physical exercise, and currently available small-molecule-based therapeutics may attenuate the rate of decline of specific organs or organ systems, but are unlikely to restore lost reserve. Inherent evolutionary-derived limitations in tissue homeostasis and cell maintenance necessitate the development of therapies to enhance regenerative processes and possibly replace whole organs or tissues. AHE supports the study of cell, tissue, and organ homeostatic mechanisms to derive new regenerative and tissue replacement therapies to extend the period of human health. PMID:20462384

  16. Applied computational aerodynamics

    SciTech Connect

    Henne, P.A.

    1990-01-01

    The present volume discusses the original development of the panel method, the mapping solutions and singularity distributions of linear potential schemes, the capabilities of full-potential, Euler, and Navier-Stokes schemes, the use of the grid-generation methodology in applied aerodynamics, subsonic airfoil design, inverse airfoil design for transonic applications, the divergent trailing-edge airfoil innovation in CFD, Euler and potential computational results for selected aerodynamic configurations, and the application of CFD to wing high-lift systems. Also discussed are high-lift wing modifications for an advanced-capability EA-6B aircraft, Navier-Stokes methods for internal and integrated propulsion system flow predictions, the use of zonal techniques for analysis of rotor-stator interaction, CFD applications to complex configurations, CFD applications in component aerodynamic design of the V-22, Navier-Stokes computations of a complete F-16, CFD at supersonic/hypersonic speeds, and future CFD developments.

  17. Applied antineutrino physics workshop.

    SciTech Connect

    Lund, James C.

    2008-01-01

    This workshop is the fourth one of a series that includes the Neutrino Geophysics Conference at Honolulu, Hawaii, which I attended in 2005. This workshop was organized by the Astro-Particle and Cosmology laboratory in the recently opened Condoret building of the University of Paris. More information, including copies of the presentations, on the workshop is available on the website: www.apc.univ-paris7.fr/AAP2007/. The workshop aims at opening neutrino physics to various fields such that it can be applied in geosciences, nuclear industry (reactor and spent fuel monitoring) and non-proliferation. The workshop was attended by over 60 people from Europe, USA, Asia and Brazil. The meeting was also attended by representatives of the Comprehensive nuclear-Test Ban Treaty (CTBT) and the International Atomic Energy Agency (IAEA). The workshop also included a workshop dinner on board of a river boat sailing the Seine river.

  18. Methods of applied dynamics

    NASA Technical Reports Server (NTRS)

    Rheinfurth, M. H.; Wilson, H. B.

    1991-01-01

    The monograph was prepared to give the practicing engineer a clear understanding of dynamics with special consideration given to the dynamic analysis of aerospace systems. It is conceived to be both a desk-top reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject. Beginning with the basic concepts of kinematics and dynamics, the discussion proceeds to treat the dynamics of a system of particles. Both classical and modern formulations of the Lagrange equations, including constraints, are discussed and applied to the dynamic modeling of aerospace structures using the modal synthesis technique.

  19. NASA Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Estes, Sue M.; Haynes, J. A.

    2009-01-01

    NASA's strategic Goals: a) Develop a balanced overall program of science, exploration, and aeronautics consistent with the redirection of human spaceflight program to focus on exploration. b) Study Earth from space to advance scientific understanding and meet societal needs. NASA's partnership efforts in global modeling and data assimilation over the next decade will shorten the distance from observations to answers for important, leading-edge science questions. NASA's Applied Sciences program will continue the Agency's efforts in benchmarking the assimilation of NASA research results into policy and management decision-support tools that are vital for the Nation's environment, economy, safety, and security. NASA also is working with NOAH and inter-agency forums to transition mature research capabilities to operational systems, primarily the polar and geostationary operational environmental satellites, and to utilize fully those assets for research purposes.

  20. Lessons learned and applied

    PubMed Central

    Hebert, Corey Joseph; Hall, Corey M.; Odoms, La’ Nyia J.

    2012-01-01

    Most vaccines available in the United States (US) have been incorporated into vaccination schedules for infants and young children, age groups particularly at risk of contracting infectious diseases. High universal vaccination coverage is responsible for substantially reducing or nearly eliminating many of the diseases that once killed thousands of children each year in the US. Despite the success of infant vaccinations, periods of low vaccination coverage and the limited immunogenicity and duration of protection of certain vaccines have resulted in sporadic outbreaks, allowing some diseases to spread in communities. These challenges suggest that expanded vaccination coverage to younger infants and adolescents, and more immunogenic vaccines, may be needed in some instances. This review focuses on the importance of infant immunization and explores the successes and challenges of current early childhood vaccination programs and how these lessons may be applied to other invasive diseases, such as meningococcal disease. PMID:22617834

  1. Selecting and applying flowmeters

    SciTech Connect

    Belevich, P.

    1996-05-01

    An important aspect of any process control system that requires fluid flow measurement is properly selecting and applying the flow sensor or flowmeter. A bewildering array of terms, factors and concepts that must be considered to ensure optimum design can make this a complex and sometimes confusing process. To select a proper meter for a specific application, a complete understanding of the process operating conditions and equipment performance requirements is necessary. Once these parameters are specified, actual flowmeter selection is greatly simplified. Selection parameters include accuracy, rangeability, and additional characteristics. Commonly used flowmeters include differential pressure devices, variable area meters, vortex shedding flowmeters, displacement meters, magnetic flowmeters, coriolis mass meters, thermal flowmeters, and ultrasonic flowmeters.

  2. Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  3. Optical wavelength modulation in free electron lasers

    SciTech Connect

    Mabe, R.M.; Wong, R.K.; Colson, W.B.

    1995-12-31

    An attribute of the free electron laser (FEL) is the continuous tunability of the optical wavelength by modulation of the electron beam energy. The variation of the wavelength and power of the optical beam is studied as a function of FEL operating parameters. These results will be applied to the Stanford SCA FEL and Boeing FEL.

  4. High heat load synchrotron optics

    SciTech Connect

    Mills, D.M.

    1992-08-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.

  5. {PT}-symmetric optical superlattices

    NASA Astrophysics Data System (ADS)

    Longhi, Stefano

    2014-04-01

    The spectral and localization properties of {PT}-symmetric optical superlattices, either infinitely extended or truncated at one side, are theoretically investigated, and the criteria that ensure a real energy spectrum are derived. The analysis is applied to the case of superlattices describing a complex ( {PT}-symmetric) extension of the Harper Hamiltonian in the rational case.

  6. Matrix Treatment of Ray Optics.

    ERIC Educational Resources Information Center

    Quon, W. Steve

    1996-01-01

    Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…

  7. Spatial interferometry in optical astronomy

    NASA Technical Reports Server (NTRS)

    Gezari, Daniel Y.; Roddier, Francois; Roddier, Claude

    1990-01-01

    A bibliographic guide is presented to publications of spatial interferometry techniques applied to optical astronomy. Listings appear in alphabetical order, by first author, as well as in specific subject categories listed in chronological order, including imaging theory and speckle interferometry, experimental techniques, and observational results of astronomical studies of stars, the Sun, and the solar system.

  8. Nanophotonic silicon electro-optic switch

    NASA Astrophysics Data System (ADS)

    Simili, Deepak V.; Cada, Michael

    2013-10-01

    The combination of silicon and nanotechnology offers the possibility to design ultrafast silicon electro-optic switches with speeds of the order of 100 GHz. The design procedure for an ultrafast silicon electro-optic switch with the addition of photonic crystals is presented. The material medium selected for propagation of the optical signal through the switch is silicon nanocrystals in silica. A patterned slot waveguide with one-dimensional photonic crystals is proposed as the preferred slow light waveguide to be used in the design of the electro-optic switch. The ultrafast quadratic electro-optic effect or Kerr effect is the physical effect utilized, and its analysis for slot waveguides is discussed. The optical structure analysis of the electro-optic switch using a ring resonator is presented and it is shown theoretically that the use of a slow light waveguide in the ring resonator can reduce the required externally applied electric field or the radius of the ring resonator.

  9. Computational Ion Optics Design Evaluations

    NASA Technical Reports Server (NTRS)

    Malone, Shane P.; Soulas, George C.

    2004-01-01

    Ion optics computational models are invaluable tools in the design of ion optics systems. In this study a new computational model developed by an outside vendor for use at the NASA Glenn Research Center (GRC) is presented. This computational model is a gun code that has been modified to model the plasma sheaths both upstream and downstream of the ion optics. The model handles multiple species (e.g. singly and doubly-charged ions) and includes a charge-exchange model to support erosion estimations. The model uses commercially developed solid design and meshing software to allow high flexibility in ion optics geometric configurations. The results from this computational model are applied to the NEXT project to investigate the effects of crossover impingement erosion seen during the 2000-hour wear test.

  10. Adaptive Optics for Large Telescopes

    SciTech Connect

    Olivier, S

    2008-06-27

    The use of adaptive optics was originally conceived by astronomers seeking to correct the blurring of images made with large telescopes due to the effects of atmospheric turbulence. The basic idea is to use a device, a wave front corrector, to adjust the phase of light passing through an optical system, based on some measurement of the spatial variation of the phase transverse to the light propagation direction, using a wave front sensor. Although the original concept was intended for application to astronomical imaging, the technique can be more generally applied. For instance, adaptive optics systems have been used for several decades to correct for aberrations in high-power laser systems. At Lawrence Livermore National Laboratory (LLNL), the world's largest laser system, the National Ignition Facility, uses adaptive optics to correct for aberrations in each of the 192 beams, all of which must be precisely focused on a millimeter scale target in order to perform nuclear physics experiments.

  11. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-09-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. Scope of Submission The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities To submit to this special issue, follow the normal procedure for submission to JON, indicating "Optical Ethernet feature" in the "Comments" field of the online submission form. For all other questions

  12. Applied Linguistics and the "Annual Review of Applied Linguistics."

    ERIC Educational Resources Information Center

    Kaplan, Robert B.; Grabe, William

    2000-01-01

    Examines the complexities and differences involved in granting disciplinary status to the role of applied linguistics, discusses the role of the "Annual Review of Applied Linguistics" as a contributor to the development of applied linguistics, and highlights a set of publications for the future of applied linguistics. (Author/VWL)

  13. Soft optics in intelligent optical networks

    NASA Astrophysics Data System (ADS)

    Shue, Chikong; Cao, Yang

    2001-10-01

    In addition to the recent advances in Hard-optics that pushes the optical transmission speed, distance, wave density and optical switching capacity, Soft-optics provides the necessary intelligence and control software that reduces operational costs, increase efficiency, and enhances revenue generating services by automating optimal optical circuit placement and restoration, and enabling value-added new services like Optical VPN. This paper describes the advances in 1) Overall Hard-optics and Soft-optics 2) Layered hierarchy of Soft-optics 3) Component of Soft-optics, including hard-optics drivers, Management Soft-optics, Routing Soft-optics and System Soft-optics 4) Key component of Routing and System Soft-optics, namely optical routing and signaling (including UNI/NNI and GMPLS signaling). In summary, the soft-optics on a new generation of OXC's enables Intelligent Optical Networks to provide just-in-time service delivery and fast restoration, and real-time capacity management that eliminates stranded bandwidth. It reduces operational costs and provides new revenue opportunities.

  14. Optical Techniques in Optogenetics

    PubMed Central

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-01-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially-controlled optogenetic stimulation and detection of cellular activities. PMID:26412943

  15. Nonlinear optics at interfaces

    SciTech Connect

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory.

  16. Optical techniques in optogenetics

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Lakshminarayananan, Vasudevan

    2015-07-01

    Optogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience, and medical research. This review aims at highlighting the basic concepts that are essential for a comprehensive understanding of optogenetics and some important biological/biomedical applications. Further, emphasis is placed on advancement in optogenetics-associated light-based methods for controlling gene expression, spatially controlled optogenetic stimulation and detection of cellular activities.

  17. Applying evolutionary anthropology.

    PubMed

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution.

  18. Applying Evolutionary Anthropology

    PubMed Central

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  19. Applied equine genetics

    PubMed Central

    FINNO, C. J.; BANNASCH, D. L.

    2015-01-01

    Summary Genome sequencing of the domestic horse and subsequent advancements in the field of equine genomics have led to an explosion in the development of tools for mapping traits and diseases and evaluating gene expression. The objective of this review is to discuss the current progress in the field of equine genomics, with specific emphasis on assembly and analysis of the reference sequence and subsequent sequencing of a Quarter Horse mare; the genomic tools currently available to researchers and their implications in genomic investigations in the horse; the genomics of Mendelian and non-Mendelian traits; the genomics of performance traits and considerations regarding genetic testing in the horse. The whole-genome sequencing of a Quarter Horse mare has provided additional variants within the equine genome that extend past single nucleotide polymorphisms to include insertions/deletions and copy number variants. Equine single nucleotide polymorphism arrays have allowed for the investigation of both simple and complex genetic traits while DNA microarrays have provided a tool for examining gene expression across various tissues and with certain disease conditions. Recently, next-generation sequencing has become more affordable and both whole-genome DNA sequencing and transcriptome-wide RNA sequencing are methodologies that are being applied to equine genomic research. Research in the field of equine genomics continues to expand rapidly as the cost of genotyping and sequencing decreases, resulting in a need for quality bioinformatics software and expertise to appropriately handle both the size and complexity of these data. PMID:24802051

  20. Optic nerve atrophy

    MedlinePlus

    Optic atrophy; Optic neuropathy ... There are many causes of optic atrophy. The most common is poor blood flow. This is called ischemic optic neuropathy. The problem most often affects older adults. ...

  1. Optical aeronomy

    SciTech Connect

    Solomon, S.C. )

    1991-01-01

    Optical measurements of thermospheric and ionospheric processes and their interpretation are reviewed and the chemical reactions and their effects on emissions are discussed. Also included are the phenomena which excite the airglow and aurora, i.e., the solar UV/EUV flux and auroral particle precipitation. Consideration is given to solar flux, atomic emissions, molecular emissions, hydrogen geocorona, and molecular oxygen and the green line nightglow.

  2. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-05-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  3. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-08-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  4. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-04-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  5. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-07-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  6. Optical Ethernet

    NASA Astrophysics Data System (ADS)

    Chan, Calvin C. K.; Lam, Cedric F.; Tsang, Danny H. K.

    2005-06-01

    Call for Papers: Optical Ethernet The Journal of Optical Networking (JON) is soliciting papers for a second feature issue on Optical Ethernet. Ethernet has evolved from a LAN technology connecting desktop computers to a universal broadband network interface. It is not only the vehicle for local data connectivity but also the standard interface for next-generation network equipment such as video servers and IP telephony. High-speed Ethernet has been increasingly assuming the volume of backbone network traffic from SONET/SDH-based circuit applications. It is clear that IP has become the universal network protocol for future converged networks, and Ethernet is becoming the ubiquitous link layer for connectivity. Network operators have been offering Ethernet services for several years. Problems and new requirements in Ethernet service offerings have been captured through previous experience. New study groups and standards bodies have been formed to address these problems. This feature issue aims at reviewing and updating the new developments and R&D efforts of high-speed Ethernet in recent years, especially those related to the field of optical networking. The scope of the papers includes, but is not limited to, the following: Ethernet PHY development 10-Gbit Ethernet on multimode fiber Native Ethernet transport and Ethernet on legacy networks EPON Ethernet OAM Resilient packet ring (RPR) and Ethernet QoS definition and management on Ethernet Ethernet protection switching Circuit emulation services on Ethernet Transparent LAN service development Carrier VLAN and Ethernet Ethernet MAC frame expansion Ethernet switching High-speed Ethernet applications Economic models of high-speed Ethernet services Ethernet field deployment and standard activities

  7. Optical gyroscope

    NASA Technical Reports Server (NTRS)

    Goldstein, R. M.; Goss, W. C.

    1978-01-01

    Instrument uses phase difference between two beams of light to measure rotation. It is considerably simpler and more reliable than conventional spinning-mass gyroscopes used for inertial guidance and is more compact, lighter, and potentially less expensive. Moreover, optical gyroscope requires no warmup period. Although conceived for spacecraft and satellite stabilization, gyroscope should also find applications in flight instruments for private, commercial, and military aircraft.

  8. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  9. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-02-07

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  10. Optical analyzer

    DOEpatents

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  11. Foveated optics

    NASA Astrophysics Data System (ADS)

    Bryant, Kyle R.

    2016-05-01

    Foveated imaging can deliver two different resolutions on a single focal plane, which might inexpensively allow more capability for military systems. The following design study results provide starting examples, lessons learned, and helpful setup equations and pointers to aid the lens designer in any foveated lens design effort. Our goal is to put robust sensor in a small package with no moving parts, but still be able to perform some of the functions of a sensor in a moving gimbal. All of the elegant solutions are out (for various reasons). This study is an attempt to see if lens designs can solve this problem and realize some gains in performance versus cost for airborne sensors. We determined a series of design concepts to simultaneously deliver wide field of view and high foveal resolution without scanning or gimbals. Separate sensors for each field of view are easy and relatively inexpensive, but lead to bulky detectors and electronics. Folding and beam-combining of separate optical channels reduces sensor footprint, but induces image inversions and reduced transmission. Entirely common optics provide good resolution, but cannot provide a significant magnification increase in the foveal region. Offsetting the foveal region from the wide field center may not be physically realizable, but may be required for some applications. The design study revealed good general guidance for foveated optics designs with a cold stop. Key lessons learned involve managing distortion, telecentric imagers, matching image inversions and numerical apertures between channels, reimaging lenses, and creating clean resolution zone splits near internal focal planes.

  12. Applied Historical Astronomy

    NASA Astrophysics Data System (ADS)

    Stephenson, F. Richard

    2014-01-01

    F. Richard Stephenson has spent most of his research career -- spanning more than 45 years -- studying various aspects of Applied Historical Astronomy. The aim of this interdisciplinary subject is the application of historical astronomical records to the investigation of problems in modern astronomy and geophysics. Stephenson has almost exclusively concentrated on pre-telescopic records, especially those preserved from ancient and medieval times -- the earliest reliable observations dating from around 700 BC. The records which have mainly interested him are of eclipses (both solar and lunar), supernovae, sunspots and aurorae, and Halley's Comet. The main sources of early astronomical data are fourfold: records from ancient and medieval East Asia (China, together with Korea and Japan); ancient Babylon; ancient and medieval Europe; and the medieval Arab world. A feature of Stephenson's research is the direct consultation of early astronomical texts in their original language -- either working unaided or with the help of colleagues. He has also developed a variety of techniques to help interpret the various observations. Most pre-telescopic observations are very crude by present-day standards. In addition, early motives for skywatching were more often astrological rather than scientific. Despite these drawbacks, ancient and medieval astronomical records have two remarkable advantages over modern data. Firstly, they can enable the investigation of long-term trends (e.g. in the terrestrial rate of rotation), which in the relatively short period covered by telescopic observations are obscured by short-term fluctuations. Secondly, over the lengthy time-scale which they cover, significant numbers of very rare events (such as Galactic supernovae) were reported, which have few -- if any-- counterparts in the telescopic record. In his various researches, Stephenson has mainly focused his attention on two specific topics. These are: (i) long-term changes in the Earth's rate of

  13. Essays in applied microeconomics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoting

    In this dissertation I use Microeconomic theory to study firms' behavior. Chapter One introduces the motivations and main findings of this dissertation. Chapter Two studies the issue of information provision through advertisement when markets are segmented and consumers' price information is incomplete. Firms compete in prices and advertising strategies for consumers with transportation costs. High advertising costs contribute to market segmentation. Low advertising costs promote price competition among firms and improves consumer welfare. Chapter Three also investigates market power as a result of consumers' switching costs. A potential entrant can offer a new product bundled with an existing product to compensate consumers for their switching cost. If the primary market is competitive, bundling simply plays the role of price discrimination, and it does not dominate unbundled sales in the process of entry. If the entrant has market power in the primary market, then bundling also plays the role of leveraging market power and it dominates unbundled sales. The market for electric power generation has been opened to competition in recent years. Chapter Four looks at issues involved in the deregulated electricity market. By comparing the performance of the competitive market with the social optimum, we identify the conditions under which market equilibrium generates socially efficient levels of electric power. Chapter Two to Four investigate the strategic behavior among firms. Chapter Five studies the interaction between firms and unemployed workers in a frictional labor market. We set up an asymmetric job auction model, where two types of workers apply for two types of job openings by bidding in auctions and firms hire the applicant offering them the most profits. The job auction model internalizes the determination of the share of surplus from a match, therefore endogenously generates incentives for an efficient division of the matching surplus. Microeconomic

  14. Power optics

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.

    2014-02-01

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  15. Power optics

    SciTech Connect

    Apollonov, V V

    2014-02-28

    By using the theory we developed in the early 1970s, a broad range of phenomena is considered for an optical surface of a solid body that is exposed to radiation arbitrarily varying in time and producing temperature fields, thermoelastic stresses and thermal deformations on the surface layer. The examination is based on the relations (which are similar to Duhamel's integral formula from the theory of heat conduction) between the quantities characterising the thermal stress state in any nonstationary regimes of energy input into a solid. A peculiar feature of the analysis of the thermal stress state in this case consists in the fact that this relation comprises time as a parameter, which in turn is a consequence of incoherence of the quasi-stationary problem of thermoelasticity. This phenomenon is particularly important for the optics of high-power, high-pulse repetition rate lasers, which are being actively developed. In the review, we have recently published in Laser Physics, the thermal stress state of a solid is analysed. In this state, time is treated as an independent variable used in differentiation. Such an approach greatly reduces the applicability of the method. The review published contains data on the use of capillary porous structures made of various materials with different degrees of the surface development. Moreover, such structures can be efficiently employed to increase the heat exchange at a temperature below the boiling point of the coolant. In the present review we discuss the dependences of the limiting laser intensities on the duration of a pulse or a pulse train, corresponding to the three stages of the state of the reflecting surface and leading to unacceptable elastic deformations of the surface, to the plastic yield of the material accompanied by the formation of residual stresses and to the melting of the surface layer. We also analyse the problem of heat exchange in the surface layer with a liquid metal coolant pumped through it. The

  16. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  17. Parallel optical sampler

    DOEpatents

    Tauke-Pedretti, Anna; Skogen, Erik J; Vawter, Gregory A

    2014-05-20

    An optical sampler includes a first and second 1.times.n optical beam splitters splitting an input optical sampling signal and an optical analog input signal into n parallel channels, respectively, a plurality of optical delay elements providing n parallel delayed input optical sampling signals, n photodiodes converting the n parallel optical analog input signals into n respective electrical output signals, and n optical modulators modulating the input optical sampling signal or the optical analog input signal by the respective electrical output signals, and providing n successive optical samples of the optical analog input signal. A plurality of output photodiodes and eADCs convert the n successive optical samples to n successive digital samples. The optical modulator may be a photodiode interconnected Mach-Zehnder Modulator. A method of sampling the optical analog input signal is disclosed.

  18. Essays in Applied Microeconomics

    NASA Astrophysics Data System (ADS)

    Ge, Qi

    This dissertation consists of three self-contained applied microeconomics essays on topics related to behavioral economics and industrial organization. Chapter 1 studies how sentiment as a result of sports event outcomes affects consumers' tipping behavior in the presence of social norms. I formulate a model of tipping behavior that captures consumer sentiment following a reference-dependent preference framework and empirically test its relevance using the game outcomes of the NBA and the trip and tipping data on New York City taxicabs. While I find that consumers' tipping behavior responds to unexpected wins and losses of their home team, particularly in close game outcomes, I do not find evidence for loss aversion. Coupled with the findings on default tipping, my empirical results on the asymmetric tipping responses suggest that while social norms may dominate loss aversion, affect and surprises can result in freedom on the upside of tipping. Chapter 2 utilizes a novel data source of airline entry and exit announcements and examines how the incumbent airlines adjust quality provisions as a response to their competitors' announcements and the role of timing in such responses. I find no evidence that the incumbents engage in preemptive actions when facing probable entry and exit threats as signaled by the competitors' announcements in either short term or long term. There is, however, evidence supporting their responses to the competitors' realized entry or exit. My empirical findings underscore the role of timing in determining preemptive actions and suggest that previous studies may have overestimated how the incumbent airlines respond to entry threats. Chapter 3, which is collaborated with Benjamin Ho, investigates the habit formation of consumers' thermostat setting behavior, an often implicitly made decision and yet a key determinant of home energy consumption and expenditures. We utilize a high frequency dataset on household thermostat usage and find that

  19. Applied physiology of swimming.

    PubMed

    Lavoie, J M; Montpetit, R R

    1986-01-01

    Scientific research in swimming over the past 10 to 15 years has been oriented toward multiple aspects that relate to applied and basic physiology, metabolism, biochemistry, and endocrinology. This review considers recent findings on: 1) specific physical characteristics of swimmers; 2) the energetics of swimming; 3) the evaluation of aerobic fitness in swimming; and 4) some metabolic and hormonal aspects related to swimmers. Firstly, the age of finalists in Olympic swimming is not much different from that of the participants from other sports. They are taller and heavier than a reference population of the same age. The height bias in swimming may be the reason for lack of success from some Asian and African countries. Experimental data point toward greater leanness, particularly in female swimmers, than was seen 10 years ago. Overall, female swimmers present a range of 14 to 19% body fat whereas males are much lower (5 to 10%). Secondly, the relationship between O2 uptake and crawl swimming velocity (at training and competitive speeds) is thought to be linear. The energy cost varies between strokes with a dichotomy between the 2 symmetrical and the 2 asymmetrical strokes. Energy expenditure in swimming is represented by the sum of the cost of translational motion (drag) and maintenance of horizontal motion (gravity). The cost of the latter decreases as speed increases. Examination of the question of size-associated effects on the cost of swimming using Huxley's allometric equation (Y = axb) shows an almost direct relationship with passive drag. Expressing energy cost in litres of O2/m/kg is proposed as a better index of technical swimming ability than the traditional expression of VO2/distance in L/km. Thirdly, maximal direct conventional techniques used to evaluate maximal oxygen consumption (VO2 max) in swimming include free swimming, tethered swimming, and flume swimming. Despite the individual peculiarities of each method, with similar experimental conditions

  20. Essays in applied economics

    NASA Astrophysics Data System (ADS)

    Arano, Kathleen

    Three independent studies in applied economics are presented. The first essay looks at the US natural gas industrial sector and estimates welfare effects associated with the changes in natural gas regulatory policy over the past three decades. Using a disequilibrium model suited to the natural gas industry, welfare transfers and deadweight losses are calculated. Results indicate that deregulation policies, beginning with the NGPA of 1978, have caused the industry to become more responsive to market conditions. Over time, regulated prices converge toward the estimated equilibrium prices. As a result of this convergence, deadweight losses associated with regulation are also diminished. The second essay examines the discounted utility model (DU), the standard model used for intertemporal decision-making. Prior empirical studies challenge the descriptive validity of the model. This essay addresses the four main inconsistencies that have been raised: domain dependence, magnitude effects, time effects, and gain/loss asymmetries. These inconsistencies, however, may be the result of the implicit assumption of linear utility and not a failure of the DU model itself. In order to test this hypothesis, data was collected from in-class surveys of economics classes at Mississippi State University. A random effects model for panel data estimation which accounts for individual specific effects was then used to impute discount rates measured in terms of dollars and utility. All four inconsistencies were found to be present when the dollar measures were used. Using utility measures of the discount rate resolved the inconsistencies in some cases. The third essay brings together two perspectives in the study of religion and economics: modeling religious behavior using economic tools and variables, and modeling economic behavior using religious variables. A system of ordered probit equations is developed to simultaneously model religious activities and economic outcomes. Using data

  1. Applied physiology of swimming.

    PubMed

    Lavoie, J M; Montpetit, R R

    1986-01-01

    Scientific research in swimming over the past 10 to 15 years has been oriented toward multiple aspects that relate to applied and basic physiology, metabolism, biochemistry, and endocrinology. This review considers recent findings on: 1) specific physical characteristics of swimmers; 2) the energetics of swimming; 3) the evaluation of aerobic fitness in swimming; and 4) some metabolic and hormonal aspects related to swimmers. Firstly, the age of finalists in Olympic swimming is not much different from that of the participants from other sports. They are taller and heavier than a reference population of the same age. The height bias in swimming may be the reason for lack of success from some Asian and African countries. Experimental data point toward greater leanness, particularly in female swimmers, than was seen 10 years ago. Overall, female swimmers present a range of 14 to 19% body fat whereas males are much lower (5 to 10%). Secondly, the relationship between O2 uptake and crawl swimming velocity (at training and competitive speeds) is thought to be linear. The energy cost varies between strokes with a dichotomy between the 2 symmetrical and the 2 asymmetrical strokes. Energy expenditure in swimming is represented by the sum of the cost of translational motion (drag) and maintenance of horizontal motion (gravity). The cost of the latter decreases as speed increases. Examination of the question of size-associated effects on the cost of swimming using Huxley's allometric equation (Y = axb) shows an almost direct relationship with passive drag. Expressing energy cost in litres of O2/m/kg is proposed as a better index of technical swimming ability than the traditional expression of VO2/distance in L/km. Thirdly, maximal direct conventional techniques used to evaluate maximal oxygen consumption (VO2 max) in swimming include free swimming, tethered swimming, and flume swimming. Despite the individual peculiarities of each method, with similar experimental conditions

  2. Fiber optic light sensor.

    PubMed

    Chudyk, Wayne; Flynn, Kyle F

    2015-06-01

    We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow. PMID:26009160

  3. Spectroscopic optical coherence elastography

    PubMed Central

    Adie, Steven G.; Liang, Xing; Kennedy, Brendan F.; John, Renu; Sampson, David D.; Boppart, Stephen A.

    2010-01-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  4. Fiber optic light sensor.

    PubMed

    Chudyk, Wayne; Flynn, Kyle F

    2015-06-01

    We describe a low-cost fiber optic sensor for measuring photosynthetically active radiation (PAR) in turbulent flow. Existing technology was combined in a novel way for probe development addressing the need for a small but durable instrument for use in flowing water. Optical components including fiber optics and a wide-spectrum light detector were used to separate light collection from electronic detection so that measurements could be completed in either the field or laboratory, in air or underwater. Connection of the detector to Arduino open-source electronics and a portable personal computer (PC) enabled signal processing and allowed data to be stored in a spreadsheet for ease of analysis. Calibration to a commercial cosine-corrected instrument showed suitable agreement with the added benefit that the small sensor face allowed measurements in tight spaces such as close to the streambed or within leafy or filamentous plant growth. Subsequently, we applied the probe in a separate study where over 35 experiments were successfully completed to characterize downward light attenuation in filamentous algae in turbulent flow.

  5. Spectroscopic optical coherence elastography.

    PubMed

    Adie, Steven G; Liang, Xing; Kennedy, Brendan F; John, Renu; Sampson, David D; Boppart, Stephen A

    2010-12-01

    We present an optical technique to image the frequency-dependent complex mechanical response of a viscoelastic sample. Three-dimensional hyperspectral data, comprising two-dimensional B-mode images and a third dimension corresponding to vibration frequency, were acquired from samples undergoing external mechanical excitation in the audio-frequency range. We describe the optical coherence tomography (OCT) signal when vibration is applied to a sample and detail the processing and acquisition techniques used to extract the local complex mechanical response from three-dimensional data that, due to a wide range of vibration frequencies, possess a wide range of sample velocities. We demonstrate frequency-dependent contrast of the displacement amplitude and phase of a silicone phantom containing inclusions of higher stiffness. Measurements of an ex vivo tumor margin demonstrate distinct spectra between adipose and tumor regions, and images of displacement amplitude and phase demonstrated spatially-resolved contrast. Contrast was also observed in displacement amplitude and phase images of a rat muscle sample. These results represent the first demonstration of mechanical spectroscopy based on B-mode OCT imaging. Spectroscopic optical coherence elastography (S-OCE) provides a high-resolution imaging capability for the detection of tissue pathologies that are characterized by a frequency-dependent viscoelastic response. PMID:21164898

  6. Optical conversion method. [for spacecraft television

    NASA Technical Reports Server (NTRS)

    Perry, W. E. (Inventor)

    1978-01-01

    An optical pickup comprising an electrooptical device located between two crossed polarizing devices all positioned along a common optical axis is described for switching a TV system between a color mode and a black and white mode. Embodiments in which the electrooptical system is used as a neutral density filter, a selective color filter, or a light shutter as applied to a television camera are described. Where the optical system is used as a selective color filter to produce light beams of alternating color in a field sequential color television system, deactivation of the optical system renders the television a black and white system.

  7. Hamilton optics: transformational theory of optics

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Ge, Wenjun

    2013-09-01

    In 1824 William Rowan Hamilton presented a memoir to the Royal Irish Academy on Optics(Trans. R. Irish. Acacamy, XV, 1828), which was the foundation for transformational optics, classical mechanics, nonimaging optics and thermodynamical foundation of nonimaging optics,etc. It is useful for us even in 2013 to revisit the Hamilton resolution.

  8. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  9. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1993-11-09

    A transcutaneous bilirubin detector is designed comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient. 6 figures.

  10. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    A transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  11. Optical transcutaneous bilirubin detector

    DOEpatents

    Kronberg, J.W.

    1991-03-04

    This invention consists of a transcutaneous bilirubin detector comprising a source of light having spectral components absorbable and not absorbable by bilirubin, a handle assembly, electronic circuitry and a fiber optic bundle connecting the assembly to the light source and circuitry. Inside the assembly is a prism that receives the light from one end of the fiber optic bundle and directs it onto the skin and directs the reflected light back into the bundle. The other end of the bundle is trifucated, with one end going to the light source and the other two ends going to circuitry that determines how much light of each kind has been reflected. A relatively greater amount absorbed by the skin from the portion of the spectrum absorbable by bilirubin may indicate the presence of the illness. Preferably, two measurements are made, one on the kneecap and one on the forehead, and compared to determine the presence of bilirubin. To reduce the impact of light absorption by hemoglobin in the blood carried by the skin, pressure is applied with a plunger and spring in the handle assembly, the pressure limited by points of a button slidably carried in the assembly that are perceived by touch when the pressure applied is sufficient.

  12. Optical devices

    DOEpatents

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-07-13

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  13. Optical microphone

    DOEpatents

    Veligdan, James T.

    2000-01-11

    An optical microphone includes a laser and beam splitter cooperating therewith for splitting a laser beam into a reference beam and a signal beam. A reflecting sensor receives the signal beam and reflects it in a plurality of reflections through sound pressure waves. A photodetector receives both the reference beam and reflected signal beam for heterodyning thereof to produce an acoustic signal for the sound waves. The sound waves vary the local refractive index in the path of the signal beam which experiences a Doppler frequency shift directly analogous with the sound waves.

  14. Photonic layer security in fiber-optic networks and optical OFDM transmission

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing

    Currently the Internet is experiencing an explosive growth in the world. Such growth leads to an increased data transmission rate demand in fiber-optical networks. Optical orthogonal frequency multiplexing (OFDM) is considered as a promising solution to achieve data rate beyond 100Gb/s per wavelength channel. In the meanwhile, because of extensive data transmission and sharing, data security has become an important problem and receives considerable attention in current research literature. This thesis focuses on data security issues at the physical layer of optical networks involving code-division multiple access (CDMA) systems and steganography methods. The thesis also covers several implementation issues in optical OFDM transmission. Optical CDMA is regarded as a good candidate to provide photonic layer security in multi-access channels. In this thesis we provide a systematic analysis of the security performance of incoherent optical CDMA codes. Based on the analysis, we proposed and experimentally demonstrated several methods to improve the security performance of the optical CDMA systems, such as applying all-optical encryption, and code hopping using nonlinear wavelength conversion. Moreover, we demonstrate that the use of wireless CDMA codes in optical systems can enhance the security in one single-user end-to-end optical channel. Optical steganography is another method to provide photonic data security and involves hiding the existence of data transmissions. In the thesis, we demonstrate that an optical steganography channel can exist in phase modulated public channels as well as traditional on-off-keying (OOK) modulated channels, without data synchronization. We also demonstrate an optical steganography system with enhanced security by utilizing temporal phase modulation techniques. Additionally, as one type of an overlay channel, the optical steganography technology can carry the sensor data collected by wireless sensor network on top of public optical

  15. Remote fiber sensors and optical amplification

    NASA Astrophysics Data System (ADS)

    Pontes, M. J.; Coelho, Thiago V. N.; Carvalho, Joel P.; Santos, J. L.; Guerreiro, A.

    2013-11-01

    This work discusses remote fiber sensors enabled by optical amplification. Continuous wave numerical modeling based on the propagation of pumps and signal lasers coupled to optical fibers explores Raman amplification schemes to predict the sensor's behavior. Experimental analyses report the results to a temperature remote optical sensor with 50 km distance between the central unit and the sensor head. An electrical interrogation scheme is used due to their low cost and good time response. Different architectures in remote sensor systems are evaluated, where diffraction gratings are the sensor element. A validation of calculated results is performed by experimental analyses and, as an application, the noise generated by Raman amplification in the remote sensors systems is simulated applying such numerical modeling. The analyses of sensors systems based on diffraction gratings requires optical broadband sources to interrogate the optical sensor unit, mainly in long period gratings that shows a characteristic rejection band. Therefore, the sensor distance is limited to a few kilometers due to the attenuation in optical fibers. Additional attenuation is introduced by the sensor element. Hence, to extend the distance in the optical sensor system, the optical amplification system is needed to compensate the losses in the optical fibers. The Raman amplification technology was selected mainly due to the flexibility in the gain bandwidth. The modeling can be applied to sensor systems that monitor sites located at long distances, or in places that the access is restricted due to harsh environment conditions in such cases conventional sensors are relatively fast deteriorated.

  16. Optical interconnect assembly

    DOEpatents

    Laughlin, Daric; Abel, Philip

    2015-06-09

    An optical assembly includes a substrate with a first row of apertures and a second row of apertures. A first optical die includes a first plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each transducer element is aligned with an aperture of the first row of optical apertures. A second optical die includes a second plurality of optical transducer elements and is mounted on the substrate such that an optical signal interface of each of the second plurality of optical transducer elements is aligned with an aperture of the second row of optical apertures. A connector configured to mate with the optical assembly supports a plurality of optical fibers. A terminal end of each optical fiber protrudes from the connector and extends into one of the apertures when the connector is coupled with the optical assembly.

  17. Modal interference fiber optic sensor

    NASA Astrophysics Data System (ADS)

    Kondrat, Marcin; Szustakowski, Mieczyslaw; Gorka, Andrzej; Palka, Norbert; Zyczkowski, Marek; Niznik, Sylwester

    2004-11-01

    Modal Interference Fiber Optic Sensor (MIFOS) for permanent monitoring of the network is presented. A mechanical disturbance of a fiber cable influences on intensity distribution at the end-face of a multimode fiber. Variations in interfering images are analysed by means of a digital processing unit that determines the alarm in case of unauthorized access along the whole length of the fiber. A contrast of an interference pattern and a procedure of fiber optic selection for the sensor are shown. A simple criterion that bases on changes of local maximums positions of the interference patterns is applied. A laboratory arrangement of the sensor and its experimental research are shown.

  18. Coating processes for plastic optics

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike

    2014-02-01

    Transparent plastics have been used for optical applications with growing demand. This development is accompanied by a desire for extended surface functionalities. Most important optical surface function is antireflection (AR), which is performed mainly by applying plasma-assisted processes. Critical considerations for coating polymers include interaction with emission from plasma and thermal stress. State-of-the-art vacuum processes for coating on plastic, as well as new results of research and development in the fields of AR design and AR structures will be introduced and discussed.

  19. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  20. Optical based tactile shear and normal load sensor

    SciTech Connect

    Salisbury, Curt Michael

    2015-06-09

    Various technologies described herein pertain to a tactile sensor that senses normal load and/or shear load. The tactile sensor includes a first layer and an optically transparent layer bonded together. At least a portion of the first layer is made of optically reflective material. The optically transparent layer is made of resilient material (e.g., clear silicone rubber). The tactile sensor includes light emitter/light detector pair(s), which respectively detect either normal load or shear load. Light emitter(s) emit light that traverses through the optically transparent layer and reflects off optically reflective material of the first layer, and light detector(s) detect and measure intensity of reflected light. When a normal load is applied, the optically transparent layer compresses, causing a change in reflected light intensity. When shear load is applied, a boundary between optically reflective material and optically absorptive material is laterally displaced, causing a change in reflected light intensity.

  1. Optical Backplane Interconnection

    NASA Technical Reports Server (NTRS)

    Hendricks, Herbert D.

    1991-01-01

    Optical backplane interconnection (OBIT), method of optically interconnecting many parallel outputs from data processor to many parallel inputs of other data processors by optically changing wavelength of output optical beam. Requires only one command: exact wavelength necessary to make connection between two desired processors. Many features, including smallness advantageous to incorporate OBIT into integrated optical device. Simplifies or eliminates wiring and speeds transfer of data over existing electrical or optical interconnections. Computer hookups and fiber-optical communication networks benefit from concept.

  2. Optical Instruments

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  3. Optical Nanodozers

    NASA Astrophysics Data System (ADS)

    Khorshid, Ahmed; Reisner, Walter; Sakaue, Takahiro

    2015-03-01

    Experiment, simulation and scaling analytics are converging on a comprehensive picture regarding the equilibrium behaviour of nanochannel confined semiflexible, self-avoiding chains. Yet, strongly non-equilibrium behaviour of confined polymers is largely unexplored from either an experimental or theoretical point of view. Combining optical trapping and nanofluidics, we have developed a ``nanodozer'' assay for quantifying confined polymer dynamics. An optical trap is used to slide a nanosphere at a fixed velocity along a nanochannel. The trapped bead acts as a permeable gasket, letting fluid escape but preventing the polymer from passing. As the sliding bead comes in contact with a nanochannel extended DNA, the molecule is dynamically compressed, undergoing transient dynamics characterized by a traveling concentration ``shockwave'' before reaching a final steady state with a ramp-like concentration profile. Remarkably, these strongly non-equilibrium measurements can be quantified via a simple nonlinear convective-diffusion formalism and yield insights into the local blob statistics, allowing us to conclude that the compressed nanochannel confined chain exhibits mean-field behaviour.

  4. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (Inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  5. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  6. Optical properties of armchair (7, 7) single walled carbon nanotubes

    SciTech Connect

    Gharbavi, K.; Badehian, H.

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.

  7. Is there an optimal basis to maximise optical information transfer?

    PubMed Central

    Chen, Mingzhou; Dholakia, Kishan; Mazilu, Michael

    2016-01-01

    We establish the concept of the density of the optical degrees of freedom that may be applied to any photonics based system. As a key example of this versatile approach we explore information transfer using optical communication. We demonstrate both experimentally, theoretically and numerically that the use of a basis set with fields containing optical vortices does not increase the telecommunication capacity of an optical system. PMID:26976626

  8. Characterization of optical quantum circuits using resonant phase shifts

    NASA Astrophysics Data System (ADS)

    Poot, M.; Tang, H. X.

    2016-09-01

    We demonstrate that important information about linear optical circuits can be obtained through the phase shift induced by integrated optical resonators. As a proof of principle, the phase of an unbalanced Mach-Zehnder interferometer is determined. Then, the method is applied to a complex optical circuit designed for linear optical quantum computation. In this controlled-NOT gate with qubit initialization and tomography stages, the relative phases, as well as the coupling ratios of its directional couplers, are determined.

  9. A new optical antennas based on fiber coupling system and aspherical optical system

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Tian, Shaohua

    2013-08-01

    Space Laser communication is a new technology in recent years of optical communications, optical antenna is a communications front receiving system, compose of the optical antenna receiver, optical fiber coupling lenses. Optical antenna to receive as much as possible the signal light from the target of free space, In this paper, 10.6μm wavelength of infrared light for communication wave, we use spherical mirror and aspheric lens combination of the system, Design of large diameter concave mirror to collect more laser energy, After another spherical convex mirror reflection again to aspherical lens, then coupled into the fiber. The aspheric lens can be a good feature to correct aberration, so this design has less transmission loss and high coupling efficiency. Using Zemax software, we setting reasonable energy analysis and image quality evaluation, design spherical mirrors and aspherical refractive lenses optical system, has good optical performance and economy, can be apply on the atmospheric Laser communication the receiving device.

  10. Active optics, adaptive optics, and laser guide stars.

    PubMed

    Hubin, N; Noethe, L

    1993-11-26

    Optical astronomy is crucial to our understanding of the universe, but the capabilities of ground-based telescopes are severely limited by the effects of telescope errors and of the atmosphere on the passage of light. Recently, it has become possible to construct inbuilt corrective devices that can compensate for both types of degradations as observations are conducted. For full use of the newly emerged class of 8-meter telescopes, such active corrective capabilities, known as active and adaptive optics, are essential. Some physical limitations in the adaptive optics field can be overcome by artificially created reference stars, called laser guide stars. These new technologies have lately been applied with success to some medium and very large telescopes. PMID:17736819

  11. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  12. The Routledge Applied Linguistics Reader

    ERIC Educational Resources Information Center

    Wei, Li, Ed.

    2011-01-01

    "The Routledge Applied Linguistics Reader" is an essential collection of readings for students of Applied Linguistics. Divided into five sections: Language Teaching and Learning, Second Language Acquisition, Applied Linguistics, Identity and Power and Language Use in Professional Contexts, the "Reader" takes a broad interpretation of the subject…

  13. Congenital optic tract hypoplasia.

    PubMed

    Hatsukawa, Yoshikazu; Fujio, Takahiro; Nishikawa, Masanori; Taylor, David

    2015-08-01

    We report a case of isolated unilateral optic tract hypoplasia, described only twice previously. Bilateral optic disk hypoplasia was seen ophthalmoscopically and visual field studies showed an incongruous right homonymous hemianopia. Magnetic resonance imaging showed bilateral hypoplasia of both optic nerves and the left optic tract. Spectral domain optical coherence tomography mapping correlated well with the visual field studies. PMID:26228965

  14. Method for ultrafast optical deflection enabling optical recording via serrated or graded light illumination

    DOEpatents

    Heebner, John E.

    2009-09-08

    In one general embodiment, a method for deflecting an optical signal input into a waveguide is provided. In operation, an optical input signal is propagated through a waveguide. Additionally, an optical control signal is applied to a mask positioned relative to the waveguide such that the application of the optical control signal to the mask is used to influence the optical input signal propagating in the waveguide. Furthermore, the deflected optical input signal output from the waveguide is detected in parallel on an array of detectors. In another general embodiment, a beam deflecting structure is provided for deflecting an optical signal input into a waveguide, the structure comprising at least one wave guiding layer for guiding an optical input signal and at least one masking layer including a pattern configured to influence characteristics of a material of the guiding layer when an optical control signal is passed through the masking layer in a direction of the guiding layer. In another general embodiment, a system is provided including a waveguide, an attenuating mask positioned on the waveguide, and an optical control source positioned to propagate pulsed laser light towards the attenuating mask and the waveguide such that a pattern of the attenuating mask is applied to the waveguide and material properties of at least a portion of the waveguide are influenced.

  15. Honeywell FLASH fiber optic motherboard evaluations

    NASA Astrophysics Data System (ADS)

    Stange, Kent

    1996-10-01

    The use of fiber optic data transmission media can make significant contributions in achieving increasing performance and reduced life cycle cost requirements placed on commercial and military transport aircraft. For complete end-to-end fiber optic transmission, photonics technologies and techniques need to be understood and applied internally to the aircraft line replaceable units as well as externally on the interconnecting aircraft cable plant. During a portion of the Honeywell contribution to Task 2A on the Fly- by-Light Advanced System Hardware program, evaluations were done on a fiber optic transmission media implementation internal to a Primary Flight Control Computer (PFCC). The PFCC internal fiber optic transmission media implementation included a fiber optic backplane, an optical card-edge connector, and an optical source/detector coupler/installation. The performance of these optical media components were evaluated over typical aircraft environmental stresses of temperature, vibration, and humidity. These optical media components represent key technologies to the computer end-to-end fiber optic transmission capability on commercial and military transport aircraft. The evaluations and technical readiness assessments of these technologies will enable better perspectives on productization of fly-by-light systems requiring their utilizations.

  16. Optical manifold

    SciTech Connect

    Falicoff, Waqidi; Chaves, Julio C.; Minano, Juan Carlos; Benitez, Pablo; Dross, Oliver; Parkyn, Jr., William A.

    2010-02-23

    Optical systems are described that have at least one source of a beam of blue light with divergence under 15.degree.. A phosphor emits yellow light when excited by the blue light. A collimator is disposed with the phosphor and forms a yellow beam with divergence under 15.degree.. A dichroic filter is positioned to transmit the beam of blue light to the phosphor and to reflect the beam of yellow light to an exit aperture. In different embodiments, the beams of blue and yellow light are incident upon said filter with central angles of 15.degree., 22.degree., and 45.degree.. The filter may reflect all of one polarization and part of the other polarization, and a polarization rotating retroreflector may then be provided to return the unreflected light to the filter.

  17. Optics history as effective instrument for education in optics and photonics

    NASA Astrophysics Data System (ADS)

    Stafeef, S. K.; Tomilin, M. G.

    2009-06-01

    The education problem in optics and photonics is to draw young generation on the side of light, optical science and technology. The main goal is to prove the slogan that "physics is a small part of optics": during the thousand years optics formulated the clear worldview for humanity. In fact optics is itself presents multidisciplinary collection of independent scientific arias from one hand and was a generator of new fields of knowledge from the other hand. Optics and photonics are the regions where the fundamental problems of our reality have to be solved. The mentioned functions belonged to optics during the period of civilizations development. This is a basic idea of books serial by S. Stafeev and M. Tomilin "Five Millennium of Optics" including 3 volumes. The first volume devoted to optics prehistory was edit in 2006 in Russian. Its main chapters devoted to relations between Sun and Life, the beginnings of human intelligence, megalithic viewfinders, gnomons and ancient temples orientation, archaic optical materials and elements. It also consist the optical riddles of that period. The volume II is devoted to Greek and Roman antiquity and is in the process of publishing. It consist the chapters on the beginning of optics, mathematical fundaments and applied optics evolution. Volume III would be devoted to Medieval and Renaissance optics history. The materials are used at our university in a course "The Modern Natural Science Conceptions" for students and graduate students. In our paper the possibilities of optics history as effective instrument for education in optics and photonics are discussed.

  18. Reflective Optics for Microdiffraction

    SciTech Connect

    Ice, Gene E

    2007-01-01

    Nondispersive optics are essential for emerging microdiffraction and nanobeam research. Here we describe extensions to traditional Kirkpatrick Baez optics required to develop nondispersive microdiffraction and nanoprobe optics with 1-10 nm spatial resolution.

  19. Optical data latch

    DOEpatents

    Vawter, G. Allen

    2010-08-31

    An optical data latch is formed on a substrate from a pair of optical logic gates in a cross-coupled arrangement in which optical waveguides are used to couple an output of each gate to an photodetector input of the other gate. This provides an optical bi-stability which can be used to store a bit of optical information in the latch. Each optical logic gate, which can be an optical NOT gate (i.e. an optical inverter) or an optical NOR gate, includes a waveguide photodetector electrically connected in series with a waveguide electroabsorption modulator. The optical data latch can be formed on a III-V compound semiconductor substrate (e.g. an InP or GaAs substrate) from III-V compound semiconductor layers. A number of optical data latches can be cascaded to form a clocked optical data shift register.

  20. Fiber optic multiplex optical transmission system

    NASA Technical Reports Server (NTRS)

    Bell, C. H. (Inventor)

    1977-01-01

    A multiplex optical transmission system which minimizes external interference while simultaneously receiving and transmitting video, digital data, and audio signals is described. Signals are received into subgroup mixers for blocking into respective frequency ranges. The outputs of these mixers are in turn fed to a master mixer which produces a composite electrical signal. An optical transmitter connected to the master mixer converts the composite signal into an optical signal and transmits it over a fiber optic cable to an optical receiver which receives the signal and converts it back to a composite electrical signal. A de-multiplexer is coupled to the output of the receiver for separating the composite signal back into composite video, digital data, and audio signals. A programmable optic patch board is interposed in the fiber optic cables for selectively connecting the optical signals to various receivers and transmitters.

  1. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  2. Optical absorption measurement system

    DOEpatents

    Draggoo, Vaughn G.; Morton, Richard G.; Sawicki, Richard H.; Bissinger, Horst D.

    1989-01-01

    The system of the present invention contemplates a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature.

  3. Laser-Induced Damage Threshold and Certification Procedures for Optical Materials

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This document provides instructions for performing laser-induced-damage-threshold tests and pass-fail certification tests on optical materials used in pulsed-laser systems. The optical materials to which these procedures apply include coated and uncoated optical substrates, laser crystals, Q-switches, polarizers, and other optical components employed in pulsed-laser systems.

  4. Optical-assembly periodic structure of ferrofluids in a liquid core/metal cladding optical waveguide.

    PubMed

    Wang, Xianping; Yin, Cheng; Sun, Jingjing; Han, Qingbang; Li, Honggen; Sang, Minghuang; Yuan, Wen; Cao, Zhuangqi

    2013-11-01

    We present a novel and simple mechanism for the fabrication of periodic microstructure based on a ferrofluids core/metal cladding optical waveguide chip. The ultrahigh-order modes excited in the millimeter scale guiding layer lead to the ordered particle aggregates in ferrofluids without applying a magnetic field. Since the absorption of photons by the extremely dilute ferrofluids is extremely small and the Soret effect is not noticeable, a tentative explanation in terms of the optical trapping effect is proposed. Furthermore, this scheme exhibits all-optically tunable reflectivity and lateral Goos-Hänchen shift, which potentially may be for practical use in novel optical devices. PMID:24216657

  5. Optical Magnetometer Incorporating Photonic Crystals

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; Florescu, Lucia

    2007-01-01

    According to a proposal, photonic crystals would be used to greatly increase the sensitivities of optical magnetometers that are already regarded as ultrasensitive. The proposal applies, more specifically, to a state-of-the-art type of quantum coherent magnetometer that exploits the electromagnetically-induced-transparency (EIT) method for determining a small change in a magnetic field indirectly via measurement of the shift, induced by that change, in the hyperfine levels of resonant atoms exposed to the field.

  6. Optical-to-optical interface device

    NASA Technical Reports Server (NTRS)

    Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.

    1975-01-01

    An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.

  7. Fiber optic monitoring device

    DOEpatents

    Samborsky, J.K.

    1993-10-05

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information. 4 figures.

  8. Nanosecond liquid crystalline optical modulator

    DOEpatents

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying the electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.

  9. Research on scheme of applying ASON to current networks

    NASA Astrophysics Data System (ADS)

    Mao, Y. F.; Li, J. R.; Deng, L. J.

    2008-10-01

    Automatically Switched Optical Network (ASON) is currently a new and hot research subject in the world. It can provide high bandwidth, high assembly flexibility, high network security and reliability, but with a low management cost. It is presented to meet the requirements for high-throughput optical access with stringent Quality of Service (QoS). But as a brand new technology, ASON can not be supported by the traditional protocol software and network equipments. And the approach to build a new ASON network on the basis of completely abandoning the traditional optical network facilities is not desirable, because it costs too much and wastes a lot of network resources can also be used. So how to apply ASON to the current networks and realize the smooth transition between the existing network and ASON has been a serious problem to many network operators. In this research, the status in quo of ASON is introduced first and then the key problems should be considered when applying ASON to current networks are discussed. Based on this, the strategies should be complied with to overcome these key problems are listed. At last, the approach to apply ASON to the current optical networks is proposed and analyzed.

  10. FY 1990 Applied Sciences Branch annual report

    SciTech Connect

    Keyes, B.M.; Dippo, P.C.

    1991-11-01

    The Applied Sciences Branch actively supports the advancement of DOE/SERI goals for the development and implementation of the solar photovoltaic technology. The primary focus of the laboratories is to provide state-of-the-art analytical capabilities for materials and device characterization and fabrication. The branch houses a comprehensive facility which is capable of providing information on the full range of photovoltaic components. A major objective of the branch is to aggressively pursue collaborative research with other government laboratories, universities, and industrial firms for the advancement of photovoltaic technologies. Members of the branch disseminate research findings to the technical community in publications and presentations. This report contains information on surface and interface analysis, materials characterization, development, electro-optical characterization module testing and performance, surface interactions and FTIR spectroscopy.

  11. Design of transmitting optical antenna of a terrestrial line-sight optical communication

    NASA Astrophysics Data System (ADS)

    Chen, Jian-wen; Liu, Zi-li; Huang, Zai-lu

    2006-02-01

    By using the Gaussian light beam approximation and from the viewpoint of mode matching, the optical coupling theory between single mode fiber and optical antenna, which is based on the matrix optical theory and the ABCD law, is employed to present a universal designing method for transmitting optical antenna of a terrestrial line-sight optical communication system .The physical meaning and choosing method with its relative parameter are also discussed in detail, and an experimental example of the transmitting optical antenna for a terrestrial line-sight optical communication system is given as well. Through the testing of the designed transmitting optical antenna with the help of a laser light beam analysis instrument, the incident Gaussian light beam waist spot radius is 4.7μm, while the divergence angles of the transmitting Gaussian light beam in the two perpendicular directions are 1.9mrad and 1.5mrad, respectively, which can almost agree with the parameters of the designing theory above. In the end, the possibility of improving the quality of transmitting optical antenna and the reliability of space optical communication through applying technologies such as converting the elliptical Gaussian light beam into the round Gaussian light beam, the plane coupling into the spherical coupling and film-plating the optical antenna etc is discussed.

  12. Roadmap on quantum optical systems

    NASA Astrophysics Data System (ADS)

    Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.

    2016-09-01

    This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.

  13. Aluminum Nanoholes for Optical Biosensing.

    PubMed

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-07-09

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation--which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports--the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.

  14. Aluminum Nanoholes for Optical Biosensing

    PubMed Central

    Barrios, Carlos Angulo; Canalejas-Tejero, Víctor; Herranz, Sonia; Urraca, Javier; Moreno-Bondi, María Cruz; Avella-Oliver, Miquel; Maquieira, Ángel; Puchades, Rosa

    2015-01-01

    Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs. PMID:26184330

  15. Optical extensometer

    DOEpatents

    Walker, Ray A.; Reich, Fred R.; Russell, James T.

    1978-01-01

    An optical extensometer is described using sequentially pulsed light beams for measuring the dimensions of objects by detecting two opposite edges of the object without contacting the object. The light beams may be of different distinguishable light characteristics, such as polarization or wave length, and are time modulated in an alternating manner at a reference frequency. The light characteristics are of substantially the same total light energy and are distributed symmetrically. In the preferred embodiment two light beam segments of one characteristic are on opposite sides of a middle segment of another characteristic. As a result, when the beam segments are scanned sequentially across two opposite edges of the object, they produce a readout signal at the output of a photoelectric detector that is compared with the reference signal by a phase comparator to produce a measurement signal with a binary level transition when the light beams cross an edge. The light beams may be of different cross sectional geometries, including two superimposed and concentric circular beam cross sections of different diameter, or two rectangular cross sections which intersect with each other substantially perpendicular so only their central portions are superimposed. Alternately, a row of three light beams can be used including two outer beams on opposite sides and separate from a middle beam. The three beams may all be of the same light characteristic. However it is preferable that the middle beam be of a different characteristic but of the same total energy as the two outer beams.

  16. Optic neuritis

    PubMed Central

    Pau, D; Al Zubidi, N; Yalamanchili, S; Plant, G T; Lee, A G

    2011-01-01

    Aims The aim of this study is to provide a clinical update on optic neuritis (ON), its association with multiple sclerosis (MS), and neuromyelitis optica (NMO). Methods This study included a PubMed review of the literature written in the English language. Results ON in adults is typically idiopathic or demyelinating, and is characterised by unilateral, subacute, painful loss of vision that is not associated with any systemic or other neurological symptoms. Demyelinating ON is associated with MS, and we review the key studies of ON including the ON treatment trial and several other MS treatment trials and NMO. Conclusion Acute demyelinating ON can occur in isolation or be associated with MS. Typical ON does not require additional evaluation other than cranial magnetic resonance imaging. NMO is likely a separate disorder from MS and the ON in NMO has a different treatment and prognosis. Methodology The authors conducted an English language search using Pubmed from the years 1964 to 2010 using the search terms ‘ON', ‘MS' and ‘NMO'. The authors included original articles, review articles, and case reports, which revealed new aspects as far as epidemiology, histopathology, clinical manifestations, imaging, genetics, and treatment of ON. Titles were reviewed for topicality and full references were obtained. Letters to the editor, unpublished work, and abstracts were not included in this review. PMID:21527960

  17. Optically defined mechanical geometry

    NASA Astrophysics Data System (ADS)

    Barasheed, Abeer Z.; Müller, Tina; Sankey, Jack C.

    2016-05-01

    In the field of optomechanics, radiation forces have provided a particularly high level of control over the frequency and dissipation of mechanical elements. Here we propose a class of optomechanical systems in which light exerts a similarly profound influence over two other fundamental parameters: geometry and mass. By applying an optical trap to one lattice site of an extended phononic crystal, we show it is possible to create a tunable, localized mechanical mode. Owing to light's simultaneous and constructive coupling with the structure's continuum of modes, we estimate that a trap power at the level of a single intracavity photon should be capable of producing a significant effect within a realistic, chip-scale device.

  18. Transverse strain measurements using fiber optic grating based sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor)

    1998-01-01

    A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.

  19. Optical spectroscopy of novel materials

    NASA Astrophysics Data System (ADS)

    Reijnders, Anjan A.

    , but insensitive to the band inversion. Due to the high bulk doping level, no surface state signatures are observed. The thesis concludes with a novel analytical technique to reliably remove Fabry-Perot fringes from optical data. Moreover, this technique can be used to determine a semitransparent sample's thickness and evaluate its structural integrity in a single measurement. To illustrate its efficacy, the technique is applied to optical spectra of 9 different samples, including topological insulators, thermoelectrics, semiconductors, and magnetic insulators.

  20. Optical NAND gate

    DOEpatents

    Skogen, Erik J.; Raring, James; Tauke-Pedretti, Anna

    2011-08-09

    An optical NAND gate is formed from two pair of optical waveguide devices on a substrate, with each pair of the optical waveguide devices consisting of an electroabsorption modulator and a photodetector. One pair of the optical waveguide devices is electrically connected in parallel to operate as an optical AND gate; and the other pair of the optical waveguide devices is connected in series to operate as an optical NOT gate (i.e. an optical inverter). The optical NAND gate utilizes two digital optical inputs and a continuous light input to provide a NAND function output. The optical NAND gate can be formed from III-V compound semiconductor layers which are epitaxially deposited on a III-V compound semiconductor substrate, and operates at a wavelength in the range of 0.8-2.0 .mu.m.

  1. Large optics fabrication and testing at the College of Optical Sciences

    NASA Astrophysics Data System (ADS)

    Burge, James H.

    2014-10-01

    The origin of the Optical Sciences Center (OSC) at the University of Arizona was closely tied to the need to expand the national capability for manufacturing large optics. This connection allowed OSC to grow quickly to become a truly unique place where new technologies are born and applied and where students have opportunities to apply academic lessons to real-world projects. In the decades that follow, OSC has grown to become a leader in many other optical disciplines, including photonics, imaging, optical engineering, and optical physics. But the core capability of optical fabrication and testing has remained as a unique University of Arizona asset. The last decade has seen explosive growth in development and implementation of new technologies for manufacturing and measuring large optics at the College of Optical Sciences. The classic polishing techniques have given way to advanced computer controlled machines and highly engineered laps. New measuring methods have enabled accurate metrology of steeply aspheric surfaces, concave and convex, symmetric and freeform. This paper discusses the history of optical fabrication and testing at University of Arizona and reviews some recent major projects and the technical developments that have enabled their success.

  2. Adaptive optical ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Zhang, Jinghui; Shen, Hong; Qiao, Chunhong; Wang, Yingjian

    2012-12-17

    We demonstrate for the first time (to our knowledge) that a high-quality image can still be obtained in atmospheric turbulence by applying adaptive optical ghost imaging (AOGI) system even when conventional ghost imaging system fails to produce an image. The performance of AOGI under different strength of atmospheric turbulence is investigated by simulation. The influence of adaptive optics system with different numbers of adaptive mirror elements on obtained image quality is also studied.

  3. A Survey of Applied Linguistics.

    ERIC Educational Resources Information Center

    Wardhaugh, Ronald, Ed.; Brown, H. Douglas, Ed.

    This book provides a comprehensive review of the major areas of applied linguistics with original contributions by fourteen scholars. The following chapters are included: (1) "What is Applied Linguistics?" by H. Douglas Brown; (2) "Language Development," by Lois Bloom; (3) "First Language Teaching," by Jean Malmstrom (discusses the teaching of…

  4. Conversation Analysis and Applied Linguistics.

    ERIC Educational Resources Information Center

    Schegloff, Emanuel A.; Koshik, Irene; Jacoby, Sally; Olsher, David

    2002-01-01

    Offers biographical guidance on several major areas of conversation-analytic work--turn-taking, repair, and word selection--and indicates past or potential points of contact with applied linguistics. Also discusses areas of applied linguistic work. (Author/VWL)

  5. Writing, Literacy, and Applied Linguistics.

    ERIC Educational Resources Information Center

    Leki, Ilona

    2000-01-01

    Discusses writing and literacy in the domain of applied linguistics. Focus is on needs analysis for literacy acquisition; second language learner identity; longitudinal studies as extensions of identity work; and applied linguistics contributions to second language literacy research. (Author/VWL)

  6. Applied Communication. Florida Teaching Supplement.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Adult, and Community Education.

    The information in this supplementary notebook is intended to provide teachers with additional materials, ideas, suggestions, and activities to help in implementing the Applied Communication modules that combine language arts skills with vocational applications. The Applied Communication instructional materials were funded and developed by a…

  7. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  8. Optical Twist Induced by Plasmonic Resonance

    NASA Astrophysics Data System (ADS)

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-06-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster.

  9. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  10. Optical Twist Induced by Plasmonic Resonance

    PubMed Central

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  11. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  12. Optical vortex beam generator at nanoscale level

    NASA Astrophysics Data System (ADS)

    Garoli, Denis; Zilio, Pierfrancesco; Gorodetski, Yuri; Tantussi, Francesco; de Angelis, Francesco

    2016-07-01

    Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a plasmonic optical vortex emitter, based on a metal-insulator-metal holey plasmonic vortex lens. Our plasmonic element is shown to convert impinging circularly polarized light to an orbital angular momentum state capable of propagating to the far-field. Moreover, the emerging OAM can be externally adjusted by switching the handedness of the incident light polarization. The device has a radius of few micrometers and the OAM beam is generated from subwavelength aperture. The fabrication of integrated arrays of PVLs and the possible simultaneous emission of multiple optical vortices provide an easy way to the large-scale integration of optical vortex emitters for wide-ranging applications.

  13. Fiber optics in flight test instrumentation applications

    NASA Astrophysics Data System (ADS)

    Bleimeyer, M. C.

    1981-11-01

    Fiber optics has applications in instrumentation, including the areas of components, cabling, links, and sensors. Several problems and solutions of applying optics in an airborne environment are presented, and tests to determine which components are airworthy and field applicable are discussed. The connector evaluation showed that there are no ideal fiber optic connectors presently on the market; those tested had a tolerable insertion loss, but were too large or had a termination procedure which did not lend itself to field use. Flight testing of an off-the-shelf link proved it had limited airborne use; it was suggested, however, that interface for systems and sensors be designed for special needs. Several fiber-optic cables were found airworthy and suitable for field use. A glass-on-glass cable gave highest data rates and low loss. Despite the little information available on fiber optic sensors, research is being conducted to develop sensors for temperature, acceleration, pressure, fuel flow, and strain.

  14. Orbital Debris Characterization via Laboratory Optical Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Healther

    2011-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter,wavelength regime,and altitude range). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. These data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital objects is a key objective of NASA's Optical Measurement Program, and the primary reason for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations.

  15. Optical Twist Induced by Plasmonic Resonance.

    PubMed

    Chen, Jun; Wang, Neng; Cui, Liyong; Li, Xiao; Lin, Zhifang; Ng, Jack

    2016-01-01

    Harvesting light for optical torque is of significant importance, owing to its ability to rotate nano- or micro-objects. Nevertheless, applying a strong optical torque remains a challenging task: angular momentum must conserve but light is limited. A simple argument shows the tendency for two objects with strong mutual scattering or light exchange to exhibit a conspicuously enhanced optical torque without large extinction or absorption cross section. The torque on each object is almost equal but opposite, which we called optical twist. The effect is quite significant for plasmonic particle cluster, but can also be observed in structures with other morphologies. Such approach exhibits an unprecedentedly large torque to light extinction or absorption ratio, enabling limited light to exert a relatively large torque without severe heating. Our work contributes to the understanding of optical torque and introduces a novel way to manipulate the internal degrees of freedom of a structured particle cluster. PMID:27291860

  16. Optics education in a developing country

    NASA Astrophysics Data System (ADS)

    Jonathan, Enock

    2005-10-01

    An optics laboratory plays a critical role in optics education. A major challenge for optics educators in Africa is the shortage or non-availability of laboratory teaching equipment. Optics teaching equipment is beyond the budget of most universities in the developing world such as the new National University of Science and Technology in Zimbabwe. The paper details a successful strategy - local fabrication/assembling of optics laboratory teaching aids - adopted by the Applied Physics Department at Zimbabwe's National University of Science and Technology. Students and technical staff under the guidance of an academic member of staff do equipment fabrication and assembling. The paper describes some of the project-type set-ups for performing experiments on (1) laser light scattering and impurity determination; (2) industrial imaging inspection (3) light transmission and reflection and (4) refractive index measurement.

  17. Optical design and development of the Near Range Lidar system for aerosol investigation at Belsk

    NASA Astrophysics Data System (ADS)

    Posyniak, Michal; Piatruczuk, Aleksander; Szkop, Artur

    2015-04-01

    The development of the lidar system in the Central Geophysics Observatory at Belsk (Poland) is presented. Belsk is an aerosol background site located in a rural area about 50 km south from Warsaw. A new near range (NR) lidar was added to the existing far range (FR) lidar system to enable the acquisition of lidar signals at the distance of a few hundred meters from the device. In the existing design of the FR lidar a 600 mm diameter mirror was used which resultedin anoverlap over 1500 mmaking this device suitable for observations of aerosols in free troposphere and lower stratosphere but not in the Planetary Boundary Layer (PBL).To enable measurements in the PBL the near range detection systemwas designed as a complement of the existing FR lidar. A secondtelescope with a set of detectors was used with the same laser as in the FR system as a light source. The Nd:YAGpulselasergenerates three wavelengths (1064, 532 and 355 nm).Energies of light pulses are about 320 mJ while their repetition rate is 15 Hz. In the optical receiver of the NR lidar a telescope with a 150 mm diameter parabolic mirror with optical fiber (1 mm core diameter) as a field stop was used. Our analysis shows that full overlap of the laser beam and the NR telescope field of view is expected at about 150 m. A polichromator based on dichroic beam splitters and a set of narrow band pass filters were used to separate wavelengths. The design of the NR lidar easily allows to add Raman channels to the system. The acquisition of the analog lidar echoes was done by photomultipliers (at 355 and 532 nm) and the avalanche photodiode (at 1064 nm). 14 bit analog to digital converters coupled with PC computer by USB 2.0 were also used.

  18. Fiber-optic remote multisensor system based on an acousto-optic tunable filter (AOTF)

    SciTech Connect

    Moreau, F.; Moreau, S.M.; Hueber, D.M.; Vo-dinh, T.

    1996-10-01

    This paper describes a new fiber-optic multisensor based on an acousto-optic tunable filter (AOTF) and capable of remote sensing using a multioptical fiber array (MOFA). A two-dimensional charge-coupled device (CCD) was used as a detector, and the AOTF was used as a wavelength selector. Unlike a tunable grating or prism-based monochromator, an AOTF has no moving parts, and an AOTF can be rapidly tuned to any wavelength in its operating range within microseconds. The large aperture of the AOTF allows the optical signal from over 100 fiber-optic sensors to be measured simultaneously. These characteristics, combined with their small size, make AOTFs an important new alternative to conventional monochromators, especially for spectral multisensing and imaging. A prototype fiber-optic multisensor system has been developed, and its feasibility for simultaneous detection of molecular luminescence signal via fiber-optic probes is demonstrated. {copyright} {ital 1996} {ital Society for Applied Spectroscopy}

  19. LSST Optical Design

    NASA Astrophysics Data System (ADS)

    Angel, J. R. P.; Claver, C. F.; Sarlot, R.; Martin, H. M.; Burge, J. H.; Tyson, J. A.; Wittman, D.; Cook, Kem

    2001-12-01

    The Large Synoptic Survey Telescope will be a facility for digitally surveying the entire visible sky for the purpose of cataloging Earth crossing asteroids, exploring the nature of dark matter and dark energy in the universe and opening the faint optical transient time window on the universe. This concept was strongly endorsed by the National Academy of Sciences in their report "Astronomy and Astrophysics in the New Millenium". In response to this endorsement we present here the design of an 8.4m modified Paul telescope that expands the etendue ("A - Omega") product by a factor of 20-50 beyond any previously realized design. The telescope presented here will deliver a 3 degree diameter field of view (7 sq. degrees) over the wavelength range 0.3-1μ m. The plate scale of 50 microns/arcsec (f/1.25) is chosen to match the pixel size of a large mosaic CCD detector 0.5 m in diameter. The primary and secondary mirrors are strongly aspheric. The f/1 primary can be made using polishing techniques and metrology methods pioneered at the Mirror Lab for the 8.4 m f/1.1 LBT primaries. The 3.5 m convex secondary is twice the size of the largest secondary yet manufactured, the 1.7 m MMT f/5 secondary. The current proven method for testing during manufacture uses a full size hologram on a transmissive element and would be expensive to scale up. Alternates involving mechanical metrology and sub-aperture optical tests are under consideration. In operation the primary mirror figure accuracy will be maintained by active optics, as is the practice for all telescope mirrors >= 6.5 m diameter. To maintain the design image quality of >80 field, the optical system must be held in accurate alignment also by an active system. We have explored the tolorances to misalignment, and find that uncompensated errors in decenters and tilts must be kept less than a few tens of microns. A number of techniques are available for continuous or periodic metrology that should allow realization of this goal

  20. Electric modulation of optical absorption in nanowires

    NASA Astrophysics Data System (ADS)

    Sakr, M. R.

    2016-11-01

    We have calculated the effect of an external electric field on the intersubband optical absorption of a nanowire subjected to a perpendicular magnetic field and Rashba effect. The absorption peaks due to optical transitions that are forbidden in the absence of the intersubband coupling experience strong amplitude modulation. This effect is quadratic in electric fields applied along the direction of quantum confinement or perpendicularly to tune the Rashba parameter. The electric field also induces frequency modulation in the associated spectrum. On the other hand, transitions that are normally allowed show, to a large extent, a parallel band effect, and accordingly they are responsible for strong optical absorption.