Sample records for applied physics research

  1. Student Learning in Physical Education: Applying Research To Enhance Instruction. Second Edition.

    ERIC Educational Resources Information Center

    Silverman, Steven J., Ed.; Ennis, Catherine D., Ed.

    This book provides the latest research on physical education curriculum, teaching, and teacher education and shows physical educators how to apply this knowledge to their day-to-day practices. There are 19 chapters in five parts. Part 1, "Overview of the Field," includes (1) "Enhancing Learning: An Introduction" (Stephen J. Silverman and Catherine…

  2. Applications of Nuclear and Particle Physics Technology: Particles & Detection — A Brief Overview

    NASA Astrophysics Data System (ADS)

    Weisenberger, Andrew G.

    A brief overview of the technology applications with significant societal benefit that have their origins in nuclear and particle physics research is presented. It is shown through representative examples that applications of nuclear physics can be classified into two basic areas: 1) applying the results of experimental nuclear physics and 2) applying the tools of experimental nuclear physics. Examples of the application of the tools of experimental nuclear and particle physics research are provided in the fields of accelerator and detector based technologies namely synchrotron light sources, nuclear medicine, ion implantation and radiation therapy.

  3. Applying Cluster Analysis to Physics Education Research Data

    ERIC Educational Resources Information Center

    Springuel, R. Padraic

    2010-01-01

    One major thrust of Physics Education Research (PER) is the identification of student ideas about specific physics concepts, both correct ideas and those that differ from the expert consensus. Typically the research process of eliciting the spectrum of student ideas involves the administration of specially designed questions to students. One major…

  4. PREFACE: First International Meeting on Applied Physics (APHYS-2003)

    NASA Astrophysics Data System (ADS)

    Méndez-Vilas, A.; Chacón, R.

    2005-01-01

    This special issue of Physica Scripta contains papers presented at the 1st International Meeting on Applied Physics (APHYS-2003), held in Badajoz (Spain), from 13th to 18th October 2003, and more specifically, selected papers presented during the conference sessions mainly on Applied Optics, Laser Physics, Ultrafast Phenomena, Optical Materials, Semiconductor Materials and Devices, Optoelectronics, Quantum Electronics and Applied Solid State Physics-Chemistry. APHYS-2003 was born as an attempt to create a new international forum on Applied Physics in Europe. Since Applied Physics is not really a branch of Physics, but the application of all the branches of Physics to the broad realms of practical problems in Science, Engineering and Industry, this conference was a truly multi and inter-disciplinary event. The organizers called for papers relating Physics with other sciences such as Biology, Chemistry, Information Science, Medicine, etc, or relating different Physics areas, and aimed at solving practical problems. In other words, the Conference was specifically interested in reports applying the techniques, the training, and the culture of Physics to research areas usually associated with other scientific and engineering disciplines. It was extremely rewarding that over 800 researchers, from over 65 countries, attended the conference, where more than 1000 research papers were presented. We feel really proud of this excellent response obtained (in number and quality), for this first edition of the conference. We are very grateful to all the members of the Organizing Committee, for the hard work done for the preparation of the Conference (which began one year before the conference start), and to the members of the International Advisory Committee, for the valuable contribution to the evaluation of submitted works. Also thank to the referees for the excellent work done in the revision of submitted papers. Finally, we would like to thank the Department of Physics of the University of Extremadura, for their support, and the Regional Government (Junta de Extremadura/Consejería de Educación, Ciencia y Tecnología), as well as INNOVA Instrumentación, for sponsoring the Conference.

  5. Student Teachers' Attitudes about Basic Physics Laboratory

    ERIC Educational Resources Information Center

    Yesilyurt, Mustafa

    2004-01-01

    In this study an attitude questionnaire was developed and applied to identify student teachers' interests and attitudes for basic physics laboratory. In physics laboratory practices run by a higher education institution a new attitude questionnaire was developed and applied twice in two terms by researchers to increase student teachers' success…

  6. Biomedical research, development, and engineering at the Johns Hopkins University Applied Physics Laboratory. Annual report 1 October 1978-30 September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Medical Institutions of The Johns Hopkins University and The Johns Hopkins University Applied Physics Laboratory have developed a vigorous collaborative program of biomedical research, development, and systems engineering. An important objective of the program is to apply the expertise in engineering, the physical sciences, and systems analysis acquired by APL in defense and space research and development to problems of medical research and health care delivery. This program has grown to include collaboration with many of the clinical and basic science departments of the medical divisions. Active collaborative projects exist in ophthalmology, neurosensory research and instrumentation development, cardiovascular systems,more » patient monitoring, therapeutic and rehabilitation systems, clinical information systems, and clinical engineering. This application of state-of-the-art technology has contributed to advances in many areas of basic medical research and in clinical diagnosis and therapy through improvement of instrumentation, techniques, and basic understanding.« less

  7. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  8. Narcotics Misuse Victims: Is Physical Exercise for Their Fitness Needed

    NASA Astrophysics Data System (ADS)

    Tarigan, B.

    2017-03-01

    This research is purposed to find out whether physical exercise needed to improve physical fitness of narcotics misuse victims in Social Rehabilitation Center Pamardi Putera West Java Province. Survey method and field test were applied in this research. Population is all members of rehabilitation in BRSPP and the sampling technique used in this research was purposive sampling. Indonesia Physical Fitness Test (TKJI) was used as the instrument. The result of the research showed that level of narcotics misuse victims’ physical fitness is in ‘low’ category so that regular and measurable physical activity is needed in developing their physical fitness.

  9. Intentional Development: A Model to Guide Lifelong Physical Activity

    ERIC Educational Resources Information Center

    Cherubini, Jeffrey M.

    2009-01-01

    Framed in the context of researching influences on physical activity and actually working with individuals and groups seeking to initiate, increase or maintain physical activity, the purpose of this review is to present the model of Intentional Development as a multi-theoretical approach to guide research and applied work in physical activity.…

  10. Applied technology section. Monthly report, March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-04-20

    This is a monthly report giving the details on research currently being conducted at the Savannah River Technology Center. The following are areas of the research, engineering modeling and simulation, applied statistics, applied physics,experimental thermal hydraulics,and packaging and transportation.

  11. Arctic Research and Writing: A Lasting Legacy of the International Polar Year

    ERIC Educational Resources Information Center

    Englert, Karl; Coon, Brian; Hinckley, Matt; Pruis, Matt

    2009-01-01

    Recently, senior-level physics students joined thousands of scientists from over 60 nations to examine a wide range of physical, biological, and social research topics as part of the International Polar Year (IPY). Through a National Science Foundation (NSF)-funded research project, these students applied physics concepts to the study of Arctic…

  12. The Applied Behavior Analysis Research Paradigm and Single-Subject Designs in Adapted Physical Activity Research.

    PubMed

    Haegele, Justin A; Hodge, Samuel Russell

    2015-10-01

    There are basic philosophical and paradigmatic assumptions that guide scholarly research endeavors, including the methods used and the types of questions asked. Through this article, kinesiology faculty and students with interests in adapted physical activity are encouraged to understand the basic assumptions of applied behavior analysis (ABA) methodology for conducting, analyzing, and presenting research of high quality in this paradigm. The purposes of this viewpoint paper are to present information fundamental to understanding the assumptions undergirding research methodology in ABA, describe key aspects of single-subject research designs, and discuss common research designs and data-analysis strategies used in single-subject studies.

  13. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  14. Synthesis and Physical Properties of Liquid Crystals: An Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Van Hecke, Gerald R.; Karukstis, Kerry K.; Hanhan Li; Hendargo, Hansford C.; Cosand, Andrew J.; Fox, Marja M.

    2005-01-01

    A study involves multiple chemistry and physics concepts applied to a state of matter that has biological relevance. An experiment involving the synthesis and physical properties of liquid crystals illustrates the interdisciplinary nature of liquid crystal research and the practical devices derived from such research.

  15. The Effects of Peer-Administered Token Reinforcement on Jump Rope Behaviors of Elementary Physical Education Students

    ERIC Educational Resources Information Center

    Alstot, Andrew E.

    2012-01-01

    Token economies have a long research and applied history within clinical settings and classroom education (Kazdin, 1982). However, despite reported successes in improving physical activity behaviors (Alstot, 2012), research examining token reinforcement implemented specifically in physical education is virtually nonexistent. Therefore, the purpose…

  16. An Age of Change

    ERIC Educational Resources Information Center

    Koch, H. William

    1970-01-01

    Suggests that physics is undergoing important social changes. Its definition, education, information transfer, and research and development are all being modified. A systems model is proposed that applies to education, research, and information activities in physics. Bibliography. (LC)

  17. Strategic Partnership for Research in Nanotechnology

    DTIC Science & Technology

    2008-07-21

    Journal of Applied Physics, 2007. 101(5). 44. Leong, W.L., et al., Charging phenomena in pentacene -gold nanoparticle memory device. Applied Physics Letters...Agreement between experimental data and simulations strongly supports the presence of deep traps in the studied nanoparticles and highlights the ability...of SMS-EC to study energetics and dynamics of deep traps in organic materials at the nanoscale.[2] Other recent research has focused on how the

  18. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  19. Closure to "Estimated Splash and Training Wall Height Requirements for Stepped Chutes Applied to Embankment Dams" by Sherry L. Hunt and Kem C. Kadavy

    USDA-ARS?s Scientific Manuscript database

    Researchers from Hohai University in Nanjing, China compared stepped chute research conducted in physical models of narrow stepped chutes to research conducted by scientists at the USDA-ARS Hydraulic Engineering Research Unit (HERU) in a physical model of a wide stepped chute. Researchers from Hoha...

  20. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme

    PubMed Central

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila EA; Bond, Simon J; Forman, Julia R; Hoole, Andrew CF; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael PD; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon YK; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael PF; Parker, Michael A

    2017-01-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose. PMID:29177202

  1. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary 'VoxTox' research programme.

    PubMed

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila Ea; Bond, Simon J; Forman, Julia R; Hoole, Andrew Cf; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael Pd; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon Yk; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael Pf; Parker, Michael A

    2017-06-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.

  2. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...

  3. Applied Information Systems Research Program (AISRP) Workshop 3 meeting proceedings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The third Workshop of the Applied Laboratory Systems Research Program (AISRP) met at the Univeristy of Colorado's Laboratory for Atmospheric and Space Physics in August of 1993. The presentations were organized into four sessions: Artificial Intelligence Techniques; Scientific Visualization; Data Management and Archiving; and Research and Technology.

  4. PREFACE: 1st International Conference in Applied Physics and Materials Science

    NASA Astrophysics Data System (ADS)

    2015-06-01

    We are delighted to come up with thirty two (32) contributed research papers in these proceedings, focusing on Materials Science and Applied Physics as an output of the 2013 International Conference in Applied Physics and Materials Science (ICAMS2013) held on October 22-24, 2013 at the Ateneo de Davao University, Davao City, Philippines. The conference was set to provide a high level of international forum and had brought together leading academic scientists, industry professionals, researchers and scholars from universities, industries and government agencies who have shared their experiences, research results and discussed the practical challenges encountered and the solutions adopted as well as the advances in the fields of Applied Physics and Materials Science. This conference has provided a wide opportunity to establish multidisciplinary collaborations with local and foreign experts. ICAMS2013, held concurrently with 15th Samahang Pisika ng Visayas at Mindanao (SPVM) National Physics Conference and 2013 International Meeting for Complex Systems, was organized by the Samahang Pisika ng Visayas at Mindanao (Physics Society of Visayas and Mindanao) based in MSU-Iligan Institute of Technology, Iligan City, Philippines. The international flavor of converging budding researchers and experts on Materials Science and Applied Physics was the first to be organized in the 19 years of SPVM operation in the Philippines. We highlighted ICAMS2013 gathering by the motivating presence of Dr. Stuart Parkin, a British Physicist, as one of our conference's plenary speakers. Equal measures of gratitude were also due to all other plenary speakers, Dr. Elizabeth Taylor of Institute of Physics (IOP) in London, Dr. Surya Raghu of Advanced Fluidics in Maryland, USA and Prof. Hitoshi Miyata of Niigata University, Japan, Prof. Djulia Onggo of Institut Teknologi Bandung, Indonesia, and Dr. Hironori Katagiri of Nagaoka National College of Technology, Japan. The warm hospitality of the host university, Ateneo de Davao University, Davao City, Philippines blended with the overwhelming enthusiasm of the conference speakers, participants, and the unwavering support of the conference sponsors and donors and the administration of the MSU-Iligan Institute of Technology, Iligan City, Philippines, all have brought realization to the production of these proceedings.

  5. Physics division. Progress report, January 1, 1995--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, M.; Bacon, D.S.; Aine, C.J.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the fivemore » groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.« less

  6. Shifting Paradigms of Research in Medical Education.

    ERIC Educational Resources Information Center

    Irby, David M.; Edwards, Janine C. Ed.

    1990-01-01

    Medical educators debate which models of scientific research should be applied to problems in academic medicine. The reigning model was derived from the first scientific revolution of Newtonian physics. The emerging model is grounded in the second scientific revolution of Einstein's quantum physics. (Author/MSE)

  7. School Physical Education Curriculum of Iran from Experts' Perspective: "What It Is and Should Be"

    ERIC Educational Resources Information Center

    Nazari, Hossein; Jafari, Ebrahim Mirshah; Nasr, Ahmad Reza; Marandi, Seyed Mohammad

    2017-01-01

    This study aimed to evaluate the current physical education curriculum of elementary schools (first and second grades) in Iran. This is an applied study conducted using grounded theory and the research method is qualitative. The research population consisted of all professors in Iran in the field of physical education, of whom, 15 people were…

  8. Brookhaven highlights, October 1978-September 1979. [October 1978 to September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    These highlights present an overview of the major research and development achievements at Brookhaven National Laboratory from October 1978 to September 1979. Specific areas covered include: accelerator and high energy physics programs; high energy physics research; the AGS and improvements to the AGS; neutral beam development; heavy ion fusion; superconducting power cables; ISABELLE storage rings; the BNL Tandem accelerator; heavy ion experiments at the Tandem; the High Flux Beam Reactor; medium energy physics; nuclear theory; atomic and applied physics; solid state physics; neutron scattering studies; x-ray scattering studies; solid state theory; defects and disorder in solids; surface physics; the Nationalmore » Synchrotron Light Source ; Chemistry Department; Biology Department; Medical Department; energy sciences; environmental sciences; energy technology programs; National Center for Analysis of Energy Systems; advanced reactor systems; nuclear safety; National Nuclear Data Center; nuclear materials safeguards; Applied Mathematics Department; and support activities. (GHT)« less

  9. City of Physics--Analogies to Increase Cognitive Coherence in Physics Learning

    ERIC Educational Resources Information Center

    Tabor-Morris, A. E.; Froriep, K. A.; Briles, T. M.; McGuire, C. M.

    2009-01-01

    Physics educators and researchers can be concerned with how students attain cognitive coherence: specifically, how students understand and intra-connect the whole of their knowledge of the "field of physics". Starting instead with the metaphor "city of physics", the implication of applying architectural concepts for the human acquisition of mental…

  10. Applied technology section. Monthly report, December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1994-01-28

    This monthly report contains abstracts of the progress made in various projects from the applied technology section at the Savannah River Plant. Research areas include engineering modeling and simulation, applied physics, experimental thermal hydraulics, and packaging and transportation.

  11. Physical Analytics: An emerging field with real-world applications and impact

    NASA Astrophysics Data System (ADS)

    Hamann, Hendrik

    2015-03-01

    In the past most information on the internet has been originated by humans or computers. However with the emergence of cyber-physical systems, vast amount of data is now being created by sensors from devices, machines etc digitizing the physical world. While cyber-physical systems are subject to active research around the world, the vast amount of actual data generated from the physical world has attracted so far little attention from the engineering and physics community. In this presentation we use examples to highlight the opportunities in this new subject of ``Physical Analytics'' for highly inter-disciplinary research (including physics, engineering and computer science), which aims understanding real-world physical systems by leveraging cyber-physical technologies. More specifically, the convergence of the physical world with the digital domain allows applying physical principles to everyday problems in a much more effective and informed way than what was possible in the past. Very much like traditional applied physics and engineering has made enormous advances and changed our lives by making detailed measurements to understand the physics of an engineered device, we can now apply the same rigor and principles to understand large-scale physical systems. In the talk we first present a set of ``configurable'' enabling technologies for Physical Analytics including ultralow power sensing and communication technologies, physical big data management technologies, numerical modeling for physical systems, machine learning based physical model blending, and physical analytics based automation and control. Then we discuss in detail several concrete applications of Physical Analytics ranging from energy management in buildings and data centers, environmental sensing and controls, precision agriculture to renewable energy forecasting and management.

  12. Summer Interns

    Science.gov Websites

    opportunity to work on projects that support particle physics experiments in areas such as engineering , applied physics and computing. In addition, Fermilab offers opportunities for environmental studies physics research or ecology. Students and teachers are selected for their outstanding scholarship and

  13. The Case for Research in Pure Physics in Developing Countries

    NASA Astrophysics Data System (ADS)

    Mweene, H. V.

    Science and technology are the keys to modern economic development. But, it has often been argued that poor countries cannot really afford to support research, or that they should at most devote their efforts to applied science only. The scientific knowledge necessary for development would then be partly or wholly obtained from other countries. In this paper, the case will be argued that developing countries cannot afford to leave research, both pure and applied, to the developed countries and that the only way the developing world is going to solve its problems is through development driven by their own research activities. With reference to physics, the importance of research by researchers in poor countries is explained. Lastly, it is outlined how the logistics of doing research under the difficult conditions prevailing in poor countries can be managed.

  14. New Editor-in-Chief for Journal of Physics D: Applied Physics New Editor-in-Chief for Journal of Physics D: Applied Physics

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The Institute of Physics is delighted to announce that the new Editor-in-Chief for Journal of Physics D: Applied Physics will be Professor Giorgio Margaritondo of École Polytechnique Fédérale de Lausanne, Switzerland. Giorgio will, with the help of his world-class Editorial Board, maintain standards of scientific rigour whilst ensuring that research published is of the highest quality. 'I would like to praise, in particular, the leadership of my immediate predecessor and good friend, Pallab Battacharya, the pilot of the years of major qualitative growth.' said Professor Margaritondo. 'Being Pallab's successor makes my new responsibility even more challenging!' Professor Margaritondo received the Laurea Summa cum Laude from the University of Rome in 1969. He has been a full professor of Applied Physics at the EPFL since 1990. In 2001, he became Dean of the EPFL Faculty of Basic Sciences. In 2004, he was nominated Provost and he served until 2010, when he became Dean of Continuing Education. He previously worked at the Italian National Research Council, at Bell Laboratories and at the University of Wisconsin-Madison. His research activity concerns the physics of semiconductors and superconductors (electronic states, surfaces and interfaces) and of biological systems; his main experimental techniques are electron spectroscopy and spectromicroscopy, x-ray imaging and scanning near-field microscopy, including experiments with synchrotron light and with free electron lasers. Author of more than 650 scientific publications and 9 books, he was also coordinator in 1995-98 of the scientific division of the Elettra synchrotron in Trieste. In 1997-2003 he was coordinator of the European Commission Round Table on synchrotron radiation. He is the president of the Council of the European Commission Integrated Initiative on Synchrotron and Free Electron Laser Science (IA-SFS and then ELISA), the largest network in the world in this domain. He is Fellow of the American Physical Society and of the American Vacuum Society and Fellow and Chartered Physicist of the Institute of Physics.

  15. Multiple Intelligence Levels of Physical Education and Sports School Students

    ERIC Educational Resources Information Center

    Ekici, Summani

    2011-01-01

    The purpose of this research is to analyze the multiple intelligence levels of academies of physical education and sports students according to some demographic factors. To obtain data about multiple intelligence levels in the research, the multiple intelligence inventory, developed by Ozden (2003), was applied to a total of 1.199 students, of…

  16. Applying Beliefs and Resources Frameworks to the Psychometric Analyses of an Epistemology Survey

    ERIC Educational Resources Information Center

    Yerdelen-Damar, Sevda; Elby, Andrew; Eryilmaz, Ali

    2012-01-01

    This study explored how researchers' views about the form of students' epistemologies influence how the researchers develop and refine surveys and how they interpret survey results. After running standard statistical analyses on 505 physics students' responses to the Turkish version of the Maryland Physics Expectations-II survey, probing students'…

  17. Comparing the Math Anxiety of Secondary School Female Students in Groups (Science and Mathematical Physics) Public Schools

    ERIC Educational Resources Information Center

    Vakili, Khatoon; Pourrazavy, Zinat alsadat

    2017-01-01

    The aim of this study is comparing math anxiety of secondary school female students in groups (Science and Mathematical Physics) Public Schools, district 2, city of Sari. The purpose of the research is applied research, it is a development branch, and in terms of the nature and method, it is a causal-comparative research. The statistical…

  18. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?

    PubMed Central

    Keshner, Emily A

    2004-01-01

    Virtual reality (VR) technology is rapidly becoming a popular application for physical rehabilitation and motor control research. But questions remain about whether this technology really extends our ability to influence the nervous system or whether moving within a virtual environment just motivates the individual to perform. I served as guest editor of this month's issue of the Journal of NeuroEngineering and Rehabilitation (JNER) for a group of papers on augmented and virtual reality in rehabilitation. These papers demonstrate a variety of approaches taken for applying VR technology to physical rehabilitation. The papers by Kenyon et al. and Sparto et al. address critical questions about how this technology can be applied to physical rehabilitation and research. The papers by Sveistrup and Viau et al. explore whether action within a virtual environment is equivalent to motor performance within the physical environment. Finally, papers by Riva et al. and Weiss et al. discuss the important characteristics of a virtual environment that will be most effective for obtaining changes in the motor system. PMID:15679943

  19. Nuclear Security Applications of Antineutrino Detectors: Current Capabilities and Future Prospects

    DOE PAGES

    Bernstein, Adam; Baldwin, George; Boyer, Brian; ...

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline—Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This work presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline with other ongoingmore » fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  20. Nuclear security applications of antineutrino detectors : current capabilities and future prospects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, A.; Goodman, M.; Baldwin, G.

    2010-12-10

    Antineutrinos are electrically neutral, nearly massless fundamental particles produced in large numbers in the cores of nuclear reactors and in nuclear explosions. In the half century since their discovery, major advances in the understanding of their properties, and in detector technology, have opened the door to a new discipline - Applied Antineutrino Physics. Because antineutrinos are inextricably linked to the process of nuclear fission, there are many applications of interest in nuclear nonproliferation. This paper presents a comprehensive survey of applied antineutrino physics relevant for nonproliferation, summarizes recent advances in the field, describes the overlap of this nascent discipline withmore » other ongoing fundamental and applied antineutrino research, and charts a course for research and development for future applications. It is intended as a resource for policymakers, researchers, and the wider nuclear nonproliferation community.« less

  1. A survey of social media data analysis for physical activity surveillance.

    PubMed

    Liu, Sam; Young, Sean D

    2018-07-01

    Social media data can provide valuable information regarding people's behaviors and health outcomes. Previous studies have shown that social media data can be extracted to monitor and predict infectious disease outbreaks. These same approaches can be applied to other fields including physical activity research and forensic science. Social media data have the potential to provide real-time monitoring and prediction of physical activity level in a given region. This tool can be valuable to public health organizations as it can overcome the time lag in the reporting of physical activity epidemiology data faced by traditional research methods (e.g. surveys, observational studies). As a result, this tool could help public health organizations better mobilize and target physical activity interventions. The first part of this paper aims to describe current approaches (e.g. topic modeling, sentiment analysis and social network analysis) that could be used to analyze social media data to provide real-time monitoring of physical activity level. The second aim of this paper was to discuss ways to apply social media analysis to other fields such as forensic sciences and provide recommendations to further social media research. Copyright © 2016 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  2. Resource Letter PoD-1: The Physics of Dance

    NASA Astrophysics Data System (ADS)

    Laws, Kenneth; Lott, Melanie

    2013-01-01

    This Resource Letter provides a guide to the literature on the physics of dance. Journal articles and books are cited for the following topics: General references for dance, physics of dance, research methods in physics of human movement and in biomechanics, using dance in the physics classroom; anatomy and injuries; physics applied to specific dance movements or styles of dance; equipment (dance shoes, flooring, the barre); and dance of physics.

  3. Gender studies and the role of women in physics

    NASA Astrophysics Data System (ADS)

    Horton, K. Renee; Holbrook, J. C.

    2013-03-01

    While many physicists care about improving the success of women in physics, research on effective intervention strategies has been meager. What research that does exist focuses largely on the dynamics of under-representation: the factors that discourage women from choosing and remaining committed to the physics community. Rather than focusing on these deficits, this workshop set out to provide tools physicists can use to produce, analyze, and apply evidence about what works for women.

  4. Once a physicist: Eddie Morland

    NASA Astrophysics Data System (ADS)

    2008-06-01

    How did you originally get into physics? I did maths, physics and chemistry A-levels, and I found physics the most interesting of the three. I chose not to go to university after finishing school because I wanted to get a job and earn some money. Instead, I did a part-time applied-physics degree at Manchester Polytechnic while working for the UK Atomic Energy Authority (UKAEA) as a junior researcher. It took a lot longer than a full-time degree, but it was a great to be able to apply the work from the course back in the laboratory.

  5. Computer Animation with Adobe Flash Professional Cs6 in Newton’s Law

    NASA Astrophysics Data System (ADS)

    Aji, S. D.; Hudha, M. N.; Huda, C.; Gufran, G.

    2018-01-01

    The purpose of this research is to develop computer-based physics learning media with Adobe Flash Professional CS6 on Newton’s Law of physics subject for senior high school (SMA / MA) class X. Type of research applied is Research and Development with ADDIE development model covering 5 stages: Analysis (Analysis), Design (Design), Development (Production), Implementation (Implementation) and Evaluation (Evaluation). The results of this study were tested toward media experts, media specialists, physics teachers, and students test results with media outcomes that are declared very feasible.

  6. Activities for the Promotion of Gender Equality in Japan—Japan Society of Applied Physics

    NASA Astrophysics Data System (ADS)

    Kodate, Kashiko; Tanaka, Kazuo

    2005-10-01

    Since 1946, the Japan Society of Applied Physics (JSAP) has strived to promote research and development in applied physics for benefits beyond national boundaries. Activities of JSAP involve multidisciplinary fields, from physics and engineering to life sciences. Of its 23,000 members, 48% are from industry, 29% from academia, and about 7% from semi-autonomous national research laboratories. Its large industrial membership is one of the distinctive features of JSAP. In preparation for the First IUPAP International Conference on Women in Physics (Paris, 2002), JSAP members took the first step under the strong leadership of then-JSAP President Toshio Goto, setting up the Committee for the Promotion Equal Participation of Men and Women in Science and Technology. Equality rather than women's advancement is highlighted to further development in science and technology. Attention is also paid to balancing the number of researchers from different age groups and affiliations. The committee has 22 members: 12 female and 10 male; 7 from corporations, 12 from universities, and 3 from semi-autonomous national research institutes. Its main activities are to organize symposia and meetings, conduct surveys among JSAP members, and provide child-care facilities at meetings and conferences. In 2002 the Japan Physics Society and the Chemical Society of Japan jointly created the Japan Inter-Society Liaison Association for the Promotion of Equal Participation of Men and Women in Science and Engineering. Membership has grown to 44 societies (of which 19 are observers) ranging from mathematics, information, and life sciences to civil engineering. Joint activities across sectors and empower the whole. The Gender Equality Bureau in the Cabinet Office recently launched a large-scale project called "Challenge Campaign" to encourage girls to major in natural science and engineering, which JSAP is co-sponsoring.

  7. XXV IUPAP Conference on Computational Physics (CCP2013): Preface

    NASA Astrophysics Data System (ADS)

    2014-05-01

    XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.

  8. Joint the Center for Applied Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamblin, Todd; Bremer, Timo; Van Essen, Brian

    The Center for Applied Scientific Computing serves as Livermore Lab’s window to the broader computer science, computational physics, applied mathematics, and data science research communities. In collaboration with academic, industrial, and other government laboratory partners, we conduct world-class scientific research and development on problems critical to national security. CASC applies the power of high-performance computing and the efficiency of modern computational methods to the realms of stockpile stewardship, cyber and energy security, and knowledge discovery for intelligence applications.

  9. Brain Research Strategies for Physical Educators

    ERIC Educational Resources Information Center

    Blakemore, Connie L.

    2004-01-01

    This article is a follow-up to an article by the author published in the November/December 2003 issue of JOPERD, that examined the research supporting the idea that movement enhances cognitive learning. In this follow-up article the author shows how physical educators can apply this information, in a variety of ways. The following outlines some of…

  10. Fabrication and Evaluation of Superconducting and Semiconducting Materials

    DTIC Science & Technology

    1993-09-01

    Laboratory Material Physics Branch by conducting investigations into the properties of superconducting , magnetic , and other solid state materials. Studies...Physics Branch in conducting research into applied problems such as the design of magnetic shielding and superconducting quantum interference device...SQUID) magnetometry detection of magnetic anomalies. SFA provided research assistance in the areas of bulk ceramic sample preparation. conversion

  11. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) Bauman Moscow State Technical University Moscow, Russia, 3-6 June, 2013 The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) was held in Bauman Moscow State Technical University on 3-6 June 2013 and was devoted to modern problems of terahertz optical technologies. RJUS TeraTech 2013 was organized by Bauman Moscow State Technical University in cooperation with Tohoku University (Sendai, Japan) and University of Buffalo (The State University of New York, USA). The Symposium was supported by Bauman Moscow State Technical University (Moscow, Russia) and Russian Foundation for Basic Research (grant number 13-08-06100-g). RJUS TeraTech - 2013 became a foundation for sharing and discussing modern and promising achievements in fundamental and applied problems of terahertz optical technologies, devices based on grapheme and grapheme strictures, condensed matter of different nature. Among participants of RJUS TeraTech - 2013, there were more than 100 researchers and students from different countries. This volume contains proceedings of the 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies'. Valeriy Karasik, Viktor Ryzhii and Stanislav Yurchenko Bauman Moscow State Technical University Symposium chair Anatoliy A Aleksandrov, Rector of BMSTU Symposium co-chair Valeriy E Karasik, Head of the Research and Educational Center 'PHOTONICS AND INFRARED TECHNOLOGY' (Russia) Invited Speakers Taiichi Otsuji, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Akira Satou, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Michael Shur, Electrical, Computer and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, NY, USA Natasha Kirova, University Paris-Sud, France Andrei Sergeev, Department of Electrical Engineering, The University of Buffalo, The State University of New Your, Buffalo, NY, USA Magnus Willander, Linkoping University (LIU), Department of Science and Technology, Linkopings, Sweden Dmitry R Khohlov, Physical Faculty, Lomonosov Moscow State University, Russia Vladimir L Vaks, Institute for Physics of Microstructures of Russian Academy of Sciences, Russia

  12. The First Trial of the P Technique in Psychotherapy Research: A Still-Lively Legacy.

    ERIC Educational Resources Information Center

    Luborsky, Lester

    1995-01-01

    Reexamines a 49-year-old study of P technique applied to a psychotherapy patient with a recurrent physical symptom. Explores dimensions of psychotherapeutic change as well as the context for the recurrent symptom. Illustrates the contributions from applying the P technique to psychotherapy research, to psychosomatic medicine, and to personality…

  13. The Specificity of Observational Studies in Physical Activity and Sports Sciences: Moving Forward in Mixed Methods Research and Proposals for Achieving Quantitative and Qualitative Symmetry.

    PubMed

    Anguera, M Teresa; Camerino, Oleguer; Castañer, Marta; Sánchez-Algarra, Pedro; Onwuegbuzie, Anthony J

    2017-01-01

    Mixed methods studies are been increasingly applied to a diversity of fields. In this paper, we discuss the growing use-and enormous potential-of mixed methods research in the field of sport and physical activity. A second aim is to contribute to strengthening the characteristics of mixed methods research by showing how systematic observation offers rigor within a flexible framework that can be applied to a wide range of situations. Observational methodology is characterized by high scientific rigor and flexibility throughout its different stages and allows the objective study of spontaneous behavior in natural settings, with no external influence. Mixed methods researchers need to take bold yet thoughtful decisions regarding both substantive and procedural issues. We present three fundamental and complementary ideas to guide researchers in this respect: we show why studies of sport and physical activity that use a mixed methods research approach should be included in the field of mixed methods research, we highlight the numerous possibilities offered by observational methodology in this field through the transformation of descriptive data into quantifiable code matrices, and we discuss possible solutions for achieving true integration of qualitative and quantitative findings.

  14. Human Subjects Research and the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kubitskey, Beth W.; Thomsen, Marshall

    2012-09-01

    Physics Education Research is a form of social science research in that it uses human subjects. As physicists we need to be aware of the ethical and legal ramifications of performing this research, taking into account the fundamental differences between working with substances and working with people. For several decades, the federal government has regulated research involving human subjects. With current procedures, a proposal soliciting federal funds for a research project involving human subjects will be flagged by the applicants institution and checked for compliance with appropriate regulations. However, there is a large body of Physics Education Research that is not federally funded and thus may not be flagged. Nevertheless, there are ethical standards that apply to this research. This paper outlines the preliminary considerations for conducting such research.

  15. Particle and nuclear physics instrumentation and its broad connections

    NASA Astrophysics Data System (ADS)

    Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.

    2016-10-01

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.

  16. Charging of Space Debris and Their Dynamical Consequences

    DTIC Science & Technology

    2016-01-08

    field of plasmas and space physics . 15. SUBJECT TERMS Space Plasma Physics , Space Debris 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...opens up potential new areas of fundamental and applied research in the field of plasmas and space physics ...object in a plasma”, accepted for publication in Physics of Plasmas. (attached as Annexure III) For details on (iv) please refer to the

  17. Investigations of Physical Processes in Microgravity Relevant to Space Electrochemical Power Systems

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.; Green, Robert; Jakupca, Ian

    2015-01-01

    NASA has performed physical science microgravity flight experiments in the areas of combustion science, fluid physics, material science and fundamental physics research on the International Space Station (ISS) since 2001. The orbital conditions on the ISS provide an environment where gravity driven phenomena, such as buoyant convection, are nearly negligible. Gravity strongly affects fluid behavior by creating forces that drive motion, shape phase boundaries and compress gases. The need for a better understanding of fluid physics has created a vigorous, multidisciplinary research community whose ongoing vitality is marked by the continuous emergence of new fields in both basic and applied science. In particular, the low-gravity environment offers a unique opportunity for the study of fluid physics and transport phenomena that are very relevant to management of fluid - gas separations in fuel cell and electrolysis systems. Experiments conducted in space have yielded rich results. These results provided valuable insights into fundamental fluid and gas phase behavior that apply to space environments and could not be observed in Earth-based labs. As an example, recent capillary flow results have discovered both an unexpected sensitivity to symmetric geometries associated with fluid container shape, and identified key regime maps for design of corner or wedge-shaped passive gas-liquid phase separators. In this presentation we will also briefly review some of physical science related to flight experiments, such as boiling, that have applicability to electrochemical systems, along with ground-based (drop tower, low gravity aircraft) microgravity electrochemical research. These same buoyancy and interfacial phenomena effects will apply to electrochemical power and energy storage systems that perform two-phase separation, such as water-oxygen separation in life support electrolysis, and primary space power generation devices such as passive primary fuel cell.

  18. Photonics Research and Technology Insertion

    DTIC Science & Technology

    2015-06-05

    Alp Artar, Ahmet Ali Yanik, Hatice Altug. Fabry –Pe?rot nanocavities in multilayered plasmonic crystals for enhanced biosensing, Applied Physics...involved collaborative research with the US Army Medical Research Institute of Infectious Diseases (USAMRIID). The output of these programs has resulted

  19. Emotional intelligence in sport and exercise: A systematic review.

    PubMed

    Laborde, S; Dosseville, F; Allen, M S

    2016-08-01

    This review targets emotional intelligence (EI) in sport and physical activity. We systematically review the available literature and offer a sound theoretical integration of differing EI perspectives (the tripartite model of EI) before considering applied practice in the form of EI training. Our review identified 36 studies assessing EI in an athletic or physical activity context. EI has most often been conceptualized as a trait. In the context of sport performance, we found that EI relates to emotions, physiological stress responses, successful psychological skill usage, and more successful athletic performance. In the context of physical activity, we found that trait EI relates to physical activity levels and positive attitudes toward physical activity. There was a shortage of research into the EI of coaches, officials, and spectators, non-adult samples, and longitudinal and experimental methods. The tripartite model proposes that EI operates on three levels - knowledge, ability, and trait - and predicts an interplay between the different levels of EI. We present this framework as a promising alternative to trait and ability EI conceptualizations that can guide applied research and professional practice. Further research into EI training, measurement validation and cultural diversity is recommended. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Applied Impact Physics Research

    NASA Astrophysics Data System (ADS)

    Wickert, Matthias

    2013-06-01

    Applied impact physics research is based on the capability to examine impact processes for a wide range of impact conditions with respect to velocity as well as mass and shape of the projectile. For this reason, Fraunhofer EMI operates a large variety of launchers that address velocities up to ordnance velocities as single stage powder gun but which can also be operated as two-stage light gas guns achieving the regime of low earth orbital velocity. Thereby for projectile masses of up to 100 g hypervelocity impact phenomena up to 7.8 km/s can be addressed. Advanced optical diagnostic techniques like microsecond video are used as commercial systems but - since impact phenomena are mostly related with debris or dust - specialized diagnostics are developed in-house like x-ray cinematography and x-ray tomography. Selected topics of the field of applied impact physics will be presented like the interesting behavior of long rods penetrating low-density materials or experimental findings at hypervelocity for this class of materials as well as new x-ray diagnositic techniques.

  1. Students' Metacognitive Awareness and Physics Learning Efficiency and Correlation between Them

    ERIC Educational Resources Information Center

    Bogdanovic, Ivana; Obadovic, Dušanka Ž.; Cvjeticanin, Stanko; Segedinac, Mirjana; Budic, Spomenka

    2015-01-01

    This paper presents a research directed to examine the relation between students' metacognitive awareness and physics learning efficiency. Questionnaire of metacognitive awareness and physics knowledge test were applied on the sample of 746 subjects of both sexes, first graders of Grammar Schools in Novi Sad, Republic of Serbia. Obtained results…

  2. Current status and prospects of nuclear physics research based on tracking techniques

    NASA Astrophysics Data System (ADS)

    Alekseev, V. A.; Alexandrov, A. B.; Bagulya, A. V.; Chernyavskiy, M. M.; Goncharova, L. A.; Gorbunov, S. A.; Kalinina, G. V.; Konovalova, N. S.; Okatyeva, N. M.; Pavlova, T. A.; Polukhina, N. G.; Shchedrina, T. V.; Starkov, N. I.; Tioukov, V. E.; Vladymirov, M. S.; Volkov, A. E.

    2017-01-01

    Results of nuclear physics research made using track detectors are briefly reviewed. Advantages and prospects of the track detection technique in particle physics, neutrino physics, astrophysics and other fields are discussed on the example of the results of the search for direct origination of tau neutrino in a muon neutrino beam within the framework of the international experiment OPERA (Oscillation Project with Emulsion-tRacking Apparatus) and works on search for superheavy nuclei in nature on base of their tracks in meteoritic olivine crystals. The spectra of superheavy elements in galactic cosmic rays are presented. Prospects of using the track detection technique in fundamental and applied research are reported.

  3. An ethnographic study: Becoming a physics expert in a biophysics research group

    NASA Astrophysics Data System (ADS)

    Rodriguez, Idaykis

    Expertise in physics has been traditionally studied in cognitive science, where physics expertise is understood through the difference between novice and expert problem solving skills. The cognitive perspective of physics experts only create a partial model of physics expertise and does not take into account the development of physics experts in the natural context of research. This dissertation takes a social and cultural perspective of learning through apprenticeship to model the development of physics expertise of physics graduate students in a research group. I use a qualitative methodological approach of an ethnographic case study to observe and video record the common practices of graduate students in their biophysics weekly research group meetings. I recorded notes on observations and conduct interviews with all participants of the biophysics research group for a period of eight months. I apply the theoretical framework of Communities of Practice to distinguish the cultural norms of the group that cultivate physics expert practices. Results indicate that physics expertise is specific to a topic or subfield and it is established through effectively publishing research in the larger biophysics research community. The participant biophysics research group follows a learning trajectory for its students to contribute to research and learn to communicate their research in the larger biophysics community. In this learning trajectory students develop expert member competencies to learn to communicate their research and to learn the standards and trends of research in the larger research community. Findings from this dissertation expand the model of physics expertise beyond the cognitive realm and add the social and cultural nature of physics expertise development. This research also addresses ways to increase physics graduate student success towards their PhD. and decrease the 48% attrition rate of physics graduate students. Cultivating effective research experiences that give graduate students agency and autonomy beyond their research groups gives students the motivation to finish graduate school and establish their physics expertise.

  4. ANNUAL REPORT, JULY 1, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-10-31

    Research facilities, general construction progress, research activities, and administration are discussed and a financial statement is given. Fairly detailed accounts are given of research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (M.C.G.)

  5. Brookhaven highlights, October 1979-September 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Highlights are given for the research areas of the Brookhaven National Laboratory. These areas include high energy physics, physics and chemistry, life sciences, applied energy science (energy and environment, and nuclear energy), and support activities (including mathematics, instrumentation, reactors, and safety). (GHT)

  6. Evolving Research Misconduct Policies and Their Significance for Physical Scientists

    NASA Astrophysics Data System (ADS)

    Kerch, Helen M.; Dooley, James J.

    2001-03-01

    As a substantial supporter of research, the federal government has a clear role in developing policies that insure both the integrity of the scientific record and the fair and uniform treatment of investigators supported by all federal agencies. To this end, the federal government has established a first-ever research misconduct policy that would apply to all research funded by the federal government. The new federal policy includes a common definition of research misconduct and principles for assurance and oversight. While physical scientists have infrequently been the subject of research misconduct allegations, they will be explicitly covered by this new federal policy. The purpose of this talk is to relate the key issues in the research misconduct debate and to discuss the ramifications of a federal-wide policy on the physical sciences community.

  7. To Compare the Effects of Computer Based Learning and the Laboratory Based Learning on Students' Achievement Regarding Electric Circuits

    ERIC Educational Resources Information Center

    Bayrak, Bekir; Kanli, Uygar; Kandil Ingeç, Sebnem

    2007-01-01

    In this study, the research problem was: "Is the computer based physics instruction as effective as laboratory intensive physics instruction with regards to academic success on electric circuits 9th grade students?" For this research of experimental quality the design of pre-test and post-test are applied with an experiment and a control…

  8. Particle and nuclear physics instrumentation and its broad connections

    DOE PAGES

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...

    2016-12-20

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  9. Particle and nuclear physics instrumentation and its broad connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  10. NASA Microgravity Combustion Science Research Plans for the ISS

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    2003-01-01

    A peer-reviewed research program in Microgravity Combustion Science has been chartered by the Physical Sciences Research Division of the NASA Office of Biological and Physical Research. The scope of these investigations address both fundamental combustion phenomena and applied combustion research topics of interest to NASA. From this pool of research, flight investigations are selected which benefit from access to a microgravity environment. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). Through its spacecraft fire safety program, applied research is conducted to decrease risks to humans living and working in space. The Microgravity Combustion Science program implements a structured flight research process utilizing the International Space Station (ISS) and two of its premier facilities- the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox - to conduct space-based research investigations. This paper reviews the current plans for Microgravity Combustion Science research on the International Space Station from 2003 through 2012.

  11. Auditing the Physical Activity and Parkinson Disease Literature Using the Behavioral Epidemiologic Framework.

    PubMed

    Swank, Chad; Shearin, Staci; Cleveland, Samantha; Driver, Simon

    2017-06-01

    Motor and nonmotor symptoms associated with Parkinson disease place individuals at greater risk of sedentary behaviors and comorbidities. Physical activity is one modifiable means of improving health and reducing the risk of morbidity. We applied a behavioral framework to classify existing research on physical activity and Parkinson disease to describe the current evolution and inform knowledge gaps in this area. Research placed in phase 1 establishes links between physical activity and health-related outcomes; phase 2 develops approaches to quantify physical activity behavior; phase 3 identifies factors associated with implementation of physical activity behaviors; phase 4 assesses the effectiveness of interventions to promote activity; and phase 5 disseminates evidence-based recommendations. Peer-reviewed literature was identified by searching PubMed, Google Scholar, and EBSCO-host. We initially identified 287 potential articles. After further review, we excluded 109 articles, leaving 178 included articles. Of these, 75.84% were categorized into phase 1 (n = 135), 10.11% in phase 2 (n = 18), 9.55% into phase 3 (n = 17), 3.37% into phase 4 (n = 6), and 1.12% into phase 5 (n = 2). By applying the behavioral framework to the physical activity literature for people with Parkinson disease, we suggest this area of research is nascent with more than 75% of the literature in phase 1. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. QUEST: Quality of Expert Systems (QUEST: Kwaliteit van Expertsystemen)

    DTIC Science & Technology

    1990-11-01

    methods have been applied building intelligent systems. However, in the research literature there is much speculation about this subject. TNO report Page 37...Netherlands TNO Physics and Electronics organization for Laboratory applied scientifi. research A A2 5 6 0P.O0 Box 96864 AD-A2 5 620 2509 JG The...rights and obligations of contracting parties are subject to either the ’Standard Conditions for Research date: Instructions given to TNO’or the relevant

  13. Can we build a more efficient airplane? Using applied questions to teach physics

    NASA Astrophysics Data System (ADS)

    Bhatia, Aatish

    2014-03-01

    For students and for the science-interested public, applied questions can serve as a hook to learn introductory physics. Can we radically improve the energy efficiency of modern day aircraft? Are solar planes like the Solar Impulse the future of travel? How do migratory birds like the alpine swift fly nonstop for nearly seven months? Using examples from aeronautical engineering and biology, I'll discuss how undergraduate physics can shed light on these questions about transport, and place fundamental constraints on the flight properties of flying machines, whether birds or planes. Education research has shown that learners are likely to forget vast content knowledge unless they get to apply this knowledge to novel and unfamiliar situations. By applying physics to real-life problems, students can learn to build and apply quantitative models, making use of skills such as order of magnitude estimates, dimensional analysis, and reasoning about uncertainty. This applied skillset allows students to transfer their knowledge outside the classroom, and helps build connections between traditionally distinct content areas. I'll also describe the results of an education experiment at Rutgers University where my colleagues and I redesigned a 100+ student introductory physics course for social science and humanities majors to address applied questions such as evaluating the energy cost of transport, and asking whether the United States could obtain all its energy from renewable sources.

  14. The Specificity of Observational Studies in Physical Activity and Sports Sciences: Moving Forward in Mixed Methods Research and Proposals for Achieving Quantitative and Qualitative Symmetry

    PubMed Central

    Anguera, M. Teresa; Camerino, Oleguer; Castañer, Marta; Sánchez-Algarra, Pedro; Onwuegbuzie, Anthony J.

    2017-01-01

    Mixed methods studies are been increasingly applied to a diversity of fields. In this paper, we discuss the growing use—and enormous potential—of mixed methods research in the field of sport and physical activity. A second aim is to contribute to strengthening the characteristics of mixed methods research by showing how systematic observation offers rigor within a flexible framework that can be applied to a wide range of situations. Observational methodology is characterized by high scientific rigor and flexibility throughout its different stages and allows the objective study of spontaneous behavior in natural settings, with no external influence. Mixed methods researchers need to take bold yet thoughtful decisions regarding both substantive and procedural issues. We present three fundamental and complementary ideas to guide researchers in this respect: we show why studies of sport and physical activity that use a mixed methods research approach should be included in the field of mixed methods research, we highlight the numerous possibilities offered by observational methodology in this field through the transformation of descriptive data into quantifiable code matrices, and we discuss possible solutions for achieving true integration of qualitative and quantitative findings. PMID:29312061

  15. Science and engineering research opportunities at the National Science Foundation.

    PubMed

    Demir, Semahat S

    2004-01-01

    Research at the interface of the physical sciences and life sciences has produced remarkable advances and understanding in biology and medicine over the past fifty years. These bases for many of these healthcare and research advances have been discoveries in the quantitative sciences and engineering approaches to applying them. The National Science Foundation supports research and development in the physical sciences which underpins multi-disciplinary approaches to addressing problems in biology and medicine. This presentation will cover research opportunities offered by the NSF and collaborative programs with the NIH to transfer the resulting advances and technologies.

  16. Effect of Simulation on the Confidence of University Nursing Students in Applying Cardiopulmonary Assessment Skills: A Randomized Controlled Trial.

    PubMed

    Tawalbeh, Loai I

    2017-08-01

    Simulation is an effective teaching strategy. However, no study in Jordan has examined the effect of simulation on the confidence of university nursing students in applying heart and lung physical examination skills. The current study aimed to test the effect of simulation on the confidence of university nursing students in applying heart and lung physical examination skills. A randomized controlled trial design was applied. The researcher introduced the simulation scenario regarding cardiopulmonary examination skills. This scenario included a 1-hour PowerPoint presentation and video for the experimental group (n= 35) and a PowerPoint presentation and a video showing a traditional demonstration in the laboratory for the control group (n = 34). Confidence in applying cardiopulmonary physical examination skills was measured for both groups at baseline and at 1 day and 3 months posttest. A paired t test showed that confidence was significantly higher in the posttest than in the pretest for both groups. An independent t test showed a statistically significant difference (t(67) = -42.95, p < .001) between the two groups in terms of the difference between the first posttest and second posttest scores (t(67) = -43.36, p < .001) for confidence in applying physical examination skills. Both simulation and traditional training in the laboratory significantly improved the confidence of participants in applying cardiopulmonary assessment skills. However, the simulation training had a more significant effect than usual training in enhancing the confidence of nursing students in applying physical examination skills.

  17. Brookhaven highlights. Report on research, October 1, 1992--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Belford, M.; Cohen, A.

    This report highlights the research activities of Brookhaven National Laboratory during the period dating from October 1, 1992 through September 30, 1993. There are contributions to the report from different programs and departments within the laboratory. These include technology transfer, RHIC, Alternating Gradient Synchrotron, physics, biology, national synchrotron light source, applied science, medical science, advanced technology, chemistry, reactor physics, safety and environmental protection, instrumentation, and computing and communications.

  18. Intuitive Physics: Current Research and Controversies.

    PubMed

    Kubricht, James R; Holyoak, Keith J; Lu, Hongjing

    2017-10-01

    Early research in the field of intuitive physics provided extensive evidence that humans succumb to common misconceptions and biases when predicting, judging, and explaining activity in the physical world. Recent work has demonstrated that, across a diverse range of situations, some biases can be explained by the application of normative physical principles to noisy perceptual inputs. However, it remains unclear how knowledge of physical principles is learned, represented, and applied to novel situations. In this review we discuss theoretical advances from heuristic models to knowledge-based, probabilistic simulation models, as well as recent deep-learning models. We also consider how recent work may be reconciled with earlier findings that favored heuristic models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Matthew Reynolds | NREL

    Science.gov Websites

    food science. Matthew's research at NREL is focused on applying uncertainty quantification techniques . Research Interests Uncertainty quantification Computational multilinear algebra Approximation theory of and the Canonical Tensor Decomposition, Journal of Computational Physics (2017) Randomized Alternating

  20. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  1. [The practice and discussion of the physical knowledge stepping into genetics teaching].

    PubMed

    Luo, Shen; Luo, Peigao

    2014-09-01

    Genetics, one of the core courses of biological field, play a key role in biology teaching and research. In fact, there exists high similarity between many genetic knowledge and physical knowledge. Due to strong abstract of genetic contents and the weak basis of genetics, some students lack of interests to study genetics. How to apply the strong physical knowledge which students had been learned in the middle school in genetics teaching is worthwhile for genetics teachers. In this paper, we would like to introduce an infiltrative teaching model on applying physical knowledge into genetic contents by establishing the intrinsic logistic relationship between physical knowledge and genetic knowledge. This teaching model could help students more deeply understand genetic knowledge and enhance students' self-studying ability as well as creating ability.

  2. ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-01

    The national laboratory concept, laboratory objectives, the staff, research facilities. research activities, and administration are discussed in general terms and a financial statement is given. Fairly detailed accounts are given for the research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (W.D.M.)

  3. Kentucky DOE EPSCoR Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grulke, Eric; Stencel, John

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS)more » for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.« less

  4. 40 CFR 221.1 - Applications for permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Applications for general, special, emergency, and research permits under section 102 of the Act may be filed... equipment; (c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any...

  5. 40 CFR 221.1 - Applications for permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Applications for general, special, emergency, and research permits under section 102 of the Act may be filed... equipment; (c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any...

  6. 40 CFR 221.1 - Applications for permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for general, special, emergency, and research permits under section 102 of the Act may be filed with... equipment; (c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any...

  7. 40 CFR 221.1 - Applications for permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Applications for general, special, emergency, and research permits under section 102 of the Act may be filed... equipment; (c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any...

  8. 40 CFR 221.1 - Applications for permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Applications for general, special, emergency, and research permits under section 102 of the Act may be filed... equipment; (c) Adequate physical and chemical description of material to be dumped, including results of tests necessary to apply the Criteria, and the number, size, and physical configuration of any...

  9. Scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (7 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-05-01

    A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research, T K Breus, V N Binhi, A A Petrukovich Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 502-510

  10. Experimental plasma research project summaries

    NASA Astrophysics Data System (ADS)

    1992-06-01

    This is the latest in a series of Project Summary books that date back to 1976. It is the first after a hiatus of several years. They are published to provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy. The Experimental Plasma Research Branch seeks to provide a broad range of experimental data, physics understanding, and new experimental techniques that contribute to operation, interpretation, and improvement of high temperature plasma as a source of fusion energy. In pursuit of these objectives, the branch supports research at universities, DOE laboratories, other federal laboratories, and industry. About 70 percent of the funds expended are spent at universities and a significant function of this program is the training of students in fusion physics. The branch supports small- and medium-scale experimental studies directly related to specific critical plasma issues of the magnetic fusion program. Plasma physics experiments are conducted on transport of particles and energy within plasma. Additionally, innovative approaches for operating, controlling, and heating plasma are evaluated for application to the larger confinement devices of the magnetic fusion program. New diagnostic approaches to measuring the properties of high temperature plasmas are developed to the point where they can be applied with confidence on the large-scale confinement experiments. Atomic data necessary for impurity control, interpretation of diagnostic data, development of heating devices, and analysis of cooling by impurity ion radiation are obtained. The project summaries are grouped into the three categories of plasma physics, diagnostic development, and atomic physics.

  11. KSC-2012-6221

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist demonstrates a technology developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  12. KSC-2012-6220

    NASA Image and Video Library

    2012-11-08

    CAPE CANAVERAL, Fla. -- Inside the Applied Physics Laboratory in the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, lead researcher Dr. Bob Youngquist describes technologies developed for the Space Shuttle Program to a group of Society of Physics students. About 800 graduate and undergraduate physics students toured Kennedy facilities. A group of about 40 students toured laboratories in the Operations and Checkout Building and the EDL during their visit. The physics students were in Orlando for the 2012 Quadrennial Physics Congress. Photo credit: NASA/Cory Huston

  13. 34 CFR Appendix A to Part 100 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Grants for research and demonstrations relating to physical education or recreation for handicapped...). 5. Loan service of captioned films and educational media; research on, and production and.... 1321). 7. Research and related activities in education of handicapped children (20 U.S.C. 1441). 8...

  14. 34 CFR Appendix A to Part 100 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Grants for research and demonstrations relating to physical education or recreation for handicapped...). 5. Loan service of captioned films and educational media; research on, and production and.... 1321). 7. Research and related activities in education of handicapped children (20 U.S.C. 1441). 8...

  15. 34 CFR Appendix A to Part 100 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Grants for research and demonstrations relating to physical education or recreation for handicapped...). 5. Loan service of captioned films and educational media; research on, and production and.... 1321). 7. Research and related activities in education of handicapped children (20 U.S.C. 1441). 8...

  16. Probability versus representativeness in infancy: can infants use naïve physics to adjust population base rates in probabilistic inference?

    PubMed

    Denison, Stephanie; Trikutam, Pallavi; Xu, Fei

    2014-08-01

    A rich tradition in developmental psychology explores physical reasoning in infancy. However, no research to date has investigated whether infants can reason about physical objects that behave probabilistically, rather than deterministically. Physical events are often quite variable, in that similar-looking objects can be placed in similar contexts with different outcomes. Can infants rapidly acquire probabilistic physical knowledge, such as some leaves fall and some glasses break by simply observing the statistical regularity with which objects behave and apply that knowledge in subsequent reasoning? We taught 11-month-old infants physical constraints on objects and asked them to reason about the probability of different outcomes when objects were drawn from a large distribution. Infants could have reasoned either by using the perceptual similarity between the samples and larger distributions or by applying physical rules to adjust base rates and estimate the probabilities. Infants learned the physical constraints quickly and used them to estimate probabilities, rather than relying on similarity, a version of the representativeness heuristic. These results indicate that infants can rapidly and flexibly acquire physical knowledge about objects following very brief exposure and apply it in subsequent reasoning. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  17. Attitudes of Stakeholders towards Physical Punishment on Pupils of International and National Schools in Kampala District, Uganda

    ERIC Educational Resources Information Center

    Mulinga, Damien Mbikyo

    2012-01-01

    This paper describes an applied research study conducted to find solutions for the problem of the use of physical punishment in schools in the Kampala District of Uganda. In this study stakeholders were requested to state their actions and feelings towards the use of physical punishment in schools. The objective of the study was to investigate…

  18. Design of multiple representations e-learning resources based on a contextual approach for the basic physics course

    NASA Astrophysics Data System (ADS)

    Bakri, F.; Muliyati, D.

    2018-05-01

    This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.

  19. Preface to Special Topic: Acoustic Metamaterials and Metasurfaces

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine

    2018-03-01

    The advent of acoustic metamaterials in the beginning of 2000s and very recently of acoustic metasurfaces has created tremendous excitement and efforts in the field of materials science and physics by introducing and building real transformative research and dealing with unprecedented physics and applications. The acoustic/elastic metamaterials and metasurfaces, which can simply be described as designed artificial materials with unusual physical properties, form the core of the present Special Topic published by the Journal of Applied Physics.

  20. From Electrons Paired to Electric Power Delivered- A Personal Journey in Research and Applications of Superconductivity at IBM, EPRI, and Beyond

    NASA Astrophysics Data System (ADS)

    Grant, Paul

    2014-03-01

    This talk will reprise a personal journey by the speaker in industrial and applied physics, commencing with his employment by IBM at age 17 in the early 1950s, and continuing through his corporate sponsored undergraduate and graduate years at Clarkson and Harvard Universities, resulting in 1965 in a doctorate in applied physics from the latter. He was subsequently assigned by IBM to its research division in San Jose (now Almaden), where he initially carried out both pure and applied theoretical and experimental investigations encompassing a broad range of company-related product technologies...storage, display, printer and data acquisition hardware and software. In 1973, he undertook performing DFT and quantum Monte Carlo calculations in support of group research in the then emerging field of organic and polymer superconductors, a very esoteric pursuit at the time. Following upon several corporate staff assignments involving various product development and sales strategies, in 1982 he was appointed manager of the cooperative phenomena group in the Almaden Research Center, which beginning in early 1987, made significant contributions to both the basic science and applications of high temperature superconductivity (HTSC). In 1993, after a 40-year career, he retired from IBM to accept a Science Fellow position at the Electric Power Research Institute (EPRI) where he funded power application development of superconductivity. In 2004, he retired from his EPRI career to undertake ``due diligence'' consulting services in support of the venture capital community in Silicon Valley. As a ``hobby,'' he currently pursues and publishes DFT studies in hope of discovering the pairing mechanism of HTSC. In summary, the speaker's career in industrial and applied physics demonstrates one can combine publishing a record three PRLs in one month with crawling around underground in substations with utility lineman helping install superconducting cables, along the way publishing 10 patents, conducting numerous interviews with the national media, serving a sabbatical as visiting professor at the National University of Mexico, writing review articles, commentaries and book reviews for Scientific American, Physics World and Nature and, most importantly, having lots of fun at the end of the day!

  1. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  2. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  3. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  4. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  5. 42 CFR 93.508 - Filing, forms, and service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HEALTH EFFECTS STUDIES OF HAZARDOUS SUBSTANCES RELEASES AND FACILITIES PUBLIC HEALTH SERVICE POLICIES ON RESEARCH MISCONDUCT Opportunity To Contest ORI Findings of Research Misconduct and HHS Administrative... nondocumentary materials such as videotapes, computer disks, or physical evidence. This provision does not apply...

  6. Research as a guide for developing curricula on wave behavior at boundaries

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, Mackenzie; Heron, Paula; McDermott, Lillian

    2007-03-01

    The Physics Education Group at the University of Washington has been developing research-based instructional materials on mechanical waves and physical optics.* As a part of this ongoing process, we continue to assess and refine existing tutorials. In particular, we are focusing on tutorials designed to help students apply boundary conditions to the propagation and refraction of periodic waves. Pretest and post-test results are being used to inform curriculum modifications and to assess the effectiveness of the revised materials. Specific examples of persistent student difficulties will be presented. * Tutorials in Introductory Physics, L.C. McDermott, P.S. Shaffer and the Physics Education Group at the University of Washington, Prentice Hall (2002)

  7. A Sociocognitive Perspective of Women's Participation in Physics: Improving Accessibility throughout the Pipeline

    NASA Astrophysics Data System (ADS)

    Kelly, Angela

    2017-01-01

    Sociopsychological theories and empirical research provide a framework for exploring causal pathways and targeted interventions to increase the representation of women in post-secondary physics. Women earned only 19.7 percent of physics undergraduate degrees in 2012 (APS, 2015). This disparity has been attributed to a variety of factors, including chilly classroom climates, gender-based stereotypes, persistent self-doubt, and a lack of role models in physics departments. The theoretical framework for this research synthesis is based upon several psychological theories of sociocognitive behavior and is derived from three general constructs: 1) self-efficacy and self-concept; 2) expectancy value and planned behavior; and 3) motivation and self-determination. Recent studies have suggested that the gender discrepancy in physics participation may be alleviated by applying interventions derived from social cognitive research. These interventions include social and familial support, welcoming and collaborative classroom environments, critical feedback, and identification with a malleable view of intelligence. This research provides empirically supported mechanisms for university stakeholders to implement reforms that will increase women's participation in physics.

  8. ISBNPA 2007: Marketing, serious games and nanny states. Observations from the sixth annual meeting of the International Society of Behavioral Nutrition and Physical Activity, Oslo 2007

    PubMed Central

    Brug, Johannes

    2007-01-01

    This commentary paper provides a selective overview of topics addressed at the sixth annual meeting of the International Society of Behavioral Nutrition and Physical Activity (ISBNPA). With 31 symposiums, 42 free paper sessions and 236 poster presentations ISBNPA 2007 provided a comprehensive overview of the state of the art and of new avenues for behavioral nutrition and physical activity research. Research presented at the conference helps to identify and specify important nutrition and physical activity behaviors for health promotion, as well as the correlates, predictors and determinants of these behaviors, and to build and test intervention strategies that go beyond traditional health education. ISBNPA 2007 also indicates that ISBNPA should strive to become more international by inclusion of more scientists from countries outside North America, Western Europe and Australia. ISBNPA should maintain its encouragement of research that is firmly rooted in behavioral theory and research that goes beyond applying cross-sectional research designs, and that addresses the most important public health issues associated with behavioral nutrition and physical activity. PMID:17880680

  9. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  10. A Summary of the NASA Fusion Propulsion Workshop 2000

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Turchi, Peter J.; Santarius, John F.; Schafer, Charles (Technical Monitor)

    2001-01-01

    A NASA Fusion Propulsion Workshop was held on Nov. 8 and 9, 2000 at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. A total of 43 papers were presented at the Workshop orally or by posters, covering a broad spectrum of issues related to applying fusion to propulsion. The status of fusion research was reported at the Workshop showing the outstanding scientific research that has been accomplished worldwide in the fusion energy research program. The international fusion research community has demonstrated the scientific principles of fusion creating plasmas with conditions for fusion burn with a gain of order unity: 0.25 in Princeton TFTR, 0.65 in the Joint European Torus, and a Q-equivalent of 1.25 in Japan's JT-60. This research has developed an impressive range of physics and technological capabilities that may be applied effectively to the research of possibly new propulsion-oriented fusion schemes. The pertinent physics capabilities include the plasma computational tools, the experimental plasma facilities, the diagnostics techniques, and the theoretical understanding. The enabling technologies include the various plasma heating, acceleration, and the pulsed power technologies.

  11. Applied Physics Education: PER focused on Physics-Intensive Careers

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin

    2017-01-01

    Physics education research is moving beyond classroom learning to study the application of physics education within STEM jobs and PhD-level research. Workforce-related PER is vital to supporting physics departments as they educate students for a diverse range of careers. Results from an on-going study involving interviews with entry-level employees, academic researchers, and supervisors in STEM jobs describe the ways that mathematics, physics, and communication are needed for workplace success. Math and physics are often used for solving ill-structured problems that involve data analysis, computational modeling, or hands-on work. Communication and collaboration are utilized in leadership, sales, and as way to transfer information capital throughout the organization through documentation, emails, memos, and face-to-face discussions. While managers and advisors think a physics degree typically establishes technical competency, communication skills are vetted through interviews and developed on the job. Significant learning continues after graduation, showing the importance of cultivating self-directed learning habits and the critical role of employers as educators of specialized technical abilities through on-the-job training. Supported by NSF DGE-1432578.

  12. Forensic Science Research and Development at the National Institute of Justice: Opportunities in Applied Physics

    NASA Astrophysics Data System (ADS)

    Dutton, Gregory

    Forensic science is a collection of applied disciplines that draws from all branches of science. A key question in forensic analysis is: to what degree do a piece of evidence and a known reference sample share characteristics? Quantification of similarity, estimation of uncertainty, and determination of relevant population statistics are of current concern. A 2016 PCAST report questioned the foundational validity and the validity in practice of several forensic disciplines, including latent fingerprints, firearms comparisons and DNA mixture interpretation. One recommendation was the advancement of objective, automated comparison methods based on image analysis and machine learning. These concerns parallel the National Institute of Justice's ongoing R&D investments in applied chemistry, biology and physics. NIJ maintains a funding program spanning fundamental research with potential for forensic application to the validation of novel instruments and methods. Since 2009, NIJ has funded over 179M in external research to support the advancement of accuracy, validity and efficiency in the forensic sciences. An overview of NIJ's programs will be presented, with examples of relevant projects from fluid dynamics, 3D imaging, acoustics, and materials science.

  13. Future forum, Hobart, October 29, 2017: examining the role of medical physics in cancer research.

    PubMed

    Ebert, Martin A; Hardcastle, Nicholas; Kron, Tomas

    2018-06-25

    This commentary reports on a forum held in October 2017 in Hobart, Tasmania, attended by 20 Australasian medical physicists, to consider the future role of medical physics, as well as non-medical physics and allied disciplines, in oncology research. Attendees identified important areas of oncology research which physicists can be contributing to, with these evaluated in the context of a set of "Provocative Questions" recently generated by the American Association of Physicists in Medicine. Primary perceived barriers to participation in research were identified, including a "lack of knowledge of cancer science", together with potential solutions. Mechanisms were considered for engagement with the broader scientific community, consumers, advocates and policy makers. In considering future opportunities in oncology research for medical physicists, it was noted that a professional need to focus on the safety and accuracy of current treatments applied to patients, encouraging risk-aversion, is somewhat in competition with the role of physical scientists in the exploration and discovery of new concepts and understandings.

  14. Authorship and sampling practice in selected biomechanics and sports science journals.

    PubMed

    Knudson, Duane V

    2011-06-01

    In some biomedical sciences, changes in patterns of collaboration and authorship have complicated the assignment of credit and responsibility for research. It is unclear if this problem of "promiscuous coauthorship" or "hyperauthorship" (defined as six or more authors) is also apparent in the applied research disciplines within sport and exercise science. This study documented the authorship and sampling of patterns of original research reports in three applied biomechanics (Clinical Biomechanics, Journal of Applied Biomechanics, and Sports Biomechanics) and five similar subdisciplinary journals within sport and exercise science (International Journal of Sports Physiology and Performance, Journal of Sport Rehabilitation, Journal of Teaching Physical Education, Measurement in Physical Education and Exercise Sciences, and Motor Control). Original research reports from the 2009 volumes of these biomechanics and sport and exercise journals were reviewed. Single authorship of papers was rare (2.6%) in these journals, with the mean number of authors ranging from 2.7 to 4.5. Sample sizes and the ratio of sample to authors varied widely, and these variables tended not to be associated with number of authors. Original research reports published in these journals in 2009 tended to be published by small teams of collaborators, so currently there may be few problems with promiscuous coauthorship in these subdisciplines of sport and exercise science.

  15. Information Seeking Behavior of Geologists When Searching for Physical Samples

    ERIC Educational Resources Information Center

    Ramdeen, Sarah

    2017-01-01

    Information seeking is "a conscious effort to acquire information in response to a need or gap" in your knowledge (Case, 2007, p. 5). In the geosciences, physical samples such as cores, cuttings, fossils, and rocks are primary sources of information; they represent "the foundation of basic and applied geoscience research and…

  16. Jeans, Sir James Hopwood (1877-1946)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Astrophysicist, born in Ormskirk, Lancashire, England, worked at Cambridge, Princeton and Mount Wilson Observatory, and retired early to devote himself to research. Like CHANDRASEKHAR, Jeans worked on physical problems such as thermodynamics, applying the physics to astronomy, and writing lucid accounts of the whole field in books such as The Dynamical Theory of Gases (1904), Theoretical Mechanic...

  17. The Association of Physical Activity and Academic Behavior: A Systematic Review

    ERIC Educational Resources Information Center

    Sullivan, Rachel A.; Kuzel, AnnMarie H.; Vaandering, Michael E.; Chen, Weiyun

    2017-01-01

    Background: In this systematic review, we assessed the existing research describing the effects of physical activity (PA) on academic behavior, with a special focus on the effectiveness of the treatments applied, study designs, outcome measures, and results. Methods: We obtained data from various journal search engines and 218 journal articles…

  18. Teaching with Socio-Scientific Issues in Physical Science: Teacher and Students' Experiences

    ERIC Educational Resources Information Center

    Talens, Joy

    2016-01-01

    Socio-scientific issues (SSI) are recommended by many science educators worldwide for learners to acquire first hand experience to apply what they learned in class. This investigated experiences of teacher-researcher and students in using SSI in Physical Science, Second Semester, School Year 2012-2013. Latest and controversial news articles on…

  19. Effective Reinforcement Techniques in Elementary Physical Education: The Key to Behavior Management

    ERIC Educational Resources Information Center

    Downing, John; Keating, Tedd; Bennett, Carl

    2005-01-01

    The ability to shape appropriate behavior while extinguishing misbehavior is critical to teaching and learning in physical education. The scientific principles that affect student learning in the gymnasium also apply to the methods teachers use to influence social behaviors. Research indicates that reinforcement strategies are more effective than…

  20. EDITORIAL: New scope for Journal of Physics D: Applied Physics New scope for Journal of Physics D: Applied Physics

    NASA Astrophysics Data System (ADS)

    Roche, Olivia; Margaritondo, Giorgio

    2011-10-01

    After five years of significant growth and development, and with the Impact Factor (IF) now firmly placed over 2.0, Journal of Physics D: Applied Physics (JPhysD) has seen a double change at the helm in the last 12 months. Giorgio Margaritondo from École Polytechnique Fédérale de Lausanne, Switzerland took over as Editor-in-Chief from Pallab Bhattacharya, while Olivia Roche took over as Publisher from Sarah Quin. We inherited a strong, successful journal. With its IF of 2.105, excellent publication times and flexible, responsive management, JPhysD has established itself as the place to publish high-quality research papers in applied physics. Having introduced Fast Track Communications (FTCs) in 2008, we also became an outlet for short, high-impact letter-like articles. FTCs, with their particularly strict refereeing, add an extra mark of quality to the content. We are keen to continue developing and strengthening the journal to make it the first choice for authors and readers. We are lucky to be working in the exciting, rapidly-changing field of applied physics. The pace of development can sometimes be breathtaking. One of our first actions on taking over the journal was to look again at its scope. We felt it was time to respond to all the recent developments, to ensure that our scope encompasses the latest, cutting-edge research topics—so that it matches the reality of applied physics today. The first issue of the journal that will see this new scope implemented will be issue 41 of this volume. We would like to thank the entire Editorial Board for their hard work during this scope review. The greatest change during this review has been the merging of two sections, 'Functional surfaces and interfaces' and 'Structure and properties of matter', into a new section entitled 'Condensed matter, interfaces and related nanostructures'. This change reflects the significant developments in these connected fields in recent years, particularly the natural evolution of surface and interface science—and much of condensed matter physics—towards nanoscience. We are sure this merged section will bring the authors' work in both of these sections to a broader audience. All sections have seen some additions to, and removals from, the scope. A full copy of the new scope can be found at the end of this editorial. Some of the areas from which we are particularly keen to receive more papers include: photovoltaics, terahertz science and technology, plasmonics, spintronics, bulk magnetic materials, biomagnetism, graphene, plasma medicine and plasma propulsion. Many others are closely monitored as potential developments and we will act rapidly whenever necessary to avoid missing opportunities. As part of these changes, we will be asking all authors to explain their choice of journal section within the new scope. We will also ask authors to submit a short statement of the applications or potential applications of their work. This will allow us to assess the suitability of the research for the journal but will also allow us to highlight the most exciting research we publish, ensuring it gets the highest possible visibility. We would like to take this opportunity to thank our hard-working and dedicated publishing team and Editorial Board. We would also like to thank the authors and referees of JPhysD, without whom the journal could not exist. We believe these changes will allow further strengthening, development and growth of the journal and we look forward to a positive future for JPhysD.

  1. Towson University's Professional Science Master's Program in Applied Physics: The first 5 years

    NASA Astrophysics Data System (ADS)

    Kolagani, Rajeswari

    It is a well-established fact that the scientific knowledge and skills acquired in the process of obtaining a degree in physics meet the needs of a variety of positions in multiple science and technology sectors. However, in addition to scientific competence, challenging careers often call for skills in advanced communication, leadership and team functions. The professional science master's degree, which has been nick-named as the `Science MBA', aims at providing science graduates an edge both in terms of employability and earning levels by imparting such skills. Our Professional Science Master's Program in Applied Physics is designed to develop these `plus' skills through multiple avenues. In addition to advanced courses in Applied Physics, the curriculum includes graduate courses in project management, business and technical writing, together with research and internship components. I will discuss our experience and lessons learned over the 5 years since the inception of the program in 2010. The author acknowledges support from the Elkins Professorship of the University System of Maryland.

  2. The Impact of NSF-funded Physics Education Research at the University of Washington

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2015-03-01

    It is now well known that many students who complete introductory physics courses are unable to apply fundamental concepts in situations that involve qualitative reasoning. Systematic investigations have helped researchers understand why so many students fail to develop robust and coherent conceptual frameworks, and have led to the development of new teaching practices and materials that are far more effective than conventional ones. The Physics Education Group at the University of Washington has played a leading role in raising awareness of the need to improve instruction, and in supporting physics faculty in their efforts to do so. With support from the National Science Foundation, the group has helped build a research base that instructors can draw on, and has produced practical, flexible instructional materials that promote deeper learning in physics classrooms. Both ``Tutorials in Introductory Physics'' (Pearson, 2002) and ``Physics by Inquiry'' (Wiley, 1996) have been developed in an iterative process in which ongoing assessment of student learning plays an integral role. These materials have had a widespread and significant impact on physics teaching and on student learning from kindergarten through graduate school. In this talk I will describe the role of research in curriculum development, and speculate on the next generation of tools and resources to support physics teaching and learning.

  3. Proceedings ICASS 2017

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Schaaf, Peter

    2018-07-01

    This special issue of the high impact international peer reviewed journal Applied Surface Science represents the proceedings of the 2nd International Conference on Applied Surface Science ICASS held 12-16 June 2017 in Dalian China. The conference provided a forum for researchers in all areas of applied surface science to present their work. The main topics of the conference are in line with the most popular areas of research reported in Applied Surface Science. Thus, this issue includes current research on the role and use of surfaces in chemical and physical processes, related to catalysis, electrochemistry, surface engineering and functionalization, biointerfaces, semiconductors, 2D-layered materials, surface nanotechnology, energy, new/functional materials and nanotechnology. Also the various techniques and characterization methods will be discussed. Hence, scientific research on the atomic and molecular level of material properties investigated with specific surface analytical techniques and/or computational methods is essential for any further progress in these fields.

  4. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  5. Dutch Young Adults Ratings of Behavior Change Techniques Applied in Mobile Phone Apps to Promote Physical Activity: A Cross-Sectional Survey.

    PubMed

    Belmon, Laura S; Middelweerd, Anouk; Te Velde, Saskia J; Brug, Johannes

    2015-11-12

    Interventions delivered through new device technology, including mobile phone apps, appear to be an effective method to reach young adults. Previous research indicates that self-efficacy and social support for physical activity and self-regulation behavior change techniques (BCT), such as goal setting, feedback, and self-monitoring, are important for promoting physical activity; however, little is known about evaluations by the target population of BCTs applied to physical activity apps and whether these preferences are associated with individual personality characteristics. This study aimed to explore young adults' opinions regarding BCTs (including self-regulation techniques) applied in mobile phone physical activity apps, and to examine associations between personality characteristics and ratings of BCTs applied in physical activity apps. We conducted a cross-sectional online survey among healthy 18 to 30-year-old adults (N=179). Data on participants' gender, age, height, weight, current education level, living situation, mobile phone use, personality traits, exercise self-efficacy, exercise self-identity, total physical activity level, and whether participants met Dutch physical activity guidelines were collected. Items for rating BCTs applied in physical activity apps were selected from a hierarchical taxonomy for BCTs, and were clustered into three BCT categories according to factor analysis: "goal setting and goal reviewing," "feedback and self-monitoring," and "social support and social comparison." Most participants were female (n=146), highly educated (n=169), physically active, and had high levels of self-efficacy. In general, we observed high ratings of BCTs aimed to increase "goal setting and goal reviewing" and "feedback and self-monitoring," but not for BCTs addressing "social support and social comparison." Only 3 (out of 16 tested) significant associations between personality characteristics and BCTs were observed: "agreeableness" was related to more positive ratings of BCTs addressing "goal setting and goal reviewing" (OR 1.61, 95% CI 1.06-2.41), "neuroticism" was related to BCTs addressing "feedback and self-monitoring" (OR 0.76, 95% CI 0.58-1.00), and "exercise self-efficacy" was related to a high rating of BCTs addressing "feedback and self-monitoring" (OR 1.06, 95% CI 1.02-1.11). No associations were observed between personality characteristics (ie, personality, exercise self-efficacy, exercise self-identity) and participants' ratings of BCTs addressing "social support and social comparison." Young Dutch physically active adults rate self-regulation techniques as most positive and techniques addressing social support as less positive among mobile phone apps that aim to promote physical activity. Such ratings of BCTs differ according to personality traits and exercise self-efficacy. Future research should focus on which behavior change techniques in app-based interventions are most effective to increase physical activity.

  6. United States Air Force Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 4A, Wright Laboratory

    DTIC Science & Technology

    1994-11-01

    Erdman Solar to Thermal Energy Physics and Astronomy University of Iowa, Iowa City, IA PL/RK 6 A Detailed Investigation of Low-and High-Power Arcjet...Properties of Dr. Mary Potasek Strained Layer Sem Applied Physics Columbia University, New York, NY WL/ML 27 Development of Control Design Methodologies...concrete is also presented. Finally, the model is extended to include penetration into multiple layers of different target materials. Comparisons are

  7. 34 CFR Appendix A to Part 100 - Federal Financial Assistance to Which These Regulations Apply

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Grants for research and demonstrations relating to physical education or recreation for handicapped... 34 Education 1 2010-07-01 2010-07-01 false Federal Financial Assistance to Which These Regulations Apply A Appendix A to Part 100 Education Regulations of the Offices of the Department of Education...

  8. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hules, John

    This 1998 annual report from the National Scientific Energy Research Computing Center (NERSC) presents the year in review of the following categories: Computational Science; Computer Science and Applied Mathematics; and Systems and Services. Also presented are science highlights in the following categories: Basic Energy Sciences; Biological and Environmental Research; Fusion Energy Sciences; High Energy and Nuclear Physics; and Advanced Scientific Computing Research and Other Projects.

  10. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  11. 43 CFR 2.70 - What definitions apply to subparts A through I of this part?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... physical objects (e.g., laboratory samples). Research data also do not include: (1) Trade secrets... privacy, such as information that could be used to identify a particular person in a research study... means any school that operates a program of scholarly research. In order to fall within this category...

  12. 43 CFR 2.70 - What definitions apply to subparts A through I of this part?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... physical objects (e.g., laboratory samples). Research data also do not include: (1) Trade secrets... privacy, such as information that could be used to identify a particular person in a research study... means any school that operates a program of scholarly research. In order to fall within this category...

  13. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Treesearch

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  14. Informing Our Practice: Useful Research on Young Children's Development

    ERIC Educational Resources Information Center

    Essa, Eva L., Ed.; Burnham, Melissa M., Ed.

    2009-01-01

    Best practice is based on knowledge--not on beliefs or guesses--about how children learn and develop. This volume contains 20 overviews of research on aspects of young children's social, emotional, cognitive, or physical development, as well as how the findings can be applied in the classroom. Originally "Research in Review" articles in NAEYC's…

  15. Applying results from Physics Education Research in a large first-year service course

    NASA Astrophysics Data System (ADS)

    Ahrensmeier, Daria

    2012-10-01

    First-year service courses are among the most challenging teaching appointments, due to factors such as lack of motivation, lack of academic preparation, and huge class size. I will describe how the Labatorial Project at the University of Calgary strives to apply results from Physics Education research on inquiry-based learning, addressing misconceptions, peer instruction etc. to the small group sections of these courses. After a brief overview of the design and implementation of the labatorials for a first-year course for engineering students, I will focus on the aspects of change management and sustainability: how one initial change led to a sequence of related modifications, from the lectures to the exams and TA training, accompanied by a natural process of faculty professional development.

  16. Morehouse Physics & Dual Degree Engineering Program: We C . A . R . E . Approach

    NASA Astrophysics Data System (ADS)

    Rockward, Willie S.

    2015-03-01

    Growing the physics major at any undergraduate institution, especially Morehouse College - a private, all-male, liberal arts HBCU, can be very challenging. To address this challenge at Morehouse, the faculty and staff in the Department of Physics and Dual Degree Engineering Program (Physics & DDEP) are applying a methodology and pedagogical approach called ``We C . A . R . E '' which stands for Curriculum,Advisement,Recruitment/Retention/Research, andExtras. This approach utilizes an integrated strategy of cultural (family-orientated), collaborative (shared-governance), and career (personalized-pathways) modalities to provide the momentum of growing the physics major at Morehouse from 10-12 students to over 100 students in less than 5 years. Physics & DDEP at Morehouse, creatively, altered faculty course assignments, curriculum offerings, and departmental policies while expanding research projects, student organizations, and external collaborations. This method supplies a variety of meaningful, academic and research experiences for undergraduates at Morehouse and thoroughly prepares students for graduate studies or professional careers in STEM disciplines. Thus, a detailed overview of the ``We C . A . R . E . '' approach will be presented along with the Physics & DDEP vision, alterations and expansions in growing the physics major at Morehouse College. Department of Physics and Dual Degree Engineering Program, Atlanta, Georgia 30314.

  17. Vibro-Acoustic Modulation Based Damage Identification in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Loendersloot, R.; Rogge, M. D.; Akkerman, R.; Tinga, T.

    2014-01-01

    The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilize this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part. An impact load is applied to the skin-stiffener structure, resulting in a delamination underneath the stiffener. The structure is interrogated with a low frequency pump excitation and a high frequency carrier excitation. The analysis of the response in a frequency band around the carrier frequency is employed to assess the damage identification capabilities and to gain a better understanding of the modulations occurring and the underlying physical phenomena. Though vibro-acoustic is shown to be a sensitive method for damage identification, the complexity of the damage, combined with a high modal density, complicate the understanding of the relation between the physical phenomena and the modulations occurring. more research is recommended to reveal the physics behind the observations.

  18. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene

    PubMed Central

    Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research. PMID:27505418

  19. Involving High School Students in Computational Physics University Research: Theory Calculations of Toluene Adsorbed on Graphene.

    PubMed

    Ericsson, Jonas; Husmark, Teodor; Mathiesen, Christoffer; Sepahvand, Benjamin; Borck, Øyvind; Gunnarsson, Linda; Lydmark, Pär; Schröder, Elsebeth

    2016-01-01

    To increase public awareness of theoretical materials physics, a small group of high school students is invited to participate actively in a current research projects at Chalmers University of Technology. The Chalmers research group explores methods for filtrating hazardous and otherwise unwanted molecules from drinking water, for example by adsorption in active carbon filters. In this project, the students use graphene as an idealized model for active carbon, and estimate the energy of adsorption of the methylbenzene toluene on graphene with the help of the atomic-scale calculational method density functional theory. In this process the students develop an insight into applied quantum physics, a topic usually not taught at this educational level, and gain some experience with a couple of state-of-the-art calculational tools in materials research.

  20. The physical basis and future of radiation therapy.

    PubMed

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics.

  1. The physical basis and future of radiation therapy

    PubMed Central

    Bortfeld, T; Jeraj, R

    2011-01-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued “fuelling” of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more “professionalism” in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  2. [Integration of fundamental and applied medical and technical research made at the department of the biomedical systems, Moscow State Institute of Electronic Engineering].

    PubMed

    Selishchev, S V

    2004-01-01

    The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.

  3. Gender Approach at Physical Culture Lessons at the Second Stage of Basic High Education

    ERIC Educational Resources Information Center

    Vorotilkin?, Irina M.; Anokhina, Olga V.; Galitsyn, Sergey V.; Byankina, Larisa V.; Chiligin, Dmitriy V.

    2016-01-01

    Gender approach in education is a specific impact on the development of boys and girls by the set of factors of education and training process. The objective of this research is the reasoning of applying gender approach at physical culture lessons and creating comfortable environment taking into account the psychophysiological differences of the…

  4. Assessing the Value-Added by the Environmental Testing Process with the Aide of Physics/Engineering of Failure Evaluations

    NASA Technical Reports Server (NTRS)

    Cornford, S.; Gibbel, M.

    1997-01-01

    NASA's Code QT Test Effectiveness Program is funding a series of applied research activities focused on utilizing the principles of physics and engineering of failure and those of engineering economics to assess and improve the value-added by the various validation and verification activities to organizations.

  5. Impact of a Community-Based Prevention Marketing Intervention to Promote Physical Activity among Middle-Aged Women

    ERIC Educational Resources Information Center

    Sharpe, Patricia A.; Burroughs, Ericka L.; Granner, Michelle L.; Wilcox, Sara; Hutto, Brent E.; Bryant, Carol A.; Peck, Lara; Pekuri, Linda

    2010-01-01

    A physical activity intervention applied principles of community-based participatory research, the community-based prevention marketing framework, and social cognitive theory. A nonrandomized design included women ages 35 to 54 in the southeastern United States. Women (n = 430 preprogram, n = 217 postprogram) enrolled in a 24-week behavioral…

  6. Teaching Introductory Physics with an Environmental Focus

    NASA Astrophysics Data System (ADS)

    Martinuk, Mathew ``Sandy''; Moll, Rachel F.; Kotlicki, Andrzej

    2010-09-01

    Throughout North America the curriculum of introductory physics courses is nearly standardized. In 1992, Tobias wrote that four texts dominate 90% of the introductory physics market and current physics education research is focusing on how to sustain educational reforms.2 The instructional team at the University of British Columbia (UBC) recently implemented some key curriculum and pedagogical changes in Physics 100, their algebra-based introductory course for non-physics majors. These changes were aimed at improving their students' attitudes toward physics and their ability to apply physics concepts to useful real-life situations. In order to demonstrate that physics is relevant to real life, a theme of energy and environment was incorporated into the course.

  7. Careers and people

    NASA Astrophysics Data System (ADS)

    2009-09-01

    IBM scientist wins magnetism prizes Stuart Parkin, an applied physicist at IBM's Almaden Research Center, has won the European Geophysical Society's Néel Medal and the Magnetism Award from the International Union of Pure and Applied Physics (IUPAP) for his fundamental contributions to nanodevices used in information storage. Parkin's research on giant magnetoresistance in the late 1980s led IBM to develop computer hard drives that packed 1000 times more data onto a disk; his recent work focuses on increasing the storage capacity of solid-state electronic devices.

  8. A Guide to Oceanic Sedimentary Layering.

    DTIC Science & Technology

    1983-07-28

    Profiling," J. Geophys. Res. 73, 2597-2614. L3 Lee, H. J., 1980. "Physical Properties of Northeast Pacific Sedi- ments Related to Sedimentary Environment and...7i -AI33 060 A GUIDE TO OCEANIC SEDIMENTARY LAYERING(U) TEXAS UNIV 1/i AT AUSTIN APPLIED RESEARCH LABS C B BENNETT ET AL, 28 JUL 83 RRL-TR-83-25...Copy No. 3 A GUIDE TO OCEANIC SEDIMENTARY LAYERING Christopher B. Bennett J. Mark Daniels APPLIED RESEARCH LABORATORIES THE UNIVERSITY OF TEXAS AT

  9. Theory-and evidence-based development and process evaluation of the Move More for Life program: a tailored-print intervention designed to promote physical activity among post-treatment breast cancer survivors

    PubMed Central

    2013-01-01

    Objective Several physical activity interventions have been effective in improving the health outcomes of breast cancer survivors. However, few interventions have provided detailed descriptions regarding how such interventions work. To develop evidence-based practice in this field, detailed descriptions of intervention development and delivery is needed. This paper aims to (1) describe the theory-and evidence-based development of the Move More for Life program, a physical activity program for breast cancer survivors; and (2) serve as an exemplar for theory-based applied research. Method The program-planning model outlined by Kreuter and colleagues was used to develop the computer-tailored intervention. Results The tailoring guide developed by Kreuter and colleagues served as a useful program planning tool in terms of integrating theory and evidence-based best practice into intervention strategies. Overall, participants rated the intervention positively, with the majority reporting that the tailored materials caught their attention, were personally relevant to them, and were useful for helping them to change their behaviour. However, there was considerable room for improvement. Conclusion The Move More for Life program is an example of a theory-based, low-cost and potentially sustainable strategy to physical activity promotion and may stand as an exemplar for Social Cognitive Theory-based applied research. By providing a detailed description of the development of the Move More for Life program, a critical evaluation of the working mechanisms of the intervention is possible, and will guide researchers in the replication or adaption and re-application of the specified techniques. This has potential implications for researchers examining physical activity promotion among cancer survivors and for researchers exploring distance-based physical activity promotion techniques among other populations. Trial registrations Australian New Zealand Clinical Trials Registry (ANZCTR) identifier: ACTRN12611001061921. PMID:24192320

  10. Progress in Applied Surface, Interface and Thin Film Science 2015. Solar Renewable Energy News IV, November 23-26, 2015, Florence, Italy (SURFINT-SREN IV)

    NASA Astrophysics Data System (ADS)

    2017-02-01

    The main goal of the conference is to contribute to new knowledge in surface, interface, ultra-thin films and very-thin films science of inorganic and organic materials by the most rapid interactive manner - by direct communication among scientists of corresponding research fields. The list of topics indicates that conference interests cover the development of basic theoretical physical and chemical principles and performance of surfaces-, thin films-, and interface-related procedures, and corresponding experimental research on atomic scale. Topical results are applied at development of new inventive industrial equipments needed for investigation of electrical, optical, and structural properties, and other parameters of atomic-size research objects. The conference range spreads, from physical point of view, from fundamental research done on sub-atomic and quantum level to production of devices built on new physical principles. The conference topics include also presentation of principally new devices in following fields: solar cells, liquid crystal displays, high-temperature superconductivity, and sensors. During the event, special attention will be given to evaluation of scientific and technical quality of works prepared by PhD students, to deep ecological meaning of solar cell energy production, and to exhibitions of companies.

  11. Analysis on the science literacy ability of vocational school physics teacher using NOSLiT indicators

    NASA Astrophysics Data System (ADS)

    Rahayu, P. P.; Masykuri, M.; Soeparmi

    2018-04-01

    Professional Physics teacher must be able to manage science learning process by associating science itself with the daily life. At first the teacher must have competency in the ability of science literacy. The target of this research is vocational school Physics teachers for the purpose to describe their ability on science literacy. This research is a survey research using test method. The test instrument is The NOSLiT by Wenning.Research results are: 1) Scientific Nomenclature : 38.46 %, 2) Basic experimental and observational abilities : 38.46 %, 3) Rules of scientific evidence : 0%, 4) Postulate science: 15.38%, 5) scientific disposition: 7. 69%.Conclusion: The result of each indicator shows that the ability of science literacy of vocational school Physics teachers has not met the expectations yet. It’s can be used as the reflection for education experts to improve their science literacy ability so that can be applied to the learning process that directly or indirectly will have an impact on improving the students’ science literacy.

  12. Introducing Students to Plant Geography: Polar Ordination Applied to Hanging Gardens.

    ERIC Educational Resources Information Center

    Malanson, George P.; And Others

    1993-01-01

    Reports on a research study in which college students used a statistical ordination method to reveal relationships among plant community structures and physical, disturbance, and spatial variables. Concludes that polar ordination helps students understand the methodology of plant geography and encourages further student research. (CFR)

  13. Can Theoretical Constructs in Science Be Generalised across Disciplines?

    ERIC Educational Resources Information Center

    Lewis, Jenny

    2009-01-01

    For many years there has been a growing concern, particularly among researchers in biology education, about the extent to which research findings from one discipline (most usually physics education) can be applied directly to other disciplines (particularly biology education). This paper explores the issue through the use of one particular…

  14. Radiation Oncology Physics and Medical Physics Education

    NASA Astrophysics Data System (ADS)

    Bourland, Dan

    2011-10-01

    Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).

  15. Masculinity theory in applied research with men and boys with intellectual disability.

    PubMed

    Wilson, Nathan John; Shuttleworth, Russell; Stancliffe, Roger; Parmenter, Trevor

    2012-06-01

    Researchers in intellectual disability have had limited theoretical engagement with mainstream theories of masculinity. In this article, the authors consider what mainstream theories of masculinity may offer to applied research on, and hence to therapeutic interventions with, men and boys with intellectual disability. An example from one research project that explored male sexual health illustrates how using masculinity theory provided greater insight into gendered data. Finally, we discuss the following five topics to illustrate how researchers might use theories of masculinity: (a) fathering, (b) male physical expression, (c) sexual expression, (d) men's health, and (e) underweight and obesity. Theories of masculinity offer an additional framework to analyze and conceptualize gendered data; we challenge researchers to engage with this body of work.

  16. Stoking the Dialogue on the Domains of Transformative Learning Theory: Insights From Research With Faith-Based Organizations in Kenya

    ERIC Educational Resources Information Center

    Moyer, Joanne M.; Sinclair, A. John

    2016-01-01

    Transformative learning theory is applied in a variety of fields, including archaeology, religious studies, health care, the physical sciences, environmental studies, and natural resource management. Given the breadth of the theory's application, it needs to be adaptable to broad contexts. This article shares insights gained from applying the…

  17. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  18. Plasma Physics Network Newsletter, no. 5

    NASA Astrophysics Data System (ADS)

    1992-08-01

    The fifth Plasma Physics Network Newsletter (IAEA, Vienna, Aug. 1992) includes the following topics: (1) the availability of a list of the members of the Third World Plasma Research Network (TWPRN); (2) the announcement of the fourteenth IAEA International Conference on Plasma Physics and Controlled Nuclear Fusion Research to be held in Wuerzburg, Germany, from 30 Sep. to 7 Oct. 1992; (3) the announcement of a Technical Committee Meeting on research using small tokamaks, organized by the IAEA as a satellite meeting to the aforementioned fusion conference; (4) IAEA Fellowships and Scientific Visits for the use of workers in developing member states, and for which plasma researchers are encouraged to apply through Dr. D. Banner, Head, Physics Section, IAEA, P.O. Box 100, A-1400 Vienna, Austria; (5) the initiation in 1993 of a new Coordinated Research Programme (CRP) on 'Development of Software for Numerical Simulation and Data Processing in Fusion Energy Research', as well as a proposed CRP on 'Fusion Research in Developing Countries using Middle- and Small-Scale Plasma Devices'; (6) support from the International Centre for Theoretical Physics (ICTP) for meetings held in Third World countries; (7) a report by W. Usada on Fusion Research in Indonesia; (8) News on ITER; (9) the Technical Committee Meeting planned 8-12 Sep. 1992, Canada, on Tokamak Plasma Biasing; (10) software made available for the study of tokamak transport; (11) the electronic mail address of the TWPRN; (12) the FAX, e-mail, and postal address for contributions to this plasma physics network newsletter.

  19. Microgravity: A Teacher's Guide with Activities in Science, Mathematics, and Technology

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J.B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    Microgravity is the subject of this teacher's guide. This publication identifies the underlying mathematics, physics, and technology principles that apply to microgravity. The topics included in this publication are: 1) Microgravity Science Primer; 2) The Microgravity Environment of Orbiting Spacecraft; 3) Biotechnology; 4) Combustion Science; 5) Fluid Physics; 6) Fundamental Physics; and 7) Materials Science; 8) Microgravity Research and Exploration; and 9) Microgravity Science Space Flights. This publication also contains a glossary of selected terms.

  20. National Synchrotron Light Source

    ScienceCinema

    BNL

    2017-12-09

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  1. The Journal Impact Factor: Does It Devalue Applied Research in Physical Education, Recreation, and Dance?

    ERIC Educational Resources Information Center

    Alford, Elward K.

    2012-01-01

    A troubling trend in research is the reliance on the journal impact factor (IF) to establish a perceived "value" or importance of scholarly publications. Given that the IF of different scholarly journals may vary greatly, this phenomenon not only influences which journals receive submissions, but is beginning to influence the type of research that…

  2. Physical and mental health correlates of adverse childhood experiences among low-income women.

    PubMed

    Cambron, Christopher; Gringeri, Christina; Vogel-Ferguson, Mary Beth

    2014-11-01

    The present study used secondary data gathered from a statewide random sample of 1,073 adult women enrolled in Utah's single-parent cash assistance program and logistic regression to examine associations between self-reported physical, emotional, and sexual abuse during childhood and later life physical and mental health indicators. Results demonstrated significant associations between low-income women's self-reports of physical, emotional, or sexual abuse in childhood, and current and lifetime anxiety disorder, domestic violence, current posttraumatic stress disorder, bipolar disorder, physical health or mental health issues, and any mental health diagnosis. These results build on previous research to paint a fuller picture of the associations between childhood abuse and physical and mental health for low-income women in Utah. Consistent with research by the Centers for Disease Control and Prevention, findings suggest the applicability of conceptualizing childhood abuse as a public health issue. Social workers can play an integral role in promoting and implementing broader screening practices, connecting affected individuals with long-term interventions, and applying research findings to the design and provision of services within a public health model.

  3. Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meurice, Yannick L; Reno, Mary Hall

    Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less

  4. Fusion programs in applied plasma physics

    NASA Astrophysics Data System (ADS)

    1992-07-01

    The Applied Plasma Physics (APP) program at General Atomics (GA) described here includes four major elements: (1) Applied Plasma Physics Theory Program, (2) Alpha Particle Diagnostic, (3) Edge and Current Density Diagnostic, and (4) Fusion User Service Center (USC). The objective of the APP theoretical plasma physics research at GA is to support the DIII-D and other tokamak experiments and to significantly advance our ability to design a commercially-attractive fusion reactor. We categorize our efforts in three areas: magnetohydrodynamic (MHD) equilibria and stability; plasma transport with emphasis on H-mode, divertor, and boundary physics; and radio frequency (RF). The objective of the APP alpha particle diagnostic is to develop diagnostics of fast confined alpha particles using the interactions with the ablation cloud surrounding injected pellets and to develop diagnostic systems for reacting and ignited plasmas. The objective of the APP edge and current density diagnostic is to first develop a lithium beam diagnostic system for edge fluctuation studies on the Texas Experimental Tokamak (TEXT). The objective of the Fusion USC is to continue to provide maintenance and programming support to computer users in the GA fusion community. The detailed progress of each separate program covered in this report period is described.

  5. Applied Computational Electromagnetics Society Journal. Volume 7, Number 1, Summer 1992

    DTIC Science & Technology

    1992-01-01

    previously-solved computational problem in electrical engineering, physics, or related fields of study. The technical activities promoted by this...in solution technique or in data input/output; identification of new applica- tions for electromagnetics modeling codes and techniques; integration of...papers will represent the computational electromagnetics aspects of research in electrical engineering, physics, or related disciplines. However, papers

  6. The History and Philosophy of Science in Physics Teaching: A Research Synthesis of Didactic Interventions

    ERIC Educational Resources Information Center

    Teixeira, Elder Sales; Greca, Ileana Maria; Freire, Olival, Jr.

    2012-01-01

    This work is a systematic review of studies that investigate teaching experiences applying History and Philosophy of Science (HPS) in physics classrooms, with the aim of obtaining critical and reliable information on this subject. After a careful process of selection and exclusion of studies compiled from a variety of databases, an in-depth review…

  7. Workplace physical activity interventions: a systematic review.

    PubMed

    To, Quyen G; Chen, Ted T L; Magnussen, Costan G; To, Kien G

    2013-01-01

    To assess the effectiveness of workplace interventions in improving physical activity. EBSCO research database (and all subdatabases). Articles were published from 2000 to 2010 in English, had appropriate designs, and measured employees' physical activity, energy consumption, and/or body mass index (BMI) as primary outcomes. Articles that did not meet the inclusion criteria were excluded. Data extracted included study design, study population, duration, intervention activities, outcomes, and results. Data were synthesized into one table. Results of each relevant outcome including p values were combined. Twelve (60%) of 20 selected interventions reported an improvement in physical activity level, steps, or BMI, and there was one slowed step reduction in the intervention group. Among these, 10 were less than 6 months in duration; 9 used pedometers; 6 applied Internet-based approaches; and 5 included activities targeting social and environmental levels. Seven of 8 interventions with pre-posttest and quasi-experimental controlled design showed improvement on at least one outcome. However, 7 of 12 randomized controlled trials (RCTs) did not prove effective in any outcome. Interventions that had less rigorous research designs, used pedometers, applied Internet-based approaches, and included activities at social and environmental levels were more likely to report being effective than those without these characteristics.

  8. Physics in finance

    NASA Astrophysics Data System (ADS)

    James, Jessica

    2001-04-01

    These days it is not unusual to find people with a PhD in physics on the trading floor of a bank, but seven years ago such folk were very rare. This article is about what happens when a physicist works on the trading floor; not only the financial mathematics and research but also the people and the situations that he or she encounters. It is partly biographical, beginning with the description of the research at the Clarendon Laboratory that the author was involved in, and describing how she ended up working for a bank. Various aspects of the finance research that she now pursues are explained, starting with simple foreign exchange rate calculations, going on to discuss some subtle aspects of the Black-Scholes model used in the valuation of financial instruments, and concluding with study on the fair price of options which illustrates how important it is to apply the research methods learnt in physics to the world of finance.

  9. Brookhaven highlights: a two year report, July 1974--June 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    Brief summaries are given of research activities in the areas of high energy physics, basic and applied energy science, and life sciences. Support activities and administrative data are also briefly reviewed.

  10. The built-in environment: the role of personality and physical activity.

    PubMed

    Rhodes, Ryan E

    2006-04-01

    Personality trait psychology has seen a reemergence in recent years, and researchers are beginning to apply personality models to understand health behavior habits. This review features recent research on personality correlates of physical activity (PA) and the integration of personality with PA-related social cognition. The current definition and status of general personality work is introduced followed by a review and discussion of the evidence for personality and PA relations. The review concludes with recommendations for personality-matched PA marketing and experimental and longitudinal designs.

  11. Aeropropulsion 1987. Session 3: Internal Fluid Mechanics Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Internal fluid mechanics research at Lewis is directed toward an improved understanding of the important flow physics affecting aerospace propulsion systems, and applying this improved understanding to formulate accurate predictive codes. To this end, research is conducted involving detailed experimentation and analysis. The presentations in this session summarize ongoing work and indicated future emphasis in three major research thrusts: namely, inlets, ducts, and nozzles; turbomachinery; and chemical reacting flows.

  12. Dutch Young Adults Ratings of Behavior Change Techniques Applied in Mobile Phone Apps to Promote Physical Activity: A Cross-Sectional Survey

    PubMed Central

    Belmon, Laura S; te Velde, Saskia J; Brug, Johannes

    2015-01-01

    Background Interventions delivered through new device technology, including mobile phone apps, appear to be an effective method to reach young adults. Previous research indicates that self-efficacy and social support for physical activity and self-regulation behavior change techniques (BCT), such as goal setting, feedback, and self-monitoring, are important for promoting physical activity; however, little is known about evaluations by the target population of BCTs applied to physical activity apps and whether these preferences are associated with individual personality characteristics. Objective This study aimed to explore young adults’ opinions regarding BCTs (including self-regulation techniques) applied in mobile phone physical activity apps, and to examine associations between personality characteristics and ratings of BCTs applied in physical activity apps. Methods We conducted a cross-sectional online survey among healthy 18 to 30-year-old adults (N=179). Data on participants’ gender, age, height, weight, current education level, living situation, mobile phone use, personality traits, exercise self-efficacy, exercise self-identity, total physical activity level, and whether participants met Dutch physical activity guidelines were collected. Items for rating BCTs applied in physical activity apps were selected from a hierarchical taxonomy for BCTs, and were clustered into three BCT categories according to factor analysis: “goal setting and goal reviewing,” “feedback and self-monitoring,” and “social support and social comparison.” Results Most participants were female (n=146), highly educated (n=169), physically active, and had high levels of self-efficacy. In general, we observed high ratings of BCTs aimed to increase “goal setting and goal reviewing” and “feedback and self-monitoring,” but not for BCTs addressing “social support and social comparison.” Only 3 (out of 16 tested) significant associations between personality characteristics and BCTs were observed: “agreeableness” was related to more positive ratings of BCTs addressing “goal setting and goal reviewing” (OR 1.61, 95% CI 1.06-2.41), “neuroticism” was related to BCTs addressing “feedback and self-monitoring” (OR 0.76, 95% CI 0.58-1.00), and “exercise self-efficacy” was related to a high rating of BCTs addressing “feedback and self-monitoring” (OR 1.06, 95% CI 1.02-1.11). No associations were observed between personality characteristics (ie, personality, exercise self-efficacy, exercise self-identity) and participants’ ratings of BCTs addressing “social support and social comparison.” Conclusions Young Dutch physically active adults rate self-regulation techniques as most positive and techniques addressing social support as less positive among mobile phone apps that aim to promote physical activity. Such ratings of BCTs differ according to personality traits and exercise self-efficacy. Future research should focus on which behavior change techniques in app-based interventions are most effective to increase physical activity. PMID:26563744

  13. Applying Developmental Theory and Research to the Creation of Educational Games

    ERIC Educational Resources Information Center

    Revelle, Glenda

    2013-01-01

    The field of developmental psychology has produced abundant theory and research about the physical, cognitive, social, and emotional development of children; however, to date there has been limited use of this wealth of knowledge by developers creating games for children. This chapter provides an overview of key theoretical observations and…

  14. I Play, Therefore I Am: An Undergraduate Philosophical Action Research Project.

    ERIC Educational Resources Information Center

    Stoll, Sharon Kay; Beller, Jennifer M.; Mathews, Allison; Matthews, Julie; Trainer, Maria; Freitas, Brandon; McLaughlin, Casey; Milke, Mary

    2000-01-01

    Asked undergraduate students' opinions of Descartes' belief that the mind and body are separate, then had them conduct action research projects examining whether the mind-body dilemma might be overcome if teachers valued the essential nature of play and applied it to sport and physical education. Results supported the hypothesis that physical…

  15. Chemical research projects office: An overview and bibliography, 1975-1980

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Heimbuch, A. H.; Parker, J. A.

    1980-01-01

    The activities of the Chemical Research Projects Office at Ames Research Center, Moffett Field, California are reported. The office conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics, and physical and organic chemistry. It works to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. It conducts interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. The office also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies, and industry. Recent accomplishments are listed in this report. Activities of the three research groups, Polymer Research, Aircraft Operating and Safety, and Engineering Testing, are summarized. A complete bibliography which lists all Chemical Research Projects Office publications, contracts, grants, patents, and presentations from 1975 to 1980 is included.

  16. Microgravity: A New Tool for Basic and Applied Research in Space

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This brochure highlights selected aspects of the NASA Microgravity Science and Applications program. So that we can expand our understanding and control of physical processes, this program supports basic and applied research in electronic materials, metals, glasses and ceramics, biological materials, combustion and fluids and chemicals. NASA facilities that provide weightless environments on the ground, in the air, and in space are available to U.S. and foreign investigators representing the academic and industrial communities. After a brief history of microgravity research, the text explains the advantages and methods of performing microgravity research. Illustrations follow of equipment used and experiments preformed aboard the Shuttle and of prospects for future research. The brochure concludes be describing the program goals and the opportunities for participation.

  17. The physical inactivity matrix: lessons from the classification of physical inactivity interventions.

    PubMed

    Kypri, Kypros; Donaldson, Alex; Johnstone, Elizabeth

    2006-05-01

    Physical inactivity (PI), a leading modifiable cause of disease and injury, is endemic in industrialised nations. Although considerable research has been undertaken in this field, we lack a system to synthesise the research literature to inform policy and identify research needs. The aims of this study were to (1) develop a system to classify physical inactivity intervention studies, (2) examine the distribution of PI interventions published in the peer-reviewed health literature using the system, and (3) consider implications for future research. We developed the Physical Inactivity Matrix (PIM), with 12 intervention points, created by the intersection of two dimensions: the intervention target (individual, physical environment and social/cultural environment) and the activity focus (transport, work/school, leisure and consumer). A formal search of the health research literature identified 529 eligible studies and each was classified into one of the 12 cells of the PIM. Most studies were categorised as: individual-leisure (68%), individual-work/school (12%) or social/cultural environment-leisure (13%). Only 4% targeted the physical environment. The findings of this initial application of the PIM support the call for greater investment in policies, interventions and research that focus on the relationship between the environment and PI, and transportation in particular. There would be merit in establishing the inter-rater reliability of the PIM and applying it to a wider variety of studies, including those published in the transportation and urban planning literatures. The PIM could be a useful tool for monitoring trends in research directions and funding levels over time and across countries.

  18. PREFACE: Young Researcher Meeting, Trieste 2014

    NASA Astrophysics Data System (ADS)

    Agostini, F.; Antolini, C.; Aversa, R.; Cattani, G.; Di Stefano, M.; Longobardi, M.; Martinelli, M.; Miceli, A.; Migliaccio, M.; Paci, F.; Pietrobon, D.; Pusceddu, E.; Stellato, F.

    2014-12-01

    YRM_LOGO The Young Researcher Meeting (www.yrmr.it) has confirmed once again this year the enthusiasm and determination of Ph.D. students, postdoctoral fellows and young researchers to play a major role in the scientific progress. Since 2009, we regularly gather together to discuss the most recent developments and achievements in Physics, firmly convinced that sharing our expertise and experience is the foundation of research activity. The format we chose is an informal meeting primarily aimed at graduate students and postdoctoral researchers, who are encouraged to present their work in brief presentations that provide genuine engagement of the audience and cross-pollination of ideas. One of the main purposes of the conference is to create an international network of young researchers, both experimentalists and theorists, and fruitful collaborations across the different branches of Physics. After four editions that strengthened it, the Young Researcher Meeting 2014 was held at the International School for Advanced Studies - SISSA, Trieste, for the second time. The fifth appointment was a two-day conference on July 14th-15th 2014. It has been sponsored by a number of research groups of SISSA, the University of Udine and the Solar Physics group of the University of Rome "Tor Vergata", thus gathering even broader support than previous editions. The success of this year event is testified by an increased number of participants and institutions all around Europe. This resulted in an extremely rich and interactive poster session that covered several areas of pure and applied Physics. With the intent of broadening the contents and stimuli adopting multidisciplinary tools, the YRM 2014 hosted the workshop "Communicating Science" held in collaboration with SISSA Medialab. This choice reflects the growing importance of the outreach activity performed by scientists, especially at the earliest stages of their career, as a way of increasing their expertise and developing soft skills. Engaging the public and finding unconventional ways to communicate results turn out to be real assets in improving the quality of presentation of current research to peers, as well as to the general public. In this volume, we collect part of the contributions that have been presented at the conference. They cover topics in astrophysics and cosmology, particle and theoretical physics, soft and condensed matter, medical physics and applied physics. Given the recent experimental achievements in particle physics and cosmology, several contributions were focused on the latest results obtained in these fields, presenting the impact of experiments such as LHC and Planck to the community of young researchers and forecasting the future goals in these areas of research. Particular interest was aroused by the session fully dedicated to applied Physics and conservation of cultural assets. Besides the intrinsic scientific value of the discussed topics, the increasing relative weight of the applied Physics session is a demonstration of the benefits that fundamental science brings to the community. YRM Organising and Editorial Committee Fabio Agostini (fabio.agostini31@gmail.com) Telespazio A Finmeccanica Thales Company Claudia Antolini (claudia.antolini@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Fudan University Rossella Aversa (raversa@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Giordano Cattani (giordano.cattani@gmail.com) Marco Di Stefano (distefan@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Maria Longobardi (marialongobardi@gmail.com) Department of Condensed Matter Physics, University of Geneva Matteo Martinelli (martinelli@thphys.uni-heidelberg.de) SISSA - Scuola Internazionale Superiore di Studi Avanzati and Institut fur Theoretische Physik Alice Miceli (alice.miceli@uniroma2.it) Physics Department, University of Rome Tor Vergata Marina Migliaccio (mm858@ast.cam.ac.uk) Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge Francesco Paci (fpaci@sissa.it) SISSA - Scuola Internazionale Superiore di Studi Avanzati Davide Pietrobon (davide.pietrobon@berkeley.edu) University of California at Berkeley Emanuela Pusceddu (emanuela.pusceddu@gmail.com) Institute of Biometeorology CNR Francesco Stellato (francesco.stellato@roma2.infn.it) INFN Roma Tor Vergata ACKNOWLEDGEMENTS The organisers of the 5th Young Researcher Meeting would like to thank all the scientists who participated to the meeting. We furthermore thank all our sponsors that are listed below for supporting the event. We are grateful to the International School for Advanced Studies (SISSA) for hosting the conference for the second time, and to its director, Prof. Guido Martinelli, for his support and advice. We owe gratitude to SISSA Medialab, for organising the public event on science communication and providing technical support throughout the entire meeting. The publication of the proceedings of the conference is partially supported by the Solar Physics group in Tor Vertaga; we also acknowledge support from the University of Udine. The event was broadcast live by OggiScienza (http://oggiscienza.wordpress.com). The complete videos of the meeting can be found at the YRM Youtube channel https://www.youtube.com/channel/UCw3roeK9oC4NPc-sRQ2t0rg SISSAInternational School for Advanced Studies (SISSA), Trieste PRINPRIN 2010-2011 (MIUR 2010YJ2NYW_001) - "Symmetries, Masses and Mysteries: Electroweak symmetry breaking, flavor mixing and CP violation, and Dark Matter in the LHC era" - SISSA, Trieste BIOMolecular and Statistical Biophysics Group - SISSA, Trieste THEOPRIN 2012 (2012CPPYP7_006) - "Theoretical Astroparticle Physics" - SISSA, Trieste ASTROPRIN 2010-2011 (MIUR 2010NHBSBE_008) - "L'Universo oscuro e l'evoluzione cosmica dei barioni: dalle survey attuali a Euclid" - SISSA, Trieste UDINEDepartment of Chemistry, Physics and Environment of the University of Udine BERRILLISolar Physics Group - Department of Physics of the University of Rome "Tor Vergata"

  19. Physical sciences research plans for the International Space Station.

    PubMed

    Trinh, E H

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  20. Physical sciences research plans for the International Space Station

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  1. Examination of ethical dilemmas experienced by adult intensive care unit nurses in physical restraint practices.

    PubMed

    Yönt, Gülendam Hakverdioğlu; Korhan, Esra Akin; Dizer, Berna; Gümüş, Fatma; Koyuncu, Rukiye

    2014-01-01

    Nurses are more likely to face the dilemma of whether to resort to physical restraints or not and have a hard time making that decision. This is a descriptive study. A total of 55 nurses participated in the research. For data collection, a question form developed by researchers to determine perceptions of ethical dilemmas by nurses in the application of physical restraint was used. A descriptive analysis was made by calculating the mean, standard deviation, and maximum and minimum values. The nurses expressed (36.4%) having difficulty in deciding to use physical restraint. Nurses reported that they experience ethical dilemmas mainly in relation to the ethic principles of nonmaleficence, beneficence, and convenience. We have concluded that majority of nurses working in critical care units apply physical restraint to patients, although they are facing ethical dilemmas concerning harm and benefit principles during the application.

  2. Conception and development of the Second Life® Embryo Physics Course.

    PubMed

    Gordon, Richard

    2013-06-01

    The study of embryos with the tools and mindset of physics, started by Wilhelm His in the 1880s, has resumed after a hiatus of a century. The Embryo Physics Course convenes online allowing interested researchers and students, who are scattered around the world, to gather weekly in one place, the virtual world of Second Life®. It attracts people from a wide variety of disciplines and walks of life: applied mathematics, artificial life, bioengineering, biophysics, cancer biology, cellular automata, civil engineering, computer science, embryology, electrical engineering, evolution, finite element methods, history of biology, human genetics, mathematics, molecular developmental biology, molecular biology, nanotechnology, philosophy of biology, phycology, physics, self-reproducing systems, stem cells, tensegrity structures, theoretical biology, and tissue engineering. Now in its fifth year, the Embryo Physics Course provides a focus for research on the central question of how an embryo builds itself.

  3. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    NASA Astrophysics Data System (ADS)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  4. Undergraduate Skills Laboratories at Sonoma State University

    NASA Astrophysics Data System (ADS)

    Gill, Amandeep; Zack, K.; Mills, H.; Cunningham, B.; Jackowski, S.

    2014-01-01

    Due to the current economic climate, funding sources for many laboratory courses have been cut from university budgets. However, it is still necessary for undergraduates to master laboratory skills to be prepared and competitive applicants when entering the professional world and/or graduate school. In this context, student-led programs may be able to compensate for this lack of formal instruction and reinforce concepts from lecture by applying research techniques to develop hands-on comprehension. The Sonoma State University Chapter of Society of Physics Students has established a peer-led skills lab to teach research techniques in the fields of astronomy and physics. The goal is to alleviate the pressures of both independently learning and efficiently applying techniques to junior and senior-level research projects. These skill labs are especially valuable for nontraditional students who, due to work or family duties, may not get a chance to fully commit to research projects. For example, a topic such as Arduino programming has a multitude of applications in both astronomy and physics, but is not taught in traditional university courses. Although some programming and electronics skills are taught in (separate) classes, they are usually not applied to actual research projects, which combined expertise is needed. For example, in astronomy, there are many situations involving programming telescopes and taking data with electronic cameras. Often students will carry out research using these tools but when something goes wrong, the students will not have the skills to trouble shoot and fix the system. Another astronomical topic to be taught in the skills labs is the analysis of astronomical data, including running remote telescopes, analyzing photometric variability, and understanding the concepts of star magnitudes, flat fields, and biases. These workshops provide a setting in which the student teacher may strengthen his or her understanding of the topic by presenting it to peers. Students teaching fellow peers is an ideal method of furthering understanding for all participants, and the skills lab established by the SPS has begun this process at SSU.

  5. Hanford Laboratories monthly activities report, March 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  6. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  7. Processes and Instructions Encouraging Thai Students Consistently Pass the First Round of The National Physics Academics Olympiads

    NASA Astrophysics Data System (ADS)

    Teevasuthornsakul, Chalongchai; Manosuttirit, Artnarong; Suwanno, Chirasak; Sutsaguan, Lanchakorn

    2010-07-01

    This research focused on the processes and physics instruction of 25 schools located in Bangkok and up-country in Thailand in order to explain why many of their students have passed the first round of the National Physics Academic Olympiads consistently. The high schools in Thailand can apply and support their students and develop their potential in physics. The development of physics professional is the cornerstone of a developing country and increase physics quality base on sciences development in the future in Thailand. The duration of collecting all data was from May 2007 to May 2009. The methodology for this research was the qualitative research method. The researchers interviewed managers, teachers and students at each school location or used semi-structured interview forms. The researchers used the Investigator Triangulation approach to check the qualitative data and the Cause and Effect Analysis approach to analyze situation factors. The results showed that in processes were include 1) enhanced the students with the Academic Olympiads to develop the capacities of students; 2) motivated the students with processes such as good instruction in physics and special privilege in continuing studies in university; and 3) tutorial systems and drill and practice systems support students into subsequent rounds. 4) Admiration activities accommodated the students continually and suitably. Most of the teaching styles used in their lectures, in both basic contents and practice, encouraged students to analyze entrance examination papers, little laboratory. While students say that" They just know that a physics laboratory is very important to study physics after they passed Olympic camp."

  8. A New Look to Nuclear Data

    DOE PAGES

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    2017-03-30

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  9. A New Look to Nuclear Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.

    Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less

  10. Space plasma branch at NRL

    NASA Astrophysics Data System (ADS)

    The Naval Research Laboratory (Washington, D.C.) formed the Space Plasma Branch within its Plasma Physics Division on July 1. Vithal Patel, former Program Director of Magnetospheric Physics, National Science Foundation, also joined NRL on the same date as Associate Superintendent of the Plasma Physics Division. Barret Ripin is head of the newly organized branch. The Space Plasma branch will do basic and applied space plasma research using a multidisciplinary approach. It consolidates traditional rocket and satellite space experiments, space plasma theory and computation, with laboratory space-related experiments. About 40 research scientists, postdoctoral fellows, engineers, and technicians are divided among its five sections. The Theory and Computation sections are led by Joseph Huba and Joel Fedder, the Space Experiments section is led by Paul Rodriguez, and the Pharos Laser Facility and Laser Experiments sections are headed by Charles Manka and Jacob Grun.

  11. Review of Positive Psychology Applications in Clinical Medical Populations

    PubMed Central

    Macaskill, Ann

    2016-01-01

    This review examines the application of positive psychology concepts in physical health care contexts. Positive psychology aims to promote well-being in the general population. Studies identifying character strengths associated with well-being in healthy populations are numerous. Such strengths have been classified and Positive Psychology Interventions (PPIs) have been created to further develop these strengths in individuals. Positive psychology research is increasingly being undertaken in health care contexts. The review identified that most of this research involves measuring character strengths and their association with health outcomes in patients with a range of different conditions, similar to the position in positive psychology research on non-clinical populations. More recently, PPIs are beginning to be applied to clinical populations with physical health problems and this research, although relatively scarce, is reviewed here for cancer, coronary heart disease, and diabetes. In common with PPIs being evaluated in the general population, high quality studies are scarce. Applying PPIs to patients with serious health conditions presents significant challenges to health psychologists. They must ensure that patients are dealt with appropriately and ethically, given that exaggerated claims for PPIs are made on the internet quite frequently. This is discussed along with the need for more high quality research. PMID:27618122

  12. Review of Positive Psychology Applications in Clinical Medical Populations.

    PubMed

    Macaskill, Ann

    2016-09-07

    This review examines the application of positive psychology concepts in physical health care contexts. Positive psychology aims to promote well-being in the general population. Studies identifying character strengths associated with well-being in healthy populations are numerous. Such strengths have been classified and Positive Psychology Interventions (PPIs) have been created to further develop these strengths in individuals. Positive psychology research is increasingly being undertaken in health care contexts. The review identified that most of this research involves measuring character strengths and their association with health outcomes in patients with a range of different conditions, similar to the position in positive psychology research on non-clinical populations. More recently, PPIs are beginning to be applied to clinical populations with physical health problems and this research, although relatively scarce, is reviewed here for cancer, coronary heart disease, and diabetes. In common with PPIs being evaluated in the general population, high quality studies are scarce. Applying PPIs to patients with serious health conditions presents significant challenges to health psychologists. They must ensure that patients are dealt with appropriately and ethically, given that exaggerated claims for PPIs are made on the internet quite frequently. This is discussed along with the need for more high quality research.

  13. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    NASA Astrophysics Data System (ADS)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  14. East Europe Report, Scientific Affairs, No. 776.

    DTIC Science & Technology

    1983-05-11

    Washington, D.C. 20402. Correspondence pertaining to matters other than procurement may be addressed to Joint Publications Research Service, 1000...the beginning of neutrons physics--the science of the properties of the neutron and its interactions-with the nucleus and matter . The science has...media, the magnetic properties of matter and phase transitions; in the physics of nuclear reactors and nuclear technology; in developing and applying

  15. High-Accurate, Physics-Based Wake Simulation Techniques

    DTIC Science & Technology

    2015-01-27

    to accepting the use of computational fluid dynamics models to supplement some of the research. The scientists Lewellen and Lewellen [13] in 1996...resolved in today’s climate es- pecially concerning CFD and experimental. Multiple programs have been established such as the Aircraft Vortex Spacing ...step the entire matrix is solved at once creating inconsistencies when applied to the physics of a fluid mechanics problem where information changes

  16. Some Consequences of Some Assumptions with Respect to the Physical Decal of a Chamber Aerosol Cloud

    DTIC Science & Technology

    1963-12-01

    RESPECT TO THE PHYSICAL DECAY OF A CHAMBER AEROSOL CLOUD* Theodore W. Horner* Project Statistician, Booz-Allen Applied Research, Inc. 4815 Rugby Avenue...recovery percentage at time t is 0 Nf(r) h(r, t) ars (r, t) dr (1) B-(t) B1 r, t) S0 , where B’r, t) is the biological recovery percentage for

  17. Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation

    DTIC Science & Technology

    2015-03-21

    the interface that ensures the consistency and validity of the solution given by the two methods. Transfer functions are used to model two-way...release; distribution is unlimited. Adaptive modeling of details for physically-based sound synthesis and propagation The views, opinions and/or...Research Triangle Park, NC 27709-2211 Applied sciences, Adaptive modeling , Physcially-based, Sound synthesis, Propagation, Virtual world REPORT

  18. The "Exceptional" Physics Girl: A Sociological Analysis of Multimethod Data from Young Women Aged 10-16 to Explore Gendered Patterns of Post-16 Participation

    ERIC Educational Resources Information Center

    Archer, Louise; Moote, Julie; Francis, Becky; DeWitt, Jennifer; Yeomans, Lucy

    2017-01-01

    Female underrepresentation in postcompulsory physics is an ongoing issue for science education research, policy, and practice. In this article, we apply Bourdieusian and Butlerian conceptual lenses to qualitative and quantitative data collected as part of a wider longitudinal study of students' science and career aspirations age 10-16. Drawing on…

  19. National Aeronautics and Space Administration Biological and Physical Research Enterprise Strategy

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As the 21st century begins, NASA's new Vision and Mission focuses the Agency's Enterprises toward exploration and discovery.The Biological and Physical Research Enterprise has a unique and enabling role in support of the Agency's Vision and Mission. Our strategic research seeks innovations and solutions to enable the extension of life into deep space safely and productively. Our fundamental research, as well as our research partnerships with industry and other agencies, allow new knowledge and tech- nologies to bring improvements to life on Earth. Our interdisciplinary research in the unique laboratory of microgravity addresses opportunities and challenges on our home planet as well as in space environments. The Enterprise maintains a key role in encouraging and engaging the next generation of explorers from primary school through the grad- uate level via our direct student participation in space research.The Biological and Physical Research Enterprise encompasses three themes. The biological sciences research theme investigates ways to support a safe human presence in space. This theme addresses the definition and control of physiological and psychological risks from the space environment, including radiation,reduced gravity, and isolation. The biological sciences research theme is also responsible for the develop- ment of human support systems technology as well as fundamental biological research spanning topics from genomics to ecologies. The physical sciences research theme supports research that takes advantage of the space environment to expand our understanding of the fundamental laws of nature. This theme also supports applied physical sciences research to improve safety and performance of humans in space. The research partnerships and flight support theme establishes policies and allocates space resources to encourage and develop entrepreneurial partners access to space research.Working together across research disciplines, the Biological and Physical Research Enterprise is performing vital research and technology development to extend the reach of human space flight.

  20. Fee-for-service cancer rehabilitation programs improve health-related quality of life.

    PubMed

    Kirkham, A A; Neil-Sztramko, S E; Morgan, J; Hodson, S; Weller, S; McRae, T; Campbell, K L

    2016-08-01

    Rigorously applied exercise interventions undertaken in a research setting result in improved health-related quality of life (hrqol) in cancer survivors, but research to demonstrate effective translation of that research to practice is needed. The objective of the present study was to determine the effect of fee-for-service cancer rehabilitation programs in the community on hrqol and on self-reported physical activity and its correlates. After enrolment and 17 ± 4 weeks later, new clients (n = 48) to two fee-for-service cancer rehabilitation programs completed the 36-Item Short Form Health Survey (rand-36: rand Corporation, Santa Monica, CA, U.S.A.), the Godin Leisure-Time Exercise Questionnaire, and questions about physical activity correlates. Normal fee-for-service operations were maintained, including a fitness assessment and individualized exercise programs supervised in a group or one-on-one setting, with no minimum attendance required. Fees were associated with the assessment and with each exercise session. Of the 48 participants, 36 (75%) completed both questionnaires. Improvements in the physical functioning, role physical, pain, and energy/fatigue scales on the rand-36 exceeded minimally important differences and were of a magnitude similar to improvements reported in structured, rigorously applied, and free research interventions. Self-reported levels of vigorous-intensity (p = 0.021), but not moderate-intensity (p = 0.831) physical activity increased. The number of perceived barriers to exercise (p = 0.035) and the prevalence of fatigue as a barrier (p = 0.003) decreased. Exercise self-efficacy improved only in participants who attended 11 or more sessions (p = 0.002). Exercise enjoyment did not change (p = 0.629). Enrolment in fee-for-service cancer rehabilitation programs results in meaningful improvements in hrqol comparable to those reported by research interventions, among other benefits. The fee-for-service model could be an effective model for delivery of exercise to more cancer survivors.

  1. Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop: August 4-5, 2015, Washington, D.C.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael A.; Boldyrev, Stanislav; Fischer, Paul

    This report details the impact exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the DOE applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought together experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.

  2. The Case for Developing Professional Master's Degrees to Compete in the Business World

    NASA Astrophysics Data System (ADS)

    Bozler, Hans M.

    2002-04-01

    Graduate education in most physics programs is oriented towards preparing students for research careers even though the majority of the students do not actively pursue research after graduation. This research orientation causes physics graduate programs to lose potential students. In addition science-trained professionals are often underrepresented in corporate decision making. Meanwhile, many physics graduates at all levels supplement their skills by taking courses in professional schools (engineering, law, and business). A survey of our graduates shows that combinations of knowledge and skills from physics and applied disciplines including business often form the basis for successful careers. The objective of our new Professional Master's in Physics for Business Applications program is to streamline this education by combining disciplines so that physics graduates can rapidly move into decision making positions within business and industry. We combine a traditional physics curriculum with courses that add to problem solving and computational skills. Students take courses in our Business School and also do an internship. Our physics courses are kept at the same level as those taken by Ph.D. students. The business courses are selected from offerings by the Marshall School of Business to their own MBA students. The progress and problems associated with the development of curriculum, recruiting, and placement will be discussed.

  3. Focus group discussion in mathematical physics learning

    NASA Astrophysics Data System (ADS)

    Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.

    2018-03-01

    The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.

  4. Perspective on IUPAP-ICWIP conferences and USA Participation

    NASA Astrophysics Data System (ADS)

    White, Herman

    2015-04-01

    Starting in 1999, the (International Union of Pure and Applied Physics) IUPAP, General Assembly, passed a resolution to form an IUPAP Working Group on Women in Physics. This lead to a number of international conferences that focused on analyzing the then current status of and progress in promoting women in physics for each country and world wide as well as sharing physics research progress and participation. I was twice a member of the USA delegation and participated in two of the last three of these conferences. I will present a perspective on the USA participation and contribution to the efforts of the conferences.

  5. 7 CFR 3402.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agricultural sciences means basic, applied, and developmental research, extension, and teaching activities in the food, agricultural, renewable natural resources, forestry, and physical and social sciences in the... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM General Introduction...

  6. 7 CFR 3402.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agricultural sciences means basic, applied, and developmental research, extension, and teaching activities in the food, agricultural, renewable natural resources, forestry, and physical and social sciences in the... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM General Introduction...

  7. 7 CFR 3402.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... agricultural sciences means basic, applied, and developmental research, extension, and teaching activities in the food, agricultural, renewable natural resources, forestry, and physical and social sciences in the... AGRICULTURAL SCIENCES NATIONAL NEEDS GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM General Introduction...

  8. Hanford Laboratories monthly activities report, February 1964

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  9. Amplifying Health Through Community Gardens: A Framework for Advancing Multicomponent, Behaviorally Based Neighborhood Interventions.

    PubMed

    Alaimo, Katherine; Beavers, Alyssa W; Crawford, Caroline; Snyder, Elizabeth Hodges; Litt, Jill S

    2016-09-01

    The article presents a framework for understanding the relationship between community garden participation, and the myriad ways gardens and participation lead to emotional, social, and health impacts. Existing empirical research relating community gardens to health behaviors, such as physical activity and diet, and longer-term chronic disease-related outcomes is summarized. The research areas discussed include the effects of community garden participation on individual, social, emotional, and environmental processes; health behaviors including diet and physical activity; and health outcomes such as self-rated health, obesity, and mental health. Other mechanisms through which community gardens may affect population health are described. Applying a multitheoretical lens to explore associations between community garden participation and health enables us to delineate key aspects of gardening that elicit positive health behaviors and multifactorial health assets that could be applied to designing other types of health interventions.

  10. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    NASA Astrophysics Data System (ADS)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  11. Issues of Health, Appearance and Physical Activity in Aerobic Classes for Women

    ERIC Educational Resources Information Center

    D'Abundo, Michelle Lee

    2009-01-01

    The purpose of this research was to explore what appearance-focused messages were conveyed by aerobic instructors in aerobic classes for women. This qualitative research was influenced by the concept of wellness and how feminist pedagogy can be applied to promote individuals' well-being in aerobic classes. The practices of five aerobic instructors…

  12. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    NASA Astrophysics Data System (ADS)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  13. Ceramics for High Power Lasers

    DTIC Science & Technology

    2011-12-01

    Y3Al5O12”, Applied Physics Letters, 93, 191902 (2008) [2] I. Sakaguchi et al., J . Am. Ceram. Soc. 79 (1996), 1627 [3] http://www.vloc.com/PDFs...of growth defects in synthetic quartz crystals by light-scattering tomography “ J . Crystal Growth, Volume 44, Issue 1, August 1978, Pages 53-60...Investigator Romain Gaume - Research Scientist Roger Route - Senior Research Associate Ye He - Graduate Student Research Assistant V. Publications

  14. Two Archetypes of Motor Control Research.

    PubMed

    Latash, Mark L

    2010-07-01

    This reply to the Commentaries is focused on two archetypes of motor control research, one based on physics and physiology and the other based on control theory and ideas of neural computations. The former approach, represented by the equilibrium-point hypothesis, strives to discover the physical laws and salient physiological variables that make purposeful coordinated movements possible. The latter approach, represented by the ideas of internal models and optimal control, tries to apply methods of control developed for man-made inanimate systems to the human body. Specific issues related to control with subthreshold membrane depolarization, motor redundancy, and the idea of synergies are briefly discussed.

  15. An International Perspective on Women in Physics

    NASA Astrophysics Data System (ADS)

    Michelman-Ribeiro, Ariel

    2006-03-01

    The 1^st International Union of Pure and Applied Physics (IUPAP) Conference on Women in Physics, held in 2002 in Paris, France, highlighted a number of issues facing women physicists around the world. A second conference was held in May 2005 in Rio de Janeiro, Brazil, with the goal of examining the progress made since the last conference and also to provide an opportunity for the delegates to present their research, both physics research and gender-related research, and to make contacts for future collaborations. The conference was attended by 145 delegates from 42 countries, including a very diverse delegation of 22 women and men from the U.S. The conference was organized by the Working Group on Women in Physics of IUPAP, which is charged with making recommendations to IUPAP on how to attract, retain, and increase the participation of women in physics at all levels. The conference included a round table discussion on ``Research Funding and Women in Physics,'' several plenary talks, a poster session on women in physics in each country, a poster session on research by individual delegates, and discussion groups on six topics including attracting girls into physics, launching a successful career, getting women into leadership, improving the institutional climate, learning from regional differences, and balancing family and career. Conference proceedings have been published that include research abstracts, summaries from the discussion groups, articles on the plenary talks, and papers from each country on the status of women in physics in their country (proceedings can be found at http://proceedings.aip.org/proceedings/confproceed/795.jsp). This talk will discuss the U. S. delegation and their country paper on the situation for women in physics in the U.S. as well as highlights from the information presented by the delegates from other nations. The outcomes of the 2002 conference will be described briefly and then the signs of progress noted in 2005 will be summarized.

  16. Application of Natural Mineral Additives in Construction

    NASA Astrophysics Data System (ADS)

    Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech

    2017-12-01

    The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.

  17. Preface

    NASA Astrophysics Data System (ADS)

    Pattison, Bryan; Borisov, Alexander

    2017-06-01

    The 19th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2016), held at the P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (LPI RAS) from 22 to 28 August 2016, attracted more than 120 participants. The Symposium was carried out under the auspices of the International Union of Pure and Applied Physics (IUPAP) with financial support from the Federal Agency for Scientific Organizations and the Russian Foundation for Basic Research.

  18. Pizza Boy vs the Highway Department

    NASA Astrophysics Data System (ADS)

    Ilyes, Mark A.; Filizzi, James M.

    2005-10-01

    Many physics teachers and physics education researchers have found that students are highly motivated by classroom or laboratory experiences involving practical, "real-life" scenarios. Rather than attempting to verify a known relationship, they are asked to use an existing relationship to solve some practical problem. The purpose of this experimental investigation is to determine the speed of a car prior to applying the brakes and skidding into a flatbed tractor-trailer.

  19. Using isomorphic problems to learn introductory physics

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  20. REBURNING APPLICATION TO FIRETUBE PACKAGE BOILERS

    EPA Science Inventory

    The report gives results of pilot-scale experimental research that examined the physical and chemical phenomena associated with the NOx control technology of reburning applied to gas- and liquid-fired firetube package boilers. Reburning (staged fuel combustion) diverts some of th...

  1. Mixing Over Rough Topography

    DTIC Science & Technology

    2017-10-25

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Washington – Applied Physics Laboratory 8. PERFORMING...ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval Research ONR 875 North Randolph Street Arlington, VA 22203-1995 11

  2. International Space Station Research: Accomplishments and Pathways for Exploration and Fundamental Research

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2007-01-01

    Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.

  3. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  4. [Study on physical deviation factors on laser induced breakdown spectroscopy measurement].

    PubMed

    Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming

    2013-10-01

    In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.

  5. Culturally adapting a physical activity intervention for Somali women: the need for theory and innovation to promote equity.

    PubMed

    Murray, Kate E; Ermias, Azieb; Lung, Amber; Mohamed, Amina Sheik; Ellis, B Heidi; Linke, Sarah; Kerr, Jacqueline; Bowen, Deborah J; Marcus, Bess H

    2017-03-01

    There is pressing need for innovation in clinical research to more effectively recruit, engage, retain, and promote health among diverse populations overburdened by health disparities. The purpose of this study is to provide a detailed illustration of the cultural adaptation of an evidence-based intervention to bolster translational research with currently underserved communities. The cultural adaptation heuristic framework described by Barrera and colleagues is applied to the adaptation of a physical activity evidence-based intervention with adult Somali women. Widespread changes were required to ensure program feasibility and acceptability, including the reduction of assessment protocols and changes discordant with current trends in physical activity research. The cultural adaptation of evidence-based interventions offers an important mechanism for reducing health disparities. Improved reporting standards, assessment of features relevant to underserved communities, and greater funding requirements to ensure better representation are needed to promote more widespread access for all people.

  6. Vital physical signals measurements using a webcam

    NASA Astrophysics Data System (ADS)

    Ouyang, Jianfei; Yan, Yonggang; Yao, Lifeng

    2013-10-01

    Non-contact and remote measurements of vital physical signals are important for reliable and comfortable physiological self-assessment. In this paper, we provide a new video-based methodology for remote and fast measurements of vital physical signals such as cardiac pulse and breathing rate. A webcam is used to track color video of a human face or wrist, and a Photoplethysmography (PPG) technique is applied to perform the measurements of the vital signals. A novel sequential blind signal extraction methodology is applied to the color video under normal lighting conditions, based on correlation analysis between the green trace and the source signals. The approach is successfully applied in the measurement of vital signals under the condition of different illuminating in which the target signal can also be found out accurately. To assess the advantages, the measuring time of a large number of cases is recorded correctly. The experimental results show that it only takes less than 30 seconds to measure the vital physical signals using presented technique. The study indicates the proposed approach is feasible for PPG technique, which provides a way to study the relationship of the signal for different ROI in future research.

  7. Usage and User Acceptance of Applied Physics Letters Online

    NASA Astrophysics Data System (ADS)

    Ingoldsby, Timothy C.

    1996-03-01

    Applied Physics Letters Online became the first established physics print journal to appear online in full-text, hyperlinked form effective with January 1996 issues. In partnership with the Online Computer Library Center (OCLC), APL Online at the same time became the first established scientific or engineering journal to appear on the World Wide Web, in addition to being available through OCLC's proprietary Guidon user interface. AIP has now accumulated usage data for more than one year of operation, and has recently completed a survey of its full subscriber base. Usage has steadily increased throughout the year, with subscribers showing a clear preference for the Web version, even though it provides an interface in many ways inferior to OCLC's Guidon. Usage data and subscriber survey results will be presented, and directions for future research in online information delivery will be presented.

  8. Use of the Godin leisure-time exercise questionnaire in multiple sclerosis research: a comprehensive narrative review.

    PubMed

    Sikes, Elizabeth Morghen; Richardson, Emma V; Cederberg, Katie J; Sasaki, Jeffer E; Sandroff, Brian M; Motl, Robert W

    2018-01-17

    The Godin Leisure-Time Exercise Questionnaire has been a commonly applied measure of physical activity in research among persons with multiple sclerosis over the past decade. This paper provides a comprehensive description of its application and inclusion in research on physical activity in multiple sclerosis. This comprehensive, narrative review included papers that were published between 1985 and 2017, written in English, involved participants with multiple sclerosis as a primary population, measured physical activity, and cited one of the two original Godin papers. There is a broad scope of research that has included the Godin Leisure-Time Exercise Questionnaire in persons with multiple sclerosis. Overall, 8 papers evaluated its psychometric properties, 21 evaluated patterns of physical activity, 24 evaluated correlates or determinants of physical activity, 28 evaluated outcomes or consequences of physical activity, and 15 evaluated physical activity interventions. The Godin Leisure-Time Exercise Questionnaire is a valid self-report measure of physical activity in persons with multiple sclerosis, and further is an appropriate, simple, and effective tool for describing patterns of physical activity, examining correlates and outcomes of physical activity, and provides a sensitive outcome for measuring change in physical activity after an intervention. Implications for rehabilitation There is increasing interest in physical activity and its benefits in multiple sclerosis. The study of physical activity requires appropriate and standardized measures. The Godin Leisure-Time Exercise Questionnaire is a common self-report measure of physical activity for persons with multiple sclerosis. Godin Leisure-Time Exercise Questionnaire scores are reliable measures of physical activity in persons with multiple sclerosis. The Godin Leisure-Time Exercise Questionnaire further is an appropriate, simple, and effective tool for describing patterns of physical activity, examining correlates and outcomes of physical activity participation, and is an advantageous primary outcome for measuring change in physical activity in response to an intervention.

  9. Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li

    Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  10. Current status and future trends of medical physics in Mexico

    NASA Astrophysics Data System (ADS)

    Azorin Nieto, J.

    2015-01-01

    Medical Physics is an area that applies the principles of physics to medicine, particularly in the prevention, diagnosis and treatment of diseases using ionizing and nonionizing radiation. The main attractive of medical physics is that it has a direct impact on the quality and safety of medical care in humans; this social component with direct implications for the population is of high value for Mexico. This paper describes the concepts of medical physics, trends and the current status of this discipline as a profession, which is directly related to the efforts of clinical research. It is also described what is, in my opinion, the future of medical physics in Mexico, emphasizing the fact that this field requires a substantial boost from universities and hospitals to recruit highly qualified young medical physicists and the support from government agencies such as Secretaria de Salud, Instituto Mexicano del Seguro Social and Instituto de Seguridad y Servicios Sociales para los Trabajadores del Estado through clinical research projects that allow the necessary evolution of medical physics into the hospital setting.

  11. 12th European Conference on Accelerators in Applied Research and Technology

    NASA Astrophysics Data System (ADS)

    Sajavaara, Timo; Tarvainen, Olli; Javanainen, Arto; Räisänen, Jyrki

    2017-09-01

    The 12th European Conference on Accelerators in Applied Research and Technology was organized by Department of Physics on the 3rd -8th July 2016 in the Agora building of the University of Jyväskylä in Finland. This was the first time ECAART was held in Nordic countries. There were in total 141 participants from 31 countries and six industrial exhibitors. The largest foreign delegation was from Japan with 25 participants. The scientific programme included 13 invited lectures, 29 oral and 112 poster presentations. There were altogether 14 exhibitors and sponsors.

  12. AASC Recommendations for the Education of an Applied Climatologist

    NASA Astrophysics Data System (ADS)

    Nielsen-Gammon, J. W.; Stooksbury, D.; Akyuz, A.; Dupigny-Giroux, L.; Hubbard, K. G.; Timofeyeva, M. M.

    2011-12-01

    The American Association of State Climatologists (AASC) has developed curricular recommendations for the education of future applied and service climatologists. The AASC was founded in 1976. Membership of the AASC includes state climatologists and others who work in state climate offices; climate researchers in academia and educators; applied climatologists in NOAA and other federal agencies; and the private sector. The AASC is the only professional organization dedicated solely to the growth and development of applied and service climatology. The purpose of the recommendations is to offer a framework for existing and developing academic climatology programs. These recommendations are intended to serve as a road map and to help distinguish the educational needs for future applied climatologists from those of operational meteorologists or other scientists and practitioners. While the home department of climatology students may differ from one program to the next, the most essential factor is that students can demonstrate a breadth and depth of understanding in the knowledge and tools needed to be an applied climatologist. Because the training of an applied climatologist requires significant depth and breadth, the Masters degree is recommended as the minimum level of education needed. This presentation will highlight the AASC recommendations. These include a strong foundation in: - climatology (instrumentation and data collection, climate dynamics, physical climatology, synoptic and regional climatology, applied climatology, climate models, etc.) - basic natural sciences and mathematics including calculus, physics, chemistry, and biology/ecology - fundamental atmospheric sciences (atmospheric dynamics, atmospheric thermodynamics, atmospheric radiation, and weather analysis/synoptic meteorology) and - data analysis and spatial analysis (descriptive statistics, statistical methods, multivariate statistics, geostatistics, GIS, etc.). The recommendations also include a secondary area of concentration (agriculture, economics, geography, hydrology, marine sciences, natural resources, policy, etc.) and a major applied climate research component.

  13. Summary of research in applied mathematics, numerical analysis, and computer sciences

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  14. First-Year Mathematics and Its Application to Science: Evidence of Transfer of Learning to Physics and Engineering

    ERIC Educational Resources Information Center

    Nakakoji, Yoshitaka; Wilson, Rachel

    2018-01-01

    Transfer of mathematical learning to science is seen as critical to the development of education and industrial societies, yet it is rarely interrogated in applied research. We present here research looking for evidence of transfer from university mathematics learning in semester one to second semester sciences/engineering courses (n = 1125). A…

  15. Measuring Turbulence Mixing in Indonesian Seas Using Microstructure EM-APEX Floats

    DTIC Science & Technology

    We developed scientific plans for collaborative observational programs with Indonesian,Taiwanese, and Japanese researchers. We worked with Taiwanese...and Japanese researchers to plan and execute turbulence experiments using autonomous platforms in the SCS and Kuroshio Current. Our primary platform...and the Applied Physics Laboratory, University of Washington. We are working closely with Japanese collaborators to develop a turbulence observation

  16. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  17. Titan Submarine

    NASA Image and Video Library

    2015-06-15

    What would a submarine to explore the liquid methane seas of Saturn's Moon Titan look like? This video shows one submarine concept that would explore both the shoreline and the depths of this strange world that has methane rain, rivers and seas! The design was developed for the NASA Innovative Advanced Concepts (NIAC) Program, by NASA Glenn's COMPASS Team, and technologists and scientists from the Applied Physics Lab and submarine designers from the Applied Research Lab.

  18. Social cognitive perspective of gender disparities in undergraduate physics

    NASA Astrophysics Data System (ADS)

    Kelly, Angela M.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This article synthesizes sociopsychological theories and empirical research to establish a framework for exploring causal pathways and targeted interventions for the low representation of women in post-secondary physics. The rationale for this article is based upon disproportionate representation among undergraduate physics majors in the United States; women earned only 19.7% of physics undergraduate degrees in 2012. This disparity has been attributed to a variety of factors, including unwelcoming classroom atmospheres, low confidence and self-efficacy, and few female role models in physics academic communities. Recent empirical studies have suggested gender disparities in physics and related STEM fields may be more amenable to social cognitive interventions than previously thought. Social psychologists have found that women improved physics self-concept when adopting a malleable view of intelligence, when they received support and encouragement from family and teachers, and when they experienced interactive learning techniques in communal environments. By exploring research-based evidence for strategies to support women in physics, precollege and university faculty and administrators may apply social cognitive constructs to improve the representation of women in the field.

  19. Recommendations to Improve the Accuracy of Estimates of Physical Activity Derived from Self Report

    PubMed Central

    Ainsworth, Barbara E; Caspersen, Carl J; Matthews, Charles E; Mâsse, Louise C; Baranowski, Tom; Zhu, Weimo

    2013-01-01

    Context Assessment of physical activity using self-report has the potential for measurement error that can lead to incorrect inferences about physical activity behaviors and bias study results. Objective To provide recommendations to improve the accuracy of physical activity derived from self report. Process We provide an overview of presentations and a compilation of perspectives shared by the authors of this paper and workgroup members. Findings We identified a conceptual framework for reducing errors using physical activity self-report questionnaires. The framework identifies six steps to reduce error: (1) identifying the need to measure physical activity, (2) selecting an instrument, (3) collecting data, (4) analyzing data, (5) developing a summary score, and (6) interpreting data. Underlying the first four steps are behavioral parameters of type, intensity, frequency, and duration of physical activities performed, activity domains, and the location where activities are performed. We identified ways to reduce measurement error at each step and made recommendations for practitioners, researchers, and organizational units to reduce error in questionnaire assessment of physical activity. Conclusions Self-report measures of physical activity have a prominent role in research and practice settings. Measurement error can be reduced by applying the framework discussed in this paper. PMID:22287451

  20. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  1. View from... JSAP spring meeting 2007: Inside Japan

    NASA Astrophysics Data System (ADS)

    Won, Rachel; Graydon, Oliver

    2007-06-01

    Photonics research in Japan is thriving and there is no better place to hear the latest news firsthand than the meetings of the Japan Society of Applied Physics. Nature Photonics decided to pay the 54th Spring Meeting a visit.

  2. Development of physical and mathematical models for the Porous Ceramic Tube Plant Nutrification System (PCTPNS)

    NASA Technical Reports Server (NTRS)

    Tsao, D. Teh-Wei; Okos, M. R.; Sager, J. C.; Dreschel, T. W.

    1992-01-01

    A physical model of the Porous Ceramic Tube Plant Nutrification System (PCTPNS) was developed through microscopic observations of the tube surface under various operational conditions. In addition, a mathematical model of this system was developed which incorporated the effects of the applied suction pressure, surface tension, and gravitational forces as well as the porosity and physical dimensions of the tubes. The flow of liquid through the PCTPNS was thus characterized for non-biological situations. One of the key factors in the verification of these models is the accurate and rapid measurement of the 'wetness' or holding capacity of the ceramic tubes. This study evaluated a thermistor based moisture sensor device and recommendations for future research on alternative sensing devices are proposed. In addition, extensions of the physical and mathematical models to include the effects of plant physiology and growth are also discussed for future research.

  3. Town Meeting on Plasma Physics at the National Science Foundation

    NASA Astrophysics Data System (ADS)

    2015-11-01

    We invite you to the Town Meeting on the role of the National Science Foundation (NSF) in supporting basic and applied research in Plasma Physics in the U.S. The overarching goal of NSF is to promote the progress of science and to enable training of the next generation of scientists and engineers at US colleges and universities. In this context, the role of the NSF Physics Division in leading the nearly 20 year old NSF/DOE Partnership in Basic Plasma Science and Engineering serves as an example of the long history of NSF support for basic plasma physics research. Yet, the NSF interest in maintaining a healthy university research base in plasma sciences extends across the Foundation. A total of five NSF Divisions are participating in the most recent Partnership solicitation, and a host of other multi-disciplinary and core programs provide opportunities for scientists to perform research on applications of plasma physics to Space & Solar Physics, Astrophysics, Accelerator Science, Material Science, Plasma Medicine, and many sub-disciplines within Engineering. This Town Meeting will provide a chance to discuss the full range of relevant NSF funding opportunities, and to begin a conversation on the present and future role of NSF in stewarding basic plasma science and engineering research at US colleges and universities. We would like to particularly encourage early career scientists and graduate students to participate in this Town Meeting, though everyone is invited to join what we hope to be a lively discussion.

  4. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat work one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  5. Salinity Processes in the Upper Ocean Regional Study (SPURS)

    NASA Image and Video Library

    2012-09-04

    University of Washington Applied Physics Laboratory Senior Oceanographer Andrey Shcherbina, left, and University of Washington Applied Physics Laboratory Senior Principal Oceanographer Jason Gobat carry one of their instruments onboard the Woods Hole Oceanographic Institution's research vessel Knorr on Tuesday, Sept. 4, 2012, in Woods Hole, Mass. Knorr is scheduled to depart on Sept. 6 to take part in the Salinity Processes in the Upper Ocean Regional Study (SPURS). The NASA-sponsored expedition will sail to the North Atlantic's saltiest spot to get a detailed, 3-D picture of how salt content fluctuates in the ocean's upper layers and how these variations are related to shifts in rainfall patterns around the planet. Photo Credit: (NASA/Bill Ingalls)

  6. Applying a Comprehensive Contextual Climate Change Vulnerability Framework to New Zealand's Tourism Industry.

    PubMed

    Hopkins, Debbie

    2015-03-01

    Conceptualisations of 'vulnerability' vary amongst scholarly communities, contributing to a wide variety of applications. Research investigating vulnerability to climate change has often excluded non-climatic changes which may contribute to degrees of vulnerability perceived or experienced. This paper introduces a comprehensive contextual vulnerability framework which incorporates physical, social, economic and political factors which could amplify or reduce vulnerability. The framework is applied to New Zealand's tourism industry to explore its value in interpreting a complex, human-natural environment system with multiple competing vulnerabilities. The comprehensive contextual framework can inform government policy and industry decision making, integrating understandings of climate change within the broader context of internal and external social, physical, economic, and institutional stressors.

  7. Advanced magnetic resonance imaging of the physical processes in human glioblastoma.

    PubMed

    Kalpathy-Cramer, Jayashree; Gerstner, Elizabeth R; Emblem, Kyrre E; Andronesi, Ovidiu; Rosen, Bruce

    2014-09-01

    The most common malignant primary brain tumor, glioblastoma multiforme (GBM) is a devastating disease with a grim prognosis. Patient survival is typically less than two years and fewer than 10% of patients survive more than five years. Magnetic resonance imaging (MRI) can have great utility in the diagnosis, grading, and management of patients with GBM as many of the physical manifestations of the pathologic processes in GBM can be visualized and quantified using MRI. Newer MRI techniques such as dynamic contrast enhanced and dynamic susceptibility contrast MRI provide functional information about the tumor hemodynamic status. Diffusion MRI can shed light on tumor cellularity and the disruption of white matter tracts in the proximity of tumors. MR spectroscopy can be used to study new tumor tissue markers such as IDH mutations. MRI is helping to noninvasively explore the link between the molecular basis of gliomas and the imaging characteristics of their physical processes. We, here, review several approaches to MR-based imaging and discuss the potential for these techniques to quantify the physical processes in glioblastoma, including tumor cellularity and vascularity, metabolite expression, and patterns of tumor growth and recurrence. We conclude with challenges and opportunities for further research in applying physical principles to better understand the biologic process in this deadly disease. See all articles in this Cancer Research section, "Physics in Cancer Research." ©2014 American Association for Cancer Research.

  8. The relevance of Newton's laws and selected principles of physics to dance techniques: Theory and application

    NASA Astrophysics Data System (ADS)

    Lei, Li

    1999-07-01

    In this study the researcher develops and presents a new model, founded on the laws of physics, for analyzing dance technique. Based on a pilot study of four advanced dance techniques, she creates a new model for diagnosing, analyzing and describing basic, intermediate and advanced dance techniques. The name for this model is ``PED,'' which stands for Physics of Expressive Dance. The research design consists of five phases: (1) Conduct a pilot study to analyze several advanced dance techniques chosen from Chinese dance, modem dance, and ballet; (2) Based on learning obtained from the pilot study, create the PED Model for analyzing dance technique; (3) Apply this model to eight categories of dance technique; (4) Select two advanced dance techniques from each category and analyze these sample techniques to demonstrate how the model works; (5) Develop an evaluation framework and use it to evaluate the effectiveness of the model, taking into account both scientific and artistic aspects of dance training. In this study the researcher presents new solutions to three problems highly relevant to dance education: (1) Dancers attempting to learn difficult movements often fail because they are unaware of physics laws; (2) Even those who do master difficult movements can suffer injury due to incorrect training methods; (3) Even the best dancers can waste time learning by trial and error, without scientific instruction. In addition, the researcher discusses how the application of the PED model can benefit dancers, allowing them to avoid inefficient and ineffective movements and freeing them to focus on the artistic expression of dance performance. This study is unique, presenting the first comprehensive system for analyzing dance techniques in terms of physics laws. The results of this study are useful, allowing a new level of awareness about dance techniques that dance professionals can utilize for more effective and efficient teaching and learning. The approach utilized in this study is universal, and can be applied to any dance movement and to any dance style.

  9. Technical Review of the Domestic Nuclear Detection Office Transformational and Applied Research Directorate’s Research and Development Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavietes, Anthony; Trebes, James; Borchers, Robert

    2013-01-01

    At the request of the Domestic Nuclear Detection Office (DNDO), a Review Committee comprised of representatives from the American Physical Society (APS) Panel on Public Affairs (POPA) and the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS) performed a technical review of the DNDO Transformational and Applied Research Directorate (TARD) research and development program. TARD’s principal objective is to address gaps in the Global Nuclear Detection Architecture (GNDA) through improvements in the performance, cost, and operational burden of detectors and systems. The charge to the Review Committee was to investigate the existing TARD research andmore » development plan and portfolio, recommend changes to the existing plan, and recommend possible new R&D areas and opportunities. The Review Committee has several recommendations.« less

  10. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2018-06-01

    The kINPen® plasma jet was developed from laboratory prototype to commercially available non-equilibrium cold plasma jet for various applications in materials research, surface treatment and medicine. It has proven to be a valuable plasma source for industry as well as research and commercial use in plasma medicine, leading to very successful therapeutic results and its certification as a medical device. This topical review presents the different kINPen plasma sources available. Diagnostic techniques applied to the kINPen are introduced. The review summarizes the extensive studies of the physics and plasma chemistry of the kINPen performed by research groups across the world, and closes with a brief overview of the main application fields.

  11. Computational oncology.

    PubMed

    Lefor, Alan T

    2011-08-01

    Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.

  12. A LOW-COST RARE EARTH ELEMENTS RECOVERY TECHNOLOGY - PHASE I

    EPA Science Inventory

    Physical Sciences, Inc., and the University of Kentucky Center for Applied Energy Research propose to develop a unique enabling technology to significantly reduce U.S. dependency for Rare Earth Elements (REE) on foreign suppliers and our global competitors. Our innovation...

  13. Personnel and Vehicle Data Collection at Aberdeen Proving Ground (APG) and its Distribution for Research

    DTIC Science & Technology

    2015-10-01

    28 Magnetometer Applied Physics Model 1540-digital 3-axis fluxgate 5 Amplifiers Alligator Technologies USBPGF-S1 programmable instrumentation...Acoustic, Seismic, magnetic, footstep, vehicle, magnetometer , geophone, unattended ground sensor (UGS) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION

  14. 14 CFR 1259.101 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... definitions shall apply: (a) Field related to space means any academic discipline or field of study (including the physical, natural and biological sciences, and engineering, space technology, education, economics... activities in the fields related to space: (i) Research; (ii) Training; or (iii) Advisory services. (j) Space...

  15. Apprenticeship in Learning Design for Literature Courses

    ERIC Educational Resources Information Center

    Luxon, Thomas H.

    2018-01-01

    This essay explains how research in Physics education by Eric Mazur, arguing from the pedagogic deficiencies of instruction through lectures, has been applied successfully in a thorough revision of two undergraduate courses in English, one on John Milton and another on William Shakespeare.

  16. Engineering Problem-Solving Knowledge: The Impact of Context

    ERIC Educational Resources Information Center

    Wolff, Karin

    2017-01-01

    Employer complaints of engineering graduate inability to "apply knowledge" suggests a need to interrogate the complex theory-practice relationship in twenty-first century real world contexts. Focussing specifically on the application of mathematics, physics and logic-based disciplinary knowledge, the research examines engineering…

  17. Theory and Modeling of High-Power Gyrotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, Gregory Semeon

    2016-04-29

    This report summarized results of the work performed at the Institute for Research in Electronics and Applied Physics of the University of Maryland (College Park, MD) in the framework of the DOE Grant “Theory and Modeling of High-Power Gyrotrons”. The report covers the work performed in 2011-2014. The research work was performed in three directions: - possibilities of stable gyrotron operation in very high-order modes offering the output power exceeding 1 MW level in long-pulse/continuous-wave regimes, - effect of small imperfections in gyrotron fabrication and alignment on the gyrotron efficiency and operation, - some issues in physics of beam-wave interactionmore » in gyrotrons.« less

  18. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  19. quantum mechanics

    PubMed Central

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.

    2013-01-01

    -symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390

  20. Large-Scale Physical Separation of Depleted Uranium from Soil

    DTIC Science & Technology

    2012-09-01

    Earth and Environment 285 Davidson Avenue, Suite 100 Somerset, NJ 08873 Catherine Nestler Applied Research Associates, Inc. 119 Monument Place...square meters square miles 2.589998 E+06 square meters square yards 0.8361274 square meters yards 0.9144 meters ERDC/EL TR-12-25 viii...depleted uranium EL Environmental Laboratory ERDC Engineer Research and Development Center ICP-MS Inductively coupled plasma - mass spectroscopy

  1. The solid state physics programme at ISOLDE: recent developments and perspectives

    NASA Astrophysics Data System (ADS)

    Johnston, Karl; Schell, Juliana; Correia, J. G.; Deicher, M.; Gunnlaugsson, H. P.; Fenta, A. S.; David-Bosne, E.; Costa, A. R. G.; Lupascu, Doru C.

    2017-10-01

    Solid state physics (SSP) research at ISOLDE has been running since the mid-1970s and accounts for about 10%-15% of the overall physics programme. ISOLDE is the world flagship for the on-line production of exotic radioactive isotopes, with high yields, high elemental selectivity and isotopic purity. Consequently, it hosts a panoply of state-of-the-art nuclear techniques which apply nuclear methods to research on life sciences, material science and bio-chemical physics. The ease of detecting radioactivity—<1 ppm concentrations—is one of the features which distinguishes the use of radioisotopes for materials science research. The manner in which nuclear momenta of excited nuclear states interact with their local electronic and magnetic environment, or how charged emitted particles interact with the crystalline lattices allow the determination of the location, its action and the role of the selected impurity element at the nanoscopic state. ISOLDE offers an unrivalled range of available radioactive elements and this is attracting an increasing user community in the field of nuclear SSP research and brings together a community of materials scientists and specialists in nuclear solid state techniques. This article describes the current status of this programme along with recent illustrative results, predicting a bright future for these unique research methods and collaborations.

  2. Biological physics in México: Review and new challenges.

    PubMed

    Hernández-Lemus, Enrique

    2011-03-01

    Biological and physical sciences possess a long-standing tradition of cooperativity as separate but related subfields of science. For some time, this cooperativity has been limited by their obvious differences in methods and views. Biological physics has recently experienced a kind of revival (or better a rebirth) due to the growth of molecular research on animate matter. New avenues for research have been opened for both theoretical and experimental physicists. Nevertheless, in order to better travel for such paths, the contemporary biological physicist should be armed with a set of specialized tools and methods but also with a new attitude toward multidisciplinarity. In this review article, we intend to somehow summarize what has been done in the past (in particular, as an example we will take a closer look at the Mexican case), to show some examples of fruitful investigations in the biological physics area and also to set a proposal of new curricula for physics students and professionals interested in applying their science to get a better understanding of the physical basis of biological function.

  3. [Instrument for the assessment of middle-aged and older adults' physical activity: design, eliability and application of the German-PAQ-50+].

    PubMed

    Huy, Christina; Schneider, Sven

    2008-06-01

    Existing physical activity questionnaires have focused either on young and middle-aged adults or on the elderly. They have mainly assessed only a portion of possible physical activities or contained nation-specific sports. As there is no gold standard for a questionnaire-based assessment of physical activity in the over-50 population, recommendations for such a questionnaire relating to German-speaking countries were developed. This work included a systematic literature research, a survey of experts, and the design of a questionnaire based on validated measuring instruments. Finally, to test its reliability and application in the field, the complete questionnaire, including a retest, was applied by telephone interview (n = 57). The test-retest-correlation was r = 0.60 for the total time of physical activity and r = 0.52 for total energy expenditure. The researchers determined that the instrument is comprehensive in its coverage of all relevant domains of physical activity for the over-50 population; it is economically feasible and showed good acceptance.

  4. Social Cognitive Correlates of Physical Activity in Black Individuals With Multiple Sclerosis.

    PubMed

    Kinnett-Hopkins, Dominique; Motl, Robert W

    2016-04-01

    To examine variables from social cognitive theory as correlates of physical activity in black and white individuals with multiple sclerosis (MS). Cross-sectional. National survey. Black (n=151) and white (n=185) individuals with MS were recruited through the North American Research Committee on Multiple Sclerosis Registry. Not applicable. The battery of questionnaires included information on demographic and clinical characteristics, physical activity, exercise self-efficacy, function, social support, exercise outcome expectations, and exercise goal setting and planning. Black individuals with MS reported significantly lower levels of physical activity compared with white individuals with MS. Physical activity levels were significantly correlated with self-efficacy, outcome expectations, functional limitations as impediments, and goal setting in black participants with MS. The pattern and magnitude of correlations were comparable with those observed in white participants based on Fisher z tests. Researchers should consider applying behavioral interventions that target social cognitive theory variables for increasing physical activity levels among black individuals with MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Bases of Radio Direction Finding. Part 1

    DTIC Science & Technology

    1977-12-22

    flight toward airport, motion to the ship, that suffers calamity, and so fo tb); they are applied also for other target/purposes ( research on "he...very essemtial method for research on a number of the physical problems, connested with caRi3 9gineerinq, mainly tWo questions of the propagatior of...reading along eLa:tronechanical instrument, along cathode-ray tube, in digital signal panel. vas carried out research 3n the reasons for the errors of

  6. Insertion, Validation, and Application of Barotropic and Baroclinic Tides in 1/12 and 1/25 Degree Global HYCOM

    DTIC Science & Technology

    2012-09-30

    Alterman, graduate student in the Applied Physics Program, University of Michigan: Alterman will collaborate with Arbic, NRL researchers , and...relationship that the lead PI of this proposal, Brian Arbic, has established since 2006 with the Naval Research Laboratory (NRL) and Florida State...NAVOCEANO), Stennis Space Center, MS. This project builds upon work begun with Naval Research Laboratory contract N000173-06-2-C003, and reported on in

  7. The Impact of Long-Term Physical Activity Interventions for Overweight/Obese Postmenopausal Women on Adiposity Indicators, Physical Capacity, and Mental Health Outcomes: A Systematic Review

    PubMed Central

    Baker, Amanda; Sirois-Leclerc, Héloïse; Tulloch, Heather

    2016-01-01

    Physical activity interventions have recently become a popular strategy to help postmenopausal women prevent and manage obesity. The current systematic review evaluates the efficacy of physical activity interventions among overweight and obese postmenopausal women and sheds light on the behavioral change techniques that were employed in order to direct future research. Method. Five electronic databases were searched to identify all prospective RCT studies that examine the impact of physical activity on adiposity indicators, physical capacity, and/or mental health outcomes among healthy, sedentary overweight, and obese postmenopausal women in North America. The behavior change technique taxonomy was used to identify the various strategies applied in the programs. Results. Five RCTs met the inclusion criteria. The findings showed that adiposity indicators and physical capacity outcomes significantly improved following long-term interventions; however, mental health outcomes showed nonsignificant changes. Furthermore, 17 behavior change techniques were identified with the taxonomy across all trials. The intrapersonal-level techniques were the most common. Conclusion. Physical activity interventions had a positive effect on adiposity measures and physical capacity. Future research should focus on testing the effectiveness of physical activity interventions on mental health and incorporate strategies at the individual and environmental level to maximize the health impact on the population. PMID:27293882

  8. The Impact of Long-Term Physical Activity Interventions for Overweight/Obese Postmenopausal Women on Adiposity Indicators, Physical Capacity, and Mental Health Outcomes: A Systematic Review.

    PubMed

    Baker, Amanda; Sirois-Leclerc, Héloïse; Tulloch, Heather

    2016-01-01

    Physical activity interventions have recently become a popular strategy to help postmenopausal women prevent and manage obesity. The current systematic review evaluates the efficacy of physical activity interventions among overweight and obese postmenopausal women and sheds light on the behavioral change techniques that were employed in order to direct future research. Method. Five electronic databases were searched to identify all prospective RCT studies that examine the impact of physical activity on adiposity indicators, physical capacity, and/or mental health outcomes among healthy, sedentary overweight, and obese postmenopausal women in North America. The behavior change technique taxonomy was used to identify the various strategies applied in the programs. Results. Five RCTs met the inclusion criteria. The findings showed that adiposity indicators and physical capacity outcomes significantly improved following long-term interventions; however, mental health outcomes showed nonsignificant changes. Furthermore, 17 behavior change techniques were identified with the taxonomy across all trials. The intrapersonal-level techniques were the most common. Conclusion. Physical activity interventions had a positive effect on adiposity measures and physical capacity. Future research should focus on testing the effectiveness of physical activity interventions on mental health and incorporate strategies at the individual and environmental level to maximize the health impact on the population.

  9. The influence of environmental factors on the generalisability of public health research evidence: physical activity as a worked example

    PubMed Central

    2011-01-01

    Background It is rare that decisions about investing in public health interventions in a city, town or other location can be informed by research generated in that specific place. It is therefore necessary to base decisions on evidence generated elsewhere and to make inferences about the extent to which this evidence is generalisable to the place of interest. In this paper we discuss the issues involved in making such inferences, using physical activity as an example. We discuss the ways in which elements of the structural, physical, social and/or cultural environment (environmental factors [EFs]) can shape physical activity (PA) and also how EFs may influence the effectiveness of interventions that aim to promote PA. We then highlight the ways in which EFs may impact on the generalisability of different types of evidence. Discussion We present a framework for thinking about the influence of EFs when assessing the generalisability of evidence from the location in which the evidence was generated (place A) to the location to which the evidence is to be applied (place B). The framework relates to similarities and differences between place A and place B with respect to: a) the distributions of EFs; b) the causal pathways through which EFs or interventions are thought to exert their effect on PA and c) the ways in which EFs interact with each other. We suggest, using examples, how this scheme can be used by public health professionals who are designing, executing, reporting and synthesising research on PA; or designing/implementing interventions. Summary Our analysis and scheme, although developed for physical activity, may potentially be adapted and applied to other evidence and interventions which are likely to be sensitive to influence by elements of the structural, physical, social and/or cultural environment such as the epidemiology of obesity and healthy weight promotion. PMID:22087556

  10. MO-DE-BRA-03: The Ottawa Medical Physics Institute (OMPI): A Practical Model for Academic Program Collaboration in a Multi-Centre City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEwen, M; Rogers, D; Johns, P

    Purpose: To build a world-class medical physics educational program that capitalizes on expertise distributed over several clinical, government, and academic centres. Few if any of these centres would have the critical mass to solely resource a program. Methods: In order to enable an academic program, stakeholders from five institutions made a proposal to Carleton University for a) a research network with defined membership requirements and a process for accepting new members, and b) a graduate specialization (MSc and PhD) in medical physics. Both proposals were accepted and the program has grown steadily. Our courses are taught by medical physicists frommore » across the collaboration. Our students have access to physicists in: clinical radiotherapy (the Ottawa Cancer Centre treats 4500 new patients/y), radiology, cardiology and nuclear medicine, Canada’s primary standards dosimetry laboratory, radiobiology, and university-based medical physics research. Our graduate courses emphasize the foundational physics plus applied aspects of imaging, radiotherapy, and radiobiology. Active researchers in the city-wide volunteer-run network are appointed as adjunct professors by Physics, giving them access to national funding competitions and partial student funding through teaching assistantships while opening up facilities in their institutions for student thesis research. Results: The medical physics network has grown to ∼40 members from eight institutions and includes five full-time faculty in Physics and 17 adjunct research professors. The graduate student population is ∼20. Our graduates have proceeded to a spectrum of careers. Our alumni list includes a CCPM Past-President, the current COMP President, many clinical physicists, and the heads of at least three major clinical medical physics departments. Our PhD was Ontario’s first CAMPEP-accredited program. Conclusion: A self-governing volunteer network is the foundational element that enables an MSc/PhD medical physics program in a city with multiple physicist employers. It enriches graduate education with an unusually broad range of expertise.« less

  11. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved with and without Concept Maps

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Perez, Angel Luis; Suero, Maria Isabel; Pardo, Pedro J.

    2013-01-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a…

  12. Data-based adjoint and H2 optimal control of the Ginzburg-Landau equation

    NASA Astrophysics Data System (ADS)

    Banks, Michael; Bodony, Daniel

    2017-11-01

    Equation-free, reduced-order methods of control are desirable when the governing system of interest is of very high dimension or the control is to be applied to a physical experiment. Two-phase flow optimal control problems, our target application, fit these criteria. Dynamic Mode Decomposition (DMD) is a data-driven method for model reduction that can be used to resolve the dynamics of very high dimensional systems and project the dynamics onto a smaller, more manageable basis. We evaluate the effectiveness of DMD-based forward and adjoint operator estimation when applied to H2 optimal control approaches applied to the linear and nonlinear Ginzburg-Landau equation. Perspectives on applying the data-driven adjoint to two phase flow control will be given. Office of Naval Research (ONR) as part of the Multidisciplinary University Research Initiatives (MURI) Program, under Grant Number N00014-16-1-2617.

  13. The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans

    NASA Astrophysics Data System (ADS)

    Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena; Berkovits, Dan; Dahan, Adi; Dickel, Timo; Eliyahu, Ilan; Gai, Moshe; Gavish-Segev, Inbal; Halfon, Shlomi; Hass, Michael; Hirsh, Tsviki; Kaiser, Boaz; Kijel, Daniel; Kreisel, Arik; Mishnayot, Yonatan; Mukul, Ish; Ohayon, Ben; Paul, Michael; Perry, Amichay; Rahangdale, Hitesh; Rodnizki, Jacob; Ron, Guy; Sasson-Zukran, Revital; Shor, Asher; Silverman, Ido; Tessler, Moshe; Vaintraub, Sergey; Weissman, Leo

    2018-05-01

    The Soreq Applied Research Accelerator Facility (SARAF) is under construction in the Soreq Nuclear Research Center at Yavne, Israel. When completed at the beginning of the next decade, SARAF will be a user facility for basic and applied nuclear physics, based on a 40 MeV, 5 mA CW proton/deuteron superconducting linear accelerator. Phase I of SARAF (SARAF-I, 4 MeV, 2 mA CW protons, 5 MeV 1 mA CW deuterons) is already in operation, generating scientific results in several fields of interest. The main ongoing program at SARAF-I is the production of 30 keV neutrons and measurement of Maxwellian Averaged Cross Sections (MACS), important for the astrophysical s-process. The world leading Maxwellian epithermal neutron yield at SARAF-I (5 × 10^{10} epithermal neutrons/s), generated by a novel Liquid-Lithium Target (LiLiT), enables improved precision of known MACSs, and new measurements of low-abundance and radioactive isotopes. Research plans for SARAF-II span several disciplines: precision studies of beyond-Standard-Model effects by trapping light exotic radioisotopes, such as 6He, 8Li and 18, 19, 23Ne, in unprecedented amounts (including meaningful studies already at SARAF-I); extended nuclear astrophysics research with higher energy neutrons, including generation and studies of exotic neutron-rich isotopes relevant to the rapid (r-) process; nuclear structure of exotic isotopes; high energy neutron cross sections for basic nuclear physics and material science research, including neutron induced radiation damage; neutron based imaging and therapy; and novel radiopharmaceuticals development and production. In this paper we present a technical overview of SARAF-I and II, including a description of the accelerator and its irradiation targets; a survey of existing research programs at SARAF-I; and the research potential at the completed facility (SARAF-II).

  14. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The various physical processes that occur in the gas turbine combustor and the development of analytical models that accurately describe these processes are discussed. Aspects covered include fuel sprays; fluid mixing; combustion dynamics; radiation and chemistry and numeric techniques which can be applied to highly turbulent, recirculating, reacting flow fields.

  15. Measurements of pile driving noise from control piles and noise-reduced piles at the Vashon Island ferry dock.

    DOT National Transportation Integrated Search

    2017-04-01

    As part of the Washington State Department of Transportation (WSDOT) pile attenuation test program, : researchers from the University of Washington Applied Physics Laboratory (APL-UW) conducted underwater sound : measurements on 7 and 8 December 2015...

  16. Outcomes from the DOE Workshop on Turbulent Flow Simulation at the Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprague, Michael; Boldyrev, Stanislav; Chang, Choong-Seock

    This paper summarizes the outcomes from the Turbulent Flow Simulation at the Exascale: Opportunities and Challenges Workshop, which was held 4-5 August 2015, and was sponsored by the U.S. Department of Energy Office of Advanced Scientific Computing Research. The workshop objective was to define and describe the challenges and opportunities that computing at the exascale will bring to turbulent-flow simulations in applied science and technology. The need for accurate simulation of turbulent flows is evident across the U.S. Department of Energy applied-science and engineering portfolios, including combustion, plasma physics, nuclear-reactor physics, wind energy, and atmospheric science. The workshop brought togethermore » experts in turbulent-flow simulation, computational mathematics, and high-performance computing. Building upon previous ASCR workshops on exascale computing, participants defined a research agenda and path forward that will enable scientists and engineers to continually leverage, engage, and direct advances in computational systems on the path to exascale computing.« less

  17. Intelligence is as intelligence does: can additional support needs replace disability?

    PubMed

    Arnold, Samuel R C; Riches, Vivienne C; Stancliffe, Roger J

    2011-12-01

    Abstract In many developed cultures there is an assumption that IQ is intelligence. However, emerging theories of multiple intelligences, of emotional intelligence, as well as the application of IQ testing to other cultural groups, and to people with disability, raises many questions as to what IQ actually measures. Despite recent research that shows IQ testing produces a floor effect when applied to people with lower IQ, as well as research that shows the Flynn effect also applies to people with lower IQ, in practice IQ scores below a certain cut-off are still being used to determine and classify a person's intellectual disability. However, a new paradigm is emerging, almost returning to the original intent of Binet, where measurement is made of the supports the person needs. In this paper, we argue that if one extends the notions of this supports paradigm that diagnosis of intellectual or physical disability could potentially be replaced by diagnosis of additional intellectual support needs, or additional physical support needs.

  18. Experimental Investigation on Thermal Physical Properties of an Advanced Glass Fiber Composite Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan

    Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  19. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  20. CHANGING OUR DIAGNOSTIC PARADIGM: MOVEMENT SYSTEM DIAGNOSTIC CLASSIFICATION

    PubMed Central

    Kamonseki, Danilo H.; Staker, Justin L.; Lawrence, Rebekah L.; Braman, Jonathan P.

    2017-01-01

    Proper diagnosis is a first step in applying best available treatments, and prognosticating outcomes for clients. Currently, the majority of musculoskeletal diagnoses are classified according to pathoanatomy. However, the majority of physical therapy treatments are applied toward movement system impairments or pain. While advocated within the physical therapy profession for over thirty years, diagnostic classification within a movement system framework has not been uniformly developed or adopted. We propose a basic framework and rationale for application of a movement system diagnostic classification for atraumatic shoulder pain conditions, as a case for the broader development of movement system diagnostic labels. Shifting our diagnostic paradigm has potential to enhance communication, improve educational efficiency, facilitate research, directly link to function, improve clinical care, and accelerate preventive interventions. PMID:29158950

  1. WE-E-204-02: Journal of Medical Physics and JACMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  2. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.

  3. A multi-cloak bifunctional device

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad; Liu, Yichao; Ma, Yungui

    2015-01-01

    Invisibility cloak has attracted the attention of electromagnetic researchers due to its magical properties and marvelous potential applications in the field of applied physics and engineering. Recently, a multiphysics cloaking has put the new spirit into this field. In this paper, we introduce a device, composed of three shells and each shell works as an invisibility cloak for a specific physical phenomenon. Following this technique, a number of cloaks with different implementation approaches can be proposed for distinct physical phenomena in a single structure. Here, we restrict ourselves for the case of two physical behaviors: thermal and electrical conductivities. This type of multi-cloaking structure can be best used in mechanically designed structures to better control heating and electrical effects.

  4. Critical look at physics identity: An operationalized framework for examining race and physics identity

    NASA Astrophysics Data System (ADS)

    Hyater-Adams, Simone; Fracchiolla, Claudia; Finkelstein, Noah; Hinko, Kathleen

    2018-06-01

    Studies on physics identity are appearing more frequently and often responding to increased awareness of the underrepresentation of students of color in physics. In our broader research, we focus our efforts on understanding how racial identity and physics identity are negotiated throughout the experiences of Black physicists. In this paper, we present a Critical Physics Identity framework that can be used to examine racialized physics identity and demonstrate the utility of this framework by analyzing interviews with four physicists. Our framework draws from prior constructs of physics identity and racialized identity and provides operational definitions of six interacting dimensions. In this paper, we present the operationalized constructs, demonstrate how we use these constructs to code narrative data, as well as outline three methods of analysis that may be applied to study systems and structures and their influences on the experiences of Black students.

  5. Cross-validation of the very short form of the Physical Self-Inventory (PSI-VS): invariance across genders, age groups, ethnicities and weight statuses.

    PubMed

    Morin, Alexandre J S; Maïano, Christophe

    2011-09-01

    In a recent review of various physical self-concept instruments, Marsh and Cheng (in press) noted that the very short 12-item version of the French Physical Self-Inventory (PSI-VS) represents an important contribution to applied research but that further research was needed to investigate the robustness of its psychometric properties in new and diversified samples. The present study was designed to answer these questions based on a sample of 1103 normally achieving French adolescents. The results show that the PSI-VS measurement model is quite robust and fully invariant across subgroups of students formed according to gender, weight, age and ethnicity. The results also confirm the convergent validity and scale score reliability of the PSI-VS subscales. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Engineering, Life Sciences, and Health/Medicine Synergy in Aerospace Human Systems Integration: The Rosetta Stone Project

    NASA Technical Reports Server (NTRS)

    Williams, Richard S. (Editor); Doarn, Charles R. (Editor); Shepanek, Marc A.

    2017-01-01

    In the realm of aerospace engineering and the physical sciences, we have developed laws of physics based on empirical and research evidence that reliably guide design, research, and development efforts. For instance, an engineer designs a system based on data and experience that can be consistently and repeatedly verified. This reproducibility depends on the consistency and dependability of the materials on which the engineer works and is subject to physics, geometry and convention. In life sciences and medicine, these apply as well, but individuality introduces a host of variables into the mix, resulting in characteristics and outcomes that can be quite broad within a population of individuals. This individuality ranges from differences at the genetic and cellular level to differences in an individuals personality and abilities due to sex and gender, environment, education, etc.

  7. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  8. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    NASA Astrophysics Data System (ADS)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  9. The Built Environment's Effect on Learning: Applying Current Research. Spotlight: Updating Our Agendas.

    ERIC Educational Resources Information Center

    Dyck, James

    2002-01-01

    Reviews current literature--noting limitations--and provides observations regarding the impact on learning of six physical attributes of the Montessori prepared environment: aesthetics, spatial factors, light, noise, color, and temperature. Suggests guidelines for Montessori classrooms. Concludes by asserting that considering these six…

  10. Annual Review of Anthropology, Volume 6, 1977.

    ERIC Educational Resources Information Center

    Siegel, Bernard J., Ed.; And Others

    The book contains 20 essays which provide an overview of the state of the art in various areas of anthropology, including applied anthropology, archaeology, physical anthropology, ethnology, linguistics, and social anthropology. Most of the authors are professors and researchers from departments of anthropology or linguistics in United States…

  11. Effect of water potential and void ratio on erodibility for agricultural soils

    USDA-ARS?s Scientific Manuscript database

    Soil erodibility has confounded researchers for decades. Difficulties arise with initiation of motion, pore-water status, physical, and perhaps biological, material properties and type of applied energy (i.e. rainfall, runoff, freeze/thaw, wind). Though specific tests have been developed to determin...

  12. Tweens' Characterization of Digital Technologies

    ERIC Educational Resources Information Center

    Brito, Pedro Quelhas

    2012-01-01

    The tweens are a transitional age group undergoing deep physical and psychological transformations. Based on a thirteen-focus group research design involving 103 students, and applying a tweens-centered approach, the characteristics of SMS, IM, Internet, digital photos, electronic games, and email were analyzed. Categories such as moral issues,…

  13. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    PubMed

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  14. IBPRO – a novel short-duration teaching course in advanced physics and biology underlying cancer radiotherapy

    PubMed Central

    Joiner, Michael C.; Tracey, Monica W.; Kacin, Sara E.; Burmeister, Jay W.

    2017-01-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO – Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists. PMID:28328309

  15. A Science Strategy for Space Physics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report by the Committee on Solar and Space Physics and the Committee on Solar-Terrestrial Research recommends the major directions for scientific research in space physics for the coming decade. As a field of science, space physics has passed through the stage of simply looking to see what is out beyond Earth's atmosphere. It has become a 'hard' science, focusing on understanding the fundamental interactions between charged particles, electromagnetic fields, and gases in the natural laboratory consisting of the galaxy, the Sun, the heliosphere, and planetary magnetospheres, ionospheres, and upper atmospheres. The motivation for space physics research goes far beyond basic physics and intellectual curiosity, however, because long-term variations in the brightness of the Sun virtually affect the habitability of the Earth, while sudden rearrangements of magnetic fields above the solar surface can have profound effects on the delicate balance of the forces that shape our environment in space and on the human technology that is sensitive to that balance. The several subfields of space physics share the following objectives: to understand the fundamental laws or processes of nature as they apply to space plasmas and rarefied gases both on the microscale and in the larger complex systems that constitute the domain of space physics; to understand the links between changes in the Sun and the resulting effects at the Earth, with the eventual goal of predicting the significant effects on the terrestrial environment; and to continue the exploration and description of the plasmas and rarefied gases in the solar system.

  16. Sending an Instrument to Psyche, the Largest Metal Asteroid in the Solar System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burks, Morgan

    In a few years, an instrument designed and built by Lawrence Livermore National Laboratory researchers will be flying hundreds of millions of miles through space to explore a rare, largely metal asteroid. The Livermore gamma ray spectrometer will be built in collaboration with researchers from the Johns Hopkins Applied Physics Laboratory for the first-ever visit to Psyche, the largest metal asteroid in the solar system.

  17. Three-Dimensional Shallow Water Acoustics

    DTIC Science & Technology

    2016-03-30

    Wooos HoLE OcEANOGRAPHIC INSTITUTION Applied Ocean Physics and Engineering Department March 30,2016 Dr. Kyle Becker Office ofNaval Research, Code...Naval Research Laboratory Grant and Contract Services (WHOI) AOPE Department Office (WHOI) MS#12 • Woods Hole , MA 02543 USA • 508.289.2230 • Fax...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Woods Hole Oceanographic Institu t ion 266 Woods

  18. Soil structural quality assessment for soil protection regulation

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality are now proposed to farmers based on these indicators.

  19. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  20. Facilitating students' application of the integral and the area under the curve concepts in physics problems

    NASA Astrophysics Data System (ADS)

    Nguyen, Dong-Hai

    This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.

  1. Development and evaluation of clicker methodology for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments. Finally, we discovered that students need to have full access to the question sequences after lectures to reap the maximum benefit. Chapter 1 provides an introduction to our research. Chapter 2 provides a literature review relevant for our research. Chapter 3 discusses the creation of the clicker question sequences. Chapter 4 provides a picture of the validation process involving both physics experts and the introductory physics students. Chapter 5 describes how the sequences have been used with clickers in lectures. Chapter 6 provides the evaluation of the effectiveness of the clicker methodology. Chapter 7 contains a brief summary of research results and conclusions.

  2. The Mathematics of High School Physics

    NASA Astrophysics Data System (ADS)

    Kanderakis, Nikos

    2016-10-01

    In the seventeenth and eighteenth centuries, mathematicians and physical philosophers managed to study, via mathematics, various physical systems of the sublunar world through idealized and simplified models of these systems, constructed with the help of geometry. By analyzing these models, they were able to formulate new concepts, laws and theories of physics and then through models again, to apply these concepts and theories to new physical phenomena and check the results by means of experiment. Students' difficulties with the mathematics of high school physics are well known. Science education research attributes them to inadequately deep understanding of mathematics and mainly to inadequate understanding of the meaning of symbolic mathematical expressions. There seem to be, however, more causes of these difficulties. One of them, not independent from the previous ones, is the complex meaning of the algebraic concepts used in school physics (e.g. variables, parameters, functions), as well as the complexities added by physics itself (e.g. that equations' symbols represent magnitudes with empirical meaning and units instead of pure numbers). Another source of difficulties is that the theories and laws of physics are often applied, via mathematics, to simplified, and idealized physical models of the world and not to the world itself. This concerns not only the applications of basic theories but also all authentic end-of-the-chapter problems. Hence, students have to understand and participate in a complex interplay between physics concepts and theories, physical and mathematical models, and the real world, often without being aware that they are working with models and not directly with the real world.

  3. Correlation Between University Students' Kinematic Achievement and Learning Styles

    NASA Astrophysics Data System (ADS)

    Çirkinoǧlu, A. G.; Dem&ircidot, N.

    2007-04-01

    In the literature, some researches on kinematics revealed that students have many difficulties in connecting graphs and physics. Also some researches showed that the method used in classroom affects students' further learning. In this study the correlation between university students' kinematics achieve and learning style are investigated. In this purpose Kinematics Achievement Test and Learning Style Inventory were applied to 573 students enrolled in general physics 1 courses at Balikesir University in the fall semester of 2005-2006. Kinematics Test, consists of 12 multiple choose and 6 open ended questions, was developed by researchers to assess students' understanding, interpreting, and drawing graphs. Learning Style Inventory, a 24 items test including visual, auditory, and kinesthetic learning styles, was developed and used by Barsch. The data obtained from in this study were analyzed necessary statistical calculations (T-test, correlation, ANOVA, etc.) by using SPSS statistical program. Based on the research findings, the tentative recommendations are made.

  4. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  5. Computational Physics for Space Flight Applications

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.

    2004-01-01

    This paper presents viewgraphs on computational physics for space flight applications. The topics include: 1) Introduction to space radiation effects in microelectronics; 2) Using applied physics to help NASA meet mission objectives; 3) Example of applied computational physics; and 4) Future directions in applied computational physics.

  6. Physical activity and its effects on reproduction.

    PubMed

    Redman, Leanne M

    2006-05-01

    The reproductive system is tightly coupled with energy balance, and thereby changes in the status of energy balance through changes in physical activity can impact on the reproductive system. In light of the new physical activity for health recommendations, it is therefore important to understand the inherent effects, both positive and negative, of physical activity on the reproductive system. At both extremes of the energy spectrum, disorders of chronic energy excess and energy deficiency are characterized by a wide range of reproductive disorders, including menstrual irregularity, anovulation, polycystic ovarian syndrome, and infertility in women, and erectile dysfunction and altered spermatogenesis in men. Although laboratory research indicates that individuals may be able to prevent or reverse reproductive disruptions, either by increasing energy expenditure in cases of energy excess or by dietary reform in cases of energy deficits, there is an acute need for applied research to confirm this idea and to identify mechanisms by which the availability of energy per se regulates reproductive function in humans.

  7. Thermophysics Issues Relevant to High-Speed Earth Entry of Large Asteroids

    NASA Technical Reports Server (NTRS)

    Prabhu, D.; Saunders, D.; Agrawal, P.; Allen, G.; Bauschlicher, C.; Brandis, A.; Chen, Y.-K.; Jaffe, R.; Schulz, J.; Stern, E.; hide

    2016-01-01

    Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) how multiple bodies interact, and (iii) the influence of wall blowing on flow dynamics.

  8. Meteor Entry and Breakup Based on Evolution of NASAs Entry Capsule Design Tools

    NASA Technical Reports Server (NTRS)

    Prabku, Dinesh K.; Saunders, D.; Stern, E.; Chen, Y.-K.; Allen, G.; Agrawal, P.; Jaffe, R.; White, S.; Tauber, M.; Bauschlicher, C.; hide

    2015-01-01

    Physics of atmospheric entry of meteoroids was an active area of research at NASA ARC up to the early 1970s (e.g., the oft-cited work of Baldwin and Sheaffer). However, research in the area seems to have ended with the Apollo program, and any ties with an active international meteor physics community seem to have significantly diminished thereafter. In the decades following the 1970s, the focus of entry physics at NASA ARC has been on improvement of the math models of shock-layer physics (especially in chemical kinetics and radiation) and thermal response of ablative materials used for capsule heatshields. With the overarching objectives of understanding energy deposition into the atmosphere and fragmentation, could these modern analysis tools and processes be applied to the problem of atmospheric entry of meteoroids as well? In the presentation we will explore: (i) the physics of atmospheric entries of meteoroids using our current state-of-the-art tools and processes, (ii) the influence of shape (and shape change) on flow characteristics, and (iii) how multiple bodies interact.

  9. Applying Physics to Clean Energy Needs

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Solar and ocean thermal energy sources offer real potential for an environmentally clean fuel by the year 2000. A review of current research contracts relating to ocean-thermal energy, cost requirements of plant construction and uses of the electricity produced, such as synthesizing ammonia and synthetic fuels, are discussed. (BT)

  10. Daniel J. Friedman | NREL

    Science.gov Websites

    solar cells for concentrator systems. One of his early focuses after joining the group was to adapt the J. Friedman Photo of Daniel J. Friedman. Daniel Friedman Group Research Manager III-Physics manager of the High Efficiency Crystalline Photovoltaics Group. He received his doctorate in applied

  11. 76 FR 45555 - Nominations to the FIFRA Scientific Advisory Panel; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    .... Vasiliou's major research interest has been the cellular responses to oxidative stress induced by physical... to novel host plants and agricultural pesticides. This work has been applied to increase... from the University of Nebraska; PhD Plant Physiological Ecology from the University of Oklahoma. iii...

  12. Breaking the Silence

    ERIC Educational Resources Information Center

    Wagner, Kathryn Drury

    2017-01-01

    When parents of today's students were applying to colleges, they researched factors like location, financial aid, and majors. Physical safety was barely on the radar--it was assumed. A lot has changed since then, and today's prospective students and their parents are savvier about campus safety issues. College-age women are the demographic most…

  13. Dispersion, Mixing, and Combustion in Turbulent and High-Speed Flows, Air-Breathing Propulsion, and Hypersonic Flight

    DTIC Science & Technology

    2010-03-31

    postdoctoral research of Antonino Ferrante (currently Assistant Professor at the University of Washington). The fluid dynamics video "LES of an inclined jet...Northrop Professor of Aeronautics and Professor of Applied Physics, Caltech, and ChiefTechnologist, JPL. Ferrante, Antonino : Postdoctoral Scholar in

  14. Informing parent targeted interventions to promote increased physical activity among youth

    USDA-ARS?s Scientific Manuscript database

    This was an invited commentary on the qualitative evaluation of a Canadian public service campaign, ParticipACTION "Think Again" described by Faulkner et al in a special issue of the Journal of Applied Research on Children, Family Well-Being and Social Environments. The campaign aimed to make parent...

  15. The Habitability Framework: Linking Human Behavior and Physical Environment in Special Education.

    ERIC Educational Resources Information Center

    Preiser, Wolfgang F. E.; Taylor, Anne

    1983-01-01

    The concept of environmental design cybernetics is explained, and its use by special educators and architects in creating learning environments is discussed. A proposed habitability framework is defined, and its applications to buildings and building occupants/users are offered. Research on architectural design applied to special education…

  16. Training Principles and Program Design

    ERIC Educational Resources Information Center

    Plisk, Steven

    2005-01-01

    This article focuses on standards specific to Domain 3: Physical Preparation and Conditioning of the National Standards for Sport Coaches (NASPE, 2004b). It discusses program design concepts that coaches can apply to prepare athletes for the demands of their sport, and is based on both research and best professional practice. Sport preparation has…

  17. APPLYING OPERATIONAL ANALYSIS TO URBAN EDUCATIONAL SYSTEMS, A WORKING PAPER.

    ERIC Educational Resources Information Center

    SISSON, ROGER L.

    OPERATIONS RESEARCH CONCEPTS ARE POTENTIALLY USEFUL FOR STUDY OF SUCH LARGE URBAN SCHOOL DISTRICT PROBLEMS AS INFORMATION FLOW, PHYSICAL STRUCTURE OF THE DISTRICT, ADMINISTRATIVE DECISION MAKING BOARD POLICY FUNCTIONS, AND THE BUDGET STRUCTURE. OPERATIONAL ANALYSIS REQUIRES (1) IDENTIFICATION OF THE SYSTEM UNDER STUDY, (2) IDENTIFICATION OF…

  18. The Efficacy of Relaxation Training in Treating Anxiety

    ERIC Educational Resources Information Center

    Francesco, Pagnini; Mauro, Manzoni Gian; Gianluca, Castelnuovo; Enrico, Molinari

    2009-01-01

    This paper provides a review of scientific literature about relaxation training and its effects on anxiety. Research investigating progressive relaxation, meditation, applied relaxation and autogenic training were considered. All these methods proved to be effective in reducing anxiety in all kind of samples, affected or not by physical or…

  19. Comparative Effectiveness Research: A Roadmap for Physical Activity and Lifestyle

    PubMed Central

    Jakicic, John M.; Sox, Harold; Blair, Steven N.; Bensink, Mark; Johnson, William G.; King, Abby C.; Lee, I-Min; Nahum-Shani, Inbal; Sallis, James F.; Sallis, Robert E.; Craft, Lynette; Whitehead, James R.; Ainsworth, Barbara E.

    2017-01-01

    Purpose Comparative Effectiveness Research (CER) is designed to support informed decision making at both the individual, population, and policy levels. The American College of Sports Medicine and partners convened a conference with the focus of building an agenda for CER within the context of physical activity and non-pharmacological lifestyle approaches in the prevention and treatment of chronic disease. This report summarizes the conference content and consensus recommendations that culminated in a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. Methods This conference focused on presentations and discussion around the following topic areas: 1) defining CER, 2) identifying the current funding climate to support CER, 3) summarizing methods for conducting CER, and 4) identifying CER opportunities for physical activity. Results This conference resulted in consensus recommendations to adopt a CER Roadmap for Physical Activity and Lifestyle approaches to reducing the risk of chronic disease. In general, this roadmap provides a systematic framework by which CER for physical activity can move from a planning phase, to a phase of engagement in CER related to lifestyle factors with particular emphasis on physical activity, to a societal change phase that results in changes in policy, practice, and health. Conclusions It is recommended that physical activity researchers and healthcare providers use the roadmap developed from this conference as a method to systematically engage in and apply CER to the promotion of physical activity as a key lifestyle behavior that can be effective at impacting a variety of health-related outcomes. PMID:25426735

  20. Changes in attitudes and perceptions about research in physical therapy among professional physical therapist students and new graduates.

    PubMed

    Connolly, B H; Lupinnaci, N S; Bush, A J

    2001-05-01

    The physical therapy profession, through its published educational accreditation standards and its normative model of professional education, has addressed the importance of educating physical therapist students in the basic principles and application of research. The purpose of this study was to conduct a longitudinal study of students relative to (1) their perception of knowledge with respect to research, (2) their perception of what source should be used (evidence-based practice or traditional protocols) for clinical decision making, and (3) their perception of what should be used in a clinical setting for patient management. Thirty-six students during the final year of their professional program from a sample of 115 physical therapist students who requested 2 consecutive physical therapist classes completed the entire sequence of pretest and posttest survey administrations. Seventy-nine students did not complete the entire sequence. A 10-item 5-point Likert-type questionnaire was designed by the authors to probe the students' attitudes and perceptions about research, their level of comfort and confidence in reading and applying research findings published in the literature, and their personal habits regarding reading the professional literature. An expert panel consisting of internal and external reviewers was used for construction of the questionnaire. The questionnaire was completed by the students immediately preceding their research methods course, immediately after the completion of that course, and following the second research course, which included statistics and development of a research proposal. The subjects also completed the questionnaire after 1 year of physical therapy practice. Friedman's analysis of variance was used as an omnibus test to detect differences across time. In addition, a follow-up analysis using the Wilcoxon signed-rank procedure to examine differences between baseline data and data obtained during each follow-up was done for all items to determine whether a difference occurred at a time other than at the final posttest survey administration. The students showed differences on 5 of the 10 items on the questionnaire during the study. These items related to reading peer-reviewed professional journals, critically reading professional literature, relevance and importance of evidence-based clinical practice, and level of comfort with knowledge in research.

  1. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.

  2. Physical activity promotion among underserved adolescents: "make it fun, easy, and popular".

    PubMed

    Louise Bush, Paula; Laberge, Suzanne; Laforest, Sophie

    2010-05-01

    There is a paucity of studies regarding noncurricular physical activity promotion interventions among adolescents, and even less such research pertaining to underserved youth. This article describes the development and implementation of a noncurricular, school-based physical activity promotion program designed for a multiethnic, underserved population of adolescents. The program's impact on leisure-time physical activity (LTPA) and on physical activity enjoyment (PAE) is also presented. The 16-week program, named FunAction, utilizes social marketing principles. Control (n = 90) and intervention (n = 131) students are assessed pre- and postintervention for levels of LTPA and PAE. Results indicate that although the program did not contribute to an increase in LTPA or PAE among intervention group students, participation in the program was elevated. This study offers preliminary evidence that noncurricular physical activity promotion programs that apply social marketing principles can be effective in engaging multiethnic, underserved adolescents in physical activity.

  3. Design Steps for Physic STEM Education Learning in Secondary School

    NASA Astrophysics Data System (ADS)

    Teevasuthonsakul, C.; Yuvanatheeme, V.; Sriput, V.; Suwandecha, S.

    2017-09-01

    This study aimed to develop the process of STEM Education activity design used in Physics subjects in the Thai secondary schools. The researchers have conducted the study by reviewing the literature and related works, interviewing Physics experts, designing and revising the process accordingly, and experimenting the designed process in actual classrooms. This brought about the five-step process of STEM Education activity design which Physics teachers applied to their actual teaching context. The results from the after-class evaluation revealed that the students’ satisfaction level toward Physics subject and critical thinking skill was found higher statistically significant at p < .05. Moreover, teachers were advised to integrate the principles of science, mathematics, technology, and engineering design process as the foundation when creating case study of problems and solutions.

  4. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  5. Statistical physics of hard combinatorial optimization: Vertex cover problem

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  6. Applying GPS to enhance understanding of transport-related physical activity.

    PubMed

    Duncan, Mitch J; Badland, Hannah M; Mummery, W Kerry

    2009-09-01

    The purpose of the paper is to review the utility of the global positioning system (GPS) in the study of health-related physical activity. The paper draws from existing literature to outline the current work performed using GPS to examine transport-related physical activity, with a focus on the relative utility of the approach when combined with geographic information system (GIS) and other data sources including accelerometers. The paper argues that GPS, especially when used in combination with GIS and accelerometery, offers great promise in objectively measuring and studying the relationship of numerous environmental attributes to human behaviour in terms of physical activity and transport-related activity. Limitations to the use of GPS for the purpose of monitoring health-related physical activity are presented, and recommendations for future avenues of research are discussed.

  7. Physical Resilience in Older Adults: Systematic Review and Development of an Emerging Construct.

    PubMed

    Whitson, Heather E; Duan-Porter, Wei; Schmader, Kenneth E; Morey, Miriam C; Cohen, Harvey J; Colón-Emeric, Cathleen S

    2016-04-01

    Resilience has been described in the psychosocial literature as the capacity to maintain or regain well-being during or after adversity. Physical resilience is a newer concept that is highly relevant to successful aging. Our objective was to characterize the emerging construct of resilience as it pertains to physical health in older adults, and to identify gaps and opportunities to advance research in this area. We conducted a systematic review to identify English language papers published through January 2015 that apply the term "resilience" in relation to physical health in older adults. We applied a modified framework analysis to characterize themes in implicit or explicit definitions of physical resilience. Of 1,078 abstracts identified, 49 articles met criteria for inclusion. Sixteen were letters or concept papers, and only one was an intervention study. Definitions of physical resilience spanned cellular to whole-person levels, incorporated many outcome measures, and represented three conceptual themes: resilience as a trait, trajectory, or characteristic/capacity. Current biomedical literature lacks consensus on how to define and measure physical resilience. We propose a working definition of physical resilience at the whole person level: a characteristic which determines one's ability to resist or recover from functional decline following health stressor(s). We present a conceptual framework that encompasses the related construct of physiologic reserve. We discuss gaps and opportunities in measurement, interactions across contributors to physical resilience, and points of intervention. Published by Oxford University Press on behalf of the Gerontological Society of America 2015.

  8. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  9. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  10. Research evidence uptake in a developing country: a survey of attitudes, education and self-efficacy, engagement, and barriers among physical therapists in the Philippines.

    PubMed

    Gorgon, Edward James R; Barrozo, Hazel Gaile T; Mariano, Laarni G; Rivera, Emmalou F

    2013-10-01

    Use of evidence from systematic research is critical in evidence-based physical therapy, yet this has not been described well in developing countries where its purported benefits are most needed. This study explored research evidence uptake among physical therapists in the Philippines. A probability survey of practitioners in tertiary hospitals in the Philippines' National Capital Region was conducted. Of the 188 questionnaires distributed, 152 were returned for an 81% response rate. Positive attitudes were consistently reported (78-93%), although education and self-efficacy related to key dimensions such as searching, appraising and integrating evidence were varied (53-82%). Less than 50% reported using research evidence routinely in five of six dimensions of clinical practice, except in selecting treatments (53%). Textbooks, own observations and expert opinion were consistently relied upon (74-96%) while average-month approximations of engagement in relevant activities such as searching, reading, appraising and applying research literature were low (10-18%). Participants faced a number of barriers such as lack of time, resources, skills, access to research literature, supporting administrative policies, in-service training and authority in decision making. The low research evidence uptake and heavy reliance on potentially biased evidence sources strongly indicate the need for effective professional education for practitioners to address current barriers as well as early intensive undergraduate education for students to ensure adequate preparation on being effective research evidence consumers. Given the profile of Filipino physical therapists, alternatives to 'from scratch' evidence searching and appraisal are required if widespread uptake is envisaged. © 2012 John Wiley & Sons Ltd.

  11. Physical attractiveness biases in ratings of employment suitability: tracking down the "beauty is beastly" effect.

    PubMed

    Johnson, Stefanie K; Podratz, Kenneth E; Dipboye, Robert L; Gibbons, Ellie

    2010-01-01

    The "what is beautiful is good" heuristic suggests that physically attractive persons benefit from their attractiveness in a large range of situations, including perceptions of employment suitability. Conversely, the "beauty is beastly" effect suggests that attractiveness can be detrimental to women in certain employment contexts, although these findings have been less consistent than those for the "what is beautiful is good" effect. The current research seeks to uncover situations in which beauty might be detrimental for female applicants. In two studies, we found that attractiveness can be detrimental for women applying for masculine sex-typed jobs for which physical appearance is perceived as unimportant.

  12. Nonlinear Elasticity

    NASA Astrophysics Data System (ADS)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  13. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  14. Sustainable Revitalization in Cultural Heritage Kampong Kauman Surakarta Supported by Spatial Analysis

    NASA Astrophysics Data System (ADS)

    Musyawaroh, M.; Pitana, T. S.; Masykuri, M.; Nandariyah

    2018-02-01

    Revitalization is a much-needed for a historic kampong as a settlement, place of business, and as tourist destinations. The research was conducted in Kauman as one of the cultural heritage kampong which was formerly as a residence of abdidalemulamaKeraton who also work as batik entrepreneurs. This study aims to formulate a sustainable revitalization step based on the character of the area and the building. Aspects of sustainable revitalization that analyzed are the physical and non-physical condition of the environment. This research is an applied research with qualitative rationalistic approach supported with spatial distribution analysis through satellite imagery and Arch-GIS. The results revealed that sustainable revitalization for Kaumancan be done through: 1) Physical condition of the environment consists of land and building use, green open space, recreational park and sport activities, streets, drainage network, sewer network, the garbage disposal network; 2) Non-physical of the environment consists of economy, heritage socio-cultural, and the engagement of relevant stakeholders. The difference of this study with others is, this study is a continuation of the Kauman revitalization assistance program which involves community participation to produce a more appropriate solution for the problem of kampong.

  15. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1993-01-01

    In this Progress Report, we describe our current research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the characterization of stitched composite materials and bonded aluminum plate specimens. One purpose of this investigation is to identify and characterize specific features of polar backscatter interrogation which enhance the ability of ultrasound to detect flaws in a stitched composite laminate. Another focus is to explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize bonded aluminum lap joints. As an approach to implementing quantitative ultrasonic inspection methods to both of these materials, we focus on the physics that underlies the detection of flaws in such materials.

  16. Activities of the Japan Society of Applied Physics Committee for Diversity Promotion in Science and Technology (abstract)

    NASA Astrophysics Data System (ADS)

    Nishitani-Gamo, Mikka

    2009-04-01

    Since 2001, the Japan Society of Applied Physics (JSAP) Committee for Diversity Promotion in Science and Technology has worked to promote gender equality, both within and between academic societies, and in society as a whole. Main activities of the Committee are: (1) organizing symposia and informal meetings during domestic JSAP conferences to stimulate discussion and raise awareness; (2) encouraging young researchers in pursuit of their careers through the newly designed "career-explorer mark;" (3) offering childcare at biannual JSAP conferences; and (4) helping future scientists and engineers prepare to lead the fields of science and technology on a global level with the creation of an educational roadmap. In this presentation, recent activities of the JSAP Committee are introduced and reviewed.

  17. School-based pediatric physical therapists' perspectives on evidence-based practice.

    PubMed

    Schreiber, Joe; Stern, Perri; Marchetti, Gregory; Provident, Ingrid; Turocy, Paula Sammarone

    2008-01-01

    This study described the current knowledge, beliefs, attitudes, and practices of a group of school-based pediatric physical therapists regarding evidence-based practice (EBP). Five practitioners participated in this project. Each was interviewed individually and in a group and completed a quantitative survey. All of the participants had a positive attitude toward EBP and believed that it should be an important element of clinical practice. Knowledge and practice were more variable, with several individuals reporting a lack of confidence in this area and an inability to routinely implement EBP. These participants were more likely to rely on colleagues, interaction with their supervisor, and professional experience to aid in decision making than research evidence. Pediatric physical therapists face numerous challenges accessing, analyzing, and applying research evidence. It is critical for the profession to identify optimal ways to support practitioners in this aspect of clinical practice.

  18. Physical Samples and Persistent Identifiers: The Implementation of the International Geo Sample Number (IGSN) Registration Service in CSIRO, Australia

    NASA Astrophysics Data System (ADS)

    Devaraju, Anusuriya; Klump, Jens; Tey, Victor; Fraser, Ryan

    2016-04-01

    Physical samples such as minerals, soil, rocks, water, air and plants are important observational units for understanding the complexity of our environment and its resources. They are usually collected and curated by different entities, e.g., individual researchers, laboratories, state agencies, or museums. Persistent identifiers may facilitate access to physical samples that are scattered across various repositories. They are essential to locate samples unambiguously and to share their associated metadata and data systematically across the Web. The International Geo Sample Number (IGSN) is a persistent, globally unique label for identifying physical samples. The IGSNs of physical samples are registered by end-users (e.g., individual researchers, data centers and projects) through allocating agents. Allocating agents are the institutions acting on behalf of the implementing organization (IGSN e.V.). The Commonwealth Scientific and Industrial Research Organisation CSIRO) is one of the allocating agents in Australia. To implement IGSN in our organisation, we developed a RESTful service and a metadata model. The web service enables a client to register sub-namespaces and multiple samples, and retrieve samples' metadata programmatically. The metadata model provides a framework in which different types of samples may be represented. It is generic and extensible, therefore it may be applied in the context of multi-disciplinary projects. The metadata model has been implemented as an XML schema and a PostgreSQL database. The schema is used to handle sample registrations requests and to disseminate their metadata, whereas the relational database is used to preserve the metadata records. The metadata schema leverages existing controlled vocabularies to minimize the scope for error and incorporates some simplifications to reduce complexity of the schema implementation. The solutions developed have been applied and tested in the context of two sample repositories in CSIRO, the Capricorn Distal Footprints project and the Rock Store.

  19. WE-E-204-00: Where to Send My Manuscript

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  20. WE-E-204-01: ASTRO Based Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, E.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  1. WE-E-204-03: Radiology and Other Imaging Journals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karellas, A.

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given dozens of competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose of this symposium ismore » to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Radiology, Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. Senior members of the editorial board for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; open access policies, the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. Other journals will be discussed as well. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the quality and impact of the paper and the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase quality, impact and chances of acceptance To help decipher which journal is appropriate for a given work A. Karellas, Research collaboration with Koning, Corporation.« less

  2. Microgravity Platforms

    NASA Technical Reports Server (NTRS)

    Del Basso, Steve

    2000-01-01

    The world's space agencies have been conducting microgravity research since the beginning of space flight. Initially driven by the need to understand the impact of less than- earth gravity physics on manned space flight, microgravity research has evolved into a broad class of scientific experimentation that utilizes extreme low acceleration environments. The U.S. NASA microgravity research program supports both basic and applied research in five key areas: biotechnology - focusing on macro-molecular crystal growth as well as the use of the unique space environment to assemble and grow mammalian tissue; combustion science - focusing on the process of ignition, flame propagation, and extinction of gaseous, liquid, and solid fuels; fluid physics - including aspects of fluid dynamics and transport phenomena; fundamental physics - including the study of critical phenomena, low-temperature, atomic, and gravitational physics; and materials science - including electronic and photonic materials, glasses and ceramics, polymers, and metals and alloys. Similar activities prevail within the Chinese, European, Japanese, and Russian agencies with participation from additional international organizations as well. While scientific research remains the principal objective behind these program, all hope to drive toward commercialization to sustain a long range infrastructure which .benefits the national technology and economy. In the 1997 International Space Station Commercialization Study, conducted by the Potomac Institute for Policy Studies, some viable microgravity commercial ventures were identified, however, none appeared sufficiently robust to privately fund space access at that time. Thus, government funded micro gravity research continues on an evolutionary path with revolutionary potential.

  3. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  4. Physical modalities in chronic pain management.

    PubMed

    Rakel, Barbara; Barr, John O

    2003-09-01

    The following conclusions can be made based on review of the evidence: There is limited but positive evidence that select physical modalities are effective in managing chronic pain associated with specific conditions experienced by adults and older individuals. Overall, studies have provided the most support for the modality of therapeutic exercise. Different physical modalities have similar magnitudes of effects on chronic pain. Therefore, selection of the most appropriate physical modality may depend on the desired functional outcome for the patient, the underlying impairment, and the patient's preference or prior experience with the modality. Certain patient characteristics may decrease the effectiveness of physical modalities, as has been seen with TENS. These characteristics include depression, high trait anxiety, a powerful others locus of control, obesity, narcotic use, and neuroticism. The effect on pain by various modalities is generally strongest in the short-term period immediately after the intervention series, but effects can last as long as 1 year after treatment (e.g., with massage). Most research has tested the effect of physical modalities on chronic low back pain and knee OA. The effectiveness of physical modalities for other chronic pain conditions needs to be evaluated more completely. Older and younger adults often experience similar effects on their perception of pain from treatment with physical modalities. Therefore, use of these modalities for chronic pain in older adults is appropriate, but special precautions need to be taken. Practitioners applying physical modalities need formal training that includes the risks and precautions for these modalities. If practitioners lack formal training in the use of physical modalities, or if modality use is not within their scope of practice, it is important to consult with and refer patients to members of the team who have this specialized training. Use of a multidisciplinary approach to chronic pain management is of value for all adults and older individuals in particular [79-81]. Historically, physical therapists have been trained to evaluate and treat patients with the range of physical modalities discussed in this article. Although members of the nursing staff traditionally have used some of these modalities (e.g. some forms of heat or cold and massage), increasing numbers of nurses now are being trained to apply more specialized procedures (e.g., TENS). Healthcare professionals must be knowledgeable about the strength of evidence underlying the use of physical modalities for the management of chronic pain. Based on the limited research evidence available (especially related to assistive devices, orthotics, and thermal modalities), it often is difficult to accept or exclude select modalities as having a potential role in chronic pain management for adults and older individuals. Improved research methodologies are needed to address physical modality effectiveness better.

  5. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry’s physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  6. Jerome Lewis Duggan: A Nuclear Physicist and a Well-Known, Six-Decade Accelerator Application Conference (CAARI) Organizer

    NASA Astrophysics Data System (ADS)

    Del McDaniel, Floyd; Doyle, Barney L.

    Jerry Duggan was an experimental MeV-accelerator-based nuclear and atomic physicist who, over the past few decades, played a key role in the important transition of this field from basic to applied physics. His fascination for and application of particle accelerators spanned almost 60 years, and led to important discoveries in the following fields: accelerator-based analysis (accelerator mass spectrometry, ion beam techniques, nuclear-based analysis, nuclear microprobes, neutron techniques); accelerator facilities, stewardship, and technology development; accelerator applications (industrial, medical, security and defense, and teaching with accelerators); applied research with accelerators (advanced synthesis and modification, radiation effects, nanosciences and technology); physics research (atomic and molecular physics, and nuclear physics); and many other areas and applications. Here we describe Jerry's physics education at the University of North Texas (B. S. and M. S.) and Louisiana State University (Ph.D.). We also discuss his research at UNT, LSU, and Oak Ridge National Laboratory, his involvement with the industrial aspects of accelerators, and his impact on many graduate students, colleagues at UNT and other universities, national laboratories, and industry and acquaintances around the world. Along the way, we found it hard not to also talk about his love of family, sports, fishing, and other recreational activities. While these were significant accomplishments in his life, Jerry will be most remembered for his insight in starting and his industry in maintaining and growing what became one of the most diverse accelerator conferences in the world — the International Conference on the Application of Accelerators in Research and Industry, or what we all know as CAARI. Through this conference, which he ran almost single-handed for decades, Jerry came to know, and became well known by, literally thousands of atomic and nuclear physicists, accelerator engineers and vendors, medical doctors, cultural heritage experts... the list goes on and on. While thousands of his acquaintances already miss Jerry, this is being felt most by his family and us (B.D. and F.D.M).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Progress is reported on fundamental research in: crystal physics, reactions at metal surfaces, spectroscopy of ionic media, structure of metals, theory of alloying, physical properties, sintering, deformation of crystalline solids, x ray diffraction, metallurgy of superconducting materials, and electron microscope studies. Long-randge applied research studies were conducted for: zirconium metallurgy, materials compatibility, solid reactions, fuel element development, mechanical properties, non-destructive testing, and high-temperature materials. Reactor development support work was carried out for: gas-cooled reactor program, molten-salt reactor, high-flux isotope reactor, space-power program, thorium-utilization program, advanced-test reactor, Army Package Power Reactor, Enrico Fermi fast-breeder reactor, and water desalination program. Other programmore » activities, for which research was conducted, included: thermonuclear project, transuraniunn program, and post-irradiation examination laboratory. Separate abstracts were prepared for 30 sections of the report. (B.O.G.)« less

  8. PREFACE: New trends in Computer Simulations in Physics and not only in physics

    NASA Astrophysics Data System (ADS)

    Shchur, Lev N.; Krashakov, Serge A.

    2016-02-01

    In this volume we have collected papers based on the presentations given at the International Conference on Computer Simulations in Physics and beyond (CSP2015), held in Moscow, September 6-10, 2015. We hope that this volume will be helpful and scientifically interesting for readers. The Conference was organized for the first time with the common efforts of the Moscow Institute for Electronics and Mathematics (MIEM) of the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics, and the Science Center in Chernogolovka. The name of the Conference emphasizes the multidisciplinary nature of computational physics. Its methods are applied to the broad range of current research in science and society. The choice of venue was motivated by the multidisciplinary character of the MIEM. It is a former independent university, which has recently become the part of the National Research University Higher School of Economics. The Conference Computer Simulations in Physics and beyond (CSP) is planned to be organized biannually. This year's Conference featured 99 presentations, including 21 plenary and invited talks ranging from the analysis of Irish myths with recent methods of statistical physics, to computing with novel quantum computers D-Wave and D-Wave2. This volume covers various areas of computational physics and emerging subjects within the computational physics community. Each section was preceded by invited talks presenting the latest algorithms and methods in computational physics, as well as new scientific results. Both parallel and poster sessions paid special attention to numerical methods, applications and results. For all the abstracts presented at the conference please follow the link http://csp2015.ac.ru/files/book5x.pdf

  9. The foundation: Mechanism, prediction, and falsification in Bayesian enactivism. Comment on "Answering Schrödinger's question: A free-energy formulation" by Maxwell James Désormeau Ramstead et al.

    NASA Astrophysics Data System (ADS)

    Allen, Micah

    2018-03-01

    In Isaac Asimov's science fiction classic, Foundation, fictional mathematician Hari Seldon applies his theory of psychohistory, a synthesis of psychology, history, and statistical physics, to predict that humanity will suffer a dark age lasting thirty millennia [1]. Although Seldon's psychohistory successfully predicts the future of human society, its basis in the physical law of mass action carries a limitation - it can only do so for sufficiently massive populations (i.e., billions of individuals), rendering it inert at an individual level. This limitation is of course a key source of dramatic tension in the series, in which the individual characters of Asimov's universe grapple with the challenges inherent to applying a lawlike theory of collective action to the constitutive individuals. To avert crisis, Seldon ultimately assembles the namesake Foundation, an interdisciplinary, intergalactic research centre bringing together various biological, physical, and social scientists who ultimately attempt to alter the predicted course of history.

  10. Applied Physics. Course Materials: Physics 111, 112, 113. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for three courses in Applied Physics in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity that make…

  11. Improving the well-being of children and youths: a randomized multicomponent, school-based, physical activity intervention.

    PubMed

    Smedegaard, Søren; Christiansen, Lars Breum; Lund-Cramer, Pernille; Bredahl, Thomas; Skovgaard, Thomas

    2016-10-28

    The benefits of physical activity for the mental health and well-being of children and young people are well-established. Increased physical activity during school hours is associated with better physical, psychological and social health and well-being. Unfortunately many children and young people exercise insufficiently to benefit from positive factors like well-being. The main aim of this study is to develop, implement and evaluate a multi-component, school-based, physical activity intervention to improve psychosocial well-being among school-aged children and youths from the 4 th to the 6 th grade (10-13 years). A four-phased intervention - design, pilot, RCT, evaluation - is carried out for the development, implementation and evaluation of the intervention which are guided by The Medical Research Council framework for the development of complex interventions. 24 schools have been randomized and the total study population consists of 3124 children (baseline), who are followed over a period of 9 months. Outcome measure data at the pupil level are collected using an online questionnaire at baseline and at follow-up, 9 months later with instruments for measuring primary (general physical self-worth) and secondary outcomes (self-perceived sport competences, body attractiveness, scholastic competences, social competences and global self-worth; enjoyment of PA; self-efficacy; and general well-being) that are both valid and manageable in setting-based research. The RE-AIM framework is applied as an overall instrument to guide the evaluation. The intervention focuses on the mental benefits of physical activity at school, which has been a rather neglected theme in health promotion research during recent decades. This is unfortunate as mental health has been proclaimed as one of the most important health concerns of the 21 st century. Applying a cluster RCT study design, evaluating the real-world effectiveness of the intervention, this study is one of the largest physical activity intervention projects promoting psychosocial well-being among children and youths. Through a comprehensive effectiveness evaluation and a similar substantial process evaluation, this study is designed to gain knowledge on a broad variety of implementation issues and give detailed information on project delivery and challenges at the school level - among other things to better inform future practice. Date of registration: 24 April 2015 retrospectively registered at Current Controlled Trials with study ID ISRCTN12496336.

  12. From laser spectroscopy research to nonlinear optics instruction

    NASA Astrophysics Data System (ADS)

    de la Rosa, M. I.; Pérez, C.; Grützmacher, K.

    2005-10-01

    In this paper we describe how to join the two fundamental activities of a university professor: research and teaching. The work of our research team is devoted to the applications of two photon polarization spectroscopy to plasmas and combustion processes diagnostics. As a result of this work now we have powerful equipment and experience on nonlinear processes. Therefore, we decided to offer Nonlinear Optics as an elective subject, to the students in the last year of the Physics Degree at Valladolid University. We conclude that research at the University acquires its total significance when it is applied to the student's instruction.

  13. Estimating Top-of-Atmosphere Thermal Infrared Radiance Using MERRA-2 Atmospheric Data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania

    Space borne thermal infrared sensors have been extensively used for environmental research as well as cross-calibration of other thermal sensing systems. Thermal infrared data from satellites such as Landsat and Terra/MODIS have limited temporal resolution (with a repeat cycle of 1 to 2 days for Terra/MODIS, and 16 days for Landsat). Thermal instruments with finer temporal resolution on geostationary satellites have limited utility for cross-calibration due to their large view angles. Reanalysis atmospheric data is available on a global spatial grid at three hour intervals making it a potential alternative to existing satellite image data. This research explores using the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product to predict top-of-atmosphere (TOA) thermal infrared radiance globally at time scales finer than available satellite data. The MERRA-2 data product provides global atmospheric data every three hours from 1980 to the present. Due to the high temporal resolution of the MERRA-2 data product, opportunities for novel research and applications are presented. While MERRA-2 has been used in renewable energy and hydrological studies, this work seeks to leverage the model to predict TOA thermal radiance. Two approaches have been followed, namely physics-based approach and a supervised learning approach, using Terra/MODIS band 31 thermal infrared data as reference. The first physics-based model uses forward modeling to predict TOA thermal radiance. The second model infers the presence of clouds from the MERRA-2 atmospheric data, before applying an atmospheric radiative transfer model. The last physics-based model parameterized the previous model to minimize computation time. The second approach applied four different supervised learning algorithms to the atmospheric data. The algorithms included a linear least squares regression model, a non-linear support vector regression (SVR) model, a multi-layer perceptron (MLP), and a convolutional neural network (CNN). This research found that the multi-layer perceptron model produced the lowest error rates overall, with an RMSE of 1.22W / m2 sr mum when compared to actual Terra/MODIS band 31 image data. This research further aimed to characterize the errors associated with each method so that any potential user will have the best information available should they wish to apply these methods towards their own application.

  14. Improving physics instruction by analyzing video games

    NASA Astrophysics Data System (ADS)

    Beatty, Ian D.

    2013-01-01

    Video games can be very powerful teaching systems, and game designers have become adept at optimizing player engagement while scaffolding development of complex skills and situated knowledge. One implication is that we might create games to teach physics. Another, which I explore here, is that we might learn to improve classroom physics instruction by studying effective games. James Gee, in his book What Video Games Have to Teach Us About Learning and Literacy (2007), articulates 36 principles that make good video games highly effective as learning environments. In this theoretical work, I identify 16 themes running through Gee's principles, and explore how these themes and Gee's principles could be applied to the design of an on-campus physics course. I argue that the process pushes us to confront aspects of learning that physics instructors and even physics education researchers generally neglect, and suggest some novel ideas for course design.

  15. Econophysics: Past and present

    NASA Astrophysics Data System (ADS)

    de Area Leão Pereira, Eder Johnson; da Silva, Marcus Fernandes; Pereira, H. B. B.

    2017-05-01

    This paper provides a brief historical review of the relationship between economics and physics, beginning with Adam Smith being influenced by Isaac Newton's ideas up to the present day including the new econophysics discipline and some of the tools applied to the economy. Thus, this work is expected to motivate new researchers who are interested in this new discipline.

  16. Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water

    ERIC Educational Resources Information Center

    Gergely, John Robert

    2009-01-01

    Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…

  17. Validating Accelerometry and Skinfold Measures in Youth with Down Syndrome

    ERIC Educational Resources Information Center

    Esposito, Phil Michael

    2012-01-01

    Current methods for measuring quantity and intensity of physical activity based on accelerometer output have been studied and validated in youth. These methods have been applied to youth with Down syndrome (DS) with no empirical research done to validate these measures. Similarly, individuals with DS have unique body proportions not represented by…

  18. Social Skills, Attractiveness and Gender: Factors in Perceived Social Support.

    ERIC Educational Resources Information Center

    Hacker, T. Anthony; And Others

    Little research has focused on the particular characteristics necessary to gain and retain social support. To examine whether individuals' differing social support level could be differentiated on social skill level and physical appearance, and if these differences apply equally to males and females, 168 college students (84 males, 84 females)…

  19. Improving the Physical and Social Environment of School: A Question of Equity

    ERIC Educational Resources Information Center

    Uline, Cynthia L.; Wolsey, Thomas DeVere; Tschannen-Moran, Megan; Lin, Chii-Dean

    2010-01-01

    This study explored the interplay between quality facilities and school climate, charting the effects of facility conditions on student and teacher attitudes, behaviors, and performance within schools slated for renovations in a large metropolitan school district. The research applied a school leadership-building design model to explore how six…

  20. International Conference on Numerical Grid Generation in Computational Fluid Dynamics

    DTIC Science & Technology

    1989-04-30

    Joseph M. Juarez DFVLR SM -TS The Aerospace Corp. Bunsenstr-10 PO Box 92957 M5/559 D-3406 Gottingen Los Angeles CA 90009 F R Germany Klaus A. Hoffmann...Washington, D.C. 20332 Troy, NY 12180 Per Nielsen R. Raghunath Graduate Student Research Fellow Laboratory for Applied Math. Physic NOAA / AOML

  1. Using Computer Technology to Create a Revolutionary New Style of Biology.

    ERIC Educational Resources Information Center

    Monaghan, Peter

    1993-01-01

    A $13-million gift of William Gates III to the University of Washington has enabled establishment of the country's first department in molecular biotechnology, a combination of medicine and molecular biology to be practiced by researchers versed in a variety of fields, including computer science, computation, applied physics, and engineering. (MSE)

  2. Suggestions for Evaluating the Quality of the Army’s Science and Technology Program: The Portfolio and Its Execution

    DTIC Science & Technology

    2013-01-01

    definition of 6.1 research apply. Namely, the work is curiosity work with no specific application in mind. The two extramural categories include...direct interest in relativity and gravitation, cosmology , elementary particles, nuclear physics, astronomy, or astrophysics, since they generally have

  3. Applying the RE-AIM conceptual framework for the promotion of physical activity in low- and middle-income countries

    PubMed Central

    Lee, Rebecca E.; Galavíz, Karla I.; Soltero, Erica G.; Rosales Chavez, Jose; Jauregui, Edtna; Lévesque, Lucie; Hernández, Luis Ortiz; Lopez y Taylor, Juan; Estabrooks, Paul A.

    2017-01-01

    ABSTRACT Objective: the RE-AIM framework has been widely used to evaluate internal and external validity of interventions aimed to promote physical activity, helping to provide comprehensive evaluation of the reach, efficacy, adoption, implementation and maintenance of research and programming. Despite this progress, the RE-AIM framework has not been used widely in Latin America. The purpose of this manuscript is to describe the RE-AIM framework, the process and materials developed for a one-day workshop in Guadalajara, and the acceptability and satisfaction of participants that attended the workshop. Methods: lecture, interactive examples and an agenda were developed for a one-day RE-AIM workshop over a three month period. Results: thirty two health care practitioners (M age = 30.6, SD=9.9 years) attended the workshop. Most (100%) rated the workshop as credible, useful (100%) and intended to apply it in current or future research (95%). Conclusion: results suggest intuitive appeal of the RE-AIM framework, and provide a strategy for introducing the utility and practical application of the framework in practice settings in Mexico and Latin America.

  4. Theoretical and experimental physical methods of neutron-capture therapy

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  5. [Protein intake in selected youth groups of different physical activity and requirements for athletes].

    PubMed

    Nazarewicz, Rafał; Babicz-Zielińska, Ewa

    2004-01-01

    The aim of the study was to investigate protein intake in groups of different physical activity. The research was undertaken over a group of young people of different physical activity (age group 15-18 years) including ballet dancers, karate fighters, cross runners as well as adolescents of average physical activity (female and male). The investigation was performed in two series. The first--before intense exercise training and the second--after intense exercise training. In control group there was only one series. Urea was estimated by using urease which converts urea into ammonia, CO2 and glutamic dehydrogenase reaction via measurements of ammonia derived from urea. The amounts of urea were applied for counting quantity of consumed proteins. In the physically active groups the protein intake was too low in comparison to required.

  6. Physics and the production of antibiotics

    NASA Astrophysics Data System (ADS)

    Fairbrother, Robert; Riddle, Wendy; Fairbrother, Neil

    2006-01-01

    This article is the first in a series that describe some of the physics involved in the production of antibiotics. The field is often referred to as biochemical engineering but this does not indicate the considerable part played by physics and physicists. It is a process that undergoes continual research and development. Penicillin has been selected for the focus of this article, although the engineering principles and underlying physics apply to the production of other microbial products such as amino acids (which can be used as food additives), bulk chemicals such as ethanol (used in everything from hair spray and aftershave to solvents for paints and explosives) and the well-known processes of brewing and baking. In this article the application of physics to the design of the fermenter—the giant vessel in which the production of these products occurs—is discussed.

  7. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-12-31

    This report highlights Brookhaven National Laboratory`s activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  8. Brookhaven highlights for fiscal year 1991, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, M.S.; Cohen, A.; Greenberg, D.

    1991-01-01

    This report highlights Brookhaven National Laboratory's activities for fiscal year 1991. Topics from the four research divisions: Computing and Communications, Instrumentation, Reactors, and Safety and Environmental Protection are presented. The research programs at Brookhaven are diverse, as is reflected by the nine different scientific departments: Accelerator Development, Alternating Gradient Synchrotron, Applied Science, Biology, Chemistry, Medical, National Synchrotron Light Source, Nuclear Energy, and Physics. Administrative and managerial information about Brookhaven are also disclosed. (GHH)

  9. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    NASA Astrophysics Data System (ADS)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  10. NRC Grants for Federal Research

    NASA Astrophysics Data System (ADS)

    The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.

  11. Maximizing potential impact of experimental research into cognitive processes in health psychology: A systematic approach to material development.

    PubMed

    Hughes, Alicia M; Gordon, Rola; Chalder, Trudie; Hirsch, Colette R; Moss-Morris, Rona

    2016-11-01

    There is an abundance of research into cognitive processing biases in clinical psychology including the potential for applying cognitive bias modification techniques to assess the causal role of biases in maintaining anxiety and depression. Within the health psychology field, there is burgeoning interest in applying these experimental methods to assess potential cognitive biases in relation to physical health conditions and health-related behaviours. Experimental research in these areas could inform theoretical development by enabling measurement of implicit cognitive processes that may underlie unhelpful illness beliefs and help drive health-related behaviours. However, to date, there has been no systematic approach to adapting existing experimental paradigms for use within physical health research. Many studies fail to report how materials were developed for the population of interest or have used untested materials developed ad hoc. The lack of protocol for developing stimuli specificity has contributed to large heterogeneity in methodologies and findings. In this article, we emphasize the need for standardized methods for stimuli development and replication in experimental work, particularly as it extends beyond its original anxiety and depression scope to other physical conditions. We briefly describe the paradigms commonly used to assess cognitive biases in attention and interpretation and then describe the steps involved in comprehensive/robust stimuli development for attention and interpretation paradigms using illustrative examples from two conditions: chronic fatigue syndrome and breast cancer. This article highlights the value of preforming rigorous stimuli development and provides tools to aid researchers engage in this process. We believe this work is worthwhile to establish a body of high-quality and replicable experimental research within the health psychology literature. Statement of contribution What is already known on this subject? Cognitive biases (e.g., tendencies to attend to negative information and/or interpret ambiguous information in negative ways) have a causal role in maintaining anxiety and depression. There is mixed evidence of cognitive biases in physical health conditions and chronic illness; one reason for this may be the heterogeneous stimuli used to assess attention and interpretation biases in these conditions. What does this study add? Steps for comprehensive/robust stimuli development for attention and interpretation paradigms are presented. Illustrative examples are provided from two conditions: chronic fatigue syndrome and breast cancer. We provide tools to help researchers develop condition-specific materials for experimental studies. © 2016 The British Psychological Society.

  12. Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation

    NASA Astrophysics Data System (ADS)

    Camparo, James

    2005-03-01

    The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.

  13. Antenna Impedance Measures in a Magnetized Plasma. Part 1. Spherical Antenna

    DTIC Science & Technology

    2006-10-16

    3436 (1964) [2] Crawford FW, J. Appl. Phys 36 (10) 3142, (1965) [3] Dote T , Ichimiya T , Journal of Applied Physics 36 (6): 1866 (1965) [4] Oya H...Obayashi T , Report of Ionosphere and Space Research in Japan 20 (2): 199 (1966) [5] Balmain, K. IEEE Transactions on Antennas and Propagation vol.AP-14...no.3 : 402 (1966) [6] Uramoto J Physics Of Fluids 13 (3): 657 (1970) 5 [7] T . H. Y. Yeung and J. Sayers, Proc. Phys. Soc. London, Sect. B 70, 663

  14. Neural implementation of operations used in quantum cognition.

    PubMed

    Busemeyer, Jerome R; Fakhari, Pegah; Kvam, Peter

    2017-11-01

    Quantum probability theory has been successfully applied outside of physics to account for numerous findings from psychology regarding human judgement and decision making behavior. However, the researchers who have made these applications do not rely on the hypothesis that the brain is some type of quantum computer. This raises the question of how could the brain implement quantum algorithms other than quantum physical operations. This article outlines one way that a neural based system could perform the computations required by applications of quantum probability to human behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Impact of a didactic sequence on basic Astronomy concepts for graduates in physics of online and classroom modalities

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    In the transition from elementary school to high school, the topics related to astronomy are studied within the curriculae component of physics. In this context, at some point of time a Physic's teacher at this level of education will be faced with the need to work with the contents related to this science. In this way, it is important to broaden the discussion about teacher education, as well as to apply in practice the means for it. Therefore, this work has the objective to present the results, obtained by application of a questionnaire at the beginning (a pre-test), and at the final stage by a course for physics graduates of online and classroom modalities (completed with a post-test), which was organized through the Potentially Significant Teaching Units - PSTUs; and this work also presents the level of satisfaction of them in relation to the course. It is an applied and descriptive research, and the adopted technical procedures consisted of the survey and a participatory research. The data were organized in spreadsheets and the statistical analyzes were made in the sequence, with the objective of establishing comparisons between the studied groups, of their evolution of acquired knowledge and their level of satisfaction, resulting from the development in the course. The results indicate that there has been an evolution of the student's s basic knowledge with relation to the proposed topics of Astronomy in the didactic sequences, i.e., the activities developed in the administered course created a favorable atmosphere for the learning, which is therefore contributing to the initial formation of these physics teachers.

  16. The Physics of NASCAR

    NASA Astrophysics Data System (ADS)

    Leslie-Pelecky, Diandra

    2008-10-01

    A group of racecars piloted by the best drivers in NASCAR are turning a corner. Without warning, one of the cars suddenly hits the outside wall. There were no engine failures, no flat tires, and none of the cars touched so what happened? Understanding and being able to apply physics is a necessary (but far from sufficient) condition for winning races.ootnotetextDiandra Leslie-Pelecky, The Physics of NASCAR (Dutton, New York City, 2008). Every competitive race team has a technical staff involved in everything from applied engineering to basic research and development. Aerodynamicists, chemical engineers, statisticians and physicists have become important participants in the high-stakes world of motorsports. Although some drivers have engineering degrees, even those without them have developed a highly intuitive understanding of physics -- you don't keep your job long without a working knowledge of Newton's Laws of Motion. The inherent science in NASCAR is of interest at many levels, from the fan who wants to understand changes made to the car at pit stops to nanomaterials researchers looking for new ways to make racing simultaneously faster and safer. This presentation will introduce some of the fascinating physics of NASCAR and give teachers some ideas to use in the classroom. I'll touch on a range of topics from: how computational fluid dynamics is used to address the aerodynamic changes that challenge the driver by making his car behave differently around every corner; how advanced materials such as energy-absorbing foams have made racing significantly safer; and how nanoparticles may be able to keep engines from overheating despite running at 9500 rpm for three or four hours. Finally, I'll explore NASCAR, its teams and its sponsors are helping address the challenge of getting people interest math and science.

  17. Wavelength Independent Optical Lithography and Microscopy

    DTIC Science & Technology

    1990-10-30

    Engineering Physics H. Barshatzky (1985 - present) Cornell, School of Applied & Engineering Physics I. Walton (1987 - 1988) National Semiconductor...Santa Clara, California R. Chen (1989 - 1990) Digital Equipment Corporation S. Boedecker (1990 - present) Cornell, School of Applied & Engineering Physics...H. Chen (1990 - present) Cornell, Department of Materials Science and Engineering M. Park (1987) Cornell, School of Applied & Engineering Physics M. Tornai (1988) UCLA, Dept. Medical Physics,

  18. CLINICAL APPLICATIONS OF CRYOTHERAPY AMONG SPORTS PHYSICAL THERAPISTS.

    PubMed

    Hawkins, Shawn W; Hawkins, Jeremy R

    2016-02-01

    Therapeutic modalities (TM) are used by sports physical therapists (SPT) but how they are used is unknown. To identify the current clinical use patterns for cryotherapy among SPT. Cross-sectional survey. All members (7283) of the Sports Physical Therapy Section of the APTA were recruited. A scenario-based survey using pre-participation management of an acute or sub-acute ankle sprain was developed. A Select Survey link was distributed via email to participants. Respondents selected a treatment approach based upon options provided. Follow-up questions were asked. The survey was available for two weeks with a follow-up email sent after one week. Question answers were the main outcome measures. Reliability: Cronbach's alpha=>0.9. The SPT response rate = 6.9% (503); responses came from 48 states. Survey results indicated great variability in respondents' approaches to the treatment of an acute and sub-acute ankle sprain. SPT applied cryotherapy with great variability and not always in accordance to the limited research on the TM. Continuing education, application of current research, and additional outcomes based research needs to remain a focus for clinicians. 3.

  19. Cohort Profile: The Applied Research Group for Kids (TARGet Kids!)

    PubMed Central

    Carsley, Sarah; Borkhoff, Cornelia M; Maguire, Jonathon L; Birken, Catherine S; Khovratovich, Marina; McCrindle, Brian; Macarthur, Colin; Parkin, Patricia C

    2015-01-01

    The Applied Research Group for Kids (TARGet Kids!) is an ongoing open longitudinal cohort study enrolling healthy children (from birth to 5 years of age) and following them into adolescence. The aim of the TARGet Kids! cohort is to link early life exposures to health problems including obesity, micronutrient deficiencies and developmental problems. The overarching goal is to improve the health of Canadians by optimizing growth and developmental trajectories through preventive interventions in early childhood. TARGet Kids!, the only child health research network embedded in primary care practices in Canada, leverages the unique relationship between children and families and their trusted primary care practitioners, with whom they have at least seven health supervision visits in the first 5 years of life. Children are enrolled during regularly scheduled well-child visits. To date, we have enrolled 5062 children. In addition to demographic information, we collect physical measurements (e.g. height, weight), lifestyle factors (nutrition, screen time and physical activity), child behaviour and developmental screening and a blood sample (providing measures of cardiometabolic, iron and vitamin D status, and trace metals). All data are collected at each well-child visit: twice a year until age 2 and every year until age 10. Information can be found at: http://www.targetkids.ca/contact-us/. PMID:24982016

  20. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    PubMed

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  1. Conceptual Design of Tail-Research EXperiment (T-REX) on Space Plasma Environment Research Facility

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Xiaogang; E, Peng; Shen, Chao; Wang, Zhibin; Mao, Aohua; Xiao, Chijie; Ding, Weixing; Ji, Hantao; Ren, Yang

    2016-10-01

    Space Environment Simulation Research Infrastructure (SESRI), a scientific project for a major national facility of fundamental researches, has recently been launched at Harbin Institute of Technology (HIT). The Space Plasma Environment Research Facility (SPERF) for simulation of space plasma environment is one of the components of SESRI. It is designed to investigate fundamental issues in space plasma environment, such as energetic particles transportation and the interaction with waves in magnetosphere, magnetic reconnection at magnetopause and magnetotail, etc. Tail-Research Experiment (T-REX) is part of the SPERF for laboratory studies of space physics relevant to tail reconnection and dipolarization process. T-REX is designed to carry out two kinds of experiments: the tail plasmamoid for magnetic reconnection and magnetohydrodynamic waves excited by high speed plasma jet. In this presentation, the scientific goals and experimental plans for T-REX together with the means applied to generate the plasma with desired parameters are reviewed. Two typical scenarios of T-REX with operations of plasma sources and various magnetic configurations to study specific physical processes in space plasmas will also be presented.

  2. Technology for Children With Brain Injury and Motor Disability: Executive Summary From Research Summit IV.

    PubMed

    Christy, Jennifer B; Lobo, Michele A; Bjornson, Kristie; Dusing, Stacey C; Field-Fote, Edelle; Gannotti, Mary; Heathcock, Jill C; OʼNeil, Margaret E; Rimmer, James H

    Advances in technology show promise as tools to optimize functional mobility, independence, and participation in infants and children with motor disability due to brain injury. Although technologies are often used in adult rehabilitation, these have not been widely applied to rehabilitation of infants and children. In October 2015, the Academy of Pediatric Physical Therapy sponsored Research Summit IV, "Innovations in Technology for Children With Brain Insults: Maximizing Outcomes." The summit included pediatric physical therapist researchers, experts from other scientific fields, funding agencies, and consumers. Participants identified challenges in implementing technology in pediatric rehabilitation including accessibility, affordability, managing large data sets, and identifying relevant data elements. Participants identified 4 key areas for technology development: to determine (1) thresholds for learning, (2) appropriate transfer to independence, (3) optimal measurement of subtle changes, and (4) how to adapt to growth and changing abilities.

  3. RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the AAPM Research Committee Task Group 268.

    PubMed

    Sechopoulos, Ioannis; Rogers, D W O; Bazalova-Carter, Magdalena; Bolch, Wesley E; Heath, Emily C; McNitt-Gray, Michael F; Sempau, Josep; Williamson, Jeffrey F

    2018-01-01

    Studies involving Monte Carlo simulations are common in both diagnostic and therapy medical physics research, as well as other fields of basic and applied science. As with all experimental studies, the conditions and parameters used for Monte Carlo simulations impact their scope, validity, limitations, and generalizability. Unfortunately, many published peer-reviewed articles involving Monte Carlo simulations do not provide the level of detail needed for the reader to be able to properly assess the quality of the simulations. The American Association of Physicists in Medicine Task Group #268 developed guidelines to improve reporting of Monte Carlo studies in medical physics research. By following these guidelines, manuscripts submitted for peer-review will include a level of relevant detail that will increase the transparency, the ability to reproduce results, and the overall scientific value of these studies. The guidelines include a checklist of the items that should be included in the Methods, Results, and Discussion sections of manuscripts submitted for peer-review. These guidelines do not attempt to replace the journal reviewer, but rather to be a tool during the writing and review process. Given the varied nature of Monte Carlo studies, it is up to the authors and the reviewers to use this checklist appropriately, being conscious of how the different items apply to each particular scenario. It is envisioned that this list will be useful both for authors and for reviewers, to help ensure the adequate description of Monte Carlo studies in the medical physics literature. © 2017 American Association of Physicists in Medicine.

  4. Application verification research of cloud computing technology in the field of real time aerospace experiment

    NASA Astrophysics Data System (ADS)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  5. Foreword

    NASA Astrophysics Data System (ADS)

    Labarta, Amilcar; Vazquez, Manuel; Fontcuberta, Josep; Schuller, Ivan; Rivas, José; Givord, Dominique

    2016-02-01

    The International Conference on Magnetism (ICM), organized under the auspices of the International Union of Pure and Applied Physics (IUPAP), takes place every three years. It gathers scientists and engineers involved in magnetism research, from the most fundamental aspects to the most applied ones. ICM 2015, the 20th conference in the series, took place in Barcelona, from 5th to 10th July 2015, organized by a broadly international magnetics community with special commitment from the Spanish community. Almost 2200 delegates took part to ICM 2015, placing this conference amongst those with highest attendance in the series (see Table 1).

  6. ASP2012: Fundamental Physics and Accelerator Sciences in Africa

    NASA Astrophysics Data System (ADS)

    Darve, Christine

    2012-02-01

    Much remains to be done to improve education and scientific research in Africa. Supported by the international scientific community, our initiative has been to contribute to fostering science in sub-Saharan Africa by establishing a biennial school on fundamental subatomic physics and its applications. The school is based on a close interplay between theoretical, experimental, and applied physics. The lectures are addressed to students or young researchers with at least a background of 4 years of university formation. The aim of the school is to develop capacity, interpret, and capitalize on the results of current and future physics experiments with particle accelerators; thereby spreading education for innovation in related applications and technologies, such as medicine and information science. Following the worldwide success of the first school edition, which gathered 65 students for 3-week in Stellenbosch (South Africa) in August 2010, the second edition will be hosted in Ghana from July 15 to August 4, 2012. The school is a non-profit organization, which provides partial or full financial support to 50 of the selected students, with priority to Sub-Saharan African students.

  7. Concordance of Parent- and Child-Reported Physical Abuse Following Child Protective Services Investigation.

    PubMed

    Kobulsky, Julia M; Kepple, Nancy Jo; Holmes, Megan R; Hussey, David L

    2017-02-01

    Knowledge about the concordance of parent- and child-reported child physical abuse is scarce, leaving researchers and practitioners with little guidance on the implications of selecting either informant. Drawing from a 2008-2009 sample of 11- to 17-year-olds ( N = 636) from Wave 1 of the second National Survey of Child and Adolescent Well-Being, this study first examined parent-child concordance in physical abuse reporting (Parent-Child Conflict Tactic Scale). Second, it applied multivariate regression analysis to relate parent-child agreement in physical abuse to parent-reported (Child Behavior Checklist) and child-reported (Youth Self Report) child behavioral problems. Results indicate low parent-child concordance of physical abuse (κ = .145). Coreporting of physical abuse was related to clinical-level parent-reported externalizing problems ([Formula: see text] = 64.57), whereas child-only reports of physical abuse were the only agreement category related to child-reported internalizing problems ( B = 4.17, p < .001). Attribution bias theory may further understanding of reporting concordance and its implications.

  8. Description of Fundulus Heteroclitus Ventilatory Data and Water Quality Parameters: A Feasibility Study for Predicting Toxic Pfiesteria Piscicida and P. Piscicida-like Events in Estuarine Environments

    DTIC Science & Technology

    2000-06-30

    Center for Environmental Health Research (USACEHR), the United States Environmental Protection Agency (USEPA), Johns Hopkins University Applied Physics...Joanne M. Burkholder and fellow North Carolina State researchers in 1988, has the ability to assume a toxic life cycle stage under appropriate...P. piscicida form. If the toxic form ofP. piscicida is present in the optimal quantity, the fish \\vill usually die within an hour. Dr. Burkholder

  9. Research and evolution of mid-infrared optical source

    NASA Astrophysics Data System (ADS)

    Chen, Changshui; Hu, Hui; Xu, Lei

    2016-10-01

    3-5 μm mid-infrared wave band is in the atmosphere window, it has lots of promising applications on the spectroscopy, remote sensing, medical treatment, environmental protection and military affairs. So, it has been a hot topic around the world to research the lasers at this wave band. In recent years, adiabatic passage technology has been applied in frequency conversion area, which borrowed from atomic physics. In this paper we will introduce efficient nonlinear optics frequency conversion by suing this technology.

  10. Study of the Effects of Photometric Geometry on Spectral Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul

    1998-01-01

    The objective of this research is to investigate how the spectrophotometric properties of planetary surface materials depend on photometric geometry by refining and applying radiative transfer theory to data obtained from spacecraft and telescope observations of planetary surfaces, studies of laboratory analogs, and computer simulations. The goal is to perfect the physical interpretation of photometric parameters in the context of planetary surface geological properties and processes. The purpose of this report is to document the research achievements associated with this study.

  11. Early history of neutron scattering at oak ridge

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. K.

    1986-03-01

    Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world.

  12. Hybrid Placemaking in the Library: Designing Digital Technology to Enhance Users' On-Site Experience

    ERIC Educational Resources Information Center

    Bilandzic, Mark; Johnson, Daniel

    2013-01-01

    This paper presents research findings and design strategies that illustrate how digital technology can be applied as a tool for "hybrid" placemaking in ways that would not be possible in purely digital or physical spaces. Digital technology has revolutionised the way people learn and gather new information. This trend has challenged the…

  13. The Digital Reading Path: Researching Modes and Multidirectionality with iPads

    ERIC Educational Resources Information Center

    Simpson, Alyson; Walsh, Maureen; Rowsell, Jennifer

    2013-01-01

    This paper reports a study that examines the integration of tablet technologies such as iPads into literacy lessons to investigate how reading and meaning-making occur within this digital medium. Specifically in this paper, we discuss the concept of reading paths as applied to physical and cognitive planes of meaning-making. The paper reports on…

  14. The Effect of Contextual Variety on the Practice, Retention, and Transfer of an Applied Motor Skill.

    ERIC Educational Resources Information Center

    Wrisberg, Craig A.; Liu, Zhan

    1991-01-01

    Researchers examined the effect of contextual variety on practice, retention, and transfer of the long and short badminton service in a college physical education class. Results indicated a practice schedule requiring students to change the plan of action from trial to trial facilitated retention and transfer of motor skills. (SM)

  15. Applying Athletic Identify Measurement Scale on Physical Educators: Turkish Version of AIMS

    ERIC Educational Resources Information Center

    Tunçkol, H. Mehmet

    2015-01-01

    In sports research, defining athletic identity of individuals is an important study subject. The subject owes its significance to the fact that an individual's athletic identity affects his other identities throughout his life span. The aim of this study is to test the reliability and validity of the Turkish version of Athletic Identity…

  16. How Learning and Cognitive Science Can Improve Student Outcomes. Middle School Matters Program No. 1

    ERIC Educational Resources Information Center

    Graesser, Art; Rodriguez, Gina; Brasiel, Sarah J.

    2013-01-01

    There are research-based principles and practices from the learning and cognitive sciences that can be applied to all content areas in middle grades education to improve student outcomes. Even teachers of courses like Physical Education can consider these strategies for assisting students in remembering rules of sports, different sports…

  17. Gaining Modelling and Mathematical Experience by Constructing Virtual Sensory Systems in Maze-Videogames

    ERIC Educational Resources Information Center

    Sacristán, Ana Isabel; Pretelín-Ricárdez, Angel

    2017-01-01

    This work is part of a research project that aims to enhance engineering students' learning of how to apply mathematics in modelling activities of real-world situations, through the construction (design and programming) of videogames. We want also for students to relate their mathematical knowledge with other disciplines (e.g., physics, computer…

  18. TU-B-16A-01: To Which Journal Should I Submit My Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, J; Mills, M; Klein, E

    Research papers authored by Medical Physicists address a large spectrum of oncologic, imaging, or basic research problems; exploit a wide range of physical and engineering methodologies; and often describe the efforts of a multidisciplinary research team. Given the large number (about 100) competing journals accepting medical physics articles, it may not be clear to an individual author which journal is the best venue for disseminating their work to the scientific community. Relevant factors usually include the Journal’s audience and scientific impact, but also such factors as perceived acceptance rate, interest in their topic, and quality of service. The purpose ofmore » this symposium is to provide the medical physics community with an overview of scope, review processes, and article guidelines for the following journals: Medical Physics, International Journal of Radiation Biology and Physics, Journal of Applied Clinical Medical Physics, and Practical Radiation Oncology. The senior editors for each journal will provide details as to the journals review process, for example: single blind versus double blind reviews; the hierarchy of the review process in terms of editorial board structure; the reality of acceptance, in terms of acceptance rate; and the types of research the journal prefers to publish. The goal is to provide for authors guidance before they begin to write their papers, not only for proper formatting, but also that the readership is appropriate for the particular paper, hopefully increasing the likelihood of publication. Learning Objectives: To review each Journal’s submission and review process Guidance as to how to increase chances of acceptance To help decipher which journal is appropriate for a given work.« less

  19. The paradox of negative pressure wound therapy--in vitro studies.

    PubMed

    Kairinos, Nicolas; Solomons, Michael; Hudson, Donald A

    2010-01-01

    Negative-pressure wound therapy (NPWT) has revolutionised wound care. Yet, it is still not understood how hypobaric tissue pressure accelerates wound healing. There is very little reported on the relevant physics of any substance subjected to suction in this manner. The common assumption is that applying suction to a substance is likely to result in a reduction of pressure in that substance. Although more than 250 research articles have been published on NPWT, there are little data verifying whether suction increases or decreases the pressure of the substance it is applied to. Clarifying this basic question of physics is the first step in understanding the mechanism of action of these dressings. In this study, pressure changes were recorded in soft plasticene and processed meat, using an intracranial tissue pressure microsensor. Circumferential, non-circumferential and cavity NPWT dressings were applied, and pressure changes within the underlying substance were recorded at different suction pressures. Pressures were also measured at 1cm, 2 cm and 3 cm from the NPWT placed in a cavity. In all three types of NPWT dressings, the underlying substance pressure was increased (hyperbaric) as suction pressure increased. Although there was a substantial pressure increase at 1cm, the rise in pressure at the 2-cm and 3-cm intervals was minimal. Substance pressure beneath all types of NPWT dressing is hyperbaric in inanimate substances. Higher suction pressures generate greater substance pressures; however, the increased pressure rapidly dissipates as the distance from the dressing is increased. The findings of this study on inanimate objects suggest that we may need to review our current perception of the physics underlying NPWT dressings. Further research of this type on living tissues is warranted. Copyright (c) 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Actinide targets for fundamental research in nuclear physics

    NASA Astrophysics Data System (ADS)

    Eberhardt, K.; Düllmann, Ch. E.; Haas, R.; Mokry, Ch.; Runke, J.; Thörle-Pospiech, P.; Trautmann, N.

    2018-05-01

    Thin actinide layers deposited on various substrates are widely used as calibration sources in nuclear spectroscopy. Other applications include fundamental research in nuclear chemistry and -physics, e.g., the chemical and physical properties of super-heavy elements (SHE, Z > 103) or nuclear reaction studies with heavy ions. For the design of future nuclear reactors like fast-fission reactors and accelerator-driven systems for transmutation of nuclear waste, precise data for neutron absorption as well as neutron-induced fission cross section data for 242Pu with neutrons of different energies are of particular importance, requiring suitable Pu-targets. Another application includes studies of nuclear transitions in 229Th harvested as α-decay recoil product from a thin layer of its 233U precursor. For this, a thin and very smooth layer of 233U is used. We report here on the production of actinide layers mostly obtained by Molecular Plating (MP). MP is currently the only fabrication method in cases where the desired actinide material is available only in very limited amounts or possesses a high specific activity. Here, deposition is performed from organic solution applying a current density of 1-2 mA/cm2. Under these conditions target thicknesses of 500-1000 μg/cm2 are possible applying a single deposition step with deposition yields approaching 100 %. For yield determination α-particle spectroscopy, γ-spectroscopy and Neutron Activation Analysis is routinely used. Layer homogeneity is checked with Radiographic Imaging. As an alternative technique to MP the production of thin lanthanide and actinide layers by the so-called "Drop on Demand"-technique applied e.g., in ink-jet printing is currently under investigation.

  1. Risk Factors Related to Lower Limb Edema, Compression, and Physical Activity During Pregnancy: A Retrospective Study.

    PubMed

    Ochalek, Katarzyna; Pacyga, Katarzyna; Curyło, Marta; Frydrych-Szymonik, Aleksandra; Szygula, Zbigniew

    2017-06-01

    The aim of the article was to assess risk factors and to analyze methods applied in the prevention and treatment of lower limb edema in pregnant women with a particular focus on compression therapy and exercise. Fifty-four women during the early 24-hour period following delivery were assigned to two groups-either to a group with swellings of lower limbs during pregnancy, located mostly in the region of feet and lower legs (Group A, n = 42), or to a group without edema (Group B, n = 12). Two subgroups, namely A1 and A2, were additionally distinguished in Group A. Compression therapy that consisted in wearing circular-knit compression garments, usually at compression level 1 (ccl1), with three cases of compression level 2 (ccl2) was applied only in Group A1 (n = 18 women). The analysis has led to a conclusion that there is a link between the occurrence of edema during pregnancy on the one hand and the pregravidity episodes of venous conditions (vascular insufficiency and thrombosis, p < 0.05) and the lack of physical exercise during pregnancy (p = 0.01) on the other hand. However, interdependence between the occurrence of edema and the number of times a female had been pregnant, physical activity before gravidity, or body mass index before gravidity has not been identified. Only 33% of the analyzed women applied compression therapy during pregnancy; a half of them continued to apply compression during the postpartum period. Compression therapy in combination with proper physical exercises appears to be an effective means to prevent and treat venous thrombosis and lower limb edema in pregnant women, yet further research in line with the principles of evidence-based medicine is required.

  2. Explicit reflection in an introductory physics course

    NASA Astrophysics Data System (ADS)

    Scott, Michael Lee

    This dissertation details a classroom intervention that supplements assigned in-class problems in weekly problem sets with reflective activities that are aimed to assist in knowledge integration. Using the framework of cognitive load theory, this intervention should assist in schema acquisition leading to (1) students recognizing the use and appropriately applying physical concepts across different problem contexts, and (2) enhanced physics understanding of students resulting in improved class performance. The intervention was embedded in the discussion component of an introductory, university physics course, and spanned a 14-week period. Evaluation of the intervention was based on the relative performance between a control and treatment group. Instruments used in this study to assess performance included the Force Concept Inventory (FCI), a physics problem categorization test, and four class exams. A full discussion of this implementation and the accompanying measures will be given. Possible limitations to this study and lines of future research will be proposed.

  3. Rethinking Hospital-Associated Deconditioning: Proposed Paradigm Shift

    PubMed Central

    Mangione, Kathleen K.; Stevens-Lapsley, Jennifer E.

    2015-01-01

    Physical therapists often treat older adults with marked deficits in physical function secondary to an acute hospitalization. These deficits are often collectively defined as hospital-associated deconditioning (HAD). However, there is a paucity of evidence that objectively demonstrates the efficacy of physical therapy for older adults with HAD. Older adults with HAD represent a highly variable and complex population and thus may be difficult to study and develop effective interventions for using our current rehabilitation strategies. This perspective article outlines an innovative framework to operationalize and treat older adults with HAD. This framework may help therapists apply emerging exercise strategies to this population and facilitate additional research to support the total value of physical therapy for older adults in postacute care settings—with value measured not only by improvements in physical performance but perhaps also by reduced rates of disability development, rehospitalization, and institutionalization. PMID:25908526

  4. Exploratory Research and Development Fund, FY 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicinemore » and radiation biophysics.« less

  5. A reflective lens: applying critical systems thinking and visual methods to ecohealth research.

    PubMed

    Cleland, Deborah; Wyborn, Carina

    2010-12-01

    Critical systems methodology has been advocated as an effective and ethical way to engage with the uncertainty and conflicting values common to ecohealth problems. We use two contrasting case studies, coral reef management in the Philippines and national park management in Australia, to illustrate the value of critical systems approaches in exploring how people respond to environmental threats to their physical and spiritual well-being. In both cases, we used visual methods--participatory modeling and rich picturing, respectively. The critical systems methodology, with its emphasis on reflection, guided an appraisal of the research process. A discussion of these two case studies suggests that visual methods can be usefully applied within a critical systems framework to offer new insights into ecohealth issues across a diverse range of socio-political contexts. With this article, we hope to open up a conversation with other practitioners to expand the use of visual methods in integrated research.

  6. Conceptual design of Dipole Research Experiment (DREX)

    NASA Astrophysics Data System (ADS)

    Xiao, Qingmei; Wang, Zhibin; Wang, Xiaogang; Xiao, Chijie; Yang, Xiaoyi; Zheng, Jinxing

    2017-03-01

    A new terrella-like device for laboratory simulation of inner magnetosphere plasmas, Dipole Research Experiment, is scheduled to be built at the Harbin Institute of Technology (HIT), China, as a major state scientific research facility for space physics studies. It is designed to provide a ground experimental platform to reproduce the inner magnetosphere to simulate the processes of trapping, acceleration, and transport of energetic charged particles restrained in a dipole magnetic field configuration. The scaling relation of hydromagnetism between the laboratory plasma of the device and the geomagnetosphere plasma is applied to resemble geospace processes in the Dipole Research Experiment plasma. Multiple plasma sources, different kinds of coils with specific functions, and advanced diagnostics are designed to be equipped in the facility for multi-functions. The motivation, design criteria for the Dipole Research Experiment experiments and the means applied to generate the plasma of desired parameters in the laboratory are also described. Supported by National Natural Science Foundation of China (Nos. 11505040, 11261140326 and 11405038), China Postdoctoral Science Foundation (Nos. 2016M591518, 2015M570283) and Project Supported by Natural Scientific Research Innovation Foundation in Harbin Institute of Technology (No. 2017008).

  7. The increasing number of women with postgraduate qualifications in physics in Ecuador

    NASA Astrophysics Data System (ADS)

    Guitarra, Silvana; Niebeskikwiat, Dario; Paredes, Cecilia; Ayala, Paola

    2013-03-01

    Although the social reality in Ecuador is similar to that in most Latin American countries, support for research in fundamental and applied sciences has gained in importance in the last few years. An Ecuadorian team participated for the first time in the IUPAP International Conference on Women in Physics in 2005, when no woman in the country had yet earned a postgraduate degree. By the 2011 ICWIP Conference, the number of women with PhD degrees had increased five times, whereas the trend for men remained the same. This paper gives an overview on how the Ecuadorian research community has started to work together on a national initiative to improve the human and infrastructure capacity to develop science and technology, with support from the government and the science-related ministries.

  8. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  9. Teaching energy using an integrated science approach

    NASA Astrophysics Data System (ADS)

    Poggi, Valeria; Miceli, Cristina; Testa, Italo

    2017-01-01

    Despite its relevance to all scientific domains, the debate surrounding the teaching of energy is still open. The main point remains the problems students have in understanding some aspects of the energy concept and in applying their knowledge to the comprehension of natural phenomena. In this paper, we present a research-based interdisciplinary approach to the teaching of energy in which the first and second laws of thermodynamics were used to interpret physical, chemical and biological processes. The contents of the three disciplines (physics, chemistry, biology) were reconstructed focusing on six basic aspects of energy (forms, transfer, transformation, conservation, degradation, and entropy) and using common teaching methodologies. The module was assessed with 39 secondary school students (aged 15-16) using a 30-question research instrument and a treatment/control group methodology. Analysis of students’ learning outcomes suggests a better understanding of the energy concept, supporting the effectiveness of an interdisciplinary approach in the teaching of energy in physics and science in general. Implications for the teaching of energy are briefly discussed.

  10. The LEAPS GK-12 Program

    NASA Astrophysics Data System (ADS)

    Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn

    2005-03-01

    The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.

  11. Progress and Prospect of Physics Research and Education in Taiwan

    NASA Astrophysics Data System (ADS)

    Raynien Kwo, J.

    2010-03-01

    Started about two decades ago, the global trend of shifting industrial manufacture power from western developed countries toward developing countries in Asia has in turn become the impetus in building up physical science and research in these areas. A very good example is the remarkable progress of physical research and education in Taiwan, in terms of quantity and quality. The continuous elevation of Taiwan's high education into graduate level plus the government's strong commitment to research and development on a level of 2.62 % GDP have led to an impressive physics program with an annual budget ˜32 million USD from National Science Council in supporting 568 PIs. The investigation scope encompasses high energy and astrophysics, nano and condensed matter, and semiconductor, optoelectronic physics, etc. The former is vigorously conducted via international collaborative efforts of LHC, KEK, ALMA, Pan-STARRS, etc. The latter is driven by vital Taiwan high tech industry mostly semiconductor IC and optoelectronics flourished during this period. The early trend of outflows of BS physics majors to western world for advanced studies has reversed dramatically. Nearly 80% of the BS students continue their MS and PhD degrees in Taiwan, attracted by lucrative job markets of high tech industry. In addition, healthy inflow of high-quality science manpower of well trained PhDs and senior scholars returning to homeland has strengthened the competitiveness. Overall, the physics community in Taiwan is thriving. The annual Physical Society meeting is expanding at a rate of 6%, reaching ˜1800 attendants and 1200 papers, and dedicated to promotions of female physicists and students. The publication quantity of Taiwan in top journals of PRs and PRL is ranked among top 20^th for all fields of physics, and ranked the 6^th in APL. Clearly Taiwan has now emerged as a strong power in applied science, not limited by its population size. Concerted efforts on scientific exchanges are being taken to connect to international societies. The bright outlook of physical science and its vital power in Taiwan is anticipated to provide a stimulus to benefit South East Asia, and have far-reaching impacts on China and worldwide.

  12. Teaching applied optics at the Univ. of Minho

    NASA Astrophysics Data System (ADS)

    Costa, Manuel F. M.

    1995-10-01

    In this communication we make a brief presentation of the branch of Applied Optics of the University of Mihno's undergraduate course of Applied Physics. The course of Applied Physics began in the year 1988/89. Previously we had just a course devoted to the formation of future physics and chemistry teachers at high school level. The Applied Physics course specialized in Optics appeared due to the growth of the physics department and due to request from the industry. The Applied Physics course has two specialization's on the field of applied optics: Optometry; and Optics and Lasers. The topics covered in the two first years of the course ar common to the two branches. On the second semester of the third year the students must choose between either one. The number of students on the Optometry branch was usually almost four times the number of Applied Optics and Lasers students. Nevertheless this tendency is rapidly changing. A short analysis of the result obtained will be presented focusing on last couple of years' advances. Presented will also be the results of an inquest made on students's opinions about the quality of the course, and their own performance and expectations.

  13. PREFACE: Statistical Physics of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Golestanian, R.; Khajehpour, M. R. H.; Kolahchi, M. R.; Rouhani, S.

    2005-04-01

    The field of complex fluids is a rapidly developing, highly interdisciplinary field that brings together people from a plethora of backgrounds such as mechanical engineering, chemical engineering, materials science, applied mathematics, physics, chemistry and biology. In this melting pot of science, the traditional boundaries of various scientific disciplines have been set aside. It is this very property of the field that has guaranteed its richness and prosperity since the final decade of the 20th century and into the 21st. The C3 Commission of the International Union of Pure and Applied Physics (IUPAP), which is the commission for statistical physics that organizes the international STATPHYS conferences, encourages various, more focused, satellite meetings to complement the main event. For the STATPHYS22 conference in Bangalore (July 2004), Iran was recognized by the STATPHYS22 organizers as suitable to host such a satellite meeting and the Institute for Advanced Studies in Basic Sciences (IASBS) was chosen to be the site of this meeting. It was decided to organize a meeting in the field of complex fluids, which is a fairly developed field in Iran. This international meeting, and an accompanying summer school, were intended to boost international connections for both the research groups working in Iran, and several other groups working in the Middle East, South Asia and North Africa. The meeting, entitled `Statistical Physics of Complex Fluids' was held at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran, from 27 June to 1 July 2004. The main topics discussed at the meeting included: biological statistical physics, wetting and microfluidics, transport in complex media, soft and granular matter, and rheology of complex fluids. At this meeting, 22 invited lectures by eminent scientists were attended by 107 participants from different countries. The poster session consisted of 45 presentations which, in addition to the main topics of the meeting, covered some of the various areas in statistical physics currently active in Iran. About half of the participants came from countries other than Iran, with a relatively broad geographic distribution. The meeting benefited greatly from the excellent administrative assistance of the conference secretary Ms Ashraf Moosavi and the IASBS staff. We are grateful to Professor Yousef Sobouti, the Director of IASBS, and Professor Reza Mansouri, the Head of the Physical Society of Iran, for their support. We also thank the organizers of STATPHYS22, Professor Rahul Pandit and his colleagues, for their suggestions and support. The conference was supported by donations from the Center for International Research and Collaboration (ISMO) and the Institute for Research and Planning in Higher Education (IRPHE) of the Iranian Ministry of Science, Research and Technology, the Islamic Development Bank, the Abdus Salam International Centre for Theoretical Physics (ICTP), the Tehran Cluster Office of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Research and Development Directorate of the National Iranian Oil Company, the Physical Society of Iran, the Iranian Meteorological Organization, and the Zanjan City Water and Waste Water Company. Finally, we would like to express our gratitude to Institute of Physics Publishing, and in particular to Professor Alexei Kornyshev and Dr Richard Palmer for suggesting publishing the proceedings of the meeting and carrying through the editorial processes with the utmost efficiency. Participants

  14. The Research on Linux Memory Forensics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Che, ShengBing

    2018-03-01

    Memory forensics is a branch of computer forensics. It does not depend on the operating system API, and analyzes operating system information from binary memory data. Based on the 64-bit Linux operating system, it analyzes system process and thread information from physical memory data. Using ELF file debugging information and propose a method for locating kernel structure member variable, it can be applied to different versions of the Linux operating system. The experimental results show that the method can successfully obtain the sytem process information from physical memory data, and can be compatible with multiple versions of the Linux kernel.

  15. Shift scheduling model considering workload and worker’s preference for security department

    NASA Astrophysics Data System (ADS)

    Herawati, A.; Yuniartha, D. R.; Purnama, I. L. I.; Dewi, LT

    2018-04-01

    Security department operates for 24 hours and applies shift scheduling to organize its workers as well as in hotel industry. This research has been conducted to develop shift scheduling model considering the workers physical workload using rating of perceived exertion (RPE) Borg’s Scale and workers’ preference to accommodate schedule flexibility. The mathematic model is developed in integer linear programming and results optimal solution for simple problem. Resulting shift schedule of the developed model has equally distribution shift allocation among workers to balance the physical workload and give flexibility for workers in working hours arrangement.

  16. Proceedings of the 1995 Particle Accelerator Conference and international Conference on High-Energy Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1996-01-01

    Papers from the sixteenth biennial Particle Accelerator Conference, an international forum on accelerator science and technology held May 1–5, 1995, in Dallas, Texas, organized by Los Alamos National Laboratory (LANL) and Stanford Linear Accelerator Center (SLAC), jointly sponsored by the Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Plasma Sciences Society (NPSS), the American Physical Society (APS) Division of Particles and Beams (DPB), and the International Union of Pure and Applied Physics (IUPAP), and conducted with support from the US Department of Energy, the National Science Foundation, and the Office of Naval Research.

  17. Physics and the car business

    NASA Astrophysics Data System (ADS)

    Compton, W. Dale; Reitz, John R.

    1981-01-01

    Physicists have made important contributions to many areas of Ford Motor Company activity, particularly in areas of basic and applied research and product development. A number have assumed positions with management responsibility. Many of the technical problems facing the automotive industry today require a fundamental understanding, and the ability of physicists to contribute to the solution of these problems is greater now than it has been in the past. The present paper discusses some of these problems, and also traces a few case histories of physicists at Ford Motor Company; these illustrate the wide diversity of career paths for persons entering industry with a physics background.

  18. Preferences for Explanation Generality Develop Early in Biology But Not Physics.

    PubMed

    Johnston, Angie M; Sheskin, Mark; Johnson, Samuel G B; Keil, Frank C

    2017-04-11

    One of the core functions of explanation is to support prediction and generalization. However, some explanations license a broader range of predictions than others. For instance, an explanation about biology could be presented as applying to a specific case (e.g., "this bear") or more generally across "all animals." The current study investigated how 5- to 7-year-olds (N = 36), 11- to 13-year-olds (N = 34), and adults (N = 79) evaluate explanations at varying levels of generality in biology and physics. Findings revealed that even the youngest children preferred general explanations in biology. However, only older children and adults preferred explanation generality in physics. Findings are discussed in light of differences in our intuitions about biological and physical principles. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  19. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    NASA Astrophysics Data System (ADS)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here on the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.

  20. Teaching And Training Tools For The Undergraduate: Experience With A Rebuilt AN-400 Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Andrew D.

    2011-06-01

    There is an increasingly recognized need for people trained in a broad range of applied nuclear science techniques, indicated by reports from the American Physical Society and elsewhere. Anecdotal evidence suggests that opportunities for hands-on training with small particle accelerators have diminished in the US, as development programs established in the 1960's and 1970's have been decommissioned over recent decades. Despite the reduced interest in the use of low energy accelerators in fundamental research, these machines can offer a powerful platform for bringing unique training opportunities to the undergraduate curriculum in nuclear physics, engineering and technology. We report here onmore » the new MSU Applied Nuclear Science Lab, centered around the rebuild of an AN400 electrostatic accelerator. This machine is run entirely by undergraduate students under faculty supervision, allowing a great deal of freedom in its use without restrictions from graduate or external project demands.« less

  1. Is there a relationship between primary school children's enjoyment of recess physical activities and health-related quality of life? A cross-sectional exploratory study.

    PubMed

    Hyndman, Brendon; Benson, Amanda C; Lester, Leanne; Telford, Amanda

    2017-03-01

    Issue addressed An important strategy for increasing children's physical activity is to enhance children's opportunities for school recess physical activities, yet little is known about the influence of school recess physical activities on children's health-related quality of life (HRQOL). The purpose of the present study was to explore the relationship between Australian primary school children's enjoyment of recess physical activities and HRQOL. Methods The study consisted of children at two Australian primary schools (n=105) aged 8-12 years. The Lunchtime Enjoyment Activity and Play questionnaire was used to measure school children's enjoyment of school recess physical activities. The Pediatric Quality of Life Inventory 4.0 was used to measure children's HRQOL. Researchers applied linear regression modelling in STATA (ver. 13.0) to investigate the relationship between children's enjoyment of school recess physical activities and HRQOL. Results It was discovered that primary school children's enjoyment of more vigorous-type school recess physical activities and playing in a range of weather conditions was associated with children's improved HRQOL. Conclusion The findings from this study suggest that health providers and researchers should consider providing primary school children with opportunities and facilities for more vigorous-intensity school recess physical activities as a key strategy to enhance children's HRQOL. So what? Considering a social-ecological model framework of the key predictors of children's enjoyment of school recess physical activities may provide valuable insight for school health providers into the multiple levels of influence on children's HRQOL when developing school settings and activities for school recess.

  2. Centrifuges in gravitational physiology research

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Davies, Phil; Fuller, Charles A.

    1993-01-01

    Data from space flight and ground based experiments have clearly demonstrated the importance of Earth gravity for normal physiological function in man and animals. Gravitational Physiology is concerned with the role and influence of gravity on physiological systems. Research in this field examines how we perceive and respond to gravity and the mechanisms underlying these responses. Inherent in our search for answers to these questions is the ability to alter gravity, which is not physically possible without leaving Earth. However, useful experimental paradigms have been to modify the perceived force of gravity by changing either the orientation of subjects to the gravity vector (i.e., postural changes) or by applying inertial forces to augment the magnitude of the gravity vector. The later technique has commonly been used by applying centripetal force via centrifugation.

  3. A new method for teaching physical examination to junior medical students.

    PubMed

    Sayma, Meelad; Williams, Hywel Rhys

    2016-01-01

    Teaching effective physical examination is a key component in the education of medical students. Preclinical medical students often have insufficient clinical knowledge to apply to physical examination recall, which may hinder their learning when taught through certain understanding-based models. This pilot project aimed to develop a method to teach physical examination to preclinical medical students using "core clinical cases", overcoming the need for "rote" learning. This project was developed utilizing three cycles of planning, action, and reflection. Thematic analysis of feedback was used to improve this model, and ensure it met student expectations. A model core clinical case developed in this project is described, with gout as the basis for a "foot and ankle" examination. Key limitations and difficulties encountered on implementation of this pilot are discussed for future users, including the difficulty encountered in "content overload". This approach aims to teach junior medical students physical examination through understanding, using a simulated patient environment. Robust research is now required to demonstrate efficacy and repeatability in the physical examination of other systems.

  4. The costs of physical inactivity in the Czech Republic in 2008.

    PubMed

    Maresova, Katerina

    2014-03-01

    Several scientific studies estimate the burden of physical inactivity in different countries, yet in the Czech Republic, this kind of research is still missing. This paper represents one of the first attempts to quantify the costs of physical inactivity in the Czech Republic for 2008. The analysis, based on scientific literature review, uses the comparative risk assessment methodology and applies it on data available in the Czech Republic. In 2008, the financial cost of physical inactivity to public health insurance companies was almost 700 million Kc, or 0.4%, of total healthcare costs. Furthermore, physical inactivity caused 2442, or 2.3%, of all deaths in 2008 and 18,065, or 1.2%, of all disability-adjusted life years in 2004. The costs of physical inactivity in the Czech Republic are considerable, yet slightly smaller than in other comparable studies. The obtained results could be used as an argument for policymakers when conceiving public or private health policy.

  5. Modulation theory, dispersive shock waves and Gerald Beresford Whitham

    NASA Astrophysics Data System (ADS)

    Minzoni, A. A.; Smyth, Noel F.

    2016-10-01

    Gerald Beresford (GB) Whitham, FRS, (13th December, 1927-26th January, 2014) was one of the leading applied mathematicians of the twentieth century whose work over forty years had a profound, formative impact on research on wave motion across a broad range of areas. Many of the ideas and techniques he developed have now become the standard tools used to analyse and understand wave motion, as the papers of this special issue of Physica D testify. Many of the techniques pioneered by GB Whitham have spread beyond wave propagation into other applied mathematics areas, such as reaction-diffusion, and even into theoretical physics and pure mathematics, in which Whitham modulation theory is an active area of research. GB Whitham's classic textbook Linear and Nonlinear Waves, published in 1974, is still the standard reference for the applied mathematics of wave motion. In honour of his scientific achievements, GB Whitham was elected a Fellow of the American Academy of Arts and Sciences in 1959 and a Fellow of the Royal Society in 1965. He was awarded the Norbert Wiener Prize for Applied Mathematics in 1980.

  6. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  7. Solar and Space Physics: A Science for a Technological Society

    NASA Technical Reports Server (NTRS)

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  8. Student Oriented Approaches in the Teaching of Thermodynamics at Universities--Developing an Effective Course Structure

    ERIC Educational Resources Information Center

    Partanen, Lauri

    2016-01-01

    The aim of this study was to apply current pedagogical research in order to develop an effective course and exercise structure for a physical chemistry thermodynamics course intended for second or third year university students of chemistry. A mixed-method approach was used to measure the impact the changes had on student learning. In its final…

  9. Physical Controls on Copepod Aggregations in the Gulf of Maine

    DTIC Science & Technology

    2013-06-01

    endangered North Atlantic right whales . Certain ocean processes may generate dense copepod aggrega- tions, while others may destroy them; this thesis...for tropical ocean - global atmosphere coupled- ocean atmosphere response experiment. Journal of Geophysical Research, 101, 3747–3764. Fong, D., W...Oceanography/ Applied Ocean Science and Engineering Massachusetts Institute of Technology Woods Hole Oceanographic Institution MIT/WHOI 2013-18

  10. Lightening the Load

    DTIC Science & Technology

    2007-09-09

    Research, Engineering and Systems) Dr. John C. Sommerer NRAC, Vice Chair; Director, S&T, Johns Hopkins Applied Physics Laboratory Dr. Walt...O’Donohue, Staff Officer General Dynamics Robotic Systems John H. Northrop & Associates Mr. John H. Northrop, Executive Director General Dynamics...Equipment, US Army LtCol John Lemondes, PM Soldier as a System LTL Efforts US Army Mr. Bob Conklin, Staff UK LTL Efforts Equipment Capability

  11. Effect of Eight-Week Exercise Program on Social Physique Anxiety Conditions in Adult Males

    ERIC Educational Resources Information Center

    Akyüz, Öznur

    2017-01-01

    Physiological changes occurring with physical activity have played role in appearance of a different field of study. Thus, examination of the effect of eight-week exercise program on SPA in adult males forms the purpose of the study. 20 sedentary males aged 18-25 voluntarily participated in the research. Volunteers were applied resistance exercise…

  12. Active Plasmonics, Option 3 Report

    DTIC Science & Technology

    2010-03-31

    Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding...Research Arlington, VA 22203 11. SPONSOR/MONITOR’S REPORT Dr. Gernot S. Pomrenke AFOSR/NE (703) 696-8426 NUMBER(S) Gernot.Pomrenke... Moroz , A, et al., JOURNAL OF APPLIED PHYSICS 103 Article Number: 123105 (2008). 4. Title: Loss mechanisms of surface plasmon polaritons on gold

  13. Changing times at the Rocky Mountain Forest & Range Experiment Station: Station history from 1976 to 1997

    Treesearch

    R. H. Hamre

    2005-01-01

    Changing Times includes a review of early Station history, touches on changing societal perspectives and how things are now done differently, how the Station has changed physically and organizationally, technology transfer, a sampling of major characters, how some Station research has been applied, and a timeline of significant and/or interesting events. It includes...

  14. The Theory of Planned Behaviour: Predicting Pre-Service Teachers' Teaching Behaviour towards a Constructivist Approach

    ERIC Educational Resources Information Center

    Wang, Carrie Lijuan; Ha, Amy S.

    2013-01-01

    The two-pronged purpose of this study is to examine factors determining the teaching behaviour of pre-service physical education (PE) teachers towards a constructivist approach, likewise referred to as teaching games for understanding (TGfU). Theory of planned behaviour (TPB) was applied to guide the formulation of research purpose and design. Six…

  15. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  16. Incorporation of physical constraints in optimal surface search for renal cortex segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2012-02-01

    In this paper, we propose a novel approach for multiple surfaces segmentation based on the incorporation of physical constraints in optimal surface searching. We apply our new approach to solve the renal cortex segmentation problem, an important but not sufficiently researched issue. In this study, in order to better restrain the intensity proximity of the renal cortex and renal column, we extend the optimal surface search approach to allow for varying sampling distance and physical separation constraints, instead of the traditional fixed sampling distance and numerical separation constraints. The sampling distance of each vertex-column is computed according to the sparsity of the local triangular mesh. Then the physical constraint learned from a priori renal cortex thickness is applied to the inter-surface arcs as the separation constraints. Appropriate varying sampling distance and separation constraints were learnt from 6 clinical CT images. After training, the proposed approach was tested on a test set of 10 images. The manual segmentation of renal cortex was used as the reference standard. Quantitative analysis of the segmented renal cortex indicates that overall segmentation accuracy was increased after introducing the varying sampling distance and physical separation constraints (the average true positive volume fraction (TPVF) and false positive volume fraction (FPVF) were 83.96% and 2.80%, respectively, by using varying sampling distance and physical separation constraints compared to 74.10% and 0.18%, respectively, by using fixed sampling distance and numerical separation constraints). The experimental results demonstrated the effectiveness of the proposed approach.

  17. 76 FR 9832 - In the Matter of Superior Well Services, Ltd. Indiana, PA; Confirmatory Order Modifying License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... of this event to its radiological training contractors, Applied Health Physics (AHP), for inclusion... North American Transportation Management Institute publication, and the Applied Health Physics (AHP... Institute publication, and the Applied Health Physics newsletter; and c. Provide the details of this event...

  18. Science teaching scholarship

    NASA Astrophysics Data System (ADS)

    1999-09-01

    Physics research projects undertaken by secondary or high school students are once again being sought for consideration in the annual international competition entitled `First step to the Nobel Prize in physics'. This, the eighth in the series, is being organized by the Institute of Physics of the Polish Academy of Sciences for the academic year 1999/2000, and as in previous years the competition is open to all secondary (high) school students regardless of country, type of school, sex, nationality etc. The only conditions are that the school must not be a university college and the participant's age should not exceed 20 years on 31 March 2000 (the deadline for competition entries). There are no restrictions on the subject matter of papers, their level, methods applied etc but they must have a research character and deal with physics topics or topics directly related to physics. Participation in the competition does not need any agreement from the candidate's school or educational authorities: the students must conduct their research in the most appropriate way for them. More than one paper can be submitted by a participant but each paper must have only one author; papers must not exceed 25 typed pages in length. The winners do not receive financial prizes or gifts but instead are invited to undertake a month's research work at the Polish Institute of Physics, with their expenses (except travel) paid for by the competition organizers. Entries should be sent by the competition deadline to Mrs M E Gorzkowska, Secretary of the First Step, Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL 02-668 Warszawa, Poland. All those who receive an award will have their papers published in the competition proceedings. Information on the competition can be found in the pub/competitions subdirectory of the anonymous section of the server ftp.ifpan.edu.pl (see also nobelprizes.com/firstep/).

  19. My Summer with Science Policy

    NASA Astrophysics Data System (ADS)

    Murray, Marissa

    This past summer I interned at the American Institute of Physics and helped research and write articles for the FYI Science Policy Bulletin. FYI is an objective digest of science policy developments in Washington, D.C. that impact the greater physical sciences community. Over the course of the summer, I independently attended, analyzed, and reported on a variety of science, technology, and funding related events including congressional hearings, government agency advisory committee meetings, and scientific society events. I wrote and co-wrote three articles on basic energy research legislation, the National Institute of Standards and Technology improvement act, and the National Science Foundation's big ideas for future investment. I had the opportunity to examine some challenging questions such as what is the role of government in funding applied research? How should science priorities be set? What is the right balance of funding across different agencies and programs? I learned about how science policy is a two-way street: science is used to inform policy decisions and policy is made to fund and regulate the conduct of science. I will conclude with how my summer working with FYI showed me the importance of science advocacy, being informed, and voting. Society of Physics Students.

  20. Research and career opportunities in the geophysical sciences for physics students

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew

    2008-10-01

    The field of geophysics involves using most branches of physics to investigate the physical structure and process that characterize the solid and fluid parts of our planet. Major advances in geophysics have come about from physicists crossing disciplinary boundaries and using their skills and knowledge to address first-order problems about the nature and structure of our planet and how the planet has changed over time. Indeed, some of the largest scientific breakthroughs in geophysics have come from physicists. As a way to introduce students to the field of geophysics and to provide them with information about research and career opportunities in geophysics, this talk will focus on one area of geophysics, seismology. This is an area of geophysics that has not only been instrumental in advancing our understanding of solid Earth structure and processes, but one that also has an applied side used for oil, gas and mineral exploration, as well as for environmental work. Examples of research projects involving seismic wave propagation and tomographic imaging will be presented, along the short descriptions of career opportunities in industry, government and academic institutions. In collaboration with Solomon Bililign, North Carolina A&T State University.

  1. Cohort Profile: The Applied Research Group for Kids (TARGet Kids!).

    PubMed

    Carsley, Sarah; Borkhoff, Cornelia M; Maguire, Jonathon L; Birken, Catherine S; Khovratovich, Marina; McCrindle, Brian; Macarthur, Colin; Parkin, Patricia C

    2015-06-01

    The Applied Research Group for Kids (TARGet Kids!) is an ongoing open longitudinal cohort study enrolling healthy children (from birth to 5 years of age) and following them into adolescence. The aim of the TARGet Kids! cohort is to link early life exposures to health problems including obesity, micronutrient deficiencies and developmental problems. The overarching goal is to improve the health of Canadians by optimizing growth and developmental trajectories through preventive interventions in early childhood. TARGet Kids!, the only child health research network embedded in primary care practices in Canada, leverages the unique relationship between children and families and their trusted primary care practitioners, with whom they have at least seven health supervision visits in the first 5 years of life. Children are enrolled during regularly scheduled well-child visits. To date, we have enrolled 5062 children. In addition to demographic information, we collect physical measurements (e.g. height, weight), lifestyle factors (nutrition, screen time and physical activity), child behaviour and developmental screening and a blood sample (providing measures of cardiometabolic, iron and vitamin D status, and trace metals). All data are collected at each well-child visit: twice a year until age 2 and every year until age 10. Information can be found at: http://www.targetkids.ca/contact-us/. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.

  2. Identifying research priorities for patient safety in mental health: an international expert Delphi study

    PubMed Central

    Murray, Kevin; Thibaut, Bethan; Ramtale, Sonny Christian; Adam, Sheila; Darzi, Ara; Archer, Stephanie

    2018-01-01

    Objective Physical healthcare has dominated the patient safety field; research in mental healthcare is not as extensive but findings from physical healthcare cannot be applied to mental healthcare because it delivers specialised care that faces unique challenges. Therefore, a clearer focus and recognition of patient safety in mental health as a distinct research area is still needed. The study aim is to identify future research priorities in the field of patient safety in mental health. Design Semistructured interviews were conducted with the experts to ascertain their views on research priorities in patient safety in mental health. A three-round online Delphi study was used to ascertain consensus on 117 research priority statements. Setting and participants Academic and service user experts from the USA, UK, Switzerland, Netherlands, Ireland, Denmark, Finland, Germany, Sweden, Australia, New Zealand and Singapore were included. Main outcome measures Agreement in research priorities on a five-point scale. Results Seventy-nine statements achieved consensus (>70%). Three out of the top six research priorities were patient driven; experts agreed that understanding the patient perspective on safety planning, on self-harm and on medication was important. Conclusions This is the first international Delphi study to identify research priorities in safety in the mental field as determined by expert academic and service user perspectives. A reasonable consensus was obtained from international perspectives on future research priorities in patient safety in mental health; however, the patient perspective on their mental healthcare is a priority. The research agenda for patient safety in mental health identified here should be informed by patient safety science more broadly and used to further establish this area as a priority in its own right. The safety of mental health patients must have parity with that of physical health patients to achieve this. PMID:29502096

  3. Application of dGNSS in Alpine Ski Racing: Basis for Evaluating Physical Demands and Safety

    PubMed Central

    Gilgien, Matthias; Kröll, Josef; Spörri, Jörg; Crivelli, Philip; Müller, Erich

    2018-01-01

    External forces, such as ground reaction force or air drag acting on athletes' bodies in sports, determine the sport-specific demands on athletes' physical fitness. In order to establish appropriate physical conditioning regimes, which adequately prepare athletes for the loads and physical demands occurring in their sports and help reduce the risk of injury, sport-and/or discipline-specific knowledge of the external forces is needed. However, due to methodological shortcomings in biomechanical research, data comprehensively describing the external forces that occur in alpine super-G (SG) and downhill (DH) are so far lacking. Therefore, this study applied new and accurate wearable sensor-based technology to determine the external forces acting on skiers during World Cup (WC) alpine skiing competitions in the disciplines of SG and DH and to compare these with those occurring in giant slalom (GS), for which previous research knowledge exists. External forces were determined using WC forerunners carrying a differential global navigation satellite system (dGNSS). Combining the dGNSS data with a digital terrain model of the snow surface and an air drag model, the magnitudes of ground reaction forces were computed. It was found that the applied methodology may not only be used to track physical demands and loads on athletes, but also to simultaneously investigate safety aspects, such as the effectiveness of speed control through increased air drag and ski–snow friction forces in the respective disciplines. Therefore, the component of the ground reaction force in the direction of travel (ski–snow friction) and air drag force were computed. This study showed that (1) the validity of high-end dGNSS systems allows meaningful investigations such as characterization of physical demands and effectiveness of safety measures in highly dynamic sports; (2) physical demands were substantially different between GS, SG, and DH; and (3) safety-related reduction of skiing speed might be most effectively achieved by increasing the ski–snow friction force in GS and SG. For DH an increase in the ski–snow friction force might be equally as effective as an increase in air drag force. PMID:29559918

  4. A comparison of two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund

    NASA Astrophysics Data System (ADS)

    Luks, B.; Osuch, M.; Romanowicz, R. J.

    2012-04-01

    We compare two approaches to modelling snow cover dynamics at the Polish Polar Station at Hornsund. In the first approach we apply physically-based Utah Energy Balance Snow Accumulation and Melt Model (UEB) (Tarboton et al., 1995; Tarboton and Luce, 1996). The model uses a lumped representation of the snowpack with two primary state variables: snow water equivalence and energy. Its main driving inputs are: air temperature, precipitation, wind speed, humidity and radiation (estimated from the diurnal temperature range). Those variables are used for physically-based calculations of radiative, sensible, latent and advective heat exchanges with a 3 hours time step. The second method is an application of a statistically efficient lumped parameter time series approach to modelling the dynamics of snow cover , based on daily meteorological measurements from the same area. A dynamic Stochastic Transfer Function model is developed that follows the Data Based Mechanistic approach, where a stochastic data-based identification of model structure and an estimation of its parameters are followed by a physical interpretation. We focus on the analysis of uncertainty of both model outputs. In the time series approach, the applied techniques also provide estimates of the modeling errors and the uncertainty of the model parameters. In the first, physically-based approach the applied UEB model is deterministic. It assumes that the observations are without errors and that the model structure perfectly describes the processes within the snowpack. To take into account the model and observation errors, we applied a version of the Generalized Likelihood Uncertainty Estimation technique (GLUE). This technique also provide estimates of the modelling errors and the uncertainty of the model parameters. The observed snowpack water equivalent values are compared with those simulated with 95% confidence bounds. This work was supported by National Science Centre of Poland (grant no. 7879/B/P01/2011/40). Tarboton, D. G., T. G. Chowdhury and T. H. Jackson, 1995. A Spatially Distributed Energy Balance Snowmelt Model. In K. A. Tonnessen, M. W. Williams and M. Tranter (Ed.), Proceedings of a Boulder Symposium, July 3-14, IAHS Publ. no. 228, pp. 141-155. Tarboton, D. G. and C. H. Luce, 1996. Utah Energy Balance Snow Accumulation and Melt Model (UEB). Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station (http://www.engineering.usu.edu/dtarb/). 64 pp.

  5. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    NASA Astrophysics Data System (ADS)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-09-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative-quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM-learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  6. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Symmetry breaking in SNS junctions: edge transport and field asymmetries

    NASA Astrophysics Data System (ADS)

    Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles

    We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.

  8. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    NASA Astrophysics Data System (ADS)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic <0.44> is higher than students who received lesson with ILD without science magic <0.25>. Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  9. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    NASA Astrophysics Data System (ADS)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of materials, and present initial assessment data evaluating both content learning and student attitudes.

  10. The effects of inquiry based ecopedagogy model on pre-service physics teachers' motivation and achievement in environmental physics instruction

    NASA Astrophysics Data System (ADS)

    Napitupulu, Nur Dewi; Munandar, Achmad

    2017-05-01

    —Motivation plays a crucial role in learning. Motivation energizes the behavior of the individual. It also directs the behavior towards specific goals. It helps students acquire knowledge, increase initiation, persist in activities, improve achievement, and develop a sense of discipline. The purpose of this study was to investigate the effects on the achievement and motivation of pre-service teacher of the Inquiry based ecopedagogy (In-EcoP) learning process applied to environmental physics instruction. The motivation adapted to Keller's four dimensions, namely attention, relevance, confidence and satisfaction. The study involved 66 students which are divided into two classes of an environmental physics instruction. The first class used the traditional lecture format while the In-EcoP model was used in the second. The research data were obtained through the environmental physics concept test and motivation questionnaire. The data analysis was conducted using a quantitative study approach and involved a motivational survey and an academic achievement test. It was found that the experimental group students were achieve more than the students in the control group. An increase in motivation and academic achievement of the students in the experimental group was identified as well. This research demonstrates the effectiveness of the In-EcoP model for enhancing pre-service teacher motivation and academic achievement in environmental physics instruction.

  11. Evidence-based practice: a quality indicator analysis of peer-tutoring in adapted physical education.

    PubMed

    Kalef, Laura; Reid, Greg; Macdonald, Cathy

    2013-09-01

    The purpose of the research was to conduct a quality indicator analysis of studies investigating peer-tutoring for students with a disability in adapted physical education. An electronic search was conducted among English journals published from 1960 to November 2012. Databases included ERIC, PsycINFO, and SPORTDiscus. Fifteen research studies employing group-experimental (Gersten et al., 2005) or single-subject designs (Horner et al., 2005) met inclusion criteria. Each study was assessed for the presence and clarity of quality indicators. Group designs met an average of 62.5% essential and 69% desirable indicators. An average of 80% of indicators was present for single-subject designs. Results suggest claims of peer-tutoring being an evidence-based practice are premature. Recommendations for clarifying and applying the quality indicators are offered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    NASA Astrophysics Data System (ADS)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  13. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiationmore » biophysics.« less

  14. Applied Physics Lab Kennedy Space Center: Recent Contributions

    NASA Technical Reports Server (NTRS)

    Starr, Stan; Youngquist, Robert

    2006-01-01

    The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.

  15. Field studies courses open

    NASA Astrophysics Data System (ADS)

    Fourteen month-long courses combining applied academics with training in field research methodology are being offered this summer by the School for Field Studies. The courses, held in eight countries during May, June, July, and August, provide unique opportunities for participants to work as a team under primitive conditions.‘Our courses bind together the academic challenge of the research problem, the physical challenge of the site itself, and the interpersonal challenge of the expedition team in a dynamic way so that both cognitive and affective learning are accelerated,’ according to Jim Elder, the school's director.

  16. Video analysis for insight and coding: Examples from tutorials in introductory physics

    NASA Astrophysics Data System (ADS)

    Scherr, Rachel E.

    2009-12-01

    The increasing ease of video recording offers new opportunities to create richly detailed records of classroom activities. These recordings, in turn, call for research methodologies that balance generalizability with interpretive validity. This paper shares methodology for two practices of video analysis: (1) gaining insight into specific brief classroom episodes and (2) developing and applying a systematic observational protocol for a relatively large corpus of video data. These two aspects of analytic practice are illustrated in the context of a particular research interest but are intended to serve as general suggestions.

  17. Analyzing Sensor-Based Time Series Data to Track Changes in Physical Activity during Inpatient Rehabilitation.

    PubMed

    Sprint, Gina; Cook, Diane; Weeks, Douglas; Dahmen, Jordana; La Fleur, Alyssa

    2017-09-27

    Time series data collected from sensors can be analyzed to monitor changes in physical activity as an individual makes a substantial lifestyle change, such as recovering from an injury or illness. In an inpatient rehabilitation setting, approaches to detect and explain changes in longitudinal physical activity data collected from wearable sensors can provide value as a monitoring, research, and motivating tool. We adapt and expand our Physical Activity Change Detection (PACD) approach to analyze changes in patient activity in such a setting. We use Fitbit Charge Heart Rate devices with two separate populations to continuously record data to evaluate PACD, nine participants in a hospitalized inpatient rehabilitation group and eight in a healthy control group. We apply PACD to minute-by-minute Fitbit data to quantify changes within and between the groups. The inpatient rehabilitation group exhibited greater variability in change throughout inpatient rehabilitation for both step count and heart rate, with the greatest change occurring at the end of the inpatient hospital stay, which exceeded day-to-day changes of the control group. Our additions to PACD support effective change analysis of wearable sensor data collected in an inpatient rehabilitation setting and provide insight to patients, clinicians, and researchers.

  18. It's NOT rocket science: rethinking our metaphors for research in health professions education.

    PubMed

    Regehr, Glenn

    2010-01-01

    The health professional education community is struggling with a number of issues regarding the place and value of research in the field, including: the role of theory-building versus applied research; the relative value of generalisable versus contextually rich, localised solutions, and the relative value of local versus multi-institutional research. In part, these debates are limited by the fact that the health professional education community has become deeply entrenched in the notion of the physical sciences as presenting a model for 'ideal' research. The resulting emphasis on an 'imperative of proof' in our dominant research approaches has translated poorly to the domain of education, with a resulting denigration of the domain as 'soft' and 'unscientific' and a devaluing of knowledge acquired to date. Similarly, our adoption of the physical sciences''imperative of generalisable simplicity' has created difficulties for our ability to represent well the complexity of the social interactions that shape education and learning at a local level. Using references to the scientific paradigms associated with the physical sciences, this paper will reconsider the place of our current goals for education research in the production and evolution of knowledge within our community, and will explore the implications for enhancing the value of research in health professional education. Reorienting education research from its alignment with the imperative of proof to one with an imperative of understanding, and from the imperative of simplicity to an imperative of representing complexity well may enable a shift in research focus away from a problematic search for proofs of simple generalisable solutions to our collective problems, towards the generation of rich understandings of the complex environments in which our collective problems are uniquely embedded.

  19. Bioinformatics by Example: From Sequence to Target

    NASA Astrophysics Data System (ADS)

    Kossida, Sophia; Tahri, Nadia; Daizadeh, Iraj

    2002-12-01

    With the completion of the human genome, and the imminent completion of other large-scale sequencing and structure-determination projects, computer-assisted bioscience is aimed to become the new paradigm for conducting basic and applied research. The presence of these additional bioinformatics tools stirs great anxiety for experimental researchers (as well as for pedagogues), since they are now faced with a wider and deeper knowledge of differing disciplines (biology, chemistry, physics, mathematics, and computer science). This review targets those individuals who are interested in using computational methods in their teaching or research. By analyzing a real-life, pharmaceutical, multicomponent, target-based example the reader will experience this fascinating new discipline.

  20. Artificial multilayers and nanomagnetic materials.

    PubMed

    Shinjo, Teruya

    2013-01-01

    The author has been actively engaged in research on nanomagnetic materials for about 50 years. Nanomagnetic materials are comprised of ferromagnetic systems for which the size and shape are controlled on a nanometer scale. Typical examples are ultrafine particles, ultrathin films, multilayered films and nano-patterned films. In this article, the following four areas of the author's studies are described.(1) Mössbauer spectroscopic studies of nanomagnetic materials and interface magnetism.(2) Preparation and characterization of metallic multilayers with artificial superstructures.(3) Giant magnetoresistance (GMR) effect in magnetic multilayers.(4) Novel properties of nanostructured ferromagnetic thin films (dots and wires).A subject of particular interest in the author's research was the artificially prepared multilayers consisting of metallic elements. The motivation to initiate the multilayer investigation is described and the physical properties observed in the artificial multilayers are introduced. The author's research was initially in the field of pure physical science and gradually extended into applied science. His achievements are highly regarded not only from the fundamental point of view but also from the technological viewpoint.

  1. What telomeres say about activity and health: A rapid review: Ce que les télomères révèlent au sujet de l'activité et de la santé : revue rapide.

    PubMed

    To-Miles, Flora Y L; Backman, Catherine L

    2016-04-06

    Empirical studies on occupation as a determinant of health could be advanced with research incorporating biological measures of health. Telomere length and telomerase function are promising biomarkers of the interaction of genetics, lifestyle, and behaviour; however, they have not been used in occupational therapy research. This paper reviews current evidence on the role of physical and mindfulness activities in sustaining telomeres. The findings are applied to the study of occupation, health, and aging. A rapid review was conducted with an evidence synthesis of 23 studies published from 2008 to 2014. Mindfulness activities may preserve telomeres, slow cell senescence and death, and sustain health through mediating life stressors. Inconsistencies exist for the effect of physical activities on telomeres. Similar research examining a range of occupations may help to identify the health-promoting benefits of occupation and inform lifestyle interventions. © CAOT 2016.

  2. The N400 and the P300 are not all that independent.

    PubMed

    Arbel, Yael; Spencer, Kevin M; Donchin, Emanuel

    2011-06-01

    This study assessed whether two ERP components that are elicited by unexpected events interact. The conditions that are known to elicit the N400 and the P300 ERP components were applied separately and in combination to terminal-words in sentences. Each sentence ended with a terminal-word that was highly expected, semantically unexpected, physically deviant, or both semantically unexpected and physically deviant. In addition, we varied the level of semantic relatedness between the unexpected terminal-words and the expected exemplars. Physically deviant words elicited a P300, whereas semantically unexpected words elicited an N400, whose amplitude was sensitive to the level of semantic relatedness. Words that were both semantically unexpected and physically deviant elicited both an N400 with enhanced amplitude, and a P300 with reduced amplitude. These results suggest an interaction between the processes manifested by the two components. Copyright © 2010 Society for Psychophysiological Research.

  3. Coordination and Data Management of the International Arctic Buoy Programme (IABP)

    DTIC Science & Technology

    1998-01-01

    estimate the mean surface wind, which can drive sea ice models , and for input into climate change studies. Recent research using the IABP databases includes...Coordination and Data Management of the International Arctic Buoy Programme ( IABP ) Ignatius G. Rigor Polar Science Center, Applied Physics Laboratory...the National Center for Environmental Projection underlayed. APPROACH Coordination of the IABP involves distribution of information, resource

  4. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  5. Measuring Recovery in Elite Rugby Players: The Brief Assessment of Mood, Endocrine Changes, and Power

    ERIC Educational Resources Information Center

    Shearer, David A.; Kilduff, Liam P.; Finn, Charlotte; Jones, Rhys M.; Bracken, Richard M.; Mellalieu, Stephen D.; Owen, Nic; Crewther, Blair T.; Cook, Christian J.

    2015-01-01

    Purpose: There is demand in applied sport settings to measure recovery briefly and accurately. Research indicates mood disturbance as the strongest psychological predictor of mental and physical recovery. The Brief Assessment of Mood (BAM) is a shortened version of the Profile of Mood States that can be completed in less than 30 s. The purpose of…

  6. 10 CFR Appendix A to Part 1040 - Federal Financial Assistance of the Department of Energy to Which This Part Applies

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Act, 42 U.S.C. 7101; Public Law 95-91. 12. Nuclear industry seminars. Atomic Energy Act of 1954, as... Non-Nuclear Energy Research and Development Act of 1974; Public Law 93-577; 68 Stat. 1894; 42 U.S.C... energy sciences, high energy and nuclear physics, and advanced technology and assessment projects. Atomic...

  7. 10 CFR Appendix A to Part 1040 - Federal Financial Assistance of the Department of Energy to Which This Part Applies

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Act, 42 U.S.C. 7101; Public Law 95-91. 12. Nuclear industry seminars. Atomic Energy Act of 1954, as... Non-Nuclear Energy Research and Development Act of 1974; Public Law 93-577; 68 Stat. 1894; 42 U.S.C... energy sciences, high energy and nuclear physics, and advanced technology and assessment projects. Atomic...

  8. 10 CFR Appendix A to Part 1040 - Federal Financial Assistance of the Department of Energy to Which This Part Applies

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Act, 42 U.S.C. 7101; Public Law 95-91. 12. Nuclear industry seminars. Atomic Energy Act of 1954, as... Non-Nuclear Energy Research and Development Act of 1974; Public Law 93-577; 68 Stat. 1894; 42 U.S.C... energy sciences, high energy and nuclear physics, and advanced technology and assessment projects. Atomic...

  9. Electrokinetic Transduction of Acoustic Waves In Ocean Sediments

    DTIC Science & Technology

    2002-09-30

    acoustic —motion in ocean sediments. The Biot theory of poroelastic media captures much of the sediment physics left out by other models [2]. It fits...in subsurface acoustical imaging, Mine Counter- Measures, and Anti-Submarine Warfare. To obtain essential experimental data to support the modeling ...Electrokinetic Transduction of Acoustic Waves In Ocean Sediments Gareth I. Block Applied Research Laboratories, U.T. Austin P.O. Box 8029

  10. 10 CFR Appendix A to Part 1040 - Federal Financial Assistance of the Department of Energy to Which This Part Applies

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Act, 42 U.S.C. 7101; Public Law 95-91. 12. Nuclear industry seminars. Atomic Energy Act of 1954, as... Non-Nuclear Energy Research and Development Act of 1974; Public Law 93-577; 68 Stat. 1894; 42 U.S.C... energy sciences, high energy and nuclear physics, and advanced technology and assessment projects. Atomic...

  11. Creativity and Introductory Physics

    NASA Astrophysics Data System (ADS)

    Guilaran, Ildefonso (Fonsie) J.

    2012-01-01

    When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal creativity assignment in my physics education did not come until well into my graduate years when my graduate advisor demanded that I write a prospectus for my dissertation. I have often lamented the fact that the first formal assignment in which I was required to be creative, take responsibility for my own learning and research objectives, and see them to completion during my physics education came so late, considering the degree to which creative attributes are celebrated in the personalities of great physicists. In this essay I will apply some of the basic concepts as defined by creativity-related psychology literature to physics pedagogy, relate these concepts to the exchanges in this journal concerning Michael Sobel's paper "Physics for the Non-Scientist: A Middle Way," and provide the framework for a low-overhead creativity assignment that can easily be implemented at all levels of physics education.

  12. Some Lessons Learned From 15 Years of Engaging Undergraduates in Space Physics Research

    NASA Astrophysics Data System (ADS)

    Lopez, R. E.; Bruntz, R. J.

    2016-12-01

    Over the past 15 years, the Lopez research group has provided about 10 undergraduates each year with opportunities to enagage in space physics research. In this presentation I will discuss and describe three critical factors to the success of the group. First of these is the use of near-peer mentoring structure that entends from undergradutes who have just joined the group up through postdocs and the lead professor. Second is the empahasis we place on science communication, which includes professional development of presentation skills and attending regional or national scientific meetings. Third is the careful selection of research projects that can be carried out successfully by undergraduates with the proper support and scaffolding. While other elements do contribute to the success of the group (such as the use of a group-wide wiki as a resource center and lab notebook), these three elements are at the core of what we do, and all senior group members (Ph.D. graduates and Postdocs) gain an understanding of these elements that they have been able to apply in their own settings once they move on.

  13. A Researcher's Guide to Mass Spectrometry-Based Proteomics

    PubMed Central

    Savaryn, John P.; Toby, Timothy K.; Kelleher, Neil L.

    2016-01-01

    Mass spectrometry (MS) is widely recognized as a powerful analytical tool for molecular research. MS is used by researchers around the globe to identify, quantify, and characterize biomolecules like proteins from any number of biological conditions or sample types. As instrumentation has advanced, and with the coupling of liquid chromatography (LC) for high-throughput LC-MS/MS, a proteomics experiment measuring hundreds to thousands of proteins/protein groups is now commonplace. While expert practitioners who best understand the operation of LC-MS systems tend to have strong backgrounds in physics and engineering, consumers of proteomics data and technology are not exposed to the physio-chemical principles underlying the information they seek. Since articles and reviews tend not to focus on bridging this divide, our goal here is to span this gap and translate MS ion physics into language intuitive to the general reader active in basic or applied biomedical research. Here, we visually describe what happens to ions as they enter and move around inside a mass spectrometer. We describe basic MS principles, including electric current, ion optics, ion traps, quadrupole mass filters, and Orbitrap FT-analyzers. PMID:27553853

  14. Physically-based Assessment of Tropical Cyclone Damage and Economic Losses

    NASA Astrophysics Data System (ADS)

    Lin, N.

    2012-12-01

    Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through parameterization, and make connections to the global loss data and economic analysis.

  15. 13 CFR 123.201 - When am I not eligible to apply for a physical disaster business loan?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for a physical disaster business loan? 123.201 Section 123.201 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Physical Disaster Business Loans § 123.201 When am I not eligible to apply for a physical disaster business loan? (a) You are not eligible for a physical disaster...

  16. 13 CFR 123.201 - When am I not eligible to apply for a physical disaster business loan?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for a physical disaster business loan? 123.201 Section 123.201 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Physical Disaster Business Loans § 123.201 When am I not eligible to apply for a physical disaster business loan? (a) You are not eligible for a physical disaster...

  17. 13 CFR 123.201 - When am I not eligible to apply for a physical disaster business loan?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for a physical disaster business loan? 123.201 Section 123.201 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION DISASTER LOAN PROGRAM Physical Disaster Business Loans § 123.201 When am I not eligible to apply for a physical disaster business loan? (a) You are not eligible for a physical disaster...

  18. Applying Authentic Data Analysis in Learning Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.

    2017-09-01

    The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.

  19. Methodological proceedings to evaluate the physical accessibility in urban historic sites.

    PubMed

    Ribeiro, Gabriela Sousa; Martins, Laura Bezerra; Monteiro, Circe Maria Gama

    2012-01-01

    Historic urban sites are set by cultural and social diversities, generating multiple activities and use and access to these sites should be available to all people including those with disabilities. Taking into consideration that using the same methodology that was used in different historic sites researches with positive results facilitates replication, we aimed to develop methodological procedures that identify conditions of physical accessibility in open public spaces and access to public buildings in historic urban sites to support proposals about design requirements for improvements to the problems diagnosed and control inadequacies of the physical environment. The study methods and techniques from different areas of knowledge culminated in a proposal built with an emphasis on user participation that could be applied with low cost and in relatively short period of time.

  20. The influence of the application of personal response systems on the effects of teaching and learning physics at the high school level

    NASA Astrophysics Data System (ADS)

    Binek, Sławomir; Kimla, Damian; Jarosz, Jerzy

    2017-01-01

    We report on the effectiveness of using interactive personal response systems in teaching physics in secondary schools. Our research were conducted over the period of 2013-2016 using the system called clickers. The idea is based on a reciprocal interaction allowing one to ask questions and receive immediate responses from all the students simultaneously. Our investigation has confirmed this method to be highly effective and powerful. In particular, students’ ability to acquire knowledge increased with the time spent using clickers. We have successfully applied the system also to entire physics courses. As a result, a positive feedback from students has been observed: not only did they learn more but also the teachers were able to improve their own methods.

  1. Study of Vacuum Energy Physics for Breakthrough Propulsion

    NASA Technical Reports Server (NTRS)

    Millis, Marc G. (Technical Monitor); Maclay, G. Jordan; Hammer, Jay; Clark, Rod; George, Michael; Kim, Yeong; Kir, Asit

    2004-01-01

    This report summarizes the accomplishments during a three year research project to investigate the use of surfaces, particularly in microelectromechanical systems (MEMS), to exploit quantum vacuum forces. During this project, we developed AFM instrumentation to repeatably measure Casimir forces in the nanoNewton range at 10 6 torr, designed an experiment to measure attractive and repulsive quantum vacuum forces, developed a QED based theory of Casimir forces that includes non-ideal material properties for rectangular cavities and for multilayer slabs, developed theoretical models for a variety of microdevices utilizing vacuum forces, applied vacuum physics to a gedanken spacecraft, and investigated a new material with a negative index of refraction.

  2. Low-cost educational robotics applied to physics teaching in Brazil

    NASA Astrophysics Data System (ADS)

    Souza, Marcos A. M.; Duarte, José R. R.

    2015-07-01

    In this paper, we propose some of the strategies and methodologies for teaching high-school physics topics through an educational robotics show. This exhibition was part of a set of actions promoted by a Brazilian government program of incentive for teaching activities, whose primary focus is the training of teachers, the improvement of teaching in public schools, the dissemination of science, and the formation of new scientists and researchers. By means of workshops, banners and the prototyping of robotics, we were able to create a connection between the study areas and their surroundings, making learning meaningful and accessible for the students involved and contributing to their cognitive development.

  3. The physical examination content of the Japanese National Health and Nutrition Survey: temporal changes.

    PubMed

    Tanaka, Hisako; Imai, Shino; Nakade, Makiko; Imai, Eri; Takimoto, Hidemi

    2016-12-01

    Survey items of the Japan National Nutrition Survey (J-NNS) have changed over time. Several papers on dietary surveys have been published; however, to date, there are no in-depth papers regarding physical examinations. Therefore, we investigated changes in the survey items in the physical examinations performed in the J-NNS and the National Health and Nutrition Survey (NHNS), with the aim of incorporating useful data for future policy decisions. We summarized the description of physical examinations and marshalled the changes of survey items from the J-NNS and NHNS from 1946 to 2012. The physical examination is roughly classified into the following six components: some are relevant to anthropometric measurements, clinical measurements, physical symptoms, blood tests, lifestyle and medication by interview, and others. Items related to nutritional deficiency, such as anaemia and tendon reflex disappearance, and body weight measurements were collected during the early period, according to the instructions of the General Headquarters. From 1989, blood tests and measurement of physical activity were added, and serum total protein, total cholesterol, triglycerides, HDL-cholesterol, blood glucose, red blood corpuscles and haemoglobin measurements have been performed continuously for more than 20 years. This is the first report on the items of physical examination in the J-NNS and NHNS. Our research results provide basic information for the utilization of the J-NNS and NHNS, to researchers, clinicians or policy makers. Monitoring the current state correctly is essential for national health promotion, and also for improvement of the investigation methods to apply country-by-country comparisons.

  4. Knowledge, attitudes, and practices of Turkish intern nurses regarding physical restraints.

    PubMed

    Karagozoglu, Serife; Ozden, Dilek; Yildiz, Fatma Tok

    2013-01-01

    This study was carried out to determine knowledge, attitudes, and practices of intern nurses who completed the nursing internship program on the use of physical restraints. This research was conducted using descriptive and cross-sectional research design. The study sample comprises 91 fourth-grade students who took an integrated curriculum and completed the nursing internship program. The data were collected with the Demographic Characteristics Questionnaire and the Levels of Knowledge, Attitudes and Practices of Staff Regarding Physical Restraints Questionnaire. For the assessment of the data, percentages, the arithmetic mean, and t test were used. The findings indicated that, of the intern nurses, 95.6% observed the use of physical restraints during their education, and 69.2% applied physical restraints. The mean knowledge, attitude, and practice scores of the nurses for physical restraint were 9.38 ± 1.19 (0-11 points), 34.70 ± 5.62 (12-48 points), and 37.95 ± 2.32 (14-42 points), respectively. Intern nurses' knowledge about how to use physical restraints was at a very good level; they displayed positive attitudes, and they used their knowledge and attitudes in their practices to a great extent. Although there are studies on the knowledge, attitudes, and practices of nurses working in the fields of elderly care, rehabilitation, and psychiatry in acute care units, there are no studies investigating intern nurses and other nursing students. However, intern nurses about to begin their careers should make accurate decisions regarding the use of physical restrains if they are to ensure patient safety and to fulfill this application effectively in their professional lives.

  5. Physical therapists' management of rheumatoid arthritis: results of a Dutch survey.

    PubMed

    Hurkmans, E J; Li, L; Verhoef, J; Vliet Vlieland, T P M

    2012-09-01

    For tailored implementation of evidence-based recommendations and guidelines on physical therapy in patients with rheumatoid arthritis (RA), insight into current physical therapy practice is needed. Two hundred and fifty general physical therapists and 211 specialized physical therapists with advanced arthritis training were sent a questionnaire to assess the frequency with which they applied a set of assessments (n = 10) and interventions (n = 7) included in a Dutch physical therapy guideline for RA. Differences between general and specialist physical therapists were analysed using Student's t-tests or chi-square tests where appropriate. In total, 233 physical therapists (51%) responded. Of these, 96 (41%) had completed an additional arthritis course and were designated as specialist physical therapists. Among the physical therapists who returned the questionnaire, 69% (or more) reported that they 'always' assessed limitations in daily functioning, pain, morning stiffness, muscle strength, joint range of motion, joint stability, gait and limitations in leisure activities as part of their initial assessment, and 37% and 48% reported 'always' to assess aerobic capacity and limitations in work situations, respectively. Concerning interventions, exercise therapy and education were 'always' applied by 70% and 68% of the responders, respectively. Only a minority of responders reported 'always' applying ultrasound, electrical stimulation, heat therapy, massage and passive mobilizations (0%, 0%, 5%, 5% and 14%, respectively). Apart from aerobic capacity and work limitations, all other assessments were reported as 'always' applied by significantly (p < 0.05) more specialist physical therapists than general physical therapists. Regarding interventions, significantly more specialist physical therapists reported that they 'always' applied exercise therapy and education. Significantly fewer specialist physical therapists than in the general group reported 'always' using heat therapy, massage and mobilizations (p < 0.05). The majority of physical therapists reported that they 'always' applied most of the assessments and interventions recommended in a Dutch physical therapy guideline for the management of RA. Areas for improvement include the assessment of aerobic capacity and work limitations. The observed differences between specialist and general physical therapists support the added value of advanced arthritis courses. Copyright © 2012 John Wiley & Sons, Ltd.

  6. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  7. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  8. Allostatic load and biological anthropology.

    PubMed

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American Association of Physical Anthropologists.

  9. How a Physicist Can Add Value In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2011-03-01

    The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio management, and more recently, management of applied physics research for evaluating reservoir rocks and fluids and enhancing the productivity of reservoirs.

  10. Practices to enable the geophysical research spectrum: from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique constraints on both the architecture of the codebase as well as the development practices that are employed. In this presentation, we will share some lessons learned and, in particular, how our prioritization of testing, documentation, and refactoring has impacted our own research and fostered collaborations.

  11. Cyclotron laboratory of the Institute for Nuclear Research and Nuclear Energy

    NASA Astrophysics Data System (ADS)

    Tonev, D.; Goutev, N.; Georgiev, L. S.

    2016-06-01

    An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that could be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99m Tc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, solid state physics, applied research, new materials and for education in all these fields including nuclear energy. The building of the laboratory will be constructed nearby the Institute for Nuclear Research and Nuclear Energy and the cyclotron together with all the equipment needed will be installed there.

  12. Are current health behavioral change models helpful in guiding prevention of weight gain efforts?

    PubMed

    Baranowski, Tom; Cullen, Karen W; Nicklas, Theresa; Thompson, Deborah; Baranowski, Janice

    2003-10-01

    Effective procedures are needed to prevent the substantial increases in adiposity that have been occurring among children and adults. Behavioral change may occur as a result of changes in variables that mediate interventions. These mediating variables have typically come from the theories or models used to understand behavior. Seven categories of theories and models are reviewed to define the concepts and to identify the motivational mechanism(s), the resources that a person needs for change, the processes by which behavioral change is likely to occur, and the procedures necessary to promote change. Although each model has something to offer obesity prevention, the early promise can be achieved only with substantial additional research in which these models are applied to diet and physical activity in regard to obesity. The most promising avenues for such research seem to be using the latest variants of the Theory of Planned Behavior and Social Ecology. Synergy may be achieved by taking the most promising concepts from each model and integrating them for use with specific populations. Biology-based steps in an eating or physical activity event are identified, and research issues are suggested to integrate behavioral and biological approaches to understanding eating and physical activity behaviors. Social marketing procedures have much to offer in terms of organizing and strategizing behavioral change programs to incorporate these theoretical ideas. More research is needed to assess the true potential for these models to contribute to our understanding of obesity-related diet and physical activity practices, and in turn, to obesity prevention.

  13. A system dynamics optimization framework to achieve population desired of average weight target

    NASA Astrophysics Data System (ADS)

    Abidin, Norhaslinda Zainal; Zulkepli, Jafri Haji; Zaibidi, Nerda Zura

    2017-11-01

    Obesity is becoming a serious problem in Malaysia as it has been rated as the highest among Asian countries. The aim of the paper is to propose a system dynamics (SD) optimization framework to achieve population desired weight target based on the changes in physical activity behavior and its association to weight and obesity. The system dynamics approach of stocks and flows diagram was used to quantitatively model the impact of both behavior on the population's weight and obesity trends. This work seems to bring this idea together and highlighting the interdependence of the various aspects of eating and physical activity behavior on the complex of human weight regulation system. The model was used as an experimentation vehicle to investigate the impacts of changes in physical activity on weight and prevalence of obesity implications. This framework paper provides evidence on the usefulness of SD optimization as a strategic decision making approach to assist in decision making related to obesity prevention. SD applied in this research is relatively new in Malaysia and has a high potential to apply to any feedback models that address the behavior cause to obesity.

  14. Modelling and scale-up of chemical flooding: Second annual report for the period October 1986--September 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, G.A.; Lake, L.W.; Sepehrnoori, K.

    1988-11-01

    The objective of this research is to develop, validate, and apply a comprehensive chemical flooding simulator for chemical recovery processes involving surfactants, polymers, and alkaline chemicals in various combinations. This integrated program includes components of laboratory experiments, physical property modelling, scale-up theory, and numerical analysis as necessary and integral components of the simulation activity. Developing, testing and applying flooding simulator (UTCHEM) to a wide variety of laboratory and reservoir problems involving tracers, polymers, polymer gels, surfactants, and alkaline agent has been continued. Improvements in both the physical-chemical and numerical aspects of UTCHEM have been made which enhance its versatility, accuracymore » and speed. Supporting experimental studies during the past year include relative permeability and trapping of microemulsion, tracer flow studies oil recovery in cores using alcohol free surfactant slugs, and microemulsion viscosity measurements. These have enabled model improvement simulator testing. Another code called PROPACK has also been developed which is used as a preprocessor for UTCHEM. Specifically, it is used to evaluate input to UTCHEM by computing and plotting key physical properties such as phase behavior interfacial tension.« less

  15. Important considerations for feasibility studies in physical activity research involving persons with multiple sclerosis: a scoping systematic review and case study.

    PubMed

    Learmonth, Yvonne C; Motl, Robert W

    2018-01-01

    Much research has been undertaken to establish the important benefits of physical activity in persons with multiple sclerosis (MS). There is disagreement regarding the strength of this research, perhaps because the majority of studies on physical activity and its benefits have not undergone initial and systematic feasibility testing. We aim to address the feasibility processes that have been examined within the context of physical activity interventions in MS. A systematic scoping review was conducted based on a literature search of five databases to identify feasibility processes described in preliminary studies of physical activity in MS. We read and extracted methodology from each study based on the following feasibility metrics: process (e.g. recruitment), resource (e.g. monetary costs), management (e.g. personnel time requirements) and scientific outcomes (e.g. clinical/participant reported outcome measures). We illustrate the use of the four feasibility metrics within a randomised controlled trial of a home-based exercise intervention in persons with MS. Twenty-five studies were identified. Resource feasibility (e.g. time and resources) and scientific outcomes feasibility (e.g. clinical outcomes) methodologies were applied and described in many studies; however, these metrics have not been systematically addressed. Metrics related to process feasibility (e.g. recruitment) and management feasibility (e.g. human and data management) are not well described within the literature. Our case study successfully enabled us to address the four feasibility metrics, and we provide new information on management feasibility (i.e. estimate data completeness and estimate data entry) and scientific outcomes feasibility (i.e. determining data collection materials appropriateness). Our review highlights the existing research and provides a case study which assesses important metrics of study feasibility. This review serves as a clarion call for feasibility trials that will substantially strengthen the foundation of research on exercise in MS.

  16. Adolescents’ Perception of the Psychosocial Factors affecting Sustained Engagement in Sports and Physical Activity

    PubMed Central

    GAVIN, JAMES; MCBREARTY, MADELEINE; MALO, KIT; ABRAVANEL, MICHAEL; MOUDRAKOVSKI, TATIANA

    2016-01-01

    The purpose of this study was to explore adolescents’ perceptions of psychosocial influences – personal characteristics, environmental factors and behavioural undertakings – influencing their prolonged involvement in sports and physical activity (PA). A qualitative approach was adopted wherein 16 adolescents (8 boys, 8 girls; mean age 15.9 years), who had been physically active for at least the last 8 years, and sixteen adults identified as their ‘parents’ or ‘guardians’ participated in semi-structured interviews. Interviews were transcribed verbatim and coded using the HyperRESEARCH software. Data were analysed using thematic analysis procedures. Four main themes pertaining to psychosocial influences were identified: 1) personal characteristics; 2) school and community resources; 3) parental support; and 4) social interaction. Except for social interaction, for which participants did not identify challenges, themes are discussed according to their motivational aspects and the challenges they represent for adolescents’ PA involvement. The research has implications for health promotion endeavours directed toward parents of children and adolescents. Given the limitations of a qualitative study, readers are invited to apply the conclusions to their own context. PMID:27766129

  17. NASA Hybrid Reflectometer Project

    NASA Technical Reports Server (NTRS)

    Lynch, Dana; Mancini, Ron (Technical Monitor)

    2002-01-01

    Time-domain and frequency-domain reflectometry have been used for about forty years to locate opens and shorts in cables. Interpretation of reflectometry data is as much art as science. Is there information in the data that is being missed? Can the reflectometers be improved to allow us to detect and locate defects in cables that are not outright shorts or opens? The Hybrid Reflectometer Project was begun this year at NASA Ames Research Center, initially to model wire physics, simulating time-domain reflectometry (TDR) signals in those models and validating the models against actual TDR data taken on testbed cables. Theoretical models of reflectometry in wires will give us an understanding of the merits and limits of these techniques and will guide the application of a proposed hybrid reflectometer with the aim of enhancing reflectometer sensitivity to the point that wire defects can be detected. We will point out efforts by some other researchers to apply wire physics models to the problem of defect detection in wires and we will describe our own initial efforts to create wire physics models and report on testbed validation of the TDR simulations.

  18. Influence of full cream milk powder on the characteristics of sweet potato puree instant cream soup

    NASA Astrophysics Data System (ADS)

    Sunyoto, Marleen; Djali, Mohamad; Dwiastuti, Intan Btari

    2018-02-01

    A ready to use food such as instant cream soup become the most suitable choice for those who prefer being practical and also can be applied in any emergency situation such as areas affected by disaster. The adding of milk powder as the main ingredient in cream soup creates a complex bounding of fat and starch which complicates the rehydration process and affects other physical appearance. This research was aimed to find the proper concentration of full cream milk powder concentration to obtain the best characteristics of instant cream soup of dried sweet potato puree. The method used in this research was randomized block design with 6 treatments (12.5%, 15%, 17.5%, 20%, 22.5% and 25%, with an addition of full cream milk powder) and twice repetition. Instant cream soup with 20% of full cream milk powder concentration gave the best physical and chemical characteristics. The physical and chemical characteristic shows that it has 6% water content, 95.47% rehydration value, 18% protein, 20.7% fat, 1080.25 cP viscosity and 30.5% rendement.

  19. Preventing dance injuries: current perspectives

    PubMed Central

    Russell, Jeffrey A

    2013-01-01

    Dancers are clearly athletes in the degree to which sophisticated physical capacities are required to perform at a high level. The standard complement of athletic attributes – muscular strength and endurance, anaerobic and aerobic energy utilization, speed, agility, coordination, motor control, and psychological readiness – all are essential to dance performance. In dance, as in any athletic activity, injuries are prevalent. This paper presents the research background of dance injuries, characteristics that distinguish dance and dancers from traditional sports and athletes, and research-based perspectives into how dance injuries can be reduced or prevented, including the factors of physical training, nutrition and rest, flooring, dancing en pointe, and specialized health care access for dancers. The review concludes by offering five essential components for those involved with caring for dancers that, when properly applied, will assist them in decreasing the likelihood of dance-related injury and ensuring that dancers receive optimum attention from the health care profession: (1) screening; (2) physical training; (3) nutrition and rest; (4) specialized dance health care; and (5) becoming acquainted with the nature of dance and dancers. PMID:24379726

  20. Adolescents' Perception of the Psychosocial Factors affecting Sustained Engagement in Sports and Physical Activity.

    PubMed

    Gavin, James; McBrearty, Madeleine; Malo, Kit; Abravanel, Michael; Moudrakovski, Tatiana

    2016-01-01

    The purpose of this study was to explore adolescents' perceptions of psychosocial influences - personal characteristics, environmental factors and behavioural undertakings - influencing their prolonged involvement in sports and physical activity (PA). A qualitative approach was adopted wherein 16 adolescents (8 boys, 8 girls; mean age 15.9 years), who had been physically active for at least the last 8 years, and sixteen adults identified as their 'parents' or 'guardians' participated in semi-structured interviews. Interviews were transcribed verbatim and coded using the HyperRESEARCH software. Data were analysed using thematic analysis procedures. Four main themes pertaining to psychosocial influences were identified: 1) personal characteristics; 2) school and community resources; 3) parental support; and 4) social interaction. Except for social interaction, for which participants did not identify challenges, themes are discussed according to their motivational aspects and the challenges they represent for adolescents' PA involvement. The research has implications for health promotion endeavours directed toward parents of children and adolescents. Given the limitations of a qualitative study, readers are invited to apply the conclusions to their own context.

Top