NASA Astrophysics Data System (ADS)
Loukil, N.; Feki, M.
2017-07-01
Zn-Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn-Mn co-deposition. The electrochemical results show that with increasing Mn2+ ions concentration in the electrolytic bath, Mn2+ reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn-Mn deposits. A dimensionless graph model was used to analyze the effect of Mn2+ ions concentration on Zn-Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn2+ concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn2+ ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn-Mn coatings. It was found that the Mn content increases with increasing the applied current density jimp and Mn2+ ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn-Mn coatings. The phase structure and surface morphology of Zn-Mn deposits are characterized by means of X-ray diffraction analysis and Scanning Electron Microscopy (SEM), respectively. The Zn-Mn deposited at low current density is tri-phasic and consisting of η-Zn, ζ-MnZn13 and hexagonal close packed ε-Zn-Mn. An increase in current density leads to a transition from crystalline to amorphous structure, arising from the hydroxide inclusions in the Zn-Mn coating at high current density.
Band gap depiction of quaternary FeMnTiAl alloy using Hubbard (U) potential
NASA Astrophysics Data System (ADS)
Bhat, Tahir Mohiuddin; Yousuf, Saleem; Khandy, Shakeel Ahmad; Gupta, Dinesh C.
2018-05-01
We have employed self-consistent ab-initio calculations to investigate new quaternary alloy FeMnTiAl by applying Hubbard potential (U). The alloy is found to be stable in ferromagnetic phase with cubic structure. The alloy shows half-metallic (HM) ferromagnet character. The values of minority band gap FeMnTiAl are found to be 0.33 eV respectively. Electronic charge density reveals that both types of bonds covalent as well as ionic are present in the alloy. Thus the new quaternary alloy can be proved as vital contender for spin valves and spin generator devices.
Preparation and Electrochemical Performance of Li4Mn5O12 Nanorods using β-MnO2 Nanorods as Precursor
NASA Astrophysics Data System (ADS)
Zhao, Yan; Wang, Li; Mu, Yanlin; Zhang, Chongwei; Zhu, Fan; Liu, Mengjiao; Lai, Qiongyu; Bi, Jian; Gao, Daojiang
2018-03-01
Li4Mn5O12 nanorods were successfully prepared by using β-MnO2 nanorod precursors as self-templates. The obtained Li4Mn5O12 nanorods were approximately 0.8-1.5 μm in length and 0.15 μm in width, and were employed as electrode materials and applied in supercapacitors. The results show that Li4Mn5O12 nanorods can deliver 211 F g-1 within the potential range of 0-1.4 V at a scan rate of 5 mV s-1 in 1 mol L-1 Li2SO4 solution, which presents a good electrochemical performance.
The Enhancement of Mg Corrosion Resistance by Alloying Mn and Laser-Melting
Yang, Youwen; Wu, Ping; Wang, Qiyuan; Wu, Hong; Liu, Yong; Deng, Youwen; Zhou, Yuanzhuo; Shuai, Cijun
2016-01-01
Mg has been considered a promising biomaterial for bone implants. However, the poor corrosion resistance has become its main undesirable property. In this study, both alloying Mn and laser-melting were applied to enhance the Mg corrosion resistance. The corrosion resistance, mechanical properties, and microstructure of rapid laser-melted Mg-xMn (x = 0–3 wt %) alloys were investigated. The alloys were composed of dendrite grains, and the grains size decreased with increasing Mn. Moreover, Mn could dissolve and induce the crystal lattice distortion of the Mg matrix during the solidification process. Mn ranging from 0–2 wt % dissolved completely due to rapid laser solidification. As Mn contents further increased up to 3 wt %, a small amount of Mn was left undissolved. The compressive strength of Mg-Mn alloys increased first (up to 2 wt %) and then decreased with increasing Mn, while the hardness increased continuously. The refinement of grains and the increase in corrosion potential both made contributions to the enhancement of Mg corrosion resistance. PMID:28773342
Polydopamine and MnO2 core-shell composites for high-performance supercapacitors
NASA Astrophysics Data System (ADS)
Hou, Ding; Tao, Haisheng; Zhu, Xuezhen; Li, Maoguo
2017-10-01
Polydopamine and MnO2 core-shell composites (PDA@MnO2) for high-performance supercapacitors had been successfully synthesized by a facile and fast method. The morphology, crystalline phase and chemical composition of PDA@MnO2 composites are characterized using SEM, TEM, XRD, EDS and XPS. The performance of PDA@MnO2 composites are further investigated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The PDA@MnO2 core-shell nanostructure composites exhibit a high capacitance of 193 F g-1 at the current density of 1A g-1 and retained over 81.2% of its initial capacitance after 2500 cycles of charge-discharge at 2 A g-1. The results manifest that the PDA@MnO2 composites can be potentially applied in supercapacitors.
Strong Orientation-Dependent Spin-Orbit Torque in Thin Films of the Antiferromagnet Mn2Au
NASA Astrophysics Data System (ADS)
Zhou, X. F.; Zhang, J.; Li, F.; Chen, X. Z.; Shi, G. Y.; Tan, Y. Z.; Gu, Y. D.; Saleem, M. S.; Wu, H. Q.; Pan, F.; Song, C.
2018-05-01
Antiferromagnets with zero net magnetic moment, strong anti-interference, and ultrafast switching speed are potentially competitive in high-density information storage. The body-centered tetragonal antiferromagnet Mn2Au with opposite-spin sublattices is a unique metallic material for Néel-order spin-orbit-torque (SOT) switching. We investigate the SOT switching in quasiepitaxial (103), (101) and (204) Mn2Au films prepared by a simple magnetron sputtering method. We demonstrate current-induced antiferromagnetic moment switching in all of the prepared Mn2Au films by using a short current pulse at room temperature, whereas differently oriented films exhibit distinguished switching characters. A direction-independent reversible switching is attained in Mn2Au (103) films due to negligible magnetocrystalline anisotropy energy, while for Mn2Au (101) and (204) films, the switching is invertible with the current applied along the in-plane easy axis and its vertical axis, but it becomes attenuated seriously during initial switching circles when the current is applied along the hard axis because of the existence of magnetocrystalline anisotropy energy. Besides the fundamental significance, the strong orientation-dependent SOT switching, which is not realized, irrespective of ferromagnet and antiferromagnet, provides versatility for spintronics.
Hydrogel-forming microneedle arrays: Potential for use in minimally-invasive lithium monitoring.
Eltayib, Eyman; Brady, Aaron J; Caffarel-Salvador, Ester; Gonzalez-Vazquez, Patricia; Zaid Alkilani, Ahlam; McCarthy, Helen O; McElnay, James C; Donnelly, Ryan F
2016-05-01
We describe, for the first time, hydrogel-forming microneedle (s) (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2mmol/l. However, after 1h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15mg/kg and 30mg/kg lithium carbonate, respectively. MN arrays were applied 1h after dosing and removed 1h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5% compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in outpatient settings. We will now focus on correlation between serum and MN lithium concentrations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ying; Liu, Qing; Hu, Tianjun; Zhang, Limin; Deng, Youquan
2017-05-01
The catalyst MnO2-CoFe2O4/C was firstly synthesized via a two-step process and applied as a bifunctional electrocatalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media. The composite exhibits better bifunctional activity than CoFe2O4/C and MnO2/C. Moreover, superior durability and high methanol tolerance in alkaline media outperforms the commercial Pt/C electrocatalyst, which signifying its excellent potential for applications in metal-air batteries and alkaline fuel cells.
Park, Robert M.; Baldwin, Mary; Bouchard, Maryse F.; Mergler, Donna
2015-01-01
The appropriate exposure metrics for characterizing manganese (Mn) exposure associated with neurobehavioral effects have not been established. Blood levels of Mn (B-Mn) provide a potentially important intermediate marker of Mn airborne exposures. Using data from a study of a population of silicon- and ferro-manganese alloy production workers employed between 1973 and 1991, B-Mn levels were modeled in relation to prior Mn exposure using detailed work histories and estimated respirable Mn concentrations from air-sampling records. Despite wide variation in exposure levels estimated for individual jobs, duration of employment (exposure) was itself a strong predictor of B-Mn levels and strongest when an 80-day half-life was applied to contributions over time (t = 6.95, 7.44, respectively; p < 10 −5). Partitioning exposure concentrations based on process origin into two categories: (1) “large” respirable particulate (Mn-LRP) derived mainly from mechanically generated dust, and (2) “small” respirable particulate (Mn-SRP) primarily electric furnace condensation fume, revealed that B-Mn levels largely track the small, fume exposures. With a half-life of 65 days applied in a model with cumulative exposure terms for both Mn-LRP (t = −0.16, p = 0.87) and Mn-SRP (t = 6.45, p < 10 −5), the contribution of the large-size fraction contribution was negligible. Constructing metrics based on the square root of SRP exposure concentrations produced a better model fit (t = 7.87 vs. 7.44, R2 = 0.2333 vs. 0.2157). In a model containing both duration (t = 0.79, p = 0.43) and (square root) fume (t = 2.47, p = 0.01) metrics, the duration term was a weak contributor. Furnace-derived, small respirable Mn particulate appears to be the primary contributor to B-Mn levels, with a dose-rate dependence in a population chronically exposed to Mn, with air-concentrations declining in recent years. These observations may reflect the presence of homeostatic control of Mn levels in the blood and other body tissues and be useful in assessing Mn exposures for evaluating neurotoxic effects. PMID:24726792
Self-Organized TiO₂-MnO₂ Nanotube Arrays for Efficient Photocatalytic Degradation of Toluene.
Nevárez-Martínez, María C; Kobylański, Marek P; Mazierski, Paweł; Wółkiewicz, Jolanta; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana
2017-03-31
Vertically oriented, self-organized TiO₂-MnO₂ nanotube arrays were successfully obtained by one-step anodic oxidation of Ti-Mn alloys in an ethylene glycol-based electrolyte. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), UV-Vis absorption, photoluminescence spectroscopy, X-ray diffraction (XRD), and micro-Raman spectroscopy. The effect of the applied potential (30-50 V), manganese content in the alloy (5-15 wt. %) and water content in the electrolyte (2-10 vol. %) on the morphology and photocatalytic properties was investigated for the first time. The photoactivity was assessed in the toluene removal reaction under visible light, using low-powered LEDs as an irradiation source (λ max = 465 nm). Morphology analysis showed that samples consisted of auto-aligned nanotubes over the surface of the alloy, their dimensions were: diameter = 76-118 nm, length = 1.0-3.4 μm and wall thickness = 8-11 nm. It was found that the increase in the applied potential led to increase the dimensions while the increase in the content of manganese in the alloy brought to shorter nanotubes. Notably, all samples were photoactive under the influence of visible light and the highest degradation achieved after 60 min of irradiation was 43%. The excitation mechanism of TiO₂-MnO₂ NTs under visible light was presented, pointing out the importance of MnO₂ species for the generation of e - and h⁺.
Tang, Yuanzhi; Zeiner, Carolyn A; Santelli, Cara M; Hansel, Colleen M
2013-04-01
Microbially mediated oxidation of Mn(II) to Mn(III/IV) oxides influences the cycling of metals and remineralization of carbon. Despite the prevalence of Mn(II)-bearing minerals in nature, little is known regarding the ability of microbes to oxidize mineral-hosted Mn(II). Here, we explored oxidation of the Mn(II)-bearing mineral rhodochrosite (MnCO3 ) and characteristics of ensuing Mn oxides by six Mn(II)-oxidizing Ascomycete fungi. All fungal species substantially enhanced rhodochrosite dissolution and surface modification. Mineral-hosted Mn(II) was oxidized resulting in formation of Mn(III/IV) oxides that were all similar to δ-MnO2 but varied in morphology and distribution in relation to cellular structures and the MnCO3 surface. For four fungi, Mn(II) oxidation occurred along hyphae, likely mediated by cell wall-associated proteins. For two species, Mn(II) oxidation occurred via reaction with fungal-derived superoxide produced at hyphal tips. This pathway ultimately resulted in structurally unique Mn oxide clusters formed at substantial distances from any cellular structure. Taken together, findings for these two fungi strongly point to a role for fungal-derived organic molecules in Mn(III) complexation and Mn oxide templation. Overall, this study illustrates the importance of fungi in rhodochrosite dissolution, extends the relevance of biogenic superoxide-based Mn(II) oxidation and highlights the potential role of mycogenic exudates in directing mineral precipitation. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn
Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; ...
2016-10-03
Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less
Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.
Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less
Changes in Brain Metallome/Metabolome Pattern due to a Single i.v. Injection of Manganese in Rats
Neth, Katharina; Lucio, Marianna; Walker, Alesia; Zorn, Julia; Schmitt-Kopplin, Philippe; Michalke, Bernhard
2015-01-01
Exposure to high concentrations of Manganese (Mn) is known to potentially induce an accumulation in the brain, leading to a Parkinson related disease, called manganism. Versatile mechanisms of Mn-induced brain injury are discussed, with inactivation of mitochondrial defense against oxidative stress being a major one. So far, studies indicate that the main Mn-species entering the brain are low molecular mass (LMM) compounds such as Mn-citrate. Applying a single low dose MnCl2 injection in rats, we observed alterations in Mn-species pattern within the brain by analysis of aqueous brain extracts by size-exclusion chromatography—inductively coupled plasma mass spectrometry (SEC-ICP-MS). Additionally, electrospray ionization—ion cyclotron resonance-Fourier transform-mass spectrometry (ESI-ICR/FT-MS) measurement of methanolic brain extracts revealed a comprehensive analysis of changes in brain metabolisms after the single MnCl2 injection. Major alterations were observed for amino acid, fatty acid, glutathione, glucose and purine/pyrimidine metabolism. The power of this metabolomic approach is the broad and detailed overview of affected brain metabolisms. We also correlated results from the metallomic investigations (Mn concentrations and Mn-species in brain) with the findings from metabolomics. This strategy might help to unravel the role of different Mn-species during Mn-induced alterations in brain metabolism. PMID:26383269
NASA Astrophysics Data System (ADS)
Zheng, Dongdong; Qiang, Yujie; Xu, Shenying; Li, Wenpo; Yu, Shanshan; Zhang, Shengtao
2017-02-01
Metal oxides have emerged as one kind of important supercapacitor electrode materials. Herein, we report hierarchical MnO2 nanosheets prepared of indium tin oxide (ITO) coated glass substrates via a hybrid two-step protocol, including a cathodic electrodeposition technique and a hydrothermal process. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscope (TEM). SEM and TEM images show that the as-synthesized MnO2 nanosheets are hierarchical and porous, which could increase the active surface and short paths for fast ion diffusion. The results of nitrogen adsorption-desorption analysis indicate that the BET surface area of the MnO2 nanosheets is 53.031 m2 g-1. Furthermore, the electrochemical properties of the MnO2 are elucidated by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS) in 0.1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the as-grown MnO2 nanosheet exhibits an excellent specific capacitance of 335 F g-1 at 0.5 A g-1 when it is applied as a potential electrode material for an electrochemical supercapacitor. Additionally, the MnO2 nanosheet electrode also presents high rate capability and good cycling stability with 91.8% retention after 1000 cycles. These excellent properties indicate that the hierarchical MnO2 nanosheets are a potential electrode material for electrochemical supercapacitors.
Thermo physical Properties of Multiferroic Rare Earth Manganite GdMnO3
NASA Astrophysics Data System (ADS)
Choithrani, Renu; Gaur, N. K.
2008-04-01
We have investigated the thermophysical properties of multiferroic rare earth manganite GdMnO3 in the temperature range 15 K⩽T⩽300 K. We have applied interatomic potential to study the Specific heat (C) as a function of temperature. The calculated Specific heat values are closer to the available experimental data. At room temperature, the orthorhombic GdMnO3 phase is indicative of a strong Jahn-Teller distortion. In addition, we have reported the cohesive energy (φ), molecular force constant (f), compressibility (β), Restrahalen frequency (ν0), Debye temperature (ΘD) and Groneisen parameter (γ) at temperature 15 K⩽T⩽300 K.
Xu, Bin; Ye, Min-Ling; Yu, Yu-Xiang; Zhang, Wei-De
2010-07-26
In this report, a highly sensitive amperometric sensor based on MnO(2)-modified vertically aligned multiwalled carbon nanotubes (MnO(2)/VACNTs) for determination of hydrogen peroxide (H(2)O(2)) was fabricated by electrodeposition. The morphology of the nanocomposite was characterized by scanning electron microscopy, energy-dispersive X-ray spectrometer and X-ray diffraction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy were applied to investigate the electrochemical properties of the MnO(2)/VACNTs nanocomposite electrode. The mechanism for the electrochemical reaction of H(2)O(2) at the MnO(2)/VACNTs nanocomposite electrode was also discussed. In borate buffer (pH 7.8, 0.20 M), the MnO(2)/VACNTs nanocomposite electrode exhibits a linear dependence (R=0.998) on the concentration of H(2)O(2) from 1.2 x 10(-6)M to 1.8 x 10(-3)M, a high sensitivity of 1.08 x 10(6) microA M(-1) cm(-2) and a detection limit of 8.0 x 10(-7) M (signal/noise=3). Meanwhile, the MnO(2)/VACNTs nanocomposite electrode is also highly resistant towards typical inorganic salts and some biomolecules such as acetic acid, citric acid, uric acid and D-(+)-glucose, etc. In addition, the sensor based on the MnO(2)/VACNTs nanocomposite electrode was applied for the determination of trace of H(2)O(2) in milk with high accuracy, demonstrating its potential for practical application. Copyright 2010 Elsevier B.V. All rights reserved.
Structural γ-ε phase transition in Fe-Mn alloys from a CPA + DMFT approach.
Belozerov, A S; Poteryaev, A I; Skornyakov, S L; Anisimov, V I
2015-11-25
We present a computational scheme for total energy calculations of disordered alloys with strong electronic correlations. It employs the coherent potential approximation combined with the dynamical mean-field theory and allows one to study the structural transformations. The material-specific Hamiltonians in the Wannier function basis are obtained by density functional theory. The proposed computational scheme is applied to study the γ-ε structural transition in paramagnetic Fe-Mn alloys for Mn content from 10 to 20 at.%. The electronic correlations are found to play a crucial role in this transition. The calculated transition temperature decreases with increasing Mn content and is in good agreement with experiment. We demonstrate that in contrast to the α-γ transition in pure iron, the γ-ε transition in Fe-Mn alloys is driven by a combination of kinetic and Coulomb energies. The latter is found to be responsible for the decrease of the γ-ε transition temperature with Mn content.
Diverse manganese(II)-oxidizing bacteria are prevalent in drinking water systems.
Marcus, Daniel N; Pinto, Ameet; Anantharaman, Karthik; Ruberg, Steven A; Kramer, Eva L; Raskin, Lutgarde; Dick, Gregory J
2017-04-01
Manganese (Mn) oxides are highly reactive minerals that influence the speciation, mobility, bioavailability and toxicity of a wide variety of organic and inorganic compounds. Although Mn(II)-oxidizing bacteria are known to catalyze the formation of Mn oxides, little is known about the organisms responsible for Mn oxidation in situ, especially in engineered environments. Mn(II)-oxidizing bacteria are important in drinking water systems, including in biofiltration and water distribution systems. Here, we used cultivation dependent and independent approaches to investigate Mn(II)-oxidizing bacteria in drinking water sources, a treatment plant and associated distribution system. We isolated 29 strains of Mn(II)-oxidizing bacteria and found that highly similar 16S rRNA gene sequences were present in all culture-independent datasets and dominant in the studied drinking water treatment plant. These results highlight a potentially important role for Mn(II)-oxidizing bacteria in drinking water systems, where biogenic Mn oxides may affect water quality in terms of aesthetic appearance, speciation of metals and oxidation of organic and inorganic compounds. Deciphering the ecology of these organisms and the factors that regulate their Mn(II)-oxidizing activity could yield important insights into how microbial communities influence the quality of drinking water. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Darroudi, F; Meijers, C M; Hadjidekova, V; Natarajan, A T
1996-09-01
In human hepatoma (Hep G2) cells and peripheral blood lymphocytes (HPBL) the cytokinesis-blocked micronuclei (MN) and fluorescent in situ hybridization (FISH) assays were applied to study aneugenic and clastogenic potentials of X-rays, directly and indirectly acting chemicals. Induction of MN was studied in vitro following treatment with X-rays, directly acting chemicals, such as methylmeth-anesulphonate (MMS), colchicine (COL), vincristine sulphate (VCS) and vinblastine sulphate (VBS), and indirectly acting agents, such as cyclophosphamide (CP), hexamethylphosphoramide (HMPA), 2-acetylaminofluorene (2-AAF) and 4-acetylaminofluorene (4-AAF). Depending on the presence of the fluorescent signal in the MN following FISH with a human DNA centromeric probe, MN in the binucleated Hep G2 cells and lymphocytes were scored as centromere-positive or centromere-negative, representing an aneugenic and clastogenic event respectively. In the controls approximately 50% of spontaneously occurring MN were centromere-positive. Treatment of human hepatoma cells and HPBL (in vitro) with potent aneugens such as COL, VCS and VBS increased the number of MN in a dose-dependent manner; of these 75-93% were centromere-positive. X-irradiation induced MN in a dose-related manner in binucleated Hep G2 cells and HPBL, of which 33-40% were centromere-positive, which demonstrates the significant aneugenic potentials of X-rays. Strong clastogenic activity was observed with MMS and frequency of centromere-positive MN was low: approximately 20 and 30% for HPBL and Hep G2 cells respectively. In Hep G2 cells significant aneugenic activity was found with indirectly acting promutagens/procarcinogens such as HMPA and 2-AAF, in contrast to CP, which came out as a potent clastogen. The non-carcinogen 4-AAF was not able to induce an increase in the frequency of MN in Hep G2 cells. All indirectly acting chemicals tested came out negative when HPBL were used as targets for DNA damage. The results presented correlate positively with data from in vivo assays and indicate that the Hep G2 cell system is a suitable bioactivation system (in vitro) for evaluating the clastogenic and aneugenic potentials of chemicals which require exogenous metabolic activations in order to exert their mutagenic potential.
Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.
2013-01-01
In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
Hashimoto, Kiyohiro; Takeda, Shunichi; Swenberg, James A.; Nakamura, Jun
2015-01-01
Elucidating the DNA repair pathways that are activated in the presence of genotoxic agents is critical to understand their modes of action. Although the DT40 cell-based DNA damage response (DDR) assay provides rapid and sensitive results, the assay cannot be used on genotoxic compounds that require metabolic activation to be reactive. Here, we applied the metabolic activation system to a DDR and micronucleus (MN) assays in DT40 cells. Cyclophosphamide (CP), a well-known cross-linking agent requiring metabolic activation, was preincubated with liver S9 fractions. When DT40 cells and mutant cells were exposed to the preactivated CP, CP caused increased cytotoxicity in FANC-, RAD9-, REV3- and RAD18-mutant cells compared to isogenic wild-type cells. We then performed a MN assay on DT40 cells treated with preactivated CP. An increase in the MN was observed in REV3- and FANC-mutant cells at lower concentrations of activated CP than in the parental DT40 cells. These results demonstrated that the incorporation of metabolic preactivation system using S9 fractions significantly potentiates DDR caused by CP in DT40 cells and their mutants. In addition, our data suggest that the metabolic preactivation system for DDR and MN assays has a potential to increase the relevance of this assay to screening various compounds for potential genotoxicity. PMID:26085549
Fabrication and performance of a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O thin film detector
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yin, Yiming; Yao, Niangjuan; Jiang, Lin; Qu, Yue; Wu, Jing; Gao, Y. Q.; Huang, Jingguo; Huang, Zhiming
2018-01-01
A thermal sensitive infrared and THz detector was fabricated by a double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films. The Mn-Co-Ni-O material, as one type of transition metal oxides, has long been used as a candidate for thermal sensors or infrared detectors. The resistivity of a most important Mn-Co-Ni-O thin film, Mn1. 96Co0.96Ni0.48O4(MCN) , is about 200 Ω·cm at room temperature, which ranges about 2 orders larger than that of VOx detectors. Therefore, the thickness of a typical squared Mn-Co-Ni-O IR detector should be about 10 μm, which is too large for focal plane arrays applications. To reduce the resistivity of Mn-Co-Ni-O thin film, 1/6 of Co element was replaced by Cu. Meanwhile, a cover layer of MCN film was deposited onto the Mn-Co-Ni-Cu-O film to improve the long term stability. The detector fabricated by the double layered Mn-Co-Ni-O/Mn-Co-Ni-Cu-O films showed large response to blackbody and 170 GHz radiation. The NEP of the detector was estimated to be the order of 10-8 W/Hz0. 5. By applying thermal isolation structure and additional absorption materials, the detection performance can be largely improved by 1-2 orders according to numerical estimation. The double layered Mn-Co-Ni-O film detector shows great potentials in applications in large scale IR detection arrays, and broad-band imaging.
Manganese modified structural and optical properties of zinc soda lime silica glasses.
Samsudin, Nur Farhana; Matori, Khamirul Amin; Wahab, Zaidan Abdul; Fen, Yap Wing; Liew, Josephine Ying Chi; Lim, Way Foong; Mohd Zaid, Mohd Hafiz; Omar, Nur Alia Sheh
2016-03-20
A series of MnO-doped zinc soda lime silica glass systems was prepared by a conventional melt and quenching technique. In this study, the x-ray diffraction analysis was applied to confirm the amorphous nature of the glasses. Fourier transform infrared spectroscopy shows the glass network consists of MnO4, SiO4, and ZnO4 units as basic structural units. The glass samples under field emission scanning electron microscopy observation demonstrated irregularity in shape and size with glassy phase-like structure. The optical absorption studies revealed that the optical bandgap (Eopt) values decrease with an increase of MnO content. Through the results of various measurements, the doping of MnO in the glass matrix had effects on the performance of the glasses and significantly improved the properties of the glass sample as a potential host for phosphor material.
Sukanya, Ramaraj; Sakthivel, Mani; Chen, Shen-Ming; Chen, Tse-Wei; Al-Hemaid, Fahad M A; Ajmal Ali, M; Elshikh, Mohamed Soliman
2018-06-02
A new type of manganese diselenide nanoparticles (MnSeNPs) was synthesized by using a hydrothermal method. Their surface morphology, crystallinity and elemental distribution were characterized by using transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy which scrutinize the formation of the NPs. The NPs were coated on a glassy carbon electrode (GCE), and electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry were applied to study the electroanalytical properties towards the oxidation of the food additive capsaicin. The modified GCE displays lower charge transfer resistance (R ct = 29.52 Ω), a larger active surface area (0.089 cm 2 /g, and more efficient electrochemical oxidation of capsaicin compared to a MnS 2 /GCE and a bare GCE. The oxidation peak potential is 0.43 V (vs. Ag/AgCl) which is lower than that of previously reported GCEs. The sensor has a detection limit as low as 0.05 μM and an electrochemical sensitivity of 2.41 μA μM -1 cm -2 . The method was applied to the determination of capsaicin in pepper samples. Graphical abstract Electrochemical determination of capsaicin in pepper extract by using MnSeNPs modified electrode.
Barone, Vincenzo; Bencini, Alessandro; Gatteschi, Dante; Totti, Federico
2002-11-04
Density functional theory (DFT) was applied to describe the magnetic and electron-transfer properties of dinuclear systems containing the [MnO2Mn]n+ core, with n=0,1,2,3,4. The calculation of the potential energy surfaces (PESs) of the mixed-valence species (n=1,3) allowed the classification of these systems according to the extent of valence localization as Class II compounds, in the Robin-Day classification scheme. The fundamental frequencies corresponding to the asymmetric breathing vibration were also computed.
NASA Astrophysics Data System (ADS)
Hossain, S.; Hachinohe, S.; Ishiyama, T.; Hamamoto, H.; Oguchi, C. T.
2014-12-01
Heavy metals release from sediment may occur due to sediment water interaction under different changing environmental conditions. This has substantial influence on groundwater quality. However, identification of potentially mobile fractions of metals like Cu, Cr, Ni, Pb, Zn, Fe, Mn and Ti requires for the sustainable land and groundwater development and pollution management. 44 sediment and pore water samples at 1 m interval were analyzed from a vertical profile beneath the Naka river at the bottom of Central Kanto plain, Japan. Sequential extraction method was applied to determine potentially mobile forms of metals such as water soluble, ion exchangeable, acid soluble and Fe-Mn oxide bound. Metals were determined using X-Ray Fluorescence, Inductively coupled plasma atomic emission and mass spectrometer. Analyses show that potential mobility is high in river bed, volcanic ash mix, marine and transitional clayey silt. Metal mobility was higher in lower gravelly aquifer than upper sandy aquifer. Potential mobility and bioavailability of Zn, Cu, Ni, Pb and Mn are very high in river bed sediment which may pose threat to river bottom aquatic system. Zn, Cu and Ni concentration in pore water is high in river bed and peat bearing sediment. In pore water of marine and transitional sediment ion concentration such as Ca2+ and SO42- is very high indicating high mobility of Calcium and Sulfur from sediment as no significant variation observed in total content. In vertical profile, potential mobility tendency of metal in sediment trends to be Zn > Cu > Ni > Cr > Pb > Mn > Fe > Ti. Current study indicates low potential mobility and pollution risk to groundwater due to overall low metal concentration in pore water and high portion of metals attached with sediment as Fe-Mn oxide bound. More over under strong reducing condition considerable amount of metals will release and pollute groundwater.
New Inverse-Heusler Materials with Potential Spintronics Applications
NASA Astrophysics Data System (ADS)
Bakkar, Said Adnan
Spintronics or spin-electronics attempt to utilize the electronic spin degree of freedom to make advanced materials and devices for the future. Heusler materials are considered very promising for spintronics applications as many highly spin-polarized materials potentially exist in this family. To accelerate materials discovery and development, The Materials Genome Initiative (https://www.mgi.gov/) was undertaken in 2011 to promote theory-driven search of new materials. In this thesis work, we outline our effort to develop several new materials that are predicted to be 100% spin-polarized (half-metallic) and thermodynamically stable by theory. In particular, two Mn-based Heusler families were investigated: Mn2CoZ (Z= Ga, Sb, Ge) and Mn2FeZ (Z=Si,Ge), where the latter is potentially a new Heusler family. These materials were synthesized using the arc-melting technique and their crystal structure was investigated using the X-ray diffraction (XRD) method before and after appropriate annealing of the samples. Preliminary magnetometry measurements are also reported. We first developed a heat-treatment procedure that could be applied to all the Mn-based compounds mentioned above. Mn2CoGa was successfully stabilized in the cubic inverse-Heusler phase with a=5.869 A and magnetic moment of 2.007 muB/fu. This is in good agreement with prior literature reports [1]. However, cubic phases of Mn2CoSb and Mn2CoGe could not be stabilized within the annealing temperature range that is accessible in our lab. We successfully synthesized a cubic Mn2FeSi phase using an annealing procedure similar to Mn2CoGa. The measured cubic lattice parameter of Mn2FeSi was 5.682 A. This is the first experimental report of this material to the best of our knowledge. Detailed analysis of relative intensities of different X-ray peaks revealed that the structure is most likely in an inverse Heusler phase, in agreement with theory. However, a substantial atomic-level disorder was also uncovered from XRD analysis that requires further investigation to understand its effect on its magnetism and half-metallicity. Mn2FeGe showed the existence of non-cubic phases that substantially weakened at high annealing temperatures.
Manganese inhibits the ability of astrocytes to promote neuronal differentiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giordano, Gennaro; Pizzurro, Daniella; VanDeMark, Kathryn
Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 {mu}M) impaired their ability to promote axonal and neurite outgrowth in hippocampal neurons. This effect of Mn appeared to be mediated by oxidative stress, as it was reversed by antioxidants (melatonin and PBN) and by increasing glutathione levels, while it was potentiated by glutathione depletion in astrocytes. As the extracellular matrixmore » protein fibronectin plays an important role in astrocyte-mediated neuronal neurite outgrowth, we also investigated the effect of Mn on fibronectin. Mn caused a concentration-dependent decrease of fibronectin protein and mRNA in astrocytes lysate and of fibronectin protein in astrocyte medium; these effects were also antagonized by antioxidants. Exposure of astrocytes to two oxidants, H{sub 2}O{sub 2} and DMNQ, similarly impaired their neuritogenic action, and led to a decreased expression of fibronectin. Mn had no inhibitory effect on neurite outgrowth when applied directly onto hippocampal neurons, where it actually caused a small increase in neuritogenesis. These results indicate that Mn, by targeting astrocytes, affects their ability to promote neuronal differentiation by a mechanism which is likely to involve oxidative stress.« less
Development of a process for quantifying the benefits of research : final report.
DOT National Transportation Integrated Search
2017-07-04
MnDOT Research Services funds and administers approximately 180 transportation research projects annually at a cost of slightly more than $3 million. This project developed an easy-to-apply process for quantifying the potential benefits of research a...
Máté, Zsuzsanna; Horváth, Edina; Papp, András; Kovács, Krisztina; Tombácz, Etelka; Nesztor, Dániel; Szabó, Tamás; Szabó, Andrea; Paulik, Edit
2017-04-01
Manganese (Mn) is a toxic heavy metal exposing workers in various occupational settings and causing, among others, nervous system damage. Metal fumes of welding, a typical source of Mn exposure, contain a complex mixture of metal oxides partly in nanoparticle form. As toxic effects of complex substances cannot be sufficiently understood by examining its components separately, general toxicity and functional neurotoxicity of a main pathogenic welding fume metal, Mn, was examined alone and combined with iron (Fe) and chromium (Cr), also frequently found in fumes. Oxide nanoparticles of Mn, Mn + Fe, Mn + Cr and the triple combination were applied, in aqueous suspension, to the trachea of young adult Wistar rats for 4 weeks. The decrease of body weight gain during treatment, caused by Mn, was counteracted by Fe, but not Cr. At the end of treatment, spontaneous and evoked cortical electrical activity was recorded. Mn caused a shift to higher frequencies, and lengthened evoked potential latency, which were also strongly diminished by co-application of Fe only. The interaction of the metals seen in body weight gain and cortical activity were not related to the measured blood and brain metal levels. Fe might have initiated protective, e.g. antioxidant, mechanisms with a more general effect.
NASA Astrophysics Data System (ADS)
Alam Venugopal, Narendra Kumar; Joseph, James
2016-02-01
Here we report the feasibility of forming 3D nanostructured hexacyanoferates of Cobalt and Manganese (Co-MnHCF) on GC surface by a facile electrochemical method. This 3D architecture on glassy carbon electrode characterised systematically by voltammetry and other physical characterisation techniques like Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Fourier transform Infrared spectroscopy (FTIR) etc,. Electrochemical Quartz crystal microbalance (EQCM) studies helped out to calculate the total mass change during Co-MnHCF formation. Electrochemical studies reveal that the formal redox potentials of both Co and MnHCF films remained close to that of newly formed Co-MnHCF hybrid films. These 3D modified films were successfully applied for two different electrochemical applications i) For pseudocapacitor studies in KNO3 medium ii) Investigated the electrocatalytic behaviour of redox film towards water oxidation reaction in alkaline medium. Electrochemical performances of newly formed Co-MnHCF are compared with their individual transition metal (Co, Mn) hexacyanoferrates. The resulting material shows a specific capacitance of 350 F g-1 through its fast reversible redox reaction of electrochemically formed Co-MnHCF modified film. Interestingly we showed the overpotential of 450 mV (from its thermodynamic voltage 1.2 V) to attain its optimum current density of 10 mA cm-2 for O2 evolution in alkaline medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id; Rismaningsih, Nurmanita; Ardiansah, Hafidh Rahman
Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the bestmore » CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.« less
NASA Astrophysics Data System (ADS)
Molin, S.; Jasinski, P.; Mikkelsen, L.; Zhang, W.; Chen, M.; Hendriksen, P. V.
2016-12-01
In this study two materials, MnCo2O4 and MnCo1.8Fe0.2O4 are studied as potential protective coatings for Solid Oxide Fuel Cell interconnects working at 750 °C. First powder fabrication by a modified Pechini method is described followed by a description of the coating procedure. The protective action of the coating applied on Crofer 22 APU is evaluated by following the area specific resistance (ASR) of the scale/coating for 5500 h including several thermal cycles. The coating is prepared by brush painting and has a porous structure after deposition. Post mortem microstructural characterization performed on the coated samples shows good protection against chromium diffusion from the chromia scale ensured by a formation of a dense reaction layer. This study shows, that even without high temperature sintering and/or reactive sintering it is possible to fabricate protective coatings based on MnCo spinels.
NASA Astrophysics Data System (ADS)
Sato, Kazunori; Dederichs, Peter H.; Katayama-Yoshida, Hiroshi
2007-02-01
We investigate the electronic structure and magnetic properties of AlN-, AlP-, AlAs-, AlSb-, InN-, InP-, InAs-, and InSb-based dilute magnetic semiconductors (DMS) with Mn impurities from first-principles. The electronic structure of DMS is calculated by using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method in connection with the local density approximation (LDA) and the LDA+U method. Describing the magnetic properties by a classical Heisenberg model, effective exchange interactions are calculated by applying magnetic force theorem for two impurities embedded in the CPA medium. With the calculated exchange interactions, TC is estimated by using the mean field approximation, the random phase approximation and the Monte Carlo simulation. It is found that the p-d exchange model [Dietl et al.: Science 287 (2000) 1019] is adequate for a limited class of DMS and insufficient to describe the ferromagnetism in wide gap semiconductor based DMS such as (Ga,Mn)N and the presently investigated (Al,Mn)N and (In,Mn)N.
Recio, Leslie; Hobbs, Cheryl; Caspary, William; Witt, Kristine L.
2012-01-01
The in vivo micronucleus (MN) assay has proven to be an effective measure of genotoxicity potential. However, sampling a single tissue (bone marrow) for a single indicator of genetic damage using the MN assay provides a limited genotoxicity profile. The in vivo alkaline (pH>13) Comet assay, which detects a broad spectrum of DNA damage, can be applied to a variety of rodent tissues following administration of test agents. To determine if the Comet assay is a useful supplement to the in vivo MN assay, a combined test protocol (MN/Comet assay) was conducted in male B6C3F1 mice and F344/N rats using four model genotoxicants: ethyl methanesulfonate (EMS), acrylamide (ACM), cyclophosphamide (CP), and vincristine sulfate (VS). Test compounds were administered on 4 consecutive days at 24-hour intervals (VS was administered to rats for 3 days); animals were euthanized 4 hours after the last administration. All compounds induced significant increases in micronucleated reticulocytes (MN-RET) in the peripheral blood of mice, and all but ACM induced MN-RET in rats. EMS and ACM induced significant increases in DNA damage, measured by the Comet assay, in multiple tissues of mice and rats. CP-induced DNA damage was detected in leukocytes and duodenum cells. VS, a spindle fiber disrupting agent, was negative in the Comet assay. Based on these results, the MN/Comet assay holds promise for providing more comprehensive assessments of potential genotoxicants, and the National Toxicology Program is presently using this combined protocol in its overall evaluation of the genotoxicity of substances of public health concern. PMID:20371966
Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen
2015-01-01
Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snydacker, David H.; Wolverton, Chris
The performance of olivine cathode materials can be improved using core/shell structures such as LiMnPO 4/LiFePO 4 and LiMnPO 4/LiNiPO 4. We use density functional theory to calculate the energetics, phase stability, and voltages of transition-metal mixing for a series of olivine phosphate materials. For LiMn 1–yFe yPO 4, LiFe 1–yNi yPO 4, and LiMn 1–yNi yPO 4, we find phase-separating tendencies with (mean-field) maximum miscibility gap temperatures of 120, 320, and 760 K respectively. At room temperature, we find that Mn is completely miscible in LiFePO 4, whereas Mn solubility in LiNiPO 4 is just 0.3%. Therefore, we suggestmore » that core/shell LiMnPO 4/LiNiPO 4 particles could be more effective at containing Mn in the particle core and limiting Mn dissolution into the electrolyte relative to LiMnPO 4/LiFePO 4 particles. We calculate shifts in redox potentials for dilute transition metals, M, substituted into Li xM'PO 4 host materials. Unmixed Li xMnPO 4 exhibits a redox potential of 4.0 V, but we find that dilute Mn in a LiNiPO 4 shell exhibits a redox potential of 4.3 V and therefore remains redox inactive at lower cathode potentials. We find that strain plays a large role in the redox potentials of some mixed systems (Li xMn 1–yFe yPO 4) but not others (Li xMn 1–yNi yPO 4).« less
Ghasemi, Shahram; Hosseini, Sayed Reza; Boore-Talari, Omid
2018-01-01
Manganese dioxide (MnO 2 ) needle-like nanostructures are successfully synthesized by a sonochemical method from an aqueous solution of potassium bromate and manganese sulfate. Also, hybride of MnO 2 nanoparticles wrapped with graphene oxide (GO) nanosheets are fabricated through an electrostatic coprecipitation procedure. With adjusting pH at 3.5, positive and negative charges are created on MnO 2 and on GO, respectively which can electrostatically attract to each other and coprecipitate. Then, MnO 2 /GO pasted on stainless steel mesh is electrochemically reduced by applying -1.1V to obtain MnO 2 /RGO nanohybrid. The structure and morphology of the MnO 2 and MnO 2 /RGO nanohybrid are examined by Raman spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDX), and thermal gravimetric analysis (TGA). The capacitive behaviors of MnO 2 and MnO 2 /RGO active materials on stainless steel meshes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge test and electrochemical impedance spectroscopy (EIS) by a three-electrode experimental setup in an aqueous solution of 0.5M sodium sulfate in the potential window of 0.0-1.0V. The electrochemical investigations reveal that MnO 2 /RGO exhibits high specific capacitance (C s ) of 375Fg -1 at current density of 1Ag -1 and good cycle stability (93% capacitance retention after 500 cycles at a scan rate of 200mVs -1 ). The obtained results give good prospect about the application of electrostatic coprecipitation method to prepare graphene/metal oxides nanohybrids as effective electrode materials for supercapacitors. Copyright © 2017 Elsevier B.V. All rights reserved.
FeOOH-loaded MnO2 nano-composite: An efficient emergency material for thallium pollution incident.
Chen, Meiqing; Wu, Pingxiao; Yu, Langfeng; Liu, Shuai; Ruan, Bo; Hu, Haihui; Zhu, Nengwu; Lin, Zhang
2017-05-01
A FeOOH-loaded MnO 2 nano-composite was developed as an emergency material for Tl(I) pollution incident. Structural characterizations showed that FeOOH successfully loaded onto MnO 2 , the nanosheet-flower structure and high surface area (191 m 2 g -1 ) of material contributed to the excellent performance for Tl(I) removal. FeOOH-loaded MnO 2 with a Fe/Mn molar ratio of 1:2 exhibited a noticeable enhanced capacity for Tl(I) removal compared to that of pure MnO 2 . The outstanding performance for Tl(I) removal involves in extremely high efficiency (achieved equilibrium and drinking water standard within 4 min) and the large maximum adsorption capacity (450 mg g -1 ). Both the control-experiment and XPS characterization proved that the removal mechanism of Tl(I) on FeOOH-loaded MnO 2 included adsorption and oxidation: the oxidation of MnO 2 played an important role for Tl(I) removal, and the adsorption of FeOOH loaded on MnO 2 enhanced Tl(I) purification at the same time. In-depth purification of Tl(I) had reach drinking water standards (0.1 μg L -1 ) at pH above 7, and there wasn't security risk produced from the dissolution of Mn 2+ and Fe 2+ . Moreover, the as-prepared material could be utilized as a recyclable adsorbent regenerated by using NaOH-NaClO binary solution. Therefore, the synthesized FeOOH-loaded MnO 2 in this study has the potential to be applied as an emergency material for thallium pollution incident. Copyright © 2017 Elsevier Ltd. All rights reserved.
Controlled mechnical modification of manganite surface with nanoscale resolution
Kelly, Simon J.; Kim, Yunseok; Eliseev, Eugene; ...
2014-11-07
We investigated the surfaces of magnetoresistive manganites, La1-xCaxMnO3 and La2-2xSr1+2xMn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ~0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitantmore » changes of the electronic properties.« less
Half-metallicity in the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O: Ab initio study
NASA Astrophysics Data System (ADS)
Li, N.; Yao, K. L.; Zhong, G. H.; Ching, W. Y.
2013-03-01
The density-functional theory (DFT) within the full potential linearized augmented plane wave (FPLAPW) method is applied to study the two-dimensional achiral soft ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6]·H2O. The phase stability, electronic structure, magnetic and conducting properties are investigated. Our results reveal that the compound has a stable ferrimagnetic ground state in good agreement with the experiment. From the spin density distribution, the spin magnetic moment of the compound is mainly from Cr3+ and Mn2+ ions with small contributions from the oxygen, nitrogen and carbon ions. The calculated electronic band structure predicts the compound to be a half-metal with the spin magnetic moment of 1.000 μB per molecule.
NASA Astrophysics Data System (ADS)
Kong, Junhan; Zhang, Wei; Zhang, Yubo; Xia, Minghao; Wu, Xiuling; Wang, Yongqian
2018-02-01
Several semiconductor nanomaterial devices are increasingly being applied in a variety of fields, especially in the treating of environmental pollutants. We have fabricated (MnO@TNTAs):Mn2+ with sandwich-like nanostructures composed of TiO2 nanotube arrays (TNTAs), Mn-doped TNTAs and MnO. The experimental procedure was a two-step synthesis: first, using anodic oxidation methods and then hydrothermal methods. We carried out many characterizations of the "sandwiches" in the nanoscale. From the field emission scanning electron microscopy images we found nanofibers lying on the highly-ordered nanotube arrays. The diameter of the nanotubes was about 50 nm but the size of the nanofibers varied. Energy dispersive spectroscopy demonstrated that the nanofibers contained a manganese element and x-ray diffraction patterns showed the peak of the manganosite phase. From ultraviolet-visible light spectra, it was found that the nanostructures had strong absorption activities under both ultraviolet and visible light radiation, while pure TNTAs had absorption only under ultraviolet light. The photodegradation experiments proved that the sandwich-like nanostructures had an excellent photocatalytic activity (92.5% after 240 min), which was a great improvement compared with pure TNTAs. In this way, the structures as a device at the nanoscale have a huge potential in controlling environmental pollution.
First-principles study of Mn-S codoped anatase TiO2
NASA Astrophysics Data System (ADS)
Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui
2018-04-01
In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.
NASA Astrophysics Data System (ADS)
Santos, V. E. O.; Celante, V. G.; Lelis, M. F. F.; Freitas, M. B. J. G.
2012-11-01
Chemical and electrochemical recycling methods for the Ni, Co, Zn and Mn from the positives electrodes of spent Ni-MH batteries were developed. The materials recycled by chemical precipitation have the composition β-Ni(OH)2, Co(OH)2, Zn(OH)2 and Mn3O4. The powder retains sulphate, nitrate and carbonate anions from the mother solution as well as adsorbed water. Studies using cyclic voltammetry show that the current density decreases for scan rates greater than 10 mV s-1 because of the formation of hydroxide films. The amounts of Ni2+, Co2+, Zn2+ and Mn2+ were obtained by analysis of the solution using the inductively coupled plasma with optical emission spectroscopy technique, which demonstrated that the electrodeposition method exhibits anomalous behaviour. The amount of deposited nickel ions is related to the composition of the sulfamate bath. The presence of manganese in the electrodeposits is due to the precipitation of Mn(OH)2, and Zn(OH)42- does not undergo reduction in the investigated potential range. The electrodeposited material contains Ni, Co, CoO, Co(OH)2, and Mn3O4. A charge efficiency of 83.7% was attained for the electrodeposits formed by the application of -1.1 V vs. Ag/AgCl at a charge density of -90 C cm-2. The dissolution of the electrodeposits depends on the applied potential.
DOE R&D Accomplishments Database
Argyriou, D. N.; Mitchell, J. F.; Chmaissem, O.; Short, S.; Jorgensen, J. D.; Goodenough, J. B.
1997-03-01
The crystal structure of the layered perovskite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} has been studied under hydrostatic pressure up to {approximately} 6 kbar, in the paramagnetic and ferromagnetic states, with neutron powder diffraction. The compressibility of the Mn-O apical bonds in the double layer of MnO{sub 6} octahedra changes sign from the paramagnetic insulator (PI) to the ferromagnetic metal (FM) state; in the Fm state the Mn-O-Mn linkage between MnO{sub 2} planes expands under applied pressure, whereas they contract in the PI state. This counterintuative behavior is interpreted in terms of exchange striction, which reflect the competition between super- and double-exchange. An increase of the Mn-moment with applied pressure in the FM state is consistent with a positive dT{sub C}/dP, as well as a cant angle {theta}{sub 0} between the magnetizations of neighboring MnO{sub 2} sheets that decreases with pressure.
Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro
2015-04-01
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Riojas-Rodríguez, Horacio; Solís-Vivanco, Rodolfo; Schilmann, Astrid; Montes, Sergio; Rodríguez, Sandra; Ríos, Camilo; Rodríguez-Agudelo, Yaneth
2010-01-01
Background Excessive exposure to manganese (Mn), an essential trace element, has been shown to be neurotoxic, especially when inhaled. Few studies have examined potential effects of Mn on cognitive functions of environmentally exposed children. Objective This study was intended to estimate environmental exposure to Mn resulting from mining and processing and to explore its association with intellectual function of school-age children. Methods Children between 7 and 11 years of age from the Molango mining district in central Mexico (n = 79) and communities with similar socioeconomic conditions that were outside the mining district (n = 93) participated in the cross-sectional evaluation. The revised version of the Wechsler Intelligence Scale for Children adapted for the Mexican population was applied. Concentrations of Mn in blood (MnB) and hair (MnH) were used as biomarkers of exposure. Results Exposed children had significantly higher median values for MnH (12.6 μg/g) and MnB (9.5 μg/L) than did nonexposed children (0.6 μg/g and 8.0 μg/L, respectively). MnH was inversely associated with Verbal IQ [β = −0.29; 95% confidence interval (CI), −0.51 to −0.08], Performance IQ (β = −0.08; 95% CI, −0.32 to 0.16), and Total Scale IQ (β = −0.20; 95% CI, −0.42 to 0.02). MnB was inversely but nonsignificantly associated with Total and Verbal IQ score. Age and sex significantly modified associations of MnH, with the strongest inverse associations in young girls and little evidence of associations in boys at any age. Associations with MnB did not appear to be modified by sex but appeared to be limited to younger study participants. Conclusions The findings from this study suggest that airborne Mn environmental exposure is inversely associated with intellectual function in young school-age children. PMID:20936744
Riojas-Rodríguez, Horacio; Solís-Vivanco, Rodolfo; Schilmann, Astrid; Montes, Sergio; Rodríguez, Sandra; Ríos, Camilo; Rodríguez-Agudelo, Yaneth
2010-10-01
Excessive exposure to manganese (Mn), an essential trace element, has been shown to be neurotoxic, especially when inhaled. Few studies have examined potential effects of Mn on cognitive functions of environmentally exposed children. This study was intended to estimate environmental exposure to Mn resulting from mining and processing and to explore its association with intellectual function of school-age children. Children between 7 and 11 years of age from the Molango mining district in central Mexico (n = 79) and communities with similar socioeconomic conditions that were outside the mining district (n = 93) participated in the cross-sectional evaluation. The revised version of the Wechsler Intelligence Scale for Children adapted for the Mexican population was applied. Concentrations of Mn in blood (MnB) and hair (MnH) were used as biomarkers of exposure. Exposed children had significantly higher median values for MnH (12.6 μg/g) and MnB (9.5 μg/L) than did nonexposed children (0.6 μg/g and 8.0 μg/L, respectively). MnH was inversely associated with Verbal IQ [β = -0.29; 95% confidence interval (CI), -0.51 to -0.08], Performance IQ (β = -0.08; 95% CI, -0.32 to 0.16), and Total Scale IQ (β = -0.20; 95% CI, -0.42 to 0.02). MnB was inversely but nonsignificantly associated with Total and Verbal IQ score. Age and sex significantly modified associations of MnH, with the strongest inverse associations in young girls and little evidence of associations in boys at any age. Associations with MnB did not appear to be modified by sex but appeared to be limited to younger study participants. The findings from this study suggest that airborne Mn environmental exposure is inversely associated with intellectual function in young school-age children.
Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey
2017-01-01
Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.
NASA Astrophysics Data System (ADS)
Radhamani, A. V.; Ramachandra Rao, M. S.
2017-05-01
Here we report on the tunable supercapacitance of the Mn3O4 beaded chains synthesized by a simple and low cost electro-spinning process. Tuning is achieved by controlled phase transformation of surface spinel Mn3O4 beaded chains to layered-birnessite MnO2 nanoflakes through galvanostatic charge-discharge cycling. Phase transformation rate is optimized to get maximum capacitance by controlling the parameters such as applied specific current value, number of galvanostatic charge-discharge cycles, micro-structure of working electrode material and the selection of potential range. A maximum specific capacitance of ∼445 F g-1 and areal capacitance of ∼495 mF cm-2 are obtained at current densities of 0.5 A g-1 and 0.125 mA cm-2 respectively. The superior performance in case of layered-spinel composites among similar nanostructures is due to high surface to volume ratio of the MnO2 nanoflakes formed from the Mn3O4 beaded chains which in turn give rise to large number of surface active sites for the redox reaction to take place. About 100% of capacity retention and coulombic efficiency are observed for ∼1000 cycles even at a higher current density of 7 A g-1. Morphological dependence of the phase transformation rate is investigated by preparing two different morphologies of Mn3O4viz., octahedrons and spherical nanoparticles.
Hollandites as a new class of multiferroics
Liu, Shuangyi; Akbashev, Andrew R.; Yang, Xiaohao; Liu, Xiaohua; Li, Wanlu; Zhao, Lukas; Li, Xue; Couzis, Alexander; Han, Myung-Geun; Zhu, Yimei; Krusin-Elbaum, Lia; Li, Jackie; Huang, Limin; Billinge, Simon J. L.; Spanier, Jonathan E.; O'Brien, Stephen
2014-01-01
Discovery of new complex oxides that exhibit both magnetic and ferroelectric properties is of great interest for the design of functional magnetoelectrics, in which research is driven by the technologically exciting prospect of controlling charges by magnetic fields and spins by applied voltages, for sensors, 4-state logic, and spintronics. Motivated by the notion of a tool-kit for complex oxide design, we developed a chemical synthesis strategy for single-phase multifunctional lattices. Here, we introduce a new class of multiferroic hollandite Ba-Mn-Ti oxides not apparent in nature. BaMn3Ti4O14.25, designated BMT-134, possesses the signature channel-like hollandite structure, contains Mn4+ and Mn3+ in a 1:1 ratio, exhibits an antiferromagnetic phase transition (TN ~ 120 K) with a weak ferromagnetic ordering at lower temperatures, ferroelectricity, a giant dielectric constant at low frequency and a stable intrinsic dielectric constant of ~200 (1-100 MHz). With evidence of correlated antiferromagnetic and ferroelectric order, the findings point to an unexplored family of structures belonging to the hollandite supergroup with multifunctional properties, and high potential for developing new magnetoelectric materials. PMID:25160888
Synthesis, structure and electromagnetic properties of Mn-Zn ferrite by sol-gel combustion technique
NASA Astrophysics Data System (ADS)
Wang, Wenjie; Zang, Chongguang; Jiao, Qingjie
2014-01-01
The electromagnetic absorbing behaviors of a thin coating fabricated by mixing Mn-Zn ferrite with epoxy resin (EP) were studied. The spinel ferrites Mn1-xZnxFe2O4 (x=0.2, 0.5 and 0.8) were synthesized with citrate acid as complex agent by sol-gel combustion method. The microstructure and surface morphology of Mn-Zn ferrite powders were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The complex permittivity and complex permeability of the fabricated ferrite/EP composites were investigated in terms of their contributions to the absorbing properties in the low frequency (10 MHz to 1 GHz). The microwave absorption of the prepared ferrite/EP composites could be tailored by matching the dielectric loss and magnetic loss and by controlling the doped metal ratio. The composites with the ferrite composition x=0.2 are found to show higher reflection loss compared with the composites with other compositions. It is proposed that the prepared composites can potentially be applied in electromagnetic microwave absorbing field.
Allakhverdiev, Suleyman I; Tsuchiya, Tohru; Watabe, Kazuyuki; Kojima, Akane; Los, Dmitry A; Tomo, Tatsuya; Klimov, Vyacheslav V; Mimuro, Mamoru
2011-05-10
In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured the redox potentials of the primary electron acceptor quinone molecule (Q(A)), i.e., E(m)(Q(A)/Q(A)(-)), of PS II and the energy difference between [P680·Phe a(-)·Q(A)] and [P680·Phe a·Q(A)(-)], i.e., ΔG(PhQ). The E(m)(Q(A)/Q(A)(-)) of A. marina was determined to be +64 mV without the Mn cluster and was estimated to be -66 to -86 mV with a Mn-depletion shift (130-150 mV), as observed with other organisms. The E(m)(Phe a/Phe a(-)) in Synechocystis was measured to be -525 mV with the Mn cluster, which is consistent with our previous report. The Mn-depleted downshift of the potential was measured to be approximately -77 mV in Synechocystis, and this value was applied to A. marina (-478 mV); the E(m)(Phe a/Phe a(-)) was estimated to be approximately -401 mV. These values gave rise to a ΔG(PhQ) of -325 mV for A. marina and -383 mV for Synechocystis. In the two cyanobacteria, the energetics in PS II were conserved, even though the potentials of Q(A)(-) and Phe a(-) were relatively shifted depending on the special pair, indicating a common strategy for electron transfer in oxygenic photosynthetic organisms.
Li, Na; Fu, Fenglian; Lu, Jianwei; Ding, Zecong; Tang, Bing; Pang, Jiabin
2017-01-01
Chromium-contaminated water is regarded as one of the biggest threats to human health. In this study, a novel magnetic mesoporous MnFe 2 O 4 @SiO 2 -CTAB composite was prepared by a facile one-step modification method and applied to remove Cr(VI). X-ray diffraction, scanning electron microscopy, transmission electron microscopy, specific surface area, and vibrating sample magnetometer were used to characterize MnFe 2 O 4 @SiO 2 -CTAB composites. The morphology analysis showed that the composites displayed a core-shell structure. The outer shell was mesoporous silica with CTAB and the core was MnFe 2 O 4 nanoparticles, which ensured the easy separation by an external magnetic field. The performance of MnFe 2 O 4 @SiO 2 -CTAB composites in Cr(VI) removal was far better than that of bare MnFe 2 O 4 nanoparticles. There were two reasons for the effective removal of Cr(VI) by MnFe 2 O 4 @SiO 2 -CTAB composites: (1) mesoporous silica shell with abundant CTA + significantly enhanced the Cr(VI) adsorption capacity of the composites; (2) a portion of Cr(VI) was reduced to less toxic Cr(III) by MnFe 2 O 4 , followed by Cr(III) immobilized on MnFe 2 O 4 @SiO 2 -CTAB composites, which had been demonstrated by X-ray photoelectron spectroscopy results. The adsorption of Cr(VI) onto MnFe 2 O 4 @SiO 2 -CTAB followed the Freundlich isotherm model and pseudo-second-order model. Tests on the regeneration and reuse of the composites were performed. The removal efficiency of Cr(VI) still retained 92.4% in the sixth cycle. MnFe 2 O 4 @SiO 2 -CTAB composites exhibited a great potential for the removal of Cr(VI) from water. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directional solidification of Bi-Mn alloys using an applied magnetic field
NASA Technical Reports Server (NTRS)
Decarlo, J. L.; Pirich, R. G.
1987-01-01
Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yi; Nelson, R.; Siddiqui, Elisha
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
Generalized multiband typical medium dynamical cluster approximation: Application to (Ga,Mn)N
Zhang, Yi; Nelson, R.; Siddiqui, Elisha; ...
2016-12-29
We generalize the multiband typical medium dynamical cluster approximation and the formalism introduced by Blackman, Esterling, and Berk so that it can deal with localization in multiband disordered systems with both diagonal and off-diagonal disorder with complicated potentials. We also introduce an ansatz for the momentum-resolved typical density of states that greatly improves the numerical stability of the method while preserving the independence of scattering events at different frequencies. Starting from the first-principles effective Hamiltonian, we apply this method to the diluted magnetic semiconductor Ga 1 - x Mn x N , and find the impurity band is completely localizedmore » for Mn concentrations x < 0.03 , while for 0.03 < x < 0.10 the impurity band has delocalized states but the chemical potential resides at or above the mobility edge. So, the system is always insulating within the experimental compositional limit ( x ≈ 0.10 ) due to Anderson localization. But, for 0.03 < x < 0.10 hole doping could make the system metallic, allowing double-exchange mediated, or enhanced, ferromagnetism. Finally, this developed method is expected to have a large impact on first-principles studies of Anderson localization.« less
Rahman, Mohammed M; Gruner, George; Al-Ghamdi, Mohammed Saad; Daous, Muhammed A; Khan, Sher Bahadar; Asiri, Abdullah M
2013-03-28
Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields.
2013-01-01
Background Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. Results The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. Conclusions As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis of carcinogenic chemical sensing, which could also be applied for the detection of hazardous chemicals in ecological, environmental, and health care fields. PMID:23537000
López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J.
2015-01-01
This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization. PMID:26442065
López-Rayo, Sandra; Nadal, Paloma; Lucena, Juan J
2015-01-01
This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.
QCD inequalities for the nucleon mass and the free energy of baryonic matter.
Cohen, Thomas D
2003-07-18
The positivity of the integrand of certain Euclidean space functional integrals for two flavor QCD with degenerate quark masses implies that the free energy per unit volume for QCD with a baryon chemical potential mu(B) (and zero isospin chemical potential) is greater than the free energy with an isospin chemical potential mu(I)=(2 mu(B)/N(c)) (and zero baryon chemical potential). The same result applies to QCD with any number of heavy flavors in addition to the two light flavors so long as the chemical potential is understood as applying to the light quark contributions to the baryon number. This relation implies a bound on the nucleon mass: there exists a particle X in QCD (presumably the pion) such that M(N)> or =(N(c) m(X)/2 I(X)) where m(X) is the mass of the particle and I(X) is its isospin.
Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Dan; Lavigne, Michele G.; Paulson, A.J.
2005-01-01
We examined the accumulation of manganese (Mn) in gill tissues of chemically nai??ve lobsters held in situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4-0.8 ??g/g/d (???16 ??g/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 ??g/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 ??g/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 ??g/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.
Draxler, Andrew F.J.; Sherrell, Robert M.; Wieczorek, Daniel; Lavigne, Michele G.; Paulson, Anthony J.
2005-01-01
We examined the accumulation of manganese (Mn) in gill tissues of chemically naïve lobsters heldin situ at six sites in Long Island Sound (LIS) for up to six weeks to evaluate the possible contribution of eutrophication-driven habitat quality factors to the 1999 mass mortality of American lobsters (Homarus americanus). These western LIS lobster habitats experience seasonal hypoxia, which results in redox-mobilized Mn being transferred to and deposited on the tissues of the lobsters. Manganese accumulated in gill tissue of lobsters throughout the study, but rates were highest at western and southern LIS sites, ranging from 3.4–0.8 μ g/g/d (~16 μg/g initial). The Baden-Eriksson observation that Mn accumulation in Norway lobsters (Nephrops norvegicus) is associated with ecosystem hypoxia is confirmed and extended to H. americanus. It seems likely that, after accounting for molting frequency, certain critical values may be applied to other lobster habitats of the NE US shelf. If a high proportion of lobsters in autumn have gill Mn concentrations exceeding 30 μg/g, then the habitats are likely experiencing some reduced oxygen levels. Manganese concentrations above 100 μg/g suggest exposure to conditions with the potential for lobster mortality should the temperatures of bottom waters become elevated, and gill concentrations above some higher level (perhaps 300 μg/g) indicate the most severe habitat conditions with a strong potential for hypoxia stress.
Antiferromagnetic MnN layer on the MnGa(001) surface
NASA Astrophysics Data System (ADS)
Guerrero-Sánchez, J.; Takeuchi, Noboru
2016-12-01
Spin polarized first principles total energy calculations have been applied to study the stability and magnetic properties of the MnGa(001) surface and the formation of a topmost MnN layer with the deposit of nitrogen. Before nitrogen adsorption, surface formation energies show a stable gallium terminated ferromagnetic surface. After incorporation of nitrogen atoms, the antiferromagnetic manganese terminated surface becomes stable due to the formation of a MnN layer (Mn-N bonding at the surface). Spin density distribution shows a ferromagnetic/antiferromagnetic arrangement in the first surface layers. This thermodynamically stable structure may be exploited to growth MnGa/MnN magnetic heterostructures as well as to look for exchange biased systems.
Pressure Effect on Hydrogen Tunneling and Vibrational Spectrum in α-Mn
NASA Astrophysics Data System (ADS)
Kolesnikov, Alexander; Podlesnyak, Andrey; Sadykov, Ravil; Antonov, Vladimir; Kuzovnikov, Michail; Ehlers, Georg; Granroth, Garrett
The pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height. Acknowledgments: Research at ORNL SNS was supported by the Sci. User Facilities Division, Office BES, US DOE, and was sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the US DOE. It used resources of the Nat. Energy Res. Sci. Comp. Center, which is supported by the Office of Sci. US DOE under Contract No. DE-AC02-05CH11231. A support by a Grant of the Program on Elementary Particle Physics, Fundamental Nuclear Physics and Nuclear Techn. RAS is also acknowledged.
NASA Astrophysics Data System (ADS)
Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa
2018-06-01
The potential in each state of charge (SOC) during charging of Li1.2Ni0.13Mn0.54Co0.13O2 is higher than that during discharging. In other words, the potential hysteresis occurs between charging and discharging. Furthermore, the potential in each SOC changes according to the charge-discharge operating conditions, indicating that the charge-discharge reaction mechanism is also affected. To clarify the effect of charge-discharge operating conditions on the electrochemical reaction, Li1.2Ni0.13Mn0.54Co0.13O2 was charged and discharged under various charge-discharge operating ranges, and open-circuit potential (OCP), crystal structure, and oxidation states of the transition metals were evaluated by electrochemical measurement, X-ray diffraction (XRD), and X-ray absorption fine structure (XAFS). These results indicate that OCP, lattice parameters, and oxidation states of the transition metals of Li1.2Ni0.13Mn0.54Co0.13O2 in each SOC are not constant. The XRD results indicate that two phases, namely, LiNi0.33Mn0.33Co0.33O2-like and Li2MnO3-like, exist in Li1.2Ni0.13Mn0.54Co0.13O2. For the LiNi0.33Mn0.33Co0.33O2-like phase, the relationship between OCP, lattice parameters, and oxidation states of the transition metals in each SOC is not affected by the charge-discharge operating conditions, indicating that extraction and insertion of lithium ions for the LiNi0.33Mn0.33Co0.33O2-like phase progresses at almost the same potential. Although the extraction and insertion of lithium ions for the Li2MnO3-like phase progresses at almost the same potential in the low-SOC region, the OCP and lattice parameter in each SOC in the high-SOC region are not constant. Therefore, the extraction of lithium ions from the Li2MnO3-like phase in the high-SOC region causes the potential hysteresis of Li1.2Ni0.13Mn0.54Co0.13O2.
Mn(II) Oxidation by the Multicopper Oxidase Complex Mnx: A Binuclear Activation Mechanism.
Soldatova, Alexandra V; Tao, Lizhi; Romano, Christine A; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial protein complex Mnx contains a multicopper oxidase (MCO) MnxG that, unusually, catalyzes the two-electron oxidation of Mn(II) to MnO 2 biomineral, via a Mn(III) intermediate. Although Mn(III)/Mn(II) and Mn(IV)/Mn(III) reduction potentials are expected to be high, we find a low reduction potential, 0.38 V (vs Normal Hydrogen Electrode, pH 7.8), for the MnxG type 1 Cu 2+ , the electron acceptor. Indeed the type 1 Cu 2+ is not reduced by Mn(II) in the absence of molecular oxygen, indicating that substrate oxidation requires an activation step. We have investigated the enzyme mechanism via electronic absorption spectroscopy, using chemometric analysis to separate enzyme-catalyzed MnO 2 formation from MnO 2 nanoparticle aging. The nanoparticle aging time course is characteristic of nucleation and particle growth; rates for these processes followed expected dependencies on Mn(II) concentration and temperature, but exhibited different pH optima. The enzymatic time course is sigmoidal, signaling an activation step, prior to turnover. The Mn(II) concentration and pH dependence of a preceding lag phase indicates weak Mn(II) binding. The activation step is enabled by a pK a > 8.6 deprotonation, which is assigned to Mn(II)-bound H 2 O; it induces a conformation change (consistent with a high activation energy, 106 kJ/mol) that increases Mn(II) affinity. Mnx activation is proposed to decrease the Mn(III/II) reduction potential below that of type 1 Cu(II/I) by formation of a hydroxide-bridged binuclear complex, Mn(II)(μ-OH)Mn(II), at the substrate site. Turnover is found to depend cooperatively on two Mn(II) and is enabled by a pK a 7.6 double deprotonation. It is proposed that turnover produces a Mn(III)(μ-OH) 2 Mn(III) intermediate that proceeds to the enzyme product, likely Mn(IV)(μ-O) 2 Mn(IV) or an oligomer, which subsequently nucleates MnO 2 nanoparticles. We conclude that Mnx exploits manganese polynuclear chemistry in order to facilitate an otherwise difficult oxidation reaction, as well as biomineralization. The mechanism of the Mn(III/IV) conversion step is elucidated in an accompanying paper .
Biocompatible ZnS:Mn quantum dots for reactive oxygen generation and detection in aqueous media
NASA Astrophysics Data System (ADS)
Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Bracho-Rincon, Dina P.; González-Feliciano, José A.; González, Carlos I.; Weiner, Brad R.; Morell, Gerardo
2015-12-01
We report here the versatility of Mn-doped ZnS quantum dots (ZnS:Mn QDs) synthesized in aqueous medium for generating reactive oxygen species and for detecting cells. Our experiments provide evidence leading to the elimination of Cd-based cores in CdSe/ZnS systems by substitution of Mn-doped ZnS. Advanced electron microscopy, X-ray diffraction, and optical spectroscopy were applied to elucidate the formation, morphology, and dispersion of the products. We study for the first time the ability of ZnS:Mn QDs to act as immobilizing agents for Tyrosinase (Tyr) enzyme. It was found that ZnS:Mn QDs show no deactivation of Tyr enzyme, which efficiently catalyzed the hydrogen peroxide (H2O2) oxidation and its eventual reduction (-0.063 V vs. Ag/AgCl) on the biosensor surface. The biosensor showed a linear response in the range of 12 μmol/L-0.1 mmol/L at low operation potential. Our observations are explained in terms of a catalase-cycled kinetic mechanism based on the binding of H2O2 to the axial position of one of the active copper sites of the oxy-Tyr during the catalase cycle to produce deoxy-Tyr. A singlet oxygen quantum yield of 0.62 in buffer and 0.54 in water was found when ZnS:Mn QDs were employed as a photosensitizer in the presence of a chemical scavenger and a standard dye. These results are consistent with a chemical trapping energy transfer mechanism. Our results also indicate that ZnS:Mn QDs are well tolerated by HeLa Cells reaching cell viabilities as high as 88 % at 300 µg/mL of QDs for 24 h of incubation. The ability of ZnS:Mn QDs as luminescent nanoprobes for bioimaging is also discussed.
Rare-earth-free high energy product manganese-based magnetic materials.
Patel, Ketan; Zhang, Jingming; Ren, Shenqiang
2018-06-14
The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.
Mn induced 1 × 2 reconstruction in the τ-MnAl(0 0 1) surface
NASA Astrophysics Data System (ADS)
Guerrero-Sánchez, J.; Takeuchi, Noboru
2018-05-01
We report on first principles total energy calculations to describe the structural, electronic and magnetic properties of MnAl(0 0 1) surfaces. We have concentrated in structural models having 1 × 1 and 1 × 2 periodicities, since recent experiments of the similar MnGa(0 0 1) surface have found 1 × 1 and 1 × 2 reconstructions. Our calculations show the existence of two stable structures for different ranges of chemical potential. A 1 × 1 surface is stable for Al-rich conditions, whereas a Mn-induced 1 × 2 reconstruction appears after increasing the Mn chemical potential up to Mn-rich conditions. It is important to notice that experimentally, Mn rich conditions are important for improved magnetic properties. The Mn layers in both structures have ferromagnetic arrangements, but they are aligned antiferromagnetically with the almost no magnetic Al atoms. Moreover, the on top Mn atoms, which produce the 1 × 2 reconstruction, align antiferromagnetically with the second layer Mn atoms. These findings are similar to those obtained experimentally in MnGa thin films grown by molecular beam epitaxy. Therefore, this method could also be used to grow the proposed MnAl films.
Blasco, Salvador; Cano, Joan; Clares, M Paz; García-Granda, Santiago; Doménech, Antonio; Jiménez, Hermas R; Verdejo, Begoña; Lloret, Francesc; García-España, Enrique
2012-11-05
The crystal structure of a binuclear Mn(III) complex of a scorpiand-like ligand (L) displays an unsupported single oxo bridging ligand with a Mn(III)-O-Mn(III) angle of 174.7°. Magnetic susceptibility measurements indicate strong antiferromagnetic coupling between the two metal centers. DFT calculations have been carried out to understand the magnetic behavior and to analyze the nature of the observed Jahn-Teller distortion. Paramagnetic (1)H NMR has been applied to rationalize the formation and magnetic features of the complexes formed in solution.
NASA Astrophysics Data System (ADS)
Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo
2018-05-01
As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.
Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo
2018-05-25
As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe 3 /CrSiTe 3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe 3 /CrSiTe 3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe 3 /CrSiTe 3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe 3 /CrSiTe 3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.
Mooney, Karen; McElnay, James C; Donnelly, Ryan F
2015-08-01
Microneedle (MN) arrays could offer an alternative method to traditional drug delivery and blood sampling methods. However, acceptance among key end-users is critical for new technologies to succeed. MNs have been advocated for use in children and so, paediatricians are key potential end-users. However, the opinions of paediatricians on MN use have been previously unexplored. The aim of this study was to investigate the views of UK paediatricians on the use of MN technology within neonatal and paediatric care. An online survey was developed and distributed among UK paediatricians to gain their opinions of MN technology and its use in the neonatal and paediatric care settings, particularly for MN-mediated monitoring. A total of 145 responses were obtained, with a completion response rate of 13.7 %. Respondents believed an alternative monitoring technique to blood sampling in children was required. Furthermore, 83 % of paediatricians believed there was a particular need in premature neonates. Overall, this potential end-user group approved of the MN technology and a MN-mediated monitoring approach. Minimal pain and the perceived ease of use were important elements in gaining favour. Concerns included the need for confirmation of correct application and the potential for skin irritation. The findings of this study provide an initial indication of MN acceptability among a key potential end-user group. Furthermore, the concerns identified present a challenge to those working within the MN field to provide solutions to further improve this technology. The work strengthens the rationale behind MN technology and facilitates the translation of MN technology from lab bench into the clinical setting.
Li, Xuemei; Dong, Fang; Xu, Nengneng; Zhang, Tao; Li, Kaixi; Qiao, Jinli
2018-05-09
The design of efficient, durable, and affordable catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is very indispensable in liquid-type and flexible all-solid-state zinc-air batteries. Herein, we present a high-performance bifunctional catalyst with cobalt and manganese oxides supported on porous carbon (Co 3 O 4 /MnO 2 /PQ-7). The optimized Co 3 O 4 /MnO 2 /PQ-7 exhibited a comparable ORR performance with commercial Pt/C and a more superior OER performance than all of the other prepared catalysts, including commercial Pt/C. When applied to practical aqueous (6.0 M KOH) zinc-air batteries, the Co 3 O 4 /MnO 2 /porous carbon hybrid catalysts exhibited exceptional performance, such as a maximum discharge peak power density as high as 257 mW cm -2 and the most stable charge-discharge durability over 50 h with negligible deactivation to date. More importantly, a series of flexible all-solid-state zinc-air batteries can be fabricated by the Co 3 O 4 /MnO 2 /porous carbon with a layer-by-layer method. The optimal catalyst (Co 3 O 4 /MnO 2 /PQ-7) exhibited an excellent peak power density of 45 mW cm -2 . The discharge potentials almost remained unchanged for 6 h at 5 mA cm -2 and possessed a long cycle life (2.5 h@5 mA cm -2 ). These results make the optimized Co 3 O 4 /MnO 2 /PQ-7 a promising cathode candidate for both liquid-type and flexible all-solid-state zinc-air batteries.
NASA Astrophysics Data System (ADS)
Brylewski, T.; Kruk, A.; Bobruk, M.; Adamczyk, A.; Partyka, J.; Rutkowski, P.
2016-11-01
The study describes CuxMn1.25-0.5xCo1.75-0.5xO4 (x = 0, 0.1, 0.3 and 0.5) spinels synthesized using EDTA gel processes in order to optimize the performance of high-quality spinel protective-conducting films deposited on steel interconnects. The powders obtained after 12 h of calcination in air at 1073 K are solely cubic spinels. Sintering these spinels for 12 h in air at 1423 K also leads to the formation of small amounts of CoO, Mn2O3 or CuO; the type of phase depends on the quantity of copper introduced into the manganese-cobalt lattice. The highest electrical conductivity at 1073 K is observed for Cu0.3Mn1.1Co1.6O4 (162 S·cm-1), which is closely correlated with the lowest activation energy of conduction over the entire temperature range (373≤T≤1073 K); the lowest conductivity is measured for Mn1.25Co1.75O4 (84 Sṡcm-1). The study confirms the suitability of the Cu0.3Mn1.1Co1.6O4 spinel as a potential material for the preparation of protective-conducting coatings on the surface of the DIN 50049 ferritic steel applied in IT-SOFC interconnects. The area-specific resistance of coated steel is 0.08 Ω·cm2, which is lower than that of bare steel after 300 h of oxidation at 1073 K. Cr vaporization tests show that the Cu0.3Mn1.1Co1.6O4 coating is efficient at blocking the outward diffusion of chromium.
Bingham, Marcus A; Simard, Suzanne W
2011-01-01
Facilitation of tree establishment by ectomycorrhizal (EM) networks (MNs) may become increasingly important as drought stress increases with climate change in some forested regions of North America. The objective of this study was to determine (1) whether temperature, CO2 concentration ([CO2]), soil moisture, and MNs interact to affect plant establishment success, such that MNs facilitate establishment when plants are the most water stressed, and (2) whether transfer of C and water between plants through MNs plays a role in this. We established interior Douglas-fir (Pseudotsuga menziesiivar.glauca) seedlings in root boxes with and without the potential to form MNs with nearby conspecific seedlings that had consistent access to water via their taproots. We varied temperature, [CO2], and soil moisture in growth chambers. Douglas-fir seedling survival increased when the potential existed to form an MN. Growth increased with MN potential under the driest soil conditions, but decreased with temperature at 800 ppm [CO2]. Transfer of 13C to receiver seedlings was unaffected by potential to form an MN with donor seedlings, but deuterated water (D2O) transfer increased with MN potential under ambient [CO2]. Chlorophyll fluorescence was reduced when seedlings had the potential to form an MN under high [CO2] and cool temperatures. We conclude that Douglas-fir seedling establishment in laboratory conditions is facilitated by MN potential where Douglas-fir seedlings have consistent access to water. Moreover, this facilitation appears to increase as water stress potential increases and water transfer via networks may play a role in this. These results suggest that conservation of MN potential may be important to forest regeneration where drought stress increases with climate change. PMID:22393502
Oxidation Of Manganese At Kimberley, Gale Crater: More Free Oxygen In Mars' Past?
NASA Technical Reports Server (NTRS)
Lanza, N. L.; Wiens, R. C.; Arvidson, R. E.; Clark, B. C.; Fischer, W. W.; Gellert, R.; Grotzinger, J. P.; Hurowitz, J. A.; McLennan, S. M.; Morris, R. V.;
2015-01-01
High Mn concentrations provide unique indicators of water-rich environments and their redox state. Very high-potential oxidants are required to oxidize Mn to insoluble, high-valence oxides that can precipitate and concentrate Mn in rocks and sediments; these redox potentials are much higher than those needed to oxidize Fe or S. Consequently, Mn-rich rocks on Earth closely track the rise of atmospheric oxygen. Given the association between Mn-rich rocks and the redox state of surface environments, observations of anomalous Mn enrichments on Mars raise similar questions about redox history, solubility and aqueous transport, and availability as a metabolic substrate. Our observations suggest that at least some of the high Mn present in Gale crater occurs in the form of Mn-oxides filling veins that crosscut sand-stones, requiring post-depositional precipitation as highly oxidizing fluids moved through the fractured strata after their deposition and lithification.
Insights into microbial involvement in desert varnish formation retrieved from metagenomic analysis.
Lang-Yona, Naama; Maier, Stefanie; Macholdt, Dorothea S; Müller-Germann, Isabell; Yordanova, Petya; Rodriguez-Caballero, Emilio; Jochum, Klaus P; Al-Amri, Abdullah; Andreae, Meinrat O; Fröhlich-Nowoisky, Janine; Weber, Bettina
2018-02-28
Desert varnishes are dark rock coatings observed in arid environments and might resemble Mn-rich coatings found on Martian rocks. Their formation mechanism is not fully understood and the possible microbial involvement is under debate. In this study, we applied DNA metagenomic Shotgun sequencing of varnish and surrounding soil to evaluate the composition of the microbial community and its potential metabolic function. We found that the α diversity was lower in varnish compared to soil samples (p value < 0.05), suggesting distinct populations with significantly higher abundance of Actinobacteria, Proteobacteria and Cyanobacteria within the varnish. Additionally, we observed increased levels of transition metal metabolic processes in varnish compared to soil samples. Nevertheless, potentially relevant enzymes for varnish formation were detected at low to insignificant levels in both niches, indicating no current direct microbial involvement in Mn oxidation. This finding is supported by quantitative genomic analysis, elemental analysis, fluorescence imaging and scanning transmission X-ray microscopy. We thus conclude that the distinct microbial communities detected in desert varnish originate from settled Aeolian microbes, which colonized this nutrient-enriched niche, and discuss possible indirect contributions of microorganisms to the formation of desert varnish. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Manganese Health Research Program (MHRP)
2008-01-01
NO3)2 Manganese sulphate or Manganese (II) sulphate – MnSO4 Manganese sulphide or Manganese (II) sulphide – MnS Manganese oxide – MnO Barium... sulphide or Manganese (II) sulphide – MnS 1344-43-0 Manganese oxide – MnO 7787-35-1 Barium manganate - BaMnO4 10294-64-1 Potassium manganate – K2MnO4...Characterization of welding fumes and their potential neurotoxic effects. International Workshop: Neurotoxic Metals- Lead, Mercury , and Manganese
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
NASA Astrophysics Data System (ADS)
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
Satpathy, Deepmala; Reddy, M. Vikram; Dhal, Soumya Prakash
2014-01-01
Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future. PMID:24995308
Harangi, Sándor; Baranyai, Edina; Fehér, Milán; Tóth, Csilla Noémi; Herman, Petra; Stündl, László; Fábián, István; Tóthmérész, Béla; Simon, Edina
2017-05-01
Many oxbows are contaminated by Fe and Mn as a consequence of the elemental concentration of sediment and water originating from the Upper Tisza Region of Hungary. The phenomenon is partly caused by anthropogenic activities and mainly due to the geochemical characteristics of the region. The effects of Fe and Mn on the aquatic ecosystem of these wetlands were investigated in a model experiments in this study. Survival, individual body weight and the elemental concentrations of organs were determined in common carp (Cyprinus carpio) juveniles reared in Fe and Mn contaminated media (treatment 1: Fe 0.57 mg L -1 , Mn 0.29 mg L -1 , treatment 2: Fe 0.57 mg L -1 , Mn 0.625 mg L -1 , treatment 3: Fe 1.50 mg L -1 , Mn 0.29 mg L -1 , treatment 4: Fe 1.50 mg L -1 , Mn 0.625 mg L -1 and control: Fe 0.005 mg L -1 , Mn 0.003 mg L -1 ), for rearing time of 49 days. The treatment with Fe and Mn did not have any effect on the survival data and individual body weight in the levels tested. The highest concentration of Fe and Mn was found in the liver and brain of carp juveniles, while the lowest concentration of these elements occurred in the muscular tissue and gills. The treatment where Fe and Mn were applied in the highest concentrations resulted in a statistically higher level of these elements in the brain, grills and muscle tissues. The treatment where only Mn was present in the highest concentration caused increased level of Mn only in the liver. We found metal accumulation in almost every organ; however, the applied concentrations and exposure time did not affect the survival and average body weight of carp juveniles.
Tsui, Emily Y.; Agapie, Theodor
2013-01-01
Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese–oxido cubane clusters [MMn3O4] (M = Sr2+, Zn2+, Sc3+, Y3+) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese–tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese–dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer. PMID:23744039
Pathways of inhalation exposure to manganese in children ...
Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a
NASA Astrophysics Data System (ADS)
Heavens, N. G.
2017-06-01
The Mars Orbiter Laser Altimeter (MOLA) on board Mars Global Surveyor (MGS) made > 108 measurements of the reflectivity of Mars at 1064 nm (R1064) by both active sounding and passive radiometry. Past studies of R1064 neglected the effects of atmospheric opacity and viewing geometry on both active and passive measurements and also identified a potential calibration issue with passive radiometry. Therefore, as yet, there exists no acceptable reference R1064 to derive a column opacity product for atmospheric studies and planning future orbital lidar observations. Here, such a reference R1064 is derived by seeking R1064M,N: a Minnaert-corrected normal albedo under clear conditions and assuming minimal phase angle dependence. Over darker surfaces, R1064M,N and the absolute level of atmospheric opacity were estimated from active sounding. Over all surfaces, the opacity derived from active sounding was used to exclude passive radiometry measurements made under opaque conditions and estimate R1064M,N. These latter estimates then were re-calibrated by comparison with RM,N derived from Hubble Space Telescope (HST) observations over areas of approximately uniform reflectivity. Estimates of R1064M,N from re-calibrated passive radiometry typically agree with HST observations within 10%. The resulting R1064M,N is then used to derive and quantify the uncertainties of a column opacity product, which can be applied to meteorological and climatological studies of Mars, particularly to detect and measure mesoscale cloud/aerosol structures.
NASA Astrophysics Data System (ADS)
Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.
2018-01-01
The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.
Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers
NASA Astrophysics Data System (ADS)
Sharma, Venus; Srivastava, Sunita
2018-04-01
Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.
Leung, Kevin
2016-12-10
The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
NASA Astrophysics Data System (ADS)
Zhang, Xiufeng; Tan, Xiumin; Yi, Yuejun; Liu, Weizao; Li, Chun
2017-11-01
With the depletion of high-grade manganese ores, Mn ore tailings are considered valuable secondary resources. In this study, a process combining high-gradient magnetic separation (HGMS) with hydrometallurgical methods is proposed to recycle fine-grained Mn tailings. The Mn tailings were treated by HGMS at 12,500 G to obtain a Mn concentrate of 30% Mn with the recovery efficiency of 64%. The Mn concentrate could be used in the ferromanganese industry. To recover Mn further, the nonmagnetic fraction was leached by SO2 in an H2SO4 solution. Hydrogen peroxide was added to the leachate to oxidize Fe2+ to Fe3+, and the solution pH was adjusted to 5.0-5.5 with ammonia to remove Al, Fe, and Si impurities. The purified solution was reacted with NH4HCO3, and a saleable product of MnCO3 with 97.9% purity was obtained. The combined process can be applied to Mn recovery from finely dispersed weakly magnetic Mn ores or tailings.
Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.
Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A
2017-11-21
Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.
Polarity dependence of Mn incorporation in (Ga,Mn)N superlattices
NASA Astrophysics Data System (ADS)
Tropf, L.; Kunert, G.; Jakieła, R.; Wilhelm, R. A.; Figge, S.; Grenzer, J.; Hommel, D.
2016-03-01
In the context of recent efforts to combine high Mn concentrations in (Ga,Mn)N with a pronounced p-type carrier density, (Ga,Mn)N/GaN:Mg-superlattices have been fabricated using plasma-assisted molecular beam epitaxy. Profiles of the dopant atomic densities in the heterostructures are obtained by secondary ion mass spectroscopy. They show an abrupt drop of two to three orders of magnitude in both Mn and Mg concentrations after the first GaN:Mg layer above a critical Mg-flux. Scanning electron microscopy before and after selective etching reveals a polarity inversion from originally Ga-face to N-face GaN in samples in which high Mg fluxes were applied. From our observations, we are able to draw an analogy between the impurity incorporation laws of Mg and Mn.
Li, Hui; Cho, Kyeongjae; Li, Shunfang; Wang, Weichao
2018-06-13
Ternary oxide nano-clusters compared to unary metallic and binary ones potentially exhibit more remarkable properties due to their higher stoichiometric flexibility in addition to cluster size variations. Herein, by combining with the structural searching scheme CALYPSO, we have built a series of Mn-mullite oxide clusters (SmxMnyOz)n {(xyz) = (125); (115); n = 1-4, 8} prior to investigation of their geometric and electronic structures via first-principles calculations. In small size regime (n < 4), (SmxMnyOz)n prefer nonstoichiometric (Sm1Mn1O5)n phases composed of nonmagnetic MnO4 tetrahedrons. When n ≧ 4, the clusters tend to develop as stoichiometric (Sm1Mn2O5)n species, including magnetic MnOn polyhedrons and Mn-Mn dimers, which contribute 3d-orbitals (dz2 and/or dx2-y2) around the Fermi levels. The different magnetic behaviors of nonstoichiometric and stoichiometric species originate from the distinct couplings of MnOn polyhedronal units, wherein Mn atoms experience different ligand fields and thus display different spin states. Such findings enable the tuning of electronic properties and potential applications in heterogeneous catalysis, electrochemical catalysis, and the related fields via engineering cluster size and stoichiometry.
Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics
NASA Astrophysics Data System (ADS)
Aghazadeh, Mustafa; Asadi, Maryam; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush
2016-02-01
The first time pulsed base (OH-) electrogeneration to the cathodic electrodeposition of MnO2 in nitrate bath was applied and MnO2 nanorods were obtained. The deposition experiments were performed under a pulse current mode with typical on-times and off-times (ton = 10 ms and toff = 50 ms) and a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterization with XRD and FTIR revealed that the prepared MnO2 is composed of both α and γ phases. Morphological evaluations through SEM and TEM revealed that the prepared MnO2 contains nanorods of relative uniform structures (with an average diameter of 50 nm). The electrochemical measurements through cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures reveal an excellent capacitive behavior with specific capacitance values of 242, 167 and 98 F g-1 under the applied current densities of 2, 5 and 10 A g-1, respectively. Also, excellent long-term cycling stabilities of 94.8%, 89.1%, and 76.5% were observed after 1000 charge-discharge cycles at the current densities of 2, 5 and 10 A g-1.
NASA Astrophysics Data System (ADS)
Gurusiddesh, M.; Madhu, B. J.; Shankaramurthy, G. J.
2018-05-01
Electrically conducting Polyaniline (PANI)/Co0.5Mn0.5Fe2O4 nanocomposites are synthesized by in situ polymerization of aniline monomer in the presence of Co0.5Mn0.5Fe2O4 nanoparticles. Structural studies on the synthesized samples have been carried out using X-ray diffraction technique, Field emission scanning electron microscopy and Energy dispersive X-ray spectroscopy. Frequency dependent ac conductivity studies on the prepared samples revealed that conductivity of the composite is high compared to Co0.5Mn0.5Fe2O4 nanoparticles. Further, both the samples exhibited hysteresis behavior under the applied magnetic field. Electromagnetic interference (EMI) shielding effectiveness of both the samples decreases with increase in the applied frequency in the studied frequency range. Maximum shielding effectiveness (SE) of 31.49 dB and 62.84 dB were obtained for Co0.5Mn0.5Fe2O4 nanoparticles and PANI/Co0.5Mn0.5Fe2O4 nanocomposites respectively in the studied frequency range. Observed higher EMI shielding in the composites was attributed to its high electrical conductivity.
NASA Technical Reports Server (NTRS)
Colson, Russell O.; Haskin, Larry A.; Crane, Daniel
1990-01-01
Results are presented on determinations of reduction potentials and their temperature dependence of selected ions in diopsidic melt, by using linear sweep voltammetry. Diffusion coefficients were measured for cations of Eu, Mn, Cr, and In. Enthalpies and entropies of reduction were determined for the cations V(V), Cr(3+), Mn(2+), Mn(3+), Fe(2+), Cu(2+), Mo(VI), Sn(IV), and Eu(3+). Reduction potentials were used to study the structural state of cations in the melt.
Bouacem, Khelifa; Rekik, Hatem; Jaouadi, Nadia Zaraî; Zenati, Bilal; Kourdali, Sidali; El Hattab, Mohamed; Badis, Abdelmalek; Annane, Rachid; Bejar, Samir; Hacene, Hocine; Bouanane-Darenfed, Amel; Jaouadi, Bassem
2018-01-01
Two extracellular peroxidases from Bjerkandera adusta strain CX-9, namely a lignin peroxidase (called LiP BA45) and manganese peroxidase (called MnP BA30), were purified simultaneously by applying successively, ammonium sulfate precipitation-dialysis, Mono-S Sepharose anion-exchange and Sephacryl S-200 gel filtration and biochemically characterized. The sequence of their NH 2 -terminal amino acid residues showed high homology with those of fungi peroxidases. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzymes MnP BA30 and LiP BA45 were a monomers with a molecular masses 30125.16 and 45221.10Da, respectively. While MnP BA30 was optimally active at pH 3 and 70°C, LiP BA45 showed optimum activity at pH 4 and 50°C. The two enzymes were inhibited by sodium azide and potassium cyanide, suggesting the presence of heme-components in their tertiary structures. The K m and V max for LiP BA45 toward 2,4-Dichlorolphenol (2,4-DCP) were 0.099mM and 9.12U/mg, respectively and for MnP BA30 toward 2,6-Dimethylphenol (2,6-DMP), they were 0.151mM and 18.60U/mg, respectively. Interestingly, MnP BA30 and LiP BA45 demonstrated higher catalytic efficiency than that of other tested peroxidases (MnP, LiP, HaP4, and LiP-SN) and marked organic solvent-stability and dye-decolorization efficiency. Data suggest that these peroxidases may be considered as potential candidates for future applications in distaining synthetic-dyes. Copyright © 2017 Elsevier B.V. All rights reserved.
Kang, Yu-Tien; Liao, Yi-Sheng; Hsieh, Ching-Liang
2015-01-01
Background The effects of transcutaneous electric nerve stimulation (TENS) and electroacupuncture (EA) on the cerebral cortex are largely unclear. The purpose of the present study was to investigate the effect of TENS and EA on the cerebral cortex by examining their effect on the median nerve-somatosensory evoked potentials (MN-SEPs). Methods Twenty volunteers were studied. The cortical and cervical spinal potentials were recorded by median nerve stimulation at the left wrist. Sham TENS, 2 Hz TENS and 2 Hz EA were applied to both ST36 and ST37. MN-SEPs were recorded during sham TENS, 2 Hz TENS and 2 Hz EA, with at least 1 week interval for each subject. One-way analysis of variance was used to determine the differences in latency and amplitude of the MN-SEPs observed in the stimulation and post-stimulation periods compared with baseline. Scheffe's post hoc correction was employed to identify pairwise differences. Results No differences in mean latency were found between the stimulation procedures during the stimulation and post-stimulation periods. 2 Hz EA but not sham TENS or 2 Hz TENS caused higher mean amplitudes in N20 and N30 during the stimulation and post-stimulation periods. Conclusions EA, but not TENS, induces changes in certain components of the signal. PMID:25432425
Klink, Agnieszka; Polechońska, Ludmiła; Cegłowska, Aurelia; Stankiewicz, Andrzej
2016-07-01
The contents of Cd, Cu, Fe, Mn, Ni, Pb, and Zn in leaves of Typha latifolia (broadleaf cattail), water and bottom sediment from 72 study sites designated in different regions of Poland were determined using atomic absorption spectrometry. The aim of the study was to evaluate potential use of T. latifolia in biomonitoring of trace metal pollution. The self-organizing feature map (SOFM) identifying groups of sampling sites with similar concentrations of metals in cattail leaves was able to classify study sites according to similar use and potential sources of pollution. Maps prepared for water and bottom sediment showed corresponding groups of sampling sites which suggested similarity of samples features. High concentrations of Fe, Cd, Cu, and Ni were characteristic for industrial areas. Elevated Pb concentrations were noted in regions with intensive vehicle traffic, while high Mn and Zn contents were reported in leaves from the agricultural area. Manganese content in leaves of T. latifolia was high irrespectively of the concentrations in bottom sediments and water so cattail can be considered the leaf accumulator of Mn. Once trained, SOFMs can be applied in ecological investigations and could form a future basis for recognizing the type of pollution in aquatic environments by analyzing the concentrations of elements in T. latifolia.
Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Goun; Jung, Kyeong Youl; Lee, Choul-Ho
Highlights: • Al–La–Mn oxides were prepared using spray pyrolysis. • Al–La–Mn oxides exhibit large and uniform pore sizes. • Mesoporous Al–La–Mn oxides were compared with those prepared by conventional precipitation. • Mesoporous Al–La–Mn oxides show superior activity in decomposition of hydrogen peroxide. - Abstract: Mesoporous Al–La–Mn oxides are prepared via spray pyrolysis and are applied to the catalytic decomposition of hydrogen peroxide. The characteristics of the mesoporous Al–La–Mn oxides are examined using N{sub 2} adsorption, X-ray diffraction, and X-ray fluorescence measurements. The surface area and pore size of the Al–La–Mn oxides prepared via spray pyrolysis are larger than those ofmore » the Al–La–Mn oxides prepared using a precipitation method. The catalytic performance of the materials during the decomposition of hydrogen peroxide is examined in a pulse-injection reactor. It is confirmed that the mesoporous Al–La–Mn oxides prepared via spray pyrolysis exhibit higher catalytic activity and stability in the decomposition of hydrogen peroxide than Al–La–Mn oxides prepared using a conventional precipitation method.« less
Phosphorescence detection of manganese(VII) based on Mn-doped ZnS quantum dots
NASA Astrophysics Data System (ADS)
Deng, Pan; Lu, Li-Qiang; Cao, Wei-Cheng; Tian, Xi-Ke
2017-02-01
The phosphorescent L-cysteine modified manganese-doped zinc sulfide quantum dots (L-cys-MnZnS QDs) was developed for a highly sensitive detection of permanganate anions (MnO4-). L-cys-MnZnS QDs, which were easily synthesized in aqueous media using safe and low-cost materials, can emit intense phosphorescence even though the solution was not deoxygenated. However, the phosphorescence of L-cys-Mn-ZnS QDs was strongly quenched by MnO4- ascribed to the oxidation of L-cys and the increase of surface defects on L-cys-MnZnS QDs. Under the optimal conditions, L-cys-MnZnS QDs offer high selectivity over other anions for MnO4- determination, and good linear Stern-Volmer equation was obtained for MnO4- in the range of 0.5-100 μM with a detection limit down to 0.24 μM. The developed method was finally applied to the detection of MnO4- in water samples, and the spike-recoveries fell in the range of 95-106%.
Kinetic Investigations of SiMn Slags From Different Mn Sources
NASA Astrophysics Data System (ADS)
Kim, Pyunghwa Peace; Tangstad, Merete
2018-06-01
The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.
Micronucleus assay in aquatic animals.
Bolognesi, Claudia; Hayashi, Makoto
2011-01-01
Aquatic pollutants produce multiple consequences at organism, population, community and ecosystem level, affecting organ function, reproductive status, population size, species survival and thus biodiversity. Among these, carcinogenic and mutagenic compounds are the most dangerous as their effects may exert a damage beyond that of individual and may be active through several generations. The application of genotoxicity biomarkers in sentinel organisms allows for the assessment of mutagenic hazards and/or for the identification of the sources and fate of the contaminants. Micronucleus (MN) test as an index of accumulated genetic damage during the lifespan of the cells is one of the most suitable techniques to identify integrated response to the complex mixture of contaminants. MN assay is today widely applied in a large number of wild and transplanted aquatic species. The large majority of studies or programmes on the genotoxic effect of the polluted water environment have been carried out with the use of bivalves and fish. Haemocytes and gill cells are the target tissues most frequently considered for the MN determination in bivalves. The MN test was widely validated and was successfully applied in a large number of field studies using bivalves from the genera Mytilus. MN in fish can be visualised in different cell types: erythrocytes and gill, kidney, hepatic and fin cells. The use of peripheral erythrocytes is more widely used because it avoids the complex cell preparation and the killing of the animals. The MN test in fish erythrocytes was validated in laboratory with different species after exposure to a large number of genotoxic agents. The erythrocyte MN test in fish was also widely and frequently applied for genotoxicity assessment of freshwater and marine environment in situ using native or caged animals following different periods of exposure. Large interspecies differences in sensitivity for MN induction were observed. Further validation studies are needed in order to better characterise the different types of nuclear alterations and to clarify the role of biotic and abiotic factors in interspecies and inter-individual variability.
Magnetization reversal behavior and magnetocaloric effect in SmCr0.85Mn0.15O3 chromites
NASA Astrophysics Data System (ADS)
Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Patra, Ajit K.; Kholkin, Andrei L.; Panwar, Neeraj
2017-01-01
We have synthesized SmCr0.85Mn0.15O3 (SCMO) chromites through the ceramic route. The compound crystallized into a distorted orthorhombic structure with the Pnma space group, which was confirmed from the Rietveld refinement of x-ray powder diffraction patterns. Neel temperature, noticed at 168 K from the temperature variation of magnetisation, smaller than that reported for SmCrO3, indicated the influence of Mn3+ substitution on decreasing the antiferromagnetic ordering. A phenomenon of magnetization reversal was observed in the SCMO compound. At low magnetic fields, i.e., 500 Oe, a single compensation temperature (defined as the temperature where magnetization became zero) around 106 K was observed in the field cooled magnetization curve. However, with the application of higher magnetic fields, i.e., under an applied field of 1000 Oe, a second compensation temperature was noticed around 8 K. With a further increase in the magnetic field, the magnetization remained positive in both field cooled and zero field cooled protocols. A normal magnetocaloric effect was observed through an indirect method of field dependence of magnetisation measured in the temperature range of 2-152 K. The magnetic entropy change (-ΔS) of ˜11.36 J kg-1 K-1 along with the relative cooling power (RCP) of ˜175.89 J kg-1 was obtained in the temperature range of 10-20 K for an applied field of 90 kOe, and their values at 50 kOe applied field were, respectively, almost twenty and forty times larger in magnitude in comparison to those for the SmCrO3 compound. The relatively large values of ΔS and RCP make the studied compound a potential candidate for magnetic refrigeration applications at low temperatures.
Manganese cycles in Arctic marine sediments - Climate signals or diagenesis?
NASA Astrophysics Data System (ADS)
März, C.; Stratmann, A.; Eckert, S.; Schnetger, B.; Brumsack, H.-J.
2009-04-01
In comparison to sediments from other parts of the world ocean, the inorganic geochemistry of Arctic Ocean sediments is poorly investigated. However, marked light to dark brown layers are well-known features of Quaternary Arctic sediments, and have been related to variable Mn contents. Brown layers represent intervals relatively rich in Mn (often > 1 wt.%), while yellowish-greyish intervals contain less Mn. As these brown layers are widespread in pelagic Quaternary deposits of the Arctic Ocean, there are attempts to use them as stratigraphic, age-equivalent marker horizons that are genetically related to global climate changes (e.g. Jakobsson et al., 2000; Löwemark et al., 2008). In the Arctic Ocean, other conventional stratigraphic methods often fail, therefore the use of Mn-rich layers as a chemostratigraphic tool seems to be a promising approach. However, several inorganic-geochemical and modelling studies of Mn cycles in the Arctic as well as in other parts of the world ocean have shown that multiple Mn layers in marine sediments can be created by non-steady state diagenetic processes, i.e. secondary Mn redistribution in the sediment due to microbially mediated dissolution-reprecipitation reactions (e.g. Li et al., 1969; Gobeil et al., 1997; Burdige, 2006; Katsev et al., 2006). Such biogeochemical processes can lead to rapid migration or fixation of redox boundaries in the sediment, resulting in the formation or (partial) destruction of metal-rich layers several thousands of years after sediment deposition. As this clearly would alter primary paleoenvironmental signals recorded in the sediments, we see an urgent need to unravel the real stratigraphic potential of Arctic Mn cycles before they are readily established as standard tools. For this purpose, we are studying Mn cycles in Arctic Ocean sediments recovered during R/V Polarstern expedition ARK XXIII/3 on the Mendeleev Ridge (East Siberian Sea). First results of pore water and sediment composition (analysed by ICP-OES and WD-XRF) indicate that certain Mn-rich layers are currently dissolving, while others are forming. This internal Mn re-distribution, while being more pronounced in some locations than in others, also has an impact on related trace metal distributions (e.g. Co, Cu, Ni, Mo). As Mn diagenesis obviously occurs in most cores studied so far (pelagic depositional areas unaffected by turbidites), we conclude that caution has to be taken when applying Mn layers as stratigraphic tools. In addition to more sensitive analyses (acid digestions and HR-ICP-MS measurements), we will apply methods like sequential Mn extraction, X-ray diffraction and electron microscopy to study these Mn-rich layers. These data will be put into a broader context by comparing them to parameters like magnetic susceptibility, grain size distribution, sediment colour or porosity. Hopefully, this will result in a better understanding of Mn biogeochemistry in the Arctic Ocean, including its application as paleoenvironmental proxy. Burdige, D.J. (2006) Geochemistry of marine sediments. Princeton University Press, 609 pp. Gobeil, C., Macdonald, R.W., Sundby, B. (1997) Diagenetic separation of cadmium and manganese in suboxic continental margin sediments. Geochim. Cosmochim. Acta 61, 4647-4654. Jakobsson, M., Løvlie, R., Al-Hanbali, H., Arnold, E.M., Backman, J., Mörth, M. (2000) Manganese and color cycles in Artic Ocean sediments constrain Pleistocene chronology. Geology 8, 23-26. Katsev, S., Sundby, B., Mucci, A. (2006) Modeling vertical excursions of the redox boundary in sediments: Application to deep basins of the Arctic Ocean. Limnol. Oceanogr. 51, 1581-1593. Li, Y.-H., Bischoff, J. Mathieu, G. (1969) Migration of manganese in Arctic Basin sediments. Earth Planet. Sci. Lett. 7, 265-270. Löwemark, L., Jakobsson, M., Mörth, M., Backman, J. (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar. Res. 27, 105-113.
Antiferromagnetic spin Seebeck effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M.; Zhang, Wei; KC, Amit
2016-03-03
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less
Antiferromagnetic Spin Seebeck Effect
NASA Astrophysics Data System (ADS)
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
NASA Astrophysics Data System (ADS)
Nelson, Ryky; Berlijn, Tom; Ku, Wei; Moreno, Juana; Jarrell, Mark
2013-03-01
(Ga,Mn)N is a promising material for spintronics due to its potential high currie temperature (Tc). However, unlike for (Ga,Mn)As, some of the experiments on (Ga,Mn)N are still controversial on the intrinsic nature of the magnetism. Furthermore, under debate are the spin and charge state of the disordered Mn impurities in (Ga,Mn)N and whether its local moments interact via the same exchange mechanism as in (Ga,Mn)As. To address these issues we will present ab-initio-based analyses of disorder and correlation via the recently developed Wannier function based methods.
MnO2/CNT supported Pt and PtRu nanocatalysts for direct methanol fuel cells.
Zhou, Chunmei; Wang, Hongjuan; Peng, Feng; Liang, Jiahua; Yu, Hao; Yang, Jian
2009-07-07
Pt/MnO2/carbon nanotube (CNT) and PtRu/MnO2/CNT nanocomposites were synthesized by successively loading hydrous MnO2 and Pt (or PtRu alloy) nanoparticles on CNTs and were used as anodic catalysts for direct methanol fuel cells (DMFCs). The existence of MnO2 on the surface of CNTs effectively increases the proton conductivity of the catalyst, which then could remarkably improve the performance of the catalyst in methanol electro-oxidation. As a result, Pt/MnO2/CNTs show higher electrochemical active surface area and better methanol electro-oxidation activity, compared with Pt/CNTs. As PtRu alloy nanoparticles were deposited on the surface of MnO2/CNTs instead of Pt, the PtRu/MnO2/CNT catalyst shows not only excellent electro-oxidation activity to methanol with forward anodic peak current density of 901 A/gPt but also good CO oxidation ability with lower preadsorbed CO oxidation onset potential (0.33 V vs Ag/AgCl) and peak potential (0.49 V vs Ag/AgCl) at room temperature.
A proposed model membrane and test method for microneedle insertion studies.
Larrañeta, Eneko; Moore, Jessica; Vicente-Pérez, Eva M; González-Vázquez, Patricia; Lutton, Rebecca; Woolfson, A David; Donnelly, Ryan F
2014-09-10
A commercial polymeric film (Parafilm M(®), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M(®) (PF) and also into excised neonatal porcine skin. Parafilm M(®) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M(®), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Leung, Kevin
2012-04-13
Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less
Double perovskite Ca2GdNbO6:Mn4+ deep red phosphor: Potential application for warm W-LEDs
NASA Astrophysics Data System (ADS)
Lu, Zuizhi; Huang, Tianjiao; Deng, Ruopeng; Wang, Huan; Wen, Lingling; Huang, Meixin; Zhou, Liya; Yao, Chunying
2018-05-01
A novel Mn4+-doped Ca2GdNbO6 (CGN) phosphor was prepared by high-temperature solid-state reaction. The crystal structure was investigated by X-ray diffraction patterns and unit cell structure. Mn4+ replaced the location of Nb5+ in the CGN lattice, and the value of energy gap (Egap) decreased from 2.16 eV to 1.13 eV, indicating that Mn4+ ions play a great influence on the absorption of CGN hosts. The broad excitation band from 250 nm to 550 nm matches well with commercial near-UV light emitting diodes, and the emission peak centered at 680 nm is due to 2E→4A2g transition in Mn4+ ions. The CIE chromaticity coordinates (0.698, 0.303) of CGN:Mn4+ phosphor was close to standard red color coordinates (0.666, 0.333). These investigations demonstrate CGN:Mn4+ phosphor as an efficient red phosphor for potential applications.
Guan, Huai; Wang, Man; Li, Xiaowei; Piao, Fengyuan; Li, Qiujuan; Xu, Lei; Kitamura, Fumihiko; Yokoyama, Kazuhito
2014-02-01
Manganese (Mn) is an essential element and a potential toxicant for developing organism. Deficiency and excess of it were both deleterious to fetal growth in experimental animals. However, literature on relationship between Mn status and birth outcome in humans is sparse. Mn concentrations were measured in mother whole blood (MWB) and umbilical cord blood (UCB) in 125 pairs of mother-infant; birth size was examined and relationship between them was analysed. Potentially environmental factors influencing Mn loads in maternal and fetal organisms were investigated through epidemiological method. Mn level in UCB was significantly higher than that in MWB (mean value: 54.98 vs. 78.75 µg/L), and a significant positive correlation was shown between them. There was a quadratic curvilinear (inverted U-shaped curve) relationship between MWB Mn and birth size, and between UCB Mn and birth size. Both univariate analysis and multiple linear regression analysis showed that exposure to harmful occupational factors during gestation remarkably increased maternal and fetal Mn levels. Living close to major transportation routes (<500 m) also increased the MWB Mn levels. Our results suggested that lower or higher Mn level in maternal and umbilical blood may induce adverse effect on birth size in humans. In addition, increased levels of Mn in MWB or UCB may be associated with exposure to some environmental hazard factors.
Why did Nature choose manganese to make oxygen?
Armstrong, Fraser A
2007-01-01
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329
Novel magneto-luminescent effect in LSMO/ZnS:Mn nanocomposites at near-room temperature
NASA Astrophysics Data System (ADS)
Beltran-Huarac, Juan; Diaz-Diestra, Daysi; Bsatee, Mohammed; Wang, Jingzhou; Jadwisienczak, Wojciech M.; Weiner, Brad R.; Morell, Gerardo
2016-02-01
We report the tuning of the internal Mn photoluminescence (PL) transition of magnetically-ordered Sr-doped lanthanum manganite (LSMO)/Mn-doped zinc sulfide (ZnS:Mn) nanocomposites (NCs) by applying a static magnetic field in the range of 0-1 T below the critical temperature of ˜225 K. To do that, we have systematically fabricated LSMO/ZnS:Mn at different concentrations (1:1, 1:3, 1:5 and 1:10 wt%) via a straightforward solid-state reaction. X-ray diffraction and Raman analyses reveal that both phases coexist with a high degree of crystallinity and purity. Electron microscopy indicates that the NCs are almost spherical with an average crystal size of ˜6 nm, and that their surfaces are clean and smooth. The bifunctional character of LSMO/ZnS:Mn was evidenced by vibrating sample magnetometry and PL spectroscopy analyses, which show a marked ferromagnetic behavior and a broad, intense Mn orange emission band at room temperature. Moreover, the LSMO/ZnS:Mn at 1:3 wt% exhibits magneto-luminescent (ML) coupling below 225 K, and reaches the largest suppression of Mn-band PL intensity (up to ˜10%) at 150 K, when a magnetic field of 1.0 T is applied. The ML effect persists at magnetic fields as low as 0.2 T at 8 K, which can be explained by evoking a magnetic-ordering-induced spin-dependent restriction of the energy transfer to Mn states. No ML effect was observed in bare ZnS:Mn nanoparticles under the same experimental parameters. Our findings suggest that this NC can be considered as a new ML compound, similar to FeCo/InGaN-GaN and LSMO/ZnO NCs, useful as q-bits for quantum computation. The results presented here bring forth new avenues to better understand the interaction between semiconductors and perovskites, and exploit their synergistic effects in magneto-optics, spintronics and nanoelectronics.
Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2
NASA Astrophysics Data System (ADS)
Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.
2018-04-01
We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.
Jaramillo, Melba C.; Briehl, Margaret M.; Crapo, James D.; Haberle, Ines Batinic; Tome, Margaret E.
2012-01-01
Using current chemotherapy protocols, over 55% of lymphoma patients fail treatment. Novel agents are needed to improve lymphoma survival. The manganese porphyrin, MnTE-2-PyP5+, augments glucocorticoid-induced apoptosis in WEHI7.2 murine thymic lymphoma cells, suggesting that it may have potential as a lymphoma therapeutic. However, the mechanism by which MnTE-2-PyP5+ potentiates glucocorticoid-induced apoptosis is unknown. Previously, we showed that glucocorticoid treatment increases the steady state levels of hydrogen peroxide ([H2O2]ss) and oxidizes the redox environment in WEHI7.2 cells. In the current study, we found that when MnTE-2-PyP5+ is combined with glucocorticoids, it augments dexamethasone-induced oxidative stress however, it does not augment the [H2O2]ss levels. The combined treatment depletes GSH, oxidizes the 2GSH:GSSG ratio, and causes protein glutathionylation to a greater extent than glucocorticoid treatment alone. Removal of the glucocorticoid-generated H2O2 or depletion of glutathione by BSO prevents MnTE-2-PyP5+ from augmenting glucocorticoid-induced apoptosis. In combination with glucocorticoids, MnTE-2-PyP5+ glutathionylates p65 NF-κB and inhibits NF-κB activity. Inhibition of NF-κB with SN50, an NF-κB inhibitor, enhances glucocorticoid-induced apoptosis to the same extent as MnTE-2-PyP5+. Taken together, these findings indicate that: 1) H2O2 is important for MnTE-2-PyP5+ activity; 2) Mn-TE-2-PyP5+ cycles with GSH; and 3) MnTE-2-PyP5+ potentiates glucocorticoid-induced apoptosis by glutathionylating and inhibiting critical survival proteins, including NF-κB. In the clinic, over-expression of NF-κB is associated with a poor prognosis in lymphoma. MnTE-2-PyP5+ may therefore, synergize with glucocorticoids to inhibit NF-κB and improve current treatment. PMID:22330065
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 - x SrxFe y Mn1 - y O3 - δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ and the Fe-K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 - δ perovskite oxide.
NASA Astrophysics Data System (ADS)
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-10-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1-xSrxFeyMn1-yO3-d(0 ≤ x≤ 1, 0.2 ≤ y≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst with that of an industrial potassium promoted iron (Fe-K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed higher initial activity than the industrial Fe-K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe-K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d and the Fe-K catalysts in aH2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst while the Fe-K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3-d catalyst had higher potential for activating the steam than the Fe-K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3-d was superior to that of Fe-K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3-d perovskite oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherif, R., E-mail: cherifrim18@yahoo.fr; Hlil, E.K.; Ellouze, M.
2014-07-01
The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (x=0, 0.1, 0.2 and 0.3) samples have been elaborated by the solid-state reaction method. X-ray powder diffraction shows that all the samples crystallize in a rhombohedric phase with R3{sup ¯}c space group. The variation of magnetization as a function of temperature and applied magnetic field was carried out. The samples for x=0 and 0.1 exhibit a FM–PM transition at the Curie temperature T{sub C}, however, for x=0.2 and 0.3 exhibit an AFM–PM one at the Neel temperature T{sub N}, when the temperature increases. A magneto-caloric effect has been calculated in terms ofmore » isothermal magnetic entropy change. A large magneto-caloric effect has been observed, the maximum entropy change, |ΔS{sub M}{sup max}|, reaches the highest value of 3.28 J/kgK under a magnetic field change of 5 T with an RCP value of 220 J/kg for La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}MnO{sub 3} composition, which will be an interesting compound for application materials working as magnetic refrigerants near room temperature. - Graphical abstract: Magnetic entropy change versus temperature and applied magnetic field for x=0.1 (a) and RCP versus applied magnetic field for x=0, 0.1 (b). - Highlights: • The La{sub 0.6}Pr{sub 0.1}Sr{sub 0.3}Mn{sub 1−x}Fe{sub x}O{sub 3} (0≤x≤0.3) polycrystalline samples were prepared by the solid state reaction method. • Crystalline and magnetic structures were investigated using DRX and magnetization measurements. • The magnetocaloric (MC) effect was estimated versus magnetic field and temperatures. • Compounds with x=0, 0.1 exhibit great potential for magnetic refrigeration at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosaki, Y., E-mail: yosuke.kurosaki.uy@hitachi.com; Yabuuchi, S.; Nishide, A.
We report a lowered lattice thermal conductivity in nm-scale MnSi{sub 1.7}/Si multilayers which were fabricated by controlling thermal diffusions of Mn and Si atoms. The thickness of the constituent layers is 1.5–5.0 nm, which is comparable to the phonon mean free path of both MnSi{sub 1.7} and Si. By applying the above nanostructures, we reduced the lattice thermal conductivity down to half that of bulk MnSi{sub 1.7}/Si composite materials. The obtained value of 1.0 W/K m is the experimentally observed minimum in MnSi{sub 1.7}-based materials without any heavy element doping and close to the minimum thermal conductivity. We attribute the reduced latticemore » thermal conductivity to phonon scattering at the MnSi{sub 1.7}/Si interfaces in the multilayers.« less
Strain dependence of interfacial antiferromagnetic coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices
NASA Astrophysics Data System (ADS)
Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; Guo, Er-Jia; Rata, Diana; Dörr, Kathrin
2015-03-01
We have investigated the magnetic response of La0.7Sr0.3MnO3/SrRuO3 superlattices to biaxial in-plane strain applied in-situ. Superlattices grown on piezoelectric substrates of 0.72PbMg1/3Nb2/3O3-0.28PbTiO3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of μ0HAF = 1.8 T is found to change by μ0 ΔHAF / Δɛ ~ -520 mT %-1 under reversible biaxial strain (Δɛ) at 80 K in a [La0.7Sr0.3MnO3(22 Å)/SrRuO3(55 Å)]15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic order in the manganite layers which are under as-grown tensile strain. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface, since the enhanced magnetic order of Mn spins leads to a larger net coupling of SrRuO3 layers at the interface. We discuss our experimental findings taken into account both the strain-dependent orbital occupation in a single-ion picture and the enhanced Mn order at the interface. This work was supported by the DFG within the Collaborative Research Center SFB 762 ``Functionality of Oxide Interfaces.''
Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin
NASA Astrophysics Data System (ADS)
Drain, John F.; Drautz, Ralf; Pettifor, D. G.
2014-04-01
It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.
Electrochemical evaluation of manganese reducers - Recovery of Mn from Zn-Mn and Zn-C battery waste
NASA Astrophysics Data System (ADS)
Sobianowska-Turek, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika
2014-12-01
Extraction of manganese from ores or battery waste involves the use of reductive reagents for transformation of MnO2 to Mn2+ ions. There are many reducers, both organic and inorganic, described in the literature. A series of 18 reducers has been discussed in the paper and they were classified according to standard redox potential (pE = -log ae- where pE is used to express formal electron activity and ae- is formal electron activity). The experiments of manganese extraction from paramagnetic fraction of Zn-C and Zn-Mn battery waste in the laboratory scale have been described for 3 reducers of different origin. The best result was achieved with oxalic acid (75%, with the lowest redox potential) and urea (with typical redox potential) appeared inactive. Extraction supported by hydrogen peroxide resulted in moderate yield (50%). It shows that formal thermodynamic scale is only preliminary information useful for selection of possible reducers for manganese extraction resources.
NASA Astrophysics Data System (ADS)
Olexová, Anna; Melicherčík, Milan; Treindl, L'udovít
1997-04-01
A new transition metal oscillator based on the oxidation of Mn 2+ ions by Fe(CN) 3-6 ions in a CSTR has been found. As well as the oscillations of the absorbance of the Mn(IV) species, pH-oscillations have been observed. In the reduction of manganese dioxide by Fe(CN) 4-6 ions a kinetic bistability has been described. A skeleton mechanism described recently for Mn(II)H 2O 2 and Mn(II)Br 2 oscillators has been applied here and further developed by the idea of the catalytic activity of colloidal particles and of the assistance of the pH-value change of both main processes, i.e. of the Mn(II) oxidation by Fe(CN) 3-6 ions and of the Mn(IV) reduction by Fe(CN) 4-6 ions. This appears to be the first case where both sides of a reversible reaction are autocatalytic.
Effets magneto-plasmoniques dans les milieux effectifs composes de metaux ferromagnetiques
NASA Astrophysics Data System (ADS)
Monette, Gabriel
A precipitated metallic and ferromagnetic phase in an epitaxial semiconductor host matrix is an interesting effective medium for both fundamental research and technological applications. At first seen as an unwanted byproduct resulting from the implantation of magnetic ions in semiconductors for the synthesis of diluted magnetic semiconductors, those precipitated phases can offer much more than was first anticipated. The precipitate phase strongly couples to optical excitations, maintains an high ferromagnetic transition temperature, and the epitaxial semiconductor matrix is easily grown on various substrates. GaP:MnP samples studied in this thesis represent this kind of material where metallic ferromagnetic nanoclusters (MnP) are embedded in an epitaxial semiconductor matrix (GaP). In order to further analyze the effect and the role of the surrounding matrix on the MnP and overall effective properties, an MnP thin film grown on glass and a polystyrene membrane containing MnP nanospheres were also studied. Optical and magneto-optical measurements were made with a homemade experimental apparatus entirely assembled in the laboratory. It's modular design allows to switch between temperature, magnetic field, probe wavelength and polarization measurements, or to combine them as needed. The precision and uncertainties associated with the measures were duly evaluated. The magneto-optical characterization of the heterogeneous GaP:MnP shows an impressive gyrotropy that amounts to 6°/microm (per effective thickness of MnP) at 210 K and 410 mT, in the visible part of the electromagnetic spectrum. This gyrotropy is higher than that of a thin film entirely made of MnP (3°/microm), for the same temperature and applied magnetic field. The origin of the optical activity generated by the applied magnetic field is identified as being the MnP phase magnetization, for both the heterogeneous epilayers and the thin film. Magnetometric and magneto-optic hysteresis curves measured at various temperatures clearly show that the applied magnetic field is not the important contributor to the overall gyrotropic behaviour, but rather the cause of the magnetization state that, in turn, dominates the magneto-optical effects. An effective medium approach based on Maxwell-Garnett mixing rules is employed to model the electromagnetic response of the GaP:MnP compounds in the visible and infrared portion of the spectrum. The model is entirely classic and considers a Drude-like permittivity for the MnP nanoclusters and a constant real permittivity for the GaP matrix below the semiconductor band gap. The gyrotropy in the rank two tensorial permittivity is classically due to the cyclotronic response under an applied magnetic field. It is magnified by a Weisslike effective field contribution to simulate the spin-orbit coupling. The model takes into account inclusions of various shapes (revolution ellipsoids of varying aspect ratio) allowed to orient themselves randomly within the GaP matrix. The magnetometric and magneto-optic measurements as a function of temperature allowed to probe and discuss the MnP ferromagnetic phase transition. The Curie temperature of bulk MnP is known to be 291,5 K, whereas magnetometric measurements on GaP:MnP indicate a phase transition temperature that is slightly higher (≈ 296,5 K, depending on the effective medium parameters). A technique based on the optical probing of the magnetic susceptibility is developed to corroborate those results. The method confirms results from magnetometric measurements, with a good precision, and additionally gives information on the phase transition temperature distribution of the magnetic objects (nanoclusters in GaP:MnP epilayers and in-plane grains for the MnP thin film) in the samples. (Abstract shortened by UMI.).
A historical overview of the development of manganese (Mn) ...
Abstract for Manganese 2016A historical overview of the development of manganese (Mn) pharmacokinetic data under Section 211(b) of the Clean Air Act (CAA)William K BoyesBackground. In the 1990’s, the use of methylcyclopentadienyl manganese tricarbonyl (MMT) as an octane-enhancing gasoline fuel additive led to concerns for potential public health consequences from exposure to Mn combustion products in automotive exhaust. Methods: After a series of regulatory / legal actions and negotiations, the EPA issued under CAA 211(b) an Alternative Tier 2 Test Rule that required development of scientific information intended to help resolve uncertainties in exposure or health risk estimates associated with MMT use. Among the uncertainties identified were: the chemical forms of Mn emitted in automotive exhaust; the relative toxicity of different Mn species; the potential for sensitive subpopulations including females, the young and elderly; differences in sensitivity between test species and humans; differences between inhalation and oral exposures; and the influence of dose rate and exposure duration on tissue accumulation of Mn. It was determined that development of specific sets of pharmacokinetic information and models regarding Mn could help resolve much of the uncertainties identified. Results. The results of the test program included development of several unique Mn PK datasets, and a series of increasingly sophisticated Mn physiologically-based pharmacokinetic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, P. Robinan, E-mail: rgentry@ramboll.com
A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposuresmore » into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue concentrations of manganese. • An MOS approach also considered target tissue concentrations for ambient exposures. • Relationships between ambient Mn exposures and dose-to-target tissue are not linear.« less
NASA Astrophysics Data System (ADS)
Klinkhammer, G. P.; Mix, A. C.; Benway, H. M.; Haley, B. A.
2004-12-01
The Mn/Ca ratio of the biogenic calcite preserved in deep-sea sediments has potential as a tracer of terrestrial input, upwelling, and carbon rain rate over geologic time scales. The basis for this potential lies in features of the Mn cycle in the oceans, which are well known. Manganese is a biogeochemically reactive element, but has a lower affinity for dissolved oxygen and organic matter than iron, making it more stable over short time scales, and less affected by speciation. Depth profiles of Mn in oligotrophic ocean waters show a sharp contrast between low concentrations in deep water (0.20 nM) and relatively high concentrations in the mixed layer (2-5 nM). Mn oxides are stable in high oxygen environments but reduced in the suboxic conditions found in the oxygen minimum zone (OMZ). This behavior makes the intermediate water to surface water concentration ratio of Mn sensitive to the intensity of the OMZ, an artifact of the carbon rain rate, and dust/river input. In sediments, suboxic dissolution is balanced by the formation of carbonate making Mn highly reactive during early diagenesis. These features of the Mn cycle in seawater make the Mn/Ca ratio of foraminifera an attractive paleoproxy, but only if the primary signature can be recovered after diagenetic alteration. Recently our laboratory developed a flow-through extraction system that gives us fresh insight into this problem by making it possible to separate mineral phases associated with the foraminiferal fraction by differences in their solubilities. This paper examines foraminiferal Mn/Ca ratios in core tops and down core records from the eastern equatorial Pacific determined with this new technique. We access the potential of flow-through Mn/Ca by comparing its record to those of Mg/Ca and stable isotopes.
World Health Organization discontinues its drinking-water guideline for manganese.
Frisbie, Seth H; Mitchell, Erika J; Dustin, Hannah; Maynard, Donald M; Sarkar, Bibudhendra
2012-06-01
The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because "this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value." In this commentary, we review the WHO guideline for Mn in drinking water--from its introduction in 1958 through its discontinuation in 2011. For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn.
Sangle, Varsha Ajit; Bijjaragi, Shobha; Shah, Nishat; Kangane, Suresh; Ghule, Hrishikesh M; Rani, Sr Ashwini
2016-01-01
The assessment of micronuclei (MN) in exfoliated oral epithelial cells is a promising tool for the study of epithelial carcinogens and can be used to detect chromosome breakage or mitotic interference, thought to be relevant to carcinogenesis. To detect MN in exfoliated oral mucosal cells in individuals using various tobacco forms and also to detect frequency of MN in premalignant lesions and conditions (potentially malignant diseases [PMD's]) and oral squamous cell carcinoma (OSCC). To correlate frequency of MN in oral exfoliated cells in clinically diagnosed cases of OSCC followed by a histopathological grading. A total of 90 subjects (30 smokeless tobacco users, 30 smokers and 30 nontobacco users) consisted of clinically diagnosed cases of PMD's and OSCC were selected for the study. Cytosmears from the groups were stained with rapid Papanicolaou stain. MN was identified according to the Tolbert et al. criteria. MN cells were found to be significantly higher in smokeless tobacco users than in smokers. The frequency of MN was three to four times higher in patients with OSCC as compared to patients in PMD's (P < 0.0001). The frequency of MN correlated with the histopathological grade was statistically significant. MN index can be used as a biomarker/screening test among the high-risk groups particularly the smokeless tobacco users and PMD's. MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC.
NASA Astrophysics Data System (ADS)
Li, Jinquan; Zhou, Zijian; Feng, Jianghua; Cai, Shuhui; Gao, Jinhao; Chen, Zhong
2014-05-01
MnO-embedded iron oxide nanoparticles (MnIO-NPs) can be treated as potential dual-modal contrast agents. However, their overall bio-effects and potential toxicity remain unknown. In this study, the metabolic effects of MnIO-NPs (dosed at 1 and 5 mg Fe/kg) on Sprague-Dawley rats were investigated using metabonomic analysis, histopathological examination, and conventional biochemical analysis. The histological changes included a focal inflammation in the liver at high-dose and a slightly enlarged area of splenic white pulp after 48 h post-dose. Blood biochemical analysis showed that albumin, globulins, aspartate aminotransferase, lactate dehydrogenase, blood urea nitrogen, and glucose changed distinctly compared to the control. The metabonomic analysis of body fluids (serum and urine) and tissues (liver, kidney, and spleen) indicated that MnIO-NPs induced metabolic perturbation in rats including energy, nucleotides, amino acids and phospholipid metabolisms. Besides, the variations of supportive nutrients: valine, leucine, isoleucine, nicotinamide adenine dinucleotide (phosphate), and nicotinamide, and the conjugation substrates: glycine, taurine, glutamine, glutathione, and methyl donors (formate, sarcosine, dimethylglycine, choline, and betaine) were involved in detoxification reaction of MnIO-NPs. The obtained information would provide identifiable ground for the candidate selection and optimization.
Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias
Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; ...
2015-11-05
We achieved a high-quality epitaxial growth of intermetallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.
Disorder Problem In Diluted Magnetic Semiconductors
NASA Astrophysics Data System (ADS)
Nelson, Ryky; Ekuma, Chinedu; Terletska, Hanna; Sudhindra, Vidhyadhiraja; Moreno, Juana; Jarrell, Mark
2015-03-01
Motivated by experimental studies addressing the role of impurity disorder in diluted magnetic semiconductors (DMS), we investigate the effects of disorder using a simple tight-binding Hamiltonian with random impurity potential and spin-fermion exchange which is self-consistently solved using the typical medium theory. Adopting the typical density of states (TDoS) as the order parameter, we find that the TDoS vanishes below a critical concentration of the impurity, which indicates an Anderson localization transition in the system. Our results qualitatively explain why at concentrations lower than a critical value DMS are insulating and paramagnetic, while at larger concentrations are ferromagnetic. We also compare several simple models to explore the interplay between ferromagnetic order and disorder induced insulating behavior, and the role of the spin-orbit interaction on this competition. We apply our findings to (Ga,Mn)As and (Ga,Mn)N to compare and contrast their phase diagrams.
NASA Astrophysics Data System (ADS)
Narita, Hideki; Ikhlas, Muhammad; Kimata, Motoi; Nugroho, Agustinus Agung; Nakatsuji, Satoru; Otani, YoshiChika
2017-11-01
Toward realizing a thermopile made of the chiral anti-ferromagnet Mn3Sn, focused ion beam (FIB) lithography was employed to microfabricate a thermoelectric element consisting of a Ta/Al2O3/Mn3Sn layered structure. In this device, the Ta layer acts as a heater producing Joule heat diffusing across the Al2O3 insulating layer into the thin Mn3Sn layer. The measured Nernst signal exhibits a clear hysteresis in an applied temperature gradient and magnetic field at 300 K, and its magnitude is proportional to the square of the electrical current applied to the Ta heater. The spontaneous, zero field voltage signal in the device is of the order of a few μV, which is almost the same order of magnitude as observed in the bulk single-crystal Mn3Sn under a temperature gradient. The anomalous Nernst coefficient SANE of the microfabricated element was determined using a temperature gradient simulated by finite-element modeling. The obtained value of SANE is 0.27 μV/K, which is in good agreement with that of the reported experimental value of SANE (0.3 μV/K) for bulk single-crystal Mn3Sn. This result indicates that FIB microfabrication does not significantly alter the thermoelectric properties of bulk Mn3Sn. As the chiral antiferromagnet produces almost no stray field, our study opens the avenue for the fabrication of an efficient thermopile by densely packing the microfabricated antiferromagnetic elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Jing; Huang, Weifeng; Qin, Shan
Alluaudites are promising electrochemical materials benefited from the open structure. Structural variations of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) system have been studied by synchrotron radiation X-ray diffraction combined with diamond anvil cell technique up to ~10 GPa at room temperature. No phase transition is observed. The excellent structural stability is mainly due to the flexible framework plus strong covalent P-O bond. Mn{sup 2+} instead of Fe can be described as Na{sup +}+2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy. The replacement of Fe with larger Mn{sup 2+} is equivalentmore » to applying negative chemical pressure to the material. And it causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe. External pressure effect produces anisotropic lattice shrinkage. Structural considerations related to these variations and promising application prospects are discussed. - Graphical abstract: Figure 1 The crystal structure of alluaudites Na{sub 2}M{sub 3}(PO{sub 4}){sub 3} (M{sub 3}=Fe{sub 3}, Fe{sub 2}Mn and FeMn{sub 2}) projected along the c-axis. Alluaudites adopt a flexible framework plus strong covalent P-O bond, which contribute to excellent structural stability up to ~10 GPa. Mn{sup 2+} instead of Fe can be described as Na{sup ++}2Fe{sup 2+}→Mn{sup 2+}+Fe{sup 3+}+□ where □ represents a lattice vacancy, and it is equivalent to applying negative chemical pressure to the host. The substitution causes a more compressible b-axis, lattice expansion, structural compressibility and intensifies the core/electron-electron interactions of Fe.« less
Impact of diatom growth on trace metal dynamics (Mn, Mo, V, U)
NASA Astrophysics Data System (ADS)
Osterholz, Helena; Simon, Heike; Beck, Melanie; Maerz, Joeran; Rackebrandt, Siri; Brumsack, Hans-Jürgen; Feudel, Ulrike; Simon, Meinhard
2014-03-01
In order to examine the specific role of diatoms in cycling of the trace metals manganese (Mn), molybdenum (Mo), vanadium (V), and uranium (U) Thalassiosira rotula, Skeletonema marinoi, Chaetoceros decipiens, and Rhizosolenia setigera were grown in batch cultures axenically and inoculated with three different bacterial strains isolated from the North Sea. Algal and bacterial growth, concentrations of trace metals and dissolved organic carbon (DOC) were monitored over time and showed that Mn and V were removed from the dissolved phase whereas Mo and U were not. R. setigera and T. rotula exhibited lowest growth and lowest removal whereas S. marinoi grew best and removed highest fractions of Mn and V. The high potential of Mn removal by S. marinoi was also evident from its 7 × higher Mn/P elemental ratio relative to T. rotula. The presence of bacteria modified the timing of the growth of S. marinoi but not directly trace metal removal whereas bacteria enhanced trace metal removal in the cultures of T. rotula and C. decipiens. Modeling of phytoplankton growth, concentrations of Mn and DOC fraction in axenic T. rotula cultures indicated that processes of binding and desorption of Mn to excreted organic components are important to explain the varying proportions of dissolved Mn and thus must be considered as an active component in Mn cycling. The results show distinct differences in the potential of the diatoms in the removal of Mn and V and that bacteria can play an active role in this context. S. marinoi presumably is an important player in Mn and V dynamics in coastal marine systems.
Direct effects of manganese compounds on dopamine and its metabolite Dopac: an in vitro study
Sistrunk, Shannon C.; Ross, Matthew K.; Filipov, Nikolay M.
2007-01-01
Following combustion of fuel containing the additive methylcyclopentadienyl-manganese-tricarbonyl (MMT), manganese phosphate (MnPO4) and manganese sulfate (MnSO4) are emitted in the atmosphere. Manganese chloride (MnCl2), another Mn2+ species, is widely used experimentally. Using rat striatal slices, we found that MnPO4 decreased tissue and media dopamine (DA) and media Dopac (a DA metabolite) levels substantially more than either MnCl2 or MnSO4; antioxidants were partially protective. Also, both MnCl2 and MnPO4 (more potently) oxidized DA and Dopac even in the absence of tissue in the media, suggesting a direct interaction between Mn and DA/Dopac. Because aminochrome is a major oxidation product of DA, we next determined whether MnPO4 will be more potent in forming aminochrome than MnCl2 or MnSO4 which, indeed, was the case. Thus, a potential additional mechanism for the neurotoxic effects of environmentally-relevant forms of Mn, MnPO4 in particular, is the generation of reactive DA intermediates. PMID:18449324
Deinococcus Mn2+-peptide complex: A novel approach to alphavirus vaccine development.
Gayen, Manoshi; Gupta, Paridhi; Morazzani, Elaine M; Gaidamakova, Elena K; Knollmann-Ritschel, Barbara; Daly, Michael J; Glass, Pamela J; Maheshwari, Radha K
2017-06-22
Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost-effective manner. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hosseini-Benhangi, Pooya; Kung, Chun Haow; Alfantazi, Akram; Gyenge, Elöd L
2017-08-16
High-performance, nonprecious metal bifunctional electrocatalysts for the oxygen reduction and evolution reactions (ORR and OER, respectively) are of great importance for rechargeable metal-air batteries and regenerative fuel cells. A comprehensive study based on statistical design of experiments is presented to investigate and optimize the surfactant-assisted structure and the resultant bifunctional ORR/OER activity of anodically deposited manganese oxide (MnO x ) catalysts. Three classes of surfactants are studied: anionic (sodium dodecyl sulfate, SDS), non-ionic (t-octylphenoxypolyethoxyethanol, Triton X-100), and cationic (cetyltrimethylammonium bromide, CTAB). The adsorption of surfactants has two main effects: increased deposition current density due to higher Mn 2+ and Mn 3+ concentrations at the outer Helmholtz plane (Frumkin effect on the electrodeposition kinetics) and templating of the MnO x nanostructure. CTAB produces MnO x with nanoneedle (1D) morphology, whereas nanospherical- and nanopetal-like morphologies are obtained with SDS and Triton, respectively. The bifunctional performance is assessed based on three criteria: OER/ORR onset potential window (defined at 2 and -2 mA cm -2 ) and separately the ORR and OER mass activities. The best compromise among these three criteria is obtained either with Triton X-100 deposited catalyst composed of MnOOH and Mn 3 O 4 or SDS deposited catalyst containing a combination of α- and β-MnO 2 , MnOOH, and Mn 3 O 4 .The interaction effects among the deposition variables (surfactant type and concentration, anode potential, Mn 2+ concentration, and temperature) reveal the optimal strategy for high-activity bifunctional MnO x catalyst synthesis. Mass activities for OER and ORR up to 49 A g -1 (at 1556 mV RHE ) and -1.36 A g -1 (at 656 mV RHE ) are obtained, respectively.
NASA Astrophysics Data System (ADS)
Anjum, Safia; Rafique, M. S.; Khaleeq-ur-Rahaman, M.; Siraj, K.; Usman, Arslan; Ahsan, A.; Naseem, S.; Khan, K.
2011-06-01
Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 and Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films with different concentrations of Mn and Zr have been deposited on single crystal n-Si (400) at room temperature (RT) by pulse laser deposition technique (PLD). The films have been deposited under two conditions: (i) with the applied external magnetic field across the propagation of the plume (ii) without applied external magnetic field ( B=0). XRD results show the films have spinel cubic structure when deposited in the presence of magnetic field. SEM and AFM observations clearly show the effect of external applied magnetic field on the growth of films in terms of small particle size, improved uniformity and lower r.m.s. roughness. Thin films deposited under the influence of external magnetic field exhibit higher magnetization as measured by the VSM. The optical band gap energy Eg, refractive index n, reflection, absorption and the thickness of the thin films were measured by spectroscopy ellipsometer. The reflection of Zn 0.2Mn 0.83Zr 0.03Fe 1.94O 4 thin films is higher than Zn 0.2Mn 0.81Zr 0.01Fe 1.98O 4 thin films due to the greater concentration of Zr. The thicknesses of the thin films under the influence of external magnetic field are larger than the films grown without field for both samples. The optical band gap energy Eg decreases with increasing film thickness. The films with external magnetic field are found highly absorbing in nature due to the larger film thickness.
Characterization of lignin and Mn peroxidases from Phanerochaete chrysosporium. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Long-term objectives are to elucidate the role and mechanism of the various isozymes in lignin biodegradation. Work is described on electrochemical studies on lignin and Mn peroxidases. This study was performed to investigate the structural aspects which confer the lignin and Mn peroxidases with their high reactivity. The experimentally determined redox potential of the Fe{sup 3+}/Fe{sup 2+} couple for the lignin peroxidase isozymes H1, H2, H8 and H10 are very similar, near-130 mV. The redox potential for the Mn peroxidase isozymes H3 and H4 are similar to each other ({minus}88 mV and {minus}95 mV, respectively) and are more positive thanmore » the lignin peroxidases. The higher redox potential for the Fe{sup 3+}/Fe{sup 2+} couple is consistent with the heme active site of these fungal peroxidases being more electron deficient. To investigate the accessibility of the heme active site to the substrate which is oxidized [veratryl alcohol and Mn (II)], we investigated whether these substrates had any affect on the redox potential of the heme. The E{sub m7} value for lignin and Mn peroxidases are not affected by their respective substrates, veratryl alcohol and Mn (II). These results suggest that substrates do not directly interact with the ferric heme-iron as axial ligands. This is consistent with the present model for peroxidase catalysis. Suicide inhibitor (1) and nmr studies (2) indicate that the heme-iron of horseradish peroxidase (HRP) is not fully accessible to bulky substrates occur at the periphery of the heme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C. S.; Li, N.; Lefief, C.
2008-01-01
Lithium- and manganese-rich layered electrode materials, represented by the general formula xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMO{sub 2} in which M is Mn, Ni, and Co, are of interest for both high-power and high-capacity lithium ion cells. In this paper, the synthesis, structural and electrochemical characterization of xLi{sub 2}MnO{sub 3} {center_dot} (1-x)LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} electrodes over a wide compositional range (0 {le} x {le} 0.7) is explored. Changes that occur to the compositional, structural, and electrochemical properties of the electrodes as a function of x and the importance of using a relatively high manganese content and a high chargingmore » potential (>4.4 V) to generate high capacity (>200 mAh/g) electrodes are highlighted. Particular attention is given to the electrode composition 0.3Li{sub 2}MnO{sub 3} {center_dot} 0.7LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} (x = 0.3) which, if completely delithiated during charge, yields Mn{sub 0.533}Ni{sub 0.233}Co{sub 0.233}O{sub 2}, in which the manganese ions are tetravalent and, when fully discharged, LiMn{sub 0.533}Ni{sub 0.233}Co{sub 0.233}O{sub 2}, in which the average manganese oxidation state (3.44) is marginally below that expected for a potentially damaging Jahn-Teller distortion (3.5). Acid treatment of 0.3Li{sub 2}MnO{sub 3} {center_dot} 0.7LiMn{sub 0.333}Ni{sub 0.333}Co{sub 0.333}O{sub 2} composite electrode structures with 0.1 M HNO{sub 3} chemically activates the Li{sub 2}MnO{sub 3} component and essentially eliminates the first cycle capacity loss but damages electrochemical behavior, consistent with earlier reports for Li{sub 2}MnO{sub 3}-stabilized electrodes. Differences between electrochemical and chemical activation of the Li{sub 2}MnO{sub 3} component are discussed. Electrochemical charge/discharge profiles and cyclic voltammogram data suggest that small spinel-like regions, generated in cycled manganese-rich electrodes, serve to stabilize the electrodes, particularly at low lithium loadings (high potentials). The study emphasizes that, for high values of x, a relatively small LiMO{sub 2} concentration stabilizes a layered Li{sub 2}MnO{sub 3} electrode to reversible lithium insertion and extraction when charged to a high potential.« less
NASA Astrophysics Data System (ADS)
Borysiewicz, Michał A.; Wzorek, Marek; Myśliwiec, Marcin; Kaczmarski, Jakub; Ekielski, Marek
2016-12-01
This study focuses on the relationships between the process parameters during magnetron sputter deposition of MnO2 and the resulting film properties. Three MnO2 phases were identified - γ, β and λ and the dependence of MnO2 phase presence on the oxygen content in the sputtering atmosphere was found. Selected MnO2 phases were subsequently applied as ultrathin coatings on top of nanostructured ZnO electrodes for transparent supercapacitors with LiCl-based gel electrolyte. The films containing λ-MnO2 exhibited both the highest optical transparency of 62% at 550 nm as well as the highest specific capacitance in the supercapacitor structure, equal to 73.1 μF/cm2. Initially lower, the capacitance was elevated by charge-discharge conditioning.
Pasković, Igor; Ćustić, Mirjana Herak; Pecina, Marija; Bronić, Josip; Ban, Dean; Radić, Tomislav; Pošćić, Filip; Jukić Špika, Maja; Soldo, Barbara; Palčić, Igor; Goreta Ban, Smiljana
2018-06-08
The aim of this study was to examine the effect of foliar (Mn_fol) and soil Zeolite-Mn (Mn_ZA) application on leaf mineral, total phenolic and oleuropein content, and mycorrhizae colonization of self-rooted cv. Leccino plantlets grown on calcareous soil. The dissolution of zeolite was 97% when citric acid was applied at 0.05 mM dm -3 , suggesting that organic acids excreted by roots can dissolve modified zeolite (Mn_ZA) making Mn available for plant uptake. The leaf Mn concentration was the highest for Mn_fol treatment at 90 DAT (172 mg kg -1 ) and 150 DAT (70 mg kg -1 ) compared to other treatments. Mn_ZA soil application increased leaf Mn concentration at 150 DAT compared to control and NPK treatment. The oleuropein leaf content was highest for Mn_fol compared to other treatments at 90 DAT and lowest at 150 DAT. Arbuscular mycorrhizal colonization was higher for Mn_fol treatment at 150 DAT compared to all other treatments. Changes in the arbuscular colonization percentage and oleuropein content may be connected to stress conditions provoked by high leaf Mn concentration in Mn_fol treatment at 90 DAT. Mn_ZA application increased leaf Mn concentration at 150 DAT compared to control and NPK treatments. It can be assumed that the dominant mechanism in Mn uptake from modified zeolite is Mn_ZA dissolution through root exudates. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Romain, Sophie; Rich, Jordi; Sens, Cristina; Stoll, Thibaut; Benet-Buchholz, Jordi; Llobet, Antoni; Rodriguez, Montserrat; Romero, Isabel; Clérac, Rodolphe; Mathonière, Corine; Duboc, Carole; Deronzier, Alain; Collomb, Marie-Noëlle
2011-09-05
A new pentanuclear bis(triple-helical) manganese complex has been isolated and characterized by X-ray diffraction in two oxidation states: [{Mn(II)(μ-bpp)(3)}(2)Mn(II)(2)Mn(III)(μ-O)](3+) (1(3+)) and [{Mn(II)(μ-bpp)(3)}(2)Mn(II)Mn(III)(2)(μ-O)](4+) (1(4+)). The structure consists of a central {Mn(3)(μ(3)-O)} core of Mn(II)(2)Mn(III) (1(3+)) or Mn(II)Mn(III)(2) ions (1(4+)) which is connected to two apical Mn(II) ions through six bpp(-) ligands. Both cations have a triple-stranded helicate configuration, and a pair of enantiomers is present in each crystal. The redox properties of 1(3+) have been investigated in CH(3)CN. A series of five distinct and reversible one-electron waves is observed in the -1.0 and +1.50 V potential range, assigned to the Mn(II)(4)Mn(III)/Mn(II)(5), Mn(II)(3)Mn(III)(2)/Mn(II)(4)Mn(III), Mn(II)(2)Mn(III)(3)/Mn(II)(3)Mn(III)(2), Mn(II)Mn(III)(4)/Mn(II)(2)Mn(III)(3), and Mn(III)(5)/Mn(II)Mn(III)(4) redox couples. The two first oxidation processes leading to Mn(II)(3)Mn(III)(2) (1(4+)) and Mn(II)(2)Mn(III)(3) (1(5+)) are related to the oxidation of the Mn(II) ions of the central core and the two higher oxidation waves, close in potential, are thus assigned to the oxidation of the two apical Mn(II) ions. The 1(4+) and 1(5+) oxidized species and the reduced Mn(4)(II) (1(2+)) species are quantitatively generated by bulk electrolyses demonstrating the high stability of the pentanuclear structure in four oxidation states (1(2+) to 1(5+)). The spectroscopic characteristics (X-band electron paramagnetic resonance, EPR, and UV-visible) of these species are also described as well as the magnetic properties of 1(3+) and 1(4+) in solid state. The powder X- and Q-band EPR signature of 1(3+) corresponds to an S = 5/2 spin state characterized by a small zero-field splitting parameter (|D| = 0.071 cm(-1)) attributed to the two apical Mn(II) ions. At 40 K, the magnetic behavior is consistent for 1(3+) with two apical S = 5/2 {Mn(II)(bpp)(3)}(-) and one S = 2 noninteracting spins (11.75 cm(3) K mol(-1)), and for 1(4+) with three S = 5/2 noninteracting spins (13.125 cm(3) K mol(-1)) suggesting that the {Mn(II)(2)Mn(III)(μ(3)-O)}(5+) and {Mn(II)Mn(III)(2)(μ(3)-O)}(6+) cores behave at low temperature like S = 2 and S = 5/2 spin centers, respectively. The thermal behavior below 40 K highlights the presence of intracomplex magnetic interactions between the two apical spins and the central core, which is antiferromagnetic for 1(3+) leading to an S(T) = 3 and ferromagnetic for 1(4+) giving thus an S(T) = 15/2 ground state.
Kang, Yu-Tien; Liao, Yi-Sheng; Hsieh, Ching-Liang
2015-02-01
The effects of transcutaneous electric nerve stimulation (TENS) and electroacupuncture (EA) on the cerebral cortex are largely unclear. The purpose of the present study was to investigate the effect of TENS and EA on the cerebral cortex by examining their effect on the median nerve-somatosensory evoked potentials (MN-SEPs). Twenty volunteers were studied. The cortical and cervical spinal potentials were recorded by median nerve stimulation at the left wrist. Sham TENS, 2 Hz TENS and 2 Hz EA were applied to both ST36 and ST37. MN-SEPs were recorded during sham TENS, 2 Hz TENS and 2 Hz EA, with at least 1 week interval for each subject. One-way analysis of variance was used to determine the differences in latency and amplitude of the MN-SEPs observed in the stimulation and post-stimulation periods compared with baseline. Scheffe's post hoc correction was employed to identify pairwise differences. No differences in mean latency were found between the stimulation procedures during the stimulation and post-stimulation periods. 2 Hz EA but not sham TENS or 2 Hz TENS caused higher mean amplitudes in N20 and N30 during the stimulation and post-stimulation periods. EA, but not TENS, induces changes in certain components of the signal. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Li, Zhi; Tevis, Ian D; Oyola-Reynoso, Stephanie; Newcomb, Lucas B; Halbertsma-Black, Julian; Bloch, Jean-Francis; Thuo, Martin
2015-12-01
Interest in low-cost analytical devices (especially for diagnostics) has recently increased; however, concomitant translation to the field has been slow, in part due to personnel and supply-chain challenges in resource-limited settings. Overcoming some of these challenges require the development of a method that takes advantage of locally available resources and/or skills. We report a Melt-and-mold fabrication (MnM Fab) approach to low-cost and simple devices that has the potential to be adapted locally since it requires a single material that is recyclable and simple skills to access multiple devices. We demonstrated this potential by fabricating entry level bio-analytical devices using an affordable low-melting metal alloy, Field's metal, with molds produced from known materials such as plastic (acrylonitrile-butadiene-styrene (ABS)), glass, and paper. We fabricated optical gratings then 4×4 well plates using the same recycled piece of metal. We then reconfigured the well plates into rapid prototype microfluidic devices with which we demonstrated laminar flow, droplet generation, and bubble formation from T-shaped channels. We conclude that this MnM-Fab method is capable of addressing some challenges typically encountered with device translation, such as technical know-how or material supply, and that it can be applied to other devices, as needed in the field, using a single moldable material. Copyright © 2015 Elsevier B.V. All rights reserved.
Lee, Jeongjae; Seymour, Ieuan D; Pell, Andrew J; Dutton, Siân E; Grey, Clare P
2016-12-21
Rechargeable battery systems based on Mg-ion chemistries are generating significant interest as potential alternatives to Li-ion batteries. Despite the wealth of local structural information that could potentially be gained from Nuclear Magnetic Resonance (NMR) experiments of Mg-ion battery materials, systematic 25 Mg solid-state NMR studies have been scarce due to the low natural abundance, low gyromagnetic ratio, and significant quadrupole moment of 25 Mg (I = 5/2). This work reports a combined experimental 25 Mg NMR and first principles density functional theory (DFT) study of paramagnetic Mg transition metal oxide systems Mg 6 MnO 8 and MgCr 2 O 4 that serve as model systems for Mg-ion battery cathode materials. Magnetic parameters, hyperfine shifts and quadrupolar parameters were calculated ab initio using hybrid DFT and compared to the experimental values obtained from NMR and magnetic measurements. We show that the rotor assisted population transfer (RAPT) pulse sequence can be used to enhance the signal-to-noise ratio in paramagnetic 25 Mg spectra without distortions in the spinning sideband manifold. In addition, the value of the predicted quadrupolar coupling constant of Mg 6 MnO 8 was confirmed using the RAPT pulse sequence. We further apply the same methodology to study the NMR spectra of spinel compounds MgV 2 O 4 and MgMn 2 O 4 , candidate cathode materials for Mg-ion batteries.
NASA Astrophysics Data System (ADS)
Wang, Jing; Wu, Shizhe; Ma, Ji; Xie, Lishan; Wang, Chuanshou; Malik, Iftikhar Ahmed; Zhang, Yuelin; Xia, Ke; Nan, Ce-Wen; Zhang, Jinxing
2018-02-01
Stripe-ordered domains with perpendicular magnetic anisotropy have been intensively investigated due to their potential applications in high-density magnetic data-storage devices. However, the conventional control methods (e.g., epitaxial strain, local heating, magnetic field, and magnetoelectric effect) of the stripe-ordered domain walls either cannot meet the demands for miniaturization and low power consumption of spintronic devices or require high strength of the electric field due to the small value of the magnetoelectric effect at room temperature. Here, a domain-wall resistive effect of 0.1% was clarified in La0.67Sr0.33MnO3 thin films between the configurations of current in the plane and perpendicular to the plane of walls. Furthermore, a reversible nanoscale control of the domain-wall re-orientation by vertical spin transfer torque across the probe/film interface was achieved, where a probe voltage of 0.1 V was applied on a manganite-based capacitor. We also demonstrated that the stripe-ordered magnetic domain-wall re-orientation strongly depends on the AC frequency of the scanning probe voltage which was applied on the capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
B Akabayov; C Richardson
Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstratemore » that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.« less
Manganese inhibition of microbial iron reduction in anaerobic sediments
Lovley, D.R.; Phillips, E.J.P.
1988-01-01
Potential mechanisms for the lack of Fe(II) accumulation in Mn(IV)-containing anaerobic sediments were investigated. The addition of Mn(IV) to sediments in which Fe(II) reduction was the terminal electron-accepting process removed all the pore-water Fe(II), completely inhibited net Fe(III) reduction, and stimulated Mn(IV) reduction. Results demonstrate that preferential reduction of Mn(IV) by FE(III)-reducing bacteria cannot completely explain the lack of Fe(II) accumulation in anaerobic, Mn(IV)-containing sediments, and indicate that Mn(IV) oxidation of Fe(II) is the mechanism that ultimately prevents Fe(II) accumulation. -Authors
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; Qiao, Ruimin; Wang, Guofeng; Yang, Wanli; Feygenson, Mikhail; Su, Dong; Teng, Xiaowei
2016-01-01
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost and environmental friendliness. However, their applications have been limited by a narrow potential window (∼1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here we report the formation of layered Mn5O8 pseudocapacitor electrode material with a well-ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge–discharge cycles. The interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn5O8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn2+/Mn4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn5O8. PMID:27845345
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost, and environmental friendliness. However, their applications have been limited by a narrow potential window (~1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here, we report the formation of layered Mn 5O 8 pseudocapacitor electrode material with a well ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. Furthermore,more » the interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+/Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5O 8.« less
Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage
Shan, Xiaoqiang; Charles, Daniel S.; Lei, Yinkai; ...
2016-11-15
Aqueous electrochemical energy storage devices have attracted significant attention owing to their high safety, low cost, and environmental friendliness. However, their applications have been limited by a narrow potential window (~1.23 V), beyond which the hydrogen and oxygen evolution reactions occur. Here, we report the formation of layered Mn 5O 8 pseudocapacitor electrode material with a well ordered hydroxylated interphase. A symmetric full cell using such electrodes demonstrates a stable potential window of 3.0 V in an aqueous electrolyte, as well as high energy and power performance, nearly 100% coulombic efficiency and 85% energy efficiency after 25,000 charge-discharge cycles. Furthermore,more » the interplay between hydroxylated interphase on the surface and the unique bivalence structure of Mn 5O 8 suppresses the gas evolution reactions, offers a two-electron charge transfer via Mn 2+/Mn 4+ redox couple, and provides facile pathway for Na-ion transport via intra-/inter-layer defects of Mn 5O 8.« less
Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D
2009-01-01
Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.
Strain dependence of antiferromagnetic interface coupling in La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices
Das, Sujit; Herklotz, Andreas; Pippel, Eckhard; ...
2015-04-06
We have investigated the magnetic response of La 0.7Sr 0.3MnO 3/SrRuO 3 superlattices to biaxial in-plane strain applied in situ. Superlattices grown on piezoelectric substrates of 0.72PbMg 1/3Nb 2/3O 3-0.28PbTiO 3(001) (PMN-PT) show strong antiferromagnetic coupling of the two ferromagnetic components. The coupling field of mu H-0(AF) = 1.8 T is found to change by mu(0)Delta H-AF/Delta epsilon similar to -520 mT %(-1) under reversible biaxial strain Delta epsilon at 80 K in a [La 0.7Sr 0.3MnO 3(22 angstrom)/SrRuO 3(55 angstrom)] 15 superlattice. This reveals a significant strain effect on interfacial coupling. The applied in-plane compression enhances the ferromagnetic ordermore » in the manganite layers, which are under as-grown tensile strain, leading to a larger net coupling of SrRuO 3 layers at the interface. It is thus difficult to disentangle the contributions from strain-dependent antiferromagnetic Mn-O-Ru interface coupling and Mn-O-Mn ferromagnetic double exchange near the interface for the strength of the apparent antiferromagnetic coupling. We discuss our results in the framework of available models.« less
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
2012-01-01
In this study manganese peroxidase (MnP) enzymes from selected white-rot fungi were isolated and compared for potential future recombinant production. White-rot fungi were cultivated in small-scale in liquid media and a simplified process was established for the purification of extracellular enzymes. Five lignin degrading organisms were selected (Bjerkandera sp., Phanerochaete (P.) chrysosporium, Physisporinus (P.) rivulosus, Phlebia (P.) radiata and Phlebia sp. Nf b19) and studied for MnP production in small-scale. Extracellular MnP activity was followed and cultivations were harvested at proximity of the peak activity. The production of MnPs varied in different organisms but was clearly regulated by inducing liquid media components (Mn2+, veratryl alcohol and malonate). In total 8 different MnP isoforms were purified. Results of this study reinforce the conception that MnPs from distinct organisms differ substantially in their properties. Production of the extracellular enzyme in general did not reach a substantial level. This further suggests that these native producers are not suitable for industrial scale production of the enzyme. The highest specific activities were observed with MnPs from P. chrysosporium (200 U mg-1), Phlebia sp. Nf b19 (55 U mg-1) and P. rivulosus (89 U mg-1) and these MnPs are considered as the most potential candidates for further studies. The molecular weight of the purified MnPs was estimated to be between 45–50 kDa. PMID:23190610
World Health Organization Discontinues Its Drinking-Water Guideline for Manganese
Frisbie, Seth H.; Mitchell, Erika J.; Dustin, Hannah; Maynard, Donald M.
2012-01-01
Background: The World Health Organization (WHO) released the fourth edition of Guidelines for Drinking-Water Quality in July 2011. In this edition, the 400-µg/L drinking-water guideline for manganese (Mn) was discontinued with the assertion that because “this health-based value is well above concentrations of manganese normally found in drinking water, it is not considered necessary to derive a formal guideline value.” Objective: In this commentary, we review the WHO guideline for Mn in drinking water—from its introduction in 1958 through its discontinuation in 2011. Methods: For the primary references, we used the WHO publications that documented the Mn guidelines. We used peer-reviewed journal articles, government reports, published conference proceedings, and theses to identify countries with drinking water or potential drinking-water supplies exceeding 400 µg/L Mn and peer-reviewed journal articles to summarize the health effects of Mn. Discussion: Drinking water or potential drinking-water supplies with Mn concentrations > 400 µg/L are found in a substantial number of countries worldwide. The drinking water of many tens of millions of people has Mn concentrations > 400 µg/L. Recent research on the health effects of Mn suggests that the earlier WHO guideline of 400 µg/L may have been too high to adequately protect public health. Conclusions: The toxic effects and geographic distribution of Mn in drinking-water supplies justify a reevaluation by the WHO of its decision to discontinue its drinking-water guideline for Mn. PMID:22334150
Sangle, Varsha Ajit; Bijjaragi, Shobha; Shah, Nishat; Kangane, Suresh; Ghule, Hrishikesh M.; Rani, SR Ashwini
2016-01-01
Context: The assessment of micronuclei (MN) in exfoliated oral epithelial cells is a promising tool for the study of epithelial carcinogens and can be used to detect chromosome breakage or mitotic interference, thought to be relevant to carcinogenesis. Aims: To detect MN in exfoliated oral mucosal cells in individuals using various tobacco forms and also to detect frequency of MN in premalignant lesions and conditions (potentially malignant diseases [PMD's]) and oral squamous cell carcinoma (OSCC). To correlate frequency of MN in oral exfoliated cells in clinically diagnosed cases of OSCC followed by a histopathological grading. Materials and Methods: A total of 90 subjects (30 smokeless tobacco users, 30 smokers and 30 nontobacco users) consisted of clinically diagnosed cases of PMD's and OSCC were selected for the study. Cytosmears from the groups were stained with rapid Papanicolaou stain. MN was identified according to the Tolbert et al. criteria. Results: MN cells were found to be significantly higher in smokeless tobacco users than in smokers. The frequency of MN was three to four times higher in patients with OSCC as compared to patients in PMD's (P < 0.0001). The frequency of MN correlated with the histopathological grade was statistically significant. Conclusion: MN index can be used as a biomarker/screening test among the high-risk groups particularly the smokeless tobacco users and PMD's. MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC. PMID:27003966
Soldatova, Alexandra V; Romano, Christine A; Tao, Lizhi; Stich, Troy A; Casey, William H; Britt, R David; Tebo, Bradley M; Spiro, Thomas G
2017-08-23
The bacterial manganese oxidase MnxG of the Mnx protein complex is unique among multicopper oxidases (MCOs) in carrying out a two-electron metal oxidation, converting Mn(II) to MnO 2 nanoparticles. The reaction occurs in two stages: Mn(II) → Mn(III) and Mn(III) → MnO 2 . In a companion study , we show that the electron transfer from Mn(II) to the low-potential type 1 Cu of MnxG requires an activation step, likely forming a hydroxide bridge at a dinuclear Mn(II) site. Here we study the second oxidation step, using pyrophosphate (PP) as a Mn(III) trap. PP chelates Mn(III) produced by the enzyme and subsequently allows it to become a substrate for the second stage of the reaction. EPR spectroscopy confirms the presence of Mn(III) bound to the enzyme. The Mn(III) oxidation step does not involve direct electron transfer to the enzyme from Mn(III), which is shown by kinetic measurements to be excluded from the Mn(II) binding site. Instead, Mn(III) is proposed to disproportionate at an adjacent polynuclear site, thereby allowing indirect oxidation to Mn(IV) and recycling of Mn(II). PP plays a multifaceted role, slowing the reaction by complexing both Mn(II) and Mn(III) in solution, and also inhibiting catalysis, likely through binding at or near the active site. An overall mechanism for Mnx-catalyzed MnO 2 production from Mn(II) is presented.
Trace Elements in Manganese Minerals as Potential Biosignatures on Mars
NASA Astrophysics Data System (ADS)
Lanza, N.; Clegg, S. M.; Cousin, A.; Forni, O.; Kirk, M. F.; Lamm, S. N.; Ollila, A.; Wiens, R. C.
2017-12-01
Observations from the Curiosity rover in Gale crater, Mars have shown the presence of high abundances of manganese (>3 wt% MnO) within sedimentary rocks throughout the traverse. Such high Mn abundances point to the past presence of abundant liquid water and strongly oxidizing conditions. On Earth, these types of environments are almost always habitable and are frequently inhabited by microbes. Given its close association with life and habitable environments on Earth, manganese has long been considered a potential biosignature for Mars. However, high concentrations of martian Mn have only recently been observed. In addition to the observations in Gale crater, high abundances of Mn have also been observed in Endeavor crater by the Opportunity rover and in the paired martian meteorites NWA 7034 and 7533 (`Black Beauty'), suggesting that Mn deposits may be more widespread on Mars than previously thought. The goal of this work is to determine whether there are unique signatures from rover payload instruments that can distinguish Mn-rich deposits as biogenic in origin (i.e., produced by life) from abiogenic Mn deposits. Importantly, Mn-oxides are known to scavenge trace metals from water because of their surface charge properties. We hypothesize that the presence and abundance of specific trace elements are the critical, distinguishing evidence for identifying the biogenic origin of Mn-bearing materials. A suite of natural rocks containing Mn-rich minerals with a range of Mn redox states was selected for analysis with laser-induced breakdown spectroscopy (LIBS). Samples with a biogenic origin had mixed valence redox states between Mn3+ and Mn4+ as inferred by mineralogy. Trace elements Ba, Li, Sr, and Rb were quantified and the presence or absence of Zn and Cu was ascertained by examining key LIBS peaks. Results show that samples with a known microbial origin had moderate Mn abundances >30 wt% MnO and higher Li and Ba. These results suggest that high Mn abundance alone is not sufficient evidence of a biosignatures. However, the presence of trace elements may help to infer the redox state of Mn, which may in turn point to samples that are more likely to have a biogenic origin.
NASA Astrophysics Data System (ADS)
Zhuo, Zengqing; Hu, Jiangtao; Duan, Yandong; Yang, Wanli; Pan, Feng
2016-07-01
We performed soft x-ray absorption spectroscopy (sXAS) and a quantitative analysis of the transition metal redox in the LiMn0.5Fe0.5PO4 electrodes upon electrochemical cycling. In order to circumvent the complication of the surface reactions with organic electrolyte at high potential, the LiMn0.5Fe0.5PO4 electrodes are cycled with aqueous electrolyte. The analysis of the transitional metal L-edge spectra allows a quantitative determination of the redox evolution of Mn and Fe during the electrochemical cycling. The sXAS analysis reveals the evolving Mn oxidation states in LiMn0.5Fe0.5PO4. We found that electrochemically inactive Mn2+ is formed on the electrode surface during cycling. Additionally, the signal indicates about 20% concentration of Mn4+ at the charged state, providing a strong experimental evidence of the disproportional reaction of Mn3+ to Mn2+ and Mn4+ on the surface of the charged LiMn0.5Fe0.5PO4 electrodes.
Lambert, Timothy N.; Vigil, Julian A.
2016-08-22
Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less
Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO 2 films
NASA Astrophysics Data System (ADS)
Chou, Shulei; Cheng, Fangyi; Chen, Jun
The thin films of carambola-like γ-MnO 2 nanoflakes with about 20 nm in thickness and at least 200 nm in width were prepared on nickel sheets by combination of potentiostatic and cyclic voltammetric electrodeposition techniques. The as-prepared MnO 2 nanomaterials, which were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), were used as the active material of the positive electrode for primary alkaline Zn/MnO 2 batteries and electrochemical supercapacitors. Electrochemical measurements showed that the MnO 2 nanoflake films displayed high potential plateau (around 1.0 V versus Zn) in primary Zn/MnO 2 batteries at the discharge current density of 500 mA g -1 and high specific capacitance of 240 F g -1 at the current density of 1 mA cm -2. This indicated the potential application of carambola-like γ-MnO 2 nanoflakes in high-power batteries and electrochemical supercapacitors. The growth process for the one- and three-dimensional nanostructured MnO 2 was discussed on the basis of potentiostatic and cyclic voltammetric techniques. The present synthesis method can be extended to the preparation of other nanostructured metal-oxide films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, Timothy N.; Vigil, Julian A.
Manganese oxide/poly(3,4-ethylene-dioxythiophene) (MnO x/ PEDOT) nanostructured hybrid thin films were prepared using a simple anodic electrodeposition process from aqueous solution, and then tested for oxygen reduction reaction (ORR) activity in alkaline electrolyte using rotating disk electrode and rotating ring disk electrode methods. MnO x/PEDOT provided improvements over MnO x-only and PEDOT-only control films, with > 0.2 V decrease in onset and half-wave overpotentials, and > 1.5 times increase in terminal current density. The MnO x/PEDOT film exhibited only a slightly lower n value (n = 3.86-3.92) than the 20% Pt/C benchmark electrocatalyst (n = 3.98) across all potentials. MnO x/PEDOTmore » also displayed a more positive half-wave potential and superior electrocatalytic selectivity for the ORR upon methanol exposure than 20% Pt/C. Here, the high activity and synergism of MnO x/PEDOT towards the ORR is attributed to effective intermixing/dispersion of the two materials, intimate substrate contact with improved charge transfer processes attained by co-electrodepositing MnO x with PEDOT and due to the increase in Mn 3+ content at the surface of the oxide.« less
Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.
Park, Euteum; Chun, Hong Sung
2017-08-01
Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.
Epitaxial bain paths and metastable phases of tetragonal iron and manganese
NASA Astrophysics Data System (ADS)
Ma, Hong
2002-04-01
Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.
NASA Astrophysics Data System (ADS)
Jadav, G. D.; Kanjariya, P. V.; Chavda, S. K.; Bhalodia, J. A.
2018-05-01
Manganite systems have been of considerable interest in the recent past due to their potential to operate in wide property range and also to serve as effective magnetic sensing and storing devices. We report a novel hybrid method, by which La0.7Sr0.3Mn1-xAxO3 (A = Al and Ti, x = 0.00 and 0.06) samples were synthesized at temperature 1100 °C. La0.7Sr0.3MnO3 was selected as a parent material because it has metal to insulator transition near to room temperature. The XRD confirms that all the samples were in single phase (with no detectable secondary phases) having a rhombohedral structure in hexagonal lattice having a space group R3¯c. Unit cell volume is affected by Al+3 and Ti+4 ions and this structural variation slows down the electron transfer through the Mn+3-O-2-Mn+4 network seriously. EDAX analysis shows that the weight percentage of prepared samples matches with the calculated weight percentage of all the samples. Scanning electron microscopy shows that each sample has fine and clear grain boundaries (GBs). Metal-insulator transition (TMI) was increased from 230 K to 275 K in Ti+4 doped sample while TMI remain unchanged in Al+3 substituted sample under the 8 T applied magnetic field. As a positive effect, enhancement in MR % was observed at room temperature. These results prove that Al and Ti substitution at Mn site enhances the various properties of this manganite system. These properties are important for application point of view.
Surface hardening of 30CrMnSiA steel using continuous electron beam
NASA Astrophysics Data System (ADS)
Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng
2017-11-01
30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
Fracture behavior of neutron-irradiated high-manganese austenitic steels
NASA Astrophysics Data System (ADS)
Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.
1991-03-01
The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.
Finite Element Modelling Full Vehicle Side Impact with Ultrahigh Strength Hot Stamped Steels
NASA Astrophysics Data System (ADS)
Taylor, T.; Fourlaris, G.; Cafolla, J.
2016-10-01
"Hot stamped boron steel" 22MnB5 has been imperative in meeting the automotive industry's demand for materials exhibiting higher tensile strength in the final component. In this paper, the crash performance of three experimental grades developed for automotive hot stamping technologies, exhibiting wider tensile property ranges than 22MnB5, was validated by finite element modelling full vehicle side impact with the experimental material data applied to the B-pillar reinforcement. The superior anti-intrusive crash performance of grade 38MnB5 was demonstrated, with 11 mm less intrusion of the B-pillar reinforcement compared to 22MnB5. Moreover, the superior "impact-energy absorptive" crash performance of grade 15MnCr5 was demonstrated, with 0.15 kJ greater impact-energy absorption by the B-pillar reinforcement compared to 22MnB5.
Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai
2015-01-01
Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173
Iron Atoms in Cr-Mn Antiferromagnetic Matrix
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.; Biernacka, M.; Perzyńska, K.; Zaleski, P.
2002-06-01
The results of the Mössbauer effect measurements on bcc Cr rich Cr-Fe-Mn alloys in temperature range 12-296 K in zero- and in applied magnetic fields are reported. Monochromatic, circularly polarized radiation was used for investigation of iron moments alignment. Strong enhancement of internal hyperfine magnetic field induced by the applied magnetic field was detected and explained as due to dynamical effects. At high temperatures alignment of iron moments in antiferromagnetic phase is weakly magnetic field-dependent. At low temperatures the average hyperfine magnetic field is antiparallel to the net magnetization showing that iron moments are partly ordered by the applied field.
Watanabe, Ryo; Ikushima, Maiko; Mukawa, Kei; Sumomozawa, Fumitaka; Ogo, Shuhei; Sekine, Yasushi
2013-01-01
For the development of highly active and robust catalysts for dehydrogenation of ethylbenzene (EBDH) to produce styrene; an important monomer for polystyrene production, perovskite-type oxides were applied to the reaction. Controlling the mobility of lattice oxygen by changing the structure of Ba1 − xSrxFeyMn1 − yO3 − δ (0 ≤ x ≤ 1, 0.2 ≤ y ≤ 0.8), perovskite catalyst showed higher activity and stability on EBDH. The optimized Ba/Sr and Fe/Mn molar ratios were 0.4/0.6 and 0.6/0.4, respectively. Comparison of the dehydrogenation activity of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst with that of an industrial potassium promoted iron (Fe–K) catalyst revealed that the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed higher initial activity than the industrial Fe–K oxide catalyst. Additionally, the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst showed high activity and stability under severe conditions, even at temperatures as low as 783 K, or at the low steam/EB ratio of 2, while, the Fe–K catalyst showed low activity in such conditions. Comparing reduction profiles of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ and the Fe–K catalysts in a H2O/H2 atmosphere, reduction was suppressed by the presence of H2O over the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst while the Fe–K catalyst was reduced. In other words, Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ catalyst had higher potential for activating the steam than the Fe–K catalyst. The lattice oxygen in perovskite-structure was consumed by H2, subsequently the consumed lattice oxygen was regenerated by H2O. So the catalytic performance of Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ was superior to that of Fe–K catalyst thanks to the high redox property of the Ba0.4Sr0.6Fe0.6Mn0.4O3 − δ perovskite oxide. PMID:24790949
Theoretical investigation of the reaction of Mn+ with ethylene oxide.
Li, Yuanyuan; Guo, Wenyue; Zhao, Lianming; Liu, Zhaochun; Lu, Xiaoqing; Shan, Honghong
2012-01-12
The potential energy surfaces of Mn(+) reaction with ethylene oxide in both the septet and quintet states are investigated at the B3LYP/DZVP level of theory. The reaction paths leading to the products of MnO(+), MnO, MnCH(2)(+), MnCH(3), and MnH(+) are described in detail. Two types of encounter complexes of Mn(+) with ethylene oxide are formed because of attachments of the metal at different sites of ethylene oxide, i.e., the O atom and the CC bond. Mn(+) would insert into a C-O bond or the C-C bond of ethylene oxide to form two different intermediates prior to forming various products. MnO(+)/MnO and MnH(+) are formed in the C-O activation mechanism, while both C-O and C-C activations account for the MnCH(2)(+)/MnCH(3) formation. Products MnO(+), MnCH(2)(+), and MnH(+) could be formed adiabatically on the quintet surface, while formation of MnO and MnCH(3) is endothermic on the PESs with both spins. In agreement with the experimental observations, the excited state a(5)D is calculated to be more reactive than the ground state a(7)S. This theoretical work sheds new light on the experimental observations and provides fundamental understanding of the reaction mechanism of ethylene oxide with transition metal cations.
Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse
2011-08-01
Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.
Coggins, Michael K.; Brines, Lisa M.; Kovacs, Julie A.
2013-01-01
Hydrogen atom transfer reactions (HAT) are a class of proton-coupled electron transfer (PCET) reactions used in biology to promote substrate oxidation. The driving force for such reactions depend on both the oxidation potential of the catalyst and the pKa of the proton acceptor site. Both high-valent transition-metal oxo M(IV)=O (M= Fe, Mn) and lower-valent transition-metal hydroxo compounds M(III)–OH (M= Fe, Mn) have been shown to promote these reactions. Herein we describe the synthesis, structure and reactivity properties of a series of Mn(III)-OR compounds (R= pNO2Ph(5), Ph(6), Me(7), H(8)), some of which abstract H-atoms. The Mn(III)-OH complex 8 is water-soluble and represents a rare example of a stable mononuclear Mn(III)-OH. In water, the redox potential of 8 was found to be pH-dependent and the Pourbaix (Ep,c vs pH) diagram has a slope (52 mV/pH) that is indicative of the transfer a single proton with each electron (ie, PCET). The two compounds with the lowest oxidation potential, hydroxide and methoxide-bound 7 and 8 are found to oxidize TEMPOH, whereas the compounds with the highest oxidation potential, phenol-ligated 5 and 6, are shown to be unreactive. Hydroxide-bound 8 reacts with TEMPOH an order of magnitude faster than methoxide-bound 7. Kinetic data (kH/kD= 3.1 (8), kH/kD= 2.1 (7)) are consistent with concerted H-atom abstraction. The reactive species 8 can be aerobically regenerated in H2O, and at least 10 turnovers can be achieved without significant degradation of the “catalyst”. The linear correlation between redox potential and pH, obtained from the Pourbaix diagram, was used to calculate the BDFE= 74.0±0.5 kcal/mol for Mn(II)-OH2 in water, and in MeCN its BDFE was estimated to be (70.1 kcal/mol). The reduced protonated derivative of 8, [MnII(SMe2N4(tren))(H2O)]+ (9), was estimated to have a pKa of 21.2 in MeCN. The ability (7) and inability (5 and 6) of the other members of the series to abstract a H-atom from TEMPOH was used to estimate either an upper or lower limit to the Mn(II)-O(H)R pKa based on their experimentally determined redox potentials. The trend in pKa (21.2(R=H) > 16.2(R=Me) > 13.5(R=Ph) > 12.2(R=pNO2Ph)) is shown to oppose that of oxidation potential Ep,c (−220(R= pNO2Ph) > −300(R= Ph) > −410(R= Me) > −600(R= H) mV vs Fc+/0) for this particular series. PMID:24156315
Spatiotemporal evaluation of the groundwater quality in Gharbiya Governorate, Egypt.
Masoud, Alaa A; El Bouraie, Mohamed M; El-Nashar, Wafaa; Mashaly, Hamdy
2017-03-01
Groundwater quality indicators were monitored over 6 years (2007-2012) from 55 drinking water supply wells in Gharbiya Governorate (Egypt). The prime objective was to characterize, for the first time, the governorate-wide significant and sustained trends in the concentrations of the groundwater pollutants. Quality indicators included turbidity, pH, total dissolved solid (TDS), electric conductivity (EC), Cl - , SO 4 2- , Na + , total alkalinity, hardness (total, Mg, and Ca), Fe 2+ , Mn 2+ , Cu 2+ , Zn 2+ , F - , NH 4 + , NO 2 - , NO 3 - , PO 4 3- , dissolved oxygen (DO), and SiO 2 contents. Detection and estimation of trends and magnitude were carried out applying the non-parametric Mann-Kendall and Thiel-Sen trend statistical tests, respectively. Factor analysis was applied to identify significant sources of quality variation and their loads. Violation of groundwater quality standards clarified emergence of Mn 2+ (46%), Fe 2+ (35%), and NH 4 + (33%). Out of the 55 wells, notable upward trends (deterioration) were significant (>95% level) for TDS (89%), NO 3 - (85), PO 4 3- (75%), NH 4 + (65%), total alkalinity (62%), Fe 2+ (58%), NO 2 - (47%), Mg hardness (36%), turbidity (25%), and Mn 2+ (24%). Ranges of attenuation rates (mg/l/year) varied for TDS (24.3, -0.7), Mg hardness (3.8, -0.85), total alkalinity (1.4, -1.2), NO 3 - (0.52, -0.066), PO 4 3- (0.069, -0.064), NH 4 + (0.038, -0.019), Mn 2+ (0.015, -0.044), Fe 2+ (0.006, -0.014), and NO 2 - (0.006, -0.00003). Highest rates marked Tanta (total alkalinity and Fe 2+ ), Al-Mehala Al-Kubra (TDS, Mg hardness, and NO 3 - ), Kafr Al-Zayat (NH 4 + ), Zifta (Mn 2+ ), Bassyun (NO 2 - ), and Qutur (PO 4 3- ). Precision of the trend estimate varied in goodness of fit, for TDS (86%), Mg hardness (76%), total alkalinity (73%), PO 4 3- (67.4%), NH 4 + (66.8%), Mn 2+ (55%), and Fe 2+ (49.6%), arranged in decreasing order. Two main varimax-rotated factors counted for more than 55% of the quality variance and, in particular, significant loads of salinity (TDS, EC, Cl - , Na + , and SO 4 2- ), followed by the alkalinity, hardness, redox potentials (Mn 2+ and Fe 2+ ), and NH 4 + , in decreasing order were identified. The spatial-temporal variation in pollutants originated from organic matter degradation, either naturally from the aquifer peaty sediments or anthropogenic due to improper well head protection in the urban centers or from the agricultural drains in low relief areas. Considering the latest contents of indicators and their rate of increase, the time that the permissible limits would be reached can be accurately estimated and alleviative actions could be effectively set.
Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania.
Kogelmann, Wilhelm J; Sharpe, William E
2006-01-01
For decades, the hardwood forests of northern Pennsylvania have been subjected to chronic atmospheric loading of acidifying agents. On marginal, high-elevation, unglaciated sites, sugar maples (Acer saccharum Marsh.) have experienced severe decline symptoms and mortality. Accelerated soil acidification, base cation leaching, and increased availability of toxic metals have been suggested as predisposing factors contributing to this decline. Manganese, an essential micronutrient, is also a potentially phytotoxic metal that may be a factor associated with poor sugar maple health on soils vulnerable to acidification from anthropogenic sources. We measured Mn levels in four compartments of the soil-tree system (soil, foliage, xylem wood, and sap) on three sugar maple stands in northern Pennsylvania. Two stands were classified as declining and one was in good health. Negative correlations were found between soil pH and Mn levels in the soil, foliage, sap, and xylem wood. Levels of Mn in these pools were consistently higher on declining sites, which correspondingly exhibited lower levels of Ca and Mg. Species differences between red maple (Acer rubrum L.) and sugar maple at the two declining sites suggested different tolerances to excessive Mn. Molar ratios of Mg/Mn and Ca/Mn were different among sites and showed potential as indicators of soil acidification. Significant correlations among soil, sap, foliage, and xylem wood Mn were also noted. These results show clear Mn differences among sites and, when viewed with recent Mn toxicity experiments and other observational studies, suggest that excessive Mn may play a role in the observed decline and mortality of sugar maple.
NASA Astrophysics Data System (ADS)
Konishi, Hiroaki; Hirano, Tatsumi; Takamatsu, Daiko; Gunji, Akira; Feng, Xiaoliang; Furutsuki, Sho; Okumura, Takefumi; Terada, Shohei; Tamura, Kazuhisa
2018-02-01
Two electrochemical reactions are possible in regard to Li1.2Ni0.13Mn0.54Co0.13O2 (0.5Li2MnO3-0.5LiNi0.33Mn0.33Co0.33O2), viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like reactions. The open circuit potential (OCP) and changes in crystal structure during the charge-discharge process of Li1.2Ni0.13Mn0.54Co0.13O2 were investigated to clarify the mechanism responsible for the two reactions. Li2MnO3 and LiNi0.33Mn0.33Co0.33O2 were separately prepared for the investigation, and the OCPs and crystal structures in these cathodes were measured and then compared with those for Li1.2Ni0.13Mn0.54Co0.13O2. The results obtained using X-ray diffraction (XRD) indicated that two phases existed in Li1.2Ni0.13Mn0.54Co0.13O2. The changes in crystal structure of the two phases during the charge-discharge process were similar to those in Li2MnO3 and LiNi0.33Mn0.33Co0.33O2. This indicated that two phases, viz, Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like, existed in Li1.2Ni0.13Mn0.54Co0.13O2. Li2MnO3-like, LiNi0.33Mn0.33Co0.33O2-like, and Li2MnO3-like phases were found to contribute mainly to electrochemical reactions in the low, middle, and high state of charge (SOC) ranges during the charge process from the results obtained using XRD and electrochemical measurements carried out on Li1.2Ni0.13Mn0.54Co0.13O2. In contrast, the Li2MnO3-like and LiNi0.33Mn0.33Co0.33O2-like phases mainly contributed to electrochemical reactions in the low and high SOC ranges during the discharge process. Furthermore, the high polarization and potential decay during the charge-discharge cycling of Li1.2Ni0.13Mn0.54Co0.13O2 were mainly attributed to the Li2MnO3-like phase.
Numerical Solution of Dyson Brownian Motion and a Sampling Scheme for Invariant Matrix Ensembles
NASA Astrophysics Data System (ADS)
Li, Xingjie Helen; Menon, Govind
2013-12-01
The Dyson Brownian Motion (DBM) describes the stochastic evolution of N points on the line driven by an applied potential, a Coulombic repulsion and identical, independent Brownian forcing at each point. We use an explicit tamed Euler scheme to numerically solve the Dyson Brownian motion and sample the equilibrium measure for non-quadratic potentials. The Coulomb repulsion is too singular for the SDE to satisfy the hypotheses of rigorous convergence proofs for tamed Euler schemes (Hutzenthaler et al. in Ann. Appl. Probab. 22(4):1611-1641, 2012). Nevertheless, in practice the scheme is observed to be stable for time steps of O(1/ N 2) and to relax exponentially fast to the equilibrium measure with a rate constant of O(1) independent of N. Further, this convergence rate appears to improve with N in accordance with O(1/ N) relaxation of local statistics of the Dyson Brownian motion. This allows us to use the Dyson Brownian motion to sample N× N Hermitian matrices from the invariant ensembles. The computational cost of generating M independent samples is O( MN 4) with a naive scheme, and O( MN 3log N) when a fast multipole method is used to evaluate the Coulomb interaction.
Xiao, J F; Wu, S G; Zhang, H J; Yue, H Y; Wang, J; Ji, F; Qi, G H
2015-08-01
This study was aimed at investigating the bioefficacy of organic compared with inorganic manganese (Mn) for eggshell quality. An amino acid-Mn complex or Mn sulfate monohydrate was used as the organic or inorganic Mn source. A total of six hundred forty-eight 50-wk-old layers (Hy-Line Brown) were divided into 9 groups; each group consisted of 6 replicates with 12 layers each. The feeding trial lasted 12 wk. During the first 4 wk of the feeding trial, the groups were fed a basal diet, which met the nutrient requirements of the layers, except for Mn. During the following 8 wk, 9 levels of Mn (inorganic Mn: 0, 25, 50, 100, and 200 mg/kg; organic Mn: 25, 50, 100, and 200 mg/kg) were used to supplement, respectively, in the basal diet on an equimolar basis. An exponential regression model was applied to calculate the bioefficacy of organic Mn compared with the inorganic Mn. Dietary supplementation with either organic or inorganic Mn did not influence egg production and feed efficiency of (P > 0.05), and eggshell quality did not exhibit a significant response to dietary supplementation with Mn sources at 56 and 58 wk (P > 0.05). Dietary supplementation with either organic Mn or inorganic Mn significantly enhanced the thickness, breaking strength, and elastic modulus of the eggshells compared with the control group at the end of 62 wk (P < 0.05). At the end of 62 wk, the bioefficacy of organic Mn was 357% (shell thickness), 406% (breaking strength), 458% (elastic modulus), and 470% (eggshell Mn), as efficacious as inorganic Mn at equimolar levels. This study suggests that organic Mn enhances eggshell quality in aged laying hens compared with inorganic Mn. © 2015 Poultry Science Association Inc.
USDA-ARS?s Scientific Manuscript database
Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...
Shakoor, Rana A; Kim, Heejin; Cho, Woosuk; Lim, Soo Yeon; Song, Hannah; Lee, Jung Woo; Kang, Jeung Ku; Kim, Yong-Tae; Jung, Yousung; Choi, Jang Wook
2012-07-18
As an attempt to develop lithium ion batteries with excellent performance, which is desirable for a variety of applications including mobile electronics, electrical vehicles, and utility grids, the battery community has continuously pursued cathode materials that function at higher potentials with efficient kinetics for lithium insertion and extraction. By employing both experimental and theoretical tools, herein we report multicomponent pyrophosphate (Li(2)MP(2)O(7), M = Fe(1/3)Mn(1/3)Co(1/3)) cathode materials with novel and advantageous properties as compared to the single-component analogues and other multicomponent polyanions. Li(2)Fe(1/3)Mn(1/3)Co(1/3)P(2)O(7) is formed on the basis of a solid solution among the three individual transition-metal-based pyrophosphates. The unique crystal structure of pyrophosphate and the first principles calculations show that different transition metals have a tendency to preferentially occupy either octahedral or pyramidal sites, and this site-specific transition metal occupation leads to significant improvements in various battery properties: a single-phase mode for Li insertion/extraction, improved cell potentials for Fe(2+)/Fe(3+) (raised by 0.18 eV) and Co(2+)/Co(3+) (lowered by 0.26 eV), and increased activity for Mn(2+)/Mn(3+) with significantly reduced overpotential. We reveal that the favorable energy of transition metal mixing and the sequential redox reaction for each TM element with a sufficient redox gap is the underlying physical reason for the preferential single-phase mode of Li intercalation/deintercalation reaction in pyrophosphate, a general concept that can be applied to other multicomponent systems. Furthermore, an extremely small volume change of ~0.7% between the fully charged and discharged states and the significantly enhanced thermal stability are observed for the present material, the effects unseen in previous multicomponent battery materials.
Wu, Zhongzhen; Ji, Shunping; Liu, Tongchao; Duan, Yandong; Xiao, Shu; Lin, Yuan; Xu, Kang; Pan, Feng
2016-10-12
Layered transition-metal oxides (Li[Ni x Mn y Co z ]O 2 , NMC, or NMCxyz) due to their poor stability when cycled at a high operating voltage (>4.5 V) have limited their practical applications in industry. Earlier researches have identified Mn(II)-dissolution and some parasitic reactions between NMC surface and electrolyte, especially when NMC is charged to a high potential, as primarily factors responsible for the fading. In our previous work, we have achieved a capacity of NMC active material close to theoretical value and optimized its cycling performance by a depolarized carbon nanotubes (CNTs) network and an unique "pre-lithiation process" that generates an in situ organic coating (∼40 nm) to prevent Mn(II) dissolution and minimize the parasitic reactions. Unfortunately, this organic coating is not durable enough during a long-term cycling when the cathode operates at a high potential (>4.5 V). This work attempts to improve the surface protection of the NMC532 particles by applying an active inorganic coating consisting of nanosized- and crystal-orientated LiFePO 4 (LFP) (about 50 nm, exposed (010) face) to generate a core-shell nanostructure of Li(Ni x Mn y Co z )O 2 @LiFePO 4 . Transmission electron microscopy (TEM) and etching X-ray photoelectron spectroscopy have confirmed an intimate contact coating (about 50 nm) between the original structure of NMC and LFP single-particle with atomic interdiffusion at the core-shell interface, and an array of interconnected aligned Li + tunnels are observed at the interface by cross-sectional high-resolution TEM, which were formed by ball-milling and then strictly controlling the temperature below 100 °C. Batteries based on this modified NMC cathode material show a high reversible capacity when cycled between 3.0 and 4.6 V during a long-term cycling.
Heavy metals seasonal variability and distribution in Lake Qaroun sediments, El-Fayoum, Egypt
NASA Astrophysics Data System (ADS)
Redwan, Mostafa; Elhaddad, Engy
2017-10-01
This study was carried out to investigate the seasonal variability and distribution of heavy metals ;HMs; (Fe, Mn, Co, Cr, Cu, Ni, Pb, Zn and V) in the bottom sediments of Lake Qaroun, in Egypt. The samples were collected from 10 sites in summer and winter seasons in 2015. Total metals concentrations were measured using inductively coupled plasma spectrometer. Multivariate techniques were applied to analyse the distribution and potential source of heavy metals. The mean seasonal concentrations follow a descending order of Fe > Mn > V > Zn > Cr > Ni > Cu > Co > Pb. The mean concentrations of HMs in sediments during summer were higher than the concentrations during winter and above the average world shale values, except for Pb, suggesting potential adverse toxicity to aquatic organisms. All metals showed enrichment during summer and winter at sites S3 and S5 in the southeastern parts of the lake due to the heavy discharge of contaminants from El-Bats and El-Wadi drains. Principal component analysis results suggested two principal components controlling HMs variability in sediments, which accounted for 63.9% (factor 1: Co, Cr, Cu, Ni, Zn, Pb and V), 15.9% (factor 2: Mn and Fe) during summer, and 76.7% (factor 1: Fe, Co, Cr, Cu, Ni, Zn, Pb and V), 13.8% (factor 2: Mn) during winter of the total variance. Geo-accumulation index (Igeo) showed some pollution risk at the southeastern and southern parts (sites S3 and S5). Dilution during winter, concentration during summer, impact of non-point sources from different agricultural, industrial, municipal sewage and fish farms in the southern part of Lake Qaroun, adsorption and salt dissolution reactions and lithogenic sources are the main controlling factors for HMs in the study area. Monitoring of contaminant discharge at Lake Qaroun should be introduced for future remediation and management strategies.
Lithium manganese oxide spinel electrodes
NASA Astrophysics Data System (ADS)
Darling, Robert Mason
Batteries based oil intercalation eletrodes are currently being considered for a variety of applications including automobiles. This thesis is concerned with the simulation and experimental investigation of one such system: spinel LiyMn2O4. A mathematical model simulating the behavior of an electrochemical cell containing all intercalation electrode is developed and applied to Li yMn2O4 based systems. The influence of the exchange current density oil the propagation of the reaction through the depth of the electrode is examined theoretically. Galvanostatic cycling and relaxation phenomena on open circuit are simulated for different particle-size distributions. The electrode with uniformly sized particles shows the best performance when the current is on, and relaxes towards equilibrium most quickly. The impedance of a porous electrode containing a particle-size distribution at low frequencies is investigated with all analytic solution and a simplified version of the mathematical model. The presence of the particle-size distribution leads to an apparent diffusion coefficient which has all incorrect concentration dependence. A Li/1 M LiClO4 in propylene carbonate (PC)/ LiyMn 2O4 cell is used to investigate the influence of side reactions oil the current-potential behavior of intercalation electrodes. Slow cyclic voltammograms and self-discharge data are combined to estimate the reversible potential of the host material and the kinetic parameters for the side reaction. This information is then used, together with estimates of the solid-state diffusion coefficient and main-reaction exchange current density, in a mathematical model of the system. Predictions from the model compare favorably with continuous cycling results and galvanostatic experiments with periodic current interruptions. The variation with respect to composition of' the diffusion coefficient of lithium in LiyMn2O4 is estimated from incomplete galvanostatic discharges following open-circult periods. The results compared favorably with those available in the literature. Dynamic Monte Carlo simulations were conducted to investigate the concentration dependence of the diffusion coefficient fundamentally. The dynamic Monte Carlo predictions compare favorably with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet
Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction potentials for the Mn[T pXPC]Ph series (~–0.95 V) as well as large electrochemical HOMO-LUMO gaps of ~1.7 V. The first reductions, however, are irreversible, suggesting cleavage of the Mn–Ph bond.« less
Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet; ...
2018-06-06
Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction potentials for the Mn[T pXPC]Ph series (~–0.95 V) as well as large electrochemical HOMO-LUMO gaps of ~1.7 V. The first reductions, however, are irreversible, suggesting cleavage of the Mn–Ph bond.« less
Large energy absorption in Ni-Mn-Ga/polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.
2005-05-15
Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples.
Kaiser, A L; Montville, T J
1996-12-01
Bavaricin MN was purified from Lactobacillus sake culture supernatant 135-fold with a final yield of 11%. Sequence analysis revealed bavaricin MN to be a 42-amino-acid peptide having a molecular weight of 4,769 and a calculated pI of 10.0. Computer analysis indicated that the C-terminal region may form an alpha-helical structure with an amphipathic nature deemed important in the interaction of bacteriocins with biological membranes. Bavaricin MN rapidly depleted the membrane potential (delta p) of energized Listeria monocytogenes cells in a concentration-dependent fashion. At a bavaricin MN concentration of 9.0 micrograms/ml, the delta p decreased by 85%. Both the electrical potential (delta psi) and Z delta pH components of the delta p were depleted, and this depletion was not dependent on a threshold level of proton motive force. In addition to studying the effect of bavaricin MN on the delta p of vegetative cells, bavaricin MN-induced carboxyfluorescein (CF) efflux from L. monocytogenes-derived lipid vesicles was also characterized. Bavaricin MN-induced CF leakage was also concentration dependent with an optimum of pH 6.0. The rate of CF efflux was 63% greater in lipid vesicles in which a delta psi was generated compared with that in lipid vesicles in the absence of a delta psi.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Albert; Kabir, Sadia; Matanovic, Ivana
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...
2017-06-16
This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less
Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys
NASA Astrophysics Data System (ADS)
Wei, Longsha; Zhang, Xuexi; Liu, Jian; Geng, Lin
2018-05-01
High-performance elastocaloric materials require a large reversible elastocaloric effect and long life cyclic stability. Here, we fabricated textured polycrystalline Ni50.4Mn27.3Ga22.3 alloys by cost-effective casting method to create a <001> texture. A strong correlation between the cyclic stability and the crystal orientation was demonstrated. A large reversible adiabatic temperature change ΔT ˜6 K was obtained when the external stress was applied parallel to <001> direction. However, the ΔT decreased rapidly after 50 cycles, showing an unstable elastocaloric effect (eCE). On the other hand, when the external stress was applied perpendicular to <001>, the adiabatic ΔT was smaller ˜4 K, but was stable over 100 cycles. This significantly enhanced eCE stability was related to the high yield strength, low transformation strain and much higher crack initiation-propagation resistances perpendicular to <001> direction. This study provides a feasible strategy for optimizing the eCE property by creation of the texture structure in polycrystalline Ni-Mn-Ga and Ni-Mn-X (X= In, Sn, Sb) alloys.
Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites
NASA Astrophysics Data System (ADS)
Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.
2018-05-01
Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.
Enhancing the magnetization of Mn4C by heating
NASA Astrophysics Data System (ADS)
Si, Ping-Zhan; Qian, Hui-Dong; Ge, Hong-Liang; Park, Jihoon; Choi, Chul-Jin
2018-05-01
Little is known about the physical properties of Mn4C for which is unstable and difficult to prepare. We herein report on the unusual thermomagnetic properties of high purity Mn4C powders obtained by plasma melting and magnetic separation processes. The saturation magnetization of Mn4C increases linearly with increasing temperature in the range of 50 K-590 K and remains stable at temperatures below 50 K. The anomalous magnetization increases of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which would be partially oxidized into manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is around ˜870 K. The positive temperature coefficient (˜0.0072 Am2 kg-1 K-1) of magnetization in Mn4C makes it potentially important in controlling the thermodynamics of magnetization in magnetic materials.
Hudnell, H K
1999-01-01
The risk posed to human health by environmental manganese exposure is unknown. Occupational-exposure outcomes may not extrapolate to environmental exposures due to the healthy worker effect and differences in dosage parameters which may affect the biological response. This paper attempts to combine the existing literature on non-occupational Mn exposures with results from our current study in SW Quebec on environmental Mn exposure (Mergler et al., this issue) within the framework of a biologically-based, dose-response (BBDR) model. BBDR MODEL: The basic BBDR model consists of seven stages relating exposure to health effects. The stages are: 1) sources, 2) applied dose, 3) absorbed dose, 4) target-site dose, 5) toxic event, 6) measurable change, and 7) health outcome. Several air monitoring programs, such as the PTEAM study (Riverside, CA, 1990, mean PM10 Mn outdoor-airborne 24 h average = 0.045 microgram/m3), provided data relevant to the estimation of Mn applied dose, but did not include measures of body burden. Data from the SW Quebec study showed a mean total-particulate airborne Mn concentration of 0.022 microgram/m3 with a range of 0.009 to 0.035 microgram/m3 across four sampling sites, whereas the EPA reference concentration (RfC) is 0.05 microgram/m3. EPA has considered tap water levels to be safe below 200 micrograms/l Mn, and mean Mn tap-water (MnW) level in the participants' homes was 6.38 +/- 11.95 micrograms/l with a range from 0.1 to 158.9 micrograms/l Mn. A previous study of MnW exposure in Greece reported Mn levels in areas with low, medium and high MnW ranging from 4 to 2,300 micrograms/l and a significant association with Mn in hair but not Mn in blood (MnB). The mean absorbed dose of the SW Quebec study participants, as indicated by MnB, was 7.5 +/- 2.3 micrograms/l with a range of 2.5 to 15.9 micrograms/l. Our study and others on environmental Mn exposure did not provide an estimate of target-site dose. However, a significant correlation (r = 0.65) between MnB and signal intensity in T1-weighted MRI images has been reported in liver-disease patients with Parkinson-like signs who had MnB levels as low as 6.6 micrograms/l. Only animal and in vitro studies have provided evidence on the mechanisms of toxicity caused by Mn in the CNS. Several studies reported measurable changes in endpoints suggestive of a Parkinson-like syndrome in subjects with MnB levels ranging from 7.5 to 25.0 micrograms/l. Among other effects on neurobehavioral function observed in the current study was a significant relationship between MnB and the direction and speed of body-sway in men. The effects observed in these participants are sub-clinical and no health outcomes have been diagnosed. However, the Parkinson's disease incidence in the study area was previously reported to be 2-5 times higher than in the rest of Quebec, and several studies indicate that 25-35% of idiopathic Parkinson disease diagnoses are incorrect. Our study, the Greek study, and some clinical studies suggest that the risk of a Parkinson-like syndrome diagnosis may increase with continued Mn exposure and aging. The limited data available for the BBDR model point to the need for evidence, particularly on relationships between Mn species, exposure route, MnB with chronic environmental exposure, ageing, and susceptibility factors, to improve human-health risk assessments for chronic, environmental Mn exposure.
NASA Astrophysics Data System (ADS)
Lee, Ilbok; Jeong, Gyoung Hwa; An, Soyeon; Kim, Sang-Wook; Yoon, Songhun
2018-01-01
Herein, MnNi-layered double hydroxides (LDH) were imbibed within the interlayers of graphene nanosheets. The anionic surfactant, sodium dodecyl sulfate played a role of graphite exfoliator adding interaction with metal cations. Using this process, layered MnNi-LDH-graphene nanocomposite was prepared without formation of graphene oxide. When applied into pseudocapacitor electrode, LDH-graphene with optimal ratio between Mn and Ni exhibited very stable cycle with 90% at 1400 cycles and high energy 47.29 Wh kg-1 at the power density of 7473 W kg-1, which was attributed to highly stable layered LDH structure within conductive graphene layers.
Tariq, M; Sharif, M; Shah, Z; Khan, R
2007-06-01
An experiment was designed to study the effect of foliar application of micronutrients on the yield, quality and leaf composition of sweet orange, Blood red variety at Shabazgari, Mardan. The experiment was laid out in a randomized complete block design in 2) factorial arrangement. Zinc, manganese and boron were applied as foliar spray at the rate of 0.4, 0.2 and 0.04 kg ha(-1), respectively in the presence of 1.56 kg N ha(-1) as urea and 0.4 kg surfactance ha(-1) (as wetting agent) in 400 L of water. The maximum fruit yield was obtained, when 0.4 kg Zn ha(-1) and 0.2 kg Mn ha(-1) was sprayed along with 1.56 kg N ha(-1) and 0.4 kg surfactance ha(-1) in 400 L of water. The minimum % peel was obtained with B alone and minimum % rag with Zn + Mn, maximum fruit size with Zn + B and maximum fruit volume with Zn + Mn. Similarly, % juice in sweet oranges was increased significantly by B alone, reducing sugar by Mn alone and vitamin C contents by Zn + B through foliar spray, suggested that each micronutrient had different role on the quality of citrus fruit. Foliar spray of Zn, Mn and B along with urea significantly increased the concentration of Zn and Mn in citrus leaves, while the concentration of B was not affected with foliar spray, perhaps due to dilution within the citrus tissues. Therefore, it is suggested that either Zn+Mn or Zn+B may be applied as foliar spray in combination with urea and surfactance for getting the maximum yield and improved quality of citrus fruit under prevailing conditions.
The economic pre-treatment of coal mine drainage water with caustic and ozone.
Boyden, B H; Nador, L; Addleman, S; Jeston, L
2017-09-01
Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.
Gas Evolution in Operating Lithium-Ion Batteries Studied In Situ by Neutron Imaging
Michalak, Barbara; Sommer, Heino; Mannes, David; Kaestner, Anders; Brezesinski, Torsten; Janek, Jürgen
2015-01-01
Gas generation as a result of electrolyte decomposition is one of the major issues of high-performance rechargeable batteries. Here, we report the direct observation of gassing in operating lithium-ion batteries using neutron imaging. This technique can be used to obtain qualitative as well as quantitative information by applying a new analysis approach. Special emphasis is placed on high voltage LiNi0.5Mn1.5O4/graphite pouch cells. Continuous gassing due to oxidation and reduction of electrolyte solvents is observed. To separate gas evolution reactions occurring on the anode from those associated with the cathode interface and to gain more insight into the gassing behavior of LiNi0.5Mn1.5O4/graphite cells, neutron experiments were also conducted systematically on other cathode/anode combinations, including LiFePO4/graphite, LiNi0.5Mn1.5O4/Li4Ti5O12 and LiFePO4/Li4Ti5O12. In addition, the data were supported by gas pressure measurements. The results suggest that metal dissolution in the electrolyte and decomposition products resulting from the high potentials adversely affect the gas generation, particularly in the first charge cycle (i.e., during graphite solid-electrolyte interface layer formation). PMID:26496823
González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Álvarez-Rogel, José
2013-03-01
The aim of this study was to assess the effectiveness of combining liming and vegetation for the phytomanagement of strongly acidic, saline eutrophic wetlands polluted by mine wastes. Simulated soil profiles were constructed and four treatments were assayed: without liming+without plant, without liming+with plant, with liming+without plant and with liming+with plant. The plant species was the halophyte Sarcocornia fruticosa. Three horizons were differentiated: A (never under water), C1 (alternating flooding-drying conditions) and C2 (always under water). The soluble Cd, Cu, Mn, Pb and Zn concentrations were measured regularly for 18 weeks and a sequential extraction procedure was applied at the end of the experiment. Liming was effective (between ∼70% and ∼100%) in reducing the soluble Zn, Cu and Pb. In contrast, soluble Mn and Cd increased with liming, especially in the treatment with liming+with plant, where the concentrations were 2-fold higher than in the non-limed treatments. The amendment increased the contents of Zn, Mn and Cd bound to potentially-mobilisable soil fractions at the expense of the most-environmentally-inert fractions. Hence, the combined use of liming and vegetation may increase the long-term environmental risk of metals solubilisation. Copyright © 2012 Elsevier Ltd. All rights reserved.
All zinc-blende GaAs/(Ga,Mn)As core-shell nanowires with ferromagnetic ordering.
Yu, Xuezhe; Wang, Hailong; Pan, Dong; Zhao, Jianhua; Misuraca, Jennifer; von Molnár, Stephan; Xiong, Peng
2013-04-10
Combining self-catalyzed vapor-liquid-solid growth of GaAs nanowires and low-temperature molecular-beam epitaxy of (Ga,Mn)As, we successfully synthesized all zinc-blende (ZB) GaAs/(Ga,Mn)As core-shell nanowires on Si(111) substrates. The ZB GaAs nanowire cores are first fabricated at high temperature by utilizing the Ga droplets as the catalyst and controlling the triple phase line nucleation, then the (Ga,Mn)As shells are epitaxially grown on the side facets of the GaAs core at low temperature. The growth window for the pure phase GaAs/(Ga,Mn)As core-shell nanowires is found to be very narrow. Both high-resolution transmission electron microscopy and scanning electron microscopy observations confirm that all-ZB GaAs/(Ga,Mn)As core-shell nanowires with smooth side surface are obtained when the Mn concentration is not more than 2% and the growth temperature is 245 °C or below. Magnetic measurements with different applied field directions provide strong evidence for ferromagnetic ordering in the all-ZB GaAs/(Ga,Mn)As nanowires. The hybrid nanowires offer an attractive platform to explore spin transport and device concepts in fully epitaxial all-semiconductor nanospintronic structures.
[Removal Kinetics and Mechanism of Aniline by Manganese-oxide-modified Diatomite].
Xiao, Shao-dan; Liu, Lu; Jiang, Li-ying; Chen, Jian-meng
2015-06-01
A novel rapid green one-step method was developed for the preparation of manganese modified diatomite (Mn-D) by treating roasted diatomite with an acidic permanganate solution. The effects of calcination temperature and mass ratio of KMnO4 and diatomite (p) on aniline removal efficiency of Mn-D were investigated. The removal kinetics and mechanism of aniline by Mn-D were also discussed. The results showed that when the optimal calcination temperature was 450 degrees C, p was 1.6, and the loading amounts of δ-MnO2 was 0.82 g x g(-1), Mn-D had a great performance for aniline removal, and more than 80% of aniline was adsorbed within 10 minutes, accompanied with the release of Mn2+. In acidic conditions, the adsorption process on Mn-D followed pseudo-second-order and was mainly controlled by intra-particle diffusion. The best fitting of the experimental adsorption data was given by the Freundlich equation. Gas chromatograph-mass spectrometer was applied to identify the reaction intermediates at different times, and azobenzene was found to be the main reaction intermediate in the degradation system. Based on the above observations, the possible degradation pathway of aniline by Mn-D was proposed.
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
Spin Hall Effects in Metallic Antiferromagnets
Zhang, Wei; Jungfleisch, Matthias B.; Jiang, Wanjun; ...
2014-11-04
In this paper, we investigate four CuAu-I-type metallic antiferromagnets for their potential as spin current detectors using spin pumping and inverse spin Hall effect. Nontrivial spin Hall effects were observed for FeMn, PdMn, and IrMn while a much higher effect was obtained for PtMn. Using thickness-dependent measurements, we determined the spin diffusion lengths of these materials to be short, on the order of 1 nm. The estimated spin Hall angles of the four materials follow the relationship PtMn > IrMn > PdMn > FeMn, highlighting the correlation between the spin-orbit coupling of nonmagnetic species and the magnitude of the spinmore » Hall effect in their antiferromagnetic alloys. These experiments are compared with first-principles calculations. Finally, engineering the properties of the antiferromagnets as well as their interfaces can pave the way for manipulation of the spin dependent transport properties in antiferromagnet-based spintronics.« less
Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 2: Reduction Studies
NASA Astrophysics Data System (ADS)
Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.
2018-02-01
Production of ultrahigh-manganese steels is expected to result in significant increase in demand for low-carbon (LC) ferromanganese (FeMn) and silicomanganese (SiMn). Current manganese processing techniques are energy intensive and typically yield a high-carbon product. The present work therefore reviews available literature regarding carbothermic reduction of Mn oxides and ores, with the objective of identifying opportunities for future process development to mitigate the cost of LC FeMn and SiMn. In general, there is consensus that carbothermic reduction of Mn oxides and ores is limited by gasification of carbon. Conditions which enhance or bypass this step (e.g., by application of CH4) show higher rates of reduction at lower temperatures. This phenomenon has potential application in solid-state reduction of Mn ore. Other avenues for process development include optimization of the prereduction step in conventional FeMn production and metallothermic reduction as a secondary reduction step.
Doping Y 2O 3 with Mn 4+ for energy-efficient lighting
Ming, Wenmei; Shi, Hongliang; Du, Mao-Hua
2018-03-28
Developing energy-efficient LEDs that emit warm white light requires new red phosphors with appropriate emission wavelengths and band widths. Mn 4+-activated Y 2O 3 is a potential red LED phosphor with narrow emission and improved emission wavelength compared to previously known Mn 4+-activated oxide phosphors. Here in this work, the dopability and the oxidation state of Mn in Y 2O 3 are investigated based on the formation energies of native defects, Mn dopants, and divalent co-dopants (i.e., Ca, Sr, Cd, and Zn) calculated using hybrid density functional theory. We found that Mn 4+ is difficult to form in Y 2Omore » 3 without co-doping. Stabilizing Mn 4+ on Y 3+ sites (forming Mn + Y donors) requires the co-doping of compensating acceptors (Ca or Sr) in oxygen-rich growth environments.« less
The Effect of Interface Texture on Exchange Biasing in Ni(80)Fe(20)/Ir(20)Mn(80) System.
Chen, Yuan-Tsung
2009-01-01
Exchange-biasing phenomenon can induce an evident unidirectional hysteresis loop shift by spin coupling effect in the ferromagnetic (FM)/antiferromagnetic (AFM) interface which can be applied in magnetoresistance random access memory (MRAM) and recording-head applications. However, magnetic properties are the most important to AFM texturing. In this work, top-configuration exchange-biasing NiFe/IrMn(x A) systems have been investigated with three different conditions. From the high-resolution cross-sectional transmission electron microscopy (HR X-TEM) and X-ray diffraction results, we conclude that the IrMn (111) texture plays an important role in exchange-biasing field (H(ex)) and interfacial exchange energy (J(k)). H(ex) and J(k) tend to saturate when the IrMn thickness increases. Moreover, the coercivity (H(c)) dependence on IrMn thickness is explained based on the coupling or decoupling effect between the spins of the NiFe and IrMn layers near the NiFe/IrMn interface. In this work, the optimal values for H(ex) and J(k) are 115 Oe and 0.062 erg/cm(2), respectively.
Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong
2016-12-01
This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural, magnetic and dielectric properties of polyaniline/MnCoFe2O4 nanocomposites
NASA Astrophysics Data System (ADS)
Chitra, Palanisamy; Muthusamy, Athianna; Jayaprakash, Rajan
2015-12-01
Ferromagnetic PANI containing MnCoFe2O4 nanocomposites were synthesized by in-situ chemical polymerization of aniline incorporated MnCoFe2O4 nanoparticles (20%, 10% w/w of fine powders) with and without ultrasonic treatment. The MnCoFe2O4 nanoparticles were synthesized by auto combustion method. The PANI/MnCoFe2O4 nanocomposites were characterized with Fourier transform infrared (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The average particle size of the resulting PANI/MnCoFe2O4 nanocomposites was confirmed from the TEM and XRD analysis. The structure and morphology of the composites were confirmed by FT-IR spectroscopy, XRD and SEM. In addition, the electrical and magnetic properties of the nanocomposites were investigated. The PANI/MnCoFe2O4 nanocomposites under applied magnetic field exhibited the hysteresis loops of ferromagnetic nature at room temperature. The variation of Dielectric constant, Dielectric loss, and AC conductivity of PANI/MnCoFe2O4 nanocomposites at room temperature as a function of frequency in the range 50 Hz-5 MHz has been studied. Effect of ultrasonication on the PANI/MnCoFe2O4 nanocomposites was also investigated.
Low-temperature spin dynamics of Mn-rich Mn(Ga)As nanoclusters embedded in a GaAs matrix
NASA Astrophysics Data System (ADS)
Wang, Weizhu; Deng, Jiajun; Lu, Jun; Sun, Baoquan; Zhao, Jianhua
2008-03-01
Recently, the composite systems of Mn-rich Mn(Ga)As nanoclusters embedded in GaAs matrices have received an increasing attention due to the large magneto-optical and magneto-resistance effects at room temperature which could be applied to spin-electronic devices. In this work, we report the low-temperature spin dynamic behaviours including memory effects and slow magnetic relaxation of such composite systems. The systems can be formed by in situ postgrowth annealing of (Ga,Mn)As films at 650 ^oC for 10 min because of spinodal decomposition. High-resolution TEM images show zincblende Mn-rich Mn(Ga)As nanoclusters with a diameter in the range of 10-20 nm embedded in a GaAs matrix. From zero-field cooled and field cooled measurements, we can observe a clear bifurcation of the two curves demonstrating the existence of the spin-glass-like phase below the blocking temperature in the systems with high Mn concentration. Memory effects and slow magnetic relaxation, the typical characteristics of spin-glass-like phases, are also detected, and the hierarchical model is confirmed to be in accordance with such low-temperature behaviours. On the other hand, for samples with low Mn content, ferromagnetic order remains up to 360K.
Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys.
Hong, Daeho; Chou, Da-Tren; Velikokhatnyi, Oleg I; Roy, Abhijit; Lee, Boeun; Swink, Isaac; Issaev, Ilona; Kuhn, Howard A; Kumta, Prashant N
2016-11-01
3D printing of various biomaterials including titanium and stainless steel has been studied for treating patients with cranio-maxillofacial bone defect. The potential long term complications with use of inert biometals have opened the opportunities for use of biodegradable metals in the clinical arena. The authors previously reported that binder-jet 3D printing technique enhanced the degradation rates of biodegradable Fe-Mn alloy by creating engineered micropores rendering the system attractive as biodegradable implantable devices. In the present study, the authors employed CALPHAD modeling to systematically study and modify the Fe-Mn alloy composition to achieve enhanced degradation rates. Accordingly, Ca and Mg addition to Fe-35wt% Mn solid solution predicted increase in degradation rates. In order to validate the CALPHAD results, Fe - (35-y)wt% Mn - ywt% X (X=Ca, Mg, and y=0, 1, 2) were synthesized by using high energy mechanical alloying (HEMA). Sintered pellets of Fe-Mn-Ca and Fe-Mn-Mg were then subjected to potentiodynamic polarization (PDP) and live/dead cell viability tests. Sintered pellets of Fe-Mn, Fe-Mn-Ca, and Fe-Mn-Mg also exhibited MC3T3 murine pre-osteoblast cells viability in the live/dead assay results. Fe-Mn and Fe-Mn-1Ca were thus accordingly selected for 3D printing and the results further confirmed enhanced degradation of Ca addition to 3D printed constructs validating the theoretical and alloy development studies. Live/dead and MTT cell viability results also confirmed good cytocompatibility of the 3D-printed Fe-Mn and Fe-Mn-1Ca constructs. Bone grafting is widely used for the treatment of cranio-maxillofacial bone injuries. 3D printing of biodegradable Fe alloy is anticipated to be advantageous over current bone grafting techniques. 3D printing offers the fabrication of precise and tailored bone grafts to fit the patient specific bone defect needs. Biodegradable Fe alloy is a good candidate for 3D printing synthetic grafts to regenerate bone tissue without eliciting complications. CALPHAD theoretical models were used to develop new Fe-Mn-Ca/Mg alloys to enhance the degradation rates of traditional Fe-Mn alloys. In vitro experimental results also showed enhanced degradation rates and good cytocompatibility of sintered Fe-Mn-Ca/Mg compacts. 3D printing of Fe-Mn and Fe-Mn-1Ca alloys further demonstrated their feasibility as potentially viable bone grafts for the future. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Browne, James D; Allen, Eoin; Murphy, Jerry D
2013-01-01
This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.
Oxygen evolution from BF3/MnO4-.
Yiu, Shek-Man; Man, Wai-Lun; Wang, Xin; Lam, William W Y; Ng, Siu-Mui; Kwong, Hoi-Ki; Lau, Kai-Chung; Lau, Tai-Chu
2011-04-14
MnO(4)(-) is activated by BF(3) to undergo intramolecular coupling of two oxo ligands to generate O(2). DFT calculations suggest that there should be a spin intercrossing between the singlet and triplet potential energy surfaces on going from the active intermediate [MnO(2)(OBF(3))(2)](-) to the O···O coupling transition state.
Anaerobic oxidation of [1,2-14C]Dichloroethene under Mn(IV)-reducing conditions
Bradley, Paul M.; Landmeyer, James E.; Dinicola, Richard S.
1998-01-01
Anaerobic oxidation of [1,2-14C]dichloroethene to14CO2 under Mn(IV)-reducing conditions was demonstrated. The results indicate that oxidative degradation of partially chlorinated solvents like dichloroethene can be significant even under anoxic conditions and demonstrate the potential importance of Mn(IV) reduction for remediation of chlorinated groundwater contaminants.
Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.
Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P
2007-09-01
Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li-Fang; Ou, Chin-Ching; Striebel, Kathryn A.
The goal of this research was to measure Mn dissolution from a thin porous spinel LiMn{sub 2}O{sub 4} electrode by rotating ring-disk collection experiments. The amount of Mn dissolution from the spinel LiMn{sub 2}O{sub 4} electrode under various conditions was detected by potential step chronoamperometry. The concentration of dissolved Mn was found to increase with increasing cycle numbers and elevated temperature. The dissolved Mn was not dependent on disk rotation speed, which indicated that the Mn dissolution from the disk was under reaction control. The in situ monitoring of Mn dissolution from the spinel was carried out under various conditions.more » The ring currents exhibited maxima corresponding to the end-of-charge (EOC) and end-of-discharge (EOD), with the largest peak at EOC. The results suggest that the dissolution of Mn from spinel LiMn{sub 2}O{sub 4} occurs during charge/discharge cycling, especially in a charged state (at >4.1 V) and in a discharged state (at <3.1 V). The largest peak at EOC demonstrated that Mn dissolution took place mainly at the top of charge. At elevated temperatures, the ring cathodic currents were larger due to the increase of Mn dissolution rate.« less
Kulik, Leonid V; Epel, Boris; Lubitz, Wolfgang; Messinger, Johannes
2007-11-07
The heart of the oxygen-evolving complex (OEC) of photosystem II is a Mn4OxCa cluster that cycles through five different oxidation states (S0 to S4) during the light-driven water-splitting reaction cycle. In this study we interpret the recently obtained 55Mn hyperfine coupling constants of the S0 and S2 states of the OEC [Kulik et al. J. Am. Chem. Soc. 2005, 127, 2392-2393] on the basis of Y-shaped spin-coupling schemes with up to four nonzero exchange coupling constants, J. This analysis rules out the presence of one or more Mn(II) ions in S0 in methanol (3%) containing samples and thereby establishes that the oxidation states of the manganese ions in S0 and S2 are, at 4 K, Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. By applying a "structure filter" that is based on the recently reported single-crystal EXAFS data on the Mn4OxCa cluster [Yano et al. Science 2006, 314, 821-825] we (i) show that this new structural model is fully consistent with EPR and 55Mn-ENDOR data, (ii) assign the Mn oxidation states to the individual Mn ions, and (iii) propose that the known shortening of one 2.85 A Mn-Mn distance in S0 to 2.75 A in S1 [Robblee et al. J. Am. Chem. Soc. 2002, 124, 7459-7471] corresponds to a deprotonation of a mu-hydroxo bridge between MnA and MnB, i.e., between the outer Mn and its neighboring Mn of the mu3-oxo bridged moiety of the cluster. We summarize our results in a molecular model for the S0 --> S1 and S1 --> S2 transitions.
Beaudin, Stéphane A; Strupp, Barbara J; Lasley, Stephen M; Fornal, Casimir A; Mandal, Shyamali; Smith, Donald R
2015-04-01
Developmental manganese (Mn) exposure is associated with motor dysfunction in children and animal models, but little is known about the underlying neurochemical mechanisms or the potential for amelioration by pharmacotherapy. We investigated whether methylphenidate (MPH) alleviates fine motor dysfunction due to chronic postnatal Mn exposure, and whether Mn exposure impairs brain extracellular dopamine (DA) and norepinephrine (NE) in the prefrontal cortex (PFC) and striatum in adult animals. Rats were orally exposed to 0 or 50 mg Mn/kg/day from postnatal day 1 until the end of the study (PND 145). The staircase test was used to assess skilled forelimb function. Oral MPH (2.5 mg/kg/day) was administered daily 1 h before staircase testing for 16 days. DA and NE levels were measured by dual probe microdialysis. Results show that Mn exposure impaired reaching and grasping skills and the evoked release of DA and NE in the PFC and striatum of adult rats. Importantly, oral MPH treatment fully alleviated the fine motor deficits in the Mn-exposed animals, but did not affect forelimb skills of control rats not exposed to Mn. These results suggest that catecholaminergic hypofunctioning in the PFC and striatum may underlie the Mn-induced fine motor dysfunction, and that oral MPH pharmacotherapy is an effective treatment approach for alleviating this dysfunction in adult animals. The therapeutic potential of MPH for the treatment of motor dysfunction in Mn-exposed children and adults appears promising pending further characterization of MPH efficacy in other functional areas (eg, attention) believed to be affected by developmental Mn exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing
2016-06-22
Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.
NASA Astrophysics Data System (ADS)
Wu, Ling; Hu, Yong; Zhang, Xiaoping; Liu, Jiequn; Zhu, Xing; Zhong, Shengkui
2018-01-01
Hollow sphere structure Na2MnPO4F/C composite is synthesized through spray drying, following in-situ pyrolytic carbon coating process. XRD results indicate that the well crystallized composite can be successfully synthesized, and no other impurity phases are detected. SEM and TEM results reveal that the Na2MnPO4F/C samples show intact hollow spherical architecture, and the hollow spherical shells with an average thickness of 150 nm-250 nm are composed of nanosized primary particles. Furthermore, the amorphous carbon layer is uniformly coated on the surface of the hollow sphere, and the nanosized Na2MnPO4F particles are well embedded in the carbon networks. Consequently, the hollow sphere structure Na2MnPO4F/C shows enhanced electrochemical performance. Especially, it is the first time that the obvious potential platforms (∼3.6 V) are observed during the charge and discharge process at room temperature.
NASA Astrophysics Data System (ADS)
Hasenfratz, Adam P.; Martínez-García, Alfredo; Jaccard, Samuel L.; Vance, Derek; Wälle, Markus; Greaves, Mervyn; Haug, Gerald H.
2017-01-01
The occurrence of manganese-rich coatings on foraminifera can have a significant effect on their bulk Mg/Ca ratios thereby biasing seawater temperature reconstructions. The removal of this Mn phase requires a reductive cleaning step, but this has been suggested to preferentially dissolve Mg-rich biogenic carbonate, potentially introducing an analytical bias in paleotemperature estimates. In this study, the geochemical composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS in order to determine the amount of Mg incorporated into the coatings. The analysis of planktonic and benthic foraminifera revealed a nearly constant Mg/Mn ratio in the Mn coating of ∼0.2 mol/mol. Consequently, the coating Mg/Mn ratio can be used to correct for the Mg incorporated into the Mn phase by using the down core Mn/Ca values of samples that have not been reductively cleaned. The consistency of the coating Mg/Mn ratio obtained in this study, as well as that found in samples from the Panama Basin, suggests that spatial variation of Mg/Mn in foraminiferal Mn overgrowths may be smaller than expected from Mn nodules and Mn-Ca carbonates. However, a site-specific assessment of the Mg/Mn ratio in foraminiferal coatings is recommended to improve the accuracy of the correction.
Zhu, Mengqiang; Paul, Kristian W; Kubicki, James D; Sparks, Donald L
2009-09-01
Density functional theory (DFT) calculations were used to investigate As(V) and As(III) surface complex structures and reaction energies on both Mn(III) and Mn(IV) sites in an attempt to better understand As(III) oxidation bybirnessite, a layered Mn-dioxide mineral. Edge-sharing dioctahedral Mn(III) and Mn(IV) clusters with different combinations of surface functional groups (>MnOH and >MnOH2) were employed to mimic pH variability. Results show that As(V) adsorption was more thermodynamically favorable than As(III) adsorption on both Mn(III) and Mn(IV) surface sites under simulated acidic pH conditions. Therefore, we propose that As(V) adsorption inhibits As(III) oxidation by blocking adsorption sites. Under simulated acidic pH conditions, Mn(IV) sites exhibited stronger adsorption affinity than Mn(III) sites for both As(III) and As(V). Overall, we hypothesize that Mn(III) sites are less reactive in terms of As(III) oxidation due to their lower affinity for As(III) adsorption, higher potential to be blocked by As(V) complexes, and slower electron transfer rates with adsorbed As(III). Results from this study offer an explanation regarding the experimental observations of Mn(III) accumulation on birnessite and the long residence time of As(III) adsorption complexes on manganite (r-MnOOH) during As(III) oxidation.
Serrated Flow and Dynamic Strain Aging in Fe-Mn-C TWIP Steel
NASA Astrophysics Data System (ADS)
Lan, Peng; Zhang, Jiaquan
2018-01-01
The tensile behavior, serrated flow, and dynamic strain aging of Fe-(20 to 24)Mn-(0.4 to 0.6)C twinning-induced plasticity (TWIP) steel have been investigated. A mathematical approach to analyze the DSA and PLC band parameters has been developed. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with a theoretical ordering index (TOI) between 0.1 and 0.3, DSA can occur at the very beginning of plastic deformation and provide serrations during work hardening, while for TOI less than 0.1 the occurrence of DSA is delayed and twinning-dominant work hardening remains relatively smooth. The critical strain for the onset of DSA and PLC bands in Fe-Mn-C TWIP steels decreases as C content increases, while the numbers of serrations and bands increase. As Mn content increases, the critical strain for DSA and PLC band varies irregularly, but the numbers of serrations and bands increase. For Fe-(20 to 24)Mn-(0.4 to 0.6)C TWIP steel with grain size of about 10 to 20 μm, the twinning-induced work hardening rate is about 2.5 to 3.0 GPa, while the DSA-dominant hardening rate is about 2.0 GPa on average. With increasing engineering strain from 0.01 to 0.55 at an applied strain rate of 0.001s-1, the cycle time for PLC bands in Fe-Mn-C TWIP steel increases from 6.5 to 162 seconds, while the band velocity decreases from 4.5 to 0.5 mm s-1, and the band strain increases from 0.005 to 0.08. Increasing applied strain rate leads to a linear increase of band velocity despite composition differences. In addition, the influence of the Mn and C content on the tensile properties of Fe-Mn-C TWIP steel has been also studied. As C content increases, the yield strength and tensile strength of Fe-Mn-C TWIP steel increase, but the total elongation variation against C content is dependent on Mn content. As Mn content increases, the yield strength and tensile strength decrease, while the total elongation increases, despite C content. Taking both tensile properties and serrated flow behavior into consideration, Fe-22Mn-0.4C TWIP steel shows excellent mechanical performance with a high product of tensile strength and total elongation and a slightly serrated stress-strain response. To suppress the negative effect of DSA in Fe-Mn-C TWIP steels on the stability of tensile behavior, a TOI lower than 0.1 is strongly suggested.
Hybrid supercapacitors for reversible control of magnetism
Molinari, Alan; Leufke, Philipp M.; Reitz, Christian; Dasgupta, Subho; Witte, Ralf; Kruk, Robert; Hahn, Horst
2017-01-01
Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms—occurring at the La0.74Sr0.26MnO3/ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of La1−xSrxMnO3 to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors. PMID:28489078
Electric-field-controlled ferromagnetism in high-Curie-temperature Mn0.05Ge0.95 quantum dots.
Xiu, Faxian; Wang, Yong; Kim, Jiyoung; Hong, Augustin; Tang, Jianshi; Jacob, Ajey P; Zou, Jin; Wang, Kang L
2010-04-01
Electric-field manipulation of ferromagnetism has the potential for developing a new generation of electric devices to resolve the power consumption and variability issues in today's microelectronics industry. Among various dilute magnetic semiconductors (DMSs), group IV elements such as Si and Ge are the ideal material candidates because of their excellent compatibility with the conventional complementary metal-oxide-semiconductor (MOS) technology. Here we report, for the first time, the successful synthesis of self-assembled dilute magnetic Mn(0.05)Ge(0.95) quantum dots with ferromagnetic order above room temperature, and the demonstration of electric-field control of ferromagnetism in MOS ferromagnetic capacitors up to 100 K. We found that by applying electric fields to a MOS gate structure, the ferromagnetism of the channel layer can be effectively modulated through the change of hole concentration inside the quantum dots. Our results are fundamentally important in the understanding and to the realization of high-efficiency Ge-based spin field-effect transistors.
Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T
2000-08-25
Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.
Zhu, Shijin; Li, Li; Liu, Jiabin; Wang, Hongtao; Wang, Tian; Zhang, Yuxin; Zhang, Lili; Ruoff, Rodney S; Dong, Fan
2018-02-27
Two-dimensional birnessite has attracted attention for electrochemical energy storage because of the presence of redox active Mn 4+ /Mn 3+ ions and spacious interlayer channels available for ions diffusion. However, current strategies are largely limited to enhancing the electrical conductivity of birnessite. One key limitation affecting the electrochemical properties of birnessite is the poor utilization of the MnO 6 unit. Here, we assemble β-MnO 2 /birnessite core-shell structure that exploits the exposed crystal face of β-MnO 2 as the core and ultrathin birnessite sheets that have the structure advantage to enhance the utilization efficiency of the Mn from the bulk. Our birnessite that has sheets parallel to each other is found to have unusual crystal structure with interlayer spacing, Mn(III)/Mn(IV) ratio and the content of the balancing cations differing from that of the common birnessite. The substrate directed growth mechanism is carefully investigated. The as-prepared core-shell nanostructures enhance the exposed surface area of birnessite and achieve high electrochemical performances (for example, 657 F g -1 in 1 M Na 2 SO 4 electrolyte based on the weight of parallel birnessite) and excellent rate capability over a potential window of up to 1.2 V. This strategy opens avenues for fundamental studies of birnessite and its properties and suggests the possibility of its use in energy storage and other applications. The potential window of an asymmetric supercapacitor that was assembled with this material can be enlarged to 2.2 V (in aqueous electrolyte) with a good cycling ability.
Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.
Huang, X; Shabala, S; Shabala, L; Rengel, Z; Wu, X; Zhang, G; Zhou, M
2015-01-01
Vast agricultural areas are affected by flooding, causing up to 80% yield reduction and resulting in multibillion dollar losses. Up to now, the focus of plant breeders was predominantly on detrimental effects of anoxia, while other (potentially equally important) traits were essentially neglected; one of these is soil elemental toxicity. Excess water triggers a progressive decrease in soil redox potential, thus increasing the concentration of Mn(2+) that can be toxic to plants if above a specific threshold. This work aimed to quantify the relative contribution of Mn(2+) toxicity to waterlogging stress tolerance, using barley as a case study. Twenty barley (Hordeum vulgare) genotypes contrasting in waterlogging stress tolerance were studied for their ability to cope with toxic (1 mm) amounts of Mn(2+) in the root rhizosphere. Under Mn(2+) toxicity, chlorophyll content of most waterlogging-tolerant genotypes (TX9425, Yerong, CPI-71284-48 and CM72) remained above 60% of the control value, whereas sensitive genotypes (Franklin and Naso Nijo) had 35% less chlorophyll than 35% of controls. Manganese concentration in leaves was not related to visual Mn(2+) toxicity symptoms, suggesting that various Mn(2+) tolerance mechanisms might operate in different tolerant genotypes, i.e. avoidance versus tissue tolerance. The overall significant (r = 0.60) correlation between tolerance to Mn(2+) toxicity and waterlogging in barley suggests that plant breeding for tolerance to waterlogging traits may be advanced by targeting mechanisms conferring tolerance to Mn(2+) toxicity, at least in this species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Espiritu, Eduardo; Olson, Tien L; Williams, JoAnn C; Allen, James P
2017-12-12
The ability of an artificial four-helix bundle Mn-protein, P1, to bind and transfer an electron to photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides was characterized using optical spectroscopy. Upon illumination of reaction centers, an electron is transferred from P, the bacteriochlorophyll dimer, to Q A , the primary electron acceptor. The P1 Mn-protein can bind to the reaction center and reduce the oxidized bacteriochlorophyll dimer, P + , with a dissociation constant of 1.2 μM at pH 9.4, comparable to the binding constant of c-type cytochromes. Amino acid substitutions of surface residues on the Mn-protein resulted in increases in the dissociation constant to 8.3 μM. The extent of reduction of P + by the P1 Mn-protein was dependent on the P/P + midpoint potential and the pH. Analysis of the free energy difference yielded a midpoint potential of approximately 635 mV at pH 9.4 for the Mn cofactor of the P1 Mn-protein, a value similar to those found for other Mn cofactors in proteins. The linear dependence of -56 mV/pH is consistent with one proton being released upon Mn oxidation, allowing the complex to maintain overall charge neutrality. These outcomes demonstrate the feasibility of designing four-helix bundles and other artificial metalloproteins to bind and transfer electrons to bacterial reaction centers and establish the usefulness of this system as a platform for designing sites to bind novel metal cofactors capable of performing complex oxidation-reduction reactions.
Qin, Xing; Zhang, Jie; Zhang, Xiaoyu; Yang, Yang
2014-01-01
Manganese peroxidase (MnP) is the one of the important ligninolytic enzymes produced by lignin-degrading fungi which has the great application value in the field of environmental biotechnology. Searching for new MnP with stronger tolerance to metal ions and organic solvents is important for the maximization of potential of MnP in the biodegradation of recalcitrant xenobiotics. In this study, it was found that oxalic acid, veratryl alcohol and 2,6-Dimehoxyphenol could stimulate the synthesis of MnP in the white-rot fungus Irpex lacteus CD2. A novel manganese peroxidase named as CD2-MnP was purified and characterized from this fungus. CD2-MnP had a strong capability for tolerating different metal ions such as Ca2+, Cd2+, Co2+, Mg2+, Ni2+ and Zn2+ as well as organic solvents such as methanol, ethanol, DMSO, ethylene glycol, isopropyl alcohol, butanediol and glycerin. The different types of dyes including the azo dye (Remazol Brilliant Violet 5R, Direct Red 5B), anthraquinone dye (Remazol Brilliant Blue R), indigo dye (Indigo Carmine) and triphenylmethane dye (Methyl Green) as well as simulated textile wastewater could be efficiently decolorized by CD2-MnP. CD2-MnP also had a strong ability of decolorizing different dyes with the coexistence of metal ions and organic solvents. In summary, CD2-MnP from Irpex lacteus CD2 could effectively degrade a broad range of synthetic dyes and exhibit a great potential for environmental biotechnology. PMID:25412169
NASA Astrophysics Data System (ADS)
Kozawa, Takahiro; Murakami, Takeshi; Naito, Makio
2016-07-01
The Ni-doped lithium manganese oxide, LiNi0.5Mn1.5O4, has received much attention as a cathode active material in high-energy lithium-ion batteries (LIBs). This active material has two different spinel structures depending on the ordering state of the Ni and Mn ions. The ordered LiNi0.5Mn1.5O4 spinel has an inferior cathode performance than the disordered phase because of its poor electronic conductivity. However, the ordered LiNi0.5Mn1.5O4 spinel possesses the potential advantage of avoiding dissolution of the Mn ion, which is an issue for the disordered spinel. The improvement of cathode performance is important for future applications. Here, we report a unique approach to improve the cathode performance of the ordered LiNi0.5Mn1.5O4 spinel. The mechanical treatment using an attrition-type mill successfully inserted lattice strains into the ordered LiNi0.5Mn1.5O4 spinel structure without a phase transformation to the disordered phase. The insertion of lattice strains by mechanical stresses provided an increased discharge capacity and a decreased charge transfer resistance. This limited crystal structure modification improved the cathode performance. The present work has the potential for application of the mechanically treated ordered LiNi0.5Mn1.5O4 spinel as a cathode for high-energy LIBs.
Manganese biogeochemistry in a central Czech Republic catchment
Navratil, T.; Shanley, J.B.; Skrivan, P.; Kram, P.; Mihaljevic, M.; Drahota, P.
2007-01-01
Mn biogeochemistry was studied from 1994 to 2003 in a small forested catchment in the central Czech Republic using the watershed mass balance approach together with measurements of internal stores and fluxes. Mn inputs in bulk deposition were relatively constant during a period of sharply decreasing acidic deposition, suggesting that the Mn source was terrestrial, and not from fossil fuel combustion. Mn inputs in bulk deposition and Mn supplied by weathering each averaged 13 mg m-2 year-1 (26 mg m -2 year-1 total input), whereas Mn export in streamwater and groundwater averaged 43 mg m-2 year-1. Thus an additional Mn source is needed to account for 17 mg m-2 year -1. Internal fluxes and pools of Mn were significantly greater than annual inputs and outputs. Throughfall Mn flux was 70 mg m-2 year-1, litterfall Mn flux was 103 mg m-2 year -1, and Mn net uptake by vegetation was 62 mg m-2 year-1. Large pools of labile or potentially labile Mn were present in biomass and surficial soil horizons. Small leakages from these large pools likely supply the additional Mn needed to close the watershed mass balance. This leakage may reflect an adjustment of the ecosystem to recent changes in atmospheric acidity. ?? 2007 Springer Science+Business Media B.V.
Structural and dielectric characteristics of double perovskite La2(NiFe)1/2MnO6
NASA Astrophysics Data System (ADS)
Nasir, Mohd.; Kandasami, Asokan; Sen, Somaditya
2018-05-01
Recently, La2NiMnO6 has drawn significant interest because large magnetic field induced changes in dielectric properties makes this compound a promising material for potential spintronic device applications. In the present study, the structural and dielectric characteristics of sol-gel prepared La2(Ni1/2Fe1/2)MnO6 double perovskite ceramics were evaluated. La2(Ni1/2Fe1/2)MnO6 was crystallized in the monoclinic P21/n structure with ordered Ni2+/Fe2+ and Mn4+ cations. A giant dielectric constant with relaxor-like behavior was observed, which was attributed to the dipolar effects arising from hopping between Ni2+/Fe2+ and Mn4+ ions.
Near Infrared Luminescence Properties of Mn(5+): Ca5(PO4)3F
NASA Technical Reports Server (NTRS)
Davis, Valetta R.; Hoemmerich, Uwe; Loutts, George B.
1997-01-01
We report a spectroscopic investigation of Mn(5+) doped Ca5(PO4)(sub 3)F or FAP. Mn(5+) doped crystals have recently attracted world wide attention for potential solid-state laser applications. Following optical excitation of Mn: FAP with the 600 nm output of a Nd: YAG OPO laser system, we observed a strong near infrared luminescence centered at around 1150 nm. The room temperature luminescence decay time was measured to be approximately 635 microseconds. We attribute the infrared luminescence to the(1)E yields (3)A2 transition of tetrahedrally coordinated Mn5+ ions located in a strong crystal field environment. Absorption, luminescence and lifetime data of Mn: FAP will be presented and discussed.
Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming
2018-02-01
A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .
NASA Astrophysics Data System (ADS)
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T.; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-01
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-18
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Nayak, Atul; Short, Liam; Das, Diganta B
2015-08-01
Common local anaesthetics such as lidocaine are administered by the hypodermic parenteral route but it causes pain or anxiety to patients. Alternatively, an ointment formulation may be applied which involves a slow drug diffusion process. In addressing these two issues, this paper aims to understand the significance of the 'poke and patch' microneedle (MN) treatment on skin in conjunction to the lidocaine permeation, and in particular, the vertical (depth averaged) and horizontal (e.g. lateral) permeation profiles of the drug in the skin. The instantaneous pharmacokinetics of lidocaine in skin was determined by a skin denaturation technique coupled with Franz diffusion cell measurements of the drug pharmacokinetics. All pharmacokinetic profiles were performed periodically on porcine skin. Three MN insertion forces of 3.9, 7.9 and 15.7 N were applied on the MN to pierce the skin. For the smaller force (3.9 N), post MN-treated skin seems to provide an 'optimum' percutaneous delivery rate. A 10.2-fold increase in lidocaine permeation was observed for a MN insertion force of 3.9 N at 0.25 h and similarly, a 5.4-fold increase in permeation occurred at 0.5 h compared to passive diffusional delivery. It is shown that lidocaine permeates horizontally beyond the area of the MN-treated skin for the smaller MN insertion forces, namely, 3.9 and 7.9 N from 0.25 to 0.75 h, respectively. The lateral diffusion/permeation of lidocaine for larger MN-treated force (namely, 15.7 N in this work) seems to be insignificant at all recorded timings. The MN insertion force of 15.7 N resulted in lidocaine concentrations slightly greater than control (passive diffusion) but significantly less than 3.9 and 7.9 N impact force treatments on skin. We believe this likelihood is due to the skin compression effect that inhibits diffusion until the skin had time to relax at which point lidocaine levels increase.
As(III) oxidation by MnO2 during groundwater treatment.
Gude, J C J; Rietveld, L C; van Halem, D
2017-03-15
The top layer of natural rapid sand filtration was found to effectively oxidise arsenite (As(III)) in groundwater treatment. However, the oxidation pathway has not yet been identified. The aim of this study was to investigate whether naturally formed manganese oxide (MnO 2 ), present on filter grains, could abiotically be responsible for As(III) oxidation in the top of a rapid sand filter. For this purpose As(III) oxidation with two MnO 2 containing powders was investigated in aerobic water containing manganese(II) (Mn(II)), iron(II) (Fe(II)) and/or iron(III) (Fe(III)). The first MnO 2 powder was a very pure - commercially available - natural MnO 2 powder. The second originated from a filter sand coating, produced over 22 years in a rapid filter during aeration and filtration. Jar test experiments showed that both powders oxidised As(III). However, when applying the MnO 2 in aerated, raw groundwater, As(III) removal was not enhanced compared to aeration alone. It was found that the presence of Fe(II)) and Mn(II) inhibited As(III) oxidation, as Fe(II) and Mn(II) adsorption and oxidation were preferred over As(III) on the MnO 2 surface (at pH 7). Therefore it is concluded that just because MnO 2 is present in a filter bed, it does not necessarily mean that MnO 2 will be available to oxidise As(III). However, unlike Fe(II), the addition of Fe(III) did not hinder As(III) oxidation on the MnO 2 surface; resulting in subsequent effective As(V) removal by the flocculating hydrous ferric oxides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Park, Jin Hee; Kim, Bong-Soo; Chon, Chul-Min
2018-01-01
Different environmental conditions such as pH and dissolved elements of mine stream induce precipitation of different minerals and their associated microbial community may vary. Therefore, mine precipitates from various environmental conditions were collected and their associated microbiota were analyzed through metagenomic DNA sequencing. Various Fe and Mn minerals including ferrihydrite, schwertmannite, goethite, birnessite, and Mn-substituted δ-FeOOH (δ-(Fe 1-x , Mn x )OOH) were found in the different environmental conditions. The Fe and Mn minerals were enriched with toxic metal(loid)s including As, Cd, Ni and Zn, indicating they can act as scavengers of toxic metal(loid)s in mine streams. Under acidic conditions, Acidobacteria was dominant phylum and Gallionella (Fe oxidizing bacteria) was the predominant genus in these Fe rich environments. Manganese oxidizing bacteria, Hyphomicrobium, was found in birnessite forming environments. Leptolyngbya within Cyanobacteria was found in Fe and Mn oxidizing environments, and might contribute to Fe and Mn oxidation through the production of molecular oxygen. The potential interaction of microbial community with minerals in mine sites can be traced by analysis of microbial community in different Fe and Mn mineral forming environments. Iron and Mn minerals contribute to the removal of toxic metal(loid)s from mine water. Therefore, the understanding characteristics of mine precipitates and their associated microbes helps to develop strategies for the management of contaminated mine water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Collisional relaxation of MnH (X7Σ+) in a magnetic field: effect of the nuclear spin of Mn.
Stoecklin, T; Halvick, Ph
2011-11-14
In the present study we investigate the role played by the hyperfine structure of manganese in the cooling and magnetic trapping of MnH((7)Σ(+)). The effect of the hyperfine structure of Mn on the relaxation of the magnetically trappable maximally stretched low-field seeking state of MnH((7)Σ(+)) in collisions with (3)He is deduced from comparison between the results of the present approach and our previous nuclear spin free calculations. We show that our previous results are unchanged at the temperature of the buffer gas cooling experiment but find a new resonance at very low collision energy. The role played by the different contributions to the hyperfine diatomic Hamiltonian considered in this work as well as the effect of an applied magnetic field on this resonance are also analyzed.
Structural characterization of LiCrxMn2-xO4 via a simple reflux technique
NASA Astrophysics Data System (ADS)
Purwaningsih, Dyah; Roto, Roto; Sutrisno, Hari; Purwanto, Agus
2017-03-01
LiCrxMn2-xO4 (x=0; 0.02; 0.04; 0.06; 0.08, 0.10) have been successfully synthesized via a facile and simple reflux technique. The SEM-EDS data confirm the presence of Cr, Mn and O elements in the products, while the XRD pattern suggests that the materials have well-developed cubic crystals. Direct method was applied to extract structural parameters of LiCrxMn2-xO4 using the Fullprof and Oscail software in WinPlotr package program. Materials were refined in the crystal system, and space group of structures Fd3m phase were then identified. The lattice parameters decrease with the decrease in Cr content. The highest Li-O bond length was found for LiCr0.10Mn1.90O4. It was observed that there is no significant change in particle size as Cr content increased.
Dissolving polymeric microneedle arrays for electrically assisted transdermal drug delivery.
Garland, Martin J; Caffarel-Salvador, Ester; Migalska, Katarzyna; Woolfson, A David; Donnelly, Ryan F
2012-04-10
It has recently been proposed that the combination of skin barrier impairment using microneedles (MNs) coupled with iontophoresis (ITP) may broaden the range of drugs suitable for transdermal delivery, as well as enabling the rate of delivery to be achieved with precise electronic control. However, no reports exist on the combination of ITP with in situ drug loaded polymeric MN delivery systems. Furthermore, although a number of studies have highlighted the importance of MN design for transdermal drug delivery enhancement, to date, there has been no systematic investigation of the influence of MN geometry on the performance of polymeric MN arrays which are designed to remain in contact with the skin during the period of drug delivery. As such, for the first time, this study reports on the effect of MN heigth and MN density upon the transdermal delivery of small hydrophilic compounds (theophylline, methylene blue, and fluorescein sodium) across neonatal porcine skin in vitro, with the optimised MN array design evaluated for its potential in the electrically faciliatated delivery of peptide (bovine insulin) and protein (fluorescein isothiocyanate-labelled bovine serum albumin (FTIC-BSA)) macromolecules. The results of the in vitro drug release investigations revealed that the extent of transdermal delivery was dependent upon the design of the MN array employed, whereby an increase in MN height and an increase in MN density led to an increase in the extent of transdermal drug delivery achieved 6h after MN application. Overall, the in vitro permeation studies revealed that the MN design containing 361 MNs/cm(2) of 600 μm height resulted in the greatest extent of transdermal drug delivery. As such, this design was evaluated for its potential in the MN mediated iontophoretic transdermal delivery. Whilst the combination of MN and ITP did not further enhance the extent of small molecular weight solute delivery, the extent of peptide/protein release was significantly enhanced when ITP was used in combination of the soluble PMVE/MA MN arrays. For example, the cumulative amount of insulin permeated across neonatal porcine skin at 6h was found to be approximately 150 μg (3.25%), 227 μg (4.85%) and 462 μg (9.87%) for ITP, MN, and MN/ITP delivery strategies, respectively. Similarly, the cumulative amount of FTIC-BSA delivered across neonatal porcine skin after a 6h period was found to be approximately 110 μg (4.53%) for MN alone and 326 μg (13.40%) for MN in combination with anodal ITP (p<0.001). As such, drug loaded soluble PMVE/MA MN arrays show promise for the electrically controlled transdermal delivery of biomacromolecules in a simple, one-step approach. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Yang, Feng; Lee, Sungsik
Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less
The Mechanical Property of Batch Annealed High Strength Low Alloy Steel HC260LA
NASA Astrophysics Data System (ADS)
Yang, Xiaojiang; Xia, Mingsheng; Zhang, Hongbo; Han, Bin; Li, Guilan
Cold rolled high strength low alloy steel is widely applied in the automotive parts due to its excellent formability and weldability. In this paper, the steel grade HC260LA according to European Norm was developed with batch annealing process. With commercial C-Mn mild steel as a benchmark, three different groups of chemistry namely C-Mn-Si, C-Mn-Nb-Ti and C-Mn-Nb were compared in terms of yield-tensile strength (Y/T) ratio. Microstructure and mechanical properties were characterized as well. Based on industrial production results, chemistry and detailed process parameters for batch annealing were identified. In the end the optimal Y/T ratio was proposed for this steel grade under batch annealing process.
Low Temperature Specific Heat in Lightly Mn-Substituted Electron-Doped SrTiO3
NASA Astrophysics Data System (ADS)
Okuda, Tetsuji; Hata, Hiroto; Eto, Takahiro; Sobaru, Shogo; Oda, Ryosuke; Noda, Masaaki; Kuwahara, Hideki
2017-08-01
We found large changes in the low-temperature specific heat (low-T C) in the lightly Mn-substituted electron-doped perovskites Sr0.95La0.05Ti1-yMnzO3 with y = 0.02 and 0.04 by applying magnetic fields up to 9 T. The changes in the low-T C are qualitatively well explained by the Schottky specific heat (CSch) of localized spins of the Mn 3d electrons in weak internal magnetic fields via itinerant electrons. However, the actual numbers of localized spins estimated from CSch are about 30% smaller than the expected values. Part of the localized spins of the Mn 3d electrons may disappear due to Kondo coupling with the itinerant electrons.
Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F
2015-03-01
Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A
2008-04-01
In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.
Activated carbon doped with biogenic manganese oxides for the removal of indigo carmine.
Hu, Yichen; Chen, Xiao; Liu, Zhiqiang; Wang, Gejiao; Liao, Shuijiao
2016-01-15
Indigo carmine (IC) is one of the oldest, most important, and highly toxic dyes which is released from the effluents of many industries and results in serious pollution in water. In this study, the biogenic Mn oxides were activated by NaOH and then heated for 3 h at 350 °C to produce activated carbon doped with Mn oxide (Bio-MnOx-C), which were produced by culturing Mn (II)-oxidizing bacterial strain MnI7-9 in liquid A medium at 28 °C with 10 mmol/L MnCl2. Bio-MnOx-C was characterized by SEM, TEM, IR, XPS, XRD, etc. It contained C, O, and Mn which comprised Mn (IV) and Mn (III) valence states at a ratio of 3.81:1. It had poorly crystalline ε-MnO2 with a specific surface area of 130.94 m(2)/g. A total of 0.1 g Bio-MnOx-C could remove 45.95 g IC from 500 mg/L IC solution after 0.5 h contact time. IC removal by Bio-MnOx-C included a rapid oxidation reaction and the removal reaction followed second-order kinetic equation. These results confirmed that Bio-MnOx-C could be a potential material for wastewater remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saad, Wilson A; Guarda, I F M S; Camargo, L A A; Santos, T A F B; Guarda, R S; Saad, Willian A; Simões, S; Rodrigues, J Antunes
2003-07-01
We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 g) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 g) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 g) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 g) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 g) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 g) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 g) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 g) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 g) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.
Qin, Xing; Sun, Xianhua; Huang, Huoqing; Bai, Yingguo; Wang, Yuan; Luo, Huiying; Yao, Bin; Zhang, Xiaoyu; Su, Xiaoyun
2017-01-01
Manganese peroxidase is one of the Class II fungal peroxidases that are able to oxidize the low redox potential phenolic lignin compounds. For high redox potential non-phenolic lignin degradation, mediators such as GSH and unsaturated fatty acids are required in the reaction. However, it is not known whether carboxylic acids are a mediator for non-phenolic lignin degradation. The white rot fungus Irpex lacteus is one of the most potent fungi in degradation of lignocellulose and xenobiotics. Two manganese peroxidases ( Il MnP1 and Il MnP2) from I. lacteus CD2 were over-expressed in Escherichia coli and successfully refolded from inclusion bodies. Both Il MnP1 and Il MnP2 oxidized the phenolic compounds efficiently. Surprisingly, they could degrade veratryl alcohol, a non-phenolic lignin compound, in a Mn 2+ -dependent fashion. Malonate or oxalate was found to be also essential in this degradation. The oxidation of non-phenolic lignin was further confirmed by analysis of the reaction products using LC-MS/MS. We proved that Mn 2+ and a certain carboxylate are indispensable in oxidation and that the radicals generated under this condition, specifically superoxide radical, are at least partially involved in lignin oxidative degradation. Il MnP1 and Il MnP2 can also efficiently decolorize dyes with different structures. We provide evidence that a carboxylic acid may mediate oxidation of non-phenolic lignin through the action of radicals. MnPs, but not LiP, VP, or DyP, are predominant peroxidases secreted by some white rot fungi such as I. lacteus and the selective lignocellulose degrader Ceriporiopsis subvermispora . Our finding will help understand how these fungi can utilize MnPs and an excreted organic acid, which is usually a normal metabolite, to efficiently degrade the non-phenolic lignin. The unique properties of Il MnP1 and Il MnP2 make them good candidates for exploring molecular mechanisms underlying non-phenolic lignin compounds oxidation by MnPs and for applications in lignocellulose degradation and environmental remediation.
Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid
Chen, Junying; Yoon, Heejung; Lee, Yong -Min; ...
2015-04-14
Triflic acid (HOTf)-bound nonheme Mn( IV)-oxo complexes, [(L)Mn IV(O)] 2+–(HOTf) 2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)Mn IV(O)] 2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the Mn IV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the Mn IV(O) and Mn IV(O)–(HOTf) 2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET.more » The smaller reorganization energies and much more positive reduction potentials of the [(L)Mn IV(O)] 2+–(HOTf) 2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 10 5-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)Mn IV(O)] 2+–(HOTf) 2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)Mn IV(O)] 2+–(HOTf) 2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)Mn IV(O)] 2+ complexes. Thus, the binding of two HOTf molecules to the Mn IV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less
The magnetic phase transition in Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} magnetocaloric alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, X.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg
Mn-Fe-P-Ge alloys are promising, low cost, high performance candidates for magnetic cooling applications based on the magnetocaloric effect. These alloys undergo a magnetic phase transition which induces a large entropy change (ΔS). Experimental and modeling studies were conducted to study this transition for varying Ge content. Landau theory and the Bean-Rodbell model were applied to Mn{sub 1.1}Fe{sub 0.9}P{sub 1−x}Ge{sub x} (x = 0.26, 0.3, and 0.32) melt spun ribbons to model the phase transition and the associated entropy change. The critical behavior of these alloys was studied. The critical composition range at which the cross over from first order to second ordermore » magnetic transition occurs was determined. The calculated thermodynamic values and critical temperatures were in good agreement with our experimental results. A high maximum entropy change (ΔS) of ∼44.9 J kg{sup −1} K{sup −1} was observed in Mn{sub 1.1}Fe{sub 0.9}P{sub 0.74}Ge{sub 0.26} in a 5 T applied magnetic field. The results suggest that Mn-Fe-P-Ge alloys are very attractive materials for near room temperature magnetic cooling.« less
Al-Anbaky, Qudes; Al-Karakooly, Zeiyad; Kilaparty, Surya P; Agrawal, Megha; Albkuri, Yahya M; RanguMagar, Ambar B; Ghosh, Anindya; Ali, Nawab
2016-11-01
Manganese (Mn) complexes are widely studied because of their important catalytic properties in synthetic and biochemical reactions. A Mn (III) complex of an amidoamine ligand was synthesized using a tetradentate amidoamine ligand. In this study, the Mn (III) complex was evaluated for its biological activity by measuring its cytotoxicity in human breast adenocarcinoma cell line (MCF-7). Cytotoxic effects of the Mn (III) complex were determined using established biomarkers in an attempt to delineate the mechanism of action and the utility of the complex as a potential anticancer drug. The Mn (III) complex induces cell death in a dose- and time-dependent manner as shown by microculture tetrazolium assay, a measure of cytotoxic cell death. Our results demonstrated that cytotoxic effects were significantly increased at higher concentrations of Mn (III) complex and with longer time of treatment. The IC 50 (Inhibitor concentration that results in 50% cell death) value of Mn (III) complex in MCF-7 cells was determined to be 2.5 mmol/L for 24 hours of treatment. In additional experiments, we determined the Mn (III) complex-mediated cell death was due to both apoptotic and nonspecific necrotic cell death mechanisms. This was assessed by ethidium bromide/acridine orange staining and flow cytometry techniques. The Mn (III) complex produced reactive oxygen species (ROS) triggering the expression of manganese superoxide dismutase 1 and ultimately damaging the mitochondrial function as is evident by a decline in mitochondrial membrane potential. Treatment of the cells with free radical scavenger, N, N-dimethylthiourea decreased Mn (III) complex-mediated generation of ROS and attenuated apoptosis. Together, these results suggest that the Mn (III) complex-mediated MCF-7 cell death utilizes combined mechanism involving apoptosis and necrosis perhaps due to the generation of ROS. © The Author(s) 2016.
Jabeen, Nawishta; Hussain, Ahmad; Xia, Qiuying; Sun, Shuo; Zhu, Junwu; Xia, Hui
2017-08-01
The voltage limit for aqueous asymmetric supercapacitors is usually 2 V, which impedes further improvement in energy density. Here, high Na content Birnessite Na 0.5 MnO 2 nanosheet assembled nanowall arrays are in situ formed on carbon cloth via electrochemical oxidation. It is interesting to find that the electrode potential window for Na 0.5 MnO 2 nanowall arrays can be extended to 0-1.3 V (vs Ag/AgCl) with significantly increased specific capacitance up to 366 F g -1 . The extended potential window for the Na 0.5 MnO 2 electrode provides the opportunity to further increase the cell voltage of aqueous asymmetric supercapacitors beyond 2 V. To construct the asymmetric supercapacitor, carbon-coated Fe 3 O 4 nanorod arrays are synthesized as the anode and can stably work in a negative potential window of -1.3 to 0 V (vs Ag/AgCl). For the first time, a 2.6 V aqueous asymmetric supercapacitor is demonstrated by using Na 0.5 MnO 2 nanowall arrays as the cathode and carbon-coated Fe 3 O 4 nanorod arrays as the anode. In particular, the 2.6 V Na 0.5 MnO 2 //Fe 3 O 4 @C asymmetric supercapacitor exhibits a large energy density of up to 81 Wh kg -1 as well as excellent rate capability and cycle performance, outperforming previously reported MnO 2 -based supercapacitors. This work provides new opportunities for developing high-voltage aqueous asymmetric supercapacitors with further increased energy density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
Structural response of phyllomanganates to wet aging and aqueous Mn(II)
Hinkle, Margaret A. G.; Flynn, Elaine D.; Catalano, Jeffrey G.
2016-08-06
Naturally occurring Mn(IV/III) oxides are often formed through microbial Mn(II) oxidation, resulting in reactive phyllomanganates with varying Mn(IV), Mn(III), and vacancy contents. Residual aqueous Mn(II) may adsorb in the interlayer of phyllomanganates above vacancies in their octahedral sheets. The potential for interlayer Mn(II)-layer Mn(IV) comproportionation reactions and subsequent formation of structural Mn(III) suggests that aqueous Mn(II) may cause phyllomanganate structural changes that alters mineral reactivity or trace metal scavenging. Here we examine the effects of aging phyllomanganates with varying initial vacancy and Mn(III) content in the presence and absence of dissolved Mn(II) at pH 4 and 7. Three phyllomanganates weremore » studied: two exhibiting turbostratic layer stacking (δ-MnO2 with high vacancy content and hexagonal birnessite with both vacancies and Mn(III) substitutions) and one with rotationally ordered layer stacking (triclinic birnessite containing predominantly Mn(III) substitutions). Structural analyses suggest that during aging at pH 4, Mn(II) adsorbs above vacancies and promotes the formation of phyllomanganates with rotationally ordered sheets and mixed symmetries arranged into supercells, while structural Mn(III) undergoes disproportionation. These structural changes at pH 4 correlate with reduced Mn(II) uptake onto triclinic and hexagonal birnessite after 25 days relative to 48 h of reaction, indicating that phyllomanganate reactivity decreases upon aging with Mn(II), or that recrystallization processes involving Mn(II) uptake occur over 25 days. At pH 7, Mn(II) adsorbs and causes limited structural effects, primarily increasing sheet stacking in δ-MnO2. These results show that aging-induced structural changes in phyllomanganates are affected by aqueous Mn(II), pH, and initial solid-phase Mn(III) content. In conclusion, such restructuring likely alters manganese oxide reactions with other constituents in environmental and geologic systems, particularly trace metals and redox-active compounds.« less
NASA Astrophysics Data System (ADS)
Goto, K. T.; Ito, T.; Suzuki, K.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.
2013-12-01
Oxygenation of the atmosphere and oceans has influenced the evolution of ocean chemistry and diversification of early life. A number of large manganese (Mn) deposits are distributed in the Paleoproterozoic sedimentary successions that were formed during the great oxidation event (GOE) around 2.4-2.2 Ga (Meynard, 2010). Due to the high redox potential of Mn, occurrences of Mn deposits have been regarded as important evidence for a highly oxidized environment during the Paleoproterozoic (Kirschvink et al., 2000). Furthermore, because Mn oxides strongly adsorb various elements, including bioessential elements such as Mo, formation of large Mn deposits may have affected the seawater chemical composition and ecology during the Paleoproterozoic. However, the genesis of each Mn deposit is poorly constrained, and the relationships among the formation of Mn deposits, the evolution of atmospheric and ocean chemistry, and the diversification of early life are still ambiguous. In this study, we report the Re-Os isotope compositions, rare earth element (REE) compositions, and abundance of manganophile elements in the Mn carbonate ore and host sedimentary rock samples collected from the Nsuta Mn deposit of the Birimian Supergroup, Ghana. The Nsuta deposit is one of the largest Paleoproterozoic Mn deposits, although its genesis remains controversial (Melcher et al., 1995; Mucke et al., 1999). The composite Re-Os isochron age (2149 × 130 Ma) of the Mn carbonate and sedimentary rock samples was consistent with the depositional age of the sedimentary rocks (~2.2 Ga) presumed from the U-Pb zircon age of volcanic rocks (Hirdes and Davis, 1998), suggesting that the timing of Mn ore deposition was almost equivalent to the host rock sedimentation. The PAAS-normalized REE pattern showed a positive Eu anomaly in all samples and a positive Ce anomaly only in the Mn carbonate ore. These REE patterns indicate the possible contribution of Eu-enriched fluids derived from hydrothermal activity and Ce enrichment due to the oxidation of Ce(III) by Mn(IV) during an ore formation. Among the manganophile elements, merely Mo is enriched in the Mn carbonate ore compared with the host sedimentary rocks. The profile of manganophile elements was similar to that of modern hydrothermal Mn oxide (Kuhn et al., 2003), although the exact Mo concentration was much lower. These geochemical lines of evidence provide the following plausible genetic model for the Nsuta deposits: (1) Mn(II) was derived from hydrothermal vents, (2) Mn(II) was oxidized to Mn(IV) oxide by the oxygenated seawater, (3) the precipitation of Mn oxide is almost concurrent with the deposition of the host sedimentary rocks, (4) Mn oxide was diagenetically transformed to be a Mn carbonate ore. The geochemical features of the Nsuta deposits suggest that, as in the present oxic oceans, Mn oxide was a potential sink for several trace elements in the Paleoproterozoic oceans. The low-Mo concentration in the Mn carbonate ore probably reflects the large difference between the chemical compositions of Paleoproterozoic and present seawater, implying the prevalence of reduced marine conditions even during the GOE (Scott et al., 2008)
Anderson, Erik; Addy, Min; Ma, Huan; Chen, Paul; Ruan, Roger
2016-12-01
In the U.S., the total amount of municipal solid waste is continuously rising each year. Millions of tons of solid waste and scum are produced annually that require safe and environmentally sound disposal. The availability of a zero-cost energy source like municipal waste scum is ideal for several types of renewable energy technologies. However, the way the energy is produced, distributed and valued also contributes to the overall process sustainability. An economic screening method was developed to compare the potential energy and economic value of three waste-to-energy technologies; incineration, anaerobic digestion, and biodiesel. A St. Paul, MN wastewater treatment facility producing 3175 "wet" kilograms of scum per day was used as a basis of the comparison. After applying all theoretically available subsidies, scum to biodiesel was shown to have the greatest economic potential, valued between $491,949 and $610,624/year. The incineration of scum yielded the greatest reclaimed energy potential at 29billion kilojoules/year. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yang, Ying; Yang, Feng; Lee, Sungsik; ...
2016-01-16
Facile fabrication of manganese oxide (MnO x, 0 < x < 2) and nitrogen (N) co-doped carbon microspheres (MnO x-N-CS) has been firstly developed by one-pot construction of Mn-functionalized melamine-formaldehyde (Mn-MF) resin spheres before pyrolysis. The resulting hybrids bear evenly dispersed MnO x and N moieties in situ anchored on hierarchically porous carbon microspheres formed simultaneously. The capacitive performance is greatly tailored by varying the Mn/melamine molar ratio in the synthetic mixture and pyrolysis temperature. It is found that the MnO x-N-CS hybrid (0.008 wt% Mn, pyrolyzed at 800 °C) exhibits the highest specific capacitance up to 258 F gmore » –1 at a scan rate of 1 mV s –1 (in 6 M KOH), and keeps a high capacitance retention ratio of 98% after 5000 cycles. The synergism between MnO x, N moieties and carbon spheres proves to be responsible for the remarkably improved performance, as compared to the pure carbon sphere and MnO x (N)-doped carbon sphere. Lastly, the well-developed MnO x-N-CS hybrids highlight the great potentials for widespread supercapacitor applications.« less
NASA Astrophysics Data System (ADS)
Jahanbin, Tania; Gaceur, Meriem; Gros-Dagnac, Hélène; Benderbous, Soraya; Merah, Souad Ammar
2015-06-01
Over several decades, metal-doped quantum dots (QDs) with core-shell structure have been studied as dual probes: fluorescence and magnetic resonance imaging (MRI) probes (Dixit et al., Mater Lett 63(30):2669-2671, 2009). However, metal-doped nanoparticles, in which the majority of metal ions are close to the surface, can affect their efficacy as MRI contrast agents (CAs). In this context, herein the high potential of synthesized Mn-doped ZnS QDs via polyol method as imaging probe is demonstrated. The mean diameters of QDs were measured via transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical and magnetic properties of MnZnS nanoparticles were characterized using fluorescence spectroscopy and super quanducting interference devices magnetometer and electron paramagnetic resonance system, respectively. T1- and T2-weighted images of nanoparticles in aqueous solution were acquired from spin-echo sequences at 3 T. From TEM images and XRD spectra of the prepared nanoparticles, it is observed that the average diameter of particles does not significantly change with Mn dopant content ( 1.6-1.9 nm). All three samples exhibit broad blue emission under UV light excitation. According to the MRI studies, MnZnS nanoparticles generate strong T1 contrast enhancement (bright T1-weighted images) at the low concentration (<0.1 mM). The MnZnS nanoparticles exhibit the high longitudinal ( r 1) relaxivity that increases from 20.34 to 75.5 mM-1 s-1 with the Mn dopant contents varying between 10 and 30 %. Strong signal intensity on T1-weighted images and high r 1 with {r2 }/{r_{1 }} ≈ 1 can demonstrate the high potential of the synthesized Mn:ZnS nanoparticles, which can serve as an effective T1 CA.
NASA Astrophysics Data System (ADS)
Wang, Xiaotian; Cheng, Zhenxiang; Khenata, Rabah; Wu, Yang; Wang, Liying; Liu, Guodong
2017-12-01
The spin-gapless semiconductors with parabolic energy dispersions [1-3] have been recently proposed as a new class of materials for potential applications in spintronic devices. In this work, according to the Slater-Pauling rule, we report the fully-compensated ferrimagnetic (FCF) behavior and spin-gapless semiconducting (SGS) properties for a new inverse Heusler compound Zr2MnGa by means of the plane-wave pseudo-potential method based on density functional theory. With the help of GGA-PBE, the electronic structures and the magnetism of Zr2MnGa compound at its equilibrium and strained lattice constants are systematically studied. The calculated results show that the Zr2MnGa is a new SGS at its equilibrium lattice constant: there is an energy gap between the conduction and valence bands for both the majority and minority electrons, while there is no gap between the majority electrons in the valence band and the minority electrons in the conduction band. Remarkably, not only a diverse physical nature transition, but also different types of spin-gapless features can be observed with the change of the lattice constants. Our calculated results of Zr2MnGa compound indicate that this material has great application potential in spintronic devices.
NASA Astrophysics Data System (ADS)
Suo, Xiaojing; Liao, Hengcheng; Hu, Yiyun; Dixit, Uday S.; Petrov, Pavel
2018-02-01
The formation of Al15Mn3Si2 phase in Al-12Si-4Cu-1.2Mn (wt.%) alloy during solidification was investigated by adopting CALPHAD method and microstructural observation by optical microscopy, SEM-EDS, TEM-EDS/SAD and XRD analysis; SEM fixed-point observation method was applied to evaluate its thermal stability. As-cast microstructural observation consistently demonstrates the solidification sequence of the studied alloy predicted by phase diagram calculation. Based on the phase diagram calculation, SEM-EDS, TEM-EDS/SAD and XRD analysis, as well as evidences on Al-Si-Mn-Fe compounds from the literature, the primary and eutectic Mn-rich phases with different morphologies in the studied alloy are identified to be Al15Mn3Si2 that has a body-centered cubic (BCC) structure with a lattice constant of a = 1.352 nm. SEM fixed-point observation and XRD analysis indicate that Al15Mn3Si2 phase has more excellent thermal stability at high temperature than that of CuAl2 phase and can serve as the major strengthening phase in heat-resistant aluminum alloy that has to face a high-temperature working environment. Results of tension test show that addition of Mn can improve the strength of Al-Si-Cu alloy, especially at elevated temperature.
Electrochemical trapping of metastable Mn3+ ions for activation of MnO2 oxygen evolution catalysts.
Morgan Chan, Zamyla; Kitchaev, Daniil A; Nelson Weker, Johanna; Schnedermann, Christoph; Lim, Kipil; Ceder, Gerbrand; Tumas, William; Toney, Michael F; Nocera, Daniel G
2018-06-05
Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn 3+ We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn 3+ may be introduced into MnO 2 by an electrochemically induced comproportionation reaction with Mn 2+ and that Mn 3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn 3+ -activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies show that Mn 3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn 3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn 3+ (T d ) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the δ-MnO 2 polymorph incorporating Mn 3+ ions.
Ye, Xiaodong; Fels, Diane; Tovmasyan, Artak; Aird, Katherine M.; Dedeugd, Casey; Allensworth, Jennifer L.; Kos, Ivan; Park, Won; Spasojevic, Ivan; Devi, Gayathri R.; Dewhirst, Mark W.; Leong, Kam W.; Batinic-Haberle, Ines
2012-01-01
Due to the ability to easily accept and donate electrons Mn(III) N-alkylpyridylporphyrins (MnPs) can dismute O2˙−, reduce peroxynitrite, but also generate reactive species and behave as pro-oxidants if conditions favour such action. Herein two ortho isomers, MnTE-2-PyP5+, MnTnHex-2-PyP5+, and a meta isomer MnTnHex-3-PyP5+, which differ greatly with regard to their metal-centered reduction potential, E1/2 (MnIIIP/MnIIP) and lipophilicity, were explored. Employing MnIIIP/MnIIP redox system for coupling with ascorbate, these MnPs catalyze ascorbate oxidation and thus peroxide production. Consequently, cancer oxidative burden may be enhanced, which in turn would suppress its growth. Cytotoxic effects on Caco-2, Hela, 4T1, HCT116 and SUM149 were studied. When combined with ascorbate, MnPs killed cancer cells via peroxide produced outside of the cell. MnTE-2-PyP5+ was the most efficacious catalyst for peroxide production, while MnTnHex-3-PyP5+ is most prone to oxidative degradation with H2, and thus the least efficacious. A 4T1 breast cancer mouse study of limited scope and success was conducted. The tumour oxidative stress was enhanced and its microvessel density reduced when mice were treated either with ascorbate or MnP/ascorbate; the trend towards tumour growth suppression was detected. PMID:21859376
Electrochemical Trapping of Metastable Mn3+ Ions for Activation of MnO2 Oxygen Evolution Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumas, William; Chan, Zamyla Morgan; Kitchaev, Daniil A.
Electrodeposited manganese oxide films are promising catalysts for promoting the oxygen evolution reaction (OER), especially in acidic solutions. The activity of these catalysts is known to be enhanced by the introduction of Mn3+. We present in situ electrochemical and X-ray absorption spectroscopic studies, which reveal that Mn3+ may be introduced into MnO2 by an electrochemically induced comproportionation reaction with Mn2+ and that Mn3+ persists in OER active films. Extended X-ray absorption fine structure (EXAFS) spectra of the Mn3+-activated films indicate a decrease in the Mn-O coordination number, and Raman microspectroscopy reveals the presence of distorted Mn-O environments. Computational studies showmore » that Mn3+ is kinetically trapped in tetrahedral sites and in a fully oxidized structure, consistent with the reduction of coordination number observed in EXAFS. Although in a reduced state, computation shows that Mn3+ states are stabilized relative to those of oxygen and that the highest occupied molecular orbital (HOMO) is thus dominated by oxygen states. Furthermore, the Mn3+(Td) induces local strain on the oxide sublattice as observed in Raman spectra and results in a reduced gap between the HOMO and the lowest unoccupied molecular orbital (LUMO). The confluence of a reduced HOMO-LUMO gap and oxygen-based HOMO results in the facilitation of OER on the application of anodic potentials to the d-MnO2 polymorph incorporating Mn3+ ions.« less
NASA Astrophysics Data System (ADS)
Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi
2018-03-01
We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.
NASA Technical Reports Server (NTRS)
Warren, Matthew E.; Loutts, George
1998-01-01
The YAlO3 host crystal has a distorted perovskite structure that belongs to the orthorhombic centrosymmetric Pbnm space group. The cationic sites in the structure available for Mn substitution are the relatively large strongly distorted YO12 polyhedral (Y3+ ionic radius R(sub Y) = 1.02 A) and the smaller nearly ideal AlO6 octahedra R(sub Al) = 0.53 A). Manganese may enter YAlO3 in the form of Mn2+ ions (R(sub Mn)= 0.96 A), substituting most likely Y3+ ions, and Mn3+ ions (R(sub Mn) = 0.65 A) or Mn4+ ions (R(sub Mn) = 0.53 A) substituting Al3+ ions. The latter substitution is most probable because of dimensional parameters. Point defects, which are common in YAl03, may provide the charge compensation required for substitution.
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR
NASA Astrophysics Data System (ADS)
Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.
2018-05-01
55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.
Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less
Lee, Seung-Yong; Wu, Lijun; Poyraz, Altug S.; ...
2017-10-06
Manganese oxide (α-MnO 2) has been considered as a promising energy material, including as a lithium-based battery electrode candidate, due to its environmental friendliness. Thanks to its unique 1D [2 × 2] tunnel structure, α-MnO 2 can be applied to a cathode by insertion reaction and to an anode by conversion reaction in corresponding voltage ranges, in a lithium-based battery. Numerous reports have attributed its remarkable performance to its unique tunnel structure; however, the precise electrochemical reaction mechanism remains unknown. In this study, finding of the lithiation mechanism of α-MnO 2 nanowire by in situ transmission electron microscopy (TEM) ismore » reported. By elaborately modifying the existing in situ TEM experimental technique, rapid lithium-ion diffusion through the tunnels is verified. Furthermore, by tracing the full lithiation procedure, the evolution of the MnO intermediate phase and the development of the MnO and Li 2O phases with preferred orientations is demonstrated, which explains how the conversion reaction occurs in α-MnO 2 material. This study provides a comprehensive understanding of the electrochemical lithiation process and mechanism of α-MnO 2 material, in addition to the introduction of an improved in situ TEM biasing technique.« less
Hirobe, Sachiko; Otsuka, Risa; Iioka, Hiroshi; Quan, Ying-Shu; Kamiyama, Fumio; Asada, Hideo; Okada, Naoki; Nakagawa, Shinsaku
2017-01-01
Pigmented lesions such as of seborrheic keratosis and senile lentigo, which are commonly seen on skin of people>50years of age, are considered unattractive and disfiguring because of their negative psychological impact. Drug therapy using all-trans retinoic acid (ATRA) is an attractive option for self-treatment at home. We have developed an ATRA-loaded microneedle patch (ATRA-MN) and confirmed the pharmacological effects of ATRA-MN application in mice. Here, we describe a clinical study to evaluate the safety and efficacy of ATRA-MN in subjects with seborrheic keratosis or senile lentigo. ATRA-MN was applied to the lesion site of each subject for 6h once per week for 4weeks. The skin irritation reaction was scored to assess adverse reactions and blood tests were performed to evaluate the presence of systemic adverse reactions. To assess the treatment effect using ATRA-MN, the desquamation and whitening ability of the investigational skin was observed. Desquamation of the stratum corneum was observed following four ATRA-MN applications at 1-week intervals, but ATRA-MN applications did not induce severe local or systemic adverse effects. These results showed that ATRA-MN treatment is promising as a safe and effective therapy for seborrheic keratosis and senile lentigo. Copyright © 2016 Elsevier Inc. All rights reserved.
Gao, Xue; Niu, Lu; Su, Xingguang
2012-01-01
This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.
NASA Astrophysics Data System (ADS)
Kim, Gil-Pyo; Lim, Dongwook; Park, Inyeong; Park, Hyelee; Shim, Sang Eun; Baeck, Sung-Hyeon
2016-08-01
Manganite (MnOOH) is one of the most effective electrocatalysts for oxygen reduction reaction (ORR), and RuO2 nanoparticles exhibit high activity for oxygen evolution reaction (OER). We herein report a facile means of producing well dispersed RuO2/MnOOH on Ketjen black (RuO2/MnOOH/C) as a bifunctional catalyst for lithium-air (Li-air) batteries. RuO2/MnOOH/C was simply synthesized using a hydrothermal/precipitation based method, and was used as a cathode for a Li-air battery using a Swagelok-type cell. The importance of dispersing active catalysts on a carbon support was clearly demonstrated by textural, charge-discharge voltammetric, and electrochemical impedance spectroscopic (EIS) analyses, comparing results with a catalyst produced by physically mixing RuO2/MnOOH with carbon (RuO2/MnOOH + C). RuO2/MnOOH/C showed low overpotential and stable cycleability up to 170th cycles with 1000 mAh g-1 of charge-discharge capacity, which was attributed to its enhanced active surface area and low charge-transfer resistance. The results obtained suggest that this strategy can be widely applied to bifunctional electrocatalysis, such as secondary batteries and regenerative fuel cell (RFC).
Evaluation of distribution and manganese availability in soils under soybean cultivation
NASA Astrophysics Data System (ADS)
Mendes Coutinho, Edson Luiz; de Cássia Gomes São João, Andréia; Mendes Coutinho Neto, André; Corá, José Eduardo; Fernandes, Carolina
2013-04-01
Manganese (Mn) deficiency in soybean became a problem in Brazil, mainly, due to soil low fertility use or soil high pH due to incorrect lime use. However, the manganese deficiency have not been thoroughly investigated. The effect of Mn soil application on Mn distribution among exchangeable, organic matter, amorphous Fe and Al oxides, crystalline Fe and Al oxides, and residual fractions were studied on a Typic Quartzipsament (RQ), a clayey Typic Haplustox (LVA) and a sandy clay loam Typic Haplustox (LV), in a greenhouse experiment carried out in Jaboticabal (SP) - Brazil (21°14'05'' S and 48°17'09'' W). A complete randomized design with three replications of treatments in a 3 x 6 factorial arrangement (three soils and six manganese rates) was used. Five soybean plants were grown during 34 days in pots with 2.5 kg of soil. The Mn contents in these fractions were correlated with those extracted by DTPA and by Mehlich-1 extractants and with soybean shoot Mn contents. Mn rates (0, 5, 10, 20, 40 and 60 mg kg-1) were applied using manganese sulphate (MnSO4). In the Oxisols, most of the Mn was associated with the Fe and Al oxides (amorphous and crystalline) and residual fractions. In the sandy soil (RQ), higher contents were found in exchangeable and residual fractions. Exchangeable fraction was the most important Mn supplier to soybean plants. Multiple regression analysis showed that Mn extracted by DTPA and Mehlich-1 were associated with soil exchangeable fraction.
First-principles study on the ferrimagnetic half-metallic Mn{sub 2}FeAs alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Santao; Zhang, Chuan-Hui, E-mail: zhangch@ustb.edu.cn; Chen, Bao
2015-05-15
Mn-based full-Heusler alloys are kinds of promising candidates for new half-metallic materials. Basing on first principles, the electronic structures and magnetic properties of the Mn{sub 2}FeAs full-Heusler alloy have been investigated in detail. The Hg{sub 2}CuTi-type Mn{sub 2}FeAs compound obeys the Slater-Pauling rule, while the anti-parallel alignment atomic magnetic moments of Mn locating at different sites indicate it a ferrimagnetic alloy. The calculated spin-down bands behave half-metallic character, exhibiting a direct gap of 0.46 eV with a 100% spin polarization at the Fermi level. More studies show the compound would maintain half-metallic nature in a large range of variational latticemore » constants. We expect that our calculated results may trigger Mn{sub 2}FeAs applying in the future spintronics field. - Graphical abstract: The d orbitals of Mn and Fe atoms split into multi-degenerated levels which create new bonding and nonbonding states. These exchange splitting shift the Fermi level to origin band gap.▪ - Highlights: • The electronic structure and magnetic properties of Mn{sub 2}FeAs full-Heusler alloy were studied. • A total magnetic moment of 3μ{sub B} was obtained for Mn{sub 2}FeAs alloy, following the SP rule M{sub t}=Z{sub t}−24. • The origin of ferrimagnetism and half-metallic character in Mn{sub 2}FeAs were discussed.« less
Takabe, Wakako; Li, Rongsong; Ai, Lisong; Yu, Fei; Berliner, Judith A.; Hsiai, Tzung K.
2012-01-01
Objective Oxidized low-density lipoprotein (oxLDL) modulates intracellular redox status and induces apoptosis in endothelial cells. However, the signal pathways and molecular mechanism remain unknown. In this study, we investigated the role of manganese superoxide dismutase (Mn-SOD) on oxLDL-induced apoptosis via c-Jun NH2-terminal kinase (JNK)-mediated ubiquitin/proteasome pathway. Methods and Results OxLDL induced JNK phosphorylation that peaked at 30 minutes in human aortic endothelial cells. Fluorescence-activated cell sorting analysis revealed that oxLDL increased mitochondrial superoxide production by 1.88±0.19-fold and mitochondrial membrane potential by 18%. JNK small interference RNA (siJNK) reduced oxLDL-induced mitochondrial superoxide production by 88.4% and mitochondrial membrane potential by 61.7%. OxLDL did not affect Mn-SOD mRNA expression, but it significantly reduced Mn-SOD protein level, which was restored by siJNK. Immunoprecipitation by ubiquitin antibody revealed that oxLDL increased ubiquitination of Mn-SOD, which was inhibited by siJNK. OxLDL-induced caspase-3 activities were also attenuated by siJNK but were enhanced by Mn-SOD small interfering RNA. Furthermore, overexpression of Mn-SOD abrogated oxLDL-induced caspase-3 activities. Conclusion OxLDL-induced JNK activation regulates mitochondrial redox status and Mn-SOD protein degradation via JNK-dependent ubiquitination, leading to endothelial cell apoptosis. PMID:20139358
Ye, Zhen; Jeong, Eun-Kee; Wu, Xueming; Tan, Mingqian; Yin, Shouyu; Lu, Zheng-Rong
2011-01-01
Purpose To develop safe and effective manganese(II) based biodegradable macromolecular MRI contrast agents. Materials and Methods In this study, we synthesized and characterized two polydisulfide manganese(II) complexes, Mn-DTPA cystamine copolymers and Mn-EDTA cystamine copolymers, as new biodegradable macromolecular MRI contrast agents. The contrast enhancement of the two manganese based contrast agents were evaluated in mice bearing MDA-MB-231 human breast carcinoma xenografts, in comparison with MnCl2. Results The T1 and T2 relaxivities were 4.74 and 10.38 mM−1s−1 per manganese at 3T for Mn-DTPA cystamine copolymers (Mn=30.50 kDa) and 6.41 and 9.72 mM−1s−1 for Mn-EDTA cystamine copolymers (Mn= 61.80 kDa). Both polydisulfide Mn(II) complexes showed significant liver, myocardium and tumor enhancement. Conclusion The manganese based polydisulfide contrast agents have a potential to be developed as alternative non-gadolinium contrast agents for MR cancer and myocardium imaging. PMID:22031457
NASA Astrophysics Data System (ADS)
Phebe Kokila, I.; Kanagaraj, M.; Sathish Kumar, P.; Peter, Sebastian C.; Sekar, C.; Annal Therese, Helen
2018-02-01
Pervoskite manganite EuMnO3 synthesized by solid-state route was studied for their structural and magnetocaloric properties. EuMnO3 formed a single phase compound in orthorhombic crystal structure with a space group of Pbnm. The zero field cooling and field cooling magnetic responses exhibit an optimal Neel temperature (TN) of 57 K. A stronger magnetic coupling between the EuMnO3 particles are observed by a delay in reaching TN. The magnetocaloric effect analyzed extensively from the negative entropy (-ΔSm) change of 15.23 JKg-1K-1 for EuMnO3, exhibited a Relative Cooling Power (RCP) of ˜211 JKg-1 at 1.2 T proposing EuMnO3 as a potential magnetic refrigerant.
[In search for neurophysiological criteria of altered consciousness].
Sviderskaia, N E
2002-01-01
Neurophysiological approaches to brain mechanisms of consciousness are discussed. The concept of spatial synchronization of nervous processes developed by M.N. Livanov is applied to neurophysiological analysis of higher brain functions. However, the spatial synchronization of brain potentials is only a condition for information processing and does not represent it as such. This imposes restrictions on conclusions about the neural mechanisms of consciousness. It is more adequate to use the concept of spatial synchronization in views of consciousness as a psychophysiological level along with sub- and superconsciousness in three-level structure of mind according to P.V. Simonov. Forms of consciousness interaction with other levels concern the problem of altered consciousness and may be reflected in various patterns of spatial organization of brain potentials.
Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.
Lentz, R D; Ippolito, J A
2012-01-01
Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Soluble Manganese(III) in the Marine Environment
NASA Astrophysics Data System (ADS)
Luther, G. W., III; Oldham, V.; Madison, A.; Tebo, B.; Jones, M.; Jensen, L.; Owings, S.; Mucci, A.; Sundby, B.
2014-12-01
Recent field studies have confirmed the presence of soluble manganese(III), which along with Mn(II) passes through a 0.2 μm filter, in suboxic marine waters. Here we applied a spectrophotometric method using a soluble porphyrin as a competitive ligand to calculate the concentrations and kinetics of Mn(II) and Mn(III) recovery. Data will be presented from the suboxic porewaters of the Saint Lawrence estuary, the suboxic and anoxic waters of the Chesapeake Bay and the oxygenated surface waters of a coastal waterway bordered by wetlands and salt marshes in Delaware. Soluble Mn(III) accounts for up to 100% of the dissolved Mn pool with concentrations ranging from the detection limit of 50 nM to 80 μM at the oxic/anoxic interface of the non-sulfidic porewaters from the hemipelagic sediments of the St. Lawrence Estuary. Data indicate weak-ligand complexation of Mn(III) formed from Mn(II) oxidation as well as reduction of MnO2. Complexation of Mn(III) in the anoxic waters of Chesapeake Bay appears stronger as the porphyrin could not outcompete the natural ligands binding Mn(III). Mn(III) complexes were reduced in the presence of hydroxylamine or hydrogen sulfide and detected as Mn(II). Soluble Mn(III) comprised up to 52 % of total dissolved Mn. Profiles over the course of a five day cruise showed that high Mn(III) concentrations (7.3 μM) were observed at low H2S (4.9 μM) whereas low Mn(III) (1.1 μM) was detected at high H2S (40 μM). The presence of Mn(III) in sulfidic waters indicated that it is kinetically stabilized in situ by strong ligands so reduction to Mn(II) was incomplete. One electron reductive dissolution of solid MnO2 particles formed at the oxic-anoxic interface appear to be the source of Mn(III). Lastly, soluble Mn(III) was detected in the oxygenated surface waters of a coastal waterway (salinity ranging from freshwater to 31) bordered by wetlands and salt marshes in Delaware. Soluble Mn(III) made up 0-49 % of the total dissolved Mn (maximum of 1.92 μM) with the highest concentrations and percentages coming from waters adjacent to salt marsh areas. The porphyrin competitive ligand could not outcompete the natural ligands, which appear to be humic material; thus, a reductant was again needed to convert the Mn(III) complexes to Mn(II) for measurement.
Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng
2013-01-01
We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767
Structural characterization of hydrothermally synthesized MnO2 nanorods
NASA Astrophysics Data System (ADS)
A'yuni, D. Q.; Alkian, I.; Sya'diyah, F. K.; Kadarisman; Darari, A.; Gunawan, V.; Subagio, A.
2017-11-01
We prepared the hydrothermal method to synthesize MnO2 nanorods with controlled structure. KMnO4 and HCl with the various molar ratio (1:2,1:6,1:8) reacted at 160°C for three hours to form MnO2 nanorods. The study found that changing the molar ratio can control the structure and morphology of MnO2. The result revealed that MnO2 formed in nanorod microstructures with different crystallographic structure and phase composition of each molar ratio. The diffraction peaks observed at 2θ values of 28.9°, 37.8°, 40.9°, 49.7° and 60.5° respectively indexed to (110), (101), (200), (411) and (521) plane reflections of a tetragonal phase of β-MnO2 and α-MnO2. The characterization of the morphology showed that the diameters of nanorod microstructures of MnO2 ranging from 30 to 145 nm with length ranging from 0.5 to 3 μm. These MnO2 nanorods product would be potentially used in energy storage devices.
Customized compact neutron activation analysis system to quantify manganese (Mn) in bone in vivo
Liu, Yingzi; Mostafaei, Farshad; Sowers, Daniel; Hsieh, Mindy; Zheng, Wei; Nie, Linda H
2018-01-01
Objective In the US alone, millions of workers, including over 300 000 welders, are at high risk of occupational manganese (Mn) exposure. Those who have been chronically exposed to excessive amount of Mn can develop severe neurological disorders similar, but not identical, to the idiopathic Parkinson’s disease. One challenge of identifing the health effects of Mn exposure is to find a reliable biomarker for exposure assessment, especially for long-term cumulative exposure. Approach Mn’s long biological half-life as well as its relatively high concentration in bone makes bone Mn (BnMn) a potentially valuable biomarker for Mn exposure. Our group has been working on the development of a deuterium–deuterium (D–D)-based neutron generator to quantify Mn in bone in vivo. Main results and significance In this paper, we report the latest advancements in our system. With a customized hand irradiation assembly, a fully characterized high purity germanium (HPGe) detector system, and an acceptable hand dose of 36 mSv, a detection limit of 0.64 µg Mn/g bone (ppm) has been achieved. PMID:28060775
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Combined optical/MCD/ODMR investigations of photochromism in doubly-doped Bi12GeO20
NASA Astrophysics Data System (ADS)
Briat, B.; Borowiec, M. T.; Rjeily, H. B.; Ramaz, F.; Hamri, A.; Szymczak, H.
Electron paramagnetic resonance is detected optically via the change of magnetic circular dichroism under microwaves at 35 GHz. The technique is applied to Bi12GeO20 samples co-doped with vanadium and a second transition metal (Cr, Mn, Co, Cu). The optical and magnetic properties of several paramagnetic defects (V-Ge(4+) and Cr-Ge(4+)) are directly correlated. The basic photochromic processes occuring in samples doped with V, Mn, and Mn+V are explained. The V-Ge(4+/5+) level is positioned roughly 2.2 eV above the valence band.
Richardson, J B
2017-03-01
Manganese (Mn) cycling in the Critical Zone is important because of its role as an essential nutrient and potential toxicity to plants and organisms. Quantifying Mn enrichment in terrestrial environments has been limited since Mn is monoisotopic. However, elemental ratios of Mn/Ca ratios may be used to determine spatial Mn enrichment and in aboveground and belowground pools. The objectives of this study were to quantify the spatial variation in Mn concentrations and Mn/Ca ratios in foliage, bolewood, forest floor, and mineral soil horizons across the northeastern United States and compare Mn/Ca ratios to estimate enrichment. Forest floor and mineral soil samples were collected from 26 study sites across the northeastern United States and analyzed by strong acid digestion. Foliage and bolewood was collected from 12 of the 26 sites and analyzed for total Mn and Ca. Our results show forest floor and mineral soil horizon Mn concentrations and Mn/Ca ratios were higher at Pennsylvania and New York sites than New Hampshire and Vermont sites. Using a modified isotope equation, enrichment factors (EF) for Mn/Ca ratios were calculated to be ~3.6 in the forest floor, upper and lower mineral soil horizons at sites in New York and Pennsylvania compared to reference sites in New Hampshire and Vermont. Foliar and bolewood Mn concentrations also decreased from Pennsylvania towards New Hampshire. Moreover, foliar and bolewood Mn concentrations were strongly correlated to forest floor, upper, and lower mineral soil Mn concentrations. It was hypothesized that internal cycling (uptake, throughfall, and litterfall) of Mn controls retention of enriched Mn in forests. Geologic influences from a lithologic gradient and soil pH gradient could also influence Mn enrichment in addition to Mn pollution. Ratios of Mn/Ca and other elemental ratios hold promise as geochemical tracers but require further development. Copyright © 2016 Elsevier B.V. All rights reserved.
Stability of βMnOOH and manganese oxide deposition from springwater
Hem, J.D.; Roberson, C.E.; Fournier, Reba B.
1982-01-01
Beta MnOOH is precipitated preferentially (with respect to Mn3O4) at temperatures near O°C when Mn2+ is oxidized in aerated aqueous solutions. Upon aging in solutions open to the atmosphere a slurry of βMnOOH tends to disproportionate to form MnO2 and Mn2+. In such aged solutions, Mn2+ and H+ activities can be constant, and both the oxidation reaction Mn2++¼O2(aq) + 3/2H2O → βMnOOH (c) + 2H+ and the disproportionate reaction 2βMnOOH (c) + 2H+ → MnO2(c) + Mn2+ + 2H2O can have positive reaction affinities. It is not possible for both reactions to be in thermodynamic equilibrium in the same system unless oxygen is almost completely absent. A value for ΔGf0 of −129.8±0.6 kcal/mol was obtained for βMnOOH from experimental data by assuming that the reaction affinity for the oxidation reaction is equal to that for the disproportionation. A value for ΔGf0 for βMnOOH of −129.8±0.5 kcal/mol was determined by measuring the redox potentials for the postulated half-reaction MnO2 (c) + H+ + e− → βMnOOH (c) at 0°, 5°, and 15°C and extrapolating to 25°C. Both these values are consistent with laboratory observations that βMnOOH is less stable than γMnOOH or Mn3O4 at 25°C. Analytical data for manganese-depositing springwater samples are consistent with a nonequilibrium model involving disproportionation of either βMnOOH or Mn3O4.
Suter, Clemens; Tomeš, Petr; Weidenkaff, Anke; Steinfeld, Aldo
2010-01-01
A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of p-type La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electrically in series and thermally in parallel. The governing equations for heat transfer and electrical potential are formulated, discretized and solved numerically by applying the finite volume (FV) method. The model is validated in terms of experimentally measured temperatures and voltages/power using a set of TEC demonstrator modules, subjected to a peak radiative flux intensity of 300 suns. The heat transfer model is then applied to examine the effect of the geometrical parameters (e.g. length/width of legs) on the solar-to-electricity energy conversion efficiency.
Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3
NASA Astrophysics Data System (ADS)
Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.
2005-05-01
We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.
Manganese deposition in drinking water distribution systems.
Gerke, Tammie L; Little, Brenda J; Barry Maynard, J
2016-01-15
This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.
[Effects of thiourea on pH and availability of metal ions in acid red soil].
Yang, Bo; Wang, Wen; Zeng, Qing-Ru; Zhou, Xi-Hong
2014-03-01
Through the simulation research, the effects of application of thiourea and urea on pH and availability of metal ions in acid red soil were studied, and the results showed that after applying urea, the soil pH increased in the first experimental stage and then reduced gradually to a low level, however, decreased trends of soil pH values were inhibited by the application of thiourea, especially when the concentration of thiourea reached to 5.0 mmol x kg(-1) dry soil, the soil pH was stable at high level, which exceeded to 6.0. It proved that the application of thiourea could inhibit the soil acidification due to urea application. After applying urea with different concentrations of thiourea, the available contents of Zn and Al decreased with the increasing concentration of thiourea, nevertheless, when the concentration of thiourea reached to 5.0 mmol x kg(-1), the available content of Mn was stable at high level which was over 110 mg x kg(-1). In addition, the results showed a highly significant negative correlation between the soil pH and the available content of Cu, Zn and Al, but for Mn, no discipline was found between the soil pH and the availability after applying thiourea. Moreover, the soil pH became higher after applying urea with thiourea compared to add urea only, which led to the decreasing of available content of Al, and it was benefited for the control of the phytotoxic effect of Al. The available content of Mn in the soil not only depended on soil pH but also the content of thiourea due to its redox and complexing reaction with Mn.
Dion, Laurie-Anne; Saint-Amour, Dave; Sauvé, Sébastien; Barbeau, Benoit; Mergler, Donna; Bouchard, Maryse F
2018-01-01
Manganese is commonly found in water but potential neurotoxic effects from exposure through drinking water are poorly understood. We previously reported a cross-sectional study showing that drinking water Mn concentration was associated with lower IQ in children aged 6 to 13 years. For this follow-up study, we aimed to re-assess the relation between exposure to Mn from drinking water and IQ at adolescence. In addition, we aimed to examine whether changes in drinking water Mn concentration was associated with changes in IQ scores. From the 380 children enrolled in the baseline study, 287 participated to this follow-up study conducted in average 4.4 years after. Mn concentration was measured in home tap water and children's hair. The relationships between these Mn exposure indicators and IQ scores (Weschsler Abbreviated Scale of Intelligence) at follow-up were assessed with linear regression analysis, adjusting for potential confounders. Intra-individual differences in IQ scores between the two examinations were compared for children whose Mn concentration in water remained stable between examinations, increased or decreased. The mean age at follow-up was 13.7 years (range, 10.5 to 18.0 years). Geometric mean of Mn concentration in water at follow-up was 14.5μg/L. Higher Mn concentration in water measured at follow-up was associated with lower Performance IQ in girls (β for a 10-fold increase=-2.8, 95% confidence intervals [CI] -4.8 to -0.8) and higher Performance IQ in boys (β=3.9, 95% CI 1.4 to 6.4). IQ scores were not significantly associated with Mn concentration in hair, although similar trends as for concentration in water were observed. For children whose Mn concentration in water increased between baseline and follow-up, Performance IQ scores decreased significantly (intra-individual difference, -2.4 points). Higher levels of Mn in drinking water were associated with lower Performance IQ in girls, whereas the opposite was observed in boys. These findings suggest long-term exposure to Mn through drinking water is associated differently with cognition in boys and girls. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaykhutdinov, K. A.; Petrov, M. I.; Terent'ev, K. I.
2015-04-28
We investigate magnetoresistance, ρ{sub c}, of single-crystal bilayer lanthanum manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0 and 0.1) at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab sample plane at the temperatures T < 60 K, along with the negative magnetoresistance typical of all the substituted lanthanum manganites. In the (La{sub 0.9}Nd{sub 0.1}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} sample, the positive magnetoresistancemore » effect is observed at temperatures of 60–80 K in an applied field parallel to the c axis. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.« less
Ash, Christopher; Borůvka, Luboš; Tejnecký, Václav; Šebek, Ondřej; Nikodem, Antonín; Drábek, Ondřej
2013-11-15
Waste slag which is created during precious metal smelting contains high levels of potentially toxic elements (PTE) which can be mobilised from unconfined deposits into the local environment. This paper examines the extractability of selected PTE (Pb, Zn, Cd, Mn) from slag samples by synthetic solutions designed to replicate those in the environment. Extracting agents were used to replicate potential leaching scenarios which are analogous to natural chemical weathering. Slag was submersed in a rainwater simulation solution (RSS), weak citric acid solution (representing rhizosphere secretions) and control solutions (deionised water) for a one month period with solution analyses made at intervals of 1, 24, 168 and 720 h. In 1 mM citric acid, dissolution of Cd and Zn showed little change with time, although for Zn the initial dissolution was considerable. Lead in citric acid was characterized by overall poor extractability. Mn solubility increased until an equilibrium state occurred within 24 h. The solubility of studied metals in citric acid can be characterized by a short time to equilibrium. RSS proved to be an effective solvent that, unlike citric acid solution, extracted increasing concentrations of Cd, Mn and Zn with time. Solubility of Pb in RSS was again very low. When taken as a proportion of a single 2 M HNO3 extraction which was applied to slag samples, Cd was the element most readily leached into RSS and control samples. In both studied solvents, slag heterogeneity is prominent in the case of Cd and Zn solubility. Contact time with solvent appears to be an important variable for the release of PTE from slag into solution. The purpose of this study was to provide insight into the environmental chemical dissolution of PTE from slag, which causes their enrichment in surrounding soils and surface waters. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimisation of flight dynamic control based on many-objectives meta-heuristic: a comparative study
NASA Astrophysics Data System (ADS)
Bureerat, Sujin; Pholdee, Nantiwat; Radpukdee, Thana
2018-05-01
Development of many objective meta-heuristics (MnMHs) is a currently interesting topic as they are suitable to real applications of optimisation problems which usually require many ob-jectives. However, most of MnMHs have been mostly developed and tested based on stand-ard testing functions while the use of MnMHs to real applications is rare. Therefore, in this work, MnMHs are applied for optimisation design of flight dynamic control. The design prob-lem is posed to find control gains for minimising; the control effort, the spiral root, the damp-ing in roll root, sideslip angle deviation, and maximising; the damping ratio of the dutch-roll complex pair, the dutch-roll frequency, bank angle at pre-specified times 1 seconds and 2.8 second subjected to several constraints based on Military Specifications (1969) requirement. Several established many-objective meta-heuristics (MnMHs) are used to solve the problem while their performances are compared. With this research work, performance of several MnMHs for flight control is investigated. The results obtained will be the baseline for future development of flight dynamic and control.
Negative-pressure polymorphs made by heterostructural alloying
Perkins, John D.
2018-01-01
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material’s structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures—a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties—materials that are otherwise nearly impossible to make. PMID:29725620
Negative-pressure polymorphs made by heterostructural alloying.
Siol, Sebastian; Holder, Aaron; Steffes, James; Schelhas, Laura T; Stone, Kevin H; Garten, Lauren; Perkins, John D; Parilla, Philip A; Toney, Michael F; Huey, Bryan D; Tumas, William; Lany, Stephan; Zakutayev, Andriy
2018-04-01
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures-a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixing two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2× to 4× lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. This example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties-materials that are otherwise nearly impossible to make.
Duckworth, O W; Rivera, N A; Gardner, T G; Andrews, M Y; Santelli, C M; Polizzotto, M L
2017-01-25
Manganese oxides, which may be biogenically produced in both pristine and contaminated environments, have a large affinity for many trace metals. In this study, water and Mn oxide-bearing biofilm samples were collected from the components of a pump and treat remediation system at a superfund site. To better understand the factors leading to their formation and their effects on potentially toxic metal fate, we conducted a chemical, microscopic, and spectroscopic characterization of these biofilm samples. Scanning electron microscopy revealed the presence of Mn oxides in close association with biological structures with morphologies consistent with fungi. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) revealed the oxides to be a mixture of layer and tunnel structure Mn(iv) oxides. In addition, XAS suggested that Ba, Co, and Zn all primarily bind to oxides in the biofilm in a manner that is analogous to synthetic or laboratory grown bacteriogenic Mn oxides. The results indicate that Mn oxides produced by organisms in the system may effectively scavenge metals, thus highlighting the potential utility of these organisms in designed remediation systems.
Three-Dimensional Fibrous Network of Na0.21 MnO2 for Aqueous Sodium-Ion Hybrid Supercapacitors.
Karikalan, Natarajan; Karuppiah, Chelladurai; Chen, Shen-Ming; Velmurugan, Murugan; Gnanaprakasam, Periyasami
2017-02-16
Sodium-ion hybrid supercapacitors are potential energy-storage devices and have recently received enormous interest. However, the development of cathode materials and the use of nonaqueous electrolyte remain a great challenge. Hence, aqueous Na-ion hybrid supercapacitors based on a three-dimensional network of NaMnO 2 were developed. The cathode material was synthesized by the electro-oxidation of potassium manganese hexacyanoferrate nanocubes. The oxidized compound was confirmed to be Na 0.21 MnO 2 by various physical characterization methods. Manganese dioxide is a well-characterized material for aqueous asymmetric pseudocapacitors, but its usage at high operating voltages is limited due to the electrochemical stability of water. Nevertheless, high-potential and high-performance aqueous supercapacitors exhibiting a cell potential of 2.7 V were developed. Further, the practical applicability of an asymmetric supercapacitor based on NaMnO 2 (cathode) and reduced graphene oxide (anode) was demonstrated by powering a 2.1 V red LED. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bilal, Muhammad; Asgher, Muhammad; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2017-09-01
In this study, the matrix-entrapment technique was adopted to immobilize a novel manganese peroxidase (MnP). Agarose beads developed from 3.0% agarose concentration furnished the preeminent immobilization yield (92.76%). The immobilized MnP exhibited better resistance to changes in the pH and temperature as compared to the free counterpart, with optimal conditions being pH 6.0 and 45°C. Thermal and storage stability characteristics were significantly improved after immobilization, and the immobilized-MnP displayed higher tolerance against different temperatures than free MnP state. After 72h, the insolubilized MnP retained its activity up to 41.2±1.7% and 33.6±1.4% at 55°C and 60°C, respectively, and 34.3±1.9% and 22.0±1.1% activities at 65°C and 70°C, respectively, after 48h of the incubation period. A considerable reusability profile was recorded with ten consecutive cycles. Moreover, to explore the industrial applicability, the agarose-immobilized-MnP was tested for bioremediation of textile industry effluent purposes. After six consecutive cycles, the tested effluents were decolorized to different extents (with a maximum of 98.4% decolorization). In conclusion, the remarkable bioremediation potential along with catalytic, thermo-stability, reusability, as well as storage stability features of the agarose-immobilized-MnP reflect its prospects as a biocatalyst for bioremediation and other industrial applications. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Steenkamp, Joalet Dalene; Hockaday, Christopher James; Gous, Johan Petrus; Nzima, Thabo Witness
2017-09-01
Submerged-arc furnace technology is applied in the primary production of ferroalloys. Electrical energy is dissipated to the process via a combination of arcing and resistive heating. In processes where a crater forms between the charge zone and the reaction zone, electrical energy is dissipated mainly through arcing, e.g., in coke-bed based processes, through resistive heating. Plant-based measurements from a device called "Arcmon" indicated that in silicomanganese (SiMn) production, at times up to 15% of the electrical energy used is transferred by arcing, 30% in high-carbon ferromanganese (HCFeMn) production, compared with 5% in ferrochromium and 60% in ferrosilicon production. On average, the arcing is much less at 3% in SiMn and 5% in HCFeMn production.
Hu, Xiaofei; Han, Xiaopeng; Hu, Yuxiang; Cheng, Fangyi; Chen, Jun
2014-04-07
A sponge-like ε-MnO2 nanostructure was synthesized by direct growth of ε-MnO2 on Ni foam through a facile electrodeposition route. When applied as a self-supporting, binder-free cathode material for rechargeable nonaqueous lithium-oxygen batteries, the ε-MnO2/Ni electrode exhibits considerable high-rate capability (discharge capacity of ∼6300 mA h g(-1) at a current density of 500 mA g(-1)) and enhanced cyclability (exceeding 120 cycles) without controlling the discharge depth. The superior performance is proposed to be associated with the 3D nanoporous structures and abundant oxygen defects as well as the absence of side reactions related to carbon-based conductive additives and binders.
Microneedle Coating Techniques for Transdermal Drug Delivery
Haj-Ahmad, Rita; Khan, Hashim; Arshad, Muhammad Sohail; Rasekh, Manoochehr; Hussain, Amjad; Walsh, Susannah; Li, Xiang; Chang, Ming-Wei; Ahmad, Zeeshan
2015-01-01
Drug administration via the transdermal route is an evolving field that provides an alternative to oral and parenteral routes of therapy. Several microneedle (MN) based approaches have been developed. Among these, coated MNs (typically where drug is deposited on MN tips) are a minimally invasive method to deliver drugs and vaccines through the skin. In this review, we describe several processes to coat MNs. These include dip coating, gas jet drying, spray coating, electrohydrodynamic atomisation (EHDA) based processes and piezoelectric inkjet printing. Examples of process mechanisms, conditions and tested formulations are provided. As these processes are independent techniques, modifications to facilitate MN coatings are elucidated. In summary, the outcomes and potential value for each technique provides opportunities to overcome formulation or dosage form limitations. While there are significant developments in solid degradable MNs, coated MNs (through the various techniques described) have potential to be utilized in personalized drug delivery via controlled deposition onto MN templates. PMID:26556364
Liu, Wenbo; Langenhoff, Alette A M; Sutton, Nora B; Rijnaarts, Huub H M
2018-05-18
Applying manganese(IV)- or iron(III)-(hydr)oxides to remove pharmaceuticals from water could be attractive, due to the capacity of these metal oxides to remove pharmaceuticals and be regenerated. As pharmaceutical removal under anaerobic conditions is foreseen, Mn(IV) or Fe(III) regeneration under anaerobic conditions, or with minimum oxygen dosage, is preferred. In this study, batch experiments are performed to investigate (1) Mn(IV) and Fe(III) regeneration from Mn(II) and Fe(II); (2) the pharmaceutical removal during biological Mn(IV) and Fe(III) regeneration; and (3) anaerobic abiotic pharmaceutical removal with different Mn(IV) or Fe(III) species. Results show that biological re-oxidation of reduced Mn(II) to Mn(IV) occurs under oxygen-limiting conditions. Biological re-oxidation of Fe(II) to Fe(III) is obtained with nitrate under anaerobic conditions. Both bio-regenerated Mn(IV)-oxides and Fe(III)-hydroxides are amorphous. The pharmaceutical removal is insignificant by Mn(II)- or Fe(II)-oxidizing bacteria during regeneration. Finally, pharmaceutical removal is investigated with various Mn(IV) and Fe(III) sources. Anaerobic abiotic removal using Mn(IV) produced from drinking water treatment plants results in 23% metoprolol and 44% propranolol removal, similar to chemically synthesized Mn(IV). In contrast, Fe(III) from drinking water treatment plants outperformed chemically or biologically synthesized Fe(III); Fe (III) from drinking water treatment can remove 31-43% of propranolol via anaerobic abiotic process. In addition, one of the Fe(III)-based sorbents tested, FerroSorp ® RW, can also remove propranolol (20-25%). Biological regeneration of Mn(IV) and Fe(III) from the reduced species Mn(II) and Fe(II) could be more effective in terms of cost and treatment efficiency. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Jiang, Jin; Gao, Yuan; Pang, Su-Yan; Lu, Xue-Ting; Zhou, Yang; Ma, Jun; Wang, Qiang
2015-01-06
Recent studies have shown that manganese dioxide (MnO2) can significantly accelerate the oxidation kinetics of phenolic compounds such as triclosan and chlorophenols by potassium permanganate (Mn(VII)) in slightly acidic solutions. However, the role of MnO2 (i.e., as an oxidant vs catalyst) is still unclear. In this work, it was demonstrated that Mn(VII) oxidized triclosan (i.e., trichloro-2-phenoxyphenol) and its analogue 2-phenoxyphenol, mainly generating ether bond cleavage products (i.e., 2,4-dichlorophenol and phenol, respectively), while MnO2 reacted with them producing appreciable dimers as well as hydroxylated and quinone-like products. Using these two phenoxyphenols as mechanistic probes, it was interestingly found that MnO2 formed in situ or prepared ex situ greatly accelerated the kinetics but negligibly affected the pathways of their oxidation by Mn(VII) at acidic pH 5. The yields (R) of indicative products 2,4-dichlorophenol and phenol from their respective probes (i.e., molar ratios of product formed to probe lost) under various experimental conditions were quantified. Comparable R values were obtained during the treatment by Mn(VII) in the absence vs presence of MnO2. Meanwhile, it was confirmed that MnO2 could accelerate the kinetics of Mn(VII) oxidation of refractory nitrophenols (i.e., 2-nitrophenol and 4-nitrophenol), which otherwise showed negligible reactivity toward Mn(VII) and MnO2 individually, and the effect of MnO2 was strongly dependent upon its concentration as well as solution pH. These results clearly rule out the role of MnO2 as a mild co-oxidant and suggest a potential catalytic effect on Mn(VII) oxidation of phenolic compounds regardless of their susceptibility to oxidation by MnO2.
Zhang, Wen-Hui; Chen, Wei; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang
2015-10-01
Three hundred Mn-resistant endophytic bacteria were isolated from the Mn-hyperaccumulator, Phytolacca americana, grown at different levels of Mn (0, 1, and 10mM) stress. Under no Mn stress, 90%, 92%, and 11% of the bacteria produced indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase, respectively. Under Mn stress, 68-94%, 91-92%, and 21-81% of the bacteria produced IAA, siderophore, and ACC deaminase, respectively. Greater percentages of ACC deaminase-producing bacteria were found in the Mn-treated P. americana. Furthermore, the ratios of IAA- and siderophore-producing bacteria were significantly higher in the Mn treated plant leaves, while the ratio of ACC deaminase-producing bacteria was significantly higher in the Mn treated-roots. Based on 16S rRNA gene sequence analysis, Mn-resistant bacteria were affiliated with 10 genera. In experiments involving hybrid penisetum grown in soils treated with 0 and 1000mgkg(-1) of Mn, inoculation with strain 1Y31 was found to increase the root (ranging from 6.4% to 18.3%) and above-ground tissue (ranging from 19.3% to 70.2%) mass and total Mn uptake of above-ground tissues (64%) compared to the control. Furthermore, inoculation with strain 1Y31 was found to increase the ratio of IAA-producing bacteria in the rhizosphere and bulk soils of hybrid penisetum grown in Mn-added soils. The results showed the effect of Mn stress on the ratio of the plant growth-promoting factor-producing endophytic bacteria of P. americana and highlighted the potential of endophytic bacterium as an inoculum for enhanced phytoremediation of Mn-polluted soils by hybrid penisetum plants. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Evard, Margarita E.; Volkov, Aleksandr E.; Belyaev, Fedor S.; Ignatova, Anna D.
2018-05-01
The choice of Gibbs' potential for microstructural modeling of FCC ↔ HCP martensitic transformation in FeMn-based shape memory alloys is discussed. Threefold symmetry of the HCP phase is taken into account on specifying internal variables characterizing volume fractions of martensite variants. Constraints imposed on model constants by thermodynamic equilibrium conditions are formulated.
Manganese in plasma: a promising biomarker of exposure to Mn in welders. A pilot study.
Hoet, Perrine; Vanmarcke, Els; Geens, Tom; Deumer, Gladys; Haufroid, Vincent; Roels, Harry A
2012-08-13
There is raising concern about the potential neurotoxic effects of manganese (Mn) inhalation exposure in welders. Because most of the airborne particles in welding fume are in the respirable fraction, their bioavailability is likely to be higher than for coarser dust exposure. No well-validated biomarker for Mn exposure is available. To investigate the interest of measuring Mn in plasma (Mn-P) and urine (Mn-U) as biomarkers of exposure in a group of 28 welders whose tasks were only welding-related. Ambient air exposure to Mn (Mn-air) was determined by personal full-shift measurements on Monday and Tuesday. On the same days, blood and urine samples were collected before and after the shift. Mn-air varied from 1.3 to 729 μg/m(3) (GM 27.7). For Mn-U 65% of the values in welders were below the LOQ (0.20 μg/L). Compared to controls, the welders' Mn-P averaged 33% higher (1.5 vs 2.0 μg/L). In welders, the after-shift Mn-P values correlated well with Mn-air above 10 μg/m(3). In spite of similar Mn-air exposure on Monday and Tuesday, the relationships between Mn-air and after-shift Mn-P strikingly differed on Tuesday in that the inflection in the relationship was less obvious and the slope of the regression line (Mn-P after-shift/logMn-air) for a doubling of logMn-air was 2.3 times lower than on Monday. On Monday (the first day of the workweek), a Mn-P value of 2 μg/L could distinguish Mn-air exposure above or below 20 μg/m(3) with a sensitivity of 69% and a specificity of 82%. This preliminary study indicates that Mn-P is a promising biomarker of current exposure to Mn in welders and lends biological plausibility to the intended change for the Mn TLV-TWA of 20 μg/m(3) proposed by ACGIH for respirable Mn particulate. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Pettong, Tanut; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Sukha, Phansiri; Sirisinudomkit, Pichamon; Seubsai, Anusorn; Chareonpanich, Metta; Kongkachuichay, Paisan; Limtrakul, Jumras; Sawangphruk, Montree
2016-12-14
The working potential of symmetric supercapacitors is not so wide because one type of material used for the supercapacitor electrodes prefers either positive or negative charge to both charges. To address this problem, a novel asymmetrical supercapacitor (ASC) of battery-type MnCo 2 O 4 nanofibers (NFs)//N-doped reduced graphene oxide aerogel (N-rGO AE ) was fabricated in this work. The MnCo 2 O 4 NFs at the positive electrode store the negative charges, i.e., solvated OH - , while the N-rGO AE at the negative electrode stores the positive charges, i.e., solvated K + . An as-fabricated aqueous-based MnCo 2 O 4 //N-rGO AE ASC device can provide a wide operating potential of 1.8 V and high energy density and power density at 54 W h kg -1 and 9851 W kg -1 , respectively, with 85.2% capacity retention over 3000 cycles. To understand the charge storage reaction mechanism of the MnCo 2 O 4 , the synchrotron-based X-ray absorption spectroscopy (XAS) technique was also used to determine the oxidation states of Co and Mn at the MnCo 2 O 4 electrode after being electrochemically tested. The oxidation number of Co is oxidized from +2.76 to +2.85 after charging and reduced back to +2.75 after discharging. On the other hand, the oxidation state of Mn is reduced from +3.62 to +3.44 after charging and oxidized to +3.58 after discharging. Understanding in the oxidation states of Co and Mn at the MnCo 2 O 4 electrode here leads to the awareness of the uncertain charge storage mechanism of the spinel-type oxide materials. High-performance ASC here in this work may be practically used in high-power applications.
Ye, Qi; Kim, Jonghan
2015-03-01
Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of anti-oxidant enzymes in the PFC.
NASA Astrophysics Data System (ADS)
Canbay, Canan Aksu; Polat, Tercan
2017-09-01
In this work the effects of the applied pressure on the characteristic transformation temperatures, the high temperature order-disorder phase transitions, the variation in diffraction peaks and the surface morphology of the CuAlMnNi shape memory alloy was investigated. The evolution of the transformation temperatures was studied by differential scanning calorimetry (DSC) with different heating and cooling rates. The differential thermal analysis measurements were performed to obtain the ordered-disordered phase transformations from room temperature to 900 °C. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the applied pressure and also the applied pressure affected the thermodynamic parameters. The activation energy of the sample according to applied pressure values calculated by Kissinger method. The structural changes of the samples were studied by X-ray diffraction (XRD) measurements and by optical microscope observations at room temperature.
Cortez-Lugo, Marlene; Riojas-Rodríguez, Horacio; Moreno-Macías, Hortensia; Montes, Sergio; Rodríguez-Agudelo, Yaneth; Hernández-Bonilla, David; Catalán-Vázquez, Minerva; Díaz-Godoy, Raúl; Rodríguez-Dozal, Sandra
2018-01-01
In the state of Hidalgo, Mexico, is found the largest second deposit of Manganese (Mn) in Latin America. Various studies on the sources of emission, exposure, and the effects on the health of children and adults have been conducted utilizing an ecosystem approach. Given the findings of Mn levels in air and the neurocognitive effects, an Environmental Management Program (EMP) was designed and implemented with the purpose of reducing exposure to Mn of the population, including various actions for reducing Mn emissions into the atmosphere. To evaluate the impact of the EMP on the concentrations of Mn in air, as well as the modification of exposure to Mn in the blood and hair of adult residents of the communities intervened. A quasi-experimental study was conducted in five rural communities, in which Mn concentrations were evaluated in air and in blood in the years 2002 and 2007, pre-intervention, and in 2013, postintervention. In 2003, the concentration of hair Mn among the communities was evaluated. Measurements were carried out of Particulate Matter (PM) of >10 and 2.5μm (PM10 and PM2.5), and Mn in PM10 and PM2.5 were measured using proton-induced X-ray emissions (PIXE). The method of Difference in Differences (DID) was applied to estimate the impact of EMP on Mn concentrations in particulate matter via linear regression through multilevel models. To evaluate the effect of Mn concentrations in air over Mn concentrations in blood in both study periods in the mining communities per year (2002 and 2013), a linear regression model for each year was employed. We estimated that the EMP contributed to reducing the average daily concentrations of Mn in PM10 and PM2.5 by 92 and 85%, respectively. The adjusted model did not show an effect of Mn concentrations in air over Mn concentrations in blood in both study periods. The results suggest that the measures implemented to reduce Mn emissions in air exerted a significant impact on the reduction of inhaled exposure in adult population. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawicki, K.; Malinowski, F. K.; Gałkowski, K.
2015-01-05
A simple, single-color method for permanent marking of the position of individual self-assembled semiconductor Quantum Dots (QDs) at cryogenic temperatures is reported. The method combines in situ photolithography with standard micro-photoluminescence spectroscopy. Its utility is proven by a systematic magnetooptical study of a single CdTe/ZnTe QD containing a Mn{sup 2+} ion, where a magnetic field of up to 10 T in two orthogonal, Faraday and Voigt, configurations is applied to the same QD. The presented approach can be applied to a wide range of solid state nanoemitters.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
NASA Astrophysics Data System (ADS)
Schilling, Osvaldo F.
2016-11-01
The alternating Fe-Mn layered structures of the compounds FeMnAsxP1-x display properties which have been demonstrated experimentally as very promising as far as commercial applications of the magnetocaloric effect are concerned. However, the theoretical literature on this and other families of magnetocaloric compounds still adopts simple molecular-field models in the description of important statistical mechanical properties like the entropy variation that accompanies applied isothermal magnetic field cycling, as well as the temperature variation following adiabatic magnetic field cycles. In the present paper, a random phase approximation Green function theoretical treatment is applied to such structures. The advantages of such approach are well known since the details of the crystal structure are easily incorporated in the model, as well as a precise description of correlations between neighbor spins can be obtained. We focus on a simple one-exchange parameter Heisenberg model, and the observed first-order phase transitions are reproduced by the introduction of a biquadratic term in the Hamiltonian whose origin is related both to the magnetoelastic coupling with the phonon spectrum in these compounds as well as with the values of spins in the Fe and Mn ions. The calculations are compared with experimental magnetocaloric data for the FeMnAsxP1-x compounds. In particular, the magnetic field dependence for the entropy variation at the transition temperature predicted from the Landau theory of continuous phase transitions is reproduced even in the case of discontinuous transitions.
Perera, N C N; Godahewa, G I; Lee, Seongdo; Kim, Myoung-Jin; Hwang, Jee Youn; Kwon, Mun Gyeong; Hwang, Seong Don; Lee, Jehee
2017-09-01
Manganese superoxide dismutase (MnSOD) is a metaloenzyme that catalyzes dismutation of the hazardous superoxide radicals into less hazardous H 2 O 2 and H 2 O. Here, we identified a homolog of MnSOD from big belly seahorse (Hippocampus abdominalis; HaMnSOD) and characterized its structural and functional features. HaMnSOD transcript possessed an open reading frame (ORF) of 672 bp which codes for a peptide of 223 amino acids. Pairwise alignment showed that HaMnSOD shared highest identity with rock bream MnSOD. Results of the phylogenetic analysis of HaMnSOD revealed a close proximity with rock bream MnSOD which was consistent with the result of homology alignment. The intense expression of HaMnSOD was observed in the ovary, followed by the heart and the brain. Further, immune related responses of HaMnSOD towards pathogenic stimulation were observed through bacterial and viral challenges. Highest HaMnSOD expression in response to stimulants Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide (LPS), and polyinosinic-polycytidylic acid (Poly I:C) was observed in the late stage in the blood tissue. Xanthine/xanthine oxidase assay (XOD assay) indicated the ROS-scavenging ability of purified recombinant HaMnSOD (rHaMnSOD). The optimum conditions for the SOD activity of rHaMnSOD were pH 9 and the 25 °C. Collectively, the results obtained through the expressional analysis profiles and the functional assays provide insights into potential immune related and antioxidant roles of HaMnSOD in the big belly seahorse. Copyright © 2017 Elsevier Ltd. All rights reserved.
Huang, Wenxin; Li, Jun; Xu, Yunhe
2018-01-01
Porous MnO2 was uniformly electrodeposited on nickel foam in MnSO4 solution, which was applied as the electrode of supercapacitors. The nucleation/growth mechanisms of porous MnO2 were investigated firstly. Then two kinds of electrochemical measuring technologies, corresponding to the cycle voltammetry (CV) and galvanostatic charge-discharge, were adopted to assess the electrochemical performance of MnO2 electrodes. The results demonstrated that the deposition of MnO2 on nickel foam included four stages. Prior to the deposition, an extremely short incubation period of about 2 s was observed (the first stage). Then the exposed nickel foam was instantly covered by a large number of MnO2 crystal nuclei and crystal nuclei connected with each other in a very short time of about 3 s (the second stage). Nucleation predominated in the second stage. The sharply rise of current was caused by the increase in substrate surface area which due to nucleation of MnO2. Grain boundaries grew preferentially due to their high energy, accompanied with a honeycomb-like structure with the higher surface area was formed. However, accompanied with the electrochemical reactions gradually diffusion-controlled, the current presented the decline trend with increasing the time (the third stage). When the electrochemical reactions were completely diffusion-controlled, the porous MnO2 coating with an approximately constant surface area was formed (the fourth stage). MnO2 coatings deposited for different time (30, 60, 120, 300 s) exhibited a similar specific capacitance (CV: about 224 F/g; galvanostatic charge-discharge: about 264 F/g). Comparatively speaking, the value of MnO2 deposited for 600 s was highest (CV: 270 F/g; galvanostatic charge-discharge: 400 F/g). PMID:29724063
NASA Astrophysics Data System (ADS)
Iro, Zaharaddeen S.; Subramani, C.; Kesavan, T.; Dash, S. S.; Sasidharan, M.; Sundramoorthy, Ashok K.
2017-12-01
A composite of MnO2/SiO2 sphere was coated on single-wall carbon nanotubes (MnO2/SiO2/SWCNT) using one-pot hydrothermal synthesis method. KMnO4 was used as an oxidizing agent for mild functionalization of single-wall carbon nanotubes (SWCNT), and also as a precursor of MnO2. A comparative study in the presence of SiO2 and SWCNT was carried out using bare MnO2 as a reference. After addition of SiO2, the composite obtained showed an increase in both the specific capacitance and cycle life which can be associated with spherical shape of SiO2 which offered reduction sites for MnO2. With the addition of SWCNT less than 5%, the composite further showed an increase in capacitance and cycle life, this is because of the good conductive nature, excellent mechanical property and chemical stability of SWCNT. The electrochemical behaviour was studied using cyclic voltammetry and galvanostatic charge/discharge method in 1 M Na2SO4 electrolyte. The specific capacitance of MnO2, MnO2/SiO2 and MnO2/SiO2/SWCNT composite is 73.6 F g-1, 108.7 F g-1 and 136 F g-1 at a current density of 1 A g-1, respectively. The MnO2/SiO2/SWCNT energy density was 68 Wh kg-1 with power density of 444.4 W kg-1. The MnO2/SiO2/SWCNT composite retained 88% of its specific capacitance after 500 cycles. We envisage that this hybrid material could be applied for preparation of supercapacitor electrode.
Huang, Wenxin; Li, Jun; Xu, Yunhe
2018-05-02
Porous MnO₂ was uniformly electrodeposited on nickel foam in MnSO₄ solution, which was applied as the electrode of supercapacitors. The nucleation/growth mechanisms of porous MnO₂ were investigated firstly. Then two kinds of electrochemical measuring technologies, corresponding to the cycle voltammetry (CV) and galvanostatic charge-discharge, were adopted to assess the electrochemical performance of MnO₂ electrodes. The results demonstrated that the deposition of MnO₂ on nickel foam included four stages. Prior to the deposition, an extremely short incubation period of about 2 s was observed (the first stage). Then the exposed nickel foam was instantly covered by a large number of MnO₂ crystal nuclei and crystal nuclei connected with each other in a very short time of about 3 s (the second stage). Nucleation predominated in the second stage. The sharply rise of current was caused by the increase in substrate surface area which due to nucleation of MnO₂. Grain boundaries grew preferentially due to their high energy, accompanied with a honeycomb-like structure with the higher surface area was formed. However, accompanied with the electrochemical reactions gradually diffusion-controlled, the current presented the decline trend with increasing the time (the third stage). When the electrochemical reactions were completely diffusion-controlled, the porous MnO₂ coating with an approximately constant surface area was formed (the fourth stage). MnO₂ coatings deposited for different time (30, 60, 120, 300 s) exhibited a similar specific capacitance (CV: about 224 F/g; galvanostatic charge-discharge: about 264 F/g). Comparatively speaking, the value of MnO₂ deposited for 600 s was highest (CV: 270 F/g; galvanostatic charge-discharge: 400 F/g).
Effect of ball milling and heat treatment process on MnBi powders magnetic properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Wei; Polikarpov, Evgueni; Choi, Jung-Pyung
The metallic compound MnBi has high intrinsic coercivity with large positive temperature coefficient. The coercivity of MnBi exceeds 12 kOe and 26 kOe at 300 K and 523 K, respectively. Hence MnBi is a good candidate for the hard phase in exchange coupled nanocomposite magnets. In order to maximize the loading of the soft phase, the size of the MnBi particle has to be close to 500 nm, the size of single magnetic domain. Low energy milling is the common method to reduce MnBi particle size. However, only 3-7 mu m size particle can be achieved without significant decomposition. Here,more » we report our effort on preparing submicron MnBi powders using traditional powder metallurgy methods. Mn55Bi45 magnetic powders were prepared using arc melting method, followed by a series of thermal-mechanical treatment to improve purity, and finished with low energy ball milling at cryogenic temperature to achieve submicron particle size. The Mn55Bi45 powders were decomposed during ball milling process and recovered during 24 h 290 degrees C annealing process. With increasing ball-milling time, the saturation magnetization of MnBi decreases, while the coercivity increases. Annealing after ball milling recovers some of the magnetization, indicating the decomposition occurred during the ball-milling process can be reversed. The coercivity of Mn55Bi45 powders are also improved as a result of the heat treatment at 290 degrees C for 24 h. The world record magnetization 71.2 emu/g measured applying a field of 23 kOe has been achieved via low energy ball mill at room temperature« less
Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.
Lee, Chung-Hyo
2018-02-01
We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.
Ojha, Gunendra Prasad; Pant, Bishweshwar; Park, Soo-Jin; Park, Mira; Kim, Hak-Yong
2017-05-15
A novel and efficient CeO 2 -doped MnO 2 nanorods decorated reduced graphene oxide (CeO 2 -MnO 2 /RGO) nanocomposite was successfully synthesized via hydrothermal method. The growth of the CeO 2 doped MnO 2 nanorods over GO sheets and reduction of GO were simultaneously carried out under hydrothermal treatment. The morphology and structure of as-synthesized nanocomposite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy, which revealed the formation of CeO 2 -MnO 2 decorated RGO nanocomposites. The electrochemical performance of as-prepared CeO 2 -MnO 2 /RGO nanocomposites as an active electrode material for supercapacitor was evaluated by cyclic voltammetry, charge-discharge, and electrochemical impedance spectroscopy (EIS) methods in 2M alkaline medium. The obtained results revealed that as-synthesized CeO 2 -MnO 2 /RGO nanocomposite exhibited higher specific capacitance (648F/g) as compared to other formulations (MnO 2 /RGO nanocomposites: 315.13 F/g and MnO 2 nanorods: 228.5 F/g) at the scan rate of 5mV/s. After 1000 cycles, it retained ∼90.4%, exhibiting a good stability. The high surface area, enhanced electrical conductivity, and good stability possess by the nanocomposite make this material a promising candidate to be applied as a supercapacitor electrode. Copyright © 2017 Elsevier Inc. All rights reserved.
Manganese and the limits of high potential phototrophy
NASA Astrophysics Data System (ADS)
Fischer, W. W.; Hemp, J.; Johnson, J. E.
2013-12-01
Photosynthetic reaction centers create high-energy electrons using light, harnessing the charge separation to simultaneously provide the cell with a strong oxidant and strong reductant. Many substrates can be used as electron donors for phototrophy, however there appears to be important energetic limits. In oxygenic photosynthesis photosystem II (PSII) provides a very strong oxidant that is capable of oxidizing water (ca. +830 mV) to molecular oxygen at the water-oxidizing complex, a redox-active tetra-manganese cluster. Anoxygenic photosystems however appear to only be able to oxidize lower potential electron donors (Fe2+, H2, S0, HS, S2O32-, NO2-, AsO33-).. Several transitional photosystems have been proposed as evolutionary intermediates between anoxygenic and oxygenic photosynthesis, with electron donors of higher redox potentials such as nitrite (ca. +431 mV) or Mn2+ (ca. +780 mV) bridging the redox gap to water. While a range of observations from the geological record support a Mn2+-based transitional photosystem (Johnson et al. 2013), this proposed photochemical scheme is distinct from that observed in anoxygenic photosynthetic organisms. Mechanistically all anoxygenic reaction centers receive their electrons indirectly via soluble electron carriers such as cytochrome c, high potential iron sulfur proteins or cupredoxins. Conversely Mn2+ oxidation is only known to occur today via direct oxidation, such as during photoassembly of the water-oxidizing complex of PSII, or by two distinct, non-energy-conserving mechanisms using molecular oxygen. No natural photosystem is known to solely perform Mn2+-oxidation. The highest redox-potential accessed by known anoxygenic phototrophs oxidizes nitrite (Schott et al. 2010), but it has been unclear until now whether the reaction center is specially adapted to produce high potential oxidants, similar to that of PSII to oxidize Mn2+ and water. To constrain this we sequenced the genome of the nitrite-oxidizing phototroph Thiocapsa sp. KS1. The data reveal that a type II reaction center that looks identical to other closely related strains that lack such a high potential metabolism. Unlike the direct Mn2+ oxidation, nitrite oxidation appears to require no special mutations, implying that nitrite oxidation occurs via cytochromes or cupredoxins, in family with other anoxygenic electron donations. These results define a broad limit for high potential electron donors for anoxygenic photosynthesis, and indicate that only Mn2+--oxidizing photosynthesis (prior to water oxidation by oxygenic phototrophs) likely requires a direct interaction with the reaction center. Johnson JE, Webb SM, Thomas K, Ono S, Kirschvink JL, Fischer WW (2013) Manganese-oxidizing photosynthesis before the rise of cyanobacteria, PNAS, Schott J, Griffin BM, Schink B (2010) Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17, Microbiology, 156, 2428-2437.
Vinpocetine and Vasoactive Intestinal Peptide Attenuate Manganese-Induced Toxicity in NE-4C Cells.
Bora, Saylav; Erdogan, Mumin Alper; Armagan, Güliz; Sevgili, Elvin; Dagcı, Taner
2016-12-01
Increased concentration of manganese (Mn) in the brain is known to be associated with excitotoxicity and neuroinflammation. Vinpocetine, an alkaloid derived from the plant Vinca minor L., basically shows its effect via phosphodiesterase inhibition and voltage-dependent Na + channels. Vasoactive intestinal peptide (VIP) has gastrointestinal, vasomotor, muscular, and neuroprotective effects. The aim of this study was to examine the potential protective effects of vinpocetine and VIP against Mn toxicity in NE-4C neural stem cells (NSCs). VIP treatment at 1 μM and vinpocetine treatment at 2 μM concentrations were sufficient to yield maximum protection, and these concentrations were adopted in the following experiments. In this study, Mn treatment significantly increased lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) production, and triggered cell death in NE-4C cultures. However, significant reduction in LDH release was observed following vinpocetine or VIP treatments when compared with control. Similar to these findings, vinpocetine or VIP treatments significantly reduced membrane degradation induced by Mn (p < 0.001). Moreover, vinpocetine attenuated Mn-induced decrease of mitochondrial membrane potential. Similarly, proapoptotic protein bax and ROS production significantly decreased in cells after incubation with vinpocetine (p = 0.01) or VIP in the presence of Mn (p < 0.001). Our study provides the evidence that both vinpocetine and VIP may exert protective effects via modulating oxidative stress and apoptosis in Mn-induced neurodegeneration in NE-4C cells.
Liu, Kai; Chojnacki, Jeremy E.; Wade, Emily E.; Saathoff, John M.; Lesnefsky, Edward J.; Chen, Qun; Zhang, Shijun
2016-01-01
Multiple pathogenic factors have been suggested in playing a role in the development of Alzheimer’s disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential (MMP) and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum (ER), thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD. PMID:26401780
[Content of selected metals in forest fruits depending on the harvest site].
Rusinek, Elzbieta; Sembratowicz, Iwona; Ognik, Katarzyna
2008-01-01
Contents of selected metals (Pb, Cd, Cu, Zn, Fe, Mn) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Analyzed fruits originating from stands more exposed to pollution were characterized by higher lead (except from raspberry) as well as other metals contents than those from Krasiczyn commune. Among studied fruits, blueberry was distinguished by the lowest contents of Pb, Zn, Fe, Mn, wild strawberry contained the highest levels of Pb, Zn and Mn. Cadmium content in analyzed plant materials was high.
The optical properties of Sr3SiAl10O20 and Sr3SiAl10O20:Mn4+
NASA Astrophysics Data System (ADS)
Jansen, Thomas; Jüstel, Thomas
2017-11-01
Mn4+-activated luminescent materials have attracted significant attention recently. In particular, alkaline earth aluminates, such as Sr4Al14O25:Mn4+ and CaAl12O19:Mn4+, emit light in the red region, which can be exploited in phosphor-converted LEDs. We applied a sol-gel precursor followed by a ceramic method to synthesize highly crystalline Mn4+-doped Sr3SiAl10O20. The compound Sr3SiAl10O20:Mn4+ exhibits deep red photoluminescence that peaks at 663 nm, which can be assigned to the 2Eg → 4A2g intraconfigurational transition of Mn4+ ([Ar]3d.3 configuration) within the [MnO6]8- octahedra on the aluminum site in the Sr3SiAl10O20 (Space group C12/m1) host structure. The photoluminescence properties, such as the temperature dependence of the luminescence intensity and luminescence lifetime, are presented. Furthermore, the luminescence intensity as function of the activator concentration was investigated. Additionally, the band structure of the undoped host material was treated with Density Functional Theory (DFT). The theoretical results were evaluated experimentally with diffuse UV reflectance spectroscopy. Finally, the crystal field and Racah parameters were extracted to compare with those reported in the literature.
Fascinating functional properties of Mn:Gd2O3 nanocrystalline phosphor
NASA Astrophysics Data System (ADS)
Heiba, Zein K.; Imam, N. G.; Bakr Mohamed, Mohamed
2015-10-01
In the present work we through the light on some of the fascinating structural, magnetic and optical properties of Mn:Gd2O3 nanophosphor. Manganese substituted nanocrystalline Mn:Gd2O3 was prepared via a sol gel procedure. The prepared samples were characterized applying X-ray diffraction (XRD), infrared spectroscopy (IR), squid magnometer and photoluminance (PL). XRD and IR analysis revealed a single phase solid solution up to x = 0.2. The cation distribution of Mn and Gd between the crystallographically non-equivalent sites 8b and 24d of the space group Ia 3 bar is found to be preferentially for all samples. The lattice parameter decreases with composition x, accompanied with systematic variation in the r.m.s. microstrain < εL2 > 1 / 2 . The magnetic measurement showed negative values for curie paramagnetic temperatures, θ, which indicates an antiferromagnetic interaction between the magnetic ions in Mn:Gd2O3. PL spectra showed a series of emission lines in the room temperature fluorescence measurements under UV excitation (220 nm). The observed emission lines are stokes-shifted and the non-linearity optical phenomenon is confirmed. Further, the emission lines are slightly shifted with Mn concentration (x). The blue emission around (390-402) nm was appeared due to Mn doping. Because of its fascinating properties, Mn:Gd2O3 is recommended for fuel cells, photocatalytic, and biomedical applications.
Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin
2015-11-01
The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.
Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten
2017-12-18
Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.
Secretome-based Manganese(II) Oxidation by Filamentous Ascomycete Fungi
NASA Astrophysics Data System (ADS)
Zeiner, C. A.; Purvine, S.; Zink, E.; Paša-Tolić, L.; Chaput, D.; Wu, S.; Santelli, C. M.; Hansel, C. M.
2017-12-01
Manganese (Mn) oxides are among the strongest oxidants in the environment, and Mn(II) oxidation to Mn(III/IV) (hydr)oxides includes both abiotic and microbially-mediated processes. While white-rot Basidiomycete fungi oxidize Mn(II) using laccases and Mn peroxidases in association with lignocellulose degradation, the mechanisms by which filamentous Ascomycete fungi oxidize Mn(II) and a physiological role for Mn(II) oxidation in these organisms remain poorly understood. Through a combination of chemical and in-gel assays, bulk mass spectrometry, and iTRAQ proteomics, we demonstrate enzymatic Mn(II) oxidation in the secretomes of three phylogenetically diverse Ascomycetes that were isolated from Mn-laden sediments. Candidate Mn(II)-oxidizing enzymes were species-specific and included bilirubin oxidase and tyrosinase in Stagonospora sp. SRC1lsM3a, GMC oxidoreductase in Paraconiothyrium sporulosum AP3s5-JAC2a, and FAD-binding oxidoreductases in Pyrenochaeta sp. DS3sAY3a. These findings were supported by full proteomic characterization of the secretomes, which revealed a lack of Mn, lignin, and versatile peroxidases in these Ascomycetes but a substantially higher proportion of LMCOs and GMC oxidoreductases compared to wood-rot Basidiomycetes. We also identified the potential for indirect enzymatic Mn(II) oxidation by hydroxyl radical, as the secretomes were rich in diverse lignocellulose-degrading enzymes that could participate in Fenton chemistry. A link between Mn(II) oxidation and carbon oxidation analogous to white-rot Basidiomycetes remains unknown in these Ascomycetes. Interestingly, growth rates on rich medium were unaffected by the presence of Mn(II), and the production of Mn(II)-oxidizing proteins in the secretome was constitutive and not inducible by Mn(II). Thus, no physiological benefit of Mn(II) oxidation in these Ascomycetes has yet been identified, and Mn(II) oxidation appears to be a side reaction. Future work will explore the lignin-degrading capacity of these fungi and any associated role of Mn(II) oxidation.
NASA Astrophysics Data System (ADS)
Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng
2018-03-01
In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).
Bi, Lin; Yu, Yuan-Hua
2015-04-05
Mercaptopropionic acid-capped Mn-doped ZnS quantum dots/ethidium bromide (EB) nanohybrids were constructed for photoinduced electron transfer (PIET) and then used as a room-temperature phosphorescence (RTP) probe for DNA detection. EB could quench the RTP of Mn-doped ZnS QDs by PIET, thereby forming Mn-doped ZnS QDs/EB nanohybrids and storing RTP. Meanwhile, EB could be inserted into DNA and EB could be competitively desorbed from the surface of Mn-doped ZnS QDs by DNA, thereby releasing the RTP of Mn-doped ZnS QDs. Based on this mechanism, a RTP sensor for DNA detection was developed. Under optimal conditions, the detection limit for DNA was 0.045 mg L(-1), the relative standard deviation was 1.7%, and the method linear ranged from 0.2 to 20 mg L(-1). The proposed method was applied to biological fluids, in which satisfactory results were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Mussel micronucleus cytome assay.
Bolognesi, Claudia; Fenech, Michael
2012-05-17
The micronucleus (MN) assay is one of the most widely used genotoxicity biomarkers in aquatic organisms, providing an efficient measure of chromosomal DNA damage occurring as a result of either chromosome breakage or chromosome mis-segregation during mitosis. The MN assay is today applied in laboratory and field studies using hemocytes and gill cells from bivalves, mainly from the genera Mytilus. These represent 'sentinel' organisms because of their ability to survive under polluted conditions and to accumulate both organic and inorganic pollutants. Because the mussel MN assay also includes scoring of different cell types, including necrotic and apoptotic cells and other nuclear anomalies, it is in effect an MN cytome assay. The mussel MN cytome (MUMNcyt) assay protocol we describe here reports the recommended experimental design, sample size, cell preparation, cell fixation and staining methods. The protocol also includes criteria and photomicrographs for identifying different cell types and scoring criteria for micronuclei (MNi) and nuclear buds. The complete procedure requires approximately 10 h for each experimental point/sampling station (ten animals).
NASA Astrophysics Data System (ADS)
Peng, Han; Yao, Linxiao; Zhang, Ming
2018-06-01
The pristine Li1.20[Mn0.52Ni0.20Co0.08]O2 and Ce3+-doped Li1.20[Mn0.50Ni0.20Co0.08Ce0.02]O2 cathode materials have been synthesized by using the typical sol-gel method. The XRD, SEM, ICP-OES and galvanostatic charge-discharge tests were carried out to study the influence of Ce3+ doping on the crystal structural, morphology and electrochemical properties of Li1.20Mn0.54Ni0.13Co0.13O2. The XRD result revealed the Ce3+ doping modification could decrease the cation mixing degree. The galvanostatic charge-discharge tests results showed that the sample after Ce3+ doping demonstrated the smaller irreversible capacity loss, more stable cyclic performance and better rate capacity than those of the pristine one.
Three-dimensionally Ordered Macroporous Structure Enabled Nanothermite Membrane of Mn2O3/Al
Zheng, Guoqiang; Zhang, Wenchao; Shen, Ruiqi; Ye, Jiahai; Qin, Zhichun; Chao, Yimin
2016-01-01
Mn2O3 has been selected to realize nanothermite membrane for the first time in the literature. Mn2O3/Al nanothermite has been synthesized by magnetron sputtering a layer of Al film onto three-dimensionally ordered macroporous (3DOM) Mn2O3 skeleton. The energy release is significantly enhanced owing to the unusual 3DOM structure, which ensures Al and Mn2O3 to integrate compactly in nanoscale and greatly increase effective contact area. The morphology and DSC curve of the nanothermite membrane have been investigated at various aluminizing times. At the optimized aluminizing time of 30 min, energy release reaches a maximum of 2.09 kJ∙g−1, where the Al layer thickness plays a decisive role in the total energy release. This method possesses advantages of high compatibility with MEMS and can be applied to other nanothermite systems easily, which will make great contribution to little-known nanothermite research. PMID:26935405
Phases of LiMn1.84V0.06Ti0.1O4 cathode material
NASA Astrophysics Data System (ADS)
Zainol, N. H.; Kamarulzaman, N.; Osman, Z.; Fadzil, A. F. M.; Yahya, N. F.
2017-09-01
In this work, LiMn1.84V0.06Ti0.1O4 was prepared via a combustion method using citric acid as a reductant. The precursor obtained was annealed at 700 °C for 24h in a furnace. The thermal profile of the precursor was obtained by simultaneous thermogravimetric analysis (STA). The observed material was characterized by X-ray Diffraction (XRD) and found to be pure and single-phase of cubic structure. The electrochemical performance of LiMn1.84V0.06Ti0.1O4 cathode material was studied by applying a constant current of 1.0 mA at a voltage range of 4.2 to 2.5 V. The specific capacity of LiMn1.84V0.06Ti0.1O4 cathode material at the 1st cycle shows the value of 95mAh/g which is less than the specific capacity of LiMn2O4, which is 117 mAh/g.
NASA Astrophysics Data System (ADS)
Gao, Lixia; Xie, Jiale; Ma, Xiaoqing; Li, Man; Yu, Ling
2017-01-01
A novel deoxyribose nucleic acid (DNA)-based photoelectrode consisting of DNA@Mn3(PO4)2 nanoparticles on graphene oxide (GO) sheets was successfully fabricated for photoelectrocatalysis. DNA served as a soft template to guide the nucleation and growth of Mn3(PO4)2 nanoparticles in the synthesis of Mn3(PO4)2 nanoparticles. More importantly, the DNA also serves as semiconductor materials to adjust charge transport. Under UV light irradiation (180-420 nm, 15 mW/cm2), the photocurrent density of DNA@ Mn3(PO4)2/GO electrodes reached 9 μA/cm2 at 0.7 V bias (vs. SCE). An applied bias photon-to-current efficiency (ABPE) of 0.18% can be achieved, which was much higher than that of other control electrodes (<0.04%). In this DNA-based photoelectrode, well-matched energy levels can efficiently improve charge transfer and reduce the recombination of photogenerated electron-hole pairs.
Ferrimagnetism and disorder of epitaxial Mn2-xCoxVAl Heusler compound thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinert, Markus; Schmalhorst, Jan-Michael; Reiss, Gunter
The quaternary full Heusler compound Mn{sub 2-x}Co{sub x}VAl with x = 1 is predicted to be a half-metallic antiferromagnet. Thin films of the quaternary compounds with x = 0-2 were prepared by dc and RF magnetron co-sputtering on heated MgO (0 0 1) substrates. The magnetic structure was examined by x-ray magnetic circular dichroism and the chemical disorder was characterized by x-ray diffraction. Ferrimagnetic coupling of V to Mn was observed for Mn{sub 2}VAl (x = 0). For x = 0.5, we also found ferrimagnetic order with V and Co antiparallel to Mn. The observed reduced magnetic moments are interpretedmore » with the help of band structure calculations in the coherent potential approximation. Mn{sub 2}VAl is very sensitive to disorder involving Mn, because nearest-neighbour Mn atoms couple antiferromagnetically. Co{sub 2}VAl has B2 order and has reduced magnetization. In the cases with x {ge} 0.9 conventional ferromagnetism was observed, closely related to the atomic disorder in these compounds.« less
NASA Astrophysics Data System (ADS)
Omri, K.; Alyamani, A.; Mir, L. El
2018-02-01
Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gou, Gaoyang; Charles, Nenian; Shi, Jing
2017-09-11
The double perovskite CaMnTi2O6, is a rare A site ordered perovskite oxide that exhibits a sizable ferroelectric polarization and relatively high Curie temperature. Using first-principles calculations combined with detailed symmetry analyses, we identify the origin of the ferroelectricity in CaMnTi2O6. We further explore the material properties of CaMnTi2O6, including its ferroelectric polarization, dielectric and piezoelectric responses, magnetic order, electronic structure, and optical absorption coefficient. It is found that CaMnTi2O6 exhibits room-temperature-stable ferroelectricity and moderate piezoelectric responses. Moreover, CaMnTi2O6 is predicted to have a semiconducting energy band gap similar to that of BiFeO3, and its band gap can further be tuned-viamore » distortions of the planar Mn-O bond lengths. CaMnTi2O6 exemplifies a new class of single-phase semiconducting ferroelectric perovskites for potential applications in ferroelectric photovoltaic solar cells.« less
Mahmoud, Mohamed; Gad-Allah, Tarek A; El-Khatib, K M; El-Gohary, Fatma
2011-11-01
This study focused on the use of spinel manganese-cobalt (Mn-Co) oxide, prepared by a solid state reaction, as a cathode catalyst to replace platinum in microbial fuel cells (MFCs) applications. Spinel Mn-Co oxides, with an Mn/Co atomic ratios of 0.5, 1, and 2, were prepared and examined in an air cathode MFCs which was fed with a molasses-laden synthetic wastewater and operated in batch mode. Among the three Mn-Co oxide cathodes and after 300 h of operation, the Mn-Co oxide catalyst with Mn/Co atomic ratio of 2 (MnCo-2) exhibited the highest power generation 113 mW/m2 at cell potential of 279 mV, which were lower than those for the Pt catalyst (148 mW/m2 and 325 mV, respectively). This study indicated that using spinel Mn-Co oxide to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Guney Eskiler, G; Cecener, G; Dikmen, G; Kani, I; Egeli, U; Tunca, B
2016-09-01
Manganese (Mn)-based complexes have been drawing attention due to the fact that they are more effective than other metal complexes. However, the use of Mn(II)-based complexes in medicine remains limited because of certain side effects. The aim of this study was to investigate the cytotoxic and apoptotic effects of a novel Mn(II) complex [Mn 2 (μ-(C 6 H 5 ) 2 CHCOO) 2 (bipy) 4 ](bipy)(ClO 4 ) 2 and Mn(II) complex loaded solid lipid nanoparticles (SLNs) on MCF-7 and HUVEC control cells. The average diameter of Mn(II) complex was about 1120 ± 2.43 nm, while the average particle size of Mn(II) complex-SLNs was ∼340 ± 2.27 nm. The cytotoxic effects of Mn(II) complex and Mn(II)-SLNs were 86.8 and 66.4%, respectively (p < .05). Additionally, both Mn(II) complex (39.25%) and Mn(II)-SLNs (38.05%) induced apoptosis and increased the arrest of G 0 /G 1 phase. However, Mn(II) complex exerted toxic effects on the HUVEC control cell (63.4%), whereas no toxic effects was observed when treated with Mn(II)-SLNs at 150 μM. As a consequence, SLNs might be potentially used for metal-based complexes in the treatment of cancer due to reducing size and toxic effects of metal-based complexes.
The action of chlorphenesin carbamate on the frog spinal cord.
Aihara, H; Kurachi, M; Nakane, S; Sasajima, M; Ohzeki, M
1980-02-01
Studies were carried out to elucidate the mechanism of action of chlorphenesin carbamate (CPC) and to compare the effect of the drug with that of mephenesin on the isolated bullfrog spinal cord. Ventral and dorsal root potentials were recorded by means of the sucrose-gap method. CPC caused marked hyperpolarizations and depressed spontaneous activities in both of the primary afferent terminals (PAT) and motoneurons (MN). These hyperpolarizations were observed even in high-Mg2+ and Ca2+-free Ringer's solution, suggesting that CPC has direct actions on PAT and MN. Various reflex potentials (dorsal and ventral root potentials elicited by stimulating dorsal and ventral root, respectively) tended to be depressed by CPC as well as by mephenesin. Excitatory amino acids (L-aspartic acid and L-glutamic acid) caused marked depolarizations in PAT and MN, and increased the firing rate in MN. CPC did not modify the depolarization but abolished the motoneuron firing induced by these amino acids. However, mephenesin reduced both the depolarization and the motoneuron firing. The dorsal and ventral root potentials evoked by tetanic stimulation (40 Hz) of the dorsal root were depressed by the drugs. These results indicate that CPC has an apparent depressing action on the spinal neuron, and this action may be ascribed to the slight hyperpolarization and/or the prolongation of refractory period.
Biologically distinct subsets of nevi
ROGERS, Tova; MARINO, Maria L.; RACITI, Patricia; JAIN, Manu; BUSAM, Klaus J.; MARCHETTI, Michael A.; MARGHOOB, Ashfaq A.
2017-01-01
Melanocytic nevi (MN) encompass a range of benign tumors with varying microscopic and macroscopic features. Their development is a multifactorial process under genetic and environmental influences. The clinical importance of MN lies in distinguishing them from melanoma and in recognizing their associations with melanoma risk and cancer syndromes. Historically, the distinction between the different types of MN, as well as between MN and melanoma, was based on clinical history, gross morphology, and histopathological features. While histopathology with clinical correlation remains the gold standard for differentiating and diagnosing melanocytic lesions, in some cases, this may not be possible. The use of dermoscopy has allowed for the assessment of subsurface skin structures and has contributed to the clinical evaluation and classification of MN. Genetic profiling, while still in its early stages, has the greatest potential to refine the classification of MN by clarifying their developmental processes, biological behaviors, and relationships to melanoma. Here we review the most salient clinical, dermoscopic, histopathological, and genetic features of different MN subgroups. PMID:27119653
Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study
NASA Astrophysics Data System (ADS)
Lu, Zhansheng; Lv, Peng; Ma, Dongwei; Yang, Xinwei; Li, Shuo; Yang, Zongxian
2018-02-01
As one of the prominent applications in intelligent systems, gas sensing technology has attracted great interest in both industry and academia. In the current study, the pristine graphyne (GY) without and with a single Mn atom is investigated to detect the gas molecules (CO, CH4, CO2, NH3, NO and O2). The pristine GY is promising to detect O2 molecules because of its chemical adsorption on GY with large electron transfer. The great stability of the Mn/GY is found, and the Mn atom prefers to anchor at the alkyne ring as a single atom. Upon single Mn atom anchoring, the sensitivity and selectivity of GY based gas sensors is significantly improved for various molecules, except CH4. The recovery time of the Mn/GY after detecting the gas molecules may help to appraise the detection efficiency for the Mn/GY. The current study will help to understand the mechanism of detecting the gas molecules, and extend the potentially fascinating applications of GY-based materials.
Equatorial Ligand Perturbations Influence the Reactivity of Manganese(IV)-Oxo Complexes.
Massie, Allyssa A; Denler, Melissa C; Cardoso, Luísa Thiara; Walker, Ashlie N; Hossain, M Kamal; Day, Victor W; Nordlander, Ebbe; Jackson, Timothy A
2017-04-03
Manganese(IV)-oxo complexes are often invoked as intermediates in Mn-catalyzed C-H bond activation reactions. While many synthetic Mn IV -oxo species are mild oxidants, other members of this class can attack strong C-H bonds. The basis for these reactivity differences is not well understood. Here we describe a series of Mn IV -oxo complexes with N5 pentadentate ligands that modulate the equatorial ligand field of the Mn IV center, as assessed by electronic absorption, electron paramagnetic resonance, and Mn K-edge X-ray absorption methods. Kinetic experiments show dramatic rate variations in hydrogen-atom and oxygen-atom transfer reactions, with faster rates corresponding to weaker equatorial ligand fields. For these Mn IV -oxo complexes, the rate enhancements are correlated with both 1) the energy of a low-lying 4 E excited state, which has been postulated to be involved in a two-state reactivity model, and 2) the Mn III/IV reduction potentials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Yannan; Zhang, Yingjie; Zhang, Mingyu; Xu, Mingli; Li, Xue; Yu, Xiaohua; Dong, Peng
2018-05-01
Uniform and spherical LiAl0.075Mn1.925O4 particles have been successfully synthesized by the high-pressure spray-drying method. The structures and electrochemical properties of the particles were characterized by various techniques. Benefiting from the sphere-like morphology and Al-doping, LiAl0.075Mn1.925O4 delivers a capacity retention of 81.6% after 1000 cycles at 2°C, while LiMn2O4 exhibits a capacity retention of only 32.2%. The rate capability and reversible cycling performance are also improved. Furthermore, this work significantly alleviates the dissolution of Mn in LiMn2O4 materials, and effectively improves the transfer rate of lithium ions at the electrode/electrolyte interface. The spherical LiAl0.075Mn1.925O4 prepared by a facile method shows great potential for practical application in low-cost and long-life lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jihoon; Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712; Azad, Abul K.
2015-03-15
The Ti and Mn replaced complex perovskites, Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (Ln: La, Nd and Sm), were reported as potential anode materials for high temperature-operating solid oxide fuel cells (HT-SOFCs). For the present research study, synthesis, crystallographic, thermal and electrical conductivity properties of Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} complex perovskites were investigated using X-ray diffraction (XRD), Rietveld method, thermogravimetric analysis (TGA) and electrical conductivity to apply these oxide materials for the HT-SOFC anode materials. XRD results showed that Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems synthesized as single phases did not react with 8 mol% yttriamore » stabilized zirconia (8YSZ) and 10 mol% Gd-doped cerium oxide (CGO91) up to 1500 °C and did not decompose under dry 3.9% hydrogen at 850 °C. The crystal structures of La{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (LSTM), Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (NSTM) and Sm{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} (SSTM) showed orthorhombic symmetry with the space group Pbnm and SSTM showed a more distorted structure. Thermogravimetric analysis (TGA) proved weight gains in these three sample occurred under oxidizing conditions and weight loss under reducing conditions. Electrical conductivity values of NSTM were higher than those of LSTM and SSTM under oxidizing and reducing conditions. - Graphical abstract: The B-site cations (Ti/Mn) are surrounded by regular octahedra of oxygen in Nd{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}(NSTM). These octahedra are linked together in a corner sharing three dimensional framework, while Nd/Sr ion occupies 12-coordinated A-site between these octahedra. The Ti/Mn–O{sub 6} octahedra are elongated along the c-axis. The crystal structure distortion was due to the smaller ionic radius of the A-site cations, which force the (Ti/Mn)–O{sub 6} octahedra to tilt in order to optimize the A–O bond distances. The same structural symmetry was found when the samples were reduced in 3.9% H{sub 2} in Ar at 900 °C for 12 h. - Highlights: • Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d} oxide systems do not react with 8YSZ and CGO91. • LSTM, NSTM and SSTM show orthorhombic symmetry with the space group Pbnm. • LSTM shows relatively lower onset temperature in Ln{sub 0.5}Sr{sub 0.5}Ti{sub 0.5}Mn{sub 0.5}O{sub 3±d}. • Electrical conductivity values of NSTM are higher than those of LSTM and SSTM.« less
Role of Reactive Mn Complexes in a Litter Decomposition Model System
NASA Astrophysics Data System (ADS)
Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.
2012-12-01
The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will discuss the chemical changes induced by reaction of Mn (III)-complexes with the Zinnia cells, the impact of such reactions on cell integrity, and potential implications for soil C cycling.
Alternative catalysts for low-temperature CO-oxidation
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Schryer, Jacqueline; Upchurch, Billy T.; Brown, David R.
1990-01-01
MnO sub x, Ag/MnO sub x, Cu/MnO sub x, Pt/MnO sub x, Ru/MnO sub x, Au/CeO sub x, and Au/Fe2O3 were synthesized and tested for CO oxidation activity in low concentrations of stoichiometric CO and O2 at 30 to 75 C. Catalytic activity was measured for periods as long as 18000 minutes. At 75 deg Au/MnO sub x is most active sustaining nearly 100 percent CO conversion for 10000 minutes. It also retains high activity at 50 and 30 C with negligible decay in activity. A direct comparison between an unpretreated 10 percent Au/MnO sub x catalyst and an optimized 19.5 percent Pt/SnO sub 2 (pretreated) catalyst shows that the Au/MnO sub x catalyst exhibits much higher catalytic activity and far superior decay characteristics. Other catalysts including Au/CeO sub x and Au/Fe2O3 also perform well. The Cu/MnO sub x exhibits a high initial activity which decays rapidly. After the decay period the activity remains very stable making Cu/MnO sub x a potential candidate for long-term applications such as CO2 lasers in space.
NASA Astrophysics Data System (ADS)
Van, Hoang Nhu; Hoan, Bui Thi; Nguyen, Khoi Thi; Tam, Phuong Dinh; Huy, Pham Thanh; Pham, Vuong-Hung
2018-03-01
Tunable light emission from europium (Eu2+)/manganese (Mn2+)-codoped beta-tricalcium phosphate [β-Ca3(PO4)2 (TCP)] has been investigated as a function of the Mn2+ and Eu2+ concentrations and annealing temperature. Eu2+/Mn2+-doped TCP phosphor (Eu/Mn-TCP) was synthesized by coprecipitation method followed by thermal annealing at temperature up to 1100°C. The Eu2+/Mn2+-doped TCP particles have diameter of about 1 μm. The light emission from TCP is enhanced in the sample with 7.5 mol.% Mn2+ and 0.3 mol.% Eu2+ annealed in Ar + 5% H2 atmosphere at 1100°C. The blue band at 430 nm is attributed to the 4f 6 5d 1-4f 7 transition of Eu2+. The sharp peak at 660 nm is ascribed to the 4T1-6A1 transition of Mn2+ in TCP. These results suggest codoping of Eu2+/Mn2+ to TCP phosphor to obtain β-Ca3(PO4)2:Eu2+,Mn2+ phosphors with tunable luminescence, having potential applications in agricultural lighting.
Inertia-Controlled Twinning in Ni-Mn-Ga Actuators: A Discrete Twin-Boundary Dynamics Study
NASA Astrophysics Data System (ADS)
Faran, Eilon; Riccardi, Leonardo; Shilo, Doron
2017-09-01
A discrete twin-boundary modeling approach is applied for simulating the dynamic magnetomechanical response of a Ni-Mn-Ga actuator over a wide frequency range. The model is based on experimentally measured kinetic relation of individual twin boundaries and takes into account inertial forces due to acceleration of the actuator's mass. The calculated results show good agreement with experimental measurements performed on a specially designed Ni-Mn-Ga linear spring-mass actuator. In addition, the simulation reveals several new effects that have not been considered before and can be applied to the design of improved actuators. It is identified that the demagnetization effect plays a role of an "effective spring" and results in a resonance-type response. The effects of the actuator's mass and the twin-boundary density on the resonance response and the actuator performance are explored numerically. In particular, it is shown that mass-inertia poses an inherent upper limit over the actuator's bandwidth, which is approximately constant and equals to about 200 Hz.
Study of crystal-field excitations and infrared active phonons in TbMnO3
NASA Astrophysics Data System (ADS)
Mansouri, S.; Jandl, S.; Balli, M.; Fournier, P.; Mukhin, A. A.; Ivanov, V. Yu; Balbashov, A.; Orlita, M.
2018-05-01
The Tb3+ (4f 8) crystal-field (CF) excitations and the infrared phonons in TbMnO3 are studied as a function of temperature and under an applied magnetic field. The phonon energy shifts reflect local displacement of the oxygen ions that contribute to the CF energy level shifts below 120 K and under magnetic field. The CF polarized transmission spectra provide interesting information about the debated nature of the excitations at 41, 65, 130 cm‑1. We also evaluate the contribution of the charge transfer mechanism to the magnetoelectric process in TbMnO3 under magnetic field.
Sharma, Jitendra Kumar; Srivastava, Pratibha; Ameen, Sadia; Akhtar, M Shaheer; Singh, Gurdip; Yadava, Sudha
2016-06-15
The leaf extract of Azadirachta indica (Neem) plant was utilized as reducing agent for the green synthesis of Mn3O4 nanoparticles (NPs). The crystalline analysis demonstrated the typical tetragonal hausmannite crystal structure of Mn3O4, which confirmed the formation of Mn3O4 NPs without the existence of other oxides. Green synthesized Mn3O4 NPs were applied for the catalytic thermal decomposition of ammonium perchlorate (AP) and as working electrode for fabricating the chemical sensor. The excellent catalytic effect for the thermal decomposition of AP was observed by decreasing the decomposition temperature by 175 °C with single decomposing step. The fabricated chemical sensor based on green synthesized Mn3O4 NPs displayed high, reliable and reproducible sensitivity of ∼569.2 μA mM(-1) cm(-2) with reasonable limit of detection (LOD) of ∼22.1 μM and the response time of ∼10 s toward the detection of 2-butanone chemical. A relatively good linearity in the ranging from ∼20 to 160 μM was detected for Mn3O4 NPs electrode based 2-butanone chemical sensor. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh
2016-04-01
The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L- 1 with a detection limit of 24 μmol L- 1. The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries.
Sadeghi, Susan; Jahani, Moslem; Belador, Foroogh
2016-04-15
The Mn doped ZnS quantum dots (Mn:ZnS QDs) capped with the florfenicol molecularly imprinted polymer (Mn:ZnS QDs@MIP) were prepared via the sol-gel surface imprinting approach using 3-aminopropyltriethoxysilane (APTES) as the functional monomer and tetraethoxysilane (TEOS) as the cross-linker for the optosensing of the florfenicol. Transmission electron microscopy (TEM), X-ray diffractometer, IR spectroscopy, UV-Vis absorption spectrophotometry, and spectrofluorometry were used to elucidate the formation, morphology, and identification of the products. To illustrate the usefulness of the new imprinted material, the non-imprinted coated Mn:ZnS QDs (Mn:ZnS QDs@NIP) were synthesized without the presence of the florfenicol. It was revealed that the fluorescence (FL) intensity of the Mn:ZnS QDs@MIP increased with increasing the FF concentration. Under the optimal conditions, changes in the FL intensity in the presence of the target molecule showed a linear response in the concentration range of 30-700 μmol L(-1) with a detection limit of 24 μmol L(-1). The developed method was finally applied successfully to the determination of FF in different meat samples with satisfactory recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Liping; Chen, Aolei; Qu, Hongbin; Xu, Shouqiang; Zhang, Xue; He, Xuwen
2015-01-01
Coal gangue, sandy soil and clay (mass ratio 45:4:1) as goaf filling materials acquired from coal mining processes were applied to remove Fe and Mn effectively from mining drainage. The results of an adsorption kinetic study showed that the Fe adsorption equation was y=21.454y+8.4712, R2=0.9924 and the Mn adsorption equation was y=7.5409x+0.905, R2=0.9957. Meanwhile, the goaf filling materials had low desorption capacity (Fe 6.765 μg/g, Mn 1.52 μg/g) and desorption ratio (Fe 8.98%, Mn 11.04%). Experiments demonstrated that Fe and Mn from mining drainage could be removed stably at a flow rate of 1.2 L/min, Fe inlet concentration of less than 40 mg/L, Mn inlet concentration of less than 2 mg/L and neutral or alkaline conditions. During a procedure of continuous experiments, the effluent quality could meet the requirement of the 'Code for Engineering Design of Sewage Regeneration-GB503352-2002'. A real-application project using goaf filling materials to treat mining drainage in Shendong coal mine showed that the average cost per ton of mining drainage was about 0.55 RMB, which could bring about considerable economic benefit for coal mining enterprises.
Neutron scattering study on the magnetic and superconducting phases of MnP
NASA Astrophysics Data System (ADS)
Yano, Shinichiro; Lancon, Diane; Ronnow, Henrik; Hansen, Thomas; Gardner, Jason
We have performed series of neutron scattering experiments on MnP. MnP has been investigated for decades because of its rich magnetic phase diagram. The magnetic structure of MnP is ferromagnetic (FM) below TC = 291 K. It transforms into a helimagnetic structure at TS = 47 K with a propagation vector q = 0 . 117a* . Superconductivity was found in MnP under pressures of 8 GPa with a TSC around 1 K by J.-G. Cheng. Since Mn-based superconductors are rare, and the superconducting phase occurs in the vicinity of FM, new magnetic and helimagnetic phases, there is a need to understand how the magnetism evolves as one approach the superconducting state. MnP is believed to be a double helix magnetic structure at TS = 47 K. We observed new 2 δ and 3 δ satellite peaks whose intensity are 200 ~ 1000 times smaller than these of 1 δ satellite peaks on the cold triple axis spectrometer SIKA under zero magnetic fields. We also found the periods of helimagnetic structure changes as a function of temperature. If time permits, we will discuss recent experiments under pressure. However, we have complete picture of magnetic structure of this system with and without applied pressure, revealing the interplay between the magnetic and superconducting phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazemi, Sayed Habib, E-mail: habibkazemi@iasbs.ac.ir; Center for Research in Climate Change and Global Warming; Maghami, Mostafa Ghaem
Highlights: • We report a facile method for fabrication of MnO{sub 2} nanostructures on electro-etched carbon fiber. • MnO{sub 2}-ECF electrode shows outstanding supercapacitive behavior even at high discharge rates. • Exceptional cycle stability was achieved for MnO{sub 2}-ECF electrode. • The coulombic efficiency of MnO{sub 2}-ECF electrode is nearly 100%. - Abstract: In this article we introduce a facile, low cost and additive/template free method to fabricate high-rate electrochemical capacitors. Manganese oxide nanostructures were electrodeposited on electro-etched carbon fiber substrate by applying a constant anodic current. Nanostructured MnO{sub 2} on electro-etched carbon fiber was characterized by scanning electron microscopy,more » X-ray diffraction and energy dispersive X-ray analysis. The electrochemical behavior of MnO{sub 2} electro-etched carbon fiber electrode was investigated by electrochemical techniques including cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. A maximum specific capacitance of 728.5 F g{sup −1} was achieved at a scan rate of 5 mV s{sup −1} for MnO{sub 2} electro-etched carbon fiber electrode. Also, this electrode showed exceptional cycle stability, suggesting that it can be considered as a good candidate for supercapacitor electrodes.« less
Fernando, Denise R.; Guymer, Gordon; Reeves, Roger D.; Woodrow, Ian E.; Baker, Alan J.; Batianoff, George N.
2009-01-01
Background and Aims The analysis of herbarium specimens has previously been used to prospect for ‘new’ hyperaccumulators, while the use of foliar manganese (Mn) concentrations as a taxonomic tool has been suggested. On the basis of their geographic and taxonomic affiliations to known Mn hyperaccumulators, six eastern Australian genera from the Queensland Herbarium collection were sampled for leaf tissue analyses. Methods ICP-OES was used to measure Mn and other elemental concentrations in 47 species within the genera Austromyrtus, Lenwebbia, Gossia (Myrtaceae), Macadamia (Proteaceae), Maytenus and Denhamia (Celastraceae). Key Results The resulting data demonstrated (a) up to seven ‘new’ Mn hyperaccumulators, mostly tropical rainforest species; (b) that one of these ‘new’ Mn hyperaccumulators also had notably elevated foliar Ni concentrations; (c) evidence of an interrelationship between foliar Mn and Al uptake among the Macadamias; (d) considerable variability of Mn hyperaccumulation within Gossia; and (e) the possibility that Maytenus cunninghamii may include subspecies. Conclusions Gossia bamagensis, G. fragrantissima, G. sankowsiorum, G. gonoclada and Maytenus cunninghamii were identified as ‘new’ Mn hyperaccumulators, while Gossia lucida and G. shepherdii are possible ‘new’ Mn hyperaccumulators. Of the three Myrtaceae genera examined, Mn hyperaccumulation appears restricted to Gossia, supporting its recent taxonomic revision. In the context of this present investigation and existing information, a reassesment of the general definition of Mn hyperaccumulation may be warranted. Morphological variation of Maytenus cunninghamii at two extremities was consistent with variation in Mn accumulation, indicating two possible ‘new’ subspecies. Although caution should be exercised in interpreting the data, surveying herbarium specimens by chemical analysis has provided an effective means of assessing foliar Mn accumulation. These findings should be followed up by field studies. PMID:19211572
Oxygen isotope analysis of bacterial and fungal manganese oxidation.
Sutherland, K M; Wankel, S D; Hansel, C M
2018-07-01
The ability of micro-organisms to oxidize manganese (Mn) from Mn(II) to Mn(III/IV) oxides transcends boundaries of biological clade or domain. Many bacteria and fungi oxidize Mn(II) to Mn(III/IV) oxides directly through enzymatic activity or indirectly through the production of reactive oxygen species. Here, we determine the oxygen isotope fractionation factors associated with Mn(II) oxidation via various biotic (bacteria and fungi) and abiotic Mn(II) reaction pathways. As oxygen in Mn(III/IV) oxides may be derived from precursor water and molecular oxygen, we use a twofold approach to determine the isotope fractionation with respect to each oxygen source. Using both 18 O-labeled water and closed-system Rayleigh distillation approaches, we constrain the kinetic isotope fractionation factors associated with O atom incorporation during Mn(II) oxidation to -17.3‰ to -25.9‰ for O 2 and -1.9‰ to +1.8‰ for water. Results demonstrate that stable oxygen isotopes of Mn(III/IV) oxides have potential to distinguish between two main classes of biotic Mn(II) oxidation: direct enzymatic oxidation in which O 2 is the oxidant and indirect enzymatic oxidation in which superoxide is the oxidant. The fraction of Mn(III/IV) oxide-associated oxygen derived from water varies significantly (38%-62%) among these bio-oxides with only weak relationship to Mn oxidation state, suggesting Mn(III) disproportionation may account for differences in the fraction of mineral-bound oxygen from water and O 2 . Additionally, direct incorporation of molecular O 2 suggests that Mn(III/IV) oxides contain a yet untapped proxy of δ18OO2 of environmental O 2 , a parameter reflecting the integrated influence of global respiration, photorespiration, and several other biogeochemical reactions of global significance. © 2018 John Wiley & Sons Ltd.
X-Ray Fluorescence Imaging: A New Tool for Studying Manganese Neurotoxicity
Robison, Gregory; Zakharova, Taisiya; Fu, Sherleen; Jiang, Wendy; Fulper, Rachael; Barrea, Raul; Marcus, Matthew A.; Zheng, Wei; Pushkar, Yulia
2012-01-01
The neurotoxic effect of manganese (Mn) establishes itself in a condition known as manganism or Mn induced parkinsonism. While this condition was first diagnosed about 170 years ago, the mechanism of the neurotoxic action of Mn remains unknown. Moreover, the possibility that Mn exposure combined with other genetic and environmental factors can contribute to the development of Parkinson's disease has been discussed in the literature and several epidemiological studies have demonstrated a correlation between Mn exposure and an elevated risk of Parkinson's disease. Here, we introduce X-ray fluorescence imaging as a new quantitative tool for analysis of the Mn distribution in the brain with high spatial resolution. The animal model employed mimics deficits observed in affected human subjects. The obtained maps of Mn distribution in the brain demonstrate the highest Mn content in the globus pallidus, the thalamus, and the substantia nigra pars compacta. To test the hypothesis that Mn transport into/distribution within brain cells mimics that of other biologically relevant metal ions, such as iron, copper, or zinc, their distributions were compared. It was demonstrated that the Mn distribution does not follow the distributions of any of these metals in the brain. The majority of Mn in the brain was shown to occur in the mobile state, confirming the relevance of the chelation therapy currently used to treat Mn intoxication. In cells with accumulated Mn, it can cause neurotoxic action by affecting the mitochondrial respiratory chain. This can result in increased susceptibility of the neurons of the globus pallidus, thalamus, and substantia nigra pars compacta to various environmental or genetic insults. The obtained data is the first demonstration of Mn accumulation in the substantia nigra pars compacta, and thus, can represent a link between Mn exposure and its potential effects for development of Parkinson's disease. PMID:23185282
Chen, Kui; Wang, Mei; Li, Guangli; He, Quanguo; Liu, Jun; Li, Fuzhi
2018-04-13
Traditional noble metal platinum (Pt) is regarded as a bifunctional oxygen catalyst due to its highly catalytic efficiency, but its commercial availability and application is often restricted by high cost. Herein, a cheap and effective catalyst mixed with α-MnO₂ and nitrogen-doped Ketjenblack (N-KB) (denoted as MnO₂-SM150-0.5) is examined as a potential electrocatalyst in oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). This α-MnO₂ is prepared by redox reaction between K₂S₂O₈ and MnSO₄ in acid conditions with a facile hydrothermal process (named the SM method). As a result, MnO₂-SM150-0.5 exhibits a good catalytic performance for ORR in alkaline solution, and this result is comparable to a Pt/C catalyst. Moreover, this catalyst also shows superior durability and methanol tolerance compared with a Pt/C catalyst. It also displays a discharge voltage (~1.28 V) at a discharge density of 50 mA cm -2 in homemade Al-air batteries that is higher than commercial 20% Pt/C (~1.19 V). The superior electrocatalytic performance of MnO₂-SM150-0.5 could be attributed to its higher Mn 3+ /Mn 4+ ratio and the synergistic effect between MnO₂ and the nitrogen-doped KB. This study provides a novel strategy for the preparation of an MnO₂-based composite electrocatalyst.
Mn 4+ emission in pyrochlore oxides
Du, Mao-Hua
2014-08-27
For the existing Mn 4+ activated red phosphors have relatively low emission energies (or long emission wavelengths) and are therefore inefficient for general lighting. Density functional calculations are performed to study Mn 4+ emission in rare-earth hafnate, zirconate, and stannate pyrochlore oxides (RE 2Hf 2O 7, RE 2Zr 2O 7, and RE 2Sn 2O 7). We show how the different sizes of the RE 3+ cation in these pyrochlores affect the local structure of the distorted MnO 6 octahedron, the Mn–O hybridization, and the Mn 4+ emission energy. The Mn 4+ emission energies of many pyrochlores are found to bemore » higher than those currently known for Mn 4+ doped oxides and should be closer to that of Y 2O 3:Eu 3+ (the current commercial red phosphor for fluorescent lighting). The O–Mn–O bond angle distortion in a MnO6 octahedron is shown to play an important role in weakening Mn–O hybridization and consequently increasing the Mn 4+ emission energy. Our result shows that searching for materials that allow significant O–Mn–O bond angle distortion in a MnO 6 octahedron is an effective approach to find new Mn 4+ activated red phosphors with potential to replace the relatively expensive Y 2O 3:Eu 3+ phosphor.« less
Tong, Yang; Jin, Ke; Bei, Hongbin; ...
2018-05-26
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Yang; Jin, Ke; Bei, Hongbin
Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.
Shin, Byeongkil; Kim, Sangmin; Lee, Heesoo; Park, Hyun
2013-08-01
The TiO₂-system powders were investigated with respect to the crystallinity and the microstructure. The biocidal activity increased from TiO₂ to binary MnOx-TiO₂ to ternary MnOx-WO₃-TiO₂ against Vibrio fischeri as a model of Gram-negative bacteria. Anatase and rutile TiO₂ were not toxic even at 200 mg/L, but anatase has been observed in bacterial growth inhibition due to the different electronic band (lattice) structure. All materials containing manganese oxides were toxic: the toxicity correlation (EC₅₀) of MnOx-WO₃ and MnOx-WO₃-TiO₂ was 7.0, 1.8 ppm, respectively. The high antifouling activity of MnOx-WO₃-TiO₂ was attributed to its redox potential and soluble metal ions originating from tungsten oxides according to the improvements in the powder characteristics.
Vollet, Kaitlin; Dietrich, Kim N.
2016-01-01
Manganese (Mn) is both an essential micronutrient and potential neurotoxicant. This dual role underlies a growing body of literature demonstrating that Mn exhibits a biphasic dose-response relationship with neurocognitive outcomes. We reviewed recent epidemiologic studies from 2007–2016 that investigated the relationship between Mn exposure and cognitive outcomes across the lifespan: early life, school-aged children, and adulthood. In total, 27 research articles were included in this review: 12 pediatric and 15 adult studies (10 occupational and five environmental exposures). The majority of these studies provided evidence of the negative effects of Mn exposure on cognition. The pediatric literature provides evidence that both high and low levels of Mn are negatively associated with intellectual development. Future Mn research should include examination of non-linear relationships and multiple neurotoxicants across the lifespan, and particularly during critical developmental windows. PMID:27722879
Novel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria
Lovley, D.R.; Phillips, E.J.P.
1994-01-01
Sulfate reducers and related organisms which had previously been found to reduce Fe(III) with H2 or organic electron donors oxidized S0 to sulfate when Mn(IV) was provided as an electron acceptor. Organisms catalyzing this reaction in washed cell suspensions included Desulfovibrio desulfuricans, Desulfomicrobium baculatum. Desulfobacterium autotrophicum, Desulfuromonas acetoxidans, and Geobacter metallireducens. These organisms produced little or no sulfate from S0 with Fe(III) as a potential electron acceptor or in the absence of an electron acceptor. In detailed studies with Desulfovibrio desulfuricans, the stoichiometry of sulfate and Mn(II) production was consistent with the reaction S0 + 3 MnO2 + 4H+ ???SO42- + 3Mn(II) + 2H2O. None of the organisms evaluated could be grown with S0 as the sole electron donor and Mn(IV) as the electron acceptor. In contrast to the other sulfate reducers evaluated, Desulfobulbus propionicus produced sulfate from S0 in the absence of an electron acceptor and Fe(III) oxide stimulated sulfate production. Sulfide also accumulated in the absence of Mn(IV) or Fe(III). The stoichiometry of sulfate and sulfide production indicated that Desulfobulbus propionicus disproportionates S0 as follows: 4S0 + 4H2O???SO42- + 3HS- + 5 H+. Growth of Desulfobulbus propionicus with S0 as the electron donor and Fe(III) as a sulfide sink and/or electron acceptor was very slow. The S0 oxidation coupled to Mn(IV) reduction described here provides a potential explanation for the Mn(IV)-dependent sulfate production that previous studies have observed in anoxic marine sediments. Desulfobulbus propionicus is the first example of a pure culture known to disproportionate S0.
NASA Astrophysics Data System (ADS)
Sutherland, K. M.; Wankel, S. D.; Hansel, C. M.
2016-12-01
Manganese (Mn) oxides are a ubiquitous mineralogical component of surface Earth and Mars. Mn(III/IV) oxides are potent environmental sorbents and oxidants that play a crucial role in the fate of organic matter. The processes by which Mn(II) oxidation occurs in natural systems are poorly understood, but a number of studies have implicated microogranisms as the primary agents of Mn(II) oxidation in terrestrial and marine environments. The ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides transcends the boundaries of biological domain, with an abundance of well-characterized prokaryotes as well as eukaryotic fungi with the ability to oxidize Mn(II) to Mn(III/IV) oxides. Biological Mn(II) oxidation proceeds directly through enzymatic activity or indirectly through the production of reactive oxygen species. Building upon earlier research suggesting that stable oxygen isotope fractionation could be used to fingerprint unique Mn(II)-oxidizing organisms or distinct oxidation pathways, here we use culture-based studies of Mn(II)-oxidizing bacteria and fungi to determine the kinetic oxygen isotope effects associated with Mn(II) oxidation. Since the oxygen molecules in Mn(III/IV) oxides are comprised of oxygen from both precursor water and molecular oxygen, we used a two-fold approach to constrain isotope fractionation with respect to each oxygen source. We used open system oxidation experiments using oxygen-18 labeled water in parallel with closed system Rayleigh distillation oxidation experiments to fully constrain isotope fractionation associated with oxygen atom incorporation during Mn(II) oxidation. Our results suggest commonalities among fractionation factors from groups of Mn(II)-oxidizing organisms that have similar oxidation mechanisms. These results suggest that stable oxygen isotopes of Mn(III/IV) oxides have the potential to distinguish between Mn(II) oxidation pathways in nature, providing a way to determine which groups of Mn(II) oxidizers may be active in present and past surface Earth environments.
Guo, Hua; Zhang, Na; Liu, Di; Wang, Ping; Ma, Xingyuan
2016-10-01
Mitochondrial antioxidant manganese superoxide dismutase (MnSOD) belongs to a group of genes whose expression is generally decreased significantly in patients with hepatoma. The proliferation of cancer cells with low expression of MnSOD exhibit high sensitivity to the elevated expression of MnSOD. However, due to the lack of ability to penetrate the cell membrane, the direct use and study of SOD for cancer treatment are largely hampered. In this work, cell penetrating peptide TAT was fused to the N-terminus of MnSOD to facilitate the penetration of MnSOD through cell membranes. Results showed that TAT-MnSOD wt treatment induced evident inhibitory effect on the proliferation of heptoma, with minimal effect on normal cells. It was further demonstrated that both the penetration of cells and enzymatic activity of MnSOD are essential to its inhibitory function, because only TAT-MnSOD wt, not inactive TAT-MnSOD mutant or MnSOD could successfully inhibit cell proliferation and reduce the intra-celluar reactive oxygen species (ROS). In addition, the lower oxidative stress delayed the cell cycle at G2/M and significantly slowed HepG2 cell growth in association with the dephosphorylation of survivin. Our results help in understanding the regulatory effects of MnSOD on cell viability and redox homestasis of heptoma and promise potential applications of TAT-MnSOD wt for clinical cancer therapy. Copyright © 2016. Published by Elsevier Masson SAS.
NASA Technical Reports Server (NTRS)
Zhang, Bo; Harb, John N.; Davis, Robert C.; Kim, Jae-Woo; Chu, Sang-Hyon; Choi, Sang; Miller, Tim; Watt, Gerald D.
2004-01-01
Horse spleen ferritin (HoSF) containing 800-1500 cobalt or 250-1200 manganese atoms as Co(O)OH and Mn(O)OH mineral cores within the HoSF interior (Co-HoSF and Mn-HoSF) was synthesized, and the chemical reactivity, kinetics of reduction, and the reduction potentials were measured. Microcoulometric and chemical reduction of HoSF containing the M(O)OH mineral core (M = Co or Mn) was rapid and quantitative with a reduction stoichiometry of 1.05+/-0.10 e/M forming a stable M(OH)2 mineral core. At pH 9.0, ascorbic acid (AH2), a two-electron reductant, effectively reduced the mineral cores; however, the reaction was incomplete and rapidly reached equilibrium. The addition of excess AH2 shifted the reaction to completion with a M(3+)/AH2 stoichiometry of 1.9-2.1, consistent with a single electron per metal atom reduction. The rate of reaction between M(0)OH and excess AH2 was measured by monitoring the decrease in mineral core absorbance with time. The reaction was first order in each reactant with second-order rate constants of 0.53 and 4.74/M/min, respectively, for Co- and Mn-HoSF at pH 9.0. From the variation of absorbance with increasing AH2 concentration, equilibrium constants at pH 9.0 of 5.0+/-1.9 for Co-HoSF and 2.9+/-0.9 for Mn-HoSF were calculated for 2M(O)OH + AH2 = 2M(OH)2 f D, where AH2 and D are ascorbic acid and dehydroascorbic acid, respectively. Consistent with these equilibrium constants, the standard potential for the reduction of Co(III)-HoSF is 42 mV more positive than that of the ascorbic acid reaction, while the standard potential of Mn(III)-HoSF is 27 mV positive relative to AH2. Fe(2+) in solution with Co- and Mn-HoSF under anaerobic conditions was oxidized to form Fe(O)OH within the HoSF interior, resulting in partial displacement of the Co or Mn by iron.
Heavy metal displacement in chelate-irrigated soil during phytoremediation
NASA Astrophysics Data System (ADS)
Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.
2003-03-01
Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.
Leto, Domenick F; Jackson, Timothy A
2014-06-16
Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [Mn(II)(Cl)2(Me2EBC)], [Mn(IV)(OH)2(Me2EBC)](2+), and [Mn(IV)(O)(OH)(Me2EBC)](+), which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [Mn(IV)(O)(OH)(Me2EBC)](+) revealed Mn-O scatterers at 1.71 and 1.84 Å and Mn-N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [Mn(II)(Cl)2(Me2EBC)] and [Mn(IV)(OH)2(Me2EBC)](2+) are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn-O(H) distances and pre-edge peak areas of Mn(IV)═O and Mn(IV)-OH complexes, but this trend was strongly modulated by the Mn(IV) coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn-O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal Mn(IV)═O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn═O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn═O σ* molecular orbital (MO) but also show intense transitions to 3dx(2)-y(2) and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal Mn(IV)═O adducts. These results underscore the importance of reporting experimental pre-edge areas rather than peak heights. Finally, the TD-DFT method was applied to understand the pre-edge properties of a recently reported S = 1 Mn(V)═O adduct; these findings are discussed within the context of previous examinations of oxomanganese(V) complexes.
Biological Low-pH Mn(II) Oxidation in a Manganese Deposit Influenced by Metal-Rich Groundwater
Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.
2016-01-01
ABSTRACT The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems. IMPORTANCE This study provides multiple lines of evidence to show that microbes are the main drivers of Mn(II) oxidation even at acidic pH, offering new insights into Mn biogeochemical cycling. A distinct, highly adapted microbial community inhabits acidic, oligotrophic Mn deposits and mediates biological Mn oxidation. These data highlight the importance of biological processes for Mn biogeochemical cycling and show the potential for new bioremediation strategies aimed at enhancing biological Mn oxidation in low-pH environments for contaminant mitigation. PMID:26969702
Fractionation study in bioleached metallurgy wastes using six-step sequential extraction.
Krasnodebska-Ostrega, Beata; Pałdyna, Joanna; Kowalska, Joanna; Jedynak, Łukasz; Golimowski, Jerzy
2009-08-15
The stored metallurgy wastes contain residues from ore processing operations that are characterized by relatively high concentrations of heavy metals. The bioleaching process makes use of bacteria to recover elements from industrial wastes and to decrease potential risk of environmental contamination. Wastes were treated by solutions containing bacteria. In this work, the optimized six-stage sequential extraction procedure was applied for the fractionation of Ni, Cr, Fe, Mn, Cu and Zn in iron-nickel metallurgy wastes deposited in Southern Poland (Szklary). Fractionation and total concentrations of elements in wastes before and after various bioleaching treatments were studied. Analyses of the extracts were performed by ICP-MS and FAAS. To achieve the most effective bioleaching of Zn, Cr, Ni, Cu, Mn, Fe the usage of both autotrophic and heterotrophic bacteria in sequence, combined with flushing of the residue after bioleaching is required. 80-100% of total metal concentrations were mobilized after the proposed treatment. Wastes treated according to this procedure could be deposited without any risk of environmental contamination and additionally the metals could be recovered for industrial purposes.
Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni 2MnGa
Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; ...
2016-05-17
Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. In this paper, we show the formation of nanoscale skyrmions in amore » nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni 2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. Finally, the formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures.« less
Gibson-Reinemer, D. K.; Johnson, B.M.; Martinez, P.J.; Winkelman, D.L.; Koenig, A.E.; Woodhead, J.D.
2009-01-01
Otolith chemistry in freshwater has considerable potential to reveal patterns of origin and movement, which would benefit traditional fisheries management and provide a valuable tool to curb the spread of invasive and illicitly stocked species. We evaluated the relationship between otolith and water chemistry for five markers (Ba/Ca, Mn/Ca, Sr/ Ca, Zn/Ca, and 87Sr/86Sr) in rainbow trout (Oncorhynchus mykiss) using the existing hatchery system in Colorado and Wyoming, USA, to provide controlled, seminatural conditions. Otolith Ba/Ca, Sr/Ca, and 87Sr/86Sr reflected ambient levels, whereas Mn/Ca and Zn/Ca did not. Using only the markers correlated with water chemistry, we classified fish to their hatchery of origin with up to 96% accuracy when element and isotope data were used together. Large changes in 87Sr/Sr were evident in otolith transects, although subtler changes in Sr/Ca were also detectable. Our results suggest the relatively few otolith markers that reflect ambient chemistry can discriminate among locations and track movements well enough to provide valuable insight in a variety of applied contexts.
Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity.
Roels, H A; Bowler, R M; Kim, Y; Claus Henn, B; Mergler, D; Hoet, P; Gocheva, V V; Bellinger, D C; Wright, R O; Harris, M G; Chang, Y; Bouchard, M F; Riojas-Rodriguez, H; Menezes-Filho, J A; Téllez-Rojo, Martha Maria
2012-08-01
This symposium comprised five oral presentations dealing with recent findings on Mn-related cognitive and motor changes from epidemiological studies across the life span. The first contribution highlighted the usefulness of functional neuroimaging of the central nervous system (CNS) to evaluate cognitive as well as motor deficits in Mn-exposed welders. The second dealt with results of two prospective studies in Mn-exposed workers or welders showing that after decrease of Mn exposure the outcome of reversibility in adverse CNS effects may differ for motor and cognitive function and, in addition the issue of plasma Mn as a reliable biomarker for Mn exposure in welders has been addressed. The third presentation showed a brief overview of the results of an ongoing study assessing the relationship between environmental airborne Mn exposure and neurological or neuropsychological effects in adult Ohio residents living near a Mn point source. The fourth paper focused on the association between blood Mn and neurodevelopment in early childhood which seems to be sensitive to both low and high Mn concentrations. The fifth contribution gave an overview of six studies indicating a negative impact of excess environmental Mn exposure from air and drinking water on children's cognitive performance, with special attention to hair Mn as a potential biomarker of exposure. These studies highlight a series of questions about Mn neurotoxicity with respect to cognitive processes, forms and routes of exposure, adequate biomarkers of exposure, gender differences, susceptibility and exposure limits with regard to age. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hort, R. D.; Revil, A.; Munakata-Marr, J.; Mao, D.
2015-07-01
Electrical resistivity measurements can potentially be used to remotely monitor fate and transport of ionic oxidants such as permanganate (MnO4-) during in situ chemical oxidation (ISCO) of contaminants like trichloroethene (TCE). Time-lapse two-dimensional bulk conductivity and induced polarization surveys conducted during a sand tank ISCO simulation demonstrated that MnO4- plume movement could be monitored in a qualitative manner using bulk conductivity tomograms, although chargeability was below sensitivity limits. We also examined changes to in-phase and quadrature electrical conductivity resulting from ion injection, MnO2 and Cl- production, and pH change during TCE and humate oxidation by MnO4- in homogeneous aqueous solutions and saturated porous media samples. Data from the homogeneous samples demonstrated that inversion of the sand tank resistivity data using a common Tikhonov regularization approach was insufficient to recover an accurate conductivity distribution within the tank. While changes to in-phase conductivity could be successfully modeled, quadrature conductivity values could not be directly related to TCE oxidation product or MnO4- concentrations at frequencies consistent with field induced polarization surveys, limiting the utility of quadrature conductivity for monitoring ISCO.
Bilal, Muhammad; Asgher, Muhammad
2015-12-10
In view of compliance with increasingly stringent environmental legislation, an eco-friendly treatment technology of industrial dyes and effluents is a major environmental challenge in the color industry. In present study, a promising and eco-friendly entrapment approach was adopted to immobilize purified manganese peroxidase (MnP) produced from an indigenous strain of Ganoderma lucidum IBL-05 on Ca-alginate beads. The immobilized MnP was subsequently used for enhanced decolorization and detoxification of textile reactive dyes). MnP isolated from solid-state culture of G. lucidum IBL-05, presented highest immobilization yield (83.9 %) using alginate beads prepared at optimized conditions of 4 % (w/v) sodium alginate, 2 % (w/v) Calcium chloride (CaCl2) and 0.5 mg/ml enzyme concentration. Immobilization of MnP enhanced optimum temperature but caused acidic shift in optimum pH of the enzyme. The immobilized MnP showed optimum activity at pH 4.0 and 60 °C as compared to pH 5.0 and 35 °C for free enzyme. The kinetic parameters K(m) and V(max) of MnP were significantly improved by immobilization. The enhanced catalytic potential of immobilized MnP led to 87.5 %, 82.1 %, 89.4 %, 95.7 % and 83 % decolorization of Sandal-fix Red C4BLN, Sandal-fix Turq Blue GWF, Sandal-fix Foron Blue E2BLN, Sandal-fix Black CKF and Sandal-fix Golden Yellow CRL dyes, respectively. The insolubilized MnP was reusable for 7 repeated cycles in dye color removal. Furthermore, immobilized MnP also caused a significant reduction in biochemical oxygen demand (BOD) (94.61-95.47 %), chemical oxygen demand (COD) (91.18-94.85 %), and total organic carbon (TOC) (89.58-95 %) of aqueous dye solutions. G. lucidum MnP was immobilized in Ca-alginate beads by entrapment method to improve its practical effectiveness. Ca-alginate bound MnP was catalytically more vigorous, thermo-stable, reusable and worked over wider ranges of pH and temperature as compared to its free counterpart. Results of cytotoxicity like hemolytic and brine shrimp lethality tests suggested that Ca-alginate immobilized MnP may effectively be used for detoxification of dyes and industrial effluents.
Improving the contact resistance at low force using gold coated carbon nanotube surfaces
NASA Astrophysics Data System (ADS)
McBride, J. W.; Yunus, E. M.; Spearing, S. M.
2010-04-01
Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.
Control of Manganese Dioxide Particles Resulting From In Situ Chemical Oxidation Using Permanganate
2008-09-01
Study Description Impacts of MnO2 Reference Field evaluation: A 5-spot recirculation network was employed to deliver 3000 mg/L NaMnO4 to treat up...that affect particle interactions. It may (1) act as a coagulant, facilitating MnO2 aggregation and deposition, (2) convert to other iron hydroxide ...chemical characteristics of the porous media, including pHpzc, zeta potential, particle size (average and distribution), and mineralogy , dictate the extent
Micronucleus monitoring of a floriculturist population from western Liguria, Italy.
Bolognesi, Claudia; Perrone, Emanuela; Landini, Eleonora
2002-09-01
A biomonitoring study was carried out to investigate whether exposure to complex pesticide mixtures in ornamental crop production represents a potential genotoxic risk. Exposed and control subjects were selected in western Liguria (Italy). The area was chosen for its intensive use of pesticides. The main crops produced were roses, mimosas, carnations and chrysanthemums, as ornamental non-edible plants, and tomato, lettuce and basil, as edible ones. The levels of micronuclei (MN) were analysed in peripheral blood lymphocytes of 107 floriculturists (92 men and 15 women) and 61 control subjects (42 men and 19 women). A statistically significant increase in binucleated cells with micronuclei (BNMN) was detected in floriculturists with respect to the control population (4.41 +/- 2.14 MN/1000 cells versus 3.04 +/- 2.14, P < 0.001). The mean number of BNMN varied as a function of sex and age. Smoking habit had no effect on MN frequency. A positive correlation between years of farming and MN frequency in peripheral blood lymphocytes was observed (r = 0.30, P = 0.02). The conditions of exposure were also associated with an increase in cytogenetic damage, with a 28% higher MN frequency in greenhouse workers compared with subjects working only outdoors in fields. Workers not using protective measures during high exposure activities showed an increase in MN frequency. Our findings suggest a potential genotoxic risk due to pesticide exposure.
Jin, Huanyu; Qian, Jiasheng; Zhou, Limin; Yuan, Jikang; Huang, Haitao; Wang, Yu; Tang, Wing Man; Chan, Helen Lai Wa
2016-04-13
We introduce a simple and effective method to deposit a highly uniform and semitransparent MnO2 film without coffee-ring effect (CRE) by adding ethanol into MnO2 ink for transparent capacitive energy storage devices. By carefully controlling the amount of ethanol added in the MnO2 droplet, we could significantly reduce the CRE and thus improve the film uniformity. The electrochemical properties of supercapacitor (SC) devices using semitransparent MnO2 film electrodes with or without CRE were measured and compared. The SC device without CRE shows a superior capacitance, high rate capability, and lower contact resistance. The CRE-free device could achieve a considerable volumetric capacitance of 112.2 F cm(-3), resulting in a high volumetric energy density and power density of 10 mWh cm(-3) and 8.6 W cm(-3), respectively. For practical consideration, both flexible SC and large-area rigid SC devices were fabricated to demonstrate their potential for flexible transparent electronic application and capacitive energy-storage window application. Moreover, a solar-powered energy storage window which consists of a commercial solar cell and our studied semitransparent MnO2-film-based SCs was assembled. These SCs could be charged by the solar cell and light up a light emitting diode (LED), demonstrating their potential for self-powered systems and energy-efficient buildings.
MnNiO3 revisited with modern theoretical and experimental methods
NASA Astrophysics Data System (ADS)
Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; Kuhn, Stephen; Jellison, Gerald E.; Sefat, Athena S.; Krogel, Jaron T.; Reboredo, Fernando A.
2017-11-01
MnNiO3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Monte Carlo study of the bulk properties of MnNiO3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å3, which compares well to the experimental value of 94.4 Å3. A bulk modulus of 217 GPa is predicted for MnNiO3. We rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO3.
Magnetostriction of Hexagonal HoMnO3 and YMnO3 Single Crystals
NASA Astrophysics Data System (ADS)
Pavlovskii, N. S.; Dubrovskii, A. A.; Nikitin, S. E.; Semenov, S. V.; Terent'ev, K. Yu.; Shaikhutdinov, K. A.
2018-03-01
We report on the magnetostriction of hexagonal HoMnO3 and YMnO3 single crystals in a wide range of applied magnetic fields (up to H = 14 T) at all possible combinations of the mutual orientations of magnetic field H and magnetostriction Δ L/L. The measured Δ L/L( H, T) data agree well with the magnetic phase diagram of the HoMnO3 single crystal reported previously by other authors. It is shown that the nonmonotonic behavior of magnetostriction of the HoMnO3 crystal is caused by the Ho3+ ion; the magnetic moment of the Mn3+ ion parallel to the hexagonal crystal axis. The anomalies established from the magnetostriction measurements of HoMnO3 are consistent with the phase diagram of these compounds. For the isostructural YMnO3 single crystal with a nonmagnetic rare-earth ion, the Δ L/L( H, T) dependences are described well by a conventional quadratic law in a wide temperature range (4-100 K). In addition, the magnetostriction effect is qualitatively estimated with regard to the effect of the crystal electric field on the holmium ion.
Negative-pressure polymorphs made by heterostructural alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siol, Sebastian; Holder, Aaron; Steffes, James
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less
Wen, Lulu; Sun, Yiqiang; Zhang, Tao; Bai, Yu; Li, Xinyang; Lyu, Xianjun; Cai, Weiping; Li, Yue
2018-08-17
We report the preparation of MnMoO 4 nanosheet array on nickel foam (MnMoO 4 NSA/NF) as an excellent 3D hydrogen evolution reaction (HER) electrocatalyst with good catalytic performance applied under basic, acidic and neutral conditions. In 0.5 M H 2 SO 4 , this MnMoO 4 NSA/NF electrode needs an overpotential of 89 mV to drive current densities of 10 mA cm -2 , to achieve the same current density, it demands overpotentials of 105 mV in 1.0 M KOH, 161 mV in 1.0 M PBS (pH = 7), respectively. After continuous CV scanning for 1000 cycles under different pH conditions, it also demonstrates an excellent stability with ignorable activity decrease. Such preeminent HER performance may be derived from the synergistic effect between manganese (Mn) and molybdenum (Mo) atoms, exposure of more active sites on the nanosheets and effective electron transport along the nanosheets. This MnMoO 4 NSA/NF electrocatalyst provides us a highly efficient material for water splitting devices for industrial hydrogen production.
Carbon/ λ-MnO 2 composites for supercapacitor electrodes
NASA Astrophysics Data System (ADS)
Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E.
2010-04-01
In the present work a composite of carbon with λ-MnO 2 have been synthesized by a simple two-step route. In the first step, to obtain LiMn 2O 4/carbon material, mesoporous activated carbon was impregnated with the solution of precursor metal salts and heated subsequently. As-prepared materials were acid treated which resulted in the formation of λ-MnO 2/carbon. Physical properties, structure and specific surface area of electrode materials were studied by TEM, X-ray diffraction and nitrogen sorption measurements. Voltammetry cycling, galvanostatic charge/discharge and impedance spectroscopy measurements performed in two- and three-electrode cells have been applied in order to measure electrochemical parameters. TEM images confirmed well dispersed λ-MnO 2 particles on the surface of carbon material. The carbon in the composite plays an important role as the surface area enhancing component and a support of pseudocapacitive material. Furthermore, the through-connected porosity serves as a continuous pathway for electrolyte transport. A synergetic effect of the porous carbon framework and of the redox properties of the λ-MnO 2 is at the origin of improvement of specific capacitance values which has been observed for composites after delithiation.
Negative-pressure polymorphs made by heterostructural alloying
Siol, Sebastian; Holder, Aaron; Steffes, James; ...
2018-04-20
The ability of a material to adopt multiple structures, known as polymorphism, is a fascinating natural phenomenon. Various polymorphs with unusual properties are routinely synthesized by compression under positive pressure. However, changing a material's structure by applying tension under negative pressure is much more difficult. We show how negative-pressure polymorphs can be synthesized by mixing materials with different crystal structures - a general approach that should be applicable to many materials. Theoretical calculations suggest that it costs less energy to mix low-density structures than high-density structures, due to less competition for space between the atoms. Proof-of-concept experiments confirm that mixingmore » two different high-density forms of MnSe and MnTe stabilizes a Mn(Se,Te) alloy with a low-density wurtzite structure. This Mn(Se,Te) negative-pressure polymorph has 2x to 4x lower electron effective mass compared to MnSe and MnTe parent compounds and has a piezoelectric response that none of the parent compounds have. Lastly, this example shows how heterostructural alloying can lead to negative-pressure polymorphs with useful properties - materials that are otherwise nearly impossible to make.« less
Susceptibility and remanence studies in the quasi-1D mixed ferromagnet CoTAC : Mn
NASA Astrophysics Data System (ADS)
Cheikhrouhou, A.; Dupas, C.; Renard, J. P.; Veillet, P.
1985-03-01
The ac susceptibility and dc magnetization of CoTAC : Mn ((CH 3) 3NHCo 1- xMn xCl 3ṡ2H 2O) have been studied in the temperature range 1.3-4.2 K on two monocrystalline samples with x = 2.9 and 9.3%. In CoTAC : Mn (9.3%), the variation with the measuring frequency ν of the temperature of the susceptibility maximum Tg(ν) is well described over five decades of frequency by an Arrhenius law Tg-1(ν) = a - b log ν characteristic of superparamagnetic clusters. In CoTAC : Mn (2.9%) Tg(ν) does not differ significantly from that of pure CoTAC. Both compounds exhibit strong remanence effects below Tg. The variations with time, temperature and applied magnetic field of the IRM and TRM are similar to those observed in spin glasses. These experiments confirm the onset of spin-glass-like behaviour or superparamagnetism in quasi-1D insulators with random intrachain exchange at very low impurity concentration. Comparison with the previously studied mixed compound CHAC : Mn evidences the influence of the exchange anisotropy on the static properties of these systems.
Mn-oxidizing Bacteria in Oak Ridge, TN and the Potential for Mercury Remediation
NASA Astrophysics Data System (ADS)
Wright, K. L.; McNeal, K. S.; Han, F. X.
2012-12-01
East Fork Poplar Creek (EFPC) in Oak Ridge, TN was highly contaminated with elemental mercury in the 1950 and 1960. The area is still experiencing the effects of mercury contamination, and researchers are searching for ways to remediate the EFPC. One possible mechanism for bioremediation is the use of biogenic Mn oxides to remove heavy metals from water systems. Six native Pseudomonas bacteria species were isolated from the EFPC in order to examine biogenic Mn oxides production and bioremediation of Oak Ridge slurries. To investigate the biochemical interactions of Pseudomonas and the native microbial communities with Hg, Mn, Fe, S, six different slurry treatment groups were compared using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and cold vapor atomic absorption spectrometry (CVAAS). Oak Ridge slurries were autoclaved to inhibit microbial growth (group 1), autoclaved and amended with HgS (group 2), autoclaved and amended with Pseudomonas isolates and additional HgS (group 3), untreated slurry (group 4), normal slurry amended with HgS (group 5), and normal slurry amended with Pseudomonas isolates and additional HgS (group 6). The comparison of the autoclaved groups with the counterpart untreated and normal Oak Ridge slurries highlighted important microbial interactions. Also, the Pseudomonas isolates were grown separately in a MnSO4 media, and the individual bacteria were monitored for Mn-oxidization using ICP-AES and transmission electron microscopy (TEM). In the slurry sediments, the Pseudomonas isolates did produce Mn oxides which bound to mercury, and mercury bound to organic matter significantly decreased. However, after a significant decrease of dissolved mercury in the water, dissolved mercury was cycled back into the water system on day 10 of the study. Additionally, two individual native Oak Ridge Pseudomonas isolates demonstrated Mn-oxidization. Biogenic Mn oxides have the potential to decrease mercury cycling, however there is need for more in depth and long-term studies to confirm their sustained use as Hg bioremediators.
Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating
NASA Astrophysics Data System (ADS)
Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri
2017-12-01
Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method
NASA Astrophysics Data System (ADS)
Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen
2018-03-01
The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.
Dioxygen Activation and O–O Bond Formation Reactions by Manganese Corroles
Guo, Mian; Lee, Yong-Min; Gupta, Ranjana; ...
2017-10-22
Activation of dioxygen (O 2) in enzymatic and biomimetic reactions has been intensively investigated over the past several decades. More recently, O–O bond formation, which is the reverse of the O 2-activation reaction, has been the focus of current research. Herein, we report the O 2-activation and O–O bond formation reactions by manganese corrole complexes. In the O 2-activation reaction, Mn(V)-oxo and Mn(IV)-peroxo intermediates were formed when Mn(III) corroles were exposed to O 2 in the presence of base (e.g., OH –) and hydrogen atom (H atom) donor (e.g., THF or cyclic olefins); the O 2-activation reaction did not occurmore » in the absence of base and H atom donor. Moreover, formation of the Mn(V)-oxo and Mn(IV)-peroxo species was dependent on the amounts of base present in the reaction solution. The role of the base was proposed to lower the oxidation potential of the Mn(III) corroles, thereby facilitating the binding of O 2 and forming a Mn(IV)-superoxo species. The putative Mn(IV)-superoxo species was then converted to the corresponding Mn(IV)-hydroperoxo species by abstracting a H atom from H atom donor, followed by the O–O bond cleavage of the putative Mn(IV)-hydroperoxo species to form a Mn(V)-oxo species. We have also shown that addition of hydroxide ion to the Mn(V)-oxo species afforded the Mn(IV)-peroxo species via O–O bond formation and the resulting Mn(IV)-peroxo species reverted to the Mn(V)-oxo species upon addition of proton, indicating that the O–O bond formation and cleavage reactions between the Mn(V)-oxo and Mn(IV)-peroxo complexes are reversible. The present paper reports the first example of using the same manganese complex in both O 2-activation and O–O bond formation reactions.« less
Highly transparent supercapacitors based on ZnO/MnO2 nanostructures.
Borysiewicz, M A; Ekielski, M; Ogorzałek, Z; Wzorek, M; Kaczmarski, J; Wojciechowski, T
2017-06-08
The recent rapid development of transparent electronics, notably displays and control circuits, requires the development of highly transparent energy storage devices, such as supercapacitors. The devices reported to date utilize carbon-based electrodes for high performance, however at the cost of their low transparency around 50%, insufficient for real transparent devices. To overcome this obstacle, in this communication highly transparent supercapacitors were fabricated based on ZnO/MnO 2 nanostructured electrodes. ZnO served as an intrinsically transparent skeleton for increasing the electrode surface, while MnO 2 nanoparticles were applied for high capacitance. Two MnO 2 synthesis routes were followed, based on the reaction of KMnO 4 with Mn(Ac) 2 and PAH, leading to the synthesis of β-MnO 2 with minority α-MnO 2 nanoparticles and amorphous MnO 2 with embedded β-MnO 2 , respectively. The devices based on such electrodes showed high capacitances of 2.6 mF cm -2 and 1.6 mF cm -2 , respectively, at a scan rate of 1 mV s -1 and capacitances of 104 μF cm -2 and 204 μF cm -2 at a very high rate of 1 V s -1 , not studied for transparent supercapacitors previously. Additionally, the Mn(Ac) 2 devices exhibited very high transparencies of 86% vs. air, far superior to other transparent energy storage devices reported with similar charge storage properties. This high device performance was achieved with a non-acidic LiCl gel electrolyte, reducing corrosion and handling risks associated with conventional highly concentrated acidic electrolytes, enabling applications in safe, wearable, transparent devices.
Use of poisons in determination of microbial manganese binding rates in seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosson, R.A.; Tebo, B.M.; Nealson, K.H.
1984-04-01
A method was developed to determine whether microorganisms mediate the precipitation of manganese(II) in the marine environment. Radioactive /sup 54/Mn(II) was used as a tracer to measure the precipitation (binding and oxidation) of Mn(II) (i.e., the /sup 54/Mn(II) trapped on 0.2-..mu..m membrane filters) in the presence and absence of biological poisons. A variety of antibiotics, fixatives, and metabolic inhibitors were tested in laboratory control experiments to select poisons that did not interfere in the chemistry of manganese. The poisons were deemed suitable if (i) they did not complex Mn(II) more strongly than the ion-exchange resin Chelex 100, (ii) they didmore » not interfere in the adsorption of /sup 54/Mn(II) onto synthetic deltaMnO/sub 2/ (manganate), (iii) they did not cause desorption of /sup 54/Mn(II) which had been preadsorbed onto synthetic manganate, and (iv) they did not solubilize synthetic /sup 54/manganate. In addition, several known chelators, reducing agents, and buffers normally added to microbiological growth media or used in biochemical assays were tested. Most additions interfered to some extent with manganese chemistry. However, at least one inhibitor, sodium azide, or a mixture of sodium azide, penicillin, and tetracycline was shown to be appropriate for use in field studies of /sup 54/Mn(II) binding. Formaldehyde could also be used in short incubations (1 to 3 h) but was not suitable for longer time course studies. The method was applied to studies of Mn(II) precipitation in Saanich Inlet, British Columbia, Canada. Bacteria were shown to significantly enhance the rate of Mn(II) removal from solution in the manganese-rich particulate layer which occurs just above the oxygen-hydrogen sulfide interface in the water column. 23 references.« less
Schinzel, Sandra; Schraut, Johannes; Arbuznikov, Alexei V; Siegbahn, Per E M; Kaupp, Martin
2010-09-10
Metal and ligand hyperfine couplings of a previously suggested, energetically feasible Mn(4)Ca model cluster (SG2009(-1)) for the S(2) state of the oxygen-evolving complex (OEC) of photosystem II (PSII) have been studied by broken-symmetry density functional methods and compared with other suggested structural and spectroscopic models. This was carried out explicitly for different spin-coupling patterns of the S=1/2 ground state of the Mn(III)(Mn(IV))(3) cluster. By applying spin-projection techniques and a scaling of the manganese hyperfine couplings, computation of the hyperfine and nuclear quadrupole coupling parameters allows a direct evaluation of the proposed models in comparison with data obtained from the simulation of EPR, ENDOR, and ESEEM spectra. The computation of (55)Mn hyperfine couplings (HFCs) for SG2009(-1) gives excellent agreement with experiment. However, at the current level of spin projection, the (55)Mn HFCs do not appear sufficiently accurate to distinguish between different structural models. Yet, of all the models studied, SG2009(-1) is the only one with the Mn(III) site at the Mn(C) center, which is coordinated by histidine (D1-His332). The computed histidine (14)N HFC anisotropy for SG2009(-1) gives much better agreement with ESEEM data than the other models, in which Mn(C) is an Mn(IV) site, thus supporting the validity of the model. The (13)C HFCs of various carboxylates have been compared with (13)C ENDOR data for PSII preparations with (13)C-labelled alanine.
Unusual Structure and Magnetism in MnO Nanoclusters
NASA Astrophysics Data System (ADS)
Ganguly, Shreemoyee; Kabir, Mukul; Sanyal, Biplab; Mookerjee, Abhijit
2011-03-01
We report an unusual structural and magnetic evolution in stoichiometric MnO nanoclusters by an extensive and unbiased search through the potential energy surface within density functional theory. The (MnO)n nanoclusters adopt two-dimensional structures in size ranges in which Mnn nanoclusters are three-dimensional and regardless of the size of the nanocluster, the magnetic coupling is found to be antiferromagnetic, and is strikingly different from Mn-based molecular magnets. Both of these features are explained through the inherent electronic structures of the nanoclusters. We gratefully acknowledge financial support from Swedish Research Links program funded by VR/SIDA and Carl Tryggers Foundation, Sweden.
Ab initio investigation of competing antiferromagnetic structures in low Si-content FeMn(PSi) alloy
NASA Astrophysics Data System (ADS)
Li, Guijiang; Eriksson, Olle; Johansson, Börje; Vitos, Levente
2016-06-01
The antiferromagnetic structures of a low Si-content FeMn(PSi) alloy were investigated by first principles calculations. One possible antiferromagnetic structure in supercell along the c-axis was revealed in FeMnP0.75Si0.25 alloy. It was found that atomic disorder occupation between Fe atom on 3f and Mn atoms on 3g sites is responsible for the formation of antiferromagnetic structures. Furthermore the magnetic competition and the coupling between possible AFM supercells along the c and a-axis can promote a non-collinear antiferromagnetic structure. These theoretical investigations help to deeply understand the magnetic order in FeMn(PSi) alloys and benefit to explore the potential magnetocaloric materials in Fe2P-type alloys.
Environmental exposure to manganese and motor function of children in Mexico.
Hernández-Bonilla, D; Schilmann, A; Montes, S; Rodríguez-Agudelo, Y; Rodríguez-Dozal, S; Solís-Vivanco, R; Ríos, C; Riojas-Rodríguez, H
2011-10-01
Occupational manganese (Mn) exposure has been associated with motor deficits in adult workers, but data on the potential effects of environmental exposure to Mn on the developing motor function for a children population is scarce. The aim of this study was to evaluate the association between exposure to Mn and motor function of school aged children. We conducted a cross-sectional study selecting 195 children (100 exposed and 95 unexposed) between 7 and 11 years old. The following tests were used to evaluate the motor function: Grooved pegboard, finger tapping, and Santa Ana test. Mn exposure was assessed by blood (MnB) and hair concentrations (MnH). We constructed linear regression models to evaluate the association between exposure to Mn and the different test scores adjusting for age, sex, maternal education, hemoglobin and blood lead. The median concentration of MnH and MnB was significantly higher in exposed (12.6 μg/g and 9.5 μg/L) compared to unexposed children (0.6 μg/g and 8.0 μg/L). The exposed children on average performed the grooved pegboard test faster, but made more errors, although these results did not reach statistical significance with neither one of the Mn exposure biomarkers. MnB showed an inverse association on the execution of the finger tapping test (average in 5 trials β -0.4, p=0.02), but no association was observed with MnH. A subtle negative association of Mn exposure on motor speed and coordination was shown. In adults, the main effect of environmental Mn exposure has been associated with motor skills, but these results suggest that such alterations are not the main effect on children. Copyright © 2011 Elsevier Inc. All rights reserved.
Escande, Vincent; Renard, Brice-Loïc; Grison, Claude
2015-04-01
Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.
NASA Astrophysics Data System (ADS)
Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi
2014-03-01
Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs.Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO2) of graphene nanoribbons (GNR) and MnO2 nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO2 nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO2 hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO2 hybrid, the optimized GNR//GNR-MnO2 asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO2 asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg-1 (at a power density of 12.1 kW kg-1), compared with that of the symmetric cells based on GNR-MnO2 hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO2 nanoparticles and the high electrical conductivity of the GNRs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06650a
Sorption of lead ions on diatomite and manganese oxides modified diatomite.
Al-Degs, Y; Khraisheh, M A; Tutunji, M F
2001-10-01
Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.
Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels
NASA Astrophysics Data System (ADS)
Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.
2014-04-01
The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
Solubility enhancement of miconazole nitrate: binary and ternary mixture approach.
Rai, Vineet Kumar; Dwivedi, Harinath; Yadav, Narayan Prasad; Chanotiya, Chandan Singh; Saraf, Shubhini A
2014-08-01
Enhancement of aqueous solubility of very slightly soluble Miconazole Nitrate (MN) is required to widen its application from topical formulation to oral/mucoadhesive formulations. Aim of the present investigation was to enhance the aqueous solubility of MN using binary and ternary mixture approach. Binary mixtures such as solvent deposition, inclusion complexation and solid dispersion were adopted to enhance solubility using different polymers like lactose, beta-cyclodextrin (β-CD) and polyethylene-glycol 6000 (PEG 6000), respectively. Batches of binary mixtures with highest solubility enhancement potentials were further mixed to form ternary mixture by a simple kneading method. Drug polymer interaction and mixture morphology was studied using the Fourier transform infrared spectroscopy and the scanning electron microscopy, respectively along with their saturation solubility studies and drug release. An excellent solubility enhancement, i.e. up to 72 folds and 316 folds of MN was seen by binary and ternary mixture, respectively. Up to 99.5% drug was released in 2 h from the mixtures of MN and polymers. RESULTS revealed that solubility enhancement by binary mixtures is achieved due to surface modification and by increasing wettability of MN. Tremendous increase in solubility of MN by ternary mixture could possibly be due to blending of water soluble polymers, i.e. lactose and PEG 6000 with β-CD which was found to enhance the solubilizing nature of β-CD. Owing to the excellent solubility enhancement potential of ternary mixtures in enhancing MN solubility from 110.4 μg/ml to 57640.0 μg/ml, ternary mixture approach could prove to be promising in the development of oral/mucoadhesive formulations.
Desbois, Nicolas; Pacquelet, Sandrine; Dubois, Adrien; Michelin, Clément; Gros, Claude P
2015-01-01
The Cu(I)-catalysed Huisgen cycloaddition, known as "click" reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one "cold" metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI.
Desbois, Nicolas; Pacquelet, Sandrine; Dubois, Adrien; Michelin, Clément
2015-01-01
Summary The Cu(I)-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT) bimodal contrast agents incorporating one metal (Mn, Gd) for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In) for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA) in MRI. PMID:26664643
Xu, Jian Z; Zhang, Jun L; Hu, Kai H; Zhang, Wei G
2013-05-01
Mushrooms are able to secrete lignin peroxidase (LiP) and manganese peroxidase (MnP), and able to use the cellulose as sources of carbon. This article focuses on the relation between peroxidase-secreting capacity and cultivation period of mushrooms with non-laccase activity. Methylene blue and methyl catechol qualitative assay and spectrophotometry quantitative assay show LiP secreting unvaryingly accompanies the MnP secreting in mushroom strains. The growth rates of hyphae are detected by detecting the dry hyphal mass. We link the peroxidase activities to growth rate of mushrooms and then probe into the relationship between them. The results show that there are close relationships between LiP- and/or MnP-secretory capacities and the cultivation periods of mushrooms. The strains with high LiP and MnP activities have short cultivation periods. However, those strains have long cultivation periods because of the low levels of secreted LiP and/or MnP, even no detectable LiP and/or MnP activity. This study provides the first evidence on the imitate relation between the level of secreted LiP and MnP activities and cultivation periods of mushrooms with non-laccase activity. Our study has significantly increased the understanding of the role of LiP and MnP in the growth and development of mushrooms with non-laccase activity. © 2012 The Authors. Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Cognitive Function Related to Environmental Exposure to ...
Background: The towns of Marietta and East Liverpool (EL), Ohio, have been identified as having elevated manganese (Mn) in air due to industrial pollution. Objectives: To evaluate relationships between environmental Mn (Mn-air) exposure and distance from the source and cognitive function in residents of two Ohio towns. Methods: Data were obtained from an EPA-sponsored study comparing two towns exposed to Mn-air (Marietta and EL). A cross-sectional design was used. The same inclusion/exclusion criteria and procedures were applied in the two towns. A neuropsychological screening test battery was administered to study participants (EL=86, Marietta=100) which included Stroop Color Word Test, Animal Naming, Auditory Consonant Trigrams (ACT) and Rey-O. To estimate Mn-air, U.S.EPA’s AERMOD dispersion model was used. Distance from source was calculated based on participants’ residential address and air miles from industrial facility emitting Mn-air. A binary logistic regression model controlling for annual household income was used to examine distance from source and neuropsychological outcomes Results: There were no age, sex, or employment status differences between the two towns. Years education was lower in EL (mean (M)=12.9) than Marietta (M=14.6) and years residency in town were higher in EL (M=47.0) than Marietta (M=36.1). EL participants resided closer to the Mn source than Marietta (M=1.12 vs M=4.75 air miles). Mn-air concentrations were higher in EL (M=0
Role of manganese oxides in peptide synthesis: implication in chemical evolution
NASA Astrophysics Data System (ADS)
Bhushan, Brij; Nayak, Arunima; Kamaluddin
2017-10-01
During the course of chemical evolution the role of metal oxides may have been very significant in catalysing the polymerization of biomonomers. The peptide bond formation of alanine (ala) and glycine (gly) in the presence of various oxides of manganese were performed for a period of 35 days at three different temperatures 50, 90 and 120°C without applying drying/wetting cycling. The reaction was monitored every week. The products formed were characterized by high-performance liquid chromatography and electrospray ionization-mass spectrometry techniques. Trace amount of oligomers was observed at 50°C. Maximum yield of peptides was found after 35 days at 90°C. It is important to note that very high temperatures of 120°C favoured the formation of diketopiperazine derivatives. Different types of manganese oxides [manganosite (MnO), bixbyite (Mn2O3), hausmannite (Mn3O4) and pyrolusite (MnO2)] were used as catalyst. The MnO catalysed glycine to cyclic (Gly)2, (Gly)2 and (Gly)3, and alanine, to cyclic (Ala)2 and (Ala)2. Mn3O4 also produced the same products but in lesser yield, while Mn2O3 and MnO2 produced cyclic anhydride of glycine and alanine with a trace amount of dimers and trimmers. Manganese of lower oxidation state is much more efficient in propagating the reaction than higher oxidation states. The possible mechanism of these reactions and the relevance of the results for the prebiotic chemistry are discussed.
Thermodynamic Stability of Transition Metal Substituted LiMn 2-xMxO 4 (M=Cr, Fe, Co, and Ni) Spinels
NASA Astrophysics Data System (ADS)
Lai, Chenying
The formation enthalpies from binary oxides of LiMn2O 4, LiMn2-xCrxO4 (x = 0.25, 0.5, 0.75 and 1), LiMn2-xFexO4 (x = 0.25 and 0.5), LiMn2-xCoxO4 (x = 0.25, 0.5, and 0.75) and LiMn1.75Ni 0.25O4 at 25 °C have been measured by high-temperature oxide-melt-solution calorimetry and were found to be strongly exothermic. Increasing Cr, Co and Ni content leads to more thermodynamically stable spinels, but increasing Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO 4 (M = Cr, Fe and Co) become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2O4 - LiMnMO 4 solid solutions. These data confirm that transition metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.
Santos, Pedro Fernandes; Niinomi, Mitsuo; Liu, Huihong; Cho, Ken; Nakai, Masaaki; Itoh, Yoshinori; Narushima, Takayuki; Ikeda, Masahiko
2016-06-01
Titanium and its alloys are suitable for biomedical applications owing to their good mechanical properties and biocompatibility. Beta-type Ti-Mn alloys (8-17 mass% Mn) were fabricated by metal injection molding (MIM) as a potential low cost material for use in biomedical applications. The microstructures and mechanical properties of the alloys were evaluated. For up to 13 mass% Mn, the tensile strength (1162-938MPa) and hardness (308-294HV) of the MIM fabricated alloys are comparable to those of Ti-Mn alloys fabricated by cold crucible levitation melting. Ti-9Mn exhibits the best balance of ultimate tensile strength (1046MPa) and elongation (4.7%) among the tested alloys, and has a Young's modulus of 89GPa. The observed low elongation of the alloys is attributed to the combined effects of high oxygen content, with the presence of interconnected pores and titanium carbides, the formation of which is due to carbon pickup during the debinding process. The elongation and tensile strength of the alloys decrease with increasing Mn content. The Ti-Mn alloys show good compressive properties, with Ti-17Mn showing a compressive 0.2% proof stress of 1034MPa, and a compressive strain of 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laser scanning cytometry for automation of the micronucleus assay
Darzynkiewicz, Zbigniew; Smolewski, Piotr; Holden, Elena; Luther, Ed; Henriksen, Mel; François, Maxime; Leifert, Wayne; Fenech, Michael
2011-01-01
Laser scanning cytometry (LSC) provides a novel approach for automated scoring of micronuclei (MN) in different types of mammalian cells, serving as a biomarker of genotoxicity and mutagenicity. In this review, we discuss the advances to date in measuring MN in cell lines, buccal cells and erythrocytes, describe the advantages and outline potential challenges of this distinctive approach of analysis of nuclear anomalies. The use of multiple laser wavelengths in LSC and the high dynamic range of fluorescence and absorption detection allow simultaneous measurement of multiple cellular and nuclear features such as cytoplasmic area, nuclear area, DNA content and density of nuclei and MN, protein content and density of cytoplasm as well as other features using molecular probes. This high-content analysis approach allows the cells of interest to be identified (e.g. binucleated cells in cytokinesis-blocked cultures) and MN scored specifically in them. MN assays in cell lines (e.g. the CHO cell MN assay) using LSC are increasingly used in routine toxicology screening. More high-content MN assays and the expansion of MN analysis by LSC to other models (i.e. exfoliated cells, dermal cell models, etc.) hold great promise for robust and exciting developments in MN assay automation as a high-content high-throughput analysis procedure. PMID:21164197
Liu, Mingkai; Tjiu, Weng Weei; Pan, Jisheng; Zhang, Chao; Gao, Wei; Liu, Tianxi
2014-04-21
Three-dimensional (3D) hierarchical hybrid nanomaterials (GNR-MnO₂) of graphene nanoribbons (GNR) and MnO₂ nanoparticles have been prepared via a one-step method. GNR, with unique features such as high aspect ratio and plane integrity, has been obtained by longitudinal unzipping of multi-walled carbon nanotubes (CNTs). By tuning the amount of oxidant used, different mass loadings of MnO₂ nanoparticles have been uniformly deposited on the surface of GNRs. Asymmetric supercapacitors have been fabricated with the GNR-MnO₂ hybrid as the positive electrode and GNR sheets as the negative electrode. Due to the desirable porous structure, excellent electrical conductivity, as well as high rate capability and specific capacitances of both the GNR and GNR-MnO₂ hybrid, the optimized GNR//GNR-MnO₂ asymmetric supercapacitor can be cycled reversibly in an enlarged potential window of 0-2.0 V. In addition, the fabricated GNR//GNR-MnO₂ asymmetric supercapacitor exhibits a significantly enhanced maximum energy density of 29.4 W h kg(-1) (at a power density of 12.1 kW kg(-1)), compared with that of the symmetric cells based on GNR-MnO₂ hybrids or GNR sheets. This greatly enhanced energy storage ability and high rate capability can be attributed to the homogeneous dispersion and excellent pseudocapacitive performance of MnO₂ nanoparticles and the high electrical conductivity of the GNRs.
Oladipo, Olusola Olalekan; Ayo, Joseph Olusegun; Ambali, Suleiman Folorunsho; Mohammed, Bisalla; Aluwong, Tanang
2017-07-01
Lead (Pb), cadmium (Cd) and manganese (Mn) have many potential adverse health effects in vitro and in animal models of clinical toxicity. The current study investigated the dyslipidaemic and oxidative stress effects of chronic low-dose oral exposure to Pb, Cd and Mn and the combination (Pb+Cd+Mn) in rats for 15 weeks. Chronic exposure to the metals did not significantly (P>0.05) alter serum lipid profiles. However, the atherogenic index decreased by 32.2% in the Pb+Cd+Mn group, relative to the control. The triglyceride/high-density lipoprotein cholesterol ratio decreased by 39.4% in the Pb+Cd+Mn group, relative to the control, and elevated by 81.8, 94.8 and 20.8%, relative to the Pb, Cd and Mn groups, respectively. While the serum concentrations of malondialdehyde significantly increased in the Mn and Pb+Cd+Mn groups, that of glutathione peroxidase-1 decreased in the Pb+Cd+Mn group, and metallothionein-1 and zinc concentrations markedly decreased in all the metal treatment groups. The results suggest that long-term exposure of rats to Pb+Cd+Mn may result in hypolipidaemia, mediated via oxidative stress and metal interactions. Individuals who are constantly exposed to environmentally relevant levels of the metals may be at risk of hypolipidaemia. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Jianyun; Li, Xiaohong; Wang, Yaming; Walsh, Frank C.; Ouyang, Jia-Hu; Jia, Dechang; Zhou, Yu
2015-10-01
MnO2 is a promising electrode material for high energy supercapacitors because of its large pseudo-capacitance. However, MnO2 suffers from low electronic conductivity and poor cation diffusivity, which results in poor utilization and limited rate performance of traditional MnO2 powder electrodes, obtained by pressing a mixed paste of MnO2 powder, conductive additive and polymer binder onto metallic current collectors. Developing binder-free MnO2 electrodes by loading nanoscale MnO2 deposits on pre-fabricated device-ready electrode scaffolds is an effective way to achieve both high power and energy performance. These electrode scaffolds, with interconnected skeletons and pore structures, will not only provide mechanical support and electron collection as traditional current collectors but also fast ion transfer tunnels, leading to high MnO2 utilization and rate performance. This review covers design strategies, materials and fabrication methods for the electrode scaffolds. Rational evaluation of the true performance of these electrodes is carried out, which clarifies that some of the electrodes with as-claimed exceptional performances lack potential in practical applications due to poor mass loading of MnO2 and large dead volume of inert scaffold materials/void spaces in the electrode structure. Possible ways to meet this challenge and bring MnO2 electrodes from laboratory studies to real-world applications are considered.
Nielsen, Brian S; Larsen, Erik H; Ladefoged, Ole; Lam, Henrik R
Manganese (Mn) is neurotoxic and can induce manganism, a Parkinson-like disease categorized as being a serious central nervous system irreversible neurodegenerative disease. An increased risk of developing symptoms of Parkinson disease has been linked to work-related exposure, for example, for workers in agriculture, horticulture, and people living near areas with frequent use of Mn-containing pesticides. In this study, the focus was placed on neurochemical effects of Mn. Rats were dosed intraperitoneally with 0.9% NaCl (control), 1.22 mg Mn (as MnO 2 )/kg bodyweight (bw)/day, or 2.5 mg Mn (as MnCl 2 )/kg bw/day for 7 d/wk for 8 or 12 weeks. This dosing regimen adds relevant new knowledge about Mn neurotoxicity as a consequence of low-dose subchronic Mn dosing. Manganese concentrations increased in the striatum, the rest of the brain, and in plasma, and regional brain neurotransmitter concentrations, including noradrenaline, dopamine (DA), 5-hydroxytrytamine, glutamate, taurine, and γ-amino butyric acid, and the activity of acetylcholinesterase changed. Importantly, a target parameter for Parkinson disease and manganism, the striatal DA concentration, was reduced after 12 weeks of dosing with MnCl 2 . Plasma prolactin concentration was not significantly affected due to a potentially reduced dopaminergic inhibition of the prolactin release from the anterior hypophysis. No effects on the striatal α-synuclein and synaptophysin protein levels were detected.
NASA Astrophysics Data System (ADS)
Kebede, Mesfin A.; Ozoemena, Kenneth I.
2017-02-01
A molten salt synthesis technique has been used to prepare nanorods of Mn2O3 and single-crystal LiMn2O4 nanorods cathode material with superior capacity retention. The molten salt-directed synthesis involved the use of NaCl as the eutectic melt. The as-synthesized LiMn2O4 nanorods cathode material showed superior electrochemical performance compared to the LiMn2O4 sample obtained via the solid state method. The as-synthesized LiMn2O4 nanorods maintained more than 95% of the initial discharge capacity of 107 mA h g-1 over 100 cycles at a rate of 0.1 C, whereas the LiMn2O4 sample synthesized using the solid state reaction method maintained 88% of the initial discharge capacity of 98 mA h g-1 over 100 cycles at a rate of 0.1 C. Compared to the literature, the molten salt-directed method for the preparation of high-performance LiMn2O4 is simpler and less expensive, with greater potential for industrial scale-up.
Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop
2012-07-01
A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.
Chen, Ning; Shao, Chen; Li, Shuai; Wang, Zihao; Qu, Yanming; Gu, Wei; Yu, Chunjiang; Ye, Ling
2015-11-01
The fusion of molecular and anatomical modalities facilitates more reliable and accurate detection of tumors. Herein, we prepared the PEG-Cy5.5 conjugated MnO nanoparticles (MnO-PEG-Cy5.5 NPs) with magnetic resonance (MR) and near-infrared fluorescence (NIRF) imaging modalities. The applicability of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe for the detection of brain gliomas was investigated. In vivo MR contrast enhancement of the MnO-PEG-Cy5.5 nanoprobe in the tumor region was demonstrated. Meanwhile, whole-body NIRF imaging of glioma bearing nude mouse exhibited distinct tumor localization upon injection of MnO-PEG-Cy5.5 NPs. Moreover, ex vivo CLSM imaging of the brain slice hosting glioma indicated the preferential accumulation of MnO-PEG-Cy5.5 NPs in the glioma region. Our results therefore demonstrated the potential of MnO-PEG-Cy5.5 NPs as a dual-modal (MR/NIRF) imaging nanoprobe in improving the diagnostic efficacy by simultaneously providing anatomical information from deep inside the body and more sensitive information at the cellular level. Copyright © 2015 Elsevier Inc. All rights reserved.
K{sub 1.33}Mn{sub 8}O{sub 16} as an electrocatalyst and a cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalili, Seifollah, E-mail: sjalili@kntu.ac.ir; Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences; Moharramzadeh Goliaei, Elham
Density functional theory (DFT) calculations are carried out to investigate the electronic, magnetic and thermoelectric properties of bulk and nanosheet K{sub 1.33}Mn{sub 8}O{sub 16} materials. The catalytic activity and cathodic performance of bulk and nanosheet structures are examined using the Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential. Electronic structure calculations reveal an anti-ferromagnetic ground state, with a TB-mMBJ band gap in bulk K{sub 1.33}Mn{sub 8}O{sub 16} that is in agreement with experimental results. Density of state plots indicate a partial reduction of Mn{sup 4+} ions to Mn{sup 3+}, without any obvious sign of Jahn-Teller distortion. Moreover, use of the O p-bandmore » center as a descriptor of catalytic activity suggests that the nanosheet has enhanced catalytic activity compared to the bulk structure. Thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity are also calculated, and it is found that the Seebeck coefficients decrease with increasing temperature. High Seebeck coefficients for both spin-up and spin-down states are found in the nanosheet relative to their value in the bulk K{sub 1.33}Mn{sub 8}O{sub 16} structure, whereas the electrical and thermal conductivity are reduced relative to the bulk. In addition, figures of merit values are calculated as a function of the chemical potential and it is found that the nanosheet has a figure of merit of ~1 at room temperature, compared to 0.5 for the bulk material. All results suggest that K{sub 1.33}Mn{sub 8}O{sub 16} nanosheets can be used both as a material in waste heat recovery and as an electrocatalyst in fuel cells and batteries. - Graphical abstract: K{sub 1.33}Mn{sub 8}O{sub 16}: bulk and nanosheet. - Highlights: • Electronic properties of bulk and nanosheet forms of K{sub 1.33}Mn{sub 8}O{sub 16} have been studied. • The K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet is a semiconductor while the bulk is a metal. • K{sub 1.33}Mn{sub 8}O{sub 16} Nanosheet is a more efficient electrocatalyst than bulk K{sub 1.33}Mn{sub 8}O{sub 16}. • High figure of merit of K{sub 1.33}Mn{sub 8}O{sub 16} nanosheet makes it an efficient cathode.« less
Narasimhan, T S Lakshmi; Sai Baba, M; Viswanathan, R
2006-12-28
Knudsen effusion mass spectrometric measurements have been performed in the temperature range of 850-950 K over four three-phase mixtures, each phase mixture having at least one phase lying on the MnO-TeO2 binary line of the Mn-Te-O phase diagram, and the rest of the phases lying above this binary line. The three-phase mixtures investigated are Mn3O4 + MnO + Mn6Te5O16; Mn3O4 + Mn6Te5O16 + MnTeO3; Mn3O4 + Mn3TeO6 + MnTeO3; and Mn3TeO6 + MnTeO3 + Mn2Te3O8. The vapor pressures of the gaseous species TeO2, TeO, and Te2 over these three-phase mixtures were measured, and various heterogeneous solid-gas reactions were evaluated along with the homogeneous gas-phase reaction TeO2(g) + 0.5Te2(g) = 2 TeO(g). The enthalpy and Gibbs free energy of formation of the four ternary Mn-Te-O phases were deduced at T = 900 K. These values (in kJ.mol-1), along with the estimated uncertainties in them are Delta(f)H(o)m = 4150 +/- 19, 752 +/- 11, 1710 +/- 11, 1924 +/- 40, and Delta(f)G(o)m= 2835 +/- 28, 511 +/- 11, 1254 +/- 19, 1238 +/- 38, for Mn6Te5O16, MnTeO3, Mn3TeO6, and Mn2Te3O8, respectively. A thermochemical assessment was made to examine the conditions under which the ternary Mn-Te-O phases could be formed on a stainless steel clad of mixed-oxide-fueled (MO2; M = U + Pu) fast breeder nuclear reactors. The phase Mn3TeO6 could be formed when the fuel is even slightly hyperstoichiometric (O/M = 2.0002) and the phase Mn6Te5O16 could also be formed when O/M = 2.0004. The threshold tellurium potential for the formation of Mn3TeO6 is higher than that for MnTe0.80 and CrTe1.10, but is comparable to that for MoTe1.10, and even lower than that for FeTe0.81 or NiTe0.63.
Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy
NASA Astrophysics Data System (ADS)
Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.
2012-04-01
Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.
Elasticity and magnetocaloric effect in MnFe 4Si 3
Herlitschke, Marcus; Klobes, B.; Sergueev, I.; ...
2016-03-16
The room temperature magnetocaloric material MnFe 4Si 3 was investigated with nuclear inelastic scattering (NIS) and resonant ultrasound spectroscopy (RUS) at different temperatures and applied magnetic fields in order to assess the infuence of the magnetic transition and the magnetocaloric effect on the lattice dynamics. The NIS data give access to phonons with energies above 3 meV, whereas RUS probes the elasticity of the material in the MHz frequency range and thus low energy, ~5 neV, phonon modes. A significant infuence of the magnetic transition on the lattice dynamics is observed only in the low energy region. Here, MnFe 4Simore » 3 and other compounds in the Mn 5-xFe xSi 3 series were also investigated with vibrating sample magnetometry, resistivity measurements and Moessbauer spectroscopy in order to study the magnetic transitions and to complement the obtained results on the lattice dynamics.« less
Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films
NASA Astrophysics Data System (ADS)
Abazari, M.; Safari, A.
2010-12-01
Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.
NASA Astrophysics Data System (ADS)
Wang, Hailong; Wang, Xiaolei; Xiong, Peng; Zhao, Jianhua
2016-03-01
The responses of magnetic moments to external stimuli such as magnetic-field, heat, light and electric-field have been utilized to manipulate the magnetism in magnetic semiconductors, with many of the novel ideas applied even to ferromagnetic metals. Here, we review a new experimental development on the control of magnetism in (Ga,Mn)As thin films by surface decoration of organic molecules: Molecules deposited on the surface of (Ga,Mn)As thin films are shown to be capable of significantly modulating their saturation magnetization and Curie temperature. These phenomena are shown to originate from the carrier-mediated ferromagnetism in (Ga,Mn)As and the surface molecules acting as acceptors or donors depending on their highest occupied molecular orbitals, resembling the charge transfer mechanism in a pn junction in which the equilibrium state is reached on the alignment of Fermi levels.
The (2 × 2) tunnels structured manganese dioxide nanorods with α phase for lithium air batteries
NASA Astrophysics Data System (ADS)
Ghouri, Zafar Khan; Zahoor, Awan; Barakat, Nasser A. M.; Alsoufi, Mohammad S.; Bawazeer, Tahani M.; Mohamed, Ahmed F.; Kim, Hak Yong
2016-02-01
The (2 × 2) tunnels structured manganese dioxide nanorods with α phase (α-MnO2) are synthesized via simplistic hydrothermal method at low temperature. The obtained tunnels structured α-MnO2 nanorods are characterized by, Transmission electron microscopy, Scanning electron microscopy, and X-ray diffraction techniques. The oxygen reduction reaction (ORR) activity was studied by cyclic voltammetry and rotating ring-disc electrode voltammetry techniques in alkaline media. Moreover; the highly electrocatalytic tunnels structured α-MnO2 nanorods were then also applied as cathode in rechargeable Li-O2 cells. The Li-O2 cells exhibited initial discharge capacity as high as ∼4000 mAh/g with the tunnels structured α-MnO2 nanorods which was double the original capacity of the cells without any catalyst. Also we obtained 100% round trip efficiency upon cycling with limited capacity for more than 50 cycles.
Crawford, Sherine; Davis, Kiyya; Saddler, Claudette; Joseph, Jevaun; Catapane, Edward J; Carroll, Margaret A
2011-01-01
Manganese (Mn) is an essential metal that at excessive levels in brain causes Manganism, a condition similar to Parkinson's disease. Previously we showed that Mn had a neurotoxic effect on the dopaminergic, but not serotonergic, innervation of the lateral ciliated cells in the gill of the Eastern Oyster, Crassostrea virginica. While the mechanism of action of Mn toxicity is not completely understood, studies suggest that Mn toxicity may involve mitochondrial damage and resulting neural dysfunction in the brain's dopaminergic system. In this study we utilized micro-batch chambers and oxygen probes to measure oyster gill mitochondrial respiration in the presence of Mn and potential Mn blockers. The addition of Mn to respiring mitochondria caused a dose dependent decrease in mitochondrial O(2) consumption. Pretreating mitochondria with calcium disodium EDTA (caEDTA), p aminosalicylic acid (PAS) or acetylsalicylic acid (ASA) before Mn additions, provided full protection against the toxic effects of Mn. While mitochondrial pretreatment with any of the 3 drugs effectively blocked Mn toxicity, none of the drugs tested was able to reverse the decrease in mitochondrial O(2) consumption seen in Mn treated mitochondria. The study found that high levels of Mn had a toxic effect on gill mitochondrial O(2) consumption and that this effect could be blocked by the drugs caEDTA, PAS and ASA. C. virginica continues to be a good model with which to investigate the mechanism that underlies manganese neurotoxcity and in the pharmacological study of drugs to treat or prevent Manganism.
Crawford, Sherine; Davis, Kiyya; Saddler, Claudette; Joseph, Jevaun; Catapane, Edward J.; Carroll, Margaret A.
2011-01-01
Manganese (Mn) is an essential metal that at excessive levels in brain causes Manganism, a condition similar to Parkinson's disease. Previously we showed that Mn had a neurotoxic effect on the dopaminergic, but not serotonergic, innervation of the lateral ciliated cells in the gill of the Eastern Oyster, Crassostrea virginica. While the mechanism of action of Mn toxicity is not completely understood, studies suggest that Mn toxicity may involve mitochondrial damage and resulting neural dysfunction in the brain’s dopaminergic system. In this study we utilized micro-batch chambers and oxygen probes to measure oyster gill mitochondrial respiration in the presence of Mn and potential Mn blockers. The addition of Mn to respiring mitochondria caused a dose dependent decrease in mitochondrial O2 consumption. Pretreating mitochondria with calcium disodium EDTA (caEDTA), p aminosalicylic acid (PAS) or acetylsalicylic acid (ASA) before Mn additions, provided full protection against the toxic effects of Mn. While mitochondrial pretreatment with any of the 3 drugs effectively blocked Mn toxicity, none of the drugs tested was able to reverse the decrease in mitochondrial O2 consumption seen in Mn treated mitochondria. The study found that high levels of Mn had a toxic effect on gill mitochondrial O2 consumption and that this effect could be blocked by the drugs caEDTA, PAS and ASA. C. virginica continues to be a good model with which to investigate the mechanism that underlies manganese neurotoxcity and in the pharmacological study of drugs to treat or prevent Manganism. PMID:21977482
NASA Astrophysics Data System (ADS)
O'Hara, Dante J.; Zhu, Tiancong; Trout, Amanda H.; Ahmed, Adam S.; Luo, Yunqiu Kelly; Lee, Choong Hee; Brenner, Mark R.; Rajan, Siddharth; Gupta, Jay A.; McComb, David W.; Kawakami, Roland K.
2018-05-01
Monolayer van der Waals (vdW) magnets provide an exciting opportunity for exploring two-dimensional (2D) magnetism for scientific and technological advances, but the intrinsic ferromagnetism has only been observed at low temperatures. Here, we report the observation of room temperature ferromagnetism in manganese selenide (MnSe$_x$) films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization provides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW manganese diselenide (MnSe$_2$) monolayer, while for thicker films it could originate from a combination of vdW MnSe$_2$ and/or interfacial magnetism of $\\alpha$-MnSe(111). Magnetization measurements of monolayer MnSe$_x$ films on GaSe and SnSe$_2$ epilayers show ferromagnetic ordering with large saturation magnetization of ~ 4 Bohr magnetons per Mn, which is consistent with density functional theory calculations predicting ferromagnetism in monolayer 1T-MnSe$_2$. Growing MnSe$_x$ films on GaSe up to high thickness (~ 40 nm) produces $\\alpha$-MnSe(111), and an enhanced magnetic moment (~ 2x) compared to the monolayer MnSe$_x$ samples. Detailed structural characterization by scanning transmission electron microscopy (STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffraction (RHEED) reveal an abrupt and clean interface between GaSe(0001) and $\\alpha$-MnSe(111). In particular, the structure measured by STEM is consistent with the presence of a MnSe$_2$ monolayer at the interface. These results hold promise for potential applications in energy efficient information storage and processing.
Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M
2007-01-01
In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed.
Effects of manganese exposure on visuoperception and visual memory in schoolchildren.
Hernández-Bonilla, D; Escamilla-Núñez, C; Mergler, D; Rodríguez-Dozal, S; Cortez-Lugo, M; Montes, S; Tristán-López, L A; Catalán-Vázquez, M; Schilmann, A; Riojas-Rodriguez, Horacio
2016-12-01
Manganese (Mn) is an essential metal involved in multiple physiological functions. Environmental exposure to airborne Mn is associated with neurocognitive deficits in humans. Children, whose nervous system is in development, are particularly susceptible to Mn neurotoxicity. The objective of this study was to assess the association between Mn environmental exposure, and effects on visuoperception and visual memory in schoolchildren. We assessed schoolchildren between 7 and 11 years old, with similar socioeconomic status, from the mining district of Molango (n=148) and Agua Blanca (n=119, non-mining area) in Hidalgo state, Mexico. The Rey-Osterrieth Complex Figure (ROCF) test was used to assess visuoperception and short-term visual memory. Hair manganese (MnH) concentrations were determined. Linear regression models were constructed to estimate the associations between MnH and ROCF scores, adjusted for potential confounders. The geometric mean MnH was nine times higher in schoolchildren from the Mn mining area (5.25μg/g) than in schoolchildren from the non-mining area (0.55μg/g). For the ROCF Copy trial, MnH was significantly associated with an increase in distortion errors (tangency, closure), angle errors, overtracing (partial overtracing). In the Immediate Recall trial, MnH was significantly associated with increased overtracing (partial overtracing) and omissions, and negatively associated with the number of perceptual drawn units, total score and percentage immediate recall. MnH is associated with alterations in visuoperception and short-term visual memory in schoolchildren exposed to airborne Mn. Copyright © 2016 Elsevier B.V. All rights reserved.
Electrochemical performance studies of MnO{sub 2} nanoflowers recovered from spent battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Gomaa A.M.; Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524; Tan, Ling Ling
2014-12-15
Highlights: • MnO{sub 2} is recovered from spent zinc–carbon batteries as nanoflowers structure. • Recovered MnO{sub 2} nanoflowers show high specific capacitance. • Recovered MnO{sub 2} nanoflowers show stable electrochemical cycling up to 900 cycles. • Recovered MnO{sub 2} nanoflowers show low resistance in EIS data. - Abstract: The electrochemical performance of MnO{sub 2} nanoflowers recovered from spent household zinc–carbon battery is studied by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. MnO{sub 2} nanoflowers are recovered from spent zinc–carbon battery by combination of solution leaching and electrowinning techniques. In an effort to utilize recovered MnO{sub 2} nanoflowers asmore » energy storage supercapacitor, it is crucial to understand their structure and electrochemical performance. X-ray diffraction analysis confirms the recovery of MnO{sub 2} in birnessite phase, while electron microscopy analysis shows the MnO{sub 2} is recovered as 3D nanostructure with nanoflower morphology. The recovered MnO{sub 2} nanoflowers exhibit high specific capacitance (294 F g{sup −1} at 10 mV s{sup −1}; 208.5 F g{sup −1} at 0.1 A g{sup −1}) in 1 M Na{sub 2}SO{sub 4} electrolyte, with stable electrochemical cycling. Electrochemical data analysis reveal the great potential of MnO{sub 2} nanoflowers recovered from spent zinc–carbon battery in the development of high performance energy storage supercapacitor system.« less
Environmental exposure to manganese in air: Associations with tremor and motor function.
Bowler, Rosemarie M; Beseler, Cheryl L; Gocheva, Vihra V; Colledge, Michelle; Kornblith, Erica S; Julian, Jaime R; Kim, Yangho; Bollweg, George; Lobdell, Danelle T
2016-01-15
Manganese (Mn) inhalation has been associated with neuropsychological and neurological sequelae in exposed workers. Few environmental epidemiologic studies have examined the potentially neurotoxic effects of Mn exposure in ambient air on motor function and hand tremor in adult community residents. Mn exposed residents were recruited in two Ohio towns: Marietta, a town near a ferro-manganese smelter, and East Liverpool, a town adjacent to a facility processing, crushing, screening, and packaging Mn products. Chronic (≥ 10 years) exposure to ambient air Mn in adult residents and effects on neuropsychological and neurological outcomes were investigated. Participants from Marietta (n=100) and East Liverpool (n=86) were combined for analyses. AERMOD dispersion modeling of fixed-site outdoor air monitoring data estimated Mn inhalation over a ten year period. Adult Mn-exposed residents' psychomotor ability was assessed using Finger Tapping, Hand Dynamometer, Grooved Pegboard, and the Computerized Adaptive Testing System (CATSYS) Tremor system. Bayesian structural equation modeling was used to assess associations between air-Mn and motor function and tremor. Air-Mn exposure was significantly correlated in bivariate analyses with the tremor test (CATSYS) for intensity, center frequency and harmonic index. The Bayesian path analysis model showed associations of air-Mn with the CATSYS non-dominant center frequency and harmonic index; while the Bayesian structural equation model revealed associations between air-Mn and lower Finger Tapping scores. Household income was significantly associated with motor dysfunction but not with tremor. Tremor and motor function were associated with higher exposure to airborne Mn. Copyright © 2015 Elsevier B.V. All rights reserved.
Template-based synthesis and magnetic properties of Mn-Zn ferrite nanotube and nanowire arrays
NASA Astrophysics Data System (ADS)
Guo, Limin; Wang, Xiaohui; Zhong, Caifu; Li, Longtu
2012-01-01
Template-based electrophoretic deposition of Mn-Zn ferrite nanotubes (NTs) and nanowires (NWs) were achieved using anodic alumina oxide (AAO) membranes. The effect of electrophoretic current and deposition time on the morphology of the tubes was investigated. The samples show cubic spinel structure with no preferred orientation. Room-temperature magnetic properties of the Mn-Zn ferrite NT/NW arrays were studied. The magnetic easy axis parallels the NT/NW's channel axis attributing to the large shape anisotropy in this direction, especially for the NTs with a small wall thickness. Magnetocrystalline anisotropy and magnetostatic interactions were found dominant in the samples when applied field was perpendicular to the channel axis.
Chemical disorder as an engineering tool for spin polarization in Mn3Ga -based Heusler systems
NASA Astrophysics Data System (ADS)
Chadov, S.; D'Souza, S. W.; Wollmann, L.; Kiss, J.; Fecher, G. H.; Felser, C.
2015-03-01
Our study highlights spin-polarization mechanisms in metals by focusing on the mobilities of conducting electrons with different spins instead of their quantities. Here, we engineer electron mobility by applying chemical disorder induced by nonstoichiometric variations. As a practical example, we discuss the scheme that establishes such variations in tetragonal Mn3Ga Heusler material. We justify this approach using first-principles calculations of the spin-projected conductivity components based on the Kubo-Greenwood formalism. It follows that, in the majority of cases, even a small substitution of some other transition element instead of Mn may lead to a substantial increase in spin polarization along the tetragonal axis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hakjoon; Bac, Seul-Ki; Lee, Sangyeop
We report direct experimental determination of next-nearest-neighbor (NNN) interlayer exchange coupling (IEC) in antiferromagnetically coupled GaMnAs/GaAs:Be multilayers. Magnetoresistance in such multilayers shows step-like transitions as a function of applied magnetic field that corresponds to abrupt changes of spin configuration. By adjusting the field range, one obtains minor hysteresis loops that allow one to determine spin configurations occurring in the multilayer, which in turn can be used to obtain the ratio of NNN IEC to NN IEC. By using this method on a series of GaMnAs/GaAs:Be with different numbers of GaMnAs layers, we obtain this ratio to be 0.23, in goodmore » agreement with theoretical predictions.« less
Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)
NASA Astrophysics Data System (ADS)
de Oliveira, Aline; de Lima, Guilherme Ferreira; De Abreu, Heitor Avelino
2018-01-01
The Metal-Organic Frameworks M-MOF-74 (M = Mg, Co or Mn) were investigated through Density Functional Theory calculations. Structural parameters and band gap energies were determined in agreement with experimental data, with errors under 2%. The methods Electron Localization Function and Quantum Theory of Atoms in Molecules were applied to the analyses of the electronic density topology of the three solids. These methodologies indicated that the bonds between the metallic cations and the oxygen atoms are predominantly ionic while the other ones are predominantly covalent. Furthermore, non-conventional hydrogen bonds were identified to Mg-MOF-74 and Co-MOF-74, which were not observed to Mn-MOF-74.
2015-01-01
Mn K-edge X-ray absorption spectroscopy (XAS) was used to gain insights into the geometric and electronic structures of [MnII(Cl)2(Me2EBC)], [MnIV(OH)2(Me2EBC)]2+, and [MnIV(O)(OH)(Me2EBC)]+, which are all supported by the tetradentate, macrocyclic Me2EBC ligand (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane). Analysis of extended X-ray absorption fine structure (EXAFS) data for [MnIV(O)(OH)(Me2EBC)]+ revealed Mn–O scatterers at 1.71 and 1.84 Å and Mn–N scatterers at 2.11 Å, providing the first unambiguous support for the formulation of this species as an oxohydroxomanganese(IV) adduct. EXAFS-determined structural parameters for [MnII(Cl)2(Me2EBC)] and [MnIV(OH)2(Me2EBC)]2+ are consistent with previously reported crystal structures. The Mn pre-edge energies and intensities of these complexes were examined within the context of data for other oxo- and hydroxomanganese(IV) adducts, and time-dependent density functional theory (TD-DFT) computations were used to predict pre-edge properties for all compounds considered. This combined experimental and computational analysis revealed a correlation between the Mn–O(H) distances and pre-edge peak areas of MnIV=O and MnIV–OH complexes, but this trend was strongly modulated by the MnIV coordination geometry. Mn 3d-4p mixing, which primarily accounts for the pre-edge intensities, is not solely a function of the Mn–O(H) bond length; the coordination geometry also has a large effect on the distribution of pre-edge intensity. For tetragonal MnIV=O centers, more than 90% of the pre-edge intensity comes from excitations to the Mn=O σ* MO. Trigonal bipyramidal oxomanganese(IV) centers likewise feature excitations to the Mn=O σ* molecular orbital (MO) but also show intense transitions to 3dx2–y2 and 3dxy MOs because of enhanced 3d-4px,y mixing. This gives rise to a broader pre-edge feature for trigonal MnIV=O adducts. These results underscore the importance of reporting experimental pre-edge areas rather than peak heights. Finally, the TD-DFT method was applied to understand the pre-edge properties of a recently reported S = 1 MnV=O adduct; these findings are discussed within the context of previous examinations of oxomanganese(V) complexes. PMID:24901026
O'Brien, Kevin F.; Wang, Weidong; Johnke, Roberta M.; Sheng, Chao; Benhabib, Sidi M.; Wang, Tao; Allison, Ron R.
2010-01-01
Abstract Background Ionizing radiation (IR) initiates intracellular oxidative stress through enhanced formation of reactive oxygen species (ROS) that attack DNA leading to cell death. Because of the diversity of IR applied in medicine, agriculture, industry, and the growing threats of global terrorism, the acquisition of radioprotectors is an urgent need for the nation. However, the applicability of radioprotectors currently under investigation is limited due to their inherent toxicity. Objective This study investigated the effect of a standardized North American ginseng extract (NAGE, total ginsenoside content: 11.7%) on DNA damage in human lymphocytes at 90 minutes postirradiation. Design With the application of NAGE (250–1000 μg mL−1) at 90 minutes postirradiation (1 and 2 Gy), DNA damage in lymphocytes obtained from 40 healthy individuals was evaluated by cytokinesis-block micronucleus assay. Similar experiments were also performed in lymphocytes treated with WR-1065 (1 mmol/L or 3 mmol/L). In addition, before and after irradiation, lymphocytes obtained from 10 individuals were measured for their total antioxidant capacity (TAC) and the reactive oxygen species (ROS). Results The significant effect of NAGE against 137Cs-induced micronuclei (MN) in lymphocytes is concentration dependent. NAGE (750 μg mL−1) reduced MN yield by 50.7% after 1 Gy and 35.9% after 2 Gy exposures, respectively; these results were comparable to that of WR-1065. Furthermore, we also found that NAGE reduces MN yield and ROS but increases TAC in lymphocytes. Conclusions Our results suggest that NAGE is a relatively nontoxic natural compound that holds radioprotective potential in human lymphocytes even when applied at 90 minutes postirradiation. One of the radioprotective mechanisms may be mediated through the scavenging of free radicals and enhancement of the intracellular TAC. PMID:20491513
Zhang, Yunyi; Li, Yongxin; Zhang, Cuiyun; Zhang, Qingfeng; Huang, Xinan; Yang, Meiding; Shahzad, Sohail Anjum; Lo, Kenneth Kam-Wing; Yu, Cong; Jiang, Shichun
2017-08-01
A fluorescence turn-on assay for alkaline phosphatase (ALP) activity is developed through the controlled release of polyethyleneimine-capped copper nanoclusters (PEI-capped CuNCs) from the MnO 2 nanosheets. In an aqueous solution, the positively charged PEI-capped CuNCs could be adsorbed onto the surface of the negatively charged MnO 2 nanosheets. Such adsorption through favorable electrostatic interactions could efficiently quench the nanocluster fluorescence emission via resonance energy transfer from the PEI-capped CuNCs to the MnO 2 nanosheets. 2-Phospho-L-ascorbic acid (AAP) could be hydrolyzed to L-ascorbic acid (AA) in the presence of ALP. AA could reduce MnO 2 into Mn 2+ and trigger the disintegration of the MnO 2 nanosheets. As a result, the CuNCs were released and the quenched fluorescence was recovered efficiently. The detection strategy is simple, inexpensive, sensitive, selective, with low toxicity, and has better biocompatibility. The newly fabricated biosensor for ALP activity will potentially make it a robust candidate for numerous biological and biomedical applications.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Microbial reduction of manganese oxides - Interactions with iron and sulfur
NASA Technical Reports Server (NTRS)
Myers, Charles R.; Nealson, Kenneth H.
1988-01-01
Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.
In Situ TEM Investigation of the Electrochemical Behavior in CNTs/MnO2-Based Energy Storage Devices.
Tsai, Tsung-Chun; Huang, Guan-Min; Huang, Chun-Wei; Chen, Jui-Yuan; Yang, Chih-Chieh; Tseng, Tseung-Yuen; Wu, Wen-Wei
2017-09-19
Transition metal oxides have attracted much interest owing to their ability to provide high power density in lithium batteries; therefore, it is important to understand the electrochemical behavior and mechanism of lithiation-delithiation processes. In this study, we successfully and directly observed the structural evolution of CNTs/MnO 2 during the lithiation process using transmission electron microscopy (TEM). CNTs/MnO 2 were selected due to their high surface area and capacitance effect, and the lithiation mechanism of the CNT wall expansion was systematically analyzed. Interestingly, the wall spacings of CNTs/MnO 2 and CNTs were obviously expanded by 10.92% and 2.59%, respectively. The MnO 2 layer caused structural defects on the CNTs surface that could allow penetration of Li + and Mn 4+ through the tube wall and hence improve the ionic transportation speed. This study provided direct evidence for understanding the role of CNTs/MnO 2 in the lithiation process used in lithium ion batteries and also offers potential benefits for applications and development of supercapacitors.
Casjens, Swaantje; Pesch, Beate; Robens, Sibylle; Kendzia, Benjamin; Behrens, Thomas; Weiss, Tobias; Ulrich, Nadin; Arendt, Marina; Eisele, Lewin; Pundt, Noreen; Marr, Anja; van Thriel, Christoph; Van Gelder, Rainer; Aschner, Michael; Moebus, Susanne; Dragano, Nico; Jöckel, Karl-Heinz; Brüning, Thomas
2017-01-01
Occupational exposure to manganese (Mn) has been associated with impairments in olfaction and motor functions, but it has yet to be determined if such effects persist upon cessation of exposure. The objective of this study was to evaluate the influence of former occupational Mn exposure on olfaction within the framework of a prospective cohort study among an elderly German population. Information on job tasks with recognized Mn exposure and data on odor identification assessed with Sniffin' sticks was collected during the second follow-up of the Heinz Nixdorf Recall Study. The study population consisted of 1385 men aged 55-86 years, 354 of whom ever worked in jobs with potential Mn exposure (median 58.3μg/m 3 years, interquartile range 19.0-185μg/m 3 years). Multiple exposure measures, including job tasks, cumulative Mn exposure, and Mn determined in blood samples (MnB) archived at baseline, were used to estimate effects of Mn on olfaction. Having ever worked as welder was associated with better olfaction compared to other blue-collar workers without Mn exposure. Blue-collar workers identified less odors in comparison to white-collar workers. Concentrations of previous Mn exposure >185μg/m 3 years or MnB ≥15μg/L were not associated with impaired olfaction. In addition to a strong age effect, participants with lower occupational qualification identified less odors. We found no relevant association of former Mn exposure at relatively low levels with impaired olfaction. Possible neurotoxic Mn effects may not be persistent after cessation. Copyright © 2016 Elsevier B.V. All rights reserved.
Electronic and magnetic properties of Mn-doped WSe2 monolayer under strain
NASA Astrophysics Data System (ADS)
Xin, Qianqian; Zhao, Xu; Wang, Tianxing
2017-04-01
Electronic and magnetic properties of Mn-doped WSe2 monolyer subject to isotropic strain are investigated using the first-principles methods based on the density functional theory. Our results indicate that Mn-doped WSe2 monolayer is a magnetic semiconductor nanomaterial with strong spontaneous magnetism without strain and the total magnetic moment of Mn-doped system is 1.038μB. We applied strain to Mn-doped WSe2 monolayer from -10% to 10%. The doped system transforms from magnetic semiconductor to half-metallic material from -10% to -2% compressive strain and from 2% to 6% tensile strain. The largest half-metallic gap is 0.450 eV at -2% compressive strain. The doped system shows metal property from 7% to 10%. Its maximum magnetic moment comes to 1.181μB at 6% tensile strain. However, the magnetic moment of system decreases to zero sharply when tensile strain arrived at 7%. Strain changes the redistribution of charges and arises to the magnetic effect. The coupling between the 3d orbital of Mn atom, 5d orbital of W atom and 4p orbital of Se atom is analyzed to explain the strong strain effect on the magnetic properties. Our studies predict Mn-doped WSe2 monolayers under strain to be candidates for thin dilute magnetic semiconductors, which is important for application in semiconductor spintronics.
Hauk, O; Keil, A; Elbert, T; Müller, M M
2002-01-30
We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.
Xiang, Bo; Ling, Dong; Lou, Han; Gu, Hongbo
2017-03-05
A functionalized magnetic nickel ferrite/manganese dioxide (NiFe 2 O 4 /MnO 2 ) with 3D hierarchical flower-like and core-shell structure was synthesized by a facile hydrothermal approach and applied for the removal of Pb(II) ions from aqueous solutions. Batch adsorption experiments were conducted to study the effect of solution pH, initial Pb(II) concentration, and dose of absorbents on the Pb(II) removal by NiFe 2 O 4 /MnO 2 . The NiFe 2 O 4 /MnO 2 nanocomposites showed the fast Pb(II) adsorption performance with the maximum adsorption capacity of 85.78mgg -1 . The adsorption kinetics of Pb(II) onto NiFe 2 O 4 /MnO 2 obeyed a pseudo-second-order model. The isothermal experimental results indicated that the Langmuir model was fitted better than the Freundlich model, illustrating a monolayer adsorption process for Pb(II) onto NiFe 2 O 4 /MnO 2 . Meanwhile, the NiFe 2 O 4 /MnO 2 was easily separated from the solution by an external magnet within a short period of time and still exhibited almost 80% removal capacity after six regenerations. The NiFe 2 O 4 /MnO 2 is expected to be a new promising adsorbent for heavy metal removal. Copyright © 2016 Elsevier B.V. All rights reserved.
Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms
NASA Astrophysics Data System (ADS)
Strom, Matthew James
Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled out the enzymatic catalysis of ORR and supported the catalysis by MnO2. Sustainable redox reactions at the cathode were evaluated by monitoring the cathodic current of biofilm coated stainless steel for a year under different polarization intensities. The results showed that sustainable cathodic reactions were present in marine biofilms but their influence on the cathodic current was negligible until a potential was reached where the ORR could take place. Additionally seasonal variability was observed in the enhanced cathodic current in Delaware Bay biofilms. This was attributed to the seasonal variability of manganese in the water column.
Electrokinesis is a microbial behavior that requires extracellular electron transport
Harris, H. W.; El-Naggar, M. Y.; Bretschger, O.; Ward, M. J.; Romine, M. F.; Obraztsova, A. Y.; Nealson, K. H.
2009-01-01
We report a previously undescribed bacterial behavior termed electrokinesis. This behavior was initially observed as a dramatic increase in cell swimming speed during reduction of solid MnO2 particles by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. The same behavioral response was observed when cells were exposed to small positive applied potentials at the working electrode of a microelectrochemical cell and could be tuned by adjusting the potential on the working electrode. Electrokinesis was found to be different from both chemotaxis and galvanotaxis but was absent in mutants defective in electron transport to solid metal oxides. Using in situ video microscopy and cell tracking algorithms, we have quantified the response for different strains of Shewanella and shown that the response correlates with current-generating capacity in microbial fuel cells. The electrokinetic response was only exhibited by a subpopulation of cells closest to the MnO2 particles or electrodes. In contrast, the addition of 1 mM 9,10-anthraquinone-2,6-disulfonic acid, a soluble electron shuttle, led to increases in motility in the entire population. Electrokinesis is defined as a behavioral response that requires functional extracellular electron transport and that is observed as an increase in cell swimming speeds and lengthened paths of motion that occur in the proximity of a redox active mineral surface or the working electrode of an electrochemical cell. PMID:20018675
Citak, Demirhan; Tuzen, Mustafa; Soylak, Mustafa
2010-01-15
A speciation procedure based on the coprecipitation of manganese(II) with zirconium(IV) hydroxide has been developed for the investigation of levels of manganese species. The determination of manganese levels was performed by flame atomic absorption spectrometry (FAAS). Total manganese was determined after the reduction of Mn(VII) to Mn(II) by ascorbic acid. The analytical parameters including pH, amount of zirconium(IV), sample volume, etc., were investigated for the quantitative recoveries of manganese(II). The effects of matrix ions were also examined. The recoveries for manganese(II) were in the range of 95-98%. Preconcentration factor was calculated as 50. The detection limit for the analyte ions based on 3 sigma (n=21) was 0.75 microg L(-1) for Mn(II). The relative standard deviation was found to be lower than 7%. The validation of the presented procedure was performed by analysis of certified reference material having different matrices, NIST SRM 1515 (Apple Leaves) and NIST SRM 1568a (Rice Flour). The procedure was successfully applied to natural waters and food samples.
Multifrequency Pulsed EPR Studies of Biologically Relevant Manganese(II) Complexes
Stich, T. A.; Lahiri, S.; Yeagle, G.; Dicus, M.; Brynda, M.; Gunn, A.; Aznar, C.; DeRose, V. J.; Britt, R. D.
2011-01-01
Electron paramagnetic resonance studies at multiple frequencies (MF EPR) can provide detailed electronic structure descriptions of unpaired electrons in organic radicals, inorganic complexes, and metalloenzymes. Analysis of these properties aids in the assignment of the chemical environment surrounding the paramagnet and provides mechanistic insight into the chemical reactions in which these systems take part. Herein, we present results from pulsed EPR studies performed at three different frequencies (9, 31, and 130 GHz) on [Mn(II)(H2O)6]2+, Mn(II) adducts with the nucleotides ATP and GMP, and the Mn(II)-bound form of the hammerhead ribozyme (MnHH). Through line shape analysis and interpretation of the zero-field splitting values derived from successful simulations of the corresponding continuous-wave and field-swept echo-detected spectra, these data are used to exemplify the ability of the MF EPR approach in distinguishing the nature of the first ligand sphere. A survey of recent results from pulsed EPR, as well as pulsed electron-nuclear double resonance and electron spin echo envelope modulation spectroscopic studies applied to Mn(II)-dependent systems, is also presented. PMID:22190766
Mn-53-Cr-53 Systematics of R-Chondrite NWA 753
NASA Technical Reports Server (NTRS)
Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.
2006-01-01
Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-12-07
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.
Influence of convection on microstructure
NASA Technical Reports Server (NTRS)
Wilcox, William R.; Eisa, Gaber Faheem; Chandrasekhar, S.; Larrousse, Mark; Banan, Mohsen
1988-01-01
The influence was studied of convection during directional solidification on the resulting microstructure of eutectics, specifically lead/tin and manganese/bismuth. A theory was developed for the influence of convection on the microstructure of lamellar and fibrous eutectics, through the effect of convection on the concentration field in the melt in front of the growing eutectic. While the theory agrees with the experimental spin-up spin-down results, it predicts that the weak convection expected due to buoyancy will not produce a measurable change in eutectic microstructure. Thus, this theory does not explain the two fold decrease in MnBi fiber size and spacing observed when MnBi-Bi is solidified in space or on Earth with a magnetic field applied. Attention was turned to the morphology of the MnBi-Bi interface and to the generation of freezing rate fluctuations by convection. Decanting the melt during solidification of MnBi-Bi eutectic showed that the MnBi phase projects into the melt ahead of the Bi matrix. Temperature measurements in a Bi melt in the vertical Bridgman-Stockbarger configuration showed temperature variations of up to 25 C. Conclusions are drawn and discussed.
Magnetic and Magnetocaloric Properties of Ca0.97La0.03MnO3 Manganites
NASA Astrophysics Data System (ADS)
Gong, G. D.; Hu, P. F.; Li, Y.; Kim, D. H.; Liu, C. L.; Phan, T. L.; Ho, T. A.; Yu, S. C.; Telegin, A.; Naumov, S. V.
2016-07-01
In spite of many previous studies on electron-doped CaMnO3 perovskite manganites, detailed investigations into the influence of low-doping concentrations on their magnetic and magnetocaloric (MC) properties have not been carried out yet. Additionally, there is still the lack of the comparison between single-crystal (SC) and polycrystalline (PC) materials. Dealing with these problems, we prepared orthorhombic Ca0.97La0.03MnO3 SC and PC samples. Magnetization measurements versus the temperature and magnetic field revealed remarkable differences in the magnetic property, particularly around the antiferromagnetic/ferromagnetic-paramagnetic phase-transition region. The analyses of the magnetization versus magnetic field, M( H), data indicated a weak MC effect with magnetic-entropy changes less than 0.1 J kg-1 K-1 for an applied field interval H = 10 kOe because ferromagnetic interactions between Mn3+ and Mn4+ ions are insignificant. The differences in the magnetic and MC properties of the SC and PC samples are ascribed to the effects of grain boundary, magnetic anisotropy, and nonstoichiometry in oxygen.
Louagie, H; Philippé, J; Vral, A; Cornelissen, M; Thierens, H; De Ridder, L
1998-02-01
To investigate the chromosomal damage caused by gamma-irradiation in T lymphocytes and natural killer (NK) cells and compare this with apoptosis induction in both lymphocyte subsets. Apoptosis induction by gamma-irradiation in T lymphocytes and NK cells was quantified using the annexin V flow cytometric assay. The cytokinesis-block micronucleus (MN) assay was used to evaluate the induced cytogenetic damage. For the MN assays on NK cells, gamma-irradiated peripheral blood mononuclear cells were cultured and stimulated with interleukin 15 (IL-15). Afterwards the NK cells (characterized by the CD3-/CD56+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binuclear cells was scored. Doses of 1 and 2 Gy gamma-irradiation were applied. Higher numbers of MN in NK cells were found compared with the MN yield in T lymphocytes. In contrast, NK cells were less than T lymphocytes prone to apoptosis after gamma-irradiation. The results support the view that cytogenetic damage and apoptosis after gamma-irradiation are not necessarily correlated.
Mugnaioli, Enrico; Gemmi, Mauro; Merlini, Marco; Gregorkiewitz, Michele
2016-01-01
(Nax□1 − x)5[MnO2]13 has been synthesized with x = 0.80 (4), corresponding to Na0.31[MnO2]. This well known material is usually cited as Na0.4[MnO2] and is believed to have a romanèchite-like framework. Here, its true structure is determined, ab initio, by single-crystal electron diffraction tomography (EDT) and refined both by EDT data applying dynamical scattering theory and by the Rietveld method based on synchrotron powder diffraction data (χ2 = 0.690, R wp = 0.051, R p = 0.037, R F2 = 0.035). The unit cell is monoclinic C2/m, a = 22.5199 (6), b = 2.83987 (6), c = 14.8815 (4) Å, β = 105.0925 (16)°, V = 918.90 (4) Å3, Z = 2. A hitherto unknown [MnO2] framework is found, which is mainly based on edge- and corner-sharing octahedra and comprises three types of tunnels: per unit cell, two are defined by S-shaped 10-rings, four by egg-shaped 8-rings, and two by slightly oval 6-rings of Mn polyhedra. Na occupies all tunnels. The so-determined structure excellently explains previous reports on the electrochemistry of (Na,□)5[MnO2]13. The trivalent Mn3+ ions concentrate at two of the seven Mn sites where larger Mn—O distances and Jahn–Teller distortion are observed. One of the Mn3+ sites is five-coordinated in a square pyramid which, on oxidation to Mn4+, may easily undergo topotactic transformation to an octahedron suggesting a possible pathway for the transition among different tunnel structures. PMID:27910840
NASA Astrophysics Data System (ADS)
Maheswari, R.; Manjula, J.
2016-07-01
(E)-4-methoxy-N‧-(4-methylbenzylidene)benzohydrazide (4MN'MBH) a novel, organic, hydrazone Schiff base compound was synthesized and its structure was characterized by Fourier Transform Infrared (4000-400 cm-1), Fourier Transform Raman (3500-50 cm-1), Ultraviolet-Visible (200-800 nm) and 1H and 13C NMR spectroscopic analysis. Optimized molecular structure, vibrational frequencies and corresponding vibrational assignments regarding 4MN'MBH has become screened tentatively as well as hypothetically utilizing Gaussian09Wprogram package. Potential energy distributions of the normal modes of vibrations connected with vibrations are generally accomplished by applying VEDA program. Natural Bonding Orbital (NBO) assessment was completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular-hybridization and delocalization of electron density within the molecule. Electronic transitions were studied employing UV-Visible spectrum and the observed values were compared with theoretical values. 1H and13C NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects of title compound. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4MN'MBH were calculated. The computed first order hyperpolarizability commensurate with the documented worth of very similar structure and could be an interesting thing for more experiments on non linear optics. Molecular docking study has been performed by in silico method to analysis their antituberculosis aspects against Enoyl acyl carrier protein reductase (Mycobacterium tuberculosis InhA) protein.
van den Broeke, Emanuel N; de Vries, Bart; Lambert, Julien; Torta, Diana M; Mouraux, André
2017-08-01
Pinprick-evoked brain potentials (PEPs) have been proposed as a technique to investigate secondary hyperalgesia and central sensitization in humans. However, the signal-to-noise (SNR) of PEPs is low. Here, using time-frequency analysis, we characterize the phase-locked and non-phase-locked EEG responses to pinprick stimulation, before and after secondary hyperalgesia. Secondary hyperalgesia was induced using high-frequency electrical stimulation (HFS) of the left/right forearm skin in 16 volunteers. EEG responses to 64 and 96mN pinprick stimuli were elicited from both arms, before and 20min after HFS. Pinprick stimulation applied to normal skin elicited a phase-locked low-frequency (<5Hz) response followed by a reduction of alpha-band oscillations (7-10Hz). The low-frequency response was significantly increased when pinprick stimuli were delivered to the area of secondary hyperalgesia. There was no change in the reduction of alpha-band oscillations. Whereas the low-frequency response was enhanced for both 64 and 96mN intensities, PEPs analyzed in the time domain were only significantly enhanced for the 64mN intensity. Time-frequency analysis may be more sensitive than conventional time-domain analysis in revealing EEG changes associated to secondary hyperalgesia. Time-frequency analysis of PEPs can be used to investigate central sensitization in humans. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
A promising approach for the recovery of high value-added metals from spent lithium-ion batteries
NASA Astrophysics Data System (ADS)
Hu, Juntao; Zhang, Jialiang; Li, Hongxu; Chen, Yongqiang; Wang, Chengyan
2017-05-01
The aim of the paper is to present a promising approach for recycling high value-added metals from the cathode materials of spent LIBs. The synthesis process of NCM cathode material enlightened us to apply reduction roasting to break LiNixCoyMnzO2 into simple compounds or metals. Accordingly, the effect of several factors such as temperature, carbon dosage and roasting time is assessed on the leaching efficiency of valuable metals. The roasted products are analyzed by XRD and SEM-EDS, and the results show that the cathode material after reduction roasting is primarily transformed into Li2CO3, Ni, Co and MnO. However, the solubility of Li2CO3 is relatively low, so carbonated water leaching is used to treat the roasted products. Then the filtrate is evaporated for the preparation of pure Li2CO3, and residue is leached to recycle other metals with H2SO4. The results indicate that, after roasted at 650 °C for 3 h with 19.9% carbon dosage, 84.7% Li is preferentially recovered via carbonated water leaching, and more than 99% Ni, Co and Mn are recycled via acid leaching without adding reductant. Finally, the products of Li2CO3, NiSO4, CoSO4 and MnSO4 are obtained. The process have great potential for industrial-scale recycling from spent LIBs.
75 FR 24402 - Safety Zone; St. Louis River, Tallas Island, Duluth, MN
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-05
...-AA00 Safety Zone; St. Louis River, Tallas Island, Duluth, MN AGENCY: Coast Guard, DHS. ACTION... Island area of the St. Louis River, Duluth, Minnesota. All vessels are prohibited from transiting the... potential threat associated with the dredging project beginning at Tallas Island, St. Louis River. The...
NASA Astrophysics Data System (ADS)
Ashassi-Sorkhabi, H.; La'le Badakhshan, P.
2017-10-01
We have electrochemically synthesized 3D-porous Ni/MnOx nanocomposites for supercapacitor applications. 3D porous micro-nanostructured networks of nickel were prepared using hydrogen bubbles as a dynamic template at different deposition potentials and times. The prepared nickel films were used then as 3D-porous substrates for anodic deposition of manganese oxide nanostructures. The effects of deposition potential and time on the structure of the prepared nickel scaffolds and especially on the capacitive behavior of the subsequently fabricated 3D-porous Ni/MnOx nanocomposites were investigated. The results show that the areal capacitance and especially the rate capability of prepared Ni/MnOx nanocomposites have improved with increasing the deposition potential or optimizing the deposition time of nickel films in the nanocomposites. The prepared 3D-porous Ni/MnOx nanocomposite, in which the nickel scaffold has been deposited at the potential of -6 V and duration of 90s, show almost the highest capacitive performance among all other prepared nanocomposites. This prepared nanocomposite, with the loading mass of 1.65 mg cm-2, showed the high areal capacitance of 654 mF cm-2 (396.4 F g-1) at the current density of 0.5 mA cm-2 (0.3 A g-1) in 0.5 M Na2SO4 solution. This nanocomposite also revealed the highest rate capability; the capacitance retention is about 63% (412 mF cm-2) with increasing the discharge rate from 0.5 to 20 mA cm-2, which is almost twice the observed amount of retention when the deposition potential of Ni films was -2 V (31%) or their deposition time was 45 s (34%). In addition, the prepared nanocomposite exhibited an outstanding cycling stability. The capacitance retention was about 98.91% after performing 2000 charge-discharge cycles.
l-Cysteine-Assisted Synthesis of Urchin-Like γ-MnS and Its Lithium Storage Properties
NASA Astrophysics Data System (ADS)
Xu, Dan; Jiao, Ranran; Sun, Yuanwei; Sun, Dezhi; Zhang, Xianxi; Zeng, Suyuan; Di, Youying
2016-10-01
MnS has been attracting more and more attentions in the fields of lithium ion batteries (LIBs) because of its high energy density and low voltage potential. In this paper, we present a simple method for the preparation of urchin-like γ-MnS microstructures using l-cysteine and MnCl2 · 4H2O as the starting materials. The urchin-like γ-MnS microstructures exhibit excellent cycling stability (823.4 mA h g-1 at a current density of 500 mA g-1, after 1000 cycles). And the discharge voltage is about 0.75 V, making it a good candidate for the application as the anode material in LIBs. SEM, TEM, and XRD were employed to inspect the changes of the active materials during the electrochemical process, which clearly indicate that the structural pulverization and reformation of the γ-MnS microstructures play important roles for the maintenance of the electrochemical performance during the charge/discharge process.
High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.
2018-06-01
We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.
Miller, Effie K; Trivelas, Nicholas E; Maugeri, Pearson T; Blaesi, Elizabeth J; Shafaat, Hannah S
2017-07-05
The assembly mechanism of the Mn/Fe ligand-binding oxidases (R2lox), a family of proteins that are homologous to the nonheme diiron carboxylate enzymes, has been investigated using time-resolved techniques. Multiple heterobimetallic intermediates that exhibit unique spectral features, including visible absorption bands and exceptionally broad electron paramagnetic resonance signatures, are observed through optical and magnetic resonance spectroscopies. On the basis of comparison to known diiron species and model compounds, the spectra have been attributed to (μ-peroxo)-Mn III /Fe III and high-valent Mn/Fe species. Global spectral analysis coupled with isotopic substitution and kinetic modeling reveals elementary rate constants for the assembly of Mn/Fe R2lox under aerobic conditions. A complete reaction mechanism for cofactor maturation that is consistent with experimental data has been developed. These results suggest that the Mn/Fe cofactor can perform direct C-H bond abstraction, demonstrating the potential for potent chemical reactivity that remains unexplored.
Hou, Harvey J M
2010-08-01
To address the issues of energy crisis and global warming, novel renewable carbon-free or carbon-neutral energy sources must be identified and developed. A deeper understanding of photosynthesis is the key to provide a solid foundation to facilitate this transformation. To mimic the water oxidation of photosystem II oxygen evolving complex, Mn-oxo complexes and Co-phosphate catalytic material were discovered in solar energy storage. Building on these discoveries, recent advances in solar energy conversion showed a compelling working principle by combing the active Mn-oxo and Co-based catalysts in water splitting with semiconductor hetero-nanostructures for effective solar energy harnessing. In this review the appealing systems including Mn-oxo tetramer/Nafion, Mn-oxo dimer/TiO(2), Mn-oxo oligomer/WO(3), Co-Pi/Fe(2)O(3), and Co-Pi/ZnO are summarized and discussed. These accomplishments offer a promising framework and have a profound impact in the field of solar fuel production.
NASA Astrophysics Data System (ADS)
Li, Chuanhua; Yu, Zhiyong; Liu, Hanxing; Chen, Kang
2018-02-01
To improve sluggish kinetics of ORR and OER (oxygen reduction and evolution reaction) on the air electrode, the high surface area LaMnO3 nanoparticle catalysts were synthesized by sol-gel method. The specific surface area of as-synthesized pure phase LaMnO3 nanoparticles is 21.21 m2 g-1. The onset potential of high surface area LaMnO3 in alkaline solution is -0.0202 V which is comparable to commercial Pt/C. When the assembled high surface area LaMnO3-based lithium-air batteries were measured at 100 mA g-1, the initial discharge specific capacity could reach 6851.9 mA h g-1(carbon). In addition, lithium-oxygen batteries including high surface area LaMnO3 catalysts could be cycled for 52 cycles at 200 mA g-1 under a limited discharge-charge depth of 500 mA h gcarbon-1.
Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material
Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Chu, Paul K.
2017-01-01
Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO4 with a size of tens of micrometres and polycrystalline MnMoO4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the (1¯11) plane on the sidewall. And these MnMoO4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO4. PMID:29308255
Manganese molybdate nanoflakes on silicon microchannel plates as novel nano energetic material.
Zhang, Chi; Wu, Dajun; Shi, Liming; Zhu, Yiping; Xiong, Dayuan; Xu, Shaohui; Huang, Rong; Qi, Ruijuan; Zhang, Wenchao; Wang, Lianwei; Chu, Paul K
2017-12-01
Nano energetic materials have attracted great attention recently owing to their potential applications for both civilian and military purposes. By introducing silicon microchannel plates (Si-MCPs) three-dimensional (3D)-ordered structures, monocrystalline MnMoO 4 with a size of tens of micrometres and polycrystalline MnMoO 4 nanoflakes are produced on the surface and sidewall of nickel-coated Si-MCP, respectively. The MnMoO 4 crystals ripen controllably forming polycrystalline nanoflakes with lattice fringes of 0.542 nm corresponding to the [Formula: see text] plane on the sidewall. And these MnMoO 4 nanoflakes show apparent thermite performance which is rarely reported and represents MnMoO 4 becoming a new category of energetic materials after nanocrystallization. Additionally, the nanocrystallization mechanism is interpreted by ionic diffusion caused by 3D structure. The results indicate that the Si-MCP is a promising substrate for nanocrystallization of energetic materials such as MnMoO 4 .
Characterization of CaMn2O4 By X-Ray Magnetic Linear Dichroism
NASA Astrophysics Data System (ADS)
Holroyd, Johnathon; Bhatkar, Harshawardhan; Arenholz, Elke; White, Ben; Neumeier, John; Idzerda, Yves
2008-05-01
Perovskite manganite such as LaxCa(1-x)MnO3 (LCMO) have recently drawn attention for their useful electronic and magnetic properties such as Colossal Magnetoresistance. It has been shown that under stress, LCMO thin films show changes in La and Ca concentrations near the interface. One potential impurity under La depleted conditions is antiferromagnetic CaMn2O4. In order to better understand the range of properties available within LCMO systems, it is important to be able to identify and characterize CaMn2O4 within LCMO thin films. X-ray absorption spectroscopy (XAS) and X-ray magnetic linear dichroism (XMLD) are well suited to this task due to their element specificity, sensitivity, and ability to characterize the measure the magnetic properties of antiferromagnetic systems. XAS and XMLD were measured on high quality single crystals of CaMn2O4. These spectra are distinguished from CaMnO3 and demonstrate antiferromagnetic structure.
NASA Astrophysics Data System (ADS)
Holdaway, B. J.; Owens, J. D.; Nielsen, S.; Anbar, A. D.; Ostrander, C. M.
2017-12-01
Understanding the chemical and biological innovation and evolution of the global ocean is pivotal in understanding the processes for how early life on Earth and potentially habitable planets advanced. Previous research on early-Earth oxygenation has revealed a rise in atmospheric [O2] 2.32 billion years ago, coined the Great Oxidation Event, or GOE. Many lines of evidence, however, suggest continental oxidative weathering as early as 3.0 Ga, with possibilities of complementary ocean oxygenation. Modeling of the geochemical data suggests small oxygen "oases" prior to whiffs of O2, or even widespread oxygen-rich margins. However, constraining the extent and timing of oceanic oxygenation is difficult as proxies fall short in detecting early ocean oxygenation. Importantly, the formation and preservation of manganese (Mn) in the form of manganese-oxides requires an oxygenated water-column that penetrates the sediment-water interface. Until recently, tracking the global burial of Mn-oxides was very difficult, largely compounded by an incomplete ancient geologic record. Here we use thallium (Tl), a new and novel isotope system to better constrain marine [O2], specifically by constraining the global burial of Mn-oxides. Recently, it has been shown that modern seawater Tl isotope composition is faithfully recorded in anoxic to euxinic (anoxic and sulfidic) sediments. Nearly all isotopic inputs: riverine, dust, volcanic, hydrothermal, and benthic recycling of Tl into the ocean are constant with ɛ205Tl -2. In contrast, the two primary outputs impart significant fractionations, these outputs being the burial of Mn-oxides (ɛ205Tl +12) and altered oceanic crust (ɛ205Tl -10). Thus, seawater is mainly dictated by the mass balance of the outputs (Mn-oxides and altered oceanic crust) which, for short-term events, is likely driven by the amount of Mn-oxide burial. Tl isotope analyses of the dominantly euxinic 2.5 Ga Mt. McRae Shale from the Hamersley Basin, Western Australia, suggest oceanic oxygenation penetrated minor expanses of the global sediment-water interface, coeval with a "whiff" of O2 at 2.5 Ga. Here we probe deeper into the ancient rock record prior to the "whiff", applying high resolution Tl isotope measurements to the anoxic and euxinic 2.63 Ga Roy Hill Shale.
Heavy metal extractable forms in sludge from wastewater treatment plants.
Alvarez, E Alonso; Mochón, M Callejón; Jiménez Sánchez, J C; Ternero Rodríguez, M
2002-05-01
The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is widely accepted that the determination of total elements does not give an accurate estimation of the potential environmental impact. So, it is necessary to apply sequential extraction techniques to obtain a suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the BCR's guidelines was applied to sludge samples collected from each sludge treatment step of five municipal activated sludge plants. Al. Cd, Co, Cu, Cr, Fe, Mn, Hg, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes none of metal concentrations exceeded maximum permitted levels. In most of the metal elements under considerations, results showed a clear rise along the sludge treatment in the proportion of two less-available fractions (oxidizable metal and residual metal).
Batool, Fozia; Iqbal, Shahid; Akbar, Jamshed
2018-04-03
The present study describes Quantitative Structure Property Relationship (QSPR) modeling to relate metal ions characteristics with adsorption potential of Ficus carica leaves for 13 selected metal ions (Ca +2 , Cr +3 , Co +2 , Cu +2 , Cd +2 , K +1 , Mg +2 , Mn +2 , Na +1 , Ni +2 , Pb +2 , Zn +2 , and Fe +2 ) to generate QSPR model. A set of 21 characteristic descriptors were selected and relationship of these metal characteristics with adsorptive behavior of metal ions was investigated. Stepwise Multiple Linear Regression (SMLR) analysis and Artificial Neural Network (ANN) were applied for descriptors selection and model generation. Langmuir and Freundlich isotherms were also applied on adsorption data to generate proper correlation for experimental findings. Model generated indicated covalent index as the most significant descriptor, which is responsible for more than 90% predictive adsorption (α = 0.05). Internal validation of model was performed by measuring [Formula: see text] (0.98). The results indicate that present model is a useful tool for prediction of adsorptive behavior of different metal ions based on their ionic characteristics.
Mn distribution in natural sphalerites: a micronalytical and EPR study
NASA Astrophysics Data System (ADS)
di Benedetto, F.; Bernardini, G. P.; Cipriani, C.; Plant, D.; Romanelli, M.; Vaughan, D. J.
2003-04-01
Electron Paramagnetic Resonance (EPR) has been successfully applied to determine the local coordination and distribution of transition metal cations in sulphides and sulphosalts (Di Benedetto et al., 2002). Due to its enhanced sensitivity and element-specificity it is one of the best tools to monitor Mn(II) behaviour down to very low concentrations. In order to reach a fuller understanding of the spectroscopic results, a microanalytical study has also been undertaken by means of Electron Microprobe Analysis. Operating conditions were chosen to achieve the lowest possible detection limits, taking into account that Mn can replace Zn in the sphalerite lattice both as a minor and trace element, and that EPR can detect Mn(II) below the ppm range. Six natural samples from the Museo di Storia Naturale, Università di Firenze, were selected to have pure single crystals and avoid magnetically active phases associated with the sphalerite. The Mn concentration determined ranges between 30 and 14300 ppm and Mn content varies considerably within the same sample, leading to differences up to the 50% as compared to the mean value. X-ray images confirm Mn to be distributed with an unusual pattern, unrelated to the other common Zn-replacing cations, Fe and Cd, present in the samples. Powder EPR spectra reveal at least three different Mn(II) signals: two sextets, overlapping in all samples containing Mn as trace element, and a single line, present only in the more concentrated samples. While the latter have been attributed to an inhomogeneous Mn distribution, due to an enhanced Mn-Mn superexchange interaction, the difference between the two sextets, observed by means of EEPR investigations in a synthetic sphalerite (Di Benedetto et al., 2002), appears unrelated to the Mn concentration and may be attributed to small differences in the local coordination of Mn(II) ions. This, in turn, may be explained by the segregation of small amounts of Mn into polytypic domains, features which usually characterise large sphalerite crystals. This study shows the distinctive behaviour of Mn in sphalerite, both at the micron and submicron scales. These features point to sphalerites "preserving" the out-of-equilibrium conditions of their genesis. Mn(II) magnetic interactions may play an important role in the stabilisation of polytypic hexagonal domains during the growth of sphalerite crystals. Di Benedetto, F., Bernardini, G.P., Caneschi, A., Cipriani, C., Danti, C., Pardi, L. and Romanelli, M. (2002): EPR and magnetic investigations on sulfides and sulfosalts. Eur. J. Mineral., 4(6), 1053.
Yoo, Hah Y; Pradeep, G C; Lee, Soo K; Park, Don H; Cho, Seung S; Choi, Yun H; Yoo, Jin C; Kim, Seung W
2015-12-01
Hydrolytic enzymes such as cellulase and hemicellulase have been attracted in lignocellulose based biorefinery. Especially, mannanase has been a growing interest in industrial applications due to its importance in the bioconversion. In this study, an extracellular endo-β-1,4-D-mannanase was produced by Streptomyces sp. CS147 (Mn147) and purified 8.5-fold with a 43.4% yield using Sephadex G-50 column. The characterization of Mn147 was performed, and the results were as follows: molecular weight of ∼25 kDa with an optimum temperature of 50°C and pH of 11.0. The effect of metal ions and various reagents on Mn147 was strongly activated by Ca(+2) but inhibited by Mg(+2) , Fe(+2) , hydrogen peroxide, EDTA and EGTA. Km and Vmax values of Mn147 were 0.13 mg/mL and 294 μmol/min mg, respectively, when different concentrations (3.1 to 50 mg/mL) of locust bean gum galactomannan were used as substrate. In enzymatic hydrolysis of heterogeneous substrate (spent coffee grounds), Mn147 shows a similar conversion compared to commercial enzymes. In addition, lignocellulosic biomass can be hydrolyzed to oligosaccharides (reducing sugars), which can be further utilized for the production of biomaterials. These results showed that Mn147 is attractive in quest of potential bioindustrial applications. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode
Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo; ...
2017-11-13
Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less
MnNiO 3 revisited with modern theoretical and experimental methods
Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael; ...
2017-11-03
MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less
Discovery and Characterization of a Pourbaix-Stable, 1.8 eV Direct Gap Bismuth Manganate Photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newhouse, Paul F.; Reyes-Lillo, Sebastian E.; Li, Guo
Solar-driven oxygen evolution is a critical technology for renewably synthesizing hydrogen- and carbon-containing fuels in solar fuel generators. New photoanode materials are needed to meet efficiency and stability requirements, motivating materials explorations for semiconductors with (i) band-gap energy in the visible spectrum and (ii) stable operation in aqueous electrolyte at the electrochemical potential needed to evolve oxygen from water. Motivated by the oxygen evolution competency of many Mn-based oxides, the existence of several Bi-containing ternary oxide photoanode materials, and the variety of known oxide materials combining these elements with Sm, we explore the Bi-Mn-Sm oxide system for new photoanodes. Throughmore » the use of a ferri/ferrocyanide redox couple in high-throughput screening, BiMn 2O 5 and its alloy with Sm are identified as photoanode materials with a near-ideal optical band gap of 1.8 eV. Using density functional theory-based calculations of the mullite Bi 3+ Mn 3+ Mn 4+O 5 phase, we identify electronic analogues to the well-known BiVO 4 photoanode and demonstrate excellent Pourbaix stability above the oxygen evolution Nernstian potential from pH 4.5 to 15. Lastly, our suite of experimental and computational characterization indicates that BiMn 2O 5 is a complex oxide with the necessary optical and chemical properties to be an efficient, stable solar fuel photoanode.« less
Serena, Carolina; Calvo, Enrique; Clares, Mari Paz; Diaz, María Luisa; Chicote, Javier U; Beltrán-Debon, Raúl; Fontova, Ramón; Rodriguez, Alejandro; García-España, Enrique; García-España, Antonio
2015-01-01
The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight. We have recently reported that two SOD mimetic compounds, the Mn(II) complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II) complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin. In this report we show that the Mn(II) complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules. The effective anti-inflammatory activity of the Mn(II) complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.
MnNiO 3 revisited with modern theoretical and experimental methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzubak, Allison L.; Mitra, Chandrima; Chance, Michael
MnNiO 3 is a strongly correlated transition metal oxide that has recently been investigated theoretically for its potential application as an oxygen-evolution photocatalyst. However, there is no experimental report on critical quantities such as the band gap or bulk modulus. Recent theoretical predictions with standard functionals such as LDA+U and HSE show large discrepancies in the band gaps (about 1.23 eV), depending on the nature of the functional used. Hence there is clearly a need for an accurate quantitative prediction of the band gap to gauge its utility as a photocatalyst. In this work, we present a diffusion quantum Montemore » Carlo study of the bulk properties of MnNiO 3 and revisit the synthesis and experimental properties of the compound. We predict quasiparticle band gaps of 2.0(5) eV and 3.8(6) eV for the majority and minority spin channels, respectively, and an equilibrium volume of 92.8 Å 3, which compares well to the experimental value of 94.4 Å 3. A bulk modulus of 217 GPa is predicted for MnNiO 3. As a result, we rationalize the difficulty for the formation of ordered ilmenite-type structure with specific sites for Ni and Mn to be potentially due to the formation of antisite defects that form during synthesis, which ultimately affects the physical properties of MnNiO 3.« less